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HERMAN’S LAST GEOMETRIC THEOREM

 B FAYAD  R KRIKORIAN

A. – We present a proof of Herman’s Last Geometric Theorem asserting that if F is a
smooth diffeomorphism of the annulus having the intersection property, then any given F -invariant
smooth curve on which the rotation number of F is Diophantine is accumulated by a positive measure
set of smooth invariant curves on which F is smoothly conjugated to rotation maps. This implies in
particular that a Diophantine elliptic fixed point of an area preserving diffeomorphism of the plane is
stable. The remarkable feature of this theorem is that it does not require any twist assumption.

R. – Nous présentons une preuve du dernier théorème géométrique d’Herman qui affirme
que, si un difféomorphisme F de l’anneau possède la propriété d’intersection, alors toute courbe C∞

F -invariante, sur laquelle le nombre de rotation de F est diophantien, est accumulée par un ensemble
de mesure positive de courbes invariantes C∞ sur lesquelles F est C∞-conjuguée à une rotation. Ceci
implique en particulier la stabilité des points fixes elliptiques diophantiens des difféomorphismes du
plan qui préservent l’aire. Le caractère remarquable de ce théorème est qu’il ne requiert aucune condi-
tion de torsion.

1. Introduction

In his 1998 ICM address [8], M. Herman asked the following question: “Let f be
a C∞- diffeomorphism preserving the Lebesgue measure of T1 × [−1, 1], homotopic to
the identity, that has a finite number of periodic points (...) and is such that the rota-
tion number ρ(f|T1×[−1,1]) = α satisfies a diophantine condition. Is f C∞-conjugated to
Rα(θ, r) = (θ + α, r)?

I would expect a counter-example, but there is some evidence in the opposite direction.
We will show elsewhere this is the case if f is C∞-close to Rα and [in this case] f is always

C∞-conjugated to Rα near T1 × {±1}.”
By “Herman’s Last Geometric Theorem” (1), we shall refer to the latter local rigidity result

(see Corollary 1 for an exact statement), together with Herman’s discovery that an invariant

(1) This denomination was suggested to us by A. Katok
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194 B. FAYAD AND R. KRIKORIAN

diophantine circle of an area preserving planar diffeomorphism is always accumulated by a
positive measure set of invariant circles (see exact statement in Theorem 1).

It is possible to trace back Herman’s first statement of the theorem no later than 1995
in his “Séminaire de Systèmes Dynamiques” at the Université Paris VII, and later on in the
same seminar at various occasions. To our knowledge, Herman never wrote a complete proof
of the theorem and the only available material was a set of notes (given to the participants
of the aforementioned seminar) where he explained the strategy of the proof. It is based on
this strategy that we give here a complete proof of “Herman’s last geometric Theorem”. Of
course, the content of the paper is under the responsibility of the authors.

Aknowledgement. – We are greatful to Anatole Katok and Jean-Paul Thouvenot for their
continuous interest in the progress of this paper.

1.1. Stability and Ergodicity

Probably the best way to introduce Herman’s last geometric theorem is in its relation to the
stability question of elliptic fixed points. Indeed, the study of the (Lyapunov) stability of fixed
points is a fundamental problem in the theory of dynamical systems and its applications.

In the case of an area-preserving plane diffeomorphism f , the fixed points are classified
accroding to the eigenvalues of the Jacobian df at these fixed points in the following way. If
the eigenvalues of df are distinct, then the fixed point is said to be hyperbolic if they are real,
and the point is said to be elliptic if they lie on the unit circle. In the exceptional case of two
equal eigenvalues ±1, the point is called parabolic.

While it has been known since very long that hyperbolic fixed points are unstable, the ques-
tion of stability of elliptic fixed points remained essentially unsolved until the discovery of
KAM theory (named after Kolmogorov, Arnol′d and Moser).

Prior to that, Birkhoff had introduced an important tool for the study of stability, the so
called normal forms. They give a simple description, up to canonical change of coordinates,
of the map near an elliptic fixed point, in the spirit of Taylor series for real functions. For
a smooth map F fixing the origin, a normal form expression of order N is given in polar
coordinates (θ, r) by

(θ, r) 7→

(
θ +

N−1∑
i=0

air
i + ϕ1(θ, r), r + ϕ2(θ, r)

)
where ϕ1 and ϕ2 vanish with their derivatives up to order N − 1 at r = 0.

Birkhoff proved that if a C∞ map F has an irrational elliptic fixed point, i.e. with eigen-
values that are not roots of unity, then it admits, after canonical coordinate changes, normal
forms at any order. He further showed that there exists a formal power series that conjugates
F to a complete normal form (θ+

∑∞
i=0 air

i, r) . Clearly, a map that is exactly a normal form
(θ +

∑∞
i=0 air

i, r) is completely integrable and thus stable at the origin. Not surprisingly,
complete integrability turns out to be too much to ask (it was known to Poincaré that reso-
nant tori usually break up under small perturbations of a completely integrable system) (2)

(2) Note however that, in the holomorphic case, complete integrability is equivalent to stability; see Siegel’s theorem
in the next section.
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HERMAN’S LAST GEOMETRIC THEOREM 195

and it was shown by Siegel that the formal power series that conjugate F to a complete nor-
mal form are in general divergent.

Nevertheless, Birkhoff normal forms proved to be very useful in the result of stability
discovered by Moser [10] in line with Kolmogorov’s seminal approach asserting the persis-
tence of a positive measure set of invariant circles when a completely integrable system is
perturbed, provided a non-degeneracy condition is imposed on the initial system (here the
Birkhoff normal form). One invariant circle being sufficient for Lyapunov stability, it indeed
follows from usual KAM theory that if the series ai contains nonzero terms (torsion) then
an irrational elliptic fixed point is stable. Actually, Moser proved the stability of an elliptic
fixed points in finite regularity (C4), provided that the eigenvalues merely avoid the six roots
of unity of order 1, 2, 3, 4, and that a1 6= 0 in the Birkhoff normal form of order 2. The latter
is of course a generic transversality condition.

On the other hand, Anosov and Katok constructed in [1] smooth area preserving diffeo-
morphisms of the unit disc in R2, with an irrational elliptic fixed point at the origin, that are
ergodic. These examples showed that the existence of torsion was necessary in establishing
stability in the KAM setting, at least when no arithmetical conditions, besides avoiding the
first six roots of unity or even having irrational arguments, are imposed on the eigenvalues.

In fact, besides being infinitely tangent to the rotation at the origin, the Anosov-Katok
examples were obtained only for a family of rotation numbers (arguments of the eigenval-
ues) at the origin that contained a denseGδ-set of the circle but that avoided all Diophantine
numbers.

While the strength of Moser’s result lies in the fact that stability is insured by the finite
number of conditions stated above, its non-zero torsion condition involves the behavior of
the map in the neighborhood of the fixed point. A tantalizing question naturally arose, to
decide whether as it is the case with instability for hyperbolic fixed points, a sole information
on the Jacobian at a fixed elliptic point could be enough to insure stability.

This is precisely what was established in the real analytic category by H. Rüssmann who
proved in [11] the following dichotomy, that implies stability, if the rotation number of the
fixed elliptic point satisfies a Brjuno condition: either the Birkhoff normal form has some non
zero term, in which case Moser’s Theorem applies, or the Birkhoff form completely vanishes and
the map is analytically linearizable in the neighborhood of the fixed point.

This dichotomy clearly fails in the smooth category, as is shown by the following example
(in cylindrical coordinates): (r, θ) 7→ (r, θ + α+ e−1/r).

Thus, the question of whether an elliptic fixed point with a Diophantine rotation number
(satisfying no a priori twist condition) is always stable remained unsolved for smooth maps
until Herman gave it an affirmative answer as a corollary of his last geometric theorem

T 1. – Let F be a smooth diffeomorphism of the annulus having the intersection
property. Then given a smooth curve Γ invariant by F on which the rotation number α of F is
Diophantine, it holds that Γ is accumulated by a positive measure set of smooth invariant curves
on which F is smoothly conjugated to rotation maps.

The result stems actually from the following alternative: either there is an open neigh-
borhood of Γ on which F is conjugated to a rigid rotation of the annulus of rotation num-
ber equal to that of F on Γ or Γ is accumulated by smooth invariant curves on which F is
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196 B. FAYAD AND R. KRIKORIAN

smoothly conjugated to rotation maps with frequencies covering a positive measure set inside
a Diophantine class obtained by slightly relaxing the Diophantine condition on α.

Besides the elegance and conciseness of the result, its importance lies in the fact that in
many of the physical situations where quasi-periodic stability is involved, the non degeneracy
of torsion is either hard to prove or at least untrue at the first orders.

The technique used to prove the theorem is based on a general approach to KAM theory
where useful dynamical informations are obtained from Whitney dependent normal forms
(which are derived from a systematic use of Hamilton’s Implicit function theorem in judicious
Fréchet spaces). This approach proved to be very helpful in dealing with delicate KAM prob-
lems such as, for example, Herman’s rigorous approach to a proof of Arnol’d’s results on the
stability of the solar system (a proof of which was nicely written by Jacques Féjoz [5]).

