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TESSELLATIONS OF RANDOM MAPS
OF ARBITRARY GENUS

 G MIERMONT

A. – We investigate Voronoi-like tessellations of bipartite quadrangulations on surfaces
of arbitrary genus, by using a natural generalization of a bijection of Marcus and Schaeffer allowing one
to encode such structures by labeled maps with a fixed number of faces. We investigate the scaling limits
of the latter. Applications include asymptotic enumeration results for quadrangulations, and typical
metric properties of randomly sampled quadrangulations. In particular, we show that scaling limits of
these random quadrangulations are such that almost every pair of points is linked by a unique geodesic.

R. – Nous examinons les propriétés de mosaïques de type Voronoï sur des quadrangula-
tions bipartites de genre arbitraire. Ceci est rendu possible par une généralisation naturelle d’une bi-
jection de Marcus et Schaeffer, permettant de décrire ces mosaïques par des cartes étiquetées avec un
nombre fixé de faces, dont nous déterminons les limites d’échelle. Parmi les applications de ces résultats,
figurent le comptage asymptotique des quadrangulations, ainsi que des propriétés métriques typiques
de quadrangulations choisies au hasard. En particulier, nous montrons que les limites d’échelles de ces
quadrangulations aléatoires sont telles que presque toute paire de points est liée par un unique chemin
géodésique.

1. Introduction

1.1. Motivation

A map is a graph embedded into a compact orientable surface without boundary, yield-
ing a cell decomposition of the surface, and considered up to orientation-preserving homeo-
morphisms. Random maps are considered in the physics literature on quantum gravity as
discretized versions of random surfaces [2]. This approach allows one to perform computa-
tions of certain integrals with respect to an ill-defined measure on surfaces, by approximating
them by finite sums over maps. From a mathematical perspective, this leads to the stimulat-
ing problem of existence of a measure on compact surfaces arising as the scaling limit of, say,
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726 G. MIERMONT

uniform random triangulations of the sphere (or the compact orientable surface of genus g)
with a large number of faces.

Important progress has been made in this direction in the recent years, thanks to bijec-
tive approaches initiated in Schaeffer’s thesis [42]. They allowed Chassaing & Schaeffer [11]
to obtain the scaling limits for the radius and profile of a uniform rooted planar quadran-
gulation with n faces, considered as a metric space by endowing its vertices with the usual
graph distance. In particular, they showed that typical graph distances between vertices of
such random quadrangulations are of order n1/4. Generalizations of this result have been
obtained for much more general families of random maps by Marckert, Weill and the author
in [30, 34, 36, 45], relying on generalizations of Schaeffer’s bijection by Bouttier, Di Francesco
& Guitter [7].

An important step has been accomplished by Le Gall [26], who showed that scaling
limits of these random quadrangulations, considered in the Gromov-Hausdorff sense [22],
must be homeomorphic to a metric quotient of the so-called Brownian Continuum Random
Tree of Aldous [1]. This random quotient was introduced under the name of Brownian map
by Marckert & Mokkadem [32], who proved convergence of random quadrangulations
towards this limit in a sense yet different from convergence in distribution in the Gromov-
Hausdorff topology. Subsequently, Le Gall & Paulin [28] inferred that the Brownian map
is homeomorphic to the two-dimensional sphere. At the present stage, it is however not
known whether the scaling limit is uniquely determined as the Brownian map, which would
lead to a satisfactory answer to the above mentioned problem.

A natural idea is to characterize the limit through its “finite-dimensional marginal distri-
butions”. From the point of view of metric measure spaces, this would mean to character-
ize the laws of mutual distances between an arbitrary number of randomly sampled points.
This, however, seems hard to obtain. The approach of the present work, which deals with
combinatorial, probabilistic and geometric aspects of maps, was initially motivated by an-
other notion of finite-dimensional marginals, which takes into account the planar structure
of the graphs that are considered, and roughly consists in studying the Voronoi tessellation
on the map with sources taken at random.

Our central combinatorial result is a natural generalization of Schaeffer’s bijective con-
struction, to be introduced in Section 2. We do not restrict ourselves to the planar case, as the
most natural framework is to consider maps of arbitrary (but fixed) genus g, so our bijection
is really a generalized version of the Marcus-Schaeffer bijection in arbitrary genus [10, 33].
Let us explain briefly the idea of our construction. Recall that the Marcus-Schaeffer bijec-
tion encodes a genus-g bipartite quadrangulation with a distinguished vertex by a labeled
map of genus g with one face, in such a way that the labels keep track of graph distances to
the distinguished vertex in the quadrangulation. Our construction encodes a genus-g bipar-
tite quadrangulation with k distinguished vertices by a labeled map of genus g with k faces
(Theorem 4 and Corollary 1). In some sense, the faces of the encoding map correspond to
the Voronoi tiles in the quadrangulation, with sources at the k distinguished vertices, and
the labels allow to keep track of graph distance of a vertex to the source of the Voronoi tile
it belongs to. An important fact is that there is some flexibility in the construction, allowing
one to consider a generalized Voronoi tessellation in which the distances to the k sources are
measured after addition of a delay depending on the source.
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The resulting set of labeled maps with a fixed number of faces is combinatorially much
simpler than that of bipartite quadrangulations, and we are able to study their scaling limits.
This is done in Section 4 (Theorem 5 and Propositions 3, 4), after showing how to encode
labeled maps by appropriate processes in Section 3. Sections 5 and 7 give three applications
of these scaling limit results for labeled maps, to combinatorial and geometric properties of
bipartite quadrangulations.

The first application is a new derivation of known asymptotic enumeration results (Theo-
rem 1), to which the short Section 5 is devoted. These are initially due to Bender & Canfield
[4], who obtained the asymptotic number of rooted maps of genus g with n edges (1) by recur-
sive decomposition methods, of a very different nature from our bijective study. These results
have also been obtained in the recent work of Chapuy, Marcus & Schaeffer [10], who com-
pleted the exact enumeration of maps of genus g that was initiated in [33]. The starting point
of our study (using the Marcus-Schaeffer bijection, which corresponds to the case k = 1 of
our bijection) is the same as in [10], but the rest of our approach is different, the arguments
of Section 4 being of a more probabilistic nature.

Our other results concern the metric structure of randomly sampled bipartite quadrangu-
lations. Let us indicate briefly what we mean by “random” in this paper. Most of the articles
on the topic have focused on scaling limits as n → ∞ of random families of maps condi-
tioned to have n faces or n vertices. We prefer to randomize the number of faces, by using
natural σ-finite measures on bipartite quadrangulations of fixed genus g, called the Boltz-
mann measures Qg (the term being inspired from [3], see also [30, 34]), and which are ob-
tained by assigning an appropriate weight to the faces. In the physics terminology, these mea-
sures correspond to the so-called grand-canonical measures, while the measures with fixed
number of faces are the microcanonical measures. These measures are used to define natural
“Boltzmann-Gibbs” distributions on quadrangulations, depending on an inverse tempera-
ture parameter β that allows one to tune the average size of the quadrangulation and take
scaling limits.

The existence of these scaling limits, considered with respect to the Gromov-Hausdorff-
Prokhorov topology on metric measure spaces, and stated in Theorem 2, is then obtained
from the study of Section 4. This generalizes to arbitrary genera the fact that planar quad-
rangulations admit scaling limits for the Gromov-Hausdorff topology, as shown in Le Gall
[26]. The theory of metrics on weighted metric spaces that is needed here is developed in
Section 6.

The main result of the present paper, Theorem 3, gives qualitative information on the met-
ric structure of the scaling limits of random bipartite quadrangulations. We show that these
scaling limits are geodesic weighted metric spaces, in which two typical points are linked by
a unique geodesic. The idea is to use our bijection for quadrangulations with k = 2 marked
vertices, in order to show that, if x, y are typical points in the limiting random metric space
(X, d) arising as a scaling limit of random bipartite quadrangulations, the intersection of a
geodesic between x and y and a geometric locus of the form

{z ∈ X : d(x, z)− d(y, z) = D} , D ∈ [−d(x, y), d(x, y)] ,

(1) This is equivalent to our result, since such maps are in one-to-one correspondence with bipartite quadrangula-
tions of same genus with n faces [33, Proposition 1].
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is a.s. reduced to a single point.
Theorem 3 is strongly reminiscent of the combinatorial results of the recent paper by Bout-

tier & Guitter [8]. They show that in the planar case g = 0, two typical vertices in a random
quadrangulation with n faces cannot be linked by two geodesics which are “very far” in the
scale n1/4, as n → ∞. Our result confirms that geodesics between typical points become
unique in the scaling limit, answering one of the questions raised in Section 5 of [8], though
in our slightly different setting of Boltzmann-distributed maps. We also mention the recent
work by Le Gall [27] on similar topics as the present paper and [8], and providing results on
the exceptional geodesics as well.

In this work, the cardinality of a set A is denoted by |A|.

1.2. Embedded graphs and maps

Let us introduce some formalism for embedded graphs and maps, which we partly borrow
from [29].

Graphs on surfaces. Let S be a compact connected orientable two-dimensional surface with-
out boundary. It is well-known that such surfaces are characterized, up to homeomorphism,
by an integer g ≥ 0, called the genus of S, and that the topology of S is that of the connected
sum Sg of g tori. The surface of genus 0 is the two-dimensional sphere.

A half-edge, or oriented edge e in S is a continuous path c : [0, 1] → S, considered up
to continuous increasing reparametrization, which is either injective on [0, 1], or is injective
on [0, 1) and satisfies c(0) = c(1). In the latter case, e is called a loop. The order on [0, 1]

induces a natural orientation of the half-edge e, and its start and end points are defined as
e− = c(0) and e+ = c(1), a definition that depends only on the half-edge e and not on the
function c. Similarly, the image of e is defined as Im(e) = c([0, 1]), and the interior of e is
c((0, 1)). The reversal e of the half-edge e is defined as the reparametrization class of c(1−·),
so that e+ = e−, e− = e+. An edge is a pair of the form e = {e, e} where e is a half-edge.

An embedded graph in S, or simply a graph on S, is a pair (V,E), where

– E is a non-empty, finite set of edges such that two distinct edges intersect, if at all, only
at some of their endpoints

– V is the set of vertices, i.e. of end-points of elements of E.

We let E be the set of half-edges corresponding to E. The set E has even cardinality and
comes with the involution e 7→ e. An orientation of the edges is a choice of one half-edge
inside each edge to form a set E1/2 ⊂ E with same cardinality as E.

A graph on S determines faces, which are the connected components of the complement
of
⋃
e∈E Im(e) in S. Let F be the set of faces of the graph.

Maps. We say that the embedded graph (V,E) is a map if all faces are simply connected
(hence determining a cell complex structure on S). A map is necessarily a connected graph
by [29, Lemma 1.5].

The degree of a face in a map is the number of edges it is incident to, where it is under-
stood that edges that are incident twice to the same face should be counted twice. By Euler’s
formula,

(1) |V | − |E|+ |F | = χ(g) ,

4 e SÉRIE – TOME 42 – 2009 – No 5



TESSELLATIONS OF RANDOM MAPS OF ARBITRARY GENUS 729

where χ(g) = 2− 2g is the Euler characteristic of S.
A map is rooted if it comes with a distinguished half-edge e∗ ∈ E.
We declare two (rooted) maps m,m′ on surfaces S, S′ to be isomorphic if there exists a

homeomorphism S → S′ that preserves the orientation, and sends the vertices and edges
of m to those of m′ (and maps the root of m to that of m′). Note that the number and
degrees of vertices, faces, edges and genus are preserved under such transformations. We will
systematically identify maps that are isomorphic, making the set of maps a countable set.

We will usually denote (equivalence classes of) maps by bold lowercase letters m,q, . . . .
The standard notation for the root of a rooted map will be e∗, and it should be clear according
to the context to which map e∗ refers. Also, when dealing with maps, it will often be under-
stood that we are working with a particular graph belonging to the class of that map. This
allows to consider the set of (half-)edges, vertices and faces of a (isomorphism class of a) map
m, denoted byE(m),E(m), V (m), F (m), or simplyE,E, V, F when there is no ambiguity.

A quadrangulation is a map whose faces all have degree 4. A map is called bipartite if its
vertices can be colored in black or white, in such a way that two neighboring vertices are
assigned different colors. We let Qg be the set of rooted bipartite quadrangulation of genus g
(planar quadrangulations are all bipartite, but it is not the case in higher genus). For every
q ∈ Qg we have 4|F (q)| = 2|E(q)| = |E(q)| and |V (q)| = |F (q)|+ χ(g) by (1).

Distances in maps. For a map m, and two vertices x, y, we say that the half-edges e1 . . . , en
form a chain from x to y if e−1 = x, e+

n = y and e+
i = e−i+1 for 1 ≤ i ≤ n− 1. We define the

graph distance dm(x, y) as the minimal n such that there exist a chain of n half-edges from
x to y, and a chain from x to y with length dm(x, y) is called geodesic.

1.3. Spaces of (weighted) metric spaces

The main motivation of this paper is to study the metric structure of large random maps,
endowed with their graph distance. This needs to introduce some concepts of metric geome-
try, essentially originating from Gromov’s work [22], which have developed a growing interest
in the probabilist community, starting from works of Evans and coauthors. See [15, 16, 17,
21, 26]. All results that are needed here will be presented in Section 6.

A weighted metric space is a triple (X, d, µ) where (X, d) is a metric space and µ a Borel
probability distribution on (X, d). Two metric spaces are isometric if there exists a bijective
isometry from X onto X ′. The isometry class of the space (X, d) is denoted by [X, d]. Two
weighted metric spaces (X, d, µ) and (X ′, d′, µ′) are said to be isometry-equivalent if there
exists a bijective isometry φ : X → X ′ such that φ∗µ = µ′. The isometry-equivalence class
of (X, d, µ) is denoted by [X, d, µ].

We let M be the set of isometry classes of compact metric spaces, and Mw the set of
isometry-equivalence classes of compact weighted metric spaces. As we will see in Sec-
tion 6, it is possible to endow Mw with a distance dGHP, the Gromov-Hausdorff-Prokhorov
distance, that makes (Mw, dGHP) a Polish space, see Theorem 6 and Proposition 8. The
topology on Mw will be implicitly that inherited from dGHP. If a > 0, and X = [X, d] ∈ M
(resp. X = [X, d, µ] ∈Mw), we let aX = [X, ad] (resp. aX = [X, ad, µ]).

Also, a metric space (X, d) is called a geodesic metric space if for which every pair of points
x, y ∈ X, there exists a geodesic path between x and y, i.e. an isometry γxy : [0, d(x, y)]→ X,
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with γxy(0) = x, γxy(d(x, y)) = y. In particular, geodesic metric spaces are arcwise con-
nected. For compact metric spaces, being a geodesic space is equivalent to being a path metric
space, i.e. an arcwise connected metric space (X, d) such that the distance d(x, y) is achieved
as the minimum over all continuous paths c : [0, 1] → X with c(0) = x, c(1) = y, of the
length of c, defined as

length(c) = sup

{
n−1∑
i=0

d(c(ti), c(ti+1)) : n ≥ 1, 0 = t0 < t1 < · · · < tn = 1

}
.

We let PM be the set of isometry classes of compact path (or geodesic) metric spaces.

1.4. Main results

Our core combinatorial result (Theorem 4) is a generalization of the Marcus-Schaeffer
bijection, encoding k-pointed bipartite quadrangulations (with delays between sources) with
the help of labeled maps with k faces. The central statement in this paper is Theorem 5 (and
its exceptions, Propositions 3 and 4), which allows us to take scaling limits of this simpler
class of maps. We do not reproduce the exact statements of these theorems in this paragraph,
as important notational background is needed.

We give several applications of these results to various (combinatorial and probabilistic)
aspects of maps. The first is a counting result, giving the following asymptotic behavior for
the cardinality of the set Qn

g of bipartite quadrangulations of genus g with n faces, consis-
tently with [4, 10]:

T 1. – For any g ≥ 0, it holds that∣∣Qn
g

∣∣ ∼
n→∞

Cg 12n n−5χ(g)/4 ,

for some constant Cg ∈ (0,∞) defined at (21).

In the case g = 0, this result is a trivial consequence of the exact formula (see [11])

|Qn
0 | =

2

n+ 2
3n Catn ,

where Catn = 1
n+1

(
2n
n

)
is the n-th Catalan number, yielding the value C0 = 2π−1/2.

From this statement, we see that the generating function for bipartite quadrangulations
counted with respect to the number of faces has radius of convergence 12−1, and it is natu-
ral to introduce the critical Boltzmann measure Qg on Qg assigning mass 12−|F (q)| to the ele-
ment q. Since |V (q)| = |F (q)|+χ(g), the function β 7→ Qg(e

−βVq) is analytic in β ∈ (0,∞),
where Vq = |V (q)| is the “volume” of q. We define the Boltzmann-Gibbs probability distri-
bution on Qg with inverse temperature β by

Q(β)
g =

Qg(e
−βVq dq)

Qg(e−βVq)
, g ≥ 1 ,

and

Q
(β)
0 =

Qg(V
2
q e
−βVq dq)

Qg(V 2
q e
−βVq)

.

The reason for the difference between the cases g = 0 and g ≥ 1 is technical and will be
explained in due course.
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With every q ∈ Qg we associate the metric space Xq = [V (q), dq] and the weighted space
Xw

q = [V (q), dq, µq], where

µq =
1

Vq

∑
v∈V (q)

δv

is the uniform distribution on the vertices of q.

T 2. – For every g ≥ 0 and β > 0, the probability measures

(2) Q(β/a)
g

({(
a−1/4Xw

q , a
−1Vq

)
∈ ·
})

, a > 1

form a relatively compact family of probability distributions on Mw×(0,∞), endowed with the
topology of weak convergence.

T 3. – A limiting point S (β)
g of (2) as a → ∞, which is a probability measure on

Mw × (0,∞), is supported on spaces ([X, d, µ],V) such that

1. [X, d] is an element of PM,
2. µ is a diffuse measure of full support,
3. for µ⊗ µ almost every x, y ∈ X, there exists a unique geodesic joining x and y.

Comments.
1. Introducing the extra parameter β and dividing it by a parameter a→∞ is referred to in
physics as “approaching the critical point”. One possible interpretation is to see it as a device
to compute various Laplace transforms of “continuum” limits for discrete models (see also
Remark 3.). It is also reminiscent of the basic method of singularity analysis consisting in
approaching a singular point, and this is exactly what we do in Section 5 as a special case.
On a very basic level, one should just note that letting a → ∞ has the effect of making the
expectation under Q

(β/a)
g of quantities such as Vq go to infinity, so that we are intuitively

taking a limit as the size of the map gets large. Alternatively, we could also have considered
conditioned laws of the form Qg(· | {K−1 ≤ a−1Vq ≤ K}) for some fixed K > 1, and let
a→∞.

2. Considering uniform measures on bipartite quadrangulations with n faces amounts to
conditioning the measure Q

(β)
g on {|F (q)| = n}, regardless of β, and a similar result as The-

orems 2 and 3 could thus be considered as a conditioned version of these statements. We be-
lieve that such generalizations can be obtained at the price of technical complications. Note
that in the case g = 0, a result similar to Theorem 2 appears in Le Gall [26] in such a con-
ditioned setting, though the convergence does not really take µq into account (see however
[26, Remark a., p. 646]).

3. As mentioned in the beginning of the article, a satisfactory statement would be to get rid
of the extraction in Theorem 3, by showing that there is actually a unique limiting point to
the set of measures (2). A further guess would be that this unique measure could be written
in the form Sg(e

−βVd(X,V))/Sg(e
−βV) for some σ-finite measure Sg on Mw × (0,∞).

4. Last, a natural question is to ask whether our results are universal. That is, is it still true
for, say, Boltzmann-Gibbs distributions on maps of genus g with faces of arbitrary valences
and weightwk on a face of degree k? The natural generalization of Qg would be the measure
assigning weight

∏
f∈F (m) wdegm f on the rooted map m, for a particular “critical” tuning
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of the weights w. In this vein, the results of [30, 34, 36, 45] should be generalizable to our
context.

Acknowledgments. This work was initiated while visiting the Centre for Mathematical Stud-
ies in Cambridge (UK), supported by a London Mathematical Society funding, where the
question about uniqueness of geodesics arose in motivating discussions with James Norris.
Thanks also to Guillaume Chapuy and Gilles Schaeffer for interesting discussions around
[10]. We finally thank the two anonymous referees and the Editorial Board for very useful
comments, which were greatly appreciated.

