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REAL SINGULAR DEL PEZZO SURFACES AND
3-FOLDS FIBRED BY RATIONAL CURVES, II

 F CATANESE  F MANGOLTE

A. – Let W → X be a real smooth projective 3-fold fibred by rational curves such that
W (R) is orientable. J. Kollár proved that a connected component N of W (R) is essentially either Seifert
fibred or a connected sum of lens spaces.

Answering three questions of Kollár, we give sharp estimates on the number and the multiplicities
of the Seifert fibres (resp. the number and the torsions of the lens spaces) when X is a geometrically
rational surface.

When N is Seifert fibred over a base orbifold F , our result generalizes Comessatti’s theorem on
smooth real rational surfaces: F cannot be simultaneously orientable and of hyperbolic type. We show
as a surprise that, unlike in Comessatti’s theorem, there are examples where F is non orientable, of
hyperbolic type, and X is minimal.

R. – Soit W → X une variété projective réelle non singulière munie d’une fibration en
courbes rationnelles et telle que W (R) soit orientable. J. Kollár a montré qu’une composante connexe
N de W (R) est essentiellement une variété de Seifert ou une somme connexe d’espaces lenticulaires.

Répondant à trois questions de Kollár, nous donnons une estimation optimale du nombre et des
multiplicités des fibres de Seifert (resp. du nombre et des torsions des espaces lenticulaires) lorsque X

est une surface géométriquement rationnelle.

Lorsque N admet une fibration de Seifert au-dessus d’un orbifold F , nos résultats généralisent le
théorème de Comessatti sur les surfaces rationnelles réelles lisses : F ne peut pas être à la fois orien-
table et de type hyperbolique. Nous montrons, ce qui est une surprise, qu’à la différence du théorème
de Comessatti, il existe des exemples où F est non orientable, de type hyperbolique, et X est minimale.
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532 F. CATANESE AND F. MANGOLTE

Introduction

Given a smooth real projective variety W of dimension n, we consider the topology of a
connected component N of the set W (R) of its real points.

John Nash proved in [12] that any compact connected differentiable manifold N is ob-
tained in this way, and went over to ask whether the same would hold if one assumes W to
be geometrically rational.

However, when W is a surface of negative Kodaira dimension, one is able, after the work
of Comessatti [2] for geometrically rational surfaces, to deduce drastical restrictions for the
topology of N . Namely, if N is orientable, then it is diffeomorphic to a sphere or to a torus:
in other words, N cannot be simultaneously oriented and of hyperbolic type. In this note,
we make a step towards a complete classification of the topological types for N when W is
a rationally connected 3-fold fibred by rational curves (this is one of the higher dimensional
analogues of Comessatti’s theorem).

This study was initiated by János Kollár, in the third paper [8] of a ground-breaking series
of articles applying the minimal model program to the study of the topology of real algebraic
3-folds.

Kollár’s philosophy is that a very important condition in order to obtain restrictions upon
the topological type of W (R) is that W has terminal singularities and KW is Cartier along
W (R).

Kollár proved in particular that ifW is a smooth 3-fold fibred by rational curves (in parti-
cular, W has negative Kodaira dimension) and such that W (R) is orientable, then a con-
nected componentN ofW (R) is essentially a Seifert fibred 3-manifold or the connected sum
of a finite number of lens spaces. Note that in [5, 6] it was shown that conversely all the above
manifolds N do occur for some smooth 3-fold W fibred by rational curves.

WhenW belongs to the subclass of rationally connected 3-folds fibred by rational curves,
Kollár proved some additional restrictions upon N and made three further conjectures. In
our first note [1] we proved two of the optimal estimates that Kollár conjectured to hold. In
the present note we prove the third estimate, which is the most important one since it allows
us to conclude in particular that, if N is a Seifert fibred 3-manifold, then the base orbifold
cannot be simultaneously oriented and of hyperbolic type.

Let us now introduce our results in more detail.
LetN be an oriented three dimensional compact connected topological manifold without

boundary. Take a decomposition N = N ′#aP3(R)#b(S1 × S2) with a + b maximal and
observe that this decomposition is unique by a theorem of Milnor [10].

We shall focus our attention on the case where N ′ is Seifert fibred or a connected sum of
lens spaces. We consider the integers k := k(N) and nl := nl(N), l = 1 . . . k defined as
follows:

1. if g : N ′ → F is a Seifert fibration, k denotes the number of multiple fibres of g and
n1 ≤ n2 ≤ · · · ≤ nk denote the respective multiplicities;

2. if N ′ is a connected sum of lens spaces, k denotes the number of lens spaces and
n1 ≤ n2 ≤ · · · ≤ nk, nl ≥ 3, ∀l, the orders of the respective fundamental groups (thus
we have a decomposition N ′ = #k

l=1(L(nl, ql)) for some 1 < ql < nl relatively prime
to nl).
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REAL SINGULAR DEL PEZZO SURFACES 533

Observe that whenN ′ is a connected sum of lens spaces, the number k and the numbers nl,
l = 1, . . . k, are well defined (again by Milnor’s theorem). In the case of a Seifert fibred man-
ifold N ′, these integers may a priori depend upon the choice of a Seifert fibration.

Three results of our two notes are summarized by the following.

T 0.1. – Let W → X be a real smooth projective 3-fold fibred by rational curves
over a geometrically rational (1) surface X. Suppose that W (R) is orientable. Then, for each
connected component N ⊂ W (R), k(N) ≤ 4 and

∑
l(1 − 1

nl(N) ) ≤ 2. Furthermore, if N ′ is
Seifert fibred over S1 × S1, then k(N) = 0.

This theorem answers, as we already said, some questions posed by Kollár, see [8, Re-
mark 1.2 (1,2,3)]. In the first note, we proved the estimate k(N) ≤ 4 and we showed that
k(N) = 0 if N ′ is Seifert fibred over the torus. Thus Theorem 0.1 follows from [1, Corol-
lary 0.2, and Theorem 0.3] and from Theorem 0.2 of the present paper using results of [8] as
in [1]. The present note is mainly devoted to the proof of the inequality

∑
l(1− 1

nl(N) ) ≤ 2,
see Lemma 6.1.

The proof of this inequality goes as follows: letW → X be a real smooth projective 3-fold
fibred by rational curves over a geometrically rational surfaceX. Using the same arguments
as in [1, Sec. 3], we reduce the proof of the estimate for the integers nl(N) to an inequality
depending on the indices of certain singular points of a real componentM of the topological
normalization of X(R) (see Definition 1.1). In this process, the number k(N) can be made
to correspond to the number of real singular points on M which are of type A+

µ , and glob-
ally separating when µ is odd; each number nl(N) − 1 corresponds to the index µl of the
singularity A+

µl
of M . The main part of the paper is devoted to the proof of the following.

T 0.2. – Let X be a projective surface defined over R. Suppose that X is geomet-
rically rational with Du Val singularities. Then a connected component M of the topological
normalization X(R) contains at most 4 singular points xl of type A+

µl
which are globally sepa-

rating for µl odd. Furthermore, their indices satisfy∑Å
1− 1

µl + 1

ã
≤ 2 .

Let us now give an interpretation of the above results in terms of geometric topology (see
e.g. [13] for the basic definitions and classical results). Suppose that N ′ admits a Seifert
fibration with base orbifold F . From our main Theorem 0.1 we infer that, if the underly-
ing manifold |F | is orientable, then the Euler characteristic of the compact 2-dimensional
orbifold F is nonnegative (see Proposition 7.1). Thus, by the uniformization theorem for
compact 2-dimensional orbifolds, F admits a spherical structure or an euclidean structure.

In general, a 3-manifoldN does not possess a geometric structure, but, if it does, then the
geometry involved is unique. Moreover, it turns out that every Seifert fibred manifold admits
a geometric structure. The geometry ofN is modeled on one of the six following models (see
[13] for a detailed description of each geometry):

S3, S2 × R, E3,Nil,H2 × R, flSL2 R,

(1) By [4] these assumptions are equivalent to: W rationally connected and fibred by rational curves.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



534 F. CATANESE AND F. MANGOLTE

whereE3 is the 3-dimensional euclidean space and H2 is the hyperbolic plane. The six above
geometries are called the Seifert geometries. The appropriate geometry for a Seifert fibration
is determined by the Euler characteristic of the base orbifold and by the Euler number of the
Seifert bundle [13, Table 4.1].