Before stating more precisely the main results of this paper, let us mention that the ergodic
examples of Anosov and Katok on the unit disc were extended in [4] to cover all Liouville
rotation numbers at the origin (and the boundary) which gives, together with Herman’s last
geometric theorem, an additional example of the complete dichotomy between Diophantine
stable and Liouville unstable paradigms.

T 2 ([4]). – For any given Liouville number α, there exists a smooth area-
preserving diffeomorphism of the unit disk, preserving the boundary and having rotation
number α on the boundary, which is weakly mixing with respect to Lebesgue measure.

In fact, the method of the proof of Theorem 1 shows that given a Diophantine class to
which α belongs, there exists a class of differentiability of the map F that insures the valid-
ity of Theorem 1, with however invariant curves that will have less regularity than the map F
itself. On the other hand, given a Diophantine class, it is also possible to construct by quanti-
tative Anosov-Katok methods, as the one used in [4], weakly mixing examples as in Theorem
2 but with finite regularity.

1.2. Results

We now pass to a more detailed description and precise statement of Herman’s results.
We denote the circle by T = R/Z. We denote by Diffr+(T), r ∈ N ∪ {∞} the group of

orientation preserving diffeomorphisms of the circle of class Cr. We represent the lifts of
these diffeomorphisms as elements ofDr(T), the group of Cr-diffeomorphisms f̃ of the real
line such that f̃ − IdR is Z-periodic.

Following Poincaré, one can define the rotation number of a circle homeomorphism f

as the uniform limit ρ(f) = lim|j|→∞(f̃ j(x) − x)/jmod[1], where f̃ j (j ∈ Z) denotes the
j-th iterate of a lift f̃ to R of f . A rotation map of the circle with angle α, that we denote by
Rα : x 7→ x+ α, has clearly a rotation number equal to α.

Denote the infinite annulus by A = T×R. We shall use coordinates (θ, r) on A. We denote
by Diff∞0 (A) the set of diffeomorphisms of the annulus that are homotopic to the identity (see
Section 2). Denote by C∞(R) the set of smooth real maps f : R→ R and by C∞(T,R) the
set of smooth real maps f ∈ C∞(R) that are 1-periodic.

We denote by Γ0 the circle T×{0} in A. More generally, we shall call circle in A any closed
curve Γ = {(θ, γ(θ))}θ∈T, where γ belongs to C∞(T,R). For c ∈ R, we denote by Gc the set
of circles Γ = {(θ, γ(θ)), θ ∈ T} such that

∫
T γ(θ)dθ = c.
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HERMAN’S LAST GEOMETRIC THEOREM 197

We say that a diffeomorphism F ∈ Diff∞0 (A) has the intersection property if for any
non homotopically trivial continuous curve Γ ⊂ A, F (Γ) ∩ Γ 6= ∅. A circle is said to
be F -invariant if F (Γ) = Γ, that is, if there exists f ∈ Diff∞+ (T) such that F (θ, γ(θ)) =

(f(θ), γ(f(θ))). The restriction of F on Γ is then said to be smoothly conjugate to a rotation
Rβ on Γ if there exists h ∈ Diff∞+ (T) such that f = h ◦ Rβ ◦ h−1. In this case, we will say
that F is linearizable on Γ.

We denote by Sα the rotation of angle α on the annulus, that is the map

A→ A
Sα : (θ, r) 7→ (θ + α, r).

Finally, for a pair of constants (σ, τ) such that σ > 0 and τ > 1, we denote by DC(σ, τ)

the set of real numbers α satisfying the Diophantine condition:

∀(k, l) ∈ N∗ × Z, |k.α− l| > 1

σ |k|τ
.

If τ > 1 and σ is big enough then DC(σ, τ) has positive Lebesgue measure. The set DC(τ) :=⋃
σ>0 DC(σ, τ) is by definition the set of Diophantine numbers of exponent τ and is a set

of full Lebesgue measure provided τ > 1. Without any further specification, a diophantine
number is a point in

⋃
τ>0 DC(τ).

T 3. – Assume that F ∈ Diff∞0 (A) satisfies the following assumptions:

• Γ0 is F -invariant and the rotation number α = ρ
(
F|Γ0

)
of the circle diffeomorphism in-

duced by F on Γ0 is Diophantine;
• F has the intersection property.

Then, Γ0 is accumulated by F -invariant circles on which F is linearizable.

More precisely, given any pair of constants (σ, τ) such that σ > 0 and τ > 1, we will obtain
ε > 0 and a C1 map β : (−ε, ε) → R such that whenever β(c) ∈ DC(σ, τ), there exists an
F -invariant circle Γ(c) ∈ Gc on which the restriction of the diffeomorphism F is C∞-conjugate
to the rotation Rβ(c).

Also, if we consider σ′ < σ and τ ′ > τ+1, there exists ε1 for which the following alternative
holds:

1. either the application β is locally constant at 0 ∈ (−ε1, ε1), in which case there exists
an F -invariant neighborhood O of the circle Γ0 in A such that the diffeomorphism F

restricted to O is C∞-conjugate to the rotation Sα on the annulus A.
2. or the application β is not constant at 0 in which case for any 0 < ε′ < ε1, we have

Leb1 (β(−ε′, ε′) ∩DC(σ′, τ ′)) > 0, that is, the frequencies on the invariant circles accu-
mulating Γ0 cover a set of positive Lebesgue measure. Moreover, denoting by GF (ε1) the
set of F -invariant circles contained in T× (−ε1, ε1), we have Leb2(GF (ε1)) > 0.

R 1. – A diffeomorphism F ∈ Diff∞0 (A) preserving the area and fixing some cir-
cle Γ has the intersection property, hence the consequences of the theorem hold for an area
preserving diffeomorphism of the annulus. On the other hand, if it is not assumed that the
diffeomorphismF has the intersection property the proof of Theorem 3 would provide trans-
lated curves (F (Γ) = Γ + µ, µ ∈ R) instead of invariant ones.
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198 B. FAYAD AND R. KRIKORIAN

R 2. – The following alternative also holds (“locally constant” in the alternative
of last Theorem being replaced by “constant”)

1. either the application β is constant on (−ε1, ε1), in which case there exists an invariant
neighborhood O of the circle Γ0 in A foliated by the circles Γ(c), c ∈ (−ε1, ε1) such that
the diffeomorphism F restricted to O is C∞-conjugate to the rotation Sα on the annu-
lus A.

2. or the application β is not constant on (−ε1, ε1) in which case

Leb1 (β(−ε1, ε1) ∩DC(σ′, τ ′)) > 0 and Leb2(GF (ε1)) > 0.

R 3. – If the diffeomorphism F is only defined on A+ = T × [0,∞), the results
of the theorem remain true with β defined on [0, ε) instead of (−ε, ε). The reason is that F
can be extended to a smooth diffeomorphism of A. It is not necessary however to require the
intersection property for the extended map beyond A+, since this property is only used in the
proof of Theorem 3 to insure that a translated curve is actually invariant. We refer the reader
to the appendix for further details.

R 4. – There exists an integer k (resp. k1) depending only on σ, τ for which the
constants ε (resp. ε1) in the preceding theorem can be chosen uniformly in F as long as (3)

‖F − Sα‖k 6 1 (resp. ‖F − Sα‖k1 6 1).

A consequence of the alternative described in Theorem 3 is the following local rigidity
result for diffeomorphisms of the closed annulus T× [0, 1] that are free of periodic points (4)

and that satisfy a Diophantine condition on the boundary. We denote by Diff∞0 (T × [0, 1])

the subset of Diff∞0 (A) of diffeomorphisms fixing the circles Γ0 = T×{0} and Γ1 = T×{1}.

C 1. – For any pair of positive constants (σ, τ) such that τ > 1, there exist η > 0

and s ∈ N such that given any F ∈ Diff∞0 (T× [0, 1]) satisfying the following conditions:

• ρ
(
F|Γ0

)
∈ DC(σ, τ),

• F has the intersection property,
• F has only finitely many periodic points in T× (0, 1),
• ‖F − Sα‖Cs(T×[0,1]) < η

is C∞-conjugate to Sα on T× [0, 1].

M. Herman asked whether the rigidity result of Corollary 1 remains true in a global set-
ting, i.e. without the assumption that F is close to Sα.

Q 1. – Can one find a C∞-diffeomorphism F on T × [0, 1] with the intersection
property, having a Diophantine rotation numberα on one of the boundary circles and no periodic
point in T× [0, 1], that is not C∞-conjugate on T× [0, 1], to the map Sα : (θ, r) 7→ (θ+α, r)?