2. Delayed Voronoi tessellations of bipartite quadrangulations

2.1. Fatgraphs

As mentioned before, maps are of combinatorial nature, and there exists a purely combi-
natorial description of maps which will be useful to our purpose. A nice introduction to the
different definitions of maps can be found in [24, Chapter 1].

A map m can be encoded in a triple of permutations (2). Start from a particular repre-
sentation of the map m on the surface S. Around each vertex, the outgoing half-edges are
cyclically ordered in a non-ambiguous way, by considering the first intersection points of the
half-edges with a small circle around the vertex, oriented counterclockwise. These cyclic or-
ders associated with distinct vertices involve distinct elements of E, and thus determine a
permutation σm of E, whose cycles are naturally associated with the vertex set V . We also
let αm(e) = e, and ϕm = σ−1

m α−1
m . The triple (σm, αm, ϕm) is a fatgraph structure on E.

We will usually drop the subscripts m when the situation is unambiguous.

To understand what ϕm is, the reader might check on examples that it corresponds to the
following. Visiting the boundary of each face of the graph in counterclockwise order, deter-
mines unambiguously a cyclic ordering of the half-edges belonging to this oriented bound-
ary. The cycles of ϕm are exactly the so-defined cyclic orders, which are in a one-to-one nat-
ural correspondence with faces of the graph. See Figure 1 for an illustration. One deduces
that the group generated by (σm, αm, ϕm) acts transitively on E, amounting to the fact that
maps are connected.

Conversely, every triple (σ, α, ϕ) of permutations on a finite set E such that ϕασ = 1, α
is an involution without fixed points, and the permutation group generated by (σ, α, ϕ) acts
transitively on E, can be represented in the above way as the triple associated to a uniquely
determined map of some genus g, determined by Euler’s formula.

A fancy intuitive image of a fatgraph is to consider it as a road network with cars driv-
ing on the left lane. An edge and its reversal constitute the two lanes of the road, while the
vertices are roundabouts connecting the roads. The cycles of σ correspond to the outgoing
roads from the roundabouts, the cycles of ϕ correspond to the roads taken by a driver always
taking first left at each roundabout, and the cycles of α correspond to a U-turn.

(2) Note that in [24], the permutations act to the right, while we prefer to make them act to the left, which results in
differences like the formula ϕασ = 1 below instead of σαϕ = 1, referenced in Remark 1.3.19 in this book.
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ϕ(e)

e

α(e)

σ(e)

F 1. A portion of a map, emphasizing a face of degree 7, and an illustration
of the fatgraph structure. The action of the permutations σ, α, ϕ is shown on a par-
ticular half-edge e.

In a fatgraph, each half-edge e belongs to exactly one cycle of σ and ϕ, and thus deter-
mines unambiguously a vertex and face of the map, called the vertex and face that are in-
cident to e: in terms of graphs, they correspond to the origin vertex of e and the face lying
to the left of e, respectively. By slight abuse of notation, for f a face of a map, we will write
e ∈ f if the half-edge e is incident to f , i.e. belongs to the cycle corresponding to f in the
fatgraph structure.

If e1, e2 are two distinct half-edges incident to the same face, we can break the cycle of ϕ
containing e1, e2 into two linearly ordered sequences of edges which are denoted by [e1, e2]

and [e2, e1]. Formally:

[e1, e2] =
{
ϕi(e1) : i ≥ 0, e2 /∈ {ϕj(e1), 0 ≤ j ≤ i− 1}

}
,

so that [e, e] = {e} with this definition. We also define (e1, e2] = [e1, e2] \ {e1}, and so on.

Another notion that will be useful is that of corner. In a map, the corner incident to the
half-edge e is the intersection of a small neighborhood around the vertex incident to e, and
the angular region comprised between e and σ(e) (to be perfectly accurate, we should define
the corner as the germ of such sets). In the sequel, we will often speak indistinctly of a half-
edge or its incident corner.

2.2. Quadrangulations with sources and delays

We first consider unrooted maps, and will re-inject the root afterwards. For g ≥ 0, k ≥ 1,
we let Q◦g,k be the set of 3-tuples of the form (q,x, D) where

(Q1) : q is a bipartite (unrooted) quadrangulation of genus g,
(Q2) : x = (x1, . . . , xk) are elements of V (q),
(Q3) : D = [d1, . . . , dk] is an element of the set D(q,x) of delay vectors, i.e. elements of

Zk defined modulo addition of a common integer, such that

(3) |di − dj | < dq(xi, xj) for every 1 ≤ i 6= j ≤ k ,
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and such that

(4) dq(xi, xj) + di − dj ∈ 2N , 1 ≤ i, j ≤ k .

When k = 1 this definition is void, and D = [0] will usually be omitted from the notation.
Note that a delay vector such as in (Q3) exists if and only if mini 6=j dq(xi, xj) ≥ 2. Indeed, in
that case we can take a bicoloration of V (q) in black and white, and notice that two vertices
are at even distance if and only if they are of the same color. Setting di = 0 if xi is white,
and di = 1 if xi is black, yields a vector (d1, . . . , dk) with the wanted property. Conversely, if
d(xi, xj) = 1 for some i 6= j, then obviously we should have di 6= dj and |di−dj | < 1 which
is impossible. This implies some restrictions on the quadrangulations involved in Q◦g,k — for
instance, they should have at least k distinct vertices.

With any element of Q◦g,k, we can associate a partition of the set of edges of q that is very
much reminiscent of Voronoi tessellations in a Euclidean space. We fix arbitrarily a repre-
sentative of a delay vector (d1, . . . , dk), and define li(x) = dq(x, xi)+di for x ∈ V (q). Then
for 1 ≤ i ≤ k, and for x and y adjacent in q,

(5) |li(x)− li(y)| = 1 ,

since this quantity can be at most one and vertices are at even distance of xi if and only if
they have the same color in a bipartite coloration of the vertices. Thus, defining

l(x) = min
i

(di + dq(x, xi)) ,

we deduce that |l(x)− l(y)| ≤ 1 for every adjacent x, y.

On the other hand, by (Q3) we have d(x1, xi) + d1 − di ∈ 2Z, which shows that
li(x1) − lj(x1) ∈ 2Z for every i, j. By (5) and since the graph is connected, this prop-
erty propagates from x1 to all other vertices, so it holds that li − lj takes its values in 2Z for
every i, j. Consequently, we cannot have li(x) = lj(y) with adjacent x, y for any i, j, and
this implies that l(x) 6= l(y) for adjacent x, y. Therefore

|l(x)− l(y)| = 1 , for all adjacent x, y .

This allows us to fix an orientation E1/2 ⊂ E(q) by enforcing l(e+) = l(e−) − 1 for
all e ∈ E1/2. The function l decreases along chains of edges of E1/2, and plainly, the only
vertices without edges pointing outwards are x1, . . . , xk. Thus, any chain of edges of E1/2

can be extended into a maximal chain ending at some element of {x1, . . . , xk}. Also, any
such chain with initial vertex x is geodesic, and the endpoint of a maximal extension must
be a xi with i such that l(x) = li(x). To see this, recall that each of the functions li makes
a step in {−1, 1} when passing from a vertex to one of its neighbors, by (5). Moreover, we
just saw that the function l decreases by 1 when going along one step in the chain. So if the
chain terminates at xi, it must hold that l(y) = li(y) for every vertex y along the chain. Since
l(x) = dq(xi, x) + di and l(xi) = di, the chain has length dq(xi, x) and is a geodesic.

We color each edge of E1/2 with one in k colors in the following way. For e ∈ E1/2, con-
sider the maximal path starting with e and turning as much to the left as possible, that is, after
arriving at a vertex, it takes the first outgoing edge it encounters in clockwise order around
the vertex. If this path ends at vertex xi, assign the color i to the edge e.
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D 1. – The setEi(q,x, D) of edges colored i is called theD-delayed Voronoi tile
with sources x and center xi.

The D-delayed Voronoi tiles form a partition of E1/2. The reason for the name is that
when D = 0, the set Ei(q,x, 0) contains all the edges pointing from a vertex that is strictly
closer to xi than any other source, which is the usual property of Voronoi tiles in Euclidean
spaces. A general delay vectorD corresponds to the fact that distances from different sources
are measured with a relative advantage of di − dj of source xj on source xi. Note that it
might be that no edge pointing from a vertex x for which dq(x, xi) = minj dq(x, xj) lies in
Ei(q,x, 0). In fact, it holds that if

Vi(q,x, D) = {xi} ∪ {e− : e ∈ Ei(q,x, D)} , 1 ≤ i ≤ k ,

then these sets cover V (q) and we haveß
x ∈ V (q) : li(x) = l(x) < min

j 6=i
lj(x)

™
( Vi(q,x, D) ⊆ {x ∈ V (q) : li(x) = l(x)} .

It is not difficult to see that the first inclusion is always strict as soon as k ≥ 2, because one
can find some x ∈ Vi(q,x, D) and some j 6= i such that x ∈ Vj(q,x, D), and therefore it
holds that li(x) = lj(x) = l(x). The second inclusion can be strict, although this is harder
to see at first: on Figure 2, the only vertex x with label 3 is at distance 3 of x1 and 2 of x2,
and d1 = 0, d2 = 1, so that l1(x) = l2(x) = l(x), however, x does not belong to V1(q,x, D),
because the (only) leftmost geodesic started from x ends at x2.

2.3. The bijection

An embedded graph is said to be labeled if its vertices are assigned integer values
l = (l(x), x ∈ V ), in such a way that |l(x) − l(y)| ≤ 1 for every adjacent x, y. La-
beled maps are defined accordingly. We let LM◦g,k be the set of pairs of the form (m, [l])

such that

(LM1) : m is a map of genus g with k faces indexed as f1(m), . . . , fk(m)

(LM2) : l = (l(x), x ∈ V (m)) is a labeling of m, and [l] is its class up to an additive
constant in Z.

Our goal in the remaining of this section is to construct and study a bijective mapping Ψ◦g,k
between Q◦g,k and LM◦g,k, and its inverse mapping Φ◦g,k. We first make some preliminary
remarks.

1. The construction starts from a particular embedding of an element of Q◦g,k, and builds
an embedding of the image labeled map, by deletion of some of the edges and vertices of the
initial quadrangulation, and addition of new edges.

In particular, if (q,x, D) and (m, [l]) correspond by the construction, the set of vertices of
m will be identified with the set V (q)\{x1, . . . , xk} of vertices of q distinct from the sources.
This will be important in the sequel. This is also the reason why we will give the same name l

to labeling functions on a quadrangulation q and its image map m, as the labeling function
on m is indeed the restriction to the vertices of m of the labeling function l on q introduced
above.
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F 2. An example of a 2-pointed quadrangulation of genus 0, with delays
d1 = 0, d2 = 1 (left) and the associated labeled map with 2 faces by Ψ◦0,2

2. The mapping Ψ◦g,k is a natural analog of a bijection of Schaeffer between pointed planar
maps and well-labeled trees [7, 11]. More precisely, in the case (g, k) = (0, 1), the set LM◦0,1
is constituted of labeled (unrooted) planar trees, which themselves are in one-to-one corre-
spondence with well-labeled trees, for which all labels are positive and at least one vertex has
label 1, by taking any labeling l and adding −min l + 1. A generalization of Schaeffer’s bi-
jection to genus g ≥ 1 is discussed in Marcus & Schaeffer [33]. It is recovered as the special
case k = 1 of our construction, where the set LM◦g,1 is constituted of labeled maps of genus g
with only one face, called g-trees in [33].

3. We can understand our generalized bijection as running simultaneously the Marcus-
Schaeffer construction at k distinct competing vertices. Informally, let water flow at unit
speed from the sources x1, . . . , xk, in such a way that the water starts diffusing from xi at
time di, and takes unit time to go through an edge. When water currents emanating from
different edges meet at a vertex (whenever the water initially comes from the same source or
from different sources), they can go on flowing into unvisited edges only by respecting the
rules of a roundabout, i.e. edges that can be attained by turning around the vertex coun-
terclockwise and not crossing any other current. The process ends when the water cannot
flow anymore, and the tile Ei(q,x, D) is the set of reversed half-edges that are visited by
the water flowing from source xi. The parity condition on D implies that the water flows
emanating from different sources never meet in the middle of an edge, but always at vertices.

We now give the rigorous construction, and refer to Figure 2 for an example.

2.4. Construction of the bijection

We start from an element (q,x, D) ∈ Q◦g,k, and take some particular embedding of q.
Choosing arbitrarily (d1, . . . , dk) ∈ D, we label the vertices by the function
l : x ∈ V (q) 7→ mini(di + dq(x, xi)). By (5), the labels of vertices encountered when
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l

l l + 1

l + 1 l + 2

l l + 1

l + 1

F 3. Adding new edges (thick lines) inside simple and confluent faces of a
graphical representation of an element of Q◦g,k

exploring a face of q, starting from the vertex with lowest label and turning counterclock-
wise, must be either of the form l, l + 1, l + 2, l + 1 or l, l + 1, l, l + 1. Following [33], we
call faces simple and confluent accordingly. We then perform the construction of [33] on this
labeled object, that is, we add extra edges to the map m, one inside each face:

– if the face is simple, then the added edge links the vertex with highest label to its succes-
sor in clockwise order around the face, hence splitting the face into a face with degree 4,
and a face of degree 2

– if the face is confluent, then the added edge links the two vertices with highest label,
hence splitting the face into two triangular faces.

In this way, we have defined a new map (graph) q′ whose faces have degree 2, 3 or 4, and with
labeled vertices, whose set is still V (q). See Figure 3.

The newly added edges, excluding the ones of the original map, define a graph m on the
surface on which q is drawn. It is easily obtained from the construction that the vertex set of
this new graph is exactly V (q)\{x1, . . . , xk}. Indeed, the vertices x1, . . . , xk have neighbors
with strictly larger labels, and thus have the least labels in any face they are incident to, and
cannot be incident to a newly added edge. Conversely, ifx is a vertex not in {x1, . . . , xk}, with
label l(x) = l, we let e1, . . . , er be the outgoing edge cycle associated with x in the fatgraph
structure of q. Then there exists i such that l(e+

i ) = l − 1. It is then easy that the new edge
added in the face of q incident to ei (i.e. located to the right of ei) must be incident to x,
regardless of the face being simple or confluent.

L 1. – The embedded graph m is a map. Each face of m contains exactly one element
of {x1, . . . , xk}, and is indexed accordingly as f1(m), . . . , fk(m).

Once this is proved, and recalling that vertices of q are vertices of m as well, we use
l = (l(x), x ∈ V (q) \ {x1, . . . , xk}), as a labeling function on V (m). It is now straightfor-
ward to check that Ψ◦g,k(q,x, D) := (m, [l]) satisfies properties (LM1,LM2).

Proof of Lemma 1. – We proceed in a similar way as in [33]. Namely, we consider the dual
edges of q′ that do not cross the newly added edges, and give them an orientation according
to Figure 4, i.e. in such a way that the vertex located to the right of the oriented dual edge
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l + 1 l + 1

l + 2 l

l + 1 l + 1

l l + 1

l + 2

F 4. Drawing and orienting the dual edges not crossing the newly added
edges inside each of the possible types of faces of q′

has strictly smaller label than the one located to the left. In doing so, we create an oriented
spanning subgraph of the dual graph of q′, call E◦1/2 the set of its edges.

By Figure 4, for every face f of q′, there is a single element of E◦1/2 that goes out of it.
Therefore, there is a unique, infinite chain of E◦1/2, say (e◦m,m ≥ 1), starting from f . This
infinite chain eventually cycles. By inspection of Figure 4, if li is the label of the vertex of
q located to the right of e◦m, then it must hold that lm ≥ lm+1 for every m ≥ 1. But since
(e◦m,m ≥ 1) eventually cycles, the sequence (lm,m ≥ 1) is eventually constant, equal to l
say. Another look at the first and third situations of Figure 4 shows that the only possibility
is that the cycle (i.e. the sequence e◦m,m ≥ N for n large enough) surrounds a single vertex
of q. This vertex must be an element of the set of sources {x1, . . . , xk}, since these are the
only vertices of q′ that are incident only to edges of q, and hence that can be surrounded by
a cycle of E◦1/2.

This implies that the (oriented) graph E◦1/2 has k distinct connected components, and
hence m has k faces. Now starting from the union of faces and edges of q′ that are inci-
dent to xi, which is a topological disk because xi is incident exactly once to each face, we
can add the faces of q′ leading to xi in the dual path of edges of E◦1/2 without ever making
a cycle, so that the faces of m are simply connected, hence m is a map.

2.5. Converse construction

In the sequel, the label l(e) of a half-edge (or the associated corner) e will be a notational
shorthand for the label of its origin l(e−).

The idea of the converse construction is simply to perform the Marcus-Schaeffer inverse
construction separately inside each face of m. Specifically, given (m, [l]), we add an extra
vertex xi inside the i-th face of m. We choose an arbitrary labeling l ∈ [l] and extend it to
V (m) ∪ {x1, . . . , xk} by

l(xi) = min
e∈fi(m):e−=x

l(e)− 1 .

We let (σ, α, ϕ) be the permutation 3-tuple associated with the fatgraph structure on m.
We define the successor s(e) of an edge e ∈ fi(m) by s(e) = xi if l(e) = l(xi) + 1, and

otherwise,
s(e) = ϕm(e)(e) ,
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where
m(e) = min{m ≥ 1 : l(ϕm(e)) = l(e)− 1} .

We then draw an edge between the corners incident to each edges e and s(e) for each
e ∈ E(m), in such a way that these edges do not cross each other. This is possible, because
by the constraint on the labels, we have |l(ϕm(e))− l(ϕm+1(e))| ≤ 1, which entails that if e
has successor s(e) /∈ {x1, . . . , xk} and e′ ∈ [e, s(e)], then we have l(e′) ≥ l(e) and thus s(e′)
must be in (e′, s(e)]. If s(e) = xi then e has minimal label inside the face it is incident to,
and the labeling constraint prevents e from being in any set of the form [e′, s(e′)].

When the new edges have been added in this proper non-crossing way, we delete the edges
of m and keep only the newly added ones.

L 2. – The following properties hold.

1. The graph thus obtained is a map q, which is a bipartite quadrangulation.
2. The labels (l(x), x ∈ V (q)) are equal to l(x) = min1≤i≤k(dq(xi, x) + di), where
di = l(xi).

3. Setting D = [d1, . . . , dk], the triple (q,x, D) is an element of Q◦g,k.
4. The set of oriented edges of q from e to s(e), for e ∈ fi(m), is Ei(q,x, D).

Proof. – We first check property 1. Let e be an edge of m with label l(e) = l. Its successor
s(e) has label l−1. Ifϕ(e) has also label l, then its successor s(ϕ(e)) = s(e), so that the edges
between e, ϕ(e) and their common successor form a triangle with the base edge e. This is the
same in the face incident to the reversal e, so that the deletion of {e, e} after adding the new
edges yields a 4-valent face.

If ϕ(e) 6= l, then either ϕ(e) has label l+ 1, or ϕ(e) = s(e) by definition of the successor.
In the first case, notice that we also have that s(s(ϕ(e))) = s(e), because s(ϕ(e)) must have
label l and lie in [e, s(e)]. Thus, the newly added edges between (the corners associated with)
e and s(e), ϕ(e) and s(ϕ(e)), and s(ϕ(e)) and s(e), must form a 4-valent face with the edge e.
Now, in the face e is incident to, observe that the successor of e must be σ−1(e) = ϕ(e), as
they are successive vertices with labels l + 1 and l. Thus, the newly added edges around the
edges e, e form a 4-valent face. It remains to treat the case where s(e) = ϕ(e), but then we
are in the situation just discussed in the face incident to e.

Therefore, any (non-oriented) edge of m is surrounded by a 4-valent face in the new graph,
and these are the only possible faces, as any new edge is drawn from some corner of m. Thus,
the new graph is a map on the same surface as m. It has only square faces, and coloring
vertices according to the parity of their labels yields a bipartite coloration.

