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MONODROMY OF A FAMILY OF HYPERSURFACES

 V DI GENNARO  D FRANCO

A. – Let Y be an (m+1)-dimensional irreducible smooth complex projective variety em-
bedded in a projective space. Let Z be a closed subscheme of Y , and δ be a positive integer such that
IZ,Y (δ) is generated by global sections. Fix an integer d ≥ δ + 1, and assume the general divisor
X ∈ |H0(Y, IZ,Y (d))| is smooth. Denote by Hm(X;Q)van⊥Z the quotient of Hm(X;Q) by the coho-
mology of Y and also by the cycle classes of the irreducible components of dimension m of Z. In the
present paper we prove that the monodromy representation onHm(X;Q)van⊥Z for the family of smooth
divisors X ∈ |H0(Y, IZ,Y (d))| is irreducible.

R. – Soit Y une variété projective complexe lisse irréductible de dimension m+ 1, plongée
dans un espace projectif. Soit Z un sous-schéma fermé de Y , et soit δ un entier positif tel que IZ,Y (δ)

soit engendré par ses sections globales. Fixons un entier d ≥ δ+1, et supposons que le diviseur général
X ∈ |H0(Y, IZ,Y (d))| soit lisse. Désignons par Hm(X;Q)van⊥Z le quotient de Hm(X;Q) par la coho-
mologie de Y et par les classes des composantes irréductibles de Z de dimension m. Dans cet article,
nous prouvons que la représentation de monodromie sur Hm(X;Q)van⊥Z pour la famille des diviseurs
lisses X ∈ |H0(Y, IZ,Y (d))| est irréductible.

1. Introduction

In this paper we provide an affirmative answer to a question formulated in [9].
Let Y ⊆ PN (dim Y = m + 1) be an irreducible smooth complex projective variety em-

bedded in a projective space PN , Z be a closed subscheme of Y , and δ be a positive integer
such that IZ,Y (δ) is generated by global sections. Assume that for d� 0 the general divisor
X ∈ |H0(Y, IZ,Y (d))| is smooth. In the paper [9] it is proved that this is equivalent to the
fact that the strata Z{j} = {x ∈ Z : dim TxZ = j}, where TxZ denotes the Zariski tangent
space, satisfy the following inequality:

(1) dim Z{j} + j ≤ dim Y − 1 for any j ≤ dim Y.
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518 V. DI GENNARO AND D. FRANCO

This property implies that, for any d ≥ δ, there exists a smooth hypersurface of degree d
which contains Z ([9], 1.2. Theorem).

It is generally expected that, for d � 0, the Hodge cycles of the general hypersurface
X ∈ |H0(Y, IZ,Y (d))| depend only on Z and on the ambient variety Y . A very precise con-
jecture in this direction was made in [9]:

C 1 (Otwinowska - Saito). – Assume deg X ≥ δ + 1. Then the monodromy
representation onHm(X; Q)van⊥Z for the family of smooth divisorsX ∈ |H0(Y,OY (d))| con-
taining Z as above is irreducible.

We denote by Hm(X; Q)vanZ the subspace of Hm(X; Q)van generated by the cycle classes of
the maximal dimensional irreducible components of Z modulo the image of Hm(Y ; Q)

(using the orthogonal decomposition Hm(X; Q) = Hm(Y ; Q) ⊥ Hm(X; Q)van) if
m = 2 dim Z, and Hm(X; Q)vanZ = 0 otherwise, and we denote by Hm(X; Q)van⊥Z the
orthogonal complement of Hm(X; Q)vanZ in Hm(X; Q)van. The conjecture above cannot
be strengthened because, even in Y = P3, there exist examples for which dim Hm(X; Q)van⊥Z
is arbitrarily large and the monodromy representation associated to the linear system
|H0(Y, IZ,Y (δ))| is diagonalizable.

The authors of [9] observed that a proof for such a conjecture would confirm the ex-
pectation above and would reduce the Hodge conjecture for the general hypersurface
Xt ∈ |H0(Y, IZ,Y (d))| to the Hodge conjecture for Y . More precisely, by a standard argu-
ment, from Conjecture 1 it follows that when m = 2 dim Z and the vanishing cohomology
of the general Xt ∈ |H0(Y, IZ,Y (d))| (d ≥ δ + 1) is not of pure Hodge type (m/2,m/2),
then the Hodge cycles in the middle cohomology of Xt are generated by the image of the
Hodge cycles on Y together with the cycle classes of the irreducible components of Z. So,
the Hodge conjecture for Xt is reduced to that for Y (compare with [9], Corollary 0.5).
They also proved that the conjecture is satisfied in the range d ≥ δ + 2, or for d = δ + 1 if
hyperplane sections of Y have non trivial top degree holomorphic forms ([9], 0.4. Theorem).
Their proof relies on Deligne’s semisimplicity Theorem and on Steenbrink’s Theory for
semistable degenerations.

Arguing in a different way, we prove in this paper Conjecture 1 in full. More precisely,
avoiding degeneration arguments, in Section 2 we will deduce Conjecture 1 from the follow-
ing:

T 1.1. – Fix integers 1 ≤ k < d, and letW = G∩X ⊂ Y be a complete intersec-
tion of smooth divisors G ∈ |H0(Y,OY (k))| and X ∈ |H0(Y,OY (d))|. Then the monodromy
representation on Hm(X; Q)van⊥W for the family of smooth divisors Xt ∈ |H0(Y,OY (d))| con-
taining W is irreducible.