(3) If U is an open set of Rd, f : U → R is a smooth map, we define the Ck-norm ‖f‖Ck(U) of f (or for short

‖f‖k) by ‖f‖k := max|j|6k supx∈Rd |∂jf(x)|, where we use Whitney’s notations: if j = (j1, . . . , jd) ∈ Nd we

define |j| = j1 + · · ·+ jd and ∂jf = ∂
ji
1 · · · ∂

jd
d

f .
(4) Or equivalently have only a finite number of periodic points.
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HERMAN’S LAST GEOMETRIC THEOREM 199

1.3. Examples of application: Elliptic fixed points and Siegel Theorem

Let F : D→ D, F (x, y) = (f(x, y), g(x, y)) be a smooth diffeomorphism of the disk such
that F (0) = 0. We say that 0 is an irrational elliptic fixed point if DF (0) (the derivative of
F at 0) has eigenvalues of the form e±2πiα, α ∈ R − Q. As is well known, one can reduce
the study of such a diffeomorphism to that of a map of the annulus in the following way.
First, one can assume (after conjugation) that DF (0) is a rotation matrix of angle α. If we
introduce the diffeomorphism H : T × (R − {0}) → C − {0} ' R2 − {(0, 0)} defined by
H(θ, r) = re2πiθ ' (r cos(2πθ), r sin(2πθ)) one has F ◦H(θ, r) = e2πiαre2πiθU(θ, r). The
function

U(θ, r) =
f(r cos(2πθ), r sin(2πθ)) + ig(r cos(2πθ), r sin(2πθ)))

re2πi(θ+α)

is clearly C∞ and equals 1 on R/Z × {0}; the function logU(θ, r) is then also smooth on a
neighborhood of R/Z×{0}, where log is a branch of logarithm such that log 1 = 0. Conse-
quently, there exist smooth functions Θ(θ, r), R(θ, r) (R(θ, r) > 0) such that on a neighbor-
hood of R/Z× {0}

R(θ, r)e2πiΘ(θ,r) = U(θ, r), F ◦H(θ, r) = rR(θ, r)e2πi(θ+α+Θ(θ,r)).

This proves that the function F̄ := H−1 ◦F ◦H can be extended as a smooth function which
is clearly a diffeomorphism of T× R.

Geometric properties of F such as the intersection property translate to F̄ . A nice ap-
plication of this fact in the holomorphic setting was given by M. Herman to provide a new
proof of Siegel Theorem: if f(z) = e2πiαz + O(z2) is a holomorphic germ and if α is Dio-
phantine, then it is linearizable at 0. Indeed, if we denote by f̄ : A+

δ → C the smooth map
of the annulus provided by the previous construction, we see that f̄ restricted to T × {0} is
the Diophantine rotation by angle α. This map has the intersection property because other-
wise this would mean that f sends a neighborhood of 0 ∈ D strictly inside itself; but, this
is clearly impossible by Schwarz Lemma. Hence, there is some f -invariant circle around 0,
which means the existence of an invariant domain around 0. Conformal representation and
Scharwz Lemma give the conclusion.

Theorem 3 has also an immediate consequence for surface diffeomorphisms. We recall
that a fixed point p for a surface diffeomorphism f is said to be elliptic if the JacobianDf(p)

of f at the point p is an elliptic matrix. We then say that p is Diophantine if Df(p) is con-
jugate to a rotation matrix with a Diophantine angle α. Diophantine elliptic periodic points
are defined similarly.

T 4. – Let f be a surface diffeomorphism that has the intersection property. If p
is a Diophantine elliptic periodic point for f with period q, then p is accumulated by a positive
measure set of fq-invariant circles. In particular, an area preserving surface diffeomorphism with
a Diophantine elliptic periodic point is not ergodic.
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200 B. FAYAD AND R. KRIKORIAN

2. Notations and Preliminaries

Define the set Diff∞(A) of smooth diffeomorphisms F of the annulus as follows:

A→ A
F : (θ, r) 7→ (f(θ, r), g(θ, r)),

where f and g are maps in C∞(R2,R) that are 1-periodic with respect to the first variable.
More generally, for any neighborhood U of the circle Γ0 = {(θ0, 0), θ ∈ T} in the annulus

A, we define the set Diff∞(U,A) of maps F such that:

U → A
F : (θ, r) 7→ (f(θ, r), g(θ, r)),

where f : U → R and g : U → R are smooth maps that are 1-periodic with respect to θ.
We set

C∞0 (T,R) =

ß
v ∈ C∞(T,R)

¡ ∫
T
v(t)dt = 0

™
.

For γ0 ∈ C∞0 (T,R) we set B(γ0, ε)s = {γ ∈ C∞0 (T,R) / ‖γ − γ0‖s < ε}.
We identify any circle Γ = {(θ, γ(θ))}θ∈T with the associated smooth application

γ ∈ C∞(T,R).

2.1. Tame Fréchet spaces/maps

For this section, we refer the reader to [6], [2], [9].
A topological vector space E is said to be locally convex if its topology derives from a

family of seminorms (‖·‖n) (n ∈ N) (a seminorm satisfies all the properties of a norm except
for “‖x‖ = 0 implies x = 0”), that is if the family Ui,j = {(‖x‖i < j−1}, (i, j) ∈ N × N∗,
constitutes a basis of neighborhoods for the topology ofE. The spaceE is Hausdorff if x ∈ E
vanishes if and only if for all n ∈ N, (‖x‖n) = 0.

A Fréchet space is a locally convex topological vector space that is Hausdorff and complete
for the metric given by d(x, y) =

∑
i>0 2−i‖x− y‖i.

E. – The space C∞0 (R/Z) with the topology given by the Cr semi-norms
(‖ · ‖j)j∈N (‖f‖j = supx∈T |∂jf(x)|) is a Fréchet space. More trivially, every Banach space
is a Fréchet space. The collection of norms reduces to a single one.

A graded family of semi-norms on a Fréchet space satisfies ‖x‖i+1 > ‖x‖i for every x ∈ E
and i ∈ N. Any family of semi-norms can be transformed into a graded family by simply
summing up for every i ∈ N the first i semi-norms.

D 1. – A family of smoothing operators on a graded Fréchet space
(E, (‖ · ‖i)i∈N) is a real 1-parameter family (St)t>1 of continuous linear applications
from E to itself, such that there exist an integer r and real constants Cj,k, (j, k) ∈ N2 such
that, for any vector x ∈ E, for any t > 1 and any j 6 k both following inequalities hold:{

‖Stx‖k 6 Ck,jtk−j+r‖x‖j
‖(Id−St)x‖j 6 Cj,k.tj−k+r‖x‖k.

A tame Fréchet space is a graded Fréchet space endowed with a smoothing operators family.
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E. – It is not difficult to see, using Fourier series, that the space C∞0 (T,R) is a
tame Fréchet space. A simple choice for the family St is given by the truncation operators:

(Stf)(x) =
∑

k∈Z,|k|6t

f̂(k)e2πikx, f̂(k) =

∫
T
f(x)e−2πikxdx

for f ∈ C∞0 (R/Z) (f̂(k) is the k-th Fourier coefficient of f ); with this choice one can choose
r = 2. Using Fourier integrals instead of Fourier series, it is possible to prove the existence
of a family of smoothing operators on C∞0 (T,R) for which r = 0 (this is useful when one
wants to prove accurate Hadamard inequalities); see [7].

D 2. – Let E and F be two Fréchet spaces and consider Φ : U → F a contin-
uous map from an open subset U in E to F . The map Φ is said to be Gâteaux differentiable,
if there exists an application

DΦ : U × E → F

(x,∆x) 7→ DΦ(x) ·∆x,

continuous in (x,∆x) and linear in the second variable, such that for every (x,∆x) ∈ U×E,
the following limit exists and satisfies

lim
t→0

Φ(x+ t∆x)− Φ(x)

t
= DΦ(x) ·∆x.

By induction, it is possible to define Ck differentiability of Φ for k > 2. The map Φ is said to
be of class C∞ if it is of class Ck for every integer k.

D 3. – An application Φ : U ⊂ E → F is tame if for any point x0 in U there
exist a neighborhood V of x0 in U , an integer p ∈ N and a sequence of strictly positive con-
stants {cj}j∈N such that for any x ∈ E, for any j ∈ N

‖Φ(x)‖j 6 cj(1 + ‖x‖j+p).

The application Φ is a Ck-tame application (k ∈ N ∪ {∞}) if Φ is of class Ck and if all its
differentials of order j 6 k are tame. We use the notation Φ ∈ Ck(U,F ). The map Φ is a Ck-
tame diffeomorphism if it is invertible and if Φ and its inverse Φ−1 are Ck-tame applications.

R 5. – The integer p that appears in the previous definition is called the differen-
tiability loss of the application Φ, with reference to the particular case where E and F are
graded function spaces endowed with the Ck-topologies.

E. – If Φ is a linear map its tameness is equivalent to the existence of r, p ∈ N
such that for any j ∈ N

‖Φx‖j 6 Cj(‖x‖r + ‖x‖j+p).

P 1 ([6]). – Le M be a compact smooth finite dimensional manifold, and let E
and F be two real vector spaces of finite dimension. Then,

(i) the space C∞(X,E) is a tame Fréchet space
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(ii) the composition map

C∞(X,E)× C∞(E,F )→ C∞(X,F )

(f, g) 7→ g ◦ f,

is well defined and is a C∞ tame map.
(iii) if f ∈ C∞(E,E) is invertible, and if U is a sufficiently small neighborhood of f , then

U → C∞(E,E)

g 7→ g−1,

is a C∞ tame map, where g−1 denotes the inverse map of g.