To check property 2, let x be a vertex of m incident to the face fi(m), with label l, and
let e ∈ fi(m) be an edge pointing out from x. Then the (half)-edges drawn between the cor-
ners e, s(e), s2(e), . . . , xi form a chain with length l(x) − l(xi), and by definition, it turns
to the left as much as possible among the half-edges of q along which l decreases. More-
over, any path using only the edges in q must be at least as long, because these edges always
link vertices with labels that differ by 1 exactly. Hence, this path is a geodesic and one de-
duces dq(xi, v) + di = l. For the same reason, we must have dq(xj , v) + dj ≥ l for every
j ∈ {1, . . . , k}, so that l = minj(dq(v, xj) + dj). This gives, in passing, that the edge of q

from e to s(e) is an element of Ei(q,x, D), yielding the property 4.
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We now check that D = [d1, . . . , dk] is a delay vector, which will entail property 3. First,
we have seen that for any vertex x, the length of a shortest path from xi to xj passing
through xmust have length at least 2l(x)−di−dj . Hence dq(xi, xj) is at least 2l∗−di−dj ,
where l∗ is the maximal label on a geodesic path from xi to xj . Thus dq(xi, xj) is strictly
larger than |di − dj | if l∗ > di ∨ dj . Obviously this is the case since the xi’s are pairwise
distinct and have neighboring vertices with strictly larger labels, by construction.

Finally, we infer that dq(xi, xj) + di − dj ∈ 2N from the fact that xi can be colored ac-
cording to the parity of di − dj . If xi and xj have same color, then they are at even distance
and di − dj is even, and otherwise both dq(xi, xj) and di − dj are odd.

Note that, due to property 4 of Lemma 2, the set of half-edges of m is identified with the
set E1/2 of edges of q with the special orientation of Section 2.2, in such a way that half-
edges of m incident to fi(m) correspond to elements of Ei(q,x, D). This will be useful in
the sequel.

We now state the main result of this section.

T 4. – Let k ≥ 1 and g ≥ 0. The mappings Ψ◦g,k and Φ◦g,k are inverse of
each other, and therefore are bijections between the sets Q◦g,k and LM◦g,k. Moreover, if
(m, [l]) = Ψ◦g,k(q,x, D),

1. |F (q)| = |E(q)|/2 = |E(m)|, more precisely |Ei(q,x, D)| = degm(fi(m)), 1 ≤ i ≤ k.
2. |V (q)| = |V (m)|+ k,
3. For every 1 ≤ i ≤ k and d ≥ 1,∣∣{e ∈ Ei(q,x, D) : dq(e−, xi) = d

}∣∣ =

∣∣∣∣ße ∈ fi(m) : l(e)− min
e′∈fi(m)

l(e′) + 1 = d

™∣∣∣∣
(note that the last appearing quantity is independent of the choice of l ∈ [l]).

Properties 1,2,3 are easy consequences of the construction and Lemma 2. They are far
from being the only important properties of Ψ◦g,k. Other consequences will be derived in
Section 2.7.

Proof. – It is easy to see why Ψ◦g,k(Φ◦g,k(m, [l])) = (m, [l]) from the construction of the
4-valent faces of Φ◦g,k(m, [l]) depicted in the previous proof. We just notice that in each of
the three cases that are detailed (e ∈ E(m) is such that l(e−) = l(e+), l(e−) = l(e+) + 1 or
l(e−) = l(e+)−1), the edge e that is deleted in the end is precisely re-added by the construc-
tion of Ψ◦g,k (the first case is that of a confluent face, and the two others correspond to simple
faces). The labels remain unchanged in this step thanks to the last sentence of Lemma 2.

We now prove that Φ◦g,k(Ψ◦g,k(q,x, D)) = (q,x, D). To see this we must check that the edges
of q can all be obtained as edges between a corner and its successor in Ψ◦g,k(q,x, D) = (m, [l]).
Necessarily, edges must join corners with labels differing by 1, and cannot cross the edges of
m, so that they all lie inside some of its faces. Moreover, inside the face fi(m), all corners
with label di + 1 must be re-linked to the vertex xi. So let e, e′ ∈ fi(m) be linked by an edge
of q, for which l(e) = l(e′) + 1 = l + 1, but such that s(e) 6= e′. We choose moreover e, e′

in such a way that l is minimal, that is, all the edges between a corner with label ≤ l and its
successor are edges of q. In this case, the paths s(e), s2(e), . . . , xi and e′, s(e′), . . . , xi are
paths in q, and cannot cross the edge between e and e′. On the other hand, s(e), s2(e), . . .
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must lie in [e, e′], while s(e′), s2(e′), . . . must all lie in [e′, e]. In particular, adding the edge
between e and e′ to fi(m) breaks the latter in two connected regions, both of which have to
contain xi, and this is impossible.

2.6. Rooting

We let Qg,k be the set of 3-tuples (q,x, D), where q is an element of Qg, and if q◦ denotes
the associated unrooted map, (q◦,x, D) ∈ Q◦g,k. Similarly, we let LMg,k be the set of pairs
(m, [l]) where (m◦, [l]) ∈ LM◦g,k.

Let (q,x, D) ∈ Qg,k, and (m◦, [l]) = Ψ◦g,k(q◦,x, D). With root edge e∗ of q, corresponds
naturally one of the corners of (m, [l]), i.e. it is the unique corner such that the edge drawn be-
tween e and s(e) is either equal to e∗ or its reversal e∗ when performing the converse construc-
tion. We root m◦ at this corner, obtaining a rooted map m, and let Ψg,k(q,x, D) = (m, [l]).
Notice that since any edge of q joins two vertices with labels that differ by 1, the two possible
orientations of a base edge of q yield two distinct rooted and k-pointed quadrangulations
(q,x). The following corollary of Theorem 4 follows.

C 1. – The mapping Ψg,k : Qg,k → LMg,k is two-to-one.

Besides getting rid of symmetries, the nice feature of rooting is that it will allow us to
choose a particular labeling function inside its class, as we will see in Section 3.

2.7. Bounds on distances

The construction of Φ◦g,k allows us to get useful bounds on distances between vertices in
the quadrangulation, from the label function on the associated map.

L 3. – Let (q,x, D) ∈ Qg,k and (m, [l]) = Ψg,k(q,x, D). Take two half-edges
e1, e2 ∈ Ei(q,x, D) for some i. Still denoting by e1, e2 the half-edges of fi(m) associated
with e1, e2 by Ψg,k, we have

|l(e1)− l(e2)| ≤ dq(e−1 , e
−
2 ) ≤ l(e1) + l(e2)− 2 min

e∈[e1,e2]
l(e) + 2

(here the interval [e1, e2] is the one in m).

Note that we could have interchanged the roles of e1 and e2, so that we have in fact

dq(e−1 , e
−
2 ) ≤ l(e1) + l(e2)− 2 max

Å
min

e∈[e1,e2]
l(e), min

e∈[e2,e1]
l(e)

ã
+ 2.

Proof. – The lower bound is obvious from the fact that for e ∈ Ei(q,x, D),
l(e) − l(xi) = dq(e−, xi) and by the triangular inequality. For the upper bound, consider
the last half-edge e, among the sequence sm(e1),m ≥ 0, that lies in [e1, e2]. Necessarily,
l(e) ≤ l(e2) as otherwise, the successor of e would be in [e, e2]. From this, it follows that
s(e) = sl(e2)−l(e)+1(e2). Therefore, there exists a chain in q from e−1 to e−2 with length
(l(e1)− l(e)) + 1 + (l(e2)− l(e) + 1), which yields the result.
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3. Decomposition of labeled maps

Our next task is to make one more step in our bijective study, by pulling apart elementary
pieces that compose an element of LMg,k. Our presentation resembles that of [37], the two
differences being that our maps are rooted, which allows us to get rid of the symmetry factors,
and, more importantly, the vertices are labeled. In the following, it will often be implicit that
(g, k) /∈ {(0, 1), (0, 2)}, which need special treatment.

3.1. Map reductions

We let Mg,k be the set of rooted maps of genus g with k indexed faces. Elements of Mg,k

for fixed k but with a large number of vertices, show a dendritic pattern branching on a graph
with a simple structure. In order to study this in a precise way, we are going to perform several
reductions on the maps. We let M≥2

g,k and M≥3
g,k be the subsets of Mg,k consisting of the maps

in which all vertices have degree at least 2, resp. at least 3. It is easy to see that M≥2
g,k is an

infinite set (take a simple loop with an arbitrary number of edges). On the other hand, M≥3
g,k

is finite according to the combination of Euler’s formula

(6) |V | − |E|+ k = 2− 2g

and the fact that

(7) 2|E| =
∑
v∈V

deg v ≥ 3|V | ,

which entails |E| ≤ 3k + 6g − 6. Note that equality holds if and only if every vertex has
degree 3 exactly. We let M3

g,k be the subset of M≥3
g,k for which this extra constraint is satis-

fied. According to these definitions, the set M≥3
0,2 should be empty. We make an exception

by letting M3
0,2 = M≥3

0,2 consist in the two loop maps made of a rooted loop with an origin,
bounding two faces with degree 1 (there are two such maps according to whether the face
indexed 1 stands to the left or to the right of the root edge). Elements of M≥3

g,k will usually
be denoted by the letter m, and their root by e∗.

There are natural projection maps

Mg,k −→M≥2
g,k , Mg,k −→M≥3

g,k ,

which roughly consist in taking the largest subgraph belonging to M≥2
g,k (resp. M≥3

g,k), for
some appropriate definition of subgraphs, where merging edges are allowed. More precisely,
starting from (a graphical realization of) m ∈Mg,k, we delete one by one the edges incident
to vertices with degree 1 until no such vertex remains. This operation does not disconnect the
graph, nor does it modify its genus or the number of its faces. The outcome is thus a map
m≥2 with k faces and without vertices of degree 1, and which does not depend on the order
of the edges that were removed. If m has root e∗, we naturally root m≥2 at the first element
of ϕim(e), i ≥ 0 that belongs to E(m≥2). This yields an element m≥2 ∈M≥2

g,k.
Likewise, starting from m ∈ Mg,k, we can remove all the vertices of degree 2 in m≥2:

we concatenate the half-edges e1, . . . , er of a simple chain linking two vertices of m≥2 of
degrees ≥ 3, and traversing only degree-2 vertices, into a single edge e = e1 . . . er. We root
the resulting graph at the one edge e∗ = e1 . . . er in which the root of m≥2 is involved. This
does not modify the genus nor the number of faces of the map, and these merging operations
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commute, and thus yield a well-defined element m≥3 of M≥3
g,k. When (g, k) = (0, 2), the map

m≥2 is a cycle (e1, . . . , er) of oriented edges and their reversals, which we concatenate to form
a loop. It is also obvious by definition that (m≥2)≥3 = m≥3. There are natural inclusions
V (m≥3) ⊆ V (m≥2) ⊆ V (m) and E(m≥2) ⊆ E(m). The map m≥3 is sometimes called the
homotopy type of m. See Figure 5.

e∗

e∗

e∗

F 5. Top-left: a portion of a map m, emphasizing the tree components
branching on m≥2 depicted on top-right. Bottom: the projection m≥3. The pic-
ture shows how the various projections are re-rooted depending on the location of
the root of m.

3.2. Some notations for continuous paths

Certain continuous functions will be crucial to encode maps, so let us introduce some no-
tations. A path is a continuous function (w(s), 0 ≤ s ≤ τ(w)) taking its values in R, such
that w(0) = 0. The number τ(w) ≥ 0 is called its duration, and ŵ = w(τ(w)) its terminal
value. We also let w = w(τ(w)−·)− ŵ be the reversed path (beware that this does not mean
the same as the reversal of an edge in a graph). We letW be the set of paths, and make it a
Polish space by endowing it with the distance

dist(w,w′) =

Ç
sup
s≥0
|w(s ∧ τ(w))− w′(s ∧ τ(w′))|

å
∨ |τ(w)− τ(w′)| .

If w,w′ ∈ W , we let ww′ be the concatenation of w and w′ defined by

ww′(s) =

{
w(s) if 0 ≤ s ≤ τ(w)

ŵ + w′(s− τ(w)) if τ(w) ≤ s ≤ τ(w) + τ(w′) = τ(ww′).

For (g, k) /∈ {(0, 1), (0, 2)} introduce the sets

Cg,k =
¶

(m, l, t∗) : m ∈M≥3
g,k, l = (le, e ∈ E(m)) ∈ (W3)E(m), 0 ≤ t∗ ≤ τ e∗

©
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endowed with the natural product topology. We make the exceptions C0,1 = {(c, z) ∈ W2}
and

C0,2 = {(m, l, t∗) : m ∈M≥3
0,2, l = ((c, z), le∗ , le∗) ∈ W2 ×W3 ×W3, 0 ≤ t∗ ≤ τ(c)} .

For (g, k) /∈ {(0, 1), (0, 2)} the generic notations are

(8) le = (we, ce, ze) , re = τ(we) , τ e = τ(ce) , τl =
∑
e∈E(m)

τ e .

For g = 0 and k = 1, 2 we let τ = τ(c), for k = 2 we also let τl = τ + τ e∗ + τ e∗ . Our next
task is to bijectively encode elements m of LMg,k with certain elements of Cg,k, whose first
component is the homotopy type of m.

3.3. Level sets of Mg,k →M≥3
g,k

Let us see how to get back from the projection m = m≥3 to the initial map. First of all,
every e ∈ E(m) must be split into a certain number of edges e1 . . . ere , with re ≥ 1, to yield
the element m≥2, and obviously re = re := re (where e = {e, e}) so what is needed to do
this are positive integers (re, e ∈ E(m)).

Then, consider elements e ∈ E(m) such that the first element of ϕim(e), i ≥ 0 belonging
toE(m≥2) is one of the edges e1, . . . , ere . These edges form an interval, and we let e(0) be the
first element in this interval, and label the others as e(i) = ϕim(e(0)), 0 ≤ i ≤ τ e−1. With this
labeling, we see that every half-edge of m is of the form e(i) for a unique e ∈ m. Moreover,
the half edges of the intervals (ej−1, ej), 1 ≤ j ≤ re must form an acyclic graph, i.e. a tree,
possibly reduced to a single root vertex (in particular, their set has even cardinality and is
stable under edge-reversal). Here, we take the convention that (e0, e1) are the elements of the
list e(0), e(1), . . . that precede e1 strictly. Otherwise said, we can interpret e(0), . . . , e(τ e−1)

as a forest of re trees, with roots bound together by the floor half-edges e1, . . . , ere . If e∗ is
the root edge of m≥3, then it deserves special attention. Indeed, in this case, one of the edges
of the interval [e∗(0), e∗(τ

e∗ − 1)] must be distinguished as the initial root edge of m, which
amounts to distinguishing an integer t∗ ∈ [0, τ e∗).

The contour function associated with this forest is defined by

ce(i) = dm(e(i)−, V (m≥2))− ce(i) , 0 ≤ i ≤ τ e ,

where
ce(i) = |{j : ej ∈ [e(0), e(i)]}| = − inf

0≤j≤i
ce(j) , 0 ≤ i ≤ τ e − 1 ,

and ce(τ e) = re, is the number of trees in the forest already explored before time i. We extend
ce, ce into continuous functions (still denoted by ce, ce) by linear interpolation between values
taken at integers. The result is a concatenation of re Dyck paths (3) encoding the trees of the
forest, and achieving a new negative infimum when a floor edge of the forest is traversed (note
that the terminal value−re of ce is attained for the first time at the final time τ e). It is an easy
and well-known fact that the contour function entirely determines the forest. In this way we
have shown

(3) Here we will call Dyck path a piecewise linear element c ∈ W starting at 0, with slope±1 between integer times,
and which attains the value −1 for the first time at τ(c).
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t∗

0

1

2

-1

-2

-3

-4

-5

F 6. The contour process ce∗ associated with the edge e∗ in the reconstruc-
tion of the map m from m≥3 as depicted in Figure 5. The process−ce∗ is drawn in
thick dashed lines. The location of the root of m is distinguished by the time t∗.

L 4. – Assume (g, k) /∈ {(0, 1), (0, 2)}. An element m ∈ Mg,k is unambiguously
described by its projection m = m≥3, a family (ce, e ∈ E(m)) ∈ WE(m) such that ce is the
concatenation of re Dyck paths, and an integer t∗ ∈ [0, τ e∗).

See Figure 6 for an illustration. The cases (g, k) = (0, 1) or (0, 2) are special and require
a little discussion. An element of M0,1 is simply a rooted planar tree with at least one edge,
and is described by a single Dyck path c with duration τ(c) > 1. When (g, k) = (0, 2), the
construction of m≥3 from an element m ∈M0,2 shows that the root vertex of m≥3 can be
any of the vertices of the loop constituting m≥2. This difficulty does not appear for other
values of (g, k), since the root edge of m≥3 has an unambiguous origin in the original map
m. While this does not affect the final outcome considered as a map, there are several non-
equivalent ways to obtain the same result. To lift the ambiguity, we use the extra convention
that the root vertex in m≥3 is e−, where e is the first element of E(m≥2) in the sequence
(ϕim(e∗), i ≥ 0). Otherwise said, we single out the tree component that contains the root and
branching on the unique cycle of m, by saying that its root vertex must be the root vertex of
m≥3. The other tree components are obtained by taking concatenations of Dyck paths so
that an element m ∈M0,2 is unambiguously described by the element m≥3, a Dyck path c,
an integer time in [0, τ(c)) and two paths ce∗ , ce∗ , the first being a concatenation of re∗ − 1

Dyck paths, and the second the concatenation of re∗ Dyck paths.

3.4. Labeling the maps

In order to complete the description of elements of LMg,k, we need to incorporate the
labeling function [l]. We can use the origin of the root edge e∗ of m = m≥3 as a reference
for [l], i.e. we can choose the element l ∈ [l] such that l(e−∗ ) = 0. This convention will be
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in force from this section onwards. It is then natural to introduce a labeling function le for
every e ∈ E(m), defined by

(9) lei = l(e(i))− l(e(0)) , 0 ≤ i < τ e ,

and leτe = l(e(τ e − 1)+) − l(e(0)), where the notation e(0), e(1), . . . is as above the list of
edges of the trees branching on e. We interpolate linearly between integer times, in order to
define a continuous piecewise linear function with slope in {−1, 0, 1}, starting at 0 and with
same duration as ce. Another process that will be of crucial importance is the process

(10) li = l(ϕim(e∗(0))) 0 ≤ i ≤ degm(f∗)− 1 ,

where f∗ is the face of m incident to e∗, and ldegm(f∗) = 0. As usual, it is turned into an
element ofW by linear interpolation. In the case where m has only one face, we see that l
provides a natural exploration of the labels of all vertices of m in the fatgraph face order. It
is easily checked that l is the concatenation

(11) l = le∗ lϕm(e∗) . . . lϕ
degm(f∗)−1
m (e∗) ,

where f∗ is the face of m incident to e∗. In order to study scaling limits, we will still need to
decompose le into two more elementary pieces, which is the purpose of the two next sections.

3.4.1. Walk networks. – A walk is an element w ∈ W taking integer values on Z+, interpo-
lating linearly between these values, and satisfying |w(i)−w(i−1)| ≤ 1 for 1 ≤ i ≤ r := τ(w)

(where it is assumed that r ≥ 1). Let W be the set of walks. A walk from 0 to x ∈ Z is a
walk with final value ŵ = x, their set is written W0→x.

Let m ∈ M≥3
g,k for some g, k ≥ 0. We let `(V ) and `(E) be the spaces of functions

V (m)→ R and E(m)→ R respectively. We also let `0(V ) be those functions l of `(V ) with
l(e−∗ ) = 0. A function θ ∈ `(E) is antisymmetric if θ(e) = −θ(e) for every e, and we let
`−(E) be the space of antisymmetric functions. For l ∈ `(V ), we let ∇l ∈ `−(E) be defined
by ∇l(e) = l(e+) − l(e−). As m is connected, the kernel of the linear map ∇ is the space of
constant functions, so the restriction of ∇ to `0(V ) is an isomorphism of vector spaces. A
function θ in the image∇V of∇ is called a potential.

A walk network on m is a collection (we, e ∈ E(m)) ∈WE(m) such that

we(t) = we(re − t)− ŵe , 0 ≤ t ≤ re = τ(we) = τ(we) ,

and such that the antisymmetric function θ = ŵ = (ŵe, e ∈ E(m)) is a potential (4).
We let WNm be the set of walk networks on m. If we are given an antisymmetric func-
tion θ ∈ `−(E) assuming integers values, we let WNm(θ) be the set of walk networks
(we, e ∈ E(m)) ∈WNm such that ŵ = θ.