Let W be a real projective 3-fold fibred by rational curves and such that W (R) is ori-
entable, let N ⊂ W (R) be a connected component and let N ′ be the manifold defined as
above. Suppose moreover that N ′ possesses a geometric structure. By Theorem [8, Th. 1.1],
the geometry of N ′ is one of the six Seifert geometries. Conversely, by [6], any orientable
three dimensional manifold endowed with any Seifert geometry is diffeomorphic to a real
component of a real projective 3-fold fibred by rational curves. But, when W is rationally
connected, the following corollary of our main theorem gives further restrictions.

C 0.3. – LetW be a real smooth projective rationally connected 3-fold fibred by
rational curves. Suppose thatW (R) is orientable and letN be a connected component ofW (R).
Then neitherN norN ′ can be endowed with a flSL2 R structure or with a H2×R structure whose
base orbifold F is orientable.

Observe moreover that in [8] all compact 3-manifolds with S3 or E3 geometry, and some
manifolds with Nil geometry, are realized as a real component of a real smooth projective
rationally connected 3-fold fibred by rational curves.

There remains of course the question about what happens when N is Seifert fibred over a
non-orientable orbifold F : is the orbifold still not of hyperbolic type? In the last section we
show that the answer to this question is negative. We produce indeed an example of a smooth
3-fold W , fibred by rational curves over a Du Val Del Pezzo surface X, where W (R) is
orientable, and contains a connected component which is Seifert fibred over a non-orientable
base orbifold of hyperbolic type.

The striking fact is here that X is a real minimal surface: this contrasts with Comessatti’s
theorem: since indeed a real minimal nonsingular geometrically rational surface cannot have
a component which is of hyperbolic type.

T 0.4. – There exists a minimal real Du Val Del Pezzo surface X of degree 1 hav-
ing exactly two singular points, of type A+

2 , and such that the real part X(R) has a connected
component containing the two singular points and which is homeomorphic to a real projective
plane.

LetW ′ be the projectivized tangent bundle ofX: thenW ′ has terminal singularities,W ′(R)

is contained in the smooth locus of W ′, in particular if W is obtained resolving the singular
points of W ′, then W (R) = W ′(R).

MoreoverW (R) is orientable and contains a connected componentN which is Seifert fibred
over a non orientable orbifold of hyperbolic type (the real projective plane with two points of
multiplicity 3).

Briefly, now, the contents of the paper.
Sections 1 and 2 are devoted to the reduction of the proof of the main theorem to the

assertion of non existence of seven configurations of singular points on a real component of
a Du Val Del Pezzo surface of degree 1.
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Two main methods used here are borrowed from [1]: namely, the generalization of Bru-
sotti’s theorem to the effect that one can independently take any smoothing of the singular-
ities of a Du Val Del Pezzo surface, and also the use of the plane model where the family of
hyperplane sections of the quadric cone Q is represented by the family of parabolae in the
plane with a fixed asymptotic direction. These methods combine with a delicate argument,
suggested by E. Brugalle, excluding the possibility of an intersection ofQwith a cubic surface
yielding an irreducible curve B with four real cusps (see 2.1).

Section 3 introduces the main tools used in the proof (the topological classification of real
smooth Del Pezzo surfaces of degree 1, and the choice of the appropriate partial smooth-
ings), and ends with the exclusion of two configurations via complicated although elemen-
tary topological considerations.

Section 4 uses a classification of critical points for the projection of B and a precise table
for the local contributions to the multiplicity of the discriminant and for the local contribu-
tion to the Euler number in order to exclude two more cases.

Section 5 proves Theorem 0.2 by excluding the three remaining cases by combining all
the previous tools with an ad hoc analysis and with two new tools, namely: the use of the
Comessatti characteristic, relating the total Betti number of the real part with the one of the
complex part, and the calculation of the contributions of the singularities to the Picard and
to the various Euler numbers.

Finally, Section 6 is devoted to the proof of Lemma 6.1 and in Section 7, after showing
that the base orbifold cannot be oriented and hyperbolic, we exhibit the example of a projec-
tivized tangent bundle over a Du Val Del Pezzo surface for which a component N is Seifert
fibred with base orbifold of hyperbolic type.

In the course of this complicated construction we give a quite general method to construct
Seifert fibrations as projectivized tangent bundles of surfaces with singularities of type An.

We want to thank E. Brugalle for pointing out the statement of Lemma 2.1 and suggesting
the main idea of the proof , and Ingrid Bauer for helping us to understand the configuration
of lines on Del Pezzo surfaces of degree 1.

1. Singular geometrically rational surfaces

Using the results and notation of [1, Section 1], we reduce the proof of Theorem 0.2 to
the proof of a statement about singular Del Pezzo surfaces of degree 1 with small Picard
number ρ.

Recall that a surface singularity which is a rational double point is also called a Du Val
singularity and that a projective surface X is called a Du Val surface if X has only Du
Val singularities. A surface singularity is of type A+

µ if it is real analytically equivalent to
x2 + y2− zµ+1 = 0, µ ≥ 1 ; and of type A−µ if it is equivalent to x2− y2− zµ+1 = 0, µ ≥ 1.
The type A+

1 is real analytically isomorphic to A−1 ; otherwise, singularities with different
names are not isomorphic.

We recall some definitions due to Kollár (see [1, Section 1]).
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536 F. CATANESE AND F. MANGOLTE

D 1.1. – Let V be a simplicial complex with only a finite number of points x ∈ V
where V is not a manifold. Define the topological normalization

n : V → V

as the unique proper continuous map such that n is a homeomorphism over the set of points
where V is a manifold and n−1(x) is in one-to-one correspondence with the connected compo-
nents of a good punctured neighborhood of x in V otherwise.

Observe that if V is pure of dimension 2, then V is a topological manifold (since each point
of V has a neighbourhood which is a cone over S1).

D 1.2. – Let X be a real Du Val surface, and let x ∈ X(R) be a singular point
of type A±µ with µ odd. The topological normalization X(R) has two connected components
locally near x. We will say that x is globally separating if these two local components lie on
different connected components of X(R) and globally nonseparating otherwise. Let

PX := SingX \
{
x of type A−µ , µ even

}
\
{
x of type A−µ , µ odd and x is globally nonseparating

}
.

Let X be a real Du Val surface, let n : X(R) → X(R) be the topological normalization,
and let M1,M2, . . . ,Mr be the connected components of X(R). By [8, Cor. 9.7], the unor-
dered sequence of numbers

mi := #(n−1(PX) ∩Mi), i = 1, 2, . . . , r

is an invariant for extremal birational contractions of Du Val surfaces.
We will now reduce the proof of Theorem 0.2 to the proof of the following.

T 1.3. – Let X be a real Du Val Del Pezzo surface of degree 1 with ρ(X) ≤ 2.
Then mi ≤ 4, i = 1, 2, . . . , r, and moreover for any M := Mi such that n(M) contains
A+
µ1

+A+
µ2

+ · · ·+A+
µmi

where A+
µl

is globally separating for µl odd, we have:

mi∑
l=1

Å
1− 1

µl + 1

ã
≤ 2 .

Up to Section 6, the sequel of this paper is devoted to the proof of Theorem 1.3.

2. Reducing to seven configurations

Numerically, the following configurations of A+
µ singularities are the only ones allowed

by the inequality

(1)
mi∑
l=1

Å
1− 1

µl + 1

ã
≤ 2 .

• mi = 4 and the configuration is 4A+
1 ,

• mi = 3 and the configuration is
• 2A+

1 +A+
µ , any µ, or

• A+
1 +A+

2 +A+
µ , µ ≤ 5, or

• A+
1 + 2A+

3 ,
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REAL SINGULAR DEL PEZZO SURFACES 537

• 3A+
2 ,

• mi = 2.

Recall that a Du Val Del Pezzo surface X is by definition a Du Val surface (i.e., a surface
with only rational double points as singularities) whose anticanonical divisor is ample, see
[1, Section 2]. The anticanonical model of a Del Pezzo surface X of degree 1 is a ramified
double covering q : X → Q of a quadric coneQ ⊂ P3 whose branch locus is the union of the
vertex of the cone with a curve B not passing through the vertex and which is the complete
intersection of the cone with a cubic surface.