2.2. Hamilton inversion theorem

T 5 ([6]). – Consider two tame Fréchet spaces E and F , an open set U in E, f a
tame Cr (r > 2, r ∈ N ∪ {∞}) map from U to F , x0 a point in U and y0 = f(x0). Suppose
there exist an open neighborhood V0 of x0 inU and a tame continuous map which is linear in the
second variable: J : V0×F → E and such that if x ∈ V0 thenDf(x) is invertible and its inverse
is J . Then, there exist open neighborhoods V ⊂ V0 and W ⊂ F of x0 and y0 respectively such
that f : V →W is a tame Cr diffeomorphism.

A corollary of the preceding theorem is the implicit function theorem in tame Fréchet
spaces.

C 2 (Implicit function theorem [6]). – Let E,F be two tame Fréchet spaces,
U ⊂ E, V ⊂ F open sets such that (x0, y0) ∈ U × V and G : U × V → F a tame map of
class Cr (r > 2) such that G(x0, y0) = 0. Assume that there exists a tame continuous map
J : U ×V ×F → F linear in the third variable and such that for any (x, y) ∈ U ×V the linear
map DyG(x, y) is invertible and its inverse is J(x, y). Then there exist a neighborhood U0 of
x0 ∈ U , V0 of y0 ∈ V and a map g : U0 → F of class Cr such that for any (x, y) ∈ U0 × V0

the equality G(x, y) = 0 holds if and only if y = g(x).

2.3. The Diophantine condition and the linearized equation.

The following elementary fact known as the triviality of linear cohomology above Dio-
phantine rotations lies nevertheless at the heart of the proof of Theorem 3 and more generally
underlies all the stability results related to the Diophantine paradigm.

P 2. – Let σ > 0, τ > 0 and α ∈ DC(σ, τ). Then, for any smooth map
f ∈ C∞(T,R) and any real number a there exists a unique map g ∈ C∞0 (T,R) such that:

∀θ ∈ T, f(θ) = η + g(θ + α)− ag(θ)

with η =
∫

T f(θ)dθ. Moreover, the application

L̃α,a : C∞(T,R)→ R× C∞0 (T,R)

f 7→ (η, g),

is a C∞-tame (linear) map. In the following we shall denote g by Lα,af .
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Proof. – The proof is obtained by a simple Fourier series computation and is based on
the fact that for any pair of constants (σ, τ) such that σ > 0 and τ > 0, there exists a positive
constant C(σ) such that:

∀α ∈ R, ∀α ∈ DC(σ, τ), ∀n ∈ Z ,

∣∣∣∣ 1

e2iπnα − a

∣∣∣∣ 6 C |n|τ .
R 6. – Actually, the proof of Proposition 2 gives that for any pair of constants (σ, τ)

such that σ > 0 and τ > 0, there exists p(τ) ∈ N and C(σ) such that for α ∈ DC(σ, τ), k ∈ N
and f ∈ C∞0 (T,R)

‖Lα,a(f)‖k 6 C‖f‖k+p

(p = τ + 1 + 1).

R 7. – If the application f is strictly positive, then there exist a positive constant
ν = exp

(∫
T ln f(θ)dθ

)
and a unique strictly positive g ∈ C∞(T,R) such that for every θ ∈ T,

f(θ) = ν
g(θ + α)

g(θ)
.

Here also, the application that associates the map g to the map f is a C∞-tame application
(with a uniform derivative loss as α satisifes a given Diophantine condition).

In the proof of Theorem 3, we need to insure that α is well accumulated (from both sides
and with positive measure) by numbers satisfying a single Diophantine condition. For this,
it is sufficient to relax the Diophantine condition satisfied by α, as shown by the following.

P 3. – Let α ∈ DC(σ, τ). Then, for any 0 < σ′ < σ and τ ′ > τ + 1, and for
any ϕ ∈ C1(R,R) such that ϕ(0) = α, the set {x ∈ [−δ, δ] / ϕ(x) ∈ DC(σ′, τ ′)} has a strictly
positive Lebesgue measure for every δ > 0.

Proof. – We just have to show that for any ε > 0, we have λ[DC(σ′, τ ′)∩(α−ε, α)] > 0, as
well as λ[DC(σ′, τ ′)∩ (α, α+ε)] > 0 (where λ(·) is the one-dimensional Lebesgue measure).
The proof of the two inequalities being identical, we will only consider the latter. For q > 1,
define

Lq =

ß
x ∈ (α, α+ ε) ∃p ∈ Z /

∣∣∣∣x− p

q

∣∣∣∣ < σ′

qτ ′+1

™
.

We want to show that λ[∪q>1Lq] < ε. We actually claim that for ε > 0 sufficiently small
λ[∪q>1Lq] < ε− ε(σ − σ′)/2. Observe first that

λ(Lq) 6
2σ′ε

qτ ′
+

2σ′

qτ ′+1
.

The fact that τ ′ > τ + 1 directly implies that

lim
ε→0

1

ε

∑
q>ε

− 1
1+τ

λ(Lq) = 0.

Hence, there exists ε0 > 0 such that if ε < ε0 we have∑
q>ε

− 1
1+τ

λ(Lq) <
1

2
ε(σ − σ′).
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On the other hand, for any 1 6 q 6 ε−
1

1+τ , x ∈ Lq and since α ∈ DC(σ, τ) we get

x− α > σ

qτ+1
− σ′

qτ ′+1
>
σ − σ′

qτ+1
> ε(σ − σ′)

and the claim follows.

2.4. Plan of the proof of the main result of Theorem 3.

First, the application of the Herman-Yoccoz Theorem on smooth linearizability of dif-
feomorphisms of the circle with Diophantine number allows to reduce the problem to that
of a diffeomorphism of the annulus F fixing Γ0 on which its restriction is a Diophantine
rotation Rα. Using the Diophantine property of α and the intersection property of F we
can perform a change of coordinates that allows to write F , in the neighborhood of Γ0, in a
Birkhoff Normal Form given by F (θ, r) =

Ä
θ + α+

∑N−1
i=1 air

i, r
ä

+ O
(
rN
)
. In this per-

turbative context, it is then possible to look for invariant circles using the Hamilton implicit
function Theorem. To insure the solvability of the linearized equations we have to introduce
parameters as it is the case often in KAM theory. Namely, given a Diophantine frequency
β, then for any sufficiently close to 0 height c, it is possible to find a curve Γ (depending on
β, c) the average height of which on the annulus is c and two parameters λ and µ such that
F (θ, c + γ(θ)) =

(
λ+ h ◦Rβ ◦ h−1, µ+ c+ γ(h ◦Rβ ◦ h−1)

)
where h is a smooth conju-

gacy that depends on c and β. This is the content of Section 5.
It is crucial to note that whenever λ(β, c) = 0, this means that the curve Γ = {(θ, c +

γ(θ))}θ∈T is a translated curve by F (F (Γ) = Γ + µ); and since F is supposed to have the
intersection property, µ is then bound to be null and we end up with an invariant curve c+γ

on which the restricted dynamics of F is C∞ conjugated to Rβ .
The object of Sections 7 and 8 is to let β vary and solve implicitly λ(β(c), c) = 0. For this,

the dependence on β of λ is studied in Section 7 and to insure its regularity β is restricted to
a single Diophantine class K (to fix the loss of differentiability in the linearized equations).
The Whitney dependence of λ on β allows then to extend λ to a C1 function λ̄ defined on a
neighborhood of (0, α) in R2. Since λ̄(β, 0) = λ(β, 0) = α − β, it will be possible to apply
the (usual) Implicit Function Theorem to find a function c 7→ β(c) such that λ̄(β(c), c) = 0.

Now, if β(c) ∈ K, then λ(β(c), c) = λ̄(β(c), c) = 0 and the curve {(θ, c + γ(β(c), c, θ)}θ∈T
is indeed invariant by F with rotation number β(c). The alternative of the Main Theorem
follows hence from the fact that either β happens to be locally constant in the neighborhood
of 0 equal to β(0) = α ∈ K, or β varies and takes on a positive measure set of heights c values
in K since the Diophantine set K is chosen as in Proposition 3 so that α is well accumulated
(from both sides and with positive measure) by numbers in K. This is explained in Section
8.1 while the proof of Corollary 1 is given in Section 8.2.

3. Herman-Yoccoz theorem on the boundary

By the theorem of Herman and Yoccoz ([7], [14]), since the restriction of the smooth dif-
feomorphism F to Γ0 has a Diophantine rotation number α, it is possible to conjugate F , via
a C∞-diffeomorphism of A, to a diffeomorphism fixing Γ0 and equal to the circle rotation
Rα on Γ0. More generally one can prove:
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P 4. – If the diffeomorphism F of A has a smooth invariant graph Γ :=

{(θ, γ(θ)), θ ∈ T} on which the dynamics has a Diophantine rotation number α, then, there
exists a diffeomorphism G of A which sends Γ to Γ0 and such that F̃ := G ◦ F ◦ G−1 has Γ0

as an invariant curve and F̃ restricted to Γ0 is the rotation of angle α.