If (m, [l]) ∈ LMg,k, and using the notations of Section 3.3, we set, for every e ∈ E(m) of
the form e = e1 . . . ere ,

we(i) = l(e−i+1)− l(e−1 ) , 0 ≤ i ≤ re − 1 ,

and we(re) = l(e+
re) − l(e−1 ). This defines a walk with duration re. Moreover, the family

(we, e ∈ E(m)) is a walk network. The reversal property we(·) = we(re − ·) − ŵe is clear
since e = ere . . . e1, and by definition the function (ŵe, e ∈ E(m)) is∇l|V (m).

(4) Alternatively, walk networks on m are in correspondence with labeled maps m ∈M≥2
g,k

such that m≥3 = m.
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3.4.2. Discrete snakes. – Finally, we say that the pair (c, z) ∈ W2 is a discrete snake on r ≥ 1

tree components if

– c is a concatenation of r Dyck paths,
– z is taking integer values on Z+, interpolating linearly between these values, with inte-

ger steps in {−1, 0, 1}, satisfies τ(z) = τ(c), and z(i) = z(j) whenever
c(i) = c(j) = mini∧j≤k≤i∨j c(k) (which means that i and j are times where the
same vertex of the forest encoded by c is explored),

– moreover, z(i) = 0 whenever i is an integer time at which c achieves a new minimum
(this means that i is a time at which a new tree component is explored, and the label of
the root is fixed to be 0).

In words, a discrete snake is the process of heights and labels when exploring an integer-
labeled forest in contour order, where the labels differ by at most 1 in absolute value between
adjacent vertices, and the labels of the forest’s roots is 0. We let Sr be the set of discrete snakes
on r tree components.

If (m, [l]) ∈ LMg,k we set, whenever 0 ≤ i ≤ τ e is such that e(i) ∈ (em−1, em] (recall the
notations of Section 3.3),

ze(i) = l(e(i))− l(em) ,

and we interpolate linearly between integer times. The pair (ce, ze) is then the discrete snake
associated with the forest branching on the edge e, where the labels in each tree component
have been shifted so that the roots have labels 0. With the data (we, ce, ze) defined so far, the
label function le introduced at the beginning of the subsection is recovered as

(12) le(i) = ze(i) + we(ce(i)) .

We also use (12) to define the function le out of any (m, l, t∗) ∈ Cg,k, where
ce(t) = − inf0≤s≤t c

e(s) for 0 ≤ s ≤ τ e, and define the function l as in (11).

Summing up the study of this section, we obtain

P 1. – (i) Let (g, k) /∈ {(0, 1), (0, 2)}. Then LMg,k is in bijection with the
subset Cmap

g,k ⊂ Cg,k of elements (m, l, t∗) such that

1. (we, e ∈ E(m)) ∈WNm,
2. (ce, ze) ∈ Sre for every e ∈ E(m), and
3. t∗ is n integer in [0, τ(ce∗)).

(ii) LM0,1 is in bijection with the set Cmap
0,1 = {(c, z) ∈ S1 : τ(c) > 1}.

(iii) LM0,2 is in bijection with the subset Cmap
0,2 ⊂ C0,2 of elements (m, l, t∗) with

1. we∗ ∈W0→0 and we∗ = we∗ ,
2. (c, z) ∈ S1 and t∗ ∈ [0, τ(c)) is an integer,
3. (ce∗ , ze∗) ∈ Sre∗−1 and (ce∗ , ze∗) ∈ Sre∗ .
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4. Discrete and continuous Boltzmann measures

We now explore natural measures and probability distributions on tessellated genus-g
maps, and their continuous counterparts.

We define the measure Qg,k on the set Qg,k as the σ-finite measure assigning mass
12−|F (q)| to every element (q,x, D). Otherwise said, if we recall the notations of Sec-
tion 1.4, one has

(13) Qg,k(d(q,x, D)) = Qg(dq) (Vqµq)⊗k(dx) #D(q,x)(dD) ,

where #D(q,x)(dD) is the counting measure on the (possibly empty) set of delays in q be-
tween sources x. Up to Section 4.4 we assume (g, k) /∈ {(0, 1), (0, 2)}.

According to Theorem 4 and Corollary 1, the push-forward of Qg,k by the mapping Ψg,k

is the measure on the set LMg,k that assigns mass 2 · 12−|E(m)| to any element (m, [l]). Us-
ing the considerations of Section 3, we see that this measure can in turn be obtained out of
measures on the more elementary pieces that compose a labeled map (walk networks and
snakes). More precisely, consider the bijective mapping Ξg,k : LMg,k → Cmap

g,k that is
described in Proposition 1. Define‹Ψg,k := Ξg,k ◦Ψg,k : Qg,k → Cmap

g,k .

Then the image measure LMg,k of Qg,k by ‹Ψg,k assigns weight 2·12−τl/2 to (m, l, t∗) ∈ Cmap
g,k ,

as one checks that τl/2 = |E(m)| = |F (q)| = Vq−χ(g) whenever (q,x, D), (m, [l]), (m, l, t∗)

are associated by our bijections. We rewrite this measure in the form

(14) LMg,k = 2
∑

m∈M≥3
g,k

LMm

where

LMm = δ{m}WNm(d(we)e∈E(m))
⊗
e∈E(m)

DSτ(we)(d(ce, ze)) #τ(ce∗ )(dt
∗)

and

– WNm is the measure assigning weight 3
−
∑

e∈E(m)
re to a walk network (we) ∈WNm,

– DSr is the measure assigning weight 2−τ(c)3−(τ(c)−r)/2 to an element (c, z) ∈ Sr,
– lastly, #τ(ce∗ ) is the counting measure on {0, . . . , τ(ce∗)− 1}.

Individually, these measures are σ-finite measures, which are finite except for WNm. The
measure DSr is a probability measure, under which the r trees involved in the forest are in-
dependent Galton-Watson trees with geometric (1/2) offspring distribution, and with uni-
formly distributed labels among the allowed ones, conditionally on the forest. To see this,
recall that (c, z) ∈ Sr encodes a forest with r tree components, and τ(c) oriented edges
(counting the r floor edges between tree components). A component of this forest, which is
a labeled tree with m′ edges say, contributes a probability factor 2−2m′−13−m

′
to the weight

2−τ(c)3−(τ(c)−r)/2. Also, the measure DSr(d(c, z))#τ(c)(dt
∗) is an infinite measure.

4.1. Walk networks

For simplicity we let in this section V = V (m), E = E(m),E = E(m) for somem ∈M≥3
g,k.

We let ŴNm be the image measure of WNm under (we, e ∈ E) 7→ ((re, e ∈ E), (ŵe, e ∈ E)).
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4.1.1. Gaussian laws on potentials. – Fix m ∈ Mg,k, and let v∗ = e−∗ be the root
vertex. Recall the notations of Section 3.4. We endow `0(V ) with the scalar product
(x,x′) =

∑
v 6=v∗ xvx

′
v, and endow the vector space ∇V := ∇`0(V ) ⊂ `−(E) of potentials

on m with the scalar product

〈∇x,∇x′〉 = (x,x′) .

This space is isometric to `0(V ), and of dimension |V | − 1 = dim `0(V ). We let λ∇ be the
measure on∇V which is the image of

∏
v∈V \{v∗} dyv by∇ : `0(V )→ `−(E), and call it the

Lebesgue measure on ∇V : it assigns mass 1 to the unit cube delimited by the vectors of the
orthonormal basis (∇1v, v 6= v∗). For (re, e ∈ E) a family of positive weights, we also let

Er(x) =
∑
e∈E

x2
e/re ,

which defines a positive definite quadratic form on ∇V . The Gaussian distribution on ∇V
associated with Er is the measure

Nmr (dx) =
1

(2π)
|V |−1

2

exp

Å
−Er(x)

2

ã√
det Er λ∇(dx) ,

which is a probability distribution. One should be careful that det Er is the determinant of
the quadratic form defined on (∇V , 〈·, ·〉) and not the whole space `−(E).

L 5. – Let ST(m) denote the set of spanning trees of m. Then, one has

det Er =
∑

a∈ST(m)

∏
e∈E(a)

(re)−1 .

Otherwise said, this determinant is a partition function for spanning trees onmwith weight 1/re
for the edge e.

Proof. – In the orthonormal basis (∇1{v}, v 6= v∗) of (∇V , 〈·, ·〉), it is easy to check that
the matrix (muv, u, v ∈ V \ {v∗}) of the quadratic form Er is given by mvv =

∑
e:e−=v 1/re

andmuv = −
∑
e:e−=u,e+=v 1/re. Otherwise said, this is a minor (excluding row and column

corresponding to v∗) of the weighted Laplacian matrix on V with weight 1/re on edge e, and
one concludes by the matrix-tree theorem (and the result does not depend on the root of m
but only on the map).

The following result will also be useful when estimating integrals with respect to λ∇. For
a spanning tree a ∈ ST(m), we privilege the orientation of its edges E1/2(a) by letting them
point away from the root vertex v∗. If y ∈ RE1/2(a), we define a function θay ∈ `−(E) ex-
tending y by letting θay(e) = −ye for e ∈ E1/2(a) and then

θay(e) =
∑
e′

ye′ ,

where the sum is over the half-edges e′ ∈ E(a) of the unique oriented simple chain going
from e− to e+. It is easy to see that θay ∈ ∇V is a potential, and any potential is recovered
from its restriction to E1/2(a) by applying θa.
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L 6. – Let H : RE → R+ be measurable. Then for a ∈ ST(m),∫
∇V

λ∇(dx)H(x) =

∫
RE1/2(a)

dyH(θay) .

Proof. – By definition∫
∇V

λ∇(dx)H(x) =

∫
RV \{v∗}

dzH(∇z) .

The result follows from the change of variables y(e) = ∇z(e), e ∈ E1/2(a), provided we can
justify that its Jacobian is 1. This results from the fact that this change of variables is linear,
and that its representative matrix in an appropriate basis is triangular with only 1’s on the
diagonal. To see this, perform the search-depth exploration of a starting from any half-edge
e1 ∈ E(a) with e−1 = v∗, and letting, for i ≥ 2, ei = ϕ

m(i)
a (ei−1) wherem(i) is the first integer

j ≥ 0 such that (ϕja(ei−1))+ is a vertex that does not belong to the set {v∗, e+1 , . . . , e
+
i−1}

of already explored vertices: this is possible as long as i ≤ |V | − 1. This gives a labeling
e1, . . . , e|V |−1 of the half-edges of a pointing out from v∗, such that the source e−i is always a
vertex belonging to the set {e+j : j < i}, while the target e+i is a newly explored vertex.

4.1.2. Key lemmas. – Define the quantity

Zm(r) =
∑

a∈ST(m)

∏
e/∈E(a)

2πre , r ∈ RE+ ,

which is a partition function for the complement of a spanning tree, with weight re on edge e,
and defines a homogeneous function of degree |E| − |V |+ 1. We define a measure ”PNm on
RE

+ ×∇V by ”PNm (dr,dx) =
dr√
Zm(r)

Nmr (dx) .

Let ∆E = {u = (ue, e ∈ E) ∈ RE
+ :

∑
e∈E ue = 1} be the |E| − 1-dimensional simplex

indexed by E, and λ∆ denote the (scaled) Lebesgue measure on ∆E, satisfying∫
RE

+

H(r)dr =

∫
R+

ρ|E|−1dρ

∫
∆E

λ∆(du)H(ρu)

for every integrable H. In particular, taking H(r) = exp(−
∑

e∈E re), we see that its total
mass equals 1/(|E| − 1)!.

We define the measure ”PN
(ρ)

m on ρ∆E ×∇V as the image measure by (u,x) 7→ (ρu,x) of

ρ|E|−1 λ∆(du)√
Zm(ρu)

Nmρu(dx) ,

hence giving a disintegration of ”PNm with respect to ρ(r) :=
∑

e∈E re.

L 7. – For u ∈ n∆E, we let ũ be the point of n∆E ∩ ZE that is closest to u for the
Euclidean metric (taking some arbitrary convention for ties). Then for any bounded function
H : RE

+ → R, ∣∣∣∣∣∣ 1

n|E|−1

∑
v∈n∆E∩ZE

H(v)−
∫

∆E

λ∆(du)H(›nu)

∣∣∣∣∣∣ ≤ (sup |H|)εn ,
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where the sequence (εn, n ≥ 1) is independent of H and goes to 0 as n→∞.

Proof. – To see this, note that

(15)
∫

∆E

λ∆(du)H(›nu) =
∑

v∈n∆E∩ZE

H(v)λ∆({u ∈ ∆E : ›nu = v}) .

Now, as long as v ∈ n∆E ∩ ZE has all its coordinates positive, i.e. does not belong to the
boundary n∂∆E and therefore stands at distance at least 1 from it as it has integer coordi-
nates, the sets {u ∈ ∆E : ›nu = v} do not intersect ∂∆E, and have equal λ∆-measure by an
obvious property of translation-invariance. There are

(
n−1
|E|−1

)
elements in n∆E ∩NE, which

is the number of integer compositions of n into |E| positive parts. We conclude that for any
v ∈ n∆E ∩ NE,

0 ≤ λ∆(∆E)−
Ç
n− 1

|E| − 1

å
λ∆({u ∈ ∆E : ›nu = v}) ≤ λ∆(V1/n(∂∆E)) ,

where V1/n(∂∆E) is the 1/n-neighborhood of ∂∆E, and λ∆(V1/n(∂∆E)) → 0 as n → ∞.
Since Ç

n− 1

|E| − 1

å
∼ n|E|−1/(|E| − 1) = n|E|−1λ∆(∆E) ,

we conclude that λ∆({u ∈ ∆E : ›nu = v}) = (1 + o(1))/n|E|−1 as n → ∞ independently
of v ∈ n∆E ∩ NE, and since |n∂∆E ∩ ZE| = o(n|E|−1), the conclusion follows easily from
(15).

L 8. – Set ς = (8/9)1/4. Let Ga, a > 0 be a uniformly bounded family of functions
on NE × ZE such that

Ga(ra,xa)→ G(r,x)

whenever ra/(2a)1/2 → r and xa/(ςa
1/4)→ x ∈ RE . Let also ρa/(2a)1/2 → ρ with ρa ∈ N.

Then
ςk+2g−1

2
|E|−1

2 a
|V |+|E|−3

4

ŴNm(Ga1{ρ(r)=ρa})→”PN
(ρ)

m (G) .

Proof. – Let Wr
0→x be the set of walks with duration r that end at x, and

pn(N) = 3−r|Wr
0→N | be the probability that a uniform walk of duration r ends at N .

Note that k+ 2g− 1 = |E| − |V |+ 1 by (6), and write the left-hand side in the statement as

ς |E|−|V |+1

2
|E|−1

2 a
|V |+|E|−3

4

∑
r∈NE

3−
∑

e∈E re
∑

y∈ZV \{v∗}

∑
(we)∈WNm(∇y)

Ga (r,∇y)1{ρ(r)=ρa}

=
ς |E|−|V |+1

2
|E|−1

2 a
|V |+|E|−3

4

∑
r∈ρa∆E∩NE

∑
y∈ZV \{v∗}

Ga (r,∇y)
∏
e∈E1/2

pre(∇y(e))

∼
a→∞

ρ|E|−1
a

ς |E|−|V |+1

2
|E|−1

2 a
|V |+|E|−3

4

∫
∆E

λ∆(du)

∫
RV \{v∗}

dyGa (ρ̃au,∇byc)
∏
e∈E1/2

p›ρau(e)
(∇byc(e))

∼
a→∞

ρ|E|−1

∫
∆E

λ∆(du)

∫
RV \{v∗}

dyGa
Ä
ρ̃au,∇ba1/4ςyc

ä ∏
e∈E1/2

ςa1/4p›ρau(e)
(∇ba1/4ςyc(e)) ,
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where we made use of Lemma 7 for n = ρa at the third step of the computation. Here, bxc
is the vector whose components are the integer parts of the components of x, and we write
ũ(e) for the coordinate of ũ corresponding to the edge e = {e, e}.

By the local limit theorem [39, Theorem VII.3.16], there exists (5) some C ∈ (0,∞) such
that for every n ≥ 1, N ∈ Z and letting x = N/(n1/2

√
2/3),∣∣∣∣∣

…
2

3
n1/2pn(N)− 1√

2π
e−

x2

2

∣∣∣∣∣ ≤ n−1/2 C

1 + |x|2
.

From this, and the easily checked fact that n∂∆E is at distance CE > 0 (independent on n)
of the set {nu : u ∈ ∆E : ›nu /∈ n∂∆E} (so that the components nue are bounded away from
0 for nu in this set), it follows that

ςa1/4p›ρau(e)
(∇ba1/4ςyc(e)) ≤ C min

Ç√
ρ

x2
e

,
1
√
ρue

å
,

where xe = |∇y(e)|. Combining with the fact that the Ga are uniformly bounded allows us
to bound the last displayed double integral by

C max(ρ3|E|/2−1, ρ|E|/2−1)

∫
∇V

λ∇(dx)

∫
∆E

λ∆(du)
∏
e∈E1/2

Å
1

x2
e

1{xe>1} +
1
√
ue
1{xe≤1}

ã
.

Developing the product and integrating in u, we finally obtain the bound

C max(ρ3|E|/2−1, ρ|E|/2−1)

∫
∇V

λ∇(dx)
∏
e∈E1/2

min(x−2
e , 1) .

Taking a spanning tree a ∈ ST(m) and using Lemma 6, this is bounded by

(16) max(ρ3|E|/2−1, ρ|E|/2−1)

∫
RE1/2(a)

dx

Ñ ∑
e∈E1/2(a)

min(x−2
e , 1)

é|E|
,

and this is finite. Therefore, we can apply dominated convergence in the integral expression
above and pass to the limit as a→∞ to get

ς |E|−|V |+1

2
|E|−1

2 a
|V |+|E|−3

4

ŴNm
(
Ga1ρ(r)=ρa

)
−→
a→∞

ρ|E|−1

∫
∆E

λ∆(du)

∫
∇V

λ∇(dx)G(ρu,x)
∏
e∈E1/2

e−x
2
e/(2ρue)

√
2πρue

= ρ|E|−1

∫
∆E

λ∆(du)

∫
∇V

λ∇(dx)
exp

Ä
−Eρu(x)

2

ä
∏

e∈E
√

2πρue
G(ρu,x) ,

and the result follows from the definition of Nmr and Zm(r) and from Lemma 5.

L 9. – Let Ga, a > 0 be functions NE × ZE → R such that

|Ga(r,x)| ≤ K exp

(
−c a−1/2

∑
e∈E

re

)

(5) Until the end of the proof, the same notation C will be used for different such bounding constants.
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for some K, c > 0, and satisfying the same convergence assumptions as in the previous lemma.
Then

ςk+2g−1

2
|E|
2 a

|V |+|E|−1
4

ŴNm (Ga) −→
a→∞

”PNm(G) .

Proof. – This is an immediate consequence of the previous lemma, using easy dominated
convergence arguments along with the ρ-dependent bound (16). Details are left to the reader.

4.1.3. Path network measure. – We are now able to describe the scaling limit of the measure
WNm. LetP r0→x(dw) be the law of the standard Brownian bridge with duration t from 0 to x,
and P r0→x(dwdw′) be the image measure of P r0→x(dw) under w 7→ (w,w) ∈ W2.

Take an orientation E1/2 of E. We define a measure by

PNm (d (we, e ∈ E)) =

∫ ”PNm(dr,dx)
∏
e∈E1/2

P re0→xe(dw
edwe) ,

which is a measure on paths networks, i.e. collections (we, e ∈ E) of paths with durations
re := τ(we) such that we = we and (ŵe, e ∈ E) ∈ ∇V is a potential. This measure does not
depend on the choice of E1/2 because of the well-known invariance property [41] of P t0→x
under w 7→ w.

We define a scaling operator φa onW by

φa(w) =

Å
9

8a

ã1/4

w((2a)1/2s) , 0 ≤ s ≤ τ(w)/(2a)1/2 .

We extend the scaling function φa to a function on powers ofW in the natural way, i.e. it acts
on every component by applying the scaling φa.

P 2. – Let H be a continuous functionWE → R such that

|H((we, e ∈ E))| ≤ K exp

(
−c
∑
e∈E

τ(we)

)
,

for some K, c > 0. Then

ςk+2g−1

2
|E|
2 a

|V |+|E|−1
4

WNm (H ◦ φa) −→
a→∞

PNm(H) .

Proof. – We rely on Lemma 9 and the following statement.