Here we define Hm(X; Q)van⊥W in a similar way as before, i.e. as the orthogonal complement
in Hm(X; Q)van of the image Hm(X; Q)vanW of the map obtained by composing the natural
maps Hm(W ; Q)→ Hm(X; Q) ∼= Hm(X; Q)→ Hm(X; Q)van.

The proof of Theorem 1.1 will be given in Section 4 and consists in a Lefschetz type
argument applied to the image of the rational map on Y associated to the linear system
|H0(Y, IW,Y (d))|, which turns out to have at worst isolated singularities. This approach was
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MONODROMY OF A FAMILY OF HYPERSURFACES 519

started in our paper [2] where we proved a particular case of Theorem 1.1, but the proof
given here is independent and much simpler.

We begin by proving Conjecture 1 as a consequence of Theorem 1.1, and next we prove
Theorem 1.1.

2. Proof of Conjecture 1 as a consequence of Theorem 1.1.

We keep the same notation we introduced before, and need further preliminaries.

N 2.1. – (i) Let Vδ ⊆ H0(Y, IZ,Y (δ)) be a subspace generating IZ,Y (δ), and
Vd ⊆ H0(Y, IZ,Y (d)) (d ≥ δ + 1) be a subspace containing the image of
Vδ ⊗ H0(PN ,OPN (d − δ)) in H0(Y, IZ,Y (d)). Let G ∈ |Vδ| and X ∈ |Vd| be divisors.
Put W := G ∩X. From condition (1), and [9], 1.2. Theorem, we know that if G and X are
general then they are smooth. Moreover, by ([4], p. 133, Proposition 4.2.6. and proof), we
know that if G and X are smooth then W has only isolated singularities.

(ii) In the case m > 2, fix a smooth G ∈ |Vδ|. Let H ∈ |H0(PN ,OPN (l))| be a gen-
eral hypersurface of degree l � 0, and put Z ′ := Z ∩ H and G′ := G ∩ H. Denote by
V ′d ⊆ H0(G′, IZ′,G′(d)) the restriction of Vd on G′, and by V ′′d ⊆ H0(G, IZ,G(d)) the re-
striction of Vd on G. Since H0(G, IZ,G(d)) ⊆ H0(G′, IZ′,G′(d)), we may identify V ′′d = V ′d .
Put W ′ := W ∩ H ∈ |V ′d |. Similarly as we did for the triple (Y,X,Z), using the orthogo-
nal decomposition Hm−2(W ′; Q) = Hm−2(G′; Q) ⊥ Hm−2(W ′; Q)van, we define the sub-
spaces Hm−2(W ′; Q)vanZ′ and Hm−2(W ′; Q)van⊥Z′ of Hm−2(W ′; Q) with respect to the triple
(G′,W ′, Z ′). Passing from (Y,X,Z) to (G′,W ′, Z ′) will allow us to prove Conjecture 1 ar-
guing by induction on m (see the proof of Proposition 2.4 below).

(iii) Let ϕ : W → |V ′′d | (W ⊆ G × |V ′′d |) be the universal family parametrizing the di-
visors W = G ∩ X ∈ |V ′′d |. Denote by σ : W̃ → W a desingularization of W , and by
Uϕ ⊆ |V ′′d | a nonempty open set such that the restriction (ϕ ◦ σ)|Uϕ : (ϕ ◦ σ)−1(Uϕ) → Uϕ
is smooth. Next, let ψ : W ′ → |V ′d | (W ′ ⊆ G × |V ′d |) be the universal family parametriz-
ing the divisors W ′ = W ∩ H ∈ |V ′d |, and denote by Uψ ⊆ |V ′d | a nonempty open set
such that the restriction ψ|Uψ : ψ−1(Uψ) → Uψ is smooth. Shrinking Uϕ and Uψ if nec-
essary, we may assume U := Uϕ = Uψ ⊆ |V ′′d | = |V ′d |. For any t ∈ U put Wt := ϕ−1(t),
W̃t := σ−1(Wt), and W ′t := ψ−1(t). Observe that Wt ∩ Sing(W) ⊆ Sing(Wt), so we may
assume W ′t = Wt ∩ H ⊆ Wt\Sing(Wt) ⊆ W̃t. Denote by ιt and ι̃t the inclusion maps
W ′t → Wt and W ′t → W̃t. The pull-back maps ι̃∗t : Hm−2(W̃t; Q) → Hm−2(W ′t ; Q) give
rise to a natural map ι̃∗ : Rm−2((ϕ ◦ σ)|U )∗Q → Rm−2(ψ|U )∗Q between local systems on
U , showing that=(ι̃∗t ) is globally invariant under the monodromy action on the cohomology
of the smooth fibers of ψ. Finally, we recall that the inclusion map ιt defines a Gysin map
ι?t : Hm(Wt; Q)→ Hm−2(W ′t ; Q) (see [5], p. 382, Example 19.2.1).

R 2.2. – Fix a smooth G ∈ |Vδ|, and assume m ≥ 2. The linear system |Vd| in-
duces an embedding ofG\Z in some projective space: denote by Γ the image ofG\Z through
this embedding. SinceG\Z is irreducible, then also Γ is, and so is its general hyperplane sec-
tion, which is isomorphic to (G∩X)\Z via |Vd|. So we see that, whenm ≥ 2, for any smooth
G ∈ |Vδ| and any general X ∈ |Vd|, one has that W\Z is irreducible. In particular, when
m > 2, then also W is irreducible.
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520 V. DI GENNARO AND D. FRANCO

L 2.3. – Fix a smooth G ∈ |Vδ|, and assume m > 2. Then, for a general t ∈ U , one
has =(ι̃∗t ) = =(PD ◦ ι?t ), and the map PD ◦ ι?t is injective (PD means “Poincaré duality”:
Hm−2(W ′t ; Q) ∼= Hm−2(W ′t ; Q)).