LetX be a real Du Val Del Pezzo surface of degree 1 and letX ′ be the singular surface ob-
tained fromX by blowing up the pull-back by q of the vertex of the cone (which is a smooth
point ofX). The surfaceX ′ is a ramified double covering of the Hirzebruch surface F2 whose
branch curve is the union of the unique section of negative selfintersection, the section at in-
finity Σ∞, and the trisection B of the ruling p : F2 → P1, which is disjoint from Σ∞. The
composition X ′ → F2 → P1 is a real elliptic fibration.

The different cases that we shall now consider are distinguished by the number of irre-
ducible components of the trisection B. Notice that if all the singular points are of type A1,
the conclusion of Theorem 1.3 follows from [1, Proposition 2.1].

2.1. Three components

If B has strictly more than 4 real singular points, all the possible cases are enumerated in
[1, Section 2], and an inspection of [Ibid., Figures 1, 2, 3] shows that for any connected com-
ponent of the complement F2(R) \ B(R), the configuration is 4A1 or A3 + 2A1. Thus the
inequality (1) holds except possibly in the situation where two irreducible components of B
are tangent to the third one. It turns out that there is only one normal form for this situation,
see Figure 1. Indeed, the affine part of B is a union of three parabolae and without loss of
generality, these three parabolae are given by y = 0, y = x2 and y = α(x − a)2, α, a ∈ R
[Ibid.]. We have a 6= 0, else B has a triple point with an infinitely near triple point, contra-
dicting the fact that X has only Du Val singularities. Furthermore, in order to get at least
three real intersection points, α has to be positive. Up to reflection x ↔ −x, this leads to
one possibility.

F 1. Three parabolae with two tacnodes.
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538 F. CATANESE AND F. MANGOLTE

Recalling that in this figure two components are connected at infinity if their boundaries
have two unbounded arcs belonging to the same pair of parabolae, we see that none of the
connected components of F2(R) \ B(R) contains more than 3 singular points and at most
two of them are tacnodes. Thus (1) holds also in this case.

2.2. Two components

Then B = L ∪ C where C is a bisection of the ruling p and L is a section. The bisection
C has arithmetic genus one, hence it has at most one double point A1 or A2 and at most 4
intersection points with the section L.

If C is non singular, we have 4A1 or 2A1 + A3 or only two singular points. In each case
we get an allowed configuration.

Assume C is singular: if B has 5 singular points, we are done since either all singular
points are of type A1, see [1, Figures 4, 5, 6], or we are in the situation depicted in [1, Figure
7] and then theA+

2 is on a component with only two other singularities, of typeA1. IfB has
4 singular points, the possibilities are A1 +A3 + 2A1, or A2 +A3 + 2A1. If B has 3 singular
points, the possibilities are A1 + 2A3, or A2 + 2A3, or A2 +A1 +A5.

Thus if B has two irreducible components, we get the conclusion of Theorem 1.3 unless
the configuration of singular points is A3 + 3A1, or A3 +A2 + 2A1, or 2A3 +A2.

2.3. One component

If the trisection is irreducible, then it has at most 4 singular points, sinceB(C) has genus 4.

L 2.1. – The real curve B cannot have 4 real cusps.

Proof. – Suppose thatB is irreducible with 4 real cusps. Choose three of them. Let L′ be
a section of the ruling p corresponding to a plane section of Q passing through these three
points; for an appropriate choice of the plane model ofQ (see [1], beginning of Section 2) we
may assume L′ to be the horizontal x-axis y = 0 in the plane

Since the intersection number L′ · B = 6, we get that L′ intersects B exactly at the three
chosen cusps, and transversally. This means that, w.l.o.g., B lies in the upper halfplane: in
fact, since B is rational and irreducible, then its real part B(R) is homeomorphic to S1, in
particular it is connected.

Observe moreover that none of the cusps is tangent to a fibre, since each cusp gives a con-
tribution at least 3 to the local multiplicity of the discriminant of B, and this contribution
becomes 4 if the cusp is tangent to the fibre: and the order of the discriminant is 12.

In fact, we get more from this calculation: the projection p has no further critical points
on B.

It follows that the projective line with coordinate x is divided into 4 open intervals, such
that the cardinality of the fibre of p : B(R)→ P1

R(R) varies alternatingly from 3 to 1.
On the intervals where we have 3 counterimages, it makes sense to talk about first, second

and third branch (ordered according increasing value of the y-coordinate), on each interval
it makes sense to talk about the highest and the lowest branch.

Whenever one moves on P1
R(R) and goes across a cusp lying on the x-axis, the highest

branch continues to be the highest branch.
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Since three of the cusps lie on the x-axis, we may assume that the fourth cusp is located at
x =∞, and the three cusps with y = 0 occur for x = A,B,C where A < B < C. Then the
highest branch over the interval (−∞, A) remains the highest branch on the whole real line
by virtue of the previous remark. By compactness of B(R) we get a connected component
of B(R) mapping to P1

R(R) homeomorphically, contradicting our previous assertion about
the cardinalities of the fibres.

Thus, if B is irreducible, we observe that B has arithmetic genus 4, and nonnegative geo-
metric genus: hence the ‘number of double points’ δ is at most 4. But each point of type An
contributes exactly [n+1

2 ] double points. Therefore an elementary calculation shows that we
get the conclusion of Theorem 1.3 unless the configuration of singular points is one of the
following : A4 + 2A2, A3 + 2A2, or 3A2 +A1, or 2A2 + 2A1, or A2 + 3A1.

We are going now to exclude the first case by an argument similar to the one of Lemma
2.1, even if it could also be treated by the same methods used in Section 4.

L 2.2. – The real curve B cannot have 2 real A2 singularities and an A4 singularity.

Proof. – We already know thatB is irreducible and we argue as in Lemma 2.1, assuming
that the three singular points lie on the horizontal x-axis {y = 0} := L′ in the plane and that,
sinceB(R) is homeomorphic to S1,B andL′ intersect exactly at the three chosen points, and
transversally, hence B(R) lies in the upper halfplane.

If none of the cusps is tangent to a fibre, since each cusp A2n gives a contribution 2n+ 1

to the local multiplicity of the discriminant of B, and the order of the discriminant is 12,
there is exactly another critical point for the restriction of the projection p toB, and the same
argument as in Lemma 2.1 provides the same contradiction.

There remains the case where exactly one cusp is vertical, and there are no further critical
points.

It follows that the projective line with coordinate x is divided into 3 open intervals, and the
cardinality of the fibre of p : B(R) → P1

R(R) must be equal to 1 on the two intervals neigh-
bouring the vertical cusp. At the two other cusps the highest branch remains the highest, and
we get the usual contradiction (since over the third interval we have three branches).

In any case, regardless of the difference betweenA+
µ andA−µ , we have reduced the problem

to the exclusion of 7 configurations. For any of these configurations, we can suppose that all
singular points are of type A+

µ with A+
µl

globally separating for µl is odd. Indeed, if one of
the points is not of this type, the sum

∑
(1− 1

µl+1 ) restricted to the remaining points if less
than or equal to 2.

Summarizing, we get seven remaining configurations to be excluded:

1. 2A+
3 +A+

2 (Section 5)
2. A+

3 + 2A+
2 (Section 4)

3. A+
3 +A+

2 + 2A+
1 (Section 3)

4. A+
3 + 3A+

1 (Section 3)
5. 3A+

2 +A+
1 (Section 4)

6. 2A+
2 + 2A+

1 (Section 5)
7. A+

2 + 3A+
1 (Section 5)
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3. Smoothings of Du Val Del Pezzo surfaces

We recall that our problem consists in giving an estimate concerning the configurations
of certain singular points lying on a component of the topological normalization of a real
Du Val Del Pezzo surface X. For this purpose, we want to understand as much as possible
the topology ofX(R), and we do this by taking a global smoothing ofX, and then using the
known topological classification of smooth real Del Pezzo surfaces of degree 1.

The best strategy is to choose a global smoothing realizing certain local smoothings of the
singularities chosen a priori. That this can be done for all choices of the local smoothings
holds true by a generalization of the theorem of Brusotti which was proven in our preceding
paper.

T 3.1 ([1, Th. 4.3]). – Let X be a Du Val Del Pezzo surface. One can obtain, by a
global small deformation of X, all the possible local smoothings of the singular points of X.

P 3.2 (Global). – LetX be a real smooth Del Pezzo surfaces of degree 1: then
the real part X(R) is diffeomorphic to one of the surfaces in the following list:

• P2(R) t pS, p = 1, . . . , 4;
• P2(R) t K;
• #3P2(R) t S;
• #2p+1P2(R), p = 0, . . . , 4.