L 10. – For n ∈ N and x ∈ Z, let Pn
0→x be the uniform distribution on Wn

0→x. Let
r > 0, x ∈ R be fixed and assume that ra, xa are integers such that ra/(2a)1/2 → r and
(9/8a)1/4xa → x. Then the probability measures φa∗P

ra
0→xa converge in distribution to P r0→x

inW .

Proof. – This is a classical elaboration on Donsker’s invariance principle. See for instance
[13, Lemmas 4.5–6] for the scheme of the proof (in this reference, the author considers more
general stable processes than Brownian motion but is also concerned only in the case where
x = 0, however the proof in the general x case is the same).
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To end the proof of Proposition 2, we apply Lemma 9 to the function

Ga(r,x) =

∫
WE

⊗
e∈E1/2

Pre
0→xe(dw

edwe)H(φa(we, e ∈ E)) ,

where as above the measure Pr
0→x(dwdw′) is the law of (w,w) under Pr

0→x.

Remark. – The path network measure PNm actually has the following interpretation, which
we state without proof as this is not needed in the present article. Assume that the numbers
re > 0, e ∈ E are given and consider a graph with same structure as m but where the edge e

is isometric to a real segment of length re. This defines a metric graph [9, Chapter 3.2.2] mr.
Let Θmr be the set of continuous functions on mr that vanish at v∗. With any path network
(we, e ∈ E) we may associate an element of Θmr in the following way: for x ∈ mr on the
half-edge e and at distance 0 ≤ s ≤ re from its origin, pick a chain e1, . . . , em of half edges
starting at v∗ and ending at e−. Then letH(x) =

∑m
i=1 ŵ

ei+we(s). The reader will convince
himself that this definition does not depend on the choice of the orientation of e nor on that
of the chain e1, . . . , em, because of the properties of path networks. Thus, the measure

Nmr (dx)
∏
e∈E1/2

P re0→xe(dw
edwe)

induces a law GFFmr(dH) on Θmr . This law is what is referred to as the Gaussian free field on
mr. We refer to [43] for a nice introduction to this object (here the metric graphs are really
1-dimensional objects, so the associated free fields are well-defined random functions that
are much less elaborate than higher-dimensional free fields on which [43] focuses). To ex-
plain what GFF is, imagine that we run a “Brownian motion” on mr. It behaves as a linear
Brownian motion when moving on an edge of mr, and when it encounters a vertex of the
graph, its excursions out of the vertex choose independently at random in which incident
edge they will diffuse. The diffusion is killed when it first encounters the vertex v∗. We let
G(x, y) be the density (6) at vertex y of the occupation measure of the diffusion starting at x.
Then GFFmr is the law of the centered Gaussian field (H(x), x ∈ mr) with covariance

Cov (H(x), H(y)) = G(x, y) , x, y ∈ mr .

4.2. Discrete and continuous snakes

We now discuss the scaling limits of the measures DSr on discrete snakes. This is more
classical from a probabilistic point of view as we are back into the realm of probability
measures. We define the continuous snake measures Sr, r > 0, as the law of the pair
((Bs)0≤s≤I−1

r
, (Ss)0≤s≤I−1

r
), where

– (Bs, s ≥ 0) is a standard Brownian motion in R,
– (Is = inf0≤s′≤sBs′ , s ≥ 0) is the infimum process ofB and I−1 is its right-continuous

inverse,
– conditionally on B, the process S is centered Gaussian in R, with covariance

Cov (Ss, Ss′) = inf
s∧s′≤s′′≤s∨s′

(Bs′′ − Is′′) .

(6) The function y 7→ G(x, y) can also be defined as the solution of a Poisson equation ∆mrH = δx vanishing at
v∗, for the appropriate definition of the Laplacian ∆mr on regular functions of Θmr .
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As an application of Kolmogorov’s continuity criterion and the standard fact that trajectories
of a Brownian motion are a.s. locally Hölder continuous, a continuous version of S exists,
and St is a distribution onW2.

We rely on a version of invariance principles such as [11, 23, 31], but holding for forests. It
is easily derived from Theorem 3 of [35] by using the methods of [14, Section 2.4] to derive the
results for the contour process of the tree rather than the height process. There is a difference
between the label processes used in this reference and the present paper (due to a different way
of exploring the trees), but the proofs are adapted in a straightforward way.

We define the scaling functions ϑa, ψa onW by

ϑa(c) =
1

(2a)1/2
c(2as) , 0 ≤ s ≤ τ(c)/2a ,

and

ψa(z) =

Å
9

8a

ã1/4

z(2as) , 0 ≤ s ≤ τ(z)/2a .

L 11. – Fix t > 0 and assume ra ∈ N is such that ra/(2a)1/2 → r. Then, the mea-
sure (ϑa, ψa)∗DSra converges weakly to Sr as a → ∞. If Un is the uniform distribution over
{0, 1, . . . , n− 1}, we also have that the measure defined by∫

DSra(d(c, z))Uτ(c)(dt)H(ϑa(c), ψa(z), t/2a) ,

for positive measurable H, converges weakly towards the measure defined by∫
Sr(d(c, z))

∫
R+

dt1{0≤t≤τ(c)}

τ(c)
H(c, z, t) .

4.3. Scaling limits

In this section, we assume (g, k) /∈ {(0, 1), (0, 2)}. We define a measure on Cg,k by

(17) CLMg,k = 2
∑

m∈M3
g,k

CLMm

and CLMm is the appropriate image measure obtained by rearranging terms of

δm PNm(d(we)e∈E(m))
⊗
e∈E(m)

Sre(d(ce, ze)) dt∗1{0≤t∗≤τe∗} .

Note that the exponent≥ 3 of the first term defining LMg,k is replaced by a 3 here. We define
the scaling operator ξa by

ξa (m, l, t∗) = (m, ((φa(we), ϑa(ce), ψa(ze)), e ∈ E(m)), t∗/2a) .

T 5. – Assume (g, k) /∈ {(0, 1), (0, 2)}. Let H be a continuous function on Cg,k

such that
|H| ≤ Kτ−1

l exp (−βτl)
for some K,β > 0. Then it holds that

ςk+2g−1

23g−2+ 3k
2 a

5g
2 + 5k−7

4

LMg,k(H ◦ ξa) −→
a→∞

CLMg,k(H) .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



756 G. MIERMONT

Proof. – First of all, we check that for every r ∈ NE,

(18)
⊗
e∈E

DSre

Å
exp

Å
−β
a
τl

ãã
≤ K ′ exp

(
−cβa−1/2

∑
e∈E

re

)
.

Indeed, under DSr(d(c, z)), the terminal time τ of c has same law as the first hitting time of
−r by a simple random walk on the integers. Thus τl has same law under

⊗
e∈E DSre as the

first hitting time of −2
∑

e∈E re by the random walk. Standard computations show that

(19) DS1(sτ(c)) =
1−
√

1− s2

s
, 0 < s ≤ 1 ,

so that ⊗
e∈E(m)

DSre

Å
exp

Å
−β
a
τl

ãã
= exp

(
−2φ

Å
β

a

ã∑
e∈E

re

)
,

where φ(β) = − log(eβ(1−
√

1− e−2β)) is the Laplace exponent of the first hitting time of
−1 by the walk, so φ(β/a) ∼ (2β/a)1/2 as a → ∞, hence (18). We can thus write LMm(H)

as ∫
WNm(d(we))

∫ ⊗
e∈E

DSre(d(ce, ze))

∫
Uτe∗ (dt∗)τ e∗H(m, l, t∗) ,

with the notation Un of Lemma 11. Set

Ga(r,x) =
⊗
e∈E1/2

Pre
0→xe

⊗
e∈E

DSre

ï
Uτe∗

Å
τ e∗

2a
H(ξa(m, l, t∗))

ãò
.

Because of the domination hypothesis onH, the fact τ e∗ ≤ τl, and inequality (18), the func-
tion Ga satisfies the domination hypothesis of Lemma 9. Applying the latter and Lemmas
10 and 11 allows us to conclude that for every m ∈M≥3

g,k,

(2a)−1 ςk+2g−1

2
|E|
2 a

|E|+|V |−1
4

LMm(H ◦ ξa) →
a→∞

CLMm(H).

Note that for m ranging in M≥3
g,k, the quantity |V | + |E| appearing in the scaling factor

is maximal if and only if m belongs to the set M3
g,k of trivalent maps of genus g with k

faces. Indeed, |E| − |V | = k + 2g − 2 is a fixed quantity, so that |V | + |E| will be maximal
if and only if |E| is maximal subject to the constraints. On the other hand, we already
noticed that |E| ≤ 3k + 6g − 6, with equality if and only if m ∈ M3

g,k, in which case

(|V | + |E| + 3)/4 = 5g/2 + (5k − 7)/4. Since M≥3
g,k is a finite set, we deduce that the only

terms in the sum (14) remaining in the scaling limit will be those belonging to M3
g,k. Hence

the result.

Remark: the Hurwitz measure. It should be noted that a non-labeled analog of CLMg,k has
already been considered in the literature [37, 38], in problems dealing with the enumeration
of maps, random matrices, and related algebraic geometry problems. Specifically, the first
marginal Pt of the measure St can be considered as the law of the contour process of a ran-
dom forest. The measure considered in the above references is

CM◦g,k :=
∑

m∈M3,◦
g,k

1

|Aut(m)|

∫
RE

+

dr
⊗
e∈E

Pre(dc
e),
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where the first sum is over unrooted maps in M3
g,k (but still with indexed faces) and the factor

involving Aut (m), the automorphisms ofm, allows one to get rid of symmetries of the graph.
Note that we can regroup the factors in the above measure as

⊗
e∈E1/2

drePre(dc
e)Pre(dc

e).
In this form, and by using an interpretation in terms of trees of a well-known decomposition
of the Brownian excursion due to Bismut (see Le Gall [25]), we see that we have replaced each
edgem by a doubly-marked Brownian continuum random tree taken under the Itô measure,
using the two marks as endpoints of the edge. The measure CM◦g,k appears as a scaling limit
of a random element of Mg,k where k remains fixed but the number of edges tends to infinity.
Of particular importance is the Hurwitz measure, which is the image of CM◦g,k by the map

(ce, e ∈ E) 7−→

Ñ ∑
e∈fi(m)

τ(ce), 1 ≤ i ≤ k

é
,

as its Laplace transform has an interpretation in terms of generating series related to inter-
section theory on the moduli space of curves [38].

4.4. Exceptional cases

This section is devoted to the study of the planar cases (g, k) ∈ {(0, 1), (0, 2)}. An ele-
ment (m, [l]) of LM0,1 is just a rooted labeled tree and is described by a snake
Ξ0,1(m, [l]) = (c, z) ∈ S1. The image measure of Q0,1 by ‹Ψ0,1 := Ξ0,1 ◦ Ψ0,1 will as-
sign mass 2 ·12−n = 4 ·2−2n−13−n to each discrete snake (c, z) with duration τ(c) = 2n+1,
coding a labeled tree with n edges. This is precisely the measure

LM0,1 := 4 DS1 .

We define its scaling limit CLM0,1 as follows. LetN(dc) be the Itô measure onW , governing
the intensity of the excursions of standard reflected Brownian motion (with normalization
N(τ(c) ∈ dt) = (2πt3)−1/2dt). Let N(d(c, z)) be the measure onW2 such that under N,
c has “law” N , and conditionally on c, z is a centered Gaussian process with covariance

Cov (z(s), z(s′)) = inf
s∧s′≤s′′≤s∨s′

c(s′′) .

Finally, set CLM0,1 = 4N.

P 3. – Let H be a continuous functional onW2 such that

|H(c, z)| ≤ Kτ exp(−βτ) ,

where τ := τ(c), for some K,β > 0. Then

(2a)1/2LM0,1(H ◦ (ϑa, ψa)) −→
a→∞

CLM0,1(H) .

Proof. – First integrate out the label part, i.e. assume H is only a function of the first
component and write

(2a)1/2LM0,1(H(ϑa(c))) = 2(2a)1/2

∫
R+

dt
1

22dteCatdteP
dte
exc(H(ϑa(c)))

= 2
√

2a3/2

∫
R+

dt
1

22dateCatdateP
date
exc (H(ϑa(c)))
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where Pnexc is the uniform distribution over Dyck paths with duration 2n + 1, the latter
set having cardinality Catn, the n-th Catalan number. It is well-known (and can be ob-
tained from Lemma 10 with x = −1 from a cyclic shift and Vervaat’s theorem [40]) that
the law of ϑa(c) under P dateexc converges weakly to N (t) = N(· | τ = t). On the other hand,
it can be checked that 4−n(n + 1)

√
nCatn increases in n towards its limit π−1/2, so that

a3/22−2dateCatdateP
date
exc (H(ϑa(c))) is dominated by K ′e−2βt/

√
t for some K ′ > 0. By

dominated convergence, we get

(2a)1/2LM0,1(H ◦ ϑa) −→
a→∞

4

∫
R+

dt√
2πt3

N (t)(H) = 4N(H) ,

by the fact thatN(τ ∈ dt) = dt/
√

2πt3. Incorporating the spatial displacements is now easy
from the convergence of the contour function, see for instance [23].

Finally, the measure associated with Q0,2 through the mapping ‹Ψ0,2 is the measure
LM0,2 = 2

∑
m∈M≥3

0,2
LMm where

LMm = δmWNm(dwe∗dwe∗)DS1(d(c, z))#τ (dt∗)DSre∗−1(d(ce∗ , ze∗))DSre∗ (d(ce∗ , ze∗)) .

Its continuous counterpart is of course CLM0,2 = 2
∑
m∈M≥3

0,2
CLMm, where

CLMm = δmPNm(dwe∗dwe∗)N(d(c, z))dt∗1{0≤t∗≤τ}Sre∗ (d(ce∗ , ze∗))Sre∗ (d(ce∗ , ze∗)) ,

and PNm takes the particularly simple form

PNm(dwe∗dwe∗) =

∫
R+

dr√
2πr

P r0→0(dwe∗dwe∗).

We define the scaling operation ξa by

ξa(m, l, t∗) = (m, (ϑa(c), ψa(z)), (φa(we∗), ϑa(ce∗), ψa(ze∗)), (φa(we∗), ϑa(ce∗), ψa(ze∗)), t∗/2a) .

P 4. – For every continuous functional H satisfying

|H| ≤ K exp(−βτl) ,

for some K,β > 0. Then
ς

2a3/4
LM0,2(H ◦ ξa) −→

a→∞
CLM0,2(H) .

The proof uses both the ingredients of the proofs of Theorem 5 and Proposition 3, but
presents no new difficulty and is left as an exercise to the reader.

5. Asymptotic enumeration in the non-planar case

We want to derive Theorem 1 by a study of the generating function

G(s) :=
∑
n≥1

|Qn
g |

12n
sn ,
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which will be done by elementary singularity analysis. We will restrict our attention to the
non-planar cases g ≥ 1, as the planar case is already known. First note that we have the
following alternative expressions

G(s) =
∑

q∈Qg

( s
12

)|F (q)|
=

∑
(q,x)∈Qg,1

V −1
q

( s
12

)|F (q)|
= Qg,1(V −1

q s|F (q)|) ,

which is finally equal to LMg,1((τl/2 +χ(g))−1sτl/2). The coefficients’ asymptotic behavior
is the same as that of G0(s) := LMg,1(2τ−1

l sτl/2), so we may and will work with the latter.
Now write s = e−1/a, H = τ−1

l e−τl , and apply Theorem 5. We readily obtain that

G0(e−1/a) ∼
a→∞

C ′ga
5g−3

2 ,

where C ′g ∈ (0,∞) is defined by C ′g = 2
3g−1

2 3gCLMg,1(τ−1
l e−τl). Otherwise said,

(20) G0(s) ∼ C ′g(1− s)−(5g−3)/2

as s→ 1 along [0, 1]. From this, Tauberian theorems allow to obtain
n∑
k=1

12−n|Qn
g | ∼

C ′g

Γ
(

5g−1
2

)n 5g−3
2 ,

which is weaker than (but consistent with) what we are aiming at. In order to apply standard
transfer theorems of singularity analysis, we need to show that the asymptotics (20) hold for
s→ 1 in a domain of the form

DR,φ := {s ∈ C : |s| < R, s 6= 1, | arg(s− 1)| > φ}

for some R > 1, φ ∈ (0, π/2) and on which G0 has to be extendible analytically (here we
take the determination of the argument in (−π, π]).

L 12. – Let α > 0 and f(z) =
∑
n≥0 hnz

n be a power series with non-negative
coefficients satisfying hn ∼ nα−1/Γ(α) as n → ∞. Then f(z) ∼ (1 − z)−α for z → 1

inside a domain of the form D1,φ with φ ∈ (π/2, π).

Proof. – Let (1− z)−α =
∑
n≥0 h

0
nz
n, so that h0

n ∼ hn. Fix ε > 0, take N large enough
so that |1− hn/h0

n| ≤ ε. From the fact that hn, h0
n ≥ 0, we easily get

|(1− z)αf(z)− 1| ≤ |1− z|α
N∑
n=0

(hn + h0
n)|z|n + ε

|1− z|α

(1− |z|)α
,

and the first term goes to 0 as z → 1. As for the second, write 1− z = ρeiθ for |θ| < π − φ.
For ρ sufficiently close to 0, we get that |1−z|/(1−|z|) ≤ ρ/(1−(1+ρ2−2ρ cos(π−φ))1/2),
which admits a finite positive limit as ρ→ 0, allowing us to bound the right-hand side of the
last displayed expression by a constant (φ-dependent) multiple of ε. Hence the result.

Now rewrite G0(s) as

G0(s) = 2
∑

m∈M≥3
g,1

∫
ŴNm(dr,dx)

⊗
e∈E(m)

DSre

Å
2τ e∗

τl
sτl/2

ã
.
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We use the following trick: for a function H on M≥3
g,1 we have∑

m∈M≥3
g,1

H(m) =
∑

m◦∈M≥3,◦
g,1

|Aut (m◦)|−1
∑

e∗∈E(m◦)

H((m◦, e∗)) ,

where M≥3,◦
g,1 denotes unrooted maps and (m◦, e∗) is the mapm◦ rooted at e∗. Indeed, it holds

that (m◦, e) = (m◦, e′) as a rooted map for edges e, e′ ∈ E(m) if and only if there exists an
automorphism of m sending e to e′. Thus, the orbits of the natural action of Aut (m◦) on
E(m) correspond to the distinct possible rootings of m◦. Moreover, if p · e = e, then p is
the identity, which can be seen by reasoning in a step-by-step fashion from the edge e and
going to neighbors. Therefore, all the orbits have same cardinality |Aut (m◦)|, and the claim
follows. Applying it twice, once in each direction, allows us to get (with a straightforward
definition for ŴNm◦ )

G0(s) = 4
∑

m◦∈M≥3,◦
g,1

|Aut (m◦)|−1

∫
ŴNm◦(dr,dx)

⊗
e∈E(m◦)

DSre
Ä
sτl/2

ä
= 4

∑
m∈M≥3

g,1

|E(m)|−1

∫
ŴNm(dr,dx)

⊗
e∈E(m)

DSre
Ä
sτl/2

ä
.

By (19) we have DSr(s
τ(c)) = ((1−

√
1− s2)/s)r, so that we get G0(s) = G1 ◦G2(s), where

G1(z) = 4
∑

m∈M≥3
g,1

|E(m)|−1

∫
ŴNm(dr,dx) z

∑
e∈E(m)

re ,

and

G2(s) = DS2(sτ(c)/2) =
2− s− 2

√
1− s

s
,

which can be extended analytically to a domain DR,φ with R > 1 and φ ∈ (0, π/2).
Moreover, elementary computations show that DR,φ is mapped to a domain D1,θ for some
θ ∈ (π/2, π).

On the other hand, applying Lemma 8 to Ga = 1 and ρa = n = d(2a)1/2e gives that the
n-th coefficient in G1 satisfies

[zn]G1(z) ∼ 4

Å
3

2

ãg
n5g−4

∑
m∈M3

g,1

|E(m)|−1

∫
∆E

λ∆(du)√
Zm(u)

= C ′′g n
5g−4 .