Proof. – By ([13], p. 385, Proposition 16.23) we know that =(ι̃∗t ) is equal to the image of
the pull-backHm−2(Wt\Sing(Wt); Q)→ Hm−2(W ′t ; Q). On the other hand, by ([3], p. 157
Proposition 5.4.4., and p. 158 (PD)) we have natural isomorphisms involving intersection
cohomology groups:

Hm−2(Wt\Sing(Wt); Q) ∼= IHm−2(Wt) ∼= IHm(Wt)
∨(2)

∼= Hm(Wt; Q)∨ ∼= Hm(Wt; Q).

So we may identify the pull-back Hm−2(Wt\Sing(Wt); Q)→ Hm−2(W ′t ; Q) with PD ◦ ι?t .
This proves that =(ι̃∗t ) = =(PD ◦ ι?t ). Moreover, since W ′t is smooth, then
IHm−2(W ′t )

∼= Hm−2(W ′t ; Q) ([3], p. 157). So, from (2), we may identify PD ◦ ι?t with
the natural map IHm−2(Wt) → IHm−2(Wt ∩ H), which is injective in view of Lefschetz
Hyperplane Theorem for intersection cohomology ([3], p. 158 (I), and p. 159, Theorem
5.4.6) (recall that W ′t = Wt ∩H).

We are in position to prove Conjecture 1.

Fix a smooth G ∈ |Vδ|, and a general X ∈ |Vd|. Put W = G ∩ X. Since the mon-
odromy group of the family of smooth divisors X ∈ |H0(Y,OY (d))| containing W is a
subgroup of the monodromy group of the family of smooth divisors X ∈ |H0(Y,OY (d))|
containing Z, in order to deduce Conjecture 1 from Theorem 1.1, it suffices to prove that
Hm(X; Q)van⊥Z = Hm(X; Q)van⊥W . Equivalently, it suffices to prove that Hm(X; Q)vanZ =

Hm(X; Q)vanW . This is the content of the following:

P 2.4. – For any smooth G ∈ |Vδ| and any general X ∈ |Vd|, one has
Hm(X; Q)vanZ = Hm(X; Q)vanW .

Proof. – First we analyze the cases m = 1 and m = 2, and next we argue by induction
on m > 2 (recall that dim Y = m+ 1).

The case m = 1 is trivial because in this case dim Z ≤ dim W = 0.

Next assume m = 2. In this case dim Y = 3 and dim Z ≤ 1. Denote by Z1, . . . , Zh
(h ≥ 0) the irreducible components ofZ of dimension 1 (if there are). Fix a smoothG ∈ |Vδ|
and a general X ∈ |Vd|, and put W = G ∩ X = Z1 ∪ · · · ∪ Zh ∪ C, where C is the resid-
ual curve, with respect to Z1 ∪ · · · ∪ Zh, in the complete intersection W . By Remark 2.2 we
know that C is irreducible. Then, as (co)cycle classes, Z1, . . . , Zh, C generate H2(X; Q)vanW ,
and Z1, . . . , Zh generate H2(X; Q)vanZ . Since Z1 + · · · + Zh + C = δHX in H2(X; Q)

(HX= general hyperplane section of X in PN ), and this cycle comes from H2(Y ; Q), then
Z1 + · · · + Zh + C = 0 in H2(X; Q)van, and so H2(X; Q)vanZ = H2(X; Q)vanW . This con-
cludes the proof of Proposition 2.4 in the case m = 2.

Now assume m > 2 and argue by induction on m. First we observe that the intersection
pairing on Hm−2(W ′; Q)vanZ′ is non-degenerate: this follows from Hodge Index Theorem,
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because the cycles inHm−2(W ′; Q)vanZ′ are primitive and algebraic. So we have the following
orthogonal decomposition:

(3) Hm−2(W ′; Q) = Hm−2(G′; Q) ⊥ Hm−2(W ′; Q)vanZ′ ⊥ Hm−2(W ′; Q)van⊥Z′ .

Let J be the local system on U with fibre given by Hm−2(G′; Q) ⊥ Hm−2(W ′; Q)vanZ′ . We
claim that:

(4) =(ι̃∗) = J .

We will prove (4) shortly after. From (4) and Lemma 2.3 we get an isomorphism:
Hm(W ; Q) ∼= Hm−2(G′; Q) ⊥ Hm−2(W ′; Q)vanZ′ . Taking into account that by Lefschetz
Hyperplane Theorem we have Hm−2(Y ; Q) ∼= Hm−2(G; Q) ∼= Hm−2(G′; Q), and that the
Gysin map Hm(Z; Q) → Hm−2(Z ′; Q) is bijective (because Hm(Z; Q) and Hm−2(Z ′; Q)

are simply generated by the components which are of dimension m or m − 2 of Z and
Z ′ (if there are)), one sees that the natural map Hm(W ; Q) → Hm(X; Q) ∼= Hm(X; Q)

sends Hm−2(G′; Q) in Hm(Y ; Q), and Hm−2(W ′; Q)vanZ′ in Hm(X; Q)vanZ . This proves
Hm(X; Q)vanZ ⊇ Hm(X; Q)vanW . Since the reverse inclusion is obvious, it follows that
Hm(X; Q)vanZ = Hm(X; Q)vanW .