Here #lP2(R) denotes the connected sum of l copies of the real projective plane,
K = P2(R)#P2(R) denotes the Klein bottle and pS denotes the disjoint union of p copies
of the 2-sphere.

Proof. – It is the well-known classification of real smooth Del Pezzo surfaces, see e.g. [3].

L 3.3 (Local). – Consider a real singular point of a surface X of type A+
µ , of local

equation z2 = f(x, y) where f vanishes at the origin. Then for each case µ ∈ {1, 2, 3}, there
exist local smoothings Xε with equation z2 = fε(x, y), such that Xε(R) is represented by one
of the Figures 2, 3, or 4.

F 2. The cut and the cylinder smoothings of the node A+
1 .
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F 3. The +sphere smoothing of the cusp A+
2 .

F 4. The cut+sphere and the cylinder smoothings of the tacnode A+
3 .

3.1. Topology of connected components

Let X be a real Du Val Del Pezzo surface of degree 1. Recall that X ′ denotes the
singular elliptic surface obtained from X by blowing up a smooth point. We denote by
n : X ′(R)→ X ′(R) the topological normalization of the real part and we assume that there
is a connected component M0 of X ′(R) whose image by n contains at least three singular
points of X ′. Furthermore, we assume that the singular points are only of type A+

µ , with
A+
µ globally separating for µ odd.

Let Mj , j = 1, . . . c be the other components of X ′(R) such that n(Mj) and n(M0) in-
tersect (in some singular point of X ′(R)). Any singular point A+

µ of M0 with µ odd is glob-
ally separating, while the ones with µ even are not, thus in particular the number c satisfies
1 ≤ c ≤ #{P ∈ n(M0)|P of type A+

µ , µ odd}.
Let us denote byM∞ the connected component ofX ′(R) which meets the section at infin-

ity, i.e., n(M∞)
⋂

Σ∞ 6= ∅. In the proof of the main theorem we will often use the distinction
between the cases M∞ = M0 and M∞ = Mj for some j 6= 0.

L 3.4. – The component M∞ ⊂ X ′(R) of the topological normalization is a Klein
bottle unless the elliptic fibration has two white returns (see Table 1). In the latter situation,
X ′(R) contains at most another component which is then a sphere.

Proof. – If the fibre of the double covering q′ : X ′ → F2 over a real point P contains a
real point, we shall say that P belongs to the region of positivity, which we denote by F2+.

The section Σ∞ is part of the branch locus and is bilateral in F2.
Consider U := F2 \Σ∞ which is an oriented A1-bundle over P1, and indeed homeomor-

phic to P1
R × R. Hence we take corresponding coordinates (x, y) ∈ P1

R × R for the points
of U .
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We may assume without loss of generality that (x, y) ∈ F2+ for y � 0.

Consider now the function η : P1(R)→ R, η(x) := inf{y | {x}×[y,∞[⊂ F2+}. Therefore,
if η is a continuous function on P1(R), then we have M∞ = K.

For further use, we notice that:

L 3.5. – LetM ⊂ X ′(R) be a connected component of the topological normalization
of X ′(R), and consider x as a function on the boundary of M : then the number of changes of
monotonicity of x is even.

Let ∆(x) be the discriminant of the elliptic fibre over x (i.e., the discriminant of the degree
three polynomial in y whose zero set is the trisection). In view of Table 1 (p. 544), the only
root of ∆(x) which can break the continuity of η corresponds to a white return (A0, e = −1).

If the lower part of the white return branch continues and meets as first critical point of
p : B(R) → P1(R) a point which contributes one change of monotonicity of x (that is, a
black return, or a black node, or a tangent node, or a transversal cusp or tacnode), then we
can topologically deform to the case where η is continuous. The flex and the tangent cusp
are clearly irrelevant and if the first met critical point is a white node, we can perform a
cut smoothing and pass to the next critical point. The only obstacle is then the case when
we meet another white return singularity on the branch curve. In this case, one sees easily
that there is another component D of B(R) disjoint from the component D′ containing the
white return branches, hence b1(M∞) ≥ 4 (take the 4 cycles respective inverse images of
the section at infinity Σ∞, of D, and of two segments, one joining D′ with Σ∞, the other
joining D′ with D). Recall that the topological normalization X(R) of the real Del Pezzo
surface X can be realised by a global smoothing of X, see [1, Lemma 4.4 and Theorem 4.3].
Thus the component of X(R) corresponding to M∞ has b1 ≥ 3 and, by 3.2, either we have
X(R) = #3P2(R) t S or X(R) = #2p+1P2(R) for some p = 1, . . . , 4.

R 3.6. – More generally, by 3.2, the real part of any global smoothing X ′ε of X ′,
including the case whenX ′ε(R) = X ′(R), is diffeomorphic to one of the surfaces in the following
list,

• K t pS, p = 1, . . . , 4;
• K t K;
• K#K t S;
• #qK, q = 1, . . . , 5.

L 3.7. – Let X be a real Du Val Del Pezzo surface of degree one, and let X ′ be the
corresponding rational elliptic surface. Let X ′ε be a global smoothing of X ′. Then we have the
following estimates for the Betti numbers

bi(X
′
ε(R)) := rankHi(X

′
ε(R),Z/2)

• b0(X ′ε(R)) ≥ 3⇒ b1(X ′ε(R)) = 2.
• b0(X ′ε(R)) ≥ 2⇒ b1(X ′ε(R)) ≤ 4.
• In any case, b0(X ′ε(R)) ≤ 5.
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3.2. Exclusion of A+
3 +A+

2 + 2A+
1 and A+

3 + 3A+
1

For each node of n(M0) connecting n(M0) with some n(Mj), we choose the cut smooth-
ing if this point is the only singular point on n(Mj). Otherwise, we choose the cylinder
smoothing. We do the +sphere smoothing for the cusp. For the tacnode, connecting n(M0)

with some n(Mj), we choose the cut+sphere smoothing if this point is the only singular
point on n(Mj) or if we are in the last two cases in the next list. Otherwise, we choose the
cylinder smoothing. Recalling that b1

Ä
X ′(R)

ä
≥ 2, we obtain the following inequalities for

the Betti numbers of X ′ε(R). The different cases are distinguished by the number c defined
above.

• (3) A+
3 +A+

2 + 2A+
1

c = 3: b0 ≥ 6;
c = 2: b0 ≥ 3, and b1 ≥ 4;
c = 1: b0 ≥ 2, and b1 ≥ 6.
• (4) A+

3 + 3A+
1

c = 4: b0 ≥ 6;
c = 3: b0 ≥ 3, and b1 ≥ 4;
c = 2: (cut+sphere smoothing for the tacnode) b0 ≥ 3, and b1 ≥ 4.
c = 1: (cut+sphere smoothing for the tacnode) b0 ≥ 2, and b1 ≥ 6.

In each case, these inequalities contradict Lemma 3.7. Thus cases (3) and (4) are excluded.

4. The Euler number of an elliptic fibration

Recall that X ′ is a singular surface obtained from the singular degree 1 Del Pezzo sur-
face X by blowing up a smooth point. It is a ramified double covering of the Hirzebruch
surface F2 whose branch locus is the union Σ∞ ∪ B where B is a trisection of the ruling
p : F2 → P1. The composition X ′ → F2 → P1 is a real elliptic fibration and ∆(x) denotes
the discriminant of the elliptic fibre over x (i.e., the discriminant of the degree three poly-
nomial in y whose zero set is the trisection). Table 1 gives a local topological description
of the fibration over a neighbourhood of a real zero of ∆, in terms of two basic numerical
invariants, namely the multiplicity of the zero of ∆, and the Euler number of the real part
of the singular fibre of the elliptic surface. The table considers only the singular points that
we have to deal with, and introduces a name for each case, which will be used in the course
of the forthcoming proofs. Observe finally that, in drawing as black the region of positivity,
we have used the convention introduced in Lemma 3.4. Finally, a point of type A0 is here a
smooth point of B which is a critical point for the restriction of p to B.

We use now Table 1 in order to proceed with our case by case exclusion.