Note that |E(m)| = 2(6g − 3) for every term in the sum. From Lemma 12, we deduce that
G1(z) ∼ Γ(5g − 3)C ′′g (1 − z)−(5g−3) for z → 1 inside D1,θ. Combined with the fact that
G2(s) = 1 + 2

√
1− s+O(1− s) as s→ 1 in DR,φ, we finally obtain that G0 has an analytic

continuation inDR,φ, and is equivalent to 2−5g+3Γ(5g−3)C ′′g (1−s)−(5g−3)/2 as s→ 1 inside
this domain. An elementary transfer theorem [18, Corollary VI.1] allows us to conclude that
[sn]G0(s) ∼ Cgn5(g−1)/2, where the constant Cg is computed as

(21) Cg = 16

Å
3

64

ãg Γ(5g − 3)

(6g − 3)Γ
(

5g−3
2

) ∑
m∈M3

g,1

∫
∆E

λ∆(du)√
Zm(u)

.

Elementary (but tedious) computations give C1 = 1/24, consistently with [4].
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Remarks

1. It is expected, and checked on numerous examples, see Gao [20], that “reasonable” fami-
lies of random maps with sizenwill have the universal property that their cardinality is equiv-
alent to Cαnn−5χ(g)/4 for some C,α depending on the model. A nice feature of the above
approach is that, let aside the prefactor 16(3/64)g, it is reasonable to think that the gamma
terms and summation over M3

g,1 are not a particular feature of quadrangulations, and will
appear for more general families of maps. However, it is extremely hard to determine the
exact value of this sum as it involves a number of terms growing very quickly with g, and less
and less tractable integrals.

2. In [10], the authors give an alternative expression for Cg, still in the form of a prefactor
times a sum over trivalent maps with one face (and with an extra labeling of vertices). The
expression of [10] is somewhat simpler than ours, as it does not involve integrals but only
finite products of quantities that depend in an elementary way on the labeled map involved
in the sum. It would be interesting to show directly that the two expressions are the same.

6. Metrics on metric spaces

In a metric space (X, d), we let BX(x, r) (or simply B(x, r) if there is no ambiguity) be
the open ball centered at xwith radius r. We let dH be the usual Hausdorff distance between
closed subsets of X

dH(C,C ′) = inf{ε > 0 : C ⊆ (C ′)ε and C ′ ⊆ Cε} ,

where Aε = {x ∈ X : infy∈A d(x, y) < ε} is the ε-neighborhood of A. We also let dP be the
Prokhorov metric between Borel probability measures on (X, d) defined by

dP (µ, µ′) = inf{ε > 0 : µ(C) ≤ µ′(Cε) + ε for all closed C} .

The topology associated with dP is that of weak convergence of probability measures on X.
See [12, Chapter 11] for references.

6.1. Gromov-Hausdorff distance

We first recall the definition and first properties of the Gromov-Hausdorff distance, taken
from [9, 16, 22]. If X = [X, d],X′ = [X ′, d′] ∈M, we write

dGH(X,X′) = inf
φ,φ′

δH(φ(X), φ′(X ′)) ,

where the infimum is taken over all isometries φ, φ′ from X,X ′ into a common metric space
(Z, δ).

An alternative useful description is given as follows. A correspondence between
two sets X,X ′ is a subset R ⊆ X ×X ′ such that π(R) = X and π′(R) = X ′, where
π : X ×X ′ → X, π′ : X ×X ′ → X ′ are the canonical projections. We use xRx′ as an
alternative notation for (x, x′) ∈ R, and we let C(X,X ′) be the set of correspondences
between X and X ′. If (X, d), (X ′, d′) are metric spaces, andR is a correspondence between
X and X ′, the distortion ofR is defined as

disR = sup{|d(x, y)− d′(x′, y′)| : xRx′, yRy′} .
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Then

(22) dGH(X,X′) =
1

2
inf

R∈C(X,X′)
disR ,

which of course does not depend on the particular representatives X,X ′ of X,X′.

It is an easy exercise to check that disR = disR where R is the closure of R in X ×X ′
for the product topology, so that the infimum in (22) could be taken over the set Cc(X,X ′)
of compact correspondences (this set depends on the distances d, d′ and not only on the sets
X,X ′). The following properties [9, 16], combined with the forthcoming Proposition 8, will
be useful in proving Theorem 2, in Section 7.1.

P 5. – (i) The function dGH is a metric on M. The space (M, dGH) is separable
and complete.

(ii) A subset A ⊆ M is relatively compact if and only if the set {diam (X) : X ∈ A} is
bounded, and for every ε > 0, there exists N > 0 such that every X ∈ A can be covered with
N open balls of radius ε.

6.2. Gromov-Hausdorff-Prokhorov metric

Let X = [X, d, µ],X′ = [X ′, d′, µ′] ∈Mw We let

dGHP(X,X′) = inf
φ,φ′

(
δH(φ(X), φ′(X ′)) ∨ δP (φ∗µ, φ

′
∗µ
′)
)
,

where the infimum is taken over all isometries φ, φ′ from X,X ′ into a metric space (Z, δ).

T 6. – The function dGHP defines a distance on Mw.

This result is well-known, see for instance [44, p. 762], with the slight difference that the
supremum between δH and δP in the definition of dGHP is replaced by a sum. In order to
make this article self-contained, we will provide a full proof of Theorem 6, to which the re-
maining part of this subsection is devoted. In order to handle the distance dGHP, we develop
an alternative definition with the help of correspondences and couplings. This is inspired in
part from [21, 22].

If µ, µ′ are Borel probability measures on (X, d) and (X ′, d′), we say that a Borel measure
ν on the product space X × X ′ is a coupling between µ and µ′ if π∗ν = µ and π′∗ν = µ′.
We letM(µ, µ′) be the set of couplings between µ and µ′. It is never empty as it contains the
product measure µ⊗ µ′, and is closed (and even compact since X ×X ′ is compact) for the
weak topology.

A useful feature of couplings is the following. Since all spaces that are considered are
Polish, it is known that we can write a coupling ν ∈ M(µ, µ′) in the form µ(dx)Qν(x, dy),
where Qν is a Markov kernel from X to X ′. In particular, if µ1, . . . , µk are probability mea-
sures on the compact spaces X1, . . . , Xk and νi, 1 ≤ i ≤ k − 1 are couplings between µi
and µi+1 respectively, we can define a Markov chain (A1, . . . , Ak) such that Ai is a random
variable with distribution µi on Xi, with initial distribution µ1 and transition kernel Qνi at
step i. The joint law of (A1, Ak) is then denoted by ν1 . . . νk and is a coupling between µ1

and µk.
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P 6. – Let X = [X, d, µ],X′ = [X ′, d′, µ′] ∈Mw. Then

(23) dGHP(X,X′) = inf

{
ε > 0 :

∃ν ∈M(µ, µ′), ∃R ∈ Cc(X,X ′),
ν(R) ≥ 1− ε and 1

2disR ≤ ε

}
.

Proof. – Assume that dGHP(X,X′) < ε and let φ, φ′ be isometric embeddings of X,X ′

into (Z, δ) such that δH(φ(X), φ′(X ′)) < ε and δP (φ∗µ, φ
′
∗µ
′) < ε. Arguing as in [9, Remark

7.3.12], we may and will assume that (Z, δ) is separable. Then the setR = {(x, x′) ∈ X×X ′ :

δ(φ(x), φ′(x′)) ≤ ε} is an element of Cc(X,X ′). To evaluate its distortion, let xRx′ and
yRy′, and write

d(x, y)− d′(x′, y′) = δ(φ(x), φ(y))− δ(φ′(x′), φ′(y′)) ≤ δ(φ(x), φ′(x′)) + δ(φ′(y′), φ(y)) ≤ 2ε ,

and the lower bound is obtained in a similar way. Thus disR ≤ 2ε.

Now, by a characterization of the Prokhorov distance (see [12, Corollary 11.6.4]) on sepa-
rable metric spaces, we can find a coupling ν̃ ∈M(φ∗µ, φ

′
∗µ
′), which is a measure on Z×Z,

such that

ν̃({(x, y) : δ(x, y) ≥ ε}) ≤ ε .

We let ν1 ∈ M(µ, φ∗µ) be the image measure of µ by x 7→ (x, φ(x)) and ν2 ∈ M(φ′∗µ
′, µ′)

be the image measure of µ′ by x′ 7→ (φ′(x′), x′). Then the coupling ν = ν1ν̃ν2 obviously
satisfies ν(Rc) = ν̃({(x, y) : δ(x, y) ≥ ε}) ≤ ε (hereRc is the complementary set ofR).

Conversely, assume given R ∈ Cc(X,X ′) and ν ∈ M(µ, µ′) as in the right-hand side of
(23) for the value ε. As in [9] we endow X tX ′ with a metric δ that is compatible with d, d′,
i.e. its restrictions toX andX ′ coincide with d, d′, and such that δ(x, x′) = εwhenever xRx′.
To do this, we set for every x ∈ X,x′ ∈ X ′

δ(x, x′) = inf{d(x, y) + ε+ d′(y′, x′) : yRy′} .

The only non-trivial point to show is the triangular inequality, and we prove only the
hardest case, the others being symmetric or left as an exercise. Let x, y ∈ X and x′ ∈ X ′,
and consider zRz′, tRt′. Since by definition |d(z, t)− d′(z′, t′)| ≤ 2ε we estimate

(d(x, z) + ε+ d′(z′, x′)) + (d(y, t) + ε+ d′(t′, x′))

≥ (d(x, z) + d(z, t) + d(y, t)) + (d′(z′, x′) + d′(t′, x′)− d′(z′, t′))
≥ d(x, y) + 0 ,

which is obtained by two applications of the triangular inequality in X and X ′. Taking the
infimum over (z, z′), (t, t′) allows us to conclude that d(x, y) = δ(x, y) ≤ δ(x, x′) + δ(x′, y).

Now ν induces a coupling ν̃ on the disjoint union X t X ′ between i∗µ and i′∗µ
′, where

i, i′ are the canonical injections X → X tX ′ and X ′ → X tX ′. Now obviously for every
a > 1

ν̃({(x, x′) : δ(x, x′) ≥ aε}) ≤ ν(Rc) ≤ ε ,

so that δP (i∗µ, i
′
∗µ
′) ≤ ε. Hence the result.

We are now ready to prove that dGHP is indeed a distance. Symmetry is obvious, as well
as dGHP(X,X) = 0.
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Separation. Let X = [X, d, µ],X′ = [X ′, d′, µ′] ∈ Mw, with dGHP(X,X′) = 0. Then
for every n ≥ 1 we can find Rn ∈ Cc(X,X ′) and νn ∈ M(µ, µ′) with disRn ≤ 2−n and
νn(Rcn) ≤ 2−n.

Endow the product spaceX ×X ′with the distance δ((x, x′), (y, y′)) = max(d(x, y), d′(x′, y′)).
Then (X ×X ′, δ) is a compact metric space, so that the set of compact subsets of X ×X ′,
endowed with the Hausdorff distance δH , is compact [9, Theorem 7.3.8]. Therefore,
(Rn, n ≥ 1) converges up to extraction to some compact R. It is immediate to check
that the latter is an element of Cc(X,X ′), with disR = 0, and this implies that R is the
graph of a bijective isometry h : X → X ′.

On the other hand, since M(µ, µ′) is compact for the weak topology, the couplings
(νn, n ≥ 1) converge weakly, up to re-extracting, to some ν ∈ M(µ, µ′). Since Rn
converges to R for the distance δH , it holds that for every ε > 0, Rn ⊆ R

ε
= {(x, x′) :

inf(y,y′)∈R δ((x, x
′), (y, y′)) ≤ ε} for every n large enough. For such n, we have

νn(Rε) ≥ νn(Rn) ≥ 1 − 2−n, and by well-known properties of weak convergence of
probability measures, since Rε is closed, this entails that ν(Rε) ≥ lim sup νn(Rε) = 1.
Letting ε → 0 shows that ν(R) = 1, and we conclude that ν is supported on the graph of
the isometry h. Thus, for every measurable g : X ′ → R+,∫
X

g(h(x))µ(dx) =

∫
X×X′

g(h(x))ν(dx,dx′) =

∫
X×X′

g(x′)ν(dx,dx′) =

∫
X′
g(x′)µ′(dx′) ,

so µ′ = h∗µ. Since X ′ = h(X), we obtain X = X′.

Triangular inequality. Let X = [X, d, µ],X′ = [X ′, d′, µ′],X′′ = [X ′′, d′′, µ′′] ∈ Mw,
and let us assume dGHP(X,X′) < ε1 and dGHP(X′,X′′) < ε2. We wish to show that
dGHP(X,X′′) ≤ ε1 + ε2. By Proposition 6, we can find R1 ∈ Cc(X,X ′),R2 ∈ Cc(X ′, X ′′)
and ν1 ∈M(µ, µ′), ν2 ∈M(µ′, µ′′) such that disRi ≤ 2εi and νi(Rci ) ≤ εi, i ∈ {1, 2}.

Let ν3 = ν1ν2 and define a correspondenceR3 ∈ C(X,X ′′) by xR3x
′′ if and only if there

exists x′ ∈ X ′ such that xR1x
′ and x′R2x

′′, that is R3 is the image by the (continuous)
canonical projection X ×X ′ ×X ′′ → X ×X ′ of the compact set (R1 ×X ′′) ∩ (X ×R2),
and hence is compact. To evaluate the distortion, let xR1x

′, x′R2x
′′ and yR1y

′, y′R2y
′′ and

write

|d(x, y)− d′′(x′′, y′′)| ≤ |d(x, y)− d′(x′, y′)|+ |d′(x′, y′)− d′′(x′′, y′′)| ≤ 2(ε1 + ε2) ,

so that disR3 ≤ 2(ε1 + ε2).

Also note that 1(R3)c(x, x
′′) ≤ 1Rc1(x, x′) + 1Rc2(x′, x′′) for every (x, x′, x′′) ∈ X ×X ′ ×X ′′.

Indeed, if (x, x′′) /∈ R3, then for all x′ ∈ X ′, either (x, x′) /∈ R1 or (x′, x′′) /∈ R2. We
deduce

ν3(Rc3) ≤
∫
X×X′×X′′

µ(dx)Q1(x,dx′)Q2(x′,dx′′)1Rc1(x, x′)

+

∫
X×X′×X′′

µ(dx)Q1(x, dx′)Q2(x′,dx′′)1Rc2(x′, x′′)

= ν1(Rc1) + ν2(Rc2) ≤ ε1 + ε2 .

This is the wanted result, concluding the proof of Theorem 6.
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6.3. Relation with other metrics

It turns out that the topology determined by dGHP has already been considered by [17,
19], where a different distance was introduced. Note that in [17], the authors restricted their
attention to compact spaces which are R-trees, but all of their results up to Theorem 2.5 in
this reference can be rewritten for the space Mw without any change.

An ε-isometry from X to X ′ is a mapping f : X → X ′ such that (f(X))ε = X ′ (we say
that f(X) is an ε-net in X ′) and for every x, y ∈ X,

|d(x, y)− d′(f(x), f(y))| ≤ ε .

We say that X = [X, d, µ],X′ = [X ′, d′, µ′] ∈ Mw are ε-close if there exist two measur-
able ε-isometries f : X → X ′ and g : X ′ → X such that d′P (f∗µ, µ

′) ∨ dP (g∗µ
′, µ) ≤ ε.

Obviously, being ε-close is indeed an isometry class property and does not depend on the
choice of representatives.

We define ∆GHP(X,X′) as the infimal ε such that X,X′ are ε-close. This does not define
a true distance, as the triangle inequality is satisfied only up to a factor of 2. This quasi-
distance is however separated and thus sufficient to define a separated topology on Mw. It is
also fully discussed in [17], building on metrization theorems for uniform spaces [6], how to
build a true distance using ∆GHP, which is yet different from dGHP.

P 7. – It holds that 3−1∆GHP ≤ dGHP ≤ 2∆GHP.

Proof. – Assume that dGHP(X,X′) < ε, and let R, ν be a correspondence and a cou-
pling between X and X′ such that disR ≤ 2ε and ν(R) ≥ 1 − ε. We build a measurable
3ε-isometry f : X → X ′ out of R, by taking {x1, . . . , xN} a minimal ε-net in X , choosing
for every i some x′i such that xiRx′i, and finally defining f(Bi) = {x′i} where
Bi = B(xi, ε)\

⋃
1≤j≤i−1B(xj , ε). Then the image measure ν̃ of ν by (x, x′) 7→ (f(x), x′) is

a coupling between f∗µ and µ′. Moreover, from the way f is constructed, if d′(f(x), x′) > 3ε

then (x, x′) /∈ R, so that ν̃{(x′, y′) : d′(x′, y′) > 3ε} ≤ ν(Rc) ≤ ε. Thus d′P (f∗µ, µ
′) ≤ 3ε,

and by a symmetrical argument we conclude that X and X′ are 3ε-close.
Conversely assume given f : X → X ′ an ε-isometry with d′P (f∗µ, µ

′) ≤ ε. Define a
correspondence betweenX andX ′ by xRx′ if d′(x′, f(x)) ≤ ε. Its distortion is estimated as
follows:

|d(x, y)− d′(x′, y′)|
≤ |d(x, y)− d(f(x), f(y))|+ |d(f(x), f(y))− d(f(x), y′)|+ |d(f(x), y′)− d(x′, y′)|,

which is less than 4εwhenever xRx′, yRy′. We take the closure ofR, which has same distor-
tion, and still call it R. Take a coupling ν̃ between f∗µ and µ′ with
ν̃{(x′, y′) : d′(x′, y′) ≥ ε} ≤ ε and let ν1 be the image measure of µ by x 7→ (x, f(x)). Then
ν = ν1ν̃ satisfies ν(R) ≥ 1− ε. We conclude that dGHP(X,X′) ≤ 2ε.

As a consequence of this and [17, Lemma 2.3], we obtain that the metric properties of
Evans and Winter’s distance are the same as those of dGHP. In particular:

P 8. – (i) The metric space (Mw, dGHP) is separable and complete.
(ii) A subset A of Mw is relatively compact if and only if the subset {[X, d] : [X, d, µ] ∈ A}

is relatively compact in (M, dGH).
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6.4. Marked topologies

In this section we introduce a marked variant of the Gromov-Hausdorff topology.

A k-marked metric space is a triple (X, d, (C1, . . . , Ck)) where (X, d) is a compact
metric space and C1, . . . , Ck are compact subsets of X. The isometry classes of marked
spaces [X, d, (C1, . . . , Ck)] are defined in the obvious way, and their set is denoted by M∗k.
We let, with obvious notations,

dkGH(X,X′) = inf
φ,φ′

Å
δH(φ(X), φ′(X ′)) ∨ max

1≤i≤k
δH(φ(Ci), φ

′(C ′i))

ã
,

the infimum being taken over all isometric embeddings φ, φ′ of X,X′ into a common metric
space (Z, δ).

The following statement is a straightforward generalization of the classical results of
Proposition 5, and its proof is left as an exercise to the reader.

P 9. – (i) The function dkGH is a distance on M∗k, which is alternatively
described by

dkGH(X,X′) =
1

2
inf
R

disR ,

the infimum being taken over correspondences R ∈ Cc(X,X ′) such that
R∩ (Ci × C ′i) ∈ C(Ci, C ′i).

(ii) The metric space (M∗k, dkGH) is separable and complete.

(iii) A subset A ⊆M∗k is relatively compact if and only if {[X, d] : [X, d, (C1, . . . , Ck)] ∈ A}
is relatively compact in (M, dGH).

When C1, . . . , Ck are singletons, we write for notational convenience (X, d,x) instead
of (X, d, ({x1}, . . . , {xk})). The reader will easily be convinced that the subspace of such
marked spaces is closed in M∗k.

6.5. Randomly marked spaces

We now introduce random marks on metric spaces. If X = [X, d, µ] ∈ Mw, we can con-
sider an i.i.d. sequence (U1, . . . , Uk) which is µ-distributed inX, and we want to consider the
isometry class of [X, d, (U1, . . . , Uk)] as a random variable in M∗k. We also wish to consider
randomly marked versions of spaces that are themselves random. To do this implies that we
check a couple of measurability issues. We introduce for each k a kernel from Mw to M∗k,
defined as follows:

(24) mk(X,A) =

∫
Xk

µ⊗k(dx)1A([X, d,x]) , X = [X, d, µ] ∈Mw,A ∈ B(M∗k) .

Note that the integral makes sense as the function Xk → M∗k which maps x to [X, d,x] is
obviously continuous, so that x 7→ 1A([X, d,x]) is measurable by composition. Also notice
that it is independent of the particular choice of the representative (X, d, µ) ∈ X, and hence
is unambiguous.

L 13. – The formula (24) defines a Markov kernel.
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Proof. – It is obvious from the definition that for every X, the function A 7→ mk(X,A)

defines a Borel measure on M∗k.