So, to conclude the proof of Proposition 2.4, it remains to prove claim (4). To this
purpose first notice that =(ι̃∗t ) contains Hm−2(W ′t ; Q)vanZ′ , because, by Lemma 2.3, we
have =(ι̃∗t ) = =(PD ◦ ι?t ), and =(PD ◦ ι?t ) ⊇ Hm−2(W ′t ; Q)vanZ′ in view of the quoted
isomorphism Hm(Z; Q) ∼= Hm−2(Z ′; Q). Moreover =(ι̃∗t ) contains Hm−2(G′; Q) because
Hm−2(G′; Q) ∼= Hm−2(G; Q), and Hm−2(G; Q) is contained in =(ι̃∗t ). Therefore we obtain
=(ι̃∗) ⊇ J , from which we deduce that =(ι̃∗) = J . In fact, otherwise, since by induction
Hm−2(W ′t ; Q)van⊥Z′ is irreducible, from (3) it would follow that =(ι̃∗) = Rm−2(ψ|U )∗Q. This
is impossible because for l � 0 the dimension of Hm−2(W ′t ; Q) is arbitrarily large (by the
way, we notice that the same argument proves that J is nothing but the invariant part of
Rm−2(ψ|U )∗Q).

3. A monodromy theorem

In this section we prove a monodromy theorem (see Theorem 3.1 below), which we will
use in next section for proving Theorem 1.1, and that we think of independent interest.

Let Q ⊆ P be an irreducible, reduced, non-degenerate projective variety of dimension
m + 1 (m ≥ 0), with isolated singular points q1, . . . , qr. Let L ∈ G(1,P∗) be a general
pencil of hyperplane sections of Q, and denote by QL the blowing-up of Q along the base
locus of L, and by f : QL → L the natural map. The ramification locus of f is a finite set
{q1, . . . , qs} := Sing(Q)∪{qr+1, . . . , qs}, where {qr+1, . . . , qs} denotes the set of tangencies
of the pencil. Set ai := f(qi), 1 ≤ i ≤ s (compare with [12], p. 304). The restriction map f :

QL\f−1({a1, . . . , as}) → L\{a1, . . . , as} is a smooth proper map. Hence the fundamental
group π1(L\{a1, . . . , as}, t) (t = general point of L) acts by monodromy on Qt := f−1(t),
and so on Hm(Qt; Q). By [10], p. 165-167, we know that f : QL\f−1({a1, . . . , as}) →
L\{a1, . . . , as} induces an orthogonal decomposition: Hm(Qt; Q) = I ⊥ V , where I is the
subspace of the invariant cocycles, and V is its orthogonal complement.
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522 V. DI GENNARO AND D. FRANCO

In the caseQ is smooth, a classical basic result in Lefschetz Theory states that V is gener-
ated by “standard vanishing cycles” (i.e. by vanishing cycles corresponding to the tangencies
of the pencil). This implies the irreducibility of V by standard classical reasonings ([7], [13]).
Now we are going to prove that it holds true also whenQ has isolated singularities. This is the
content of the following Theorem 3.1, for which we did not succeed in finding an appropriate
reference (for a related and somewhat more precise statement, see Proposition 3.4 below).

T 3.1. – Let Q ⊆ P be an irreducible, reduced, non-degenerate projective variety
of dimension m + 1 ≥ 1, with isolated singularities, and Qt be a general hyperplane section
of Q. Let Hm(Qt; Q) = I ⊥ V be the orthogonal decomposition given by the monodromy
action on the cohomology of Qt, where I denotes the invariant subspace. Then V is generated,
via monodromy, by standard vanishing cycles.

R 3.2. – (i) For a particular case of Theorem 3.1, see [12], Theorem (2.2).
(ii) When Q is a curve, i.e. when m = 0, then Theorem 3.1 follows from the well-known

fact that the monodromy group is the full symmetric group (see [1], p. 111). So we assume
from now on that m ≥ 1.

(iii) When Q is a cone over a degenerate and necessarily smooth subvariety of P, then
f : QL → L has only one singular fiber f−1(a1) (i.e. s = 1). In this case π1(L\{a1}, t)
is trivial. Therefore we have that Hm(Qt; Q) = I, V = 0, and Theorem 3.1 follows.

Before proving Theorem 3.1, we need some preliminaries. We keep the same notation we
introduced before.

N 3.3. – (i) Let RL → QL be a desingularization of QL. The decompo-
sition Hm(Qt; Q) = I ⊥ V can be interpreted via RL as I = j∗(Hm(RL; Q)) and
V = Ker(Hm(Qt; Q) → Hm+2(RL; Q)) ∼= Ker(Hm(Qt; Q) → Hm(RL; Q)), where j
denotes the inclusion Qt ⊂ RL. Using standard arguments (compare with [13], p. 325,
Corollaire 14.23) one deduces a natural isomorphism:

(5) V ∼= =(Hm+1(RL − g−1(t1), Qt; Q)→ Hm(Qt; Q)),

where g : RL → L denotes the composition of RL → QL with f : QL → L, and t1 6= t

another regular value of g.
(ii) For any critical value ai of L fix a closed disk ∆i ⊂ L\{t1} ∼= C with center ai and

radius 0 < ρ� 1. As in [7], (5.3.1) and (5.3.2), one may prove that
Hm+1(RL − g−1(t1), Qt; Q) ∼= ⊕si=1Hm+1(g−1(∆i), g

−1(ai + ρ); Q). By (5) we have:

(6) V = V1 + · · ·+ Vs,

where we denote by Vi the image in Hm(Qt; Q) ∼= Hm(g−1(ai + ρ); Q) of each
Hm+1(g−1(∆i), g

−1(ai + ρ); Q). When r + 1 ≤ i ≤ s, we recognize in Vi ⊆ Hm(Qt; Q)

the subspace generated by the standard vanishing cocycle δi corresponding to a tangent
hyperplane section of Q (see [7], [13], [12]).