Proof. – Assume that F (θ, r) = (θ + α + φ(θ, r), ψ(θ, r)) and that F (θ, γ(θ)) =

(f(θ), γ(f(θ))) where f is a diffeomorphism of the circle of rotation number α. By the
theorem of Herman and Yoccoz, there exists a smooth diffeomorphism h of the circle such
that f = h ◦Rα ◦ h−1. If we define K : (θ, r) 7→ (θ, r − γ(θ)) and H : (θ, r) 7→ (h−1(θ), r),
we can take G = H ◦K.

Therefore, we will assume hereafter that F|Γ0
= Rα.

4. Birkhoff normal form reduction

Using the Diophantine property of α and the intersection property of F we get the fol-
lowing Birkhoff Normal Forms for F in the neighborhood of Γ0

(5):

P 5. – For any N > 2, there exist a neighborhood U of Γ0 in the annulus A
and a smooth diffeomorphism G ∈ Diff∞(A) leaving the circle Γ0 invariant, such that

– the smooth diffeomorphism F̃ = G ◦ F ◦ G−1 leaves the circle Γ0 invariant and has the
intersection property;

– there exist (N − 1) constants ai ∈ R, i = 1, . . . , N − 1, and two smooth maps ϕj ∈
C∞(A,R), j = 1, 2 such that, for any (θ, r) ∈ U :

F̃ (θ, r) =

(
θ + α+

N−1∑
i=1

air
i + rNϕ1(θ, r), r + rNϕ2(θ, r)

)
.

We shall use the short hand notation

F̃ (θ, r) =

(
θ + α+

N−1∑
i=1

air
i, r

)
+O

(
rN
)
.

Proof. – Since we assumed that the restriction of F to the circle Γ0 is the rotation map
Rα, we have

F (θ, r) = (θ + α+ φ1(θ)r, φ2(θ)r) +O
(
r2
)
,

with φi ∈ C∞(T,R), i = 1, 2. SinceF is a smooth diffeomorphism, φ2 never vanishes (notice
that the Jacobian ofF at the points (θ, 0) is equal toφ2(θ)). Without any loss of generality, we
can assume that φ2 > 0. Since α is Diophantine, there exist (see Remark 7) g2 ∈ C∞(T,R),
g2 > 0 and a constant C2 > 0 such that: for any θ in T,

φ2(θ) = C2
g2(θ)

g2(θ + α)
.

(5) In the case of an elliptic fixed point of an area preserving surface map, the Diophantine property would not
be necessary and the same Birkhoff normal form can be obtained by a symplectic change of coordinate for any
irrational rotation number [10].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



206 B. FAYAD AND R. KRIKORIAN

Define G2 ∈ Diff∞0 (A) as follows: for any (θ, r) in A,

G2(θ, r) = (θ, g2(θ)r).

Then, conjugating the diffeomorphism F by G2, we get:

F̃ (θ, r) = G2 ◦ F ◦G−1
2 (θ, r) = (θ + α+ φ̃1(θ)r, C2r) +O(r2),

where φ̃1 ∈ C∞(T,R) is defined by φ̃1(θ) = φ1(θ)/g2(θ), for any θ ∈ T. The conjugate
diffeomorphism F̃ has the intersection property, becauseF has it, hence, a posteriori,C2 = 1.

Using the Diophantine property again (see Proposition 2), we get another smooth appli-
cation g1 ∈ C∞(T,R) and a constant a1 such that: for any θ in T,

φ̃1(θ) = a1 + g1(θ)− g1(θ + α).

Define a smooth application G1 ∈ C∞(A) as follows: for any (θ, r) in A,

G1(θ, r) = (θ + rg1(θ), r).

On a neighborhood of Γ0, the applicationG1 induces a smooth diffeomorphism on its image,
and we can assume that G1 is extended to a diffeomorphism of A without altering it in a
neighborhood of Γ0. Also, in the neighborhood of Γ0, the inverse of G has the form

G−1
1 (θ, r) = (θ − rg1(θ) +O(r2), r).

Conjugating the diffeomorphism F̃ by G1, we get: for any (θ, r) in a small neighborhood
of Γ0 in A,

F2(θ, r) = G1 ◦ F̃ ◦G−1
1 (θ, r) = (θ + α+ a1r, r) +O(r2).

Developing further, we can locally write: for any (θ, r) in a small neighborhood of Γ0 in A,

F2(θ, r) = (θ + α+ a1r + φ
(2)
1 (θ)r2, r + φ

(2)
2 (θ)r2) +O(r3),

with φ(2)
i ∈ C∞(T,R), i = 1, 2.

Once again, using the Diophantine condition on α, there exist a constant C(2)
2 and a

smooth application g
(2)
2 ∈ C∞(T,R) such that φ(2)

2 (θ) = C
(2)
2 + g

(2)
2 (θ) − g

(2)
2 (θ + α).

Consider the smooth application G(2)
2 ∈ C∞(A) defined, for any (θ, r) in A, by G(2)

2 (θ, r) =

(θ, r + r2g(θ)). This application induces a local diffeomorphism on some neighborhood of
Γ0 in A. Locally conjugating F2, we thus get: for any (θ, r) in some neighborhood of Γ0,

F̃2(θ, r) = G
(2)
2 ◦ F2 ◦

Ä
G

(2)
2

ä−1
(θ, r) = (θ + α+ a1r + φ̃

(2)
1 (θ)r2, r + C

(2)
2 r2) +O(r3),

where φ̃(2)
1 ∈ C∞(T,R).

Again, the intersection property yields C(2)
2 = 0 a posteriori. In this way, alternating local

coordinate changes of the form (θ, r) 7→ (θ, r+rig(θ)) and (θ, r) 7→ (θ+rig(θ), r) we obtain
the normal form writing announced in the proposition.

In conclusion, and as far as will be necessary for us in the sequel, thanks to Proposition 5
where we take N = 2, we can assume that there exist a constant a1 ∈ R, a neighborhood V
of Γ0 in A and two maps ϕj ∈ C∞(V,R), j = 1, 2 such that for (θ, r) ∈ V

F (θ, r) =
(
θ + α+ a1r + r2ϕ1(θ, r), r + r2ϕ2(θ, r)

)
(1)

with possibly a1 = 0.
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5. Introducing a rotation parameter β

The results contained in this section are valid for a diffeomorphism F ∈ Diff∞(A) that
can be expressed in a neighborhood V of Γ0 as

F (θ, r) = (θ + φ(θ, r), r + r2ψ(θ, r))(2)

with φ, ψ ∈ C∞0 (T× R) such that

φ(θ, 0) = α(3)

for every θ ∈ T. No arithmetic condition on α will be needed.
Clearly, a diffeomorphism as in (1) satisfies the latter conditions.
We set U0 = {u ∈ C∞0 (R/Z) / ‖u‖C1 < 1}, and introduce E = U0 × U0 × T × R. The

goal of this section is to prove the following.

T 6. – Let F ∈ Diff∞0 (A) that satisfies (2)–(3), and let β be a Diophantine num-
ber. Then, there exist ε > 0 and a C∞ map

Ψβ : (−ε, ε) → E

c 7→ (h, γ, λ, µ)

such that the diffeomorphism of the circle h = id + h satisfies

F (θ, c+ γ(θ)) =
(
λ+ h ◦Rβ ◦ h−1, µ+ c+ γ(h ◦Rβ ◦ h−1)

)
.

It is crucial to note that whenever λ(c, β) = 0, this means that (θ, c+ γ(θ)) is a translated
curve by F (F (γ) = γ + µ); and since F is supposed to have the intersection property, µ is
then bound to be null and we end up with an invariant curve c + γ on which the restricted
dynamics of F is C∞ conjugated to Rβ .

It will be the object of the next section to let β vary and solve implicitly λ(c, β(c)) = 0.
For this, the dependence on β of Ψβ will have to be studied and to insure its regularity β will
be restricted to a single Diophantine class.

In the current section however, β will be fixed.

Proof. – We have

F (θ, c+ γ(θ)) =
Ä
θ + φ(θ, c+ γ(θ)), c+ γ(θ) + (c+ γ(θ))

2
ψ(θ, c+ γ(θ))

ä
so that the equations we need to solve with a good choice of h, γ, λ and µ are
Φ1(c, (h, γ, λ, µ))(θ) = 0 and Φ2(c, (h, γ, λ, µ))(θ) = 0 where

Φ1(c, (h, γ, λ, µ))(θ) = λ+ h ◦Rβ ◦ h−1(θ)− (θ + φ(θ, c+ γ(θ)))

Φ2(c, (h, γ, λ, µ))(θ) = µ+ γ(h ◦Rβ ◦ h−1(θ))− γ(θ)− (c+ γ(θ))
2
ψ(θ, c+ γ(θ)).

Let
F = C∞(R/Z)× C∞(R/Z)

(so E and F are isomorphic tame Frechet spaces) and define

Φ : R× E → F

(c, (h, γ, λ, µ)) 7→
Å

Φ1(c, (h, γ, λ, µ)),Φ2(c, (h, γ, λ, µ))

ã
.
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First of all, observe that
Φ(0, 0, 0, α− β, 0) = 0.