Now let A be closed in M∗k. We show X 7→ mk(X,A) is upper-semicontinuous. Taking
ε > 0, for any X′ ∈ Mw with dGHP(X,X′) < ε, and with obvious notations, we can find
R ∈ Cc(X,X ′) and ν ∈M(µ, µ′) such that ν(R) > 1− ε and disR < 2ε. We write∫

Xk
µ⊗k(dx) (1− 1Aε([X, d,x])) =

∫
(X×X′)k

ν⊗k(dx,dx′) (1− 1Aε([X, d,x]))

≤ 1− (1− ε)k +

∫
(X×X′)k

ν⊗k(dx,dx′)1{xiRx′i,1≤i≤k} (1− 1Aε([X, d,x]))

≤ 1− (1− ε)k +

∫
(X′)k

d(µ′)⊗k(x′) (1− 1A([X ′, d′,x′])) ,

where we used the fact that ν⊗k({(x,x′) : xiRx′i, 1 ≤ i ≤ k}) ≥ (1− ε)k and that whenever
the latter event occurs, it holds that dkGH([X, d,x], [X ′, d′,x′]) < ε. Since Aε decreases to A

as ε ↓ 0 we see that the left-hand side can be made arbitrarily close to 1−mk(X,A) provided ε
is sufficiently small. Therefore

lim sup
X′→X

mk(X′,A) ≤ mk(X,A) ,

as claimed. We conclude by a monotone class argument that mk(·,A) is measurable for all
Borel A ⊆M∗k.

A random variable with law mk(X, ·) can be considered as the rigorous definition of the
space X randomly marked with k independent µ-chosen points. If M(dX) is a distribution
on Mw, a random variable with law M(dX)mk(X, ·) is interpreted as a weighted space chosen
according to M, and then marked randomly using the weight.

A key property of randomly marked spaces is the following. If X ∈ Mw, we let Xk be
the canonical random variable with law mk(X, ·). A similar notation holds if X is a random
variable with values in Mw.

P 10. – Let (Xn, n ≥ 1) be random variables in Mw converging to X in dis-
tribution. Then the randomly marked spaces Xk

n converge in distribution towards Xk, for the
topology of M∗k.

Proof. – Using the Skorokhod representation theorem, we may assume that the
probability space (Ω,F , P ) on which the random variables are defined is such that the
convergence Xn → X holds a.s. Now, we have from the proof of Lemma 13 that mk(·,A) is
upper-semicontinuous for every closed A ⊆M∗k. By the reversed Fatou lemma this gives

lim sup
n→∞

E[mk(Xn,A)] ≤ E[mk(X,A)] ,

which says that lim supP (Xk
n ∈ A) ≤ P (Xk ∈ A), and the conclusion follows from a well-

known characterization of weak convergence.

6.6. Three lemmas

We end this section with key lemmas to the proof of Theorem 3.
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6.6.1. Diffuse measures

L 14. – Let [Xn, dn, µn], n ≥ 1 converge in Mw towards [X, d, µ]. Assume that

lim
ε↓0

lim inf
n→∞

∫
Xn

µn(dx)µn(B(x, ε)) = 0 .

Then µ is a diffuse measure.

Proof. – From the proof of Lemma 13, we know that if A is an open set in M∗2, then
X 7→ m2(X,A) is lower-semicontinuous from Mw to M∗2. Now write∫

Xn

µn(dx)µn(B(x, ε)) =

∫
X2
n

µ⊗2
n (dx, dy)1{dn(x,y)<ε} = m2(Xn,A) ,

where A = {X′ = [X ′, d′, (x′, y′)] ∈M∗2 : d′(x′, y′) < ε} is open. Therefore, it holds that

lim inf
n→∞

∫
Xn

µn(dx)µn(B(x, ε)) ≥
∫
X

µ(dx)µ(B(x, ε)) .

Letting ε→ 0 and using the hypothesis give the result.

6.6.2. Support

L 15. – Let [Xn, dn, µn], n ≥ 1 be a sequence converging to [X, d, µ] in Mw. Let
Yn ⊆ Xn be εn-dense in Xn, for some εn → 0 (i.e. every point of Xn is at distance at most εn
of a point of Yn). Assume that for every ε > 0,

lim sup
n→∞

inf
x∈Yn

µn(B(x, ε)) > 0 .

Then suppµ = X.

Proof. – Take x ∈ X and ε > 0. We must show that µ(B(x, ε)) > 0. To this end take
compact correspondences Rn between Xn, X with distortion going to 0, and couplings νn
between µn and µ with νn(Rn)→ 1. Let xn be such that xnRnx and x′n ∈ Yn be at distance
≤ εn from xn. Then

µ(B(x, ε)) =

∫
X

µ(dy)1{d(x,y)<ε} ≥
∫
Xn×X

νn(dyn,dy)1{d(x,y)<ε} .

Now take n large enough so that disRn < ε/2 − εn. Then dn(x′n, yn) < ε/2 implies
d(x, y) < ε as soon as ynRny. Therefore the last integral is greater than or equal to∫

Rn
νn(dyn,dy)1{dn(x′n,yn)<ε/2} ≥

∫
Xn×X

νn(dyn,dy)1{dn(x′n,yn)<ε/2} − νn(Rcn)

= µn(B(x′n, ε/2))− νn(Rcn) .

This is bounded below by infx∈Yn µn(B(x, ε/2)) − νn(Rcn), which has positive lim sup as
n→∞. Hence the result.
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6.6.3. D-median points in geodesic metric spaces. – Since compact geodesic metric spaces
form a closed subset PM of (M, dGH) ([9, Thorem 7.5.1]), it is immediate that the set PMw

of spaces [X, d, µ] ∈ Mw for which [X, d] is a geodesic metric space is closed as well, and a
similar statement holds for k-pointed geodesic spaces, whose set is denoted by PM∗k.

Let (X, d) be a compact geodesic metric space, and let x, y ∈ X andD ∈ (−d(x, y), d(x, y)).
A point z ∈ X is called a D-median point between x and y if d(x, z) − d(y, z) = D. Note
that the set medDxy(X) of such points is compact and separates the space X into two open
subsets, one containing x and the other y, since every path c : [0, 1]→ X from x to y is such
that d(c(t), x) − d(c(t), y) ranges from −d(x, y) to d(x, y) continuously. We also say that z
is on a δ-quasi geodesic from x to y if d(x, z) + d(y, z) ≤ d(x, y) + δ. We let qgδxy(X) be the
set of such points, and medqgD,δxy (X) = medDxy(X) ∩ qgδxy(X).

P 11. – Let [Xn, dn, (xn, yn)] ∈ PM∗2 be converging to [X, d, (x, y)], and let
also Dn ∈ (−dn(xn, yn), dn(xn, yn)) be converging to D ∈ (−d(x, y), d(x, y)). We assume
that for every ε > 0, we can find δ > 0 such that,

lim sup
n→∞

diam
Ä
medqgDn,δxnyn(Xn)

ä
< ε .

Then there exists a unique element of medDxy(X) which is on a geodesic path from x to y, i.e.
medqgD,0xy (X) is a singleton.

Proof. – Assume that there are two possibly different points z, z′ ∈ medDxy(X) that be-
long to some geodesic path between x and y. Choose arbitrarily such a path γ = γxy going
through z and let ε > 0. Let ε > δ > 0 be as in the hypothesis for this value of ε, and let
0 = t0 < t1 < · · · < tK = d(x, y) be such that d(uk, uk+1) ≤ δ/7 where uk = γ(tk). Let
Rn be a correspondence between Xn and X such that xnRnx and ynRny, and disRn → 0

as n→∞. We may assume that n is large enough so that disRn ≤ δ/7. Choose arbitrarily
uknRnuk and let γn be the concatenation of arbitrarily chosen geodesic paths between ukn and
uk+1
n for 0 ≤ k ≤ K − 1.

Take a point v on γn. Then for some k, v lies on a geodesic from ukn to uk+1
n . Then

dn(v, xn) ≤ dn(v, ukn) + dn(ukn, xn)

≤ dn(uk+1
n , ukn) + dn(ukn, xn)

≤ d(uk+1, uk) + d(uk, x) + 2disRn
≤ d(uk, x) + 2disRn + δ/7 ≤ d(uk, x) + 3δ/7 ,

so that by a symmetric inequality involving yn and by summing,

dn(v, xn) + dn(v, yn) ≤ d(x, y) + 6δ/7 ≤ dn(xn, yn) + δ .

Therefore the image of γn is included in qgδxnyn(Xn). Let zn be any element of medDnxnyn(Xn)

that belongs to γn, and let z̃n ∈ X such that znRnz̃n.

Now doing the same with a geodesic path γ′ from x to y passing through z′, we can con-
struct elements z′nRnz̃′n such that z′n ∈ medDnxnyn(Xn) ∩ qgδxnyn(Xn). Hence dn(zn, z

′
n) ≤ ε

for large n by hypothesis, and thus d(z̃n, z̃
′
n) ≤ ε+ disRn.
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Letting n go to infinity, possibly through a subsequence, we obtain that z̃n → z̃(ε) and
z̃′n → z̃′(ε), where necessarily z̃(ε), z̃′(ε) ∈ medDxy(X) by passing to the limit in

|d(z̃n, x)− d(z̃n, y)−Dn| ≤ 2disRn ,

and similarly for z̃′n. By a similar argument, since zn ∈ γn we have z̃(ε) ∈ γδ, the
δ-neighborhood of the image of γ. Since γδ decreases to γ as δ ↓ 0 and medDxy(X) is compact,
letting ε (and δ) decrease to 0, z̃(ε) converges to the unique element of γ ∩medDxy(X), which
is z. Similarly, z̃′(ε) can be made as close to z′ as wanted. But since d(z̃n, z̃

′
n) ≤ ε+ disRn

we get that d(z̃(ε), z̃′(ε)) ≤ ε, and this entails z = z′.

7. Metric aspects of random quadrangulations

We now embark in the proof of Theorems 2 and 3. We start with a preliminary remark.
For technical reasons, the set PM and its weighted and marked analogs are somewhat eas-
ier to work with for our purposes. Of course, the main space of interest, namely Xq for a
quadrangulation q, is not a geodesic metric space. However, its dGH-distance to PM is at
most 1. Indeed, take copies of the unit segment (with the usual metric) {xe : 0 ≤ x ≤ 1}
indexed by an orientation E1/2(q) of the edges of q, and identify the points 0e for which
e− coincide, and the points 1e for which e+ coincide. The quotient metric graph [9, Chap-
ter 3.2.2] is a geodesic metric space whose restriction to the points 0e, e ∈ E1/2(q) is isometric
to (V (q), dq), and obviously its Gromov-Hausdorff distance to the latter is less than 1. Thus
any limit in distribution of a−1/4Xq must be at 0 distance from PM with probability 1, hence
belong to PM. In passing this proves property 1 in Theorem 3. For these reasons, we work
with the metric graph constructed above, which we still call Xq, and restrict our attention to
geodesic metric spaces from now on.

7.1. Proof of Theorem 2

For X ∈ M and ε > 0, we let N (X, ε) be the minimal number of open balls of radius
≤ ε that are needed to cover X. For any sequence N = (Nk, k ≥ 1) of positive integers, we
introduce the set

KN = {Xw = [X, d, µ] ∈ PMw : N ([X, d], 2−k) ≤ Nk ∀k ≥ 1} .

By Propositions 8 and 5 and [9, Exercise 7.4.14], the sets KN are (relatively) compact. By
Prokhorov’s theorem, it is thus sufficient to show that for every ε > 0, there is a choice of
N,∆ for which

Q(β/a)
g

Ä¶
a−1/4Xw

q ∈ KN ,∆
−1 ≤ a−1Vq ≤ ∆

©ä
≥ 1− ε .

To do so, we use the results of Sections 2–4 in the case k = 1. We also separate the case g ≥ 1

and g = 0, starting with the former. Consider (q, x) ∈ Qg,1 and let (m, [l]) = Ψg,1(q, x)

and (m, l, t∗) = ‹Ψg,1(q, x). Recall also the definition (11) of l, and write

ω(h, ε) = sup
x,y∈J,|x−y|≤ε

|h(x)− h(y)|

for the modulus of continuity of a function h defined on an interval J .
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L 16. – For R > 4,

(25) {N (Xq, R) > N + 1} ⊂
{

2ω
(
l,
⌈ τl
N

⌉)
≥ R/2

}
.

Proof. – Since m has only one face of degree τl, all the half-edges of m are of the form
e(j) = ϕjm(e∗(0)) for some integer j ∈ [0, τl) with the notations of Section 3.3. Split the
lifetime interval [0, τl] of l into N disjoint parts I1, . . . , IN of lengths at most dτl/Ne. By
Lemma 3 and the definition (10) of l, if ω(l, dτl/Ne) < R/2 − 1, then all the vertices of m

of the form e(j)− for j ∈ Ii, and considered as vertices of q, must be within dq-distance at
most R, for each 1 ≤ i ≤ N . Since all vertices of q are contained in this way except the
distinguished vertex x, adding yet another ball to cover x yields (25).

We now consider a marked version of Q
(β)
g , as the probability on Qg,1 defined by

Q(β)
g (dq)µq(dx) =

Qg,1(V −1
q e−βVq d(q, x))

Qg,1(V −1
q e−βVq)

.

Using Section 4, its image under ‹Ψg,1 can be written

LM
(β)
g,1 :=

LMg,1

Ä
(τl/2 + χ(g))

−1
exp (−βτl/2) d(m, l, t∗)

ä
LMg,1

Ä
(τl/2 + χ(g))

−1
exp (−βτl/2)

ä .

Now, Theorem 5 (and elementary bounds to get rid of the term χ(g)) entail that the law of
ξa(m, l, t∗) under LM

(β/a)
g,1 converges weakly towards

(26) CLM
(β)
g,1 :=

CLMg,1

(
τ−1
l exp (−βτl) d(m, l, t∗)

)
CLMg,1

(
τ−1
l exp (−βτl)

) .

By the continuous mapping theorem, the distribution of (ψa(le), e ∈ E(m)) under LM
(β/a)
g,1

jointly converges towards the law of the processes (le, e ∈ E(m)) (12) under CLM
(β)
g,1 , and thus

the law of ψa(l) under LM
(β/a)
g,1 converges towards the law of l (11) under CLM

(β)
g,1 . Combined

with the fact from Lemma 16 that for a large enough,¶
N (a−1/4Xq, δ) > N + 1

©
⊂
{

2ω
(
ψa(l), (2a)−1

⌈ τl
N

⌉)
≥ δ/2

}
,

and by usual relative compactness criteria derived from the Ascoli-Arzela theorem [5, Theo-
rem 8.2], we see that for every k ≥ 1, there exists Nk such that for every a,
Q

(β/a)
g (N (a−1/4Xq, 2

−k) > Nk) ≤ ε2−k. This entails Q
(β/a)
g (a−1/4Xq ∈ KN ) ≥ 1 − ε for

this choice of N = (Nk, k ≥ 1). We see as well that the random variables Vq/a are tight in
(0,∞) as they converge in distribution towards the law of τl under CLM

(β)
g,1 .

The case g = 0 is similar but simpler, the role of CLM0,1 being performed by the Itô mea-
sure of the Brownian snake, and taking into account the factor V 2

q appearing in the definition

of Q
(β)
0 , we must replace the limit in law of ψa(l) by the law of z under

CLM0,1(τ exp(−βτ) d(c, z))

CLM0,1(τ exp(−βτ))
.

One will notice that the denominator would diverge if it were not for the corrective term
τ in front of the exponential, since CLM0,1(τ ∈ dt) = 4(2πt3)−1/2dt. The statement of
Lemma 16 remains true without change, and we conclude in the same way.
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7.2. Proof of Theorem 3

Property 1 of this theorem has been discussed at the beginning of this section. Let us set
things up for Property 2. We give the proofs for g ≥ 1, the case g = 0 being similar and
easier.

7.2.1. Diffuseness of µ. – By Theorem 2, there exists an increasing sequence (an, n ≥ 1)

along which the distribution under Q
(β/a)
g of (a−1/4Xw

q , a
−1Vq) converges to a limit S

(β)
g .

From now on, we will always suppose that a is taken along this sequence. From this and
the discussion above (26), we obtain that the laws of (a−1/4Xw

q , a
−1Vq, ξ

a(‹Ψg,1(q, x)))

under Q
(β/a)
g (dq)µq(dx) form a relatively compact family of probability distributions on

PMw × (0,∞)×Cg,1. Up to a further extraction, and by a use of Skorokhod’s embedding
theorem, we may and will assume that we are working on a probability space (Ω,F , P )

under which are defined random variables (qa, xa) with respective laws Q
(β/a)
g (dq)µq(dx)

such that

1. letting Xw
a = [Xa, da, µa] := Xw

qa , we have a−1/4Xw
a → Xw = [X, d, µ], a random

variable with values in PMw (and we let Xa = [Xa, da]),
2. letting (ma, [la]) = Ψg,1(qa, xa) and (ma, la, t

∗
a) = ‹Ψg,1(qa, xa), then

ξa(ma, la, t
∗
a)→ (m, l, t∗), a random variable with law CLM

(β)
g,1 ,

these convergences holding almost-surely as a → ∞ (along the proper sequence). We will
adopt the notation la = (wea, c

e
a, z

e
a, e ∈ E(ma)), lea = zea + wea ◦ cea, let τ ea be the duration of

cea, and let la be the process defined as in (11) or (10). Note that (2a)−1τla and a−1Vqa both
converge to τl as a → ∞, so the random variable (Xw, τl) has law S

(β)
g . By the previous

convergences, the processes ψa(lea) converge to le, so that ψa(la) converges a.s. as a → ∞
towards the concatenated process l associated with (m, l, t∗).

L 17. – We have∫
a−1/4Xa

µa(dx)µa(B(x, ε))

≤
Å

4a

τla

ã2 ∫
[0,τla/(2a))2

dudv1{|ψa(la)(b2auc/(2a))−ψa(la)(b2avc/(2a))|<ε/ς} + 4τ−1
la

.

Proof. – With each integer time i corresponds the exploration of a corner
e(i) = ϕima

(e∗(0)) of ma, and each corner of ma is explored in this way because ma has only
one face. Considering the vertices e(i)− as vertices of qa, we have
da(e(i)−, e(j)−) ≥ |la(i)− la(j)| by Lemma 3. From this, it follows that∑

x,y∈V (qa)

1{da(x,y)<a1/4ε} ≤
∫

[0,τla )2

dudv1{|la(buc)−la(bvc)|<a1/4ε} + 2(τla/2 + χ(g)) ,

where the last term amounts from the fact that the selected vertex xa is the only vertex of qa
not corresponding to a vertex of ma, and a rough upper bound. We conclude by dividing by
(τla/2 + χ(g))2 = V 2

qa and a linear change of variables.

L 18. – Almost-surely, the level sets {t ∈ [0, τl) : l(t) = x} have zero Lebesgue
measure for every x ∈ R.
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Proof. – From the construction of l as the concatenation of the paths le, and given m,
it suffices to show the same property for the processes le = ze + we ◦ ce of (12). Under
CLMg,1, recall that conditionally on (we, ce, e ∈ E(m)), (ze(t), 0 ≤ t ≤ τ e) is a Gaussian
process with covariance Cov (ze(s), ze(t)) = infs∧t≤u≤s∨t c

e(u), by definitions of snakes.
Therefore, under this conditioned measure, the laws of pairs (le(s), le(t)) have densities, and
consequently, for fixed s, t,

CLMg,1({le(s) = le(t), τ e ≥ s ∨ t}) = 0 ,

and the same is true for CLM
(β)
g,1 instead of CLMg,1. By Fubini’s theorem, and with a slight

abuse of notation, this implies that for any T > 0, if U, V are uniform, independent random
variables on [0, T ] independent of (m, l, t∗) then it holds that

CLM
(β)
g,1({le(U) = le(V ), τ e ≥ T}) = 0 .

But obviously, if some level set {le = x} had positive Lebesgue measure with positive prob-
ability, then the latter probability would be positive for some T > 0.

We now conclude that µ is diffuse. Indeed, by the convergence of ψa(la) to l and of
τla/(2a) to τl ∈ (0,∞), we obtain from Lemma 17 and dominated convergence that

lim inf
a→∞

∫
a−1/4Xa

µa(dx)µa(B(x, ε)) ≤ 16

τ2
l

∫
[0,τl)2

dudv1{|l(u)−l(v)|≤ε} .