(iii) Consider again the pencil f : QL → L, and let PL be the blowing-up of P along the
base locus BL. For any i ∈ {1, . . . , s}, denote by Di ⊂ PL a closed ball with center qi and
small radius ε. Define Mi := =(Hm(f−1(ai + ρ) ∩ Di; Q) → Hm(f−1(ai + ρ); Q)), with
0 < ρ � ε � 1. Since Hm(f−1(ai + ρ); Q) ∼= Hm(Qt; Q) ∼= Hm(Qt; Q), we may regard
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Mi ⊆ Hm(Qt; Q). When 1 ≤ i ≤ r, Mi represents the subspace spanned by the cocycles
“coming” from the singularities of Q, and lying in the Milnor fibre f−1(ai + ρ)∩Di. When
r+ 1 ≤ i ≤ s, i.e. when ai corresponds to a tangent hyperplane section of Q, then Vi = Mi.
In general we have:

(7) Vi ⊆Mi for any i = 1, . . . , s.

This is a standard fact, that one may prove as in ([8], (7.13) Proposition). For Reader’s con-
venience, we give the proof of property (7) in the appendix, at the end of the paper.

Now we are going to prove Theorem 3.1

Proof of Theorem 3.1. – Let π : F → P∗ (F ⊆ P∗×P) be the universal family parametriz-
ing the hyperplane sections ofQ ⊆ P, and denote byD ⊆ P∗ the discriminant locus of π, i.e.
the set of hyperplanesH ∈ P∗ such thatQ∩H is singular. At least set-theoretically, we have
D = Q∗ ∪H1 ∪ · · · ∪ Hr, where Q∗ denotes the dual variety of Q, andHj denotes the dual
hyperplane of qj (compare with [12], p. 303).

When the codimension of Q∗ in P∗ is 1, denote by Tt the stalk at t ∈ P∗\D of the lo-
cal subsystem of Rm(π|π−1(P∗\D))∗Q generated by the vanishing cocycle at general point of
Q∗ (compare with [9], p. 373, or [12], p. 306). If the codimension of Q∗ in P∗ is ≥ 2, put
Tt := {0}. In order to prove Theorem 3.1 it suffices to prove that V = T (T := Tt). By
Deligne Complete Reducibility Theorem ([10], p. 167), we may write Hm(Qt; Q) = W ⊕ T ,
for a suitable invariant subspace W . Now we claim the following proposition, which we will
prove below:

P 3.4. – The monodromy representation on the quotient local system with
stalk Hm(Qt; Q)/Tt at t ∈ P∗\D is trivial.

By previous Proposition 3.4 it follows that for any g ∈ π1(L\{a1, . . . , as}, t) and any
w ∈W there exists τ ∈ T such that wg = w + τ . Then τ = wg −w ∈ T ∩W = {0}, and so
wg = w. Therefore W is invariant, i.e. W ⊆ I, and since T ⊆ V and Hm(Qt; Q) = I ⊕V =

W ⊕ T , then we have T = V .

It remains to prove Proposition 3.4. To this aim, we need some preliminaries. We keep
the same notation we introduced before.

Consider again the universal family π : F → P∗ parametrizing the hyperplane sections
of Q ⊆ P. We will denote by Hx the hyperplane parametrized by x ∈ P∗. Fix a point
qi ∈ Sing(Q) (hence i ∈ {1, . . . , r}). For general L, qi is not a base point of the pencil
defined by L, hence QL ∼= Q over qi. Combined with the inclusion QL ⊆ F , we thus have a
natural lift of qi to a point of F , still denoted by qi.

R 3.5. – If Q∗ is contained in Hj for some j ∈ {1, . . . , r}, then Q∗ is degenerate
in P∗, and so Q = Q∗∗ is a cone in P. Therefore, if Q is not a cone, then Q∗ is not contained
in Hj for any j ∈ {1, . . . , r}. In this case, for a general line ` ⊆ Hi, the set ` ∩ Q∗ is finite,
and for any x ∈ `, Hx ∩Q has an isolated singularity at qi.
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N 3.6. – (i) Let ` ⊆ Hi be a general line. For any u ∈ `∩Q∗, denote by ∆◦u an
open disk of `with center u and small radius. Consider the compactK := `\(

⋃
u∈`∩Q∗ ∆◦u).

In the appendix below (see Lemma 5.1) we prove that there is a closed ball Dqi ⊆ P∗ × P,
with positive radius and centered at qi, such that for any x ∈ K the distance function
p ∈ Hx ∩Q ∩Dqi → ||p− qi|| ∈ R has no critical points p 6= qi (we already proved a similar
result in [2], Lemma 3.4, (v)). By ([8], pp. 21-28) it follows that for any x ∈ K there is a closed
ball Cx ⊆ P∗ centered at x, for which the induced map z ∈ π−1(Cx) ∩Dqi → π(z) ∈ Cx is
a Milnor fibration, with discriminant locus given by Hi ∩ Cx. Since K is compact, we may
cover it with finitely many of such Cx’s. So we deduce the existence of a connected closed
tubular neighborhood K of K in P∗, such that the map:

(8) πK : z ∈ π−1(K) ∩Dqi → π(z) ∈ K

defines aC∞-fiber bundle onK\Hi, and whose fibre π−1
K (t) = Ht∩Q∩Dqi , t ∈ K\Hi, may

be identified with the Milnor fibre.
(ii) Let Mi be the local system with fibre Mi,t at t ∈ K\D given by the image of

Hm(Ht ∩ Q ∩ Dqi ; Q) in Hm(Ht ∩ Q; Q) ∼= Hm(Qt; Q). Notice that, for any general
pencil L ∈ G(1,P∗), the local systemMi extends, as a local system, Mi on all L ∩ (K\D)

(compare with Notations 3.3 (iii)). In particular we may assume Mi =Mi,t.