Next we want to apply Hamilton’s Implicit Function Theorem (Corollary 2) in the neighbor-
hood of (0, 0, 0, α− β, 0).

Indeed, it is clear that the map Φ is C∞-tame and to prove the existence of the map Ψβ

as in the statement of Theorem 6, it is enough to prove that for any (c, h, γ, λ, µ) in some
neighborhood of (0, 0, 0, α − β, 0) in R × E, the partial derivative D′Φ(c, h, γ, λ, µ) (D′ in
all this section denotes the partial derivative with respect to (h, γ, λ, µ)) is invertible with a
tame inverse.

We start by computing ∆A = D′Φ1(c, h, γ, λ, µ) · (∆h,∆γ,∆λ,∆µ) and ∆B =

D′Φ2(c, h, γ, λ, µ) · (∆h,∆γ,∆λ,∆µ):

∆A = ∆λ+

Å
∆h ◦Rβ −

h′ ◦Rβ
h′

∆h

ã
◦ h−1 − ∂rφ(·, c+ γ)∆γ,(4)

(5) ∆B = ∆µ+ ∆γ(h ◦Rβ ◦ h−1) + γ′(h ◦Rβ ◦ h−1) ·
Å

∆h ◦Rβ −
h′ ◦Rβ
h′

∆h

ã
◦ h−1

−∆γ −
Ä
(c+ γ)

2
∂rψ(·, c+ γ) + 2(c+ γ)ψ(·, γ)

ä
∆γ.

We now prove that if (c, h, γ, λ, µ) is in a small neighborhood of (0, 0, 0, α−β, 0) in R×E,
then given ∆A,∆B one can find (∆h,∆γ,∆λ,∆µ) solving these equations. The system of
equations (4) and (5) is equivalent to (4) and

∆B = ∆µ+ ∆γ(h ◦Rβ ◦ h−1)

+ γ′(h ◦Rβ ◦ h−1) ·
Å

∆A ◦ h+ ∂rφ(h, c+ γ ◦ h)∆γ ◦ h−∆λ

ã
◦ h−1

−∆γ −
Ä
(c+ γ)

2
∂rψ(·, c+ γ) + 2(c+ γ)ψ(·, γ)

ä
∆γ

which in its turn is equivalent to

∆B ◦ h− γ′(h ◦Rβ)∆A ◦ h−∆µ+ γ′(h ◦Rβ)∆λ

= (∆γ ◦ h) ◦Rβ − (1 + η)(∆γ ◦ h)
(6)

where

η = γ′(h ◦Rβ)∂rφ(h, c+ γ ◦ h)

−
Ä
(c+ γ ◦ h)

2
∂rψ(h, c+ γ ◦ h) + 2(c+ γ ◦ h)ψ(h, γ ◦ h)

ä
is small in normC∞ as c is small and γ and h are small in theC∞ topology. Since in addition
β is supposed to be Diophantine, if η is small enough, we can write (cf. Remark 7) 1 + η =

ag ◦Rβ/g where the constant a > 0 is close to 1 and g is some smooth function close to 1 in
the C∞ topology and (6) finally becomes

(7)
1

g ◦Rβ
(∆B ◦ h− γ′(h ◦Rβ)∆A ◦ h−∆µ+ γ′(h ◦Rβ)∆λ)

=

Å
∆γ ◦ h
g

ã
◦Rβ − a

∆γ ◦ h
g

.

4 e SÉRIE – TOME 42 – 2009 – No 2



HERMAN’S LAST GEOMETRIC THEOREM 209

Since β is Diophantine this equation can be solved in ∆γ if the left hand side has zero
mean. More precisely, given ∆λ,∆µ such that

∆µ

∫
T

1

g ◦Rβ
−∆λ

∫
T

γ′(h ◦Rβ)

g ◦Rβ
=

∫
T

∆B ◦ h− γ′(h ◦Rβ)∆A ◦ h
g ◦Rβ

there is a unique ∆γ of zero mean solving equation (7), namely

∆γ = ξg ◦ h−1

+ g ◦ h−1Lβ,a
Å

∆B ◦ h− γ′(h ◦Rβ)∆A ◦ h
g ◦Rβ

− (∆µ− γ′(h ◦Rβ)∆λ)

g ◦Rβ

ã
◦ h−1,

where the constant ξ ∈ R is chosen so that ∆γ has zero mean: this is possible since g is close
to 1. We write this solution as

∆γ = ξg ◦ h−1 + P −∆µQ+ ∆λR,

with

Q = g ◦ h−1Lβ,a
Å

1

g ◦Rβ
−
∫

T

1

g ◦Rβ

ã
◦ h−1

R = g ◦ h−1Lβ,a
Å
γ′(h ◦Rβ)

g ◦Rβ
−
∫

T

γ′(h ◦Rβ)

g ◦Rβ

ã
◦ h−1

ξg ◦ h−1 =

Å
−
∫

T
P + ∆µ

∫
T
Q−∆λ

∫
T
R

ã
g̃, g̃ =

g ◦ h−1∫
T g ◦ h−1

P = g ◦ h−1U

U = Lβ,a
Å

∆B ◦ h− γ′(h ◦Rβ)∆A ◦ h
g ◦Rβ

−
∫

T

∆B ◦ h− γ′(h ◦Rβ)∆A ◦ h
g ◦Rβ

ã
◦ h−1.

Notice that if γ and h are sufficiently small in the C∞ topology it is possible to make R
and Q also small.

The ∆A-equation (4) becomes

∆̃A =

Å
1

h′ ◦Rβ
− ρ

ã
∆λ+ ω∆µ+

Å
∆h

h′
◦Rβ −

∆h

h′

ã
,(8)

where

∆̃A =
1

h′ ◦Rβ

ï
∆A ◦ h+ ∂rφ(h, c+ γ ◦ h)

Å
P ◦ h− g̃ ◦ h

∫
T
P

ãò
,

and

ρ =
∂rφ(h, c+ γ ◦ h)

h′ ◦Rβ

Å
R ◦ h− g̃ ◦ h

∫
T
R

ã
,

ω =
∂rφ(h, c+ γ ◦ h)

h′ ◦Rβ

Å
Q ◦ h− g̃ ◦ h

∫
T
Q

ã
.

We notice again that ρ and ω are small if c, h, and γ are small.

Equation (8) has a unique solution ∆h of mean zero provided

∆λ(

∫
T

1

h′ ◦Rβ
−
∫

T
ρ) + ∆µ

∫
T
ω =

∫
T

∆̃A,
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which equals
∆h = h′Lβ,0(V ) + ζh′

with ζ ∈ R and V defined by

V = ∆̃A− (
1

h′ ◦Rβ
− ρ)∆λ− ω∆µ, ζ = −

∫
T h
′Lβ,0V∫
T h
′ .

The constants ∆λ,∆µ are then determined as the unique solution of the system{
∆λ(

∫
T

1
h′◦Rβ −

∫
T ρ) + ∆µ

∫
T ω =

∫
T ∆̃A

−∆λ
∫

T
γ′(h◦Rβ)
g◦Rβ + ∆µ

∫
T

1
g◦Rβ =

∫
T

∆B◦h−γ′(h◦Rβ)∆A◦h
g◦Rβ

which is invertible since it is almost in triangular form with diagonal close to 1. With this
choice for (∆λ,∆µ) we get ∆h and ∆γ that solve (8) and (7), or equivalently (4) and (5).

To summarize, we have obtained a map Φ : R × E → F (with E and F isomorphic
tame Fréchet spaces) such that Φ is C∞-tame and Φ(0, 0, 0, α− β, 0) = 0, and if we denote
by (c, u) (u = (h, γ, λ, µ)) the variables in R × E, we have proved that for (c, u) in a small
neighborhood of (0, (0, 0, α − β, 0)) then DuΦ is invertible. Furthermore, it is not hard to
see from the proof and from Propositions 2 and 7 that the inverse of DuΦ is in fact tame.
The result of Theorem 6 then follows from Hamilton’s Implicit Function Theorem (Corollary
2).

6. Hamilton’s Theorem in Whitney spaces

6.1. Whitney spaces

We refer the reader to [9] and [5] for this section. Let (E, (‖ · ‖i)) and (F, (‖ · ‖i)) be tame
Fréchet spaces,K a compact set of Rd and ν ∈ R and p ∈ N such that p < ν 6 p+1. We say
that an element x(·) ∈ EK is in Lipν(K,E) if for any 0 6 j 6 p there exist elements x(j)(·)
with x(0) = x and Rj ∈ EK×K such that for any α, β ∈ K

x(j)(β) =
∑
|j+l|6p

x(j+l)(α)

l!
(β − α)l +Rj(β, α),

(we use here Whitney’s multi-indices notations (6)) satisfying the following estimates (for any
j 6 p, α, β):

‖x(j)‖s 6Ms, ‖Rj(β, α)‖s 6Ms|β − α|ν−j .
The choice for the x(j) (j 6= 0) is in general not unique (unless d = 1 andK does not contain
isolated points). We denote by ‖x(·)‖ν,s the infimum of Ms for all the possible choices of
x(j); it is not difficult to check that these are seminorms and that (Lipν(K,E), (‖ · ‖ν,s)) is a
Fréchet space. One can define smoothing operators by

∀β ∈ K, (S(t)x(·))(β) = S(t)x(β),

which makes the Whitney space (Lipν(K,E), (‖ · ‖ν,s)) a tame Fréchet space. We shall often
write (when no confusion is possible) ‖ · ‖s in place of ‖ · ‖ν,s.