4.1. Exclusion of A+
3 + 2A+

2 and 3A+
2 +A+

1

• (2) A+
3 + 2A+

2 ,
Here c = 1, and n(M1), n(M0) meet in the tacnode A+

3 . By doing the +sphere
smoothing for each cusp and the cut+sphere smoothing for the tacnode, we get
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Type Fibre type Picture Multiplicity of ∆ Euler number e

A0 black return 1 1

A0 white return 1 −1

A0 flex 2 0

A+
1 black node 2 1

A+
1 white node 2 −1

A+
1 tangent node 3 0

A+
2 transversal cusp 3 1

A+
2 tangent cusp 4 0

A+
3 tacnode 4 1

T 1. Singular points of the elliptic fibration and contributions to the Euler number.

at least 5 connected components, hence a Klein bottle and 4 spheres by 3.7, and
X ′(R) = K t S. We conclude that e(X ′(R)) = 1.

IfM0 6= M∞ (thusM0 = S andM1 = K), the cusps are transversal. Since the total
multiplicity of ∆ is 12, the fibration has at most two real A0 singular fibers. But any
white return stays on n(M∞). Then on the boundary of n(M0) the monotonicity of
the function x has three changes, a contradiction.
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If M0 = M∞, then the component M1 = S must contain a black return (recall that
the two cusps belong to n(M0)). The existence of the tacnode on n(M∞) forces a white
return. The contributions to the multiplicity of ∆ are then 4+3+3+1+1 = 12 which
implies that the two cusps are transversal. The contributions to the Euler characteristic
of X ′(R) are then 1 + 1 + 1 + 1− 1 = 3, a contradiction.

Thus case (2) is excluded.

• (5) 3A+
2 +A+

1 ,
Here also c = 1 and the same argument as above shows that X ′(R) = K t S and

e(X ′(R)) = 1.
IfM0 6= M∞, the three cusps are transversal. By Lemma 3.5, if we had a white node,

we would have a black return onn(M0), thus e(X ′(R)) = 3−1+1 = 3, a contradiction.
If we did not have a white node, then e(X ′(R)) ≥ 3+0−1 = 2, a contradiction again.

If M0 = M∞, then the node on n(M1) forces a black return. Since M1 is a sphere,
the contributions to the multiplicity of ∆ impose that the fibration has at most one
real A0 singular fiber and then that all singular points are of transversal type. Whence
e(X ′(R)) ≥ 3− 1 + 1 = 3, a contradiction.

Thus case (5) is excluded.

5. The Euler number of a real singular Del Pezzo surface

Recall thatX ′ is a singular rational elliptic surface obtained from the Del Pezzo surfaceX
by blowing up a smooth point; and that a singular pointA+

µ is real analytically equivalent to
x2 + y2 − zµ+1 = 0, µ ≥ 1.

Let us denote by S′ → X ′ the minimal resolution of singularities.

D 5.1. – In this paper, we define, for a real varietyX, ρ(X) to be the Picard num-
ber of the surface X over R. It must not be confused with the Picard number of the complexi-
fication XC of X. We have always ρ(X) ≤ ρ(XC) but, generally, ρ(X) < ρ(XC).

L 5.2. – Suppose that the singularities of X (and then of X ′) are only of type A+
µ .

Then, denoting by #A+
µ the number of singular points which are of type A+

µ , we have:

2ρ(S′) + e (S′(R))− 2ρ(X ′)− e (X ′(R)) =
∑
µ

µ · (#A+
µ ) .

Proof. – A local computation shows that

ρ(S′)− ρ(X ′) =
∑
µ odd

Å
1 +

µ− 1

2

ã
+
∑
µ even

µ

2

and e (S′(R))− e (X ′(R)) = −#{Aµ, µ odd}.

L 5.3. – Let X be a real Du Val Del Pezzo surface of degree 1. Suppose that
ρ(X) ≤ 2. Suppose moreover that the singularities are only of type A+

µ , µ ∈ {1, 2, 3}. Then
we get for the rational elliptic surface X ′:

e(X ′(R)) = (8 or 6)−
3∑

µ=1

µ(#A+
µ ) .
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Proof. – Denote by λ the Comessatti characteristic of S′ given by 2λ = b∗(S
′(C)) −

b∗(S
′(R)) (see [14, Chap. I], and recall that our Betti numbers are taken with coefficients

Z/2).
The nonsingular rational elliptic surface S′ has total Betti number b∗(S

′(C)) =

e(S′(C)) = 12.
Moreover, for a nonsingular surface S′ with pg(S′) = 0 and with S′(C) simply connected,

we have b1(S′(R)) = ρ(S′) − λ, see [9] or [14]. Since however 2b1(S′(R)) = b∗(S
′(R)) −

e(S′(R)) we get

e (S′(R)) + 2ρ(S′) = b∗(S
′(R))− 2b1(S′(R)) + 2ρ(S′) = b∗(S

′(R)) + 2λ = b∗(S
′(C)) = 12.

By our hypothesis on the Picard number of the singular Del Pezzo surface X, we have
2 ≤ ρ(X ′) ≤ 3, thus the formula follows from Lemma 5.2.

5.1. Exclusion of 2A+
3 +A+

2 , 2A+
2 + 2A+

1 and A+
2 + 3A+

1

In the first case, the branch curve has 2 irreducible components which are rational. Indeed
one of them is smooth rational and the other has genus 1 and one singular point. Further-
more the two irreducible components intersect in a real point, thus the real part of the branch
curve is connected. In the last two cases, the branch curve B is irreducible, has genus 4, and
has 4 singular points. Thus the curve is rational and its real part B(R) is connected. It fol-
lows that every connected component M of the topological normalization has the property
that

n(M) ∩ n(M0) 6= ∅.
Hence (c+ 1) is the number of connected components of the normalization.

• (1) 2A+
3 +A+

2 ,
∑
µ(#A+

µ ) = 8 and e(X ′(R)) = 0 or −2 by Lemma 5.3.
The total multiplicity of ∆ is 12, thus there is at most one fibre A0 and the contri-

butions to the Euler characteristic are 1 + 1 + 1 + 1, or 1 + 1 + 1 − 1, or 1 + 1 + 0

when the cusp is tangent to a fibre. Thus e(X ′(R)) would be greater than or equal to 2,
a contradiction. Thus case (1) is excluded.

• (6) 2A+
2 + 2A+

1 ,
∑
µ(#A+

µ ) = 6 and e(X ′(R)) = 2 or 0.
Here, the number of components of X ′(R) such that n(Mj) and n(M0) belong to

the same connected component of X ′(R) satisfies 1 ≤ c ≤ 2.
Assume c = 1, and do the cylinder smoothing for the nodes, and the +sphere

smoothing for the cusps. We obtain b0 = 3, and b1 ≥ 4, a contradiction.
Assume c = 2, then there are two cases: M0 = M∞ or M0 6= M∞. The topological

normalization has 3 = c+ 1 components, hence X ′(R) = K t 2S.
Assume M0 6= M∞, then any cusp is transversal and yields a (+1) contribution to

the Euler number. For the component M1, which is distinct from M0 and from M∞,
we must have a black node, therefore on it there is also a black return. In order to get
e(X ′(R)) ≤ 2, there must be a white return, and then we should have a white node
to make e(X ′(R)) ≤ 2. But a white return is necessarily on n(M∞), and its existence
implies the existence of other critical points at∞, a contradiction.

AssumeM0 = M∞, consider the two components not at∞,M1 andM2. On them,
a white node implies at least two black returns, while a black or tangent node implies
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at least one black return. Since ∆ has degree 12, there are exactly two black returns
(on each respective Mj) and two black nodes (on each respective Mj). At ∞, there
are as critical points only the singular points, and these are transversal, whence we get
2 transversal cusps, thus e(X ′(R)) = 6, a contradiction.

Thus the configuration 2A+
2 + 2A+

1 does not exist.

• (7) A+
2 + 3A+

1 ,
∑
µ(#A+

µ ) = 5 and e(X ′(R)) = 3 or 1.
In this case, we have 1 ≤ c ≤ 3.
If c = 1 we have two components M0, M1 and each node on n(M0) connects with

n(M1). We do 3 cylinder smoothings and the +sphere smoothing for the cusp. We
obtain b0 = 2, and b1 ≥ 6, a contradiction.

If c = 2 we have three components M0, M1, M2 and we let M1 be the component
such that there are two nodes on n(M0) connecting with n(M1). We perform 2 cylinder
smoothings at these nodes. For the remaining node connecting n(M0) with n(M2),
we choose the cut smoothing. We do the +sphere smoothing for the cusp. This gives
b0 = 3, and b1 ≥ 4, a contradiction.