We are in position to prove Proposition 3.4. We keep the same notation we introduced
before.

Proof of Proposition 3.4. – As in ([12], proof of Theorem (2.2)), we need to consider only
the action of π1(P∗\(

⋃
1≤j≤rHj), t).

Consider the finite set A := ` ∩ (
⋃
j 6=iHj), and let a ∈ A be a point. In view of Remark

3.2 (iii), and Remark 3.5, we may assume thatHa∩Q has an isolated singularity at qi. Notice
that, a priori, it may happen that a ∈ ` ∩ Q∗ and so a /∈ K. But in any case, since Ha ∩ Q
has an isolated singularity at qi, as before, for any a ∈ A we may construct a closed ball
D

(a)
qi ⊆ P∗ × P, with positive radius and centered at qi, and a closed ball Ca ⊆ P∗ centered

at a, for which the induced map

(9) z ∈ π−1(Ca) ∩D(a)
qi → π(z) ∈ Ca

is a Milnor fibration with discriminant locus contained in Hi ∪ Q∗. We may assume
Dqi ⊆ D

(a)
qi for any a ∈ A, and, shrinking the disks ∆◦u (u ∈ ` ∩ Q∗) if necessary, we

may also assume that the interior K◦ of K meets the interior C◦a of each Ca. Therefore, in
(K◦ ∩ C◦a)\(Hi ∪Q∗), the bundle (8) appears as a subbundle of (9).

Observe that the image in Hm(Qt; Q)/Tt of the cohomology of (9) coincides with
(Mi,t + Tt)/Tt on (K◦ ∩ C◦a)\(Hi ∪ Q∗). This implies that, in a suitable small analytic
neighborhood L of ` in P∗, the quotient local system (Mi,t + Tt)/Tt extends on all L\D.
Taking into account Picard-Lefschetz formula, and that the discriminant locus of (9) is
contained inHi ∪Q∗, we have that π1(P∗\D, t) acts trivially on (Mi,t + Tt)/Tt. This holds
true for any i ∈ {1, · · · , r}. Hence, in view of (6) and (7), it follows that the monodromy
action is trivial on Hm(Qt; Q)/Tt. This concludes the proof of Proposition 3.4.

By standard classical reasonings as in [7] or [13], from Theorem 3.1 we deduce the follow-
ing:
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C 3.7. – V is irreducible.

Proof. – Let {0} 6= V ′ ⊂ V be an invariant subspace. As before, we may write
Hm(Qt; Q) = U⊕V ′, for a suitable invariant subspace U . Hence we have V = (V ∩U)⊕V ′.
On the other hand, one knows that V is nondegenerate with respect to the intersection form
〈·, ·〉 onQt ([10], p.167). Therefore, for some i ∈ {r+1, . . . , s}, there exists τ ∈ (V ∩U)∪V ′
such that 〈τ, δi〉 6= 0 (Span(δi) := Vi). From the Picard-Lefschetz formula it follows that
the tangential vanishing cycle δi lies in (V ∩ U) ∪ V ′. If δi ∈ V ∩ U , then by Theorem 3.1
we deduce V = V ∩ U (compare with [7], [8], [12], [13]), and this is in contrast with the
fact that {0} 6= V ′. Hence δi ∈ V ′, and by the same reason V ′ = V . This proves that V is
irreducible.

4. Proof of Theorem 1.1

4.1. The set-up

Consider the rational map Y 99K P := P(H0(Y, IW,Y (d))∗) defined by the linear system
|H0(Y, IW,Y (d))|. By [5], 4.4, such a rational map defines a morphism BlW (Y ) → P. We
denote by Q the image of this morphism, i.e.:

(10) Q := =(BlW (Y )→ P).

Set E := P(OY (k) ⊕ OY (d)). The surjections OY (k) ⊕ OY (d) → OY (d) and
OY (k) ⊕ OY (d) → OY (k) give rise to divisors Θ ∼= Y ⊆ E and Γ ∼= Y ⊆ E, with
Θ ∩ Γ = ∅. The line bundle OE(Θ) is base point free and the corresponding morphism
E → P(H0(E,OE(Θ))∗) sends E to a cone over the Veronese variety of Y (i.e. over Y em-
bedded via |H0(Y,OY (d−k))|) in such a way that Γ is contracted to the vertex v∞ and Θ to a
general hyperplane section. In other words, we may viewE, viaE → P(H0(E,OE(Θ))∗), as
the blowing-up of the cone over the Veronese variety at the vertex, and Γ as the exceptional
divisor ([6], p. 374, Example 2.11.4).