(6) If j = (j1, . . . , jd) ∈ Nd, z = (z1, . . . , zd) we define |j| = j1 + · · ·+ jd, j! = j1! · · · jd! and zj = zj1
1 · · · z

jd
d

.

If i is also in Nd we write i 6 j iff i1 6 j1, . . . , id 6 jd. Also
(

j
i

)
is by definition

(
j1
i1

)
· · ·
(

jd
id

)
.
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The notion of tame maps between Whitney spaces is then clear.

6.2. Whitney Extension

We mention a general result about extensions of Whitney regular functions, that we will
only need in the simple case of a finite dimensional target space (E, ‖ · ‖). The preceding
discussion provides us with a norm ‖ · ‖ν on Lipν(Rd, E).

T 7 (Whitney Extension Theorem (cf. [12]). – Let E be a finite dimensional Ba-
nach space. For any integer d > 1, there exists a positive constant κd, such that for any closed set
K ⊂ Rd and any integer ν > 1, there exists a linear extension operator Extν : Lipν(K,E)→
Lipν(Rd, E), such that for any x ∈ Lipν(K,E), Extν(x)|K = x and the following holds:

‖Extν(x)‖ν 6 κd ‖x‖ν .

7. Whitney dependence in β

In this section we improve Theorem 6 into the following central theorem of the paper.

T 8. – Let F ∈ Diff∞0 (A) that satisfies (2)–(3), and let τ , σ be positive numbers
and set K = DC(σ, τ) ∩ [0, 1]. Fix ν > 0. Then, there exist ε > 0 and a C∞-tame map
Ψ : (−ε, ε) → Lipν(K,E) such that if c ∈ (−ε, ε), β ∈ K, and (h, γ, λ, µ) = (Ψ(c))(β), we
have

F (θ, c+ γ(θ)) =
(
λ+ h ◦Rβ ◦ h−1(θ), µ+ c+ γ(h ◦Rβ ◦ h−1(θ))

)
.

The above theorem states that the familly of maps Ψβ obtained by the implicit function
theorem in Theorem 6 actually depends Cν-Whitney on β as β belongs to a compact set of
numbers satisfying a Diophantine condition with fixed constant and exponent.

The rest of the current section is devoted to the proof of Theorem 8. We will see in the next
section how this theorem easily implies Theorem 3. We refer the reader to the last section
of the appendix for further consequences of Theorem 8; in particular we explain how this
normal form theorem can be used to give short proofs of Moser’s Twist Theorem and of a
theorem of Cheng and Sun [3] and Xia [13] (see also the survey of J.-C. Yoccoz [15]).

Rename Φβ the map that was introduced in the proof of Theorem 6. Recall that the
pair (c, u) = (c, (h, γ, λ, µ)) denotes the variables in R × E. If we denote by (uβ)β∈R =

(0, 0, α− β, 0)β∈R we have that Φβ(0, uβ) = 0.
From the proof of the invertibility of DuΦβ in Section 5, it is easy to observe that there

exist l ∈ N and ε > 0 and a ∈ N, such that for every s ∈ N there exists a constant Cs, such
that if |c| 6 ε, ‖h‖Cl 6 ε, ‖γ‖Cl 6 ε, λ, µ ∈ R (|λ| 6 1, |µ| 6 1) and β ∈ K, thenDuΦβ(c, u)

is invertible and if Jβ(c, u) denotes its inverse, we have

‖Jβ(c, u) ·∆u‖s 6 Cs((1 + ‖u‖s+a)‖∆u‖a + ‖∆u‖s+a),

for every |c|, ‖h‖Cl , ‖γ‖Cl 6 ε, for every λ, µ ∈ R (|λ| 6 1, |µ| 6 1) and for every ∆u ∈ E.
This implies Theorem 8 due to the following Implicit Function Theorem that in its turn

will be obtained by the application of Hamilton’s Implicit Function Theorem in some ade-
quate tame Whitney spaces.
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T 9. – Fix ν > 0. Consider three Fréchet spacesE, F andG, two open setsU ⊂ E
and C ⊂ G, a relatively compact open set O ⊂ Rd, d ∈ N, and a C∞-tame application

O × C × U → F

Φ : (β, c, u) 7→ Φβ(c, u) := Φ(β, c, u)

such that there exist c0 ∈ C and u(0) ∈ C∞(O,U) satisfying

∀β ∈ O, Φ(β, c0, u
(0)(β)) = 0.

Assume, moreover, that there exists a closed set K ⊂ O such that the following property
holds: there exist open sets C̃ ⊂ C and Ũ ⊂ U (containing all u(0)(β), β ∈ K) such that for
each β ∈ K, there exists a continuous mapJβ : C̃×Ũ×F → E linear with respect to the third
variable, which is the inverse map of DuΦβ; assume moreover that this map satisfies a uniform
tameness condition: there exists a ∈ N, and for every s ∈ N there exists a constant Cs, such
that

‖Jβ(c, u) ·∆u‖s 6 Cs((1 + ‖u‖s+a)‖∆u‖a + ‖∆u‖s+a),(9)

for every β ∈ K, (c, u) ∈ C̃ × Ũ and ∆u ∈ F .

Then there exist an open neighborhoodC0 of c0 in C̃, a neighborhood V0 of the function u(0)

in Lipν(K, Ũ) and a C∞-tame map Ψ : C0 → V0 such that Φ(β, c, (Ψ(c))(β)) = 0. Moreover,
(c,Ψ(c)(·)) is the unique element of C0 × V0 such that for all β ∈ K this identity is satisfied.

Before giving the proof of Theorem 9 we give a useful specification of the result of Theo-
rem 8.

R 8. – Rescaling the variable r, Equation (1) can be written as

F (θ, r) =
(
θ + α+ δa1r + δ2r2ϕ1(θ, δr), r + δr2ϕ2(θ, δr)

)
.(10)

The same proof as that of Theorem 8 would then yield a smooth tame map Ψ : (−ε, ε)2 →
Lipν(K,E) such that if (c, δ) ∈ (−ε, ε)2, β ∈ K, and (h, γ, λ, µ) = (Ψ(c, δ))(β), then

F (θ, c+ γ(θ)) =
(
λ+ h ◦Rβ ◦ h−1(θ), µ+ c+ γ(h ◦Rβ ◦ h−1(θ))

)
.

But it is clear that for any β, h(c, 0, β) = 0, γ(c, 0, β) = 0, µ(c, 0, β) = 0, while λ(c, 0, β) =

α+ a1c− β. Hence, letting |δ| be sufficiently small, we can consider that for any β ∈ K, the
maps (θ, c) 7→ (θ, c + γ(c, β)(θ)), and (θ, c) 7→ (h(c, β)(θ), c) obtained in Theorem 8, are
smooth diffeomorphisms from some open neighborhood of Γ0 in A onto its images, which
will be useful in the proof of Theorem 3.
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Proof of Theorem 9.

Step 1. – Notice that the map

C × Lipν(K,U)→ Lipν(K,F )

Φ̃ : (c, (uβ)β∈K) 7→ (Φ(β, c, uβ))β∈K

is well defined and C∞-tame. This follows from Taylor formula with integral remainder.

Step 2. – The following proposition shows that under the uniformity condition (9) there is
a tame inverse to D2Φ̃ (where D2Φ̃ denotes the derivative with respect to the variable u(·)):

P 6. – Assume that E and F are two Fréchet spaces and V is an open subset
of E. Assume that

L : Rd × V × E → F

(β, u,∆u) 7→ L(β, u) ·∆u

is a C∞-tame map, linear in the third factor with the following property:

1. for each β ∈ K there exists a continuous tame map linear in the second factor

Jβ : V × F → E

(u,∆u) 7→ Jβ(u) ·∆u,

such that

Jβ(u) · L(β, u) = IdE , L(β, u) · Jβ(u) = IdF .

2. there are constants a,Cs such that for any β ∈ K, any s ∈ N and any (u,∆u) ∈ V × F

‖J(β, u) ·∆u‖s 6 Cs((1 + ‖u‖s+a)‖∆u‖a + ‖∆u‖s+a),

(J(β, u) = Jβ(u)).

Then, for any choice of γ > 0, the map

J : Lipγ(K,V )× Lipγ(K,F )→ Lipγ(K,E)

(u(·),∆u(·)) 7→ J(·, u(·)) ·∆u(·)

is well defined and is a continuous tame map linear in the second factor.

The proof of this proposition will be given in the appendix.