Assume c = 3, and take the normalization. There are 4 components, whence they
are X ′(R) = K t 3S with K = M∞. Notice in particular that e(X ′(R)) = 3.

If M0 = M∞, assume that we have a black node. For the corresponding S compo-
nent this requires a black return. For a white node, we need at least two black returns.
For a tangent node, one needs one black return. However, the number of A0 fibres is
≤ 3, thus there is no white node, and we have exactly 3 black returns. The contribution
to the Euler number is then e(X ′(R)) ≥ 4. This is a contradiction which excludes the
case M0 = M∞.

If M0 6= M∞, the cusp is transversal hence it contributes 1 to the Euler number.
Consider the two nodes not involving the component M∞. Necessarily they are black
nodes since the other two types of nodes involve the component M∞. These singular-
ities each involve a black return as before. We get a contribution 5 to e(X ′(R)) = 3.
Hence the remaining node and return must contribute twice a (−1). A (−1) contribu-
tion is white and involves the component M∞. But because the white return gives for
the boundary of F2+ ∩M∞ some x for which the degree is 3, and others for which it
is 1, there must be another critical point on F2+ ∩M∞, a contradiction.

Thus case (7) is excluded. This concludes the proof of Theorem 1.3.

We end this section with the

Proof of Theorem 0.2. – First of all, the reduction from the case of a geometrically ratio-
nal Du Val surface to the case of a Du Val Del Pezzo surface of degree 1 is done precisely as
in [1], Proposition 2.4. and the subsequent proof of Theorem 0.1. The same argument given
in the proof of Cor. 0.2 ([1], end of the third section) shows that it suffices to consider the
singular points of type A+

µ which are globally separating when locally separating. Finally,
by Lemma 1.8 of [1], it remains only to check the case where X is a real Du Val Del Pezzo
surface of degree 1 with ρ(X) ≤ 2.

Then our assertion is exactly reduced to the main assertion of Theorem 1.3.
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6. Real rationally connected threefolds

This short section explains how Theorem 0.2 implies the following.

L 6.1. – LetW → X be a real smooth projective 3-fold fibred by rational curves over
a geometrically rational surfaceX. Suppose thatW (R) is orientable. Then for each connected
component N ⊂W (R), we have ∑

l

Å
1− 1

nl(N)

ã
≤ 2 .

Proof. – Let W → X be a real smooth projective 3-fold fibred by rational curves over
a geometrically rational surface X. Suppose that W (R) is orientable. Let N ⊂ W (R) be
a connected component. Kollár proved (see also [1, 3.3, 3.4, and proof of Cor. 0.2]), that
there is

1) a pair of birational contractions c : W →W ′, r : X → X ′, where

2) W ′ is a real projective 3-fold W ′ with terminal singularities such that KW ′ is Cartier
along W ′(R),

3) X ′ is a Du Val surface

4) a rational curve fibration f ′ : W ′ → X ′ such that −KW ′ is f ′-ample and with

5) f ′ ◦ c = r ◦ f .

Let N ′′ be the connected component of the topological normalization W ′(R) such that
N ′′ maps onto c(n̄(N)).

The main property of this construction is that

6) N ′′ = N ′#a′P3(R).

Thanks to [8, Theorem 8.1], and [1, Proof of Cor. 0.2, end of Section 3], there is a small
perturbation g : N ′′ → F of f ′|n(N ′′) such that g|g−1(F\∂F ) is a Seifert fibration, and an injec-
tion from the set of multiple fibres of g|g−1(F\∂F ) to the set of singular points ofX ′ contained
in f ′(n(N ′′)) which are of type A+ and globally separating when locally separating. Under
this injection, the multiplicity of the Seifert fibre equals µ+ 1 if the singular point is of type
A+
µ . Hence, the desired inequality follows from Theorem 0.2.

7. Two-dimensional orbifolds

In this section we derive first some consequences from our main result on the components
of the topological normalization of a geometrically rational Du Val surface. Then we con-
struct a real smooth algebraic 3-fold whose real part contains a connected component which
is Seifert fibred over the real projective plane, with two multiple fibres of multiplicity 3.

The first consequence is the following corollary, already mentioned in the introduction.

C 7.1 (0.3). – Let W be a real smooth projective rationally connected 3-fold
fibred by rational curves. Suppose that W (R) is orientable and let N be a connected com-
ponent of W (R). Then neither N nor N ′ can be endowed with a flSL2 R structure or with a
H2 × R structure whose base orbifold F is orientable.
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Proof. – As we already mentioned,

1) if a 3-manifold possesses a geometric structure, then the corresponding geometry is
unique,

2) every Seifert fibred manifold admits a geometric structure.

Moreover,

3) if N or N ′ can be endowed with a flSL2 R structure or with a H2 ×R structure, then N ′

is Seifert fibred and, by the cited theorem of Milnor, we have that N ′ is Seifert fibred by the
given rational curve fibration.

Now, the six geometries for Seifert fibrations are distinguished by negativity, nullity or
positivity of the Euler characteristic χtop(F ) of the base orbifold and by the vanishing or
non vanishing of the Euler number of the Seifert bundle [13, Table 4.1]. In particular theflSL2 R and the H2 × R geometry correspond exactly to the ‘hyperbolic’ case, where χtop(F )

is negative.

We conclude then by virtue of Theorem 0.1.

P 7.1. – Let N be as in Corollary 0.3. Suppose moreover that N admits a
Seifert fibration with base orbifold F such that |F | is orientable. Then the Euler characteris-
tic χtop(F ) of the compact 2-dimensional orbifold F is nonnegative.

Proof. – By [1, Theorem 4.3 and Lemma 4.4], the topological normalizationX(R) can be
realized as the real part of a real perturbationXε ofX. Thanks to Comessatti’s Theorem, an
orientable connected component of Xε(R) is a sphere or a torus. In the last case, the Seifert
fibration N → F has no singular fibre and F is a manifold, hence the Euler characteristic of
F is zero. In the latter case, the Euler characteristic of F is positive.

7.1. A Seifert fibration with base orbifold of hyperbolic type.

As announced in the introduction, we are going to construct a real smooth 3-fold W ,
fibred by rational curves over a Du Val Del Pezzo surface X , with the property that W (R)

is connected and enjoys the following properties:

i) W (R) is orientable,

ii) W (R) has a connected component which is Seifert fibred over a base orbifold F ,

iii) F is non orientable and of hyperbolic type

iv) the Du Val Del Pezzo surface X is minimal over R.

Our method of construction is based on a rather general procedure which produces Seifert
fibrations as projectivized tangent bundles of Du Val surfaces, so we start with some easy
lemmas, the first one being well known.

L 7.2. – Let M be a real differentiable manifold. Then the tangent TM is always
orientable, while P(TM) is orientable if n := dimR(M) is even.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



550 F. CATANESE AND F. MANGOLTE

Proof. – Let p : TM →M be the natural projection.

By the exact sequence 0 → p∗(TM) → T (TM) → p∗(TM) → 0 we get that∧2n(T (TM)) ∼=
∧n(p∗(TM))⊗2 is trivial.

Let π : P(TM)→M be the natural projection.

Then by the exact sequences

0→ V T (P(TM))→ T (P(TM))→ π∗(TM)→ 0,

(here V T denotes the subbundle of vertical vectors) and

0→ (R× P(TM))→ π∗(TM)⊗ U−1 → V T (P(TM))→ 0,

where U is the tautological line subbundle, we get∧2n−1 T (P(TM)) ∼=
∧n(π∗(TM))⊗2 ⊗ U⊗n, thus we have a trivial line bundle if n is

even.

Next, we consider the projectivized tangent bundle of Du Val surfaces with An singular-
ities.

This 3-fold is simply obtained by glueing together the projectivized tangent bundle of the
smooth part with the µn+1 quotient

Yn := (A2
C × P1

C)/µn+1

of the projectivized tangent bundle of the affine plane via the action of the (n + 1)-th roots
of unity induced by the action on A2

C yielding the quotient An := A2
C/µn+1.

L 7.3. – Yn has isolated singularities if and only if n is even. If n is even, these sin-
gularities are terminal quotient singularities Zn := 1

n+1 (1,−1, 2) where the canonical divisor
is not Cartier.

Proof. – µn+1 := {ζ|ζn+1 = 1} acts on the affine plane A2
C by (x, y) 7→ (ζx, ζ−1y),

whence its action on A2
C × P1

C,

(x, y)(ξ : η) 7→ (ζx, ζ−1y)(ζξ : ζ−1η).