From the natural resolution of IW,Y : 0 → OY (−k − d) → OY (−k) ⊕ OY (−d) →
IW,Y → 0, we find that BlW (Y ) = Proj(⊕i≥0IiW,Y ) is contained in E, and that
OE(Θ − dΛ) |BlW (Y )

∼= OBlW (Y )(1) (Λ := pull-back of the hyperplane section of Y ⊆ PN

through E → Y ). Therefore:

(i) we have natural isomorphisms: H0(Y, IW,Y (d)) ∼= H0(Y,OY ⊕ OY (d − k)) ∼=
H0(E,OE(Θ));

(ii) the linear series |Θ| cut on BlW (Y ) the linear series spanned by the strict transforms
X̃ of the divisors X ∈ |H0(Y, IW,Y (d))|, and, sending E to a cone in P over a Veronese va-
riety, restricts to BlW (Y ) to the map BlW (Y )→ Q defined above. Hence we have a natural
commutative diagram:

BlW (Y ) ↪→ E

↓ ↘ ↘
Y 99K Q ↪→ P.
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By the same reason Γ ∩ BlW (Y ) = G̃ (G̃ := the strict transform of G in BlW (Y )). Notice
that G̃ ∼= G since W is a Cartier divisor in G. Similarly X̃ ∼= X when G is not contained
in X;

(iii) since |Θ| contracts Γ to the vertex v∞, the map BlW (Y ) → Q contracts G̃ to
v∞ ∈ Q. Furthermore we have BlW (Y )\G̃ ∼= Q\{v∞} and so the hyperplane sections of Q
not containing the vertex are isomorphic, via BlW (Y ) → Q, to the corresponding divisors
X ∈ |H0(Y, IW,Y (d))|;

(iv) by (ii) above, G̃ is a smooth Cartier divisor in BlW (Y ), hence G̃ is disjoint with
Sing(BlW (Y )). On the other hand, from ([4], p. 133, Proposition 4.2.6. and proof) we
know that Sing(W ) is a finite set. The singularities of BlW (Y ) must be contained in the
inverse image of Sing(W ) via BlW (Y ) → Y : this is a finite set of lines none of which lying
in Sing(BlW (Y )) because G̃ meets all such lines. Therefore Sing(BlW (Y )) must be a finite
set, and so also Sing(Q) is. Observe also that G̃ is isomorphic to the tangent cone to Q at
v∞, and its degree is k(d− k)mdeg Y . Hence Q is nonsingular at v∞ only when Y = Pm+1,
k = 1 and d = 2. In this case X is a smooth quadric, therefore dim Hm(X; Q)van⊥W ≤ 1, and
Theorem 1.1 is trivial. So we may assume v∞ ∈ Sing(Q).

4.2. The proof

We are going to prove Theorem 1.1, that is the irreducibility of the monodromy action on
Hm(X; Q)van⊥W . The proof consists in an application of previous Corollary 3.7 to the variety
Q ⊆ P defined in (10). We keep the same notation we introduced in 4.1.

Proof of Theorem 1.1. – Consider the variety Q ⊆ P defined in (10). By the description
of it given in 4.1, we know thatQ is an irreducible, reduced, non-degenerate projective variety
of dimension m+ 1 ≥ 2, with isolated singularities.

Let L ∈ G(1,P∗) be a general pencil of hyperplane sections of Q, and denote by QL the
blowing-up of Q along the base locus of L, and by f : QL → L the natural map (com-
pare with Section 3). Denote by {a1, . . . , as} ⊆ L the set of the critical values of f . The
fundamental group π1(L\{a1, . . . , as}, t) (t = general point of L) acts by monodromy on
f−1(t), and so on Hm(f−1(t); Q), and this action induces an orthogonal decomposition:
Hm(f−1(t); Q) = I ⊥ V , where I is the subspace of the invariant cocycles, and V is its
orthogonal complement. By Corollary 3.7 we know that V is irreducible.

On the other hand, in view of 4.1, we may identify f−1(t) with a general
Xt ∈ |H0(Y, IW,Y (d))|, and the action of π1(L\{a1, . . . , as}, t) with the action induced
on Xt by a general pencil of divisors in |H0(Y, IW,Y (d))|. So, in order to prove Theo-
rem 1.1, it suffices to prove that Hm(Xt; Q)van⊥W = V . This is equivalent to prove that
I = Hm(Y ; Q) + Hm(Xt; Q)vanW . Since the inclusion Hm(Y ; Q) + Hm(Xt; Q)vanW ⊆ I is
obvious, to prove Theorem 1.1 it suffices to prove that:

(11) I ⊆ Hm(Y ; Q) +Hm(Xt; Q)vanW .

To this purpose, let BL ⊆ Q be the base locus of L. Since v∞ /∈ BL, then we may re-
gard BL ⊆ BlW (Y ) via BlW (Y ) → Q. Notice that BL ∼= Xt ∩ML, for a suitable general
ML ∈ |H0(Y,OY (d − k))|. Let BlW (Y )L be the blowing-up of BlW (Y ) along BL, and
consider the pencil f1 : BlW (Y )L → L induced from the natural map BlW (Y )L → QL.
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We haveQL\f−1({a1, . . . , as}) ∼= BlW (Y )L\f−1
1 ({a1, . . . , as}). So, ifRL → BlW (Y )L de-

notes a desingularization of BlW (Y )L, then the subspace I of the invariant cocycles can be
interpreted via RL as I = j∗(Hm(RL; Q)), where j denotes the inclusion Xt ⊆ RL.