The last integral decreases to
∫

[0,τl)2 dudv1{l(u)=l(v)} as ε→ 0, and this is 0 by Lemma 18.
Lemma 14 allows us to conclude.

7.2.2. Support of µ. – The setting is the same as in the previous section. For e ∈ E(ma) we
let x(e) = e+ if dma

(e+, V (m≥2
a )) > dma

(e−, V (m≥2
a )) and x(e) = e− otherwise (intui-

tively, it selects the vertex incident to e that is the furthest away from m≥2). For u ∈ [0, τla)

we let

〈u〉a =

{
buc if x(e(buc)) = e(buc)−

due if x(e(buc)) = e(buc)+.

L 19. – The image measure of 2−1du1[0,τla )(u) by u 7→ e(〈u〉a)− is the measure on
V (ma) = V (qa) \ {xa} assigning mass 1 on every vertex of V (ma) \V (ma), wherema is seen
as a subgraph of ma, and assigning mass degma(x)/2 to every vertex x ∈ V (ma), the latter
denoting the degree in the graph ma.

Proof. – Assume x is an element of V (ma) \ V (m≥2
a ). Then e(〈u〉a)− = x if and only if

i = buc is either the first integer such that e(i)+ = x or the last integer such that e(i)− = x,
corresponding to the two visits of the parent edge of x in the tree rooted on V (m≥2) con-
taining x. The total mass of such u’s is thus 1/2 + 1/2 = 1.

Next, assume that x ∈ V (m≥2
a ) \ V (ma). This time e(〈u〉a)− = x if buc is one of the two

integers i such that e(i) ∈ E(m≥2
a ) and e(i)− = x.

Finally, if x ∈ V (ma) then e(〈u〉a)− = x if buc is an integer i such that e(i) ∈ E(m≥2
a )

and e(i)− = x. There are degma(x) such integers.
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The measure appearing in Lemma 19 is of total mass τla/2, and we let µ̃a be the probabil-
ity measure obtained by renormalizing it by this quantity. Obviously, the Prokhorov distance
in a−1/4Xa between µa and µ̃a vanishes as a → ∞, so that [Xa, a

−1/4da, µ̃a] converges to
the same limit [X, d, µ] as [Xa, a

−1/4da, µa].

L 20. – It holds that for every ε > 0 and a large enough

min
x∈V (qa)\{xa}

µ̃a(Ba−1/4Xa(x, ε))

≥ min
s∈[0,τla/(2a))

2a

τla

∫ τla/(2a)

0

du1{ω(ψa(la),|〈2au〉a−2as|/(2a))≤ε/2} .

Proof. – Let x be a vertex in V (qa) \ {xa}, and let ix be an integer such that e(ix)− = x.
If j is another integer time, then

da(x, e(j)−) ≤ la(j) + la(ix)− 2 min
j∧ix≤u≤j∨ix

la(u) + 2 ≤ 2ω(la, |j − ix|) + 2

by Lemma 3. Thus

(τla/2)µ̃a
Ä
{y ∈ V (qa) : da(x, y) < a1/4ε}

ä
=

1

2

∫ 2τla

0

du1{da(x, e(〈u〉a)−) < a1/4ε}

≥ 1

2

∫ 2τla

0

du1{ω(la, |〈u〉a − ix|) < a1/4ε/2− 1} ,

where we used Lemma 19 in the first step. The result is obtained by taking the infimum over
x and by simple rearrangements.

Since ψa(la) converges uniformly to the continuous limit l, there exists η such that for
every (large enough) a, ω(ψa(la), η) ≤ ε/2. From this, we readily obtain from the last lemma
that

lim sup
a→∞

inf
x∈V (qa)\{xa}

µ̃a(Ba−1/4Xa(x, ε)) ≥ η/2τl > 0 .

Since V (qa)\{xa} is a−1/4-dense in Xa, one concludes by Lemma 15 that µ is of full support.

7.2.3. Uniqueness of geodesics. – We now specialize the results of Section 4 to the case k = 2,
starting with some general remarks. A delay D = [d1, d2] ∈ D(q, (x1, x2)) is identified with
the quantity d1 − d2, which is an integer in the interval (−dq(x1, x2), dq(x1, x2)) such that
D + dq(x1, x2) is even.

Let (q, (x1, x2), D) ∈ Qg,2 and (m, [l]) = Ψg,2(q, (x1, x2), D). Consider any chain in q

from x1 to x2 with length dq(x1, x2). There must be a (unique) vertex x in this chain that be-
longs to V1∩V2 (where Vi = Vi(q,x, D)), i.e. for which dq(x1, x)− dq(x2, x) = D. We claim
that l(x) = minV1∩V2

l(y). Indeed, we know from Theorem 4 that dq(y, x1) = l(y) − l(x1)

and dq(y, x2) = l(y) − l(x2) for y ∈ V1 ∩ V2, and since dq(x, x1) + dq(x, x2) = dq(x1, x2)

since x is on a geodesic, there must be equality in the triangle inequality
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2l(y) − l(x1) − l(x2) ≥ dq(x1, x2), and l(x) is indeed minimal. In passing, we have
obtained the formula

dq(x1, x2) = 2 min
e∈f1:e∈f2

l(e)− l(x1)− l(x2)

= 2 min
e∈f1:e∈f2

l(e)−min
e∈f1

l(e)−min
e∈f2

l(e)− 2

= 2 min
e∈f∗:e∈f∗

l(e)− min
e∈f∗

l(e)− min
e∈f∗

l(e)− 2 ,(27)

where f∗ is the face of m incident to its root e∗, and f∗ is the other face. Indeed, with a vertex
in V1∩V2 corresponds a vertex of m incident to both f1 and f2, and such a vertex is the origin
of at least one edge incident to f1 with reversal incident to f2. This gives the first equality,
and the second one follows by symmetry in the indices of the second formula.

For an element (m, l, t∗) ∈ Cg,2, we let f∗ be the face of m incident to e∗, and f∗ be the
other face. Let

ei := ϕi−1
m (e∗) , 1 ≤ i ≤ degm(f∗)

be the list of edges ofm incident to f∗ (this notation should not be confused with the notation
e(i), which denotes edges of m). Besides the process l defined at (10) we will need two other
auxiliary processes. First, let i0 be the first index i such that ei ∈ f∗. Let

e′1 = ϕm(ei0) = σ−1
m (ϕi0−1

m (e∗)) ,

which is incident to f∗ and has the same origin as ei0 , and

e′i = ϕi−1
m (e′1) , 1 ≤ i ≤ degm(f∗) .

We define a process l′ as the concatenation

l′ = le
′
1 . . . l

e′
degm(f∗) .

Next, let w be defined as the concatenation

w = we∗wϕm(e∗) . . . wϕ
degm(e∗)−1
m (e∗) .

We also consider the function defined for 0 ≤ t ≤ τ(w) by Υ(t) = i if∑
0≤j<i rϕjm(e∗)

≤ t <
∑

0≤j≤i rϕjm(e∗)
, and Υ(τ(w)) = degm(f∗)− 1.

When (m, [l]) = Ψg,2(q,x, D) and (m, l, t∗) = Ξg,2(m, [l]) for some (q,x, D) ∈ Qg,2, it
is straightforward, though a little tedious to check formally, that l′ is alternatively described
as the process interpolating linearly between the values

(28) l′(i) = l(ϕim(e′1))− l(e′1) , 0 ≤ i ≤ degm(f∗)− 1 ,

and l′(degm(f∗)) = 0, where
e′1 = σ−1

m ϕj0m(e∗) ,

and where j0 is the first index j such that ϕj0m(e∗) ∈ f∗. One checks in this case that

(29) l(e′1) =

i0−1∑
i=1

l̂ei ,

so that the function
∑i0−1
i=1 l̂ei + l′ reproduces faithfully the labels of half-edges incident to

f∗. Still in this case, the function w reproduces the labels l along the face of m≥2 incident
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to e∗, while Υ(t) records the label of the edge of m on which the edge of m≥2 explored at
time btc projects.

L 21. – Let (q,x, D) ∈ Qg,2 and (m, l, t∗) = ‹Ψg,2(q,x, D). Assume that
min{w(t) : eΥ(t) ∈ f∗} is attained for a unique value im of Υt, such that eim ∈ f∗: Also
assume that for some R > 0,

min{w(t) : eΥ(t) ∈ f∗,Υ(t) 6= im} > min{w(t) : eΥ(t) ∈ f∗}+R/2 .

Then

diam
Ä
medqgD,Rx1x2

(Xq)
ä

≤ 2 max
e∈E

ω (le,diam {i < τ e : we(ce(i)) ≤ inf we +R/2}) +R+ 4 ,

Proof. – Recall that Xq is considered as a geodesic metric space, so that the quantity
medqgD,Rx1x2

makes sense. Assume that x ∈ medqgD,Rx1x2
(Xq). We first argue that there ex-

ists an element of medqgD,Rx1x2
(Xq)∩V (q) at distance at most 1 from x. Indeed, if x /∈ V (q),

then it must stand on an edge of the metric graph Xq that links two vertices y, z. Thus any
geodesic path from x to x1 or x2 must pass through y or z, and by symmetry we may assume
dq(x, x1) = dq(x, y) + dq(y, x1). If we also have dq(x, x2) = dq(x, y) + dq(y, x2) then by
subtracting dq(y, x1) − dq(y, x2) = D and y is the wanted vertex. Otherwise, it holds that
dq(x, x2) = dq(x, z) + dq(z, x2) so that

D = dq(x, x1)− dq(x, x2) = dq(y, x1)− dq(z, x2) + (dq(x, y)− dq(x, z)) .

As edges have length 1, we have dq(x, y) = 1 − dq(x, z) > 0, so the quantity in brackets is
in (−1, 1), and the others are integers, so we must have dq(x, y) = dq(x, z) = 1/2. But since
|dq(z, x2) − dq(y, x2)| = 1, this implies that dq(y, x1) − dq(y, x2) has not the same parity
asD. This contradicts the fact that l1−l2 takes values in 2Z established in Section 2.2. Thus,
we may, and will, assume that x ∈ V (q) up to increasing the diameter by 2.

We next argue that there is a vertex y ∈ V1 ∩ V2 at dq-distance at most R/2 from x. If x
itself is not such a vertex, then it is incident only to edges of Ei(q,x, D) for some i ∈ {1, 2}.
Assume i = 1 by symmetry and note that with the notations of Section 2.2, it holds that
l1(x) = l2(x). Take a chain of edges of q starting from x and ending at x2, along which the
function l decreases, so that this chain is geodesic. It is easy to check that the first element
e of this chain which belongs to E2(q,x, D) is such that y = e− is an element of V1 ∩ V2.
Therefore, the chain from x to y can be extended as well to a geodesic from x to x1. Thus
D = dq(x, x1)−dq(x, x2) = dq(y, x1)−dq(y, x2) and y is an element of medDx1x2

(Xq)∩V (q).
Since x ∈ qgRx1x2

and y is on a geodesic from x to x1 and from x to x2, it is easily computed
that y is another element of qgRx1x2

at distance at most R/2 from x.

Therefore, we may, and will, restrict our attention to x ∈ medqgD,Rx1x2
∩ V1 ∩ V2, up to

increasing the diameter by R + 2. Letting (m, [l]) = Ψg,2(q,x, D), the corresponding
x ∈ V (m) satisfies dq(x, x1) + dq(x, x2) = 2l(x) − l(x1) − l(x2) ≤ dq(x1, x2) + R, and
together with (27) this yields

l(x) ≤ min
V1∩V2

l +R/2 .
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Now since x is incident to f∗ and f∗, we can find a time t with l(x) = w(t), and eΥ(t) is
incident to f∗, and one sees after a moment’s thought that the last inequality can be rewritten
as

l(x) = w(t) ≤ min{w(s) : eΥ(s) ∈ f∗}+R/2 .

These facts imply by hypothesis that Υ(t) = im. Moreover, by Lemma 3, if y is another ver-
tex such as x, we have dq(x, y) ≤ 2ω(leim , |p−p′|)+2, where eim(p)− = x and eim(p′)− = y

with the notations of Section 3.3. Since x and y are incident to f∗ and f∗, we have
we(cep) = l(x)−l(eim(0)) andwe(cep′) = l(y)−l(eim(0)) which must be both≤ minwe+R/2.
Thus the result.

By Theorem 2, along the sequence (an, n ≥ 0), the spaces a−1/4Xw
q under Q

(β/a)
g

converge to [X, d, µ] in distribution, for some limiting [X, d, µ] with law S
(β)
g . To-

gether with Lemma 10, this entails that the marked space [Xq, a
−1/4dq, (x, y)] under

Q
(β/a)
g (dq)µ⊗2

q (x, y) converges to a space [X, d, (x, y)] with law S
(β)
g (dX)µ⊗2(d(x, y)). On

the other hand, the law of ‹Ψg,2(q, (x, y), D) under the law Q
(β/a)
g,2 defined by the formula

Q(β/a)
g (dq)µ⊗2

q (d(x, y))
#D(q,(x,y))(dD)

|D(q, (x, y))|
=

Qg,2
(
V −2
q |D(q, (x, y))|−1e−βVq/a d(q, (x, y), D)

)
Qg,1(V −1

q e−βVq/a)

(recall (13)) equals

LM
(β/a)
g,2 (d(m, l, t∗)) :=

LMg,2

(
(τl/2 + χ(g))−2|D(q, (x, y))|−1e−β(τl/2+χ(g))/a d(m, l, t∗)

)
LMg,1

(
(τl/2 + χ(g))−1e−β(τl/2+χ(g))/a

) .

Here, we take the convention |D(q, (x, y))|−1 = 0 when D(q, (x, y)) is empty. The random
variable |D(q, (x, y))| = (dq(x, y) − 1) ∨ 0 is a continuous function of (m, l, t∗), since (27),
(28) and (29) and the definition of w imply

(30) dq(x, y) = 2 min
t:eΥ(t)∈f∗

w(t)−min l −min l′ −
i0−1∑
i=1

l̂ei − 2 .

We let d denote the latter quantity with the −2 omitted, which can be associated with any
element of Cg,2 (not necessarily in Cmap

g,2 ).

L 22. – The law of ξa(m, l, t∗) under LM
(β/a)
g,2 converges towards the law CLM

(β)
g,2 de-

fined by

CLM
(β)
g,2(d(m, l, t∗)) = 3

CLMg,2

(
τ−2
l d

−1e−βτl d(m, l, t∗)
)

CLMg,1

(
τ−1
l e−βτl

) .

Proof. – Let H be bounded continuous on Cg,2. Let hε be 0 on [0, ε/2], equal to 1 on
[ε,∞) and interpolate linearly in-between. Let Hε(m, l, t

∗) = H(m, l, t∗)hε(d)hε(τl). Then
a straightforward use of Theorem 5 entails that LM

(β/a)
g,2 (Hε ◦ ξa) converges to CLM

(β)
g,2(Hε).

When H is nonnegative, this quantity converges as ε → 0 to CLM
(β)
g,2(H), and in particular

CLM
(β)
g,2 is a sub-probability measure. Thus, by dominated convergence, this last convergence

holds for H not necessarily non-negative.
On the other hand, we know that (τl/2 + χ(g), d) has same law under LM

(β/a)
g,2 as

(Vq, dq(x, y) + 2) under Q
(β/a)
g (dq)µ⊗2

q (d(x, y)). So (a−1(τl/2 + χ(g)), a−1/4d) under

LM
(β/a)
g,2 converges in distribution to (V, d(x, y)) under S

(β)
g (d(X,V))µ⊗2(d(x, y)) (here we
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used Proposition 10 for the convergence of the distance). Since we know that µ is a.s. diffuse,
it holds that d(x, y) > 0 a.s. under the latter measure, entailing the tightness of the variables
a−1/4d under LM

(β/a)
g,2 in (0,∞). Since a−1Vq = a−1(τl/2 + χ(g)) under LM

(β/a)
g,2 are tight

in (0,∞) as well, this entails that for some positive η(ε)→ 0 as ε→ 0,∣∣∣LM
(β/a)
g,2 (H ◦ ξa)− LM

(β/a)
g,2 (Hε ◦ ξa)

∣∣∣ ≤ ‖H‖∞η(ε) .

By first taking ε small enough and then letting a→∞, we conclude that
LM

(β/a)
g,2 (H ◦ ξa)→ CLM

(β)
g,2(H), as wanted.

As in the beginning of Section 7.2.1, we make the assumption that we are working with
a probability space (Ω,F , P ) under which are defined random variables (qa, (xa, ya), Da)

with respective laws Q
(β/a)
g (dq)µ⊗2

q (d(x, y))|D(q, (x, y))|−1#D(q,(x,y))(dD), such that,
along an, n ≥ 1,

1. the marked spaces [Xa, a
−1/4da, (xa, ya)] converge a.s. in PM∗2 to [X, d, (x, y)] with law

π1
∗S

(β)
g (dX)m2(X,d(x, y)), where π1 : PMw × (0,∞)→ PMw is the first projection,

2. a−1/4Da → D a.s., the latter having uniform law on (−d(x, y), d(x, y)) given d(x, y),
and

3. letting Ψg,2(qa, (xa, ya), Da) = (ma, [la]) and ‹Ψg,2(qa, (xa, ya), Da) = (ma, la, t
∗
a),

we have a.s. ξa(ma, la, t
∗
a)→ (m, l, t∗) where the limit has law CLM

(β)
g,2 .

L 23. – The following events are of full measure under CLMg,2:

– The quantity inf{w(t) : eΥ(t) ∈ f∗} is attained for a unique time t, which is not a jump
time of Υ(t) and is distinct from 0 and τ(w).

– The quantities diam {0 ≤ s ≤ τ e : we(ce(s)) ≤ inf we + δ} for e ∈ E decrease to 0 as
δ ↓ 0.

Proof. – Under the measure CLMg,2 and conditionally on m, r, (ŵe, e ∈ E(m)), the pro-
cesses we are independent Brownian bridges. Since the minimum value attained by a Brow-
nian bridge has a diffuse law, and is attained a.s. once by the path at a time which is neither
the starting nor the ending time of the bridge, the first point is clear.

Now conditionally on m, r, (we, e ∈ E(m)), the paths (ce, ze) are independent Brownian
snakes under CLMg,2. If sem is the (unique) time at which we attains its minimum, then it
follows from standard properties of Brownian motion that ce (the infimum process of ce) at-
tains the value sm at a unique time tm with probability 1. This means that cet < cetm < cet′ for
every t < tm < t′, and by continuity the two bounding terms converge towards the middle
one as t, t′ → tm. Combining this with the continuity ofwe and the fact that the value inf we

is attained only at sem, we obtain the result.

We can now finish the proof of Theorem 3. By the first point in Lemma 23 and the a.s.
convergence of ξa(ma, la, t

∗
a) to (m, l, t∗), we conclude that (ma, la, t

∗
a) satisfies the hypothe-

ses of Lemma 21 for R in the form δa1/4 with δ small enough, and every large enough
a, almost-surely. From the latter lemma and to be able to apply Lemma 11 to the spaces
[Xa, a

−1/4da, (xa, ya)] and the delays Da, it suffices to notice that for every η > 0, there
exists δ ∈ (0, η) such that for every a, e,

diam
Ä
{i < τ ea : wea(cea(i)) ≤ inf wea + a1/4δ/2}

ä
≤ 2aη ,
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as follows from the second point of Lemma 23 and the a.s. uniform convergence of the pro-
cesses φa(wea), ϑa(cea) towards we, ce. Then, taking ε > 0 and choosing η in turn so that
2ςω(ψa(lea), η) + η < ε for every a, e, which is possible by the uniform convergence of ψa(lea)

to le, Lemma 21 implies that

lim sup
a→∞

diam (medqga
−1/4Da,δ
xy (a−1/4Xa)) ≤ ε .

Therefore, Lemma 11 implies that a.s. under

S (β)
g (d(X,V))µ⊗2(d(x, y))dD1[−d(x,y),d(x,y)](D)/2d(x, y) ,

all geodesic paths from x to y pass through a unique D-median point. This shows that a.s.
under the measure S

(β)
g (d(X,V))µ⊗2(d(x, y)), the geodesics from x to y all pass through a

unique D-median point, for Lebesgue-almost every D. Since D-median points form a con-
tinuous parametrization inD ∈ [−d(x, y), d(x, y)] of geodesics from x to y, this implies that
a.s. the geodesic between µ-almost all x and y is unique, hence the result.
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