If n is odd, n + 1 = 2k and ζk acts trivially on P1
C; we see that we get a corresponding

1-dimensional singular locus, analytically isomorphic to A1 × A1
C.

Assume now that n is even, so that each nontrivial group element has only two fixed
points, namely, for x = y = ξ = 0, respectively for x = y = η = 0. At each point, passing to
local coordinates, we see that we have a singularity of type Zn, the quotient Zn := A3

C/µn+1

by the action where (x, y, z) 7→ (ζx, ζ−1y, ζ2z). This singularity is well known to be terminal
(see [11]), and the Zariski canonical divisor KZ there is not Cartier because the differential
form dx ∧ dy ∧ dz is not invariant, being multiplied by ζ2 (only (n+ 1)KZ is Cartier).

Over the real numbers, however, we have different forms of theAn singularities, as we men-
tioned in the beginning.

The following two lemmas are essentially known by [8] (the case A+
n is contained in The-

orem 8.1) but we state and prove them explicitly for the reader’s benefit.
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L 7.4. – Let n be an even number and define Y −n to be the projectivized tangent bun-
dle of a singularity of typeA−n , and define analogously Y +

n for a singularity of typeA+
n . Y ±n has

terminal isolated singularities and the real part Y −n (R) is a PL-manifold of real dimension 3,
while the real part Y +

n (R) is contained in the smooth locus of Y +
n .

The natural projection Y +
n (R) → A+

n (R) is a Seifert fibration with a multiple fibre of mul-
tiplicity (n+ 1) over the origin, while Y −n (R)→ A−n (R) is a topologically trivial S1-bundle.

Proof. – We treat first the A−n -case. We consider the real group scheme µ−n+1 :=

{ζ|ζn+1 = 1} which acts on the affine plane A2
R by (x, y) 7→ (ζx, ζ−1y), whence its ac-

tion on A2
R × P1

R,
(x, y)(ξ : η) 7→ (ζx, ζ−1y)(ζξ : ζ−1η)

is such that each nontrivial group element has only two fixed points, namely, the point where
x = y = ξ = 0, respectively the one where x = y = η = 0. At each point, passing to local
coordinates, we see that we have a singularity of type Z−n , the quotient Z−n := A3

R/µ
−
n+1 by

the action where (x, y, z) 7→ (ζx, ζ−1y, ζ2z).
Let us now observe that Z−n sits inside a Galois sandwich

A3
R
ψ2→ Z−n

ψ1→ A3
R

where ψ2 is the quotient morphism and the composition Φ := ψ1 ◦ ψ2 is given by

Φ(x, y, z) := (xn+1, yn+1, zn+1)

(the coordinates of ψ2 are just a set of invariant monomials including xn+1, yn+1, zn+1, xy,
y2z). Since Φ induces a homeomorphism Φ(R) : A3

R → A3
R, our claim is established if we

show that in the real part of the sandwich

R3 ψ2(R)→ Z−n (R)
ψ1(R)→ R3

the polynomial map ψ2(R) is surjective.
Take a point P ∈ Z−n (R): since it maps under ψ1(R) to R3, there exist a real point

(x, y, z) ∈ R3 and elements ζi ∈ µn+1, for i = 1, 2, 3, such that P = ψ2(ζ1x, ζ2y, ζ3z). Since
however ζ1xζ2y ∈ R and (ζ2y)2ζ3z ∈ R, we get: ζ1ζ2 ∈ R, (ζ2)2ζ3 ∈ R. Since n+ 1 is odd,
then ζ2 = ζ−1

1 and ζ3 = ζ−2
2 = ζ2

1 : we have thus proven that P = ψ2(x, y, z).
Similarly, we see that the quotient morphism R2 → A−n (R) is a homeomorphism. Hence,

the product fibration R2×P1
R(R) descends to a topologically trivial S1-bundle over A−n (R).

The case of the A+
n -case is simpler but more interesting. The action of µn+1(C) :=

{ζ ∈ C|ζn+1 = 1} on the affine plane A2
C is given by

(x+ iy, x− iy) 7→ (ζ(x+ iy), ζ−1(x− iy)).

The action is defined over R since

(x, y) 7→ (Re(ζ)x− Im(ζ)y, Im(ζ)x+Re(ζ)y),

and it defines an action of the real group scheme µ+
n+1 := {(a, b)|(a + ib)n+1 = 1} on A2

R
given by

(x, y) 7→ (ax− by, bx+ ay).

The ring of real invariant polynomials is generated, if we set P := (x + iy)n+1, by u :=

(P + P̄ ), v := 1
i (P − P̄ ), w := (x2 + y2), which satisfy the equation of A+

n , u2 + v2 = wn+1.
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The cyclic group stabilizes R2, and the origin is the only fixed point, while the action on
A2

R × P1
R has no real fixed points, hence Y +

n (R)→ A+
n (R) is a Seifert bundle and the multi-

plicity over the origin is n+ 1.

R 7.5. – As a consequence of the previous lemma, given any real Du Val surface X
with onlyA+

n singularities with n even, the projectivized tangent bundle ofX, W ′ := P(TX) is
a 3-fold with terminal singularities, such that

i) the real part W ′(R) is contained in the smooth locus of W ′,
ii) W ′(R) is orientable.

The previous remark allows us to construct the desired real 3-fold, thus proving Theo-
rem 0.4.

Observe that in the course of the proof we construct some interesting examples of real Del
Pezzo surfaces of degree 1 such that the corresponding Bertini involution on the plane (the
involution associated to the bianticanonical map) is conjugate to a linear transformation.

Proof of Theorem 0.4. – We begin by constructing a family of weak Del Pezzo surfaces as
the blow-up of the real projective plane in 8 real points. We obtain then a family of Del Pezzo
surfaces Y , having two real A−2 singularities, and two real and non isolated A1 singularities.
For certain values of the parameters, once we represent the Del Pezzo surface Y as the double
cover of the quadric coneQ branched on the vertex of the cone and on a real branch curveB,
then the twoA1 points give rise to two isolated real points of the real partB(R) of the branch
curve.

Using then the generalization of Brusotti’s theorem given in Theorem 4.3 of [1], we can
take a small deformation which leaves unchanged the two real A−2 singularities, but deforms
the two A1 points replacing the two isolated points of B(R) by two small ovals.

We obtain then a real Del Pezzo surface Z of degree 1 with exactly two real A−2 singu-
larities, and our desired real Del Pezzo surface X is finally constructed as the same complex
surface Z, but with a new real structure σ′ := σ ◦ i, where σ is the real involution of Z, and
i : Z → Z is the Bertini involution, the covering involution of the bianticanonical morphism,
yielding Z as a double cover of the quadric cone Q.

In terms of this last representation, this simply amounts to exchanging the region of posi-
tivity with the region of negativity. For this reason, X has now twoA+

2 singularities, and the
inside of the two ovals are now regions of positivity; we conclude that the connected com-
ponents of X(R) consist of two spheres S2, and of a component homeomorphic to the real
projective plane, and containing the two A+

2 singularities.
In order to provide the defining equations for these Del Pezzo surfaces, consider now the

plane R2 with coordinates (u, v) and in it the two pairs of lines

L+ ∪ L− := {u2 − v2 = 0}

L1 ∪ L−1 := {u2 − 1 = 0}.

Each pair of lines shall yield a respective A2 configuration on our Del Pezzo surfaces of
degree 1. We choose in fact eight points in the plane, such that each of the four lines contains
four of them, namely the set

{(1, 1), (1,−1), (−1, 1), (−1,−1), (1 + δ, 1 + δ), (−1− δ, 1 + δ), (1, 1 + ε), (−1, 1 + ε)}.
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We see easily that the configuration is symmetric with respect to the real involution i such
that i(u, v) = (−u, v), and this symmetry is responsible of the fact that there is a conic
D containing the following symmetrical set of six points: {(1, 1), (−1, 1), (1 + δ, 1 + δ),
(−1− δ, 1 + δ), (1, 1 + ε), (−1, 1 + ε)}.

Similarly, there is a conic D′ containing the following symmetrical set of six points:
{(1,−1), (−1,−1), (1 + δ, 1 + δ), (−1− δ, 1 + δ), (1, 1 + ε), (−1, 1 + ε)}.

We let Ỹ be the blow-up of the real projective plane in the above eight points. We claim
that Ỹ is a weak Del Pezzo surface of degree 1, i.e., that its anticanonical divisor is nef (it is
big since it clearly satisfies K2

Ỹ
= 1).