Denote by W̃ and ›BL the inverse images of W ⊆ Y and BL ⊆ BlW (Y ) in RL. The map
RL → Y induces an isomorphism α1 : RL\(W̃ ∪›BL) → Y \(W ∪ (Xt ∩ML)). Consider
the following natural commutative diagram:

Hm(RL; Q)
ρ1→ Hm(RL\(W̃ ∪›BL); Q)

α↓ ‖ α1

Hm(Y ; Q)
ρ2→ Hm(Y \(W ∪ (Xt ∩ML)); Q)

β↓ ↓β1

Hm(Xt; Q)
ρ3→ Hm(Xt\(W ∪ (Xt ∩ML)); Q)

where α is the Gysin map, and fix c ∈ I = j∗(Hm(RL; Q)). Let c′ ∈ Hm(RL; Q) such that
j∗(c′) = c. Since β1 ◦ α1 ◦ ρ1 = ρ3 ◦ j∗, then we have: ρ3(c) = (ρ3 ◦ β ◦ α)(c′). Hence we
have c − β(α(c′)) ∈ Ker ρ3 = =(Hm(Xt, Xt\(W ∪ (Xt ∩ML)); Q) → Hm(Xt; Q)). Since
Hm(Xt, Xt\(W ∪ (Xt ∩ML)); Q) ∼= Hm(W ∪ (Xt ∩ML); Q) ([5], (3), p. 371), we deduce
c−β(α(c′)) ∈ =(Hm(W ∪(Xt∩ML); Q)→ Hm(Xt; Q) ∼= Hm(Xt; Q)). So to prove (11), it
suffices to prove that =(Hm(W ∪ (Xt ∩ML); Q)→ Hm(Xt; Q) ∼= Hm(Xt; Q)) is contained
in Hm(Y ; Q) + =(Hm(W ; Q)→ Hm(Xt; Q) ∼= Hm(Xt; Q)).

SinceW has only isolated singularities, andML is general, thenW ∩ML andXt∩ML are
smooth complete intersections. From Lefschetz Hyperplane Theorem and Hard Lefschetz
Theorem it follows that the natural map Hm−1(W ∩ML; Q) → Hm−1(Xt ∩ML; Q) is in-
jective. Hence, from the Mayer-Vietoris sequence of the pair (W,Xt ∩ML) we deduce that
the natural mapHm(W ; Q)⊕Hm(Xt ∩ML; Q)→ Hm(W ∪ (Xt ∩ML); Q) is surjective. So
to prove (11) it suffices to prove that =(Hm(Xt ∩ML; Q) → Hm(Xt; Q) ∼= Hm(Xt; Q)) is
contained in Hm(Y ; Q). And this follows from the natural commutative diagram:

Hm(Xt ∩ML; Q) ∼= Hm−2(Xt ∩ML; Q)
ρ← Hm−2(Y ; Q) ∼= Hm+4(Y ; Q)

↓ ↓∩ML

Hm(Xt; Q) ∼= Hm(Xt; Q) ← Hm(Y ; Q) ∼= Hm+2(Y ; Q),

taking into account that ρ is an isomorphism by Lefschetz Hyperplane Theorem. This proves
(11), and concludes the proof of Theorem 1.1.

5. Appendix

Proof of property (7). – First notice that since f−1(∆i) − D◦i → ∆i is a trivial fiber
bundle (D◦i = interior of Di), then the inclusion (f−1(a), f−1(a) ∩ Di) ⊆ (f−1(∆i),

f−1(∆i)∩Di) induces natural isomorphismsHm(f−1(a), f−1(a)∩Di; Q)∼= Hm(f−1(∆i),

f−1(∆i)∩Di; Q) for any a ∈ ∆i (use [11], p. 200 and 258). So, from the natural commutative
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diagram:

Hm(f−1(ai + ρ); Q)
β→ Hm(f−1(ai + ρ), f−1(ai + ρ) ∩Di; Q)

α↓ ‖
Hm(f−1(∆i); Q) → Hm(f−1(∆i), f

−1(∆i) ∩Di; Q),

we deduce that Kerα ⊆ Kerβ = Mi.
On the other hand, since the inclusion f−1(ai + ρ) ⊆ f−1(∆i) is the composition of the

isomorphism f−1(ai + ρ) ∼= g−1(ai + ρ) with g−1(ai + ρ) ⊆ g−1(∆i), followed by the
desingularization g−1(∆i)→ f−1(∆i), we have: Vi ⊆ Kerα.

L 5.1. – Let ` ⊆ Hi be a general line. For any u ∈ ` ∩ Q∗, denote by ∆◦u an open
disk of ` with center u and small radius. Consider the compact K := `\(

⋃
u∈`∩Q∗ ∆◦u). Then

there is a closed ball Dqi ⊆ P∗ × P, with positive radius and centered at qi, such that for any
x ∈ K the distance function p ∈ Hx ∩Q ∩Dqi → ||p− qi|| ∈ R has no critical points p 6= qi.

Proof. – We argue by contradiction. Suppose the claim is false. Then there is a sequence
of hyperplanes yn ∈ K, n ∈ N, converging to some x ∈ K, and a sequence of critical points
pn 6= qi for the distance function onHyn ∩Q, converging to qi (we may assume pn is smooth
for Hyn ∩ Q). Let Tpn,Q, T ′pn,Hyn∩Q and sqi,pn be the corresponding sequences of tangent
spaces and secants, and denote by rqi,pn ⊆ sqi,pn the real line meeting qi and pn. We may as-
sume they converge, and we denote by T , T ′, s and r their limits (r ⊆ s). Since pn is a critical
point, then rqi,pn is orthogonal to T ′pn,Hyn∩Q, hence r 6⊆ T ′, and so T is spanned by T ′ ∪ s
by dimension reasons. Since T ′ ∪ s ⊆ Hx then T ⊆ Hx, so Hx contains a limit of tangent
spaces of Q, with tangencies converging to qi. This implies that x ∈ Q∗, contradicting the
fact that x ∈ K.
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