This claim follows right away from the fact that, if we take homogeneous coordinates
(u, v, t) on P2, the system of cubics through the eight points is the pencil spanned by the
two cubics

x0 := (u2 − v2)(v − (1 + ε)t), x1 := (u2 − t2)(v − (1 + δ)t),

whose proper transforms meet only (transversally) in the point ‘at infinity’ v = t = 0.

The bianticanonical morphism φ of Ỹ is the double covering of the quadric cone
Q = P(1, 1, 2) given by (x0, x1, y2), where

y2 := (u2 − v2)(u2 − t2)((δv − ε(1 + δ)t)2 − (δ − ε)2u2)

has as set of zeros the union of six lines and passes doubly through the 8 points, but does not
vanish on the base point of the anticanonical pencil (hence, y2 is not a linear combination of
x2

0, x0x1, x
2
1).

The morphism φ clearly factors through the quotient of Ỹ by the involution i (φ(u, z, t) =

ψ(u2, v, t)) and we have then a factorization φ = ψ ◦ π, where ψ : Ỹ /i → Q, and π is the
quotient projection. Hence it follows that ψ contracts the images under π of the (−2)-curves
on Ỹ , and that the branch curve B ⊂ Q is the image under φ of the projective line u = 0.

The branch curve B is irreducible of arithmetic genus 4, and it has 4 singular points, cor-
responding to the blow-down of the curves D,D′, L+ ∪ L−, L1 ∪ L−1: hence we conclude
that the only (−2)-curves on Ỹ lie on the corresponding fibres of the anticanonical pencil,
and a direct inspection shows that there are no other (−2)-curves on Ỹ .

We want now to find a choice of the parameters such that the curves D,D′ are real and
do not intersect the line u = 0, thereby yielding two real isolated double points of the branch
curve B(R).

These conditions lead to some inequalities holding among δ, ε, but a simple solution is
obtained choosing

δ = 1, ε = −1.

For this choice we get

x0 = (u2 − v2)v, x1 = (u2 − t2)(v − 2t), y2 = (u2 − v2)(u2 − t2)((2t+ v)2 − 4u2)

D = {−2(u2 − t2) + 3v(v − t) = 0}, D′ = {−2(u2 − t2) + v(v + t) = 0.

Whence, the line u = 0 meets D and D′ in two pairs of complex conjugate points.

Using now the plane representation of the quadric cone (a main tool in [1]) given by
the rational map (x2

0, x0x1, y2), we see that the line u = 0 maps to x := x1/x0, y :=
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F 5.

y2/x
2
0, and using the inhomogeneous coordinate v on the line u = 0, we obtain x = v−2

v3 ,

y = (v+2)2

v4 ≥ 0.
We get y ≥ 0, y = 0 for v = ∞, v = −2, and the corresponding points of B are:

(0, 0)(1/2, 0).
Choosing t as local coordinate at v =∞, we get x = t2(1− 2t), y = t2(2t+ 1)2, whence

at (0, 0) B has an ordinary cusp with non vertical tangent.
The rational function x only ramifies for v = 0, 3,∞, and for v = 3 we get the point

x = 1
27 , y = 25

81 . For v = 0 we must go to the other chart of our Segre-Hirzebruch surface

F2, and setting x′ = x0/x1, y
′ = y2/x

2
1, we get the parametrization x′ = v3

v−2 , y
′ = v2(v+2)2

(v−2)2 ,
showing that the point x′ = y′ = 0 of B is an ordinary cusp with vertical tangent.

Observe however that, since on our surface Ỹ

y = v−2(u2 − v2)−1(u2 − 1)((2 + v)2 − 4u2),

and as u→∞ y → −∞, the image of Ỹ (R) (region of positivity for the double cover) is the
one beneath the curve B(R). Moreover, the isolated real double points of the branch curve
B(R) are not isolated points of the real Del Pezzo surface Ỹ (R), whence they lie in the region
of positivity. Since we blew up 8 real points in the plane, we have for the Euler characteristic
(which we calculate through the Z/2 Betti numbers): e(Ỹ (R)) = 1− 8 = −7.

After contracting the six (−2)-curves to the two A−2 singularities and the two
A1-singularities, we obtain a Du Val Del Pezzo surface Y with e(Y (R)) = −1.

As already announced, we obtain a Du Val Del Pezzo surface Z with two A−2 singulari-
ties using a small deformation on Y which realizes the following local deformations: no lo-
cal deformation at the A−2 singularities, and, at the A1 singularities, which are of the form
z2 = a2 +b2, for suitable local coordinates (a, b) on the quadric coneQ, a small deformation
of type z2 = a2 + b2 − r2, where r is a small real number. The existence of this global de-
formation is guaranteed by [1, Theorem 4.3]; in practice, some simple calculations show that
this deformation is obtained by simply moving the 8 points on the four linesL+, L−, L1, L−1

but breaking the symmetry u 7→ −u.
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This deformation produces on the one side a real Du Val Del Pezzo Z with
e(Z(R)) = −3, on the other side it produces two real ovals in the branch curve B(R),
whose respective interiors are now in the region of negativity.

F 6.

We define now X as the same complex surface as Z, but with real structure σ ◦ i, i being
the Bertini involution. Now the region of positivity and negativity are exchanged, since the
old real function z is replaced by iz := w; hence, instead of having z2 = f(x, y), we obtain
w2 = −f(x, y).

Clearly X(R) consists of a real projective plane with two A+
2 singularities, together with

two spheres. The (R-) minimality of X (see e.g. [7]) is a consequence of the following

L 7.6. – X has real Picard number ρ(X) = 1.

Proof. – Let S be the minimal resolution of singularities of X, and observe that
ρ(S) = ρ(X) + 2, since the blow-up of a real singular point of type A+

2 yields a pair of
complex conjugate (−2)-curves. Arguing as in Lemma 5.3 we calculate

ρ(S) = b1(S(R)) + λ(S) = 1 + λ(S).

Here, by the definition of λ,

2λ(S) = b∗(S(C))− b∗(S(R)) = 11− (2 + 2 + 3) = 4.

Whence λ(S) = 2, ρ(S) = 3, ρ(X) = 1. This concludes the proof of the lemma.

The remaining assertions follow from Lemma 7.4, and most of them were already men-
tioned in the previous remark: observe finally that a real projective plane with two points of
multiplicity 3 is an orbifold of hyperbolic type, since 1− 2

3 −
2
3 = − 1

3 < 0.

R 7.7. – János Kollár (e-mail communication) suggested an alternative way to
construct such Del Pezzo surfaces.

He constructs degree 4 curves C ⊂ P2, having 3 components C1, C2, C3 such that C1 has a
cusp and moreover a hyperflex tangent at p ∈ C1.

Assume without loss of generality that the cusp is at (0, 1, 0) with tangent z = 0 and the
hyperflex tangent line at p = (0, 0, 1) is the x-axis. Thus p is the origin for affine coordinates
(x, y). ThenC is defined by an equation y2+a(x)y+cx4 = 0 where a(x) is a cubic polynomial.
This gives 3 components iff the discriminant a(x)2 − 4cx4 has 6 real roots. This holds if a(x)

has 3 positive roots and c is small enough (depending on a(x)). Let us choose now c < 0.Then
the cusp and the point p are on the same component since the discriminant a(x)2 − 4cx4 > 0

for x real and x < 0.
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Consider now the degree 2 Del Pezzo surface Y which is the double cover of the plane
branched on C, and blow up the point p′ lying over p, obtaining a weak singular Del Pezzo
surface S of degree 1.

The inverse image of the tangent line in Y splits into two complex conjugate components,
which are tangent in p′ (w2 − cx4 = 0 in local real holomorphic coordinates).

After the blow-up, we obtain two complex conjugate−2-curves, and contracting them we ob-
tain finally a real Del Pezzo surface X of degree 1 with two A+

2 singularities.

The real part Y (R) has three connected components, all homeomorphic to a sphere. After
the blow-up of p the connected component of S(R) containing p′ is homeomorphic to the real
projective plane. Thus X(R), which is homeomorphic to S(R), has two smooth components
homeomorphic to spheres, and a third component homeomorphic to the real projective plane,
and containing the two A+

2 singularities; this component yields an orbifold of hyperbolic type,
and X has real Picard number 1 by Lemma 7.6.
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