Step 3. – Observe that we have Φ̃(c0, u
(0)(·)) = 0β∈K . From steps 1 and 2, and the hypothe-

sis on the inverse ofDuΦβ we thus obtain by Hamilton’s Implicit Function Theorem (Corol-
lary 2) applied to Φ̃: There existC0 a neighborhood of c0 inC, a neighborhoodV0 of the func-
tion u(0) in Lipν(K, Ũ) and a C∞-tame map Ψ : C0 → V0 such that Φ̃(c,Ψ(c)(·)) = 0β∈K
which satisfies Φ(β, c, (Ψ(c)(β)) = 0 for all c ∈ C0 and all β ∈ K.
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8. Proof of Theorem 3 and Corollary 1

8.1. Proof of Theorem 3

If we take ν = 2 in Theorem 8, we have that λ(·, ·) is in Lip2(K × (−ε, ε),R). Thanks
to Theorem 7, we are thus allowed to consider the extended application λ̄ ∈ C1([0, 1] ×
(−ε, ε),R) such that λ̄(β, c) = λ(β, c) for each (β, c) ∈ K × (−ε, ε). Recall that λ̄(α, 0) =

λ(α, 0) = 0 and that more generally for β ∈ K we have λ̄(β, 0) = λ(β, 0) = α − β. Since α
is not isolated in K (see Proposition 3) we have that ∂βλ̄(α, 0) = −1. We thus obtain by the
implicit function Theorem applied to λ̄ that there exist ε′ > 0 and a C1 map

(−ε′, ε′)→ R
β : c 7→ β(c)

such that λ̄(β(c), c) = 0.

Assume now that c is such that β(c) ∈ K, then λ(β(c), c) = λ̄(β(c), c) = 0 and the curve
c+ γ(β(c), c) obtained in Theorem 8 is µ-translated by F with µ = µ(β(c), c). By the inter-
section property, this implies that µ = 0 and that the curve is actually invariant by F .

There are hence two possible scenarios: in the first one, there exists ε′′ > 0 such that
β(c) = α for all c ∈ [−ε′′, ε′′] in which case the curves c+ γ(c, α) are invariant since α ∈ K.
The annulus O bounded by −ε′′ + γ(−ε′′, α) and ε′′ + γ(ε′′, α) is then completely foliated
by the invariant curves c + γ(c, α), c ∈ [−ε′′, ε′′]. This is due to the continuity of the maps
c 7→ c + γ(c, α)(θ) for any given θ ∈ T. The annulus O is a neighborhood of the circle Γ0

since γ(0, α) = 0. As pointed out in Remark 8, the maps G1 : A′′ε = T × [−ε′′, ε′′] → O,
(θ, c) 7→ (θ, c+γ(c)(θ)), andG2 : A′′ε → A′′ε , (θ, c) 7→ (h(c)(θ), c), are C∞-diffeomorphisms
(here h(c) = h(c, α) and γ(c) = γ(c, α) since β(c) = α on [−ε′′, ε′′] ). The composition
G := G1 ◦G2 gives a C∞-conjugation between F on O and the rotation Sα on the annulus
T× [−ε′′, ε′′].

The second part of the alternative derives from Proposition 3 and from the fact that
c+ γ(c, β(c)) ∈ C∞(T,R) converges to 0 in the C1 topology as c→ 0.

8.2. Proof of Corollary 1

Let us denote by k1 and ε1 > 0 the constants given by Remark 4. Given
F ∈ Diff∞0 (T × [0, 1]) as in Corollary 1, we first extend it to a diffeomorphism of A
such that ‖F − Sα‖Diffk1 (A) < 2η. Next, given the contraction Cε1(θ, r) = (θ, rε1), consider

F = Cε1 ◦ F ◦C−1
ε1 . Since Cε1 ◦ Sα ◦C−1

ε1 = Id, it is plain that if η > 0 is chosen sufficiently
small we will have that the Ck1 distance on T × [−1, 1] between F and Sα is less than 1.
Hence, there exists β : [−ε1, ε1]→ R such that Theorem 3 applies to F but with “translated
circles” instead of invariant ones (cf. Remark 1), namely: if β(c) ∈ DC(σ′, τ ′) there exists
a translated curve Γc. Notice that the circles T × {0}, T × {ε1} are F -invariant and that
the dynamics of F on these circles is Rα. Moreover, the dynamics of F on T × [0, ε1] has
the intersection property. From Section 9.1 of the appendix, any translated curve having a
part in T × [0, ε1] is in fact invariant. The fact that F does not have any periodic point in
the annulus T × [0, ε1] implies by Poincaré’s last geometric theorem that there are no two
invariant curves with different rotation numbers included in this annulus. Hence, β has to
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be constant on [0, ε1]. Now, the arguments given in the previous Subsection 8.1 to conclude
the proof of Theorem 3 apply in this situation also.

9. Appendix

9.1. Diffeomorphisms on the closed semi annulus

Let F be a diffeomorphism of the closed semi annulus A+ := T × [0,∞), having the
intersection property. We can write F (θ, r) = (F1(θ, r), F2(θ, r)) with F2(θ, 0) = 0 for all
θ ∈ T, F2(θ, r) > 0 if r > 0 and we can also assume that F is a Birkhoff normal form: on
R/Z× [0, δ] it is close in C1-topology to the diffeomorphism G : (θ, r) 7→ (θ + α+ P (r), r)

which is defined on the annulus Aδ := R/Z × [−δ, δ], for δ sufficiently small. Since any real
valued smooth function f : [0;∞)→ R can be extended as a smooth function on R, for any
integer k the Fourier coefficients F̂i,k(r) (i = 1, 2) ofFi(·, r), which define a smooth function,
can be extended for any value of r ∈ R. The same is then true for Fi(θ, r). If we denote by
F̄=(F̄1, F̄2) the extended map, it will still be close inC1-topology toG on Aδ := R/Z×[−δ, δ]
(maybe for a smaller δ) and hence F̄ is a diffeomorphism on that annulus. A simple argument
shows thatF±1 sends Aδ∩{r > 0} and Aδ∩{r 6 0} into themselves. We claim that any graph
Γ := {(θ, γ(θ)), θ ∈ T} in Aδ, which has a part above the circle T and such that F̄±(Γ) is in
Aδ has the intersection property. If the graph Γ is strictly above the circle T, this is clear since
F has the intersection property on that region. Otherwise, this means that there exists a graph
Γ which intersects the circle and which has no intersection with its image. This last property
implies that either ∀θ ∈ T, F̄2(θ, γ(θ)) > γ(θ) or ∀θ ∈ T, F̄2(θ, γ(θ)) < γ(θ). Let us assume
that the image of Γ by F̄ is above Γ and let J be the set of points θ ∈ T where F̄2(θ, γ(θ)) > 0.
It is an open set different from T such that g−1(J) ⊂ J where g is the homeomorphism of
the circle defined by g(θ) = F̄1(θ, γ(θ)). Since g−1 coincide with the rotation R−α on the
boundary of J and since g and Rα are homotopic, we also have R−αJ ⊂ J , which is in
contradiction with the fact that J is an open set different from T . The case where the image
of Γ is below Γ, is dealt with in an analogous way.

9.2. Proof of Proposition 6

We sketch the proof in the case ν = p + 1. In the proof we shall make use of Whitney’s
multi-indices notations. Since the map L : Rd × V × E → F is C∞ tame, it holds for any
α ∈ K that there exist tame maps L(j)

α : V × E → E linear in the second factor such that

L
(j)
β (u,∆u) =

∑
|j+l|6p

L(j+l)
α (u) ·∆u (β − α)l

l!
+Rj(β, α, u)∆u,

such that
‖L(j)

α (u) ·∆u‖s 6 Cs(‖∆u‖s+a + ‖u‖s+a‖∆u‖a),

‖Rj(β, α, u)∆u, ‖s 6 Cs(‖∆u‖s+a + ‖u‖s+a‖∆u‖a)|β − α|p+1−j .

Also, L(j)
α (u) ·∆u,Rj(β, α)(u) ·∆u are continuous in (u,∆u). We now define by induction

for any β ∈ K and r : |r| 6 p,

J
(r)
β

r!
= −

∑
06k6r,k 6=0

J
(r−k)
β

(r − k)!

L
(k)
β

k!
J

(0)
β .(11)
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By constructionÅ∑
|l|6p

J (l)
α

(β − α)l

l!

ãÅ∑
|k|6p

L(k)
α

(β − α)k

k!

ã
= id+Mβ−α(12)

where (u,∆u) 7→Mβ−α(u) ·∆u is continuous, tame and is a polynomial in β−α with terms
of total degree larger or equal to p+ 1. We then have by constructionÅ∑

|l|6p

J (l)
α

(β − α)l

l!

ã
Lβ = id+Nβ−α

whereNβ−α is also continuous, tame and polynomial in β−αwith monomials of total degree
not smaller than p+ 1. Since Jβ ◦ Lβ = id we getÅ

Jβ −
∑
|l|6p

J (l)
α

(β − α)l

l!

ã
Lβ = Nβ−α.

Since L−1
β is uniformly tame in the sense of Hypothesis 2 in Proposition 6, we get that

Jβ =
∑
|l|6p

J (l)
α

(β − α)l

l!
+R0(β, α)

where |β − α|−(p+1)R0(β, α) is tame and continuous in (u,∆u).
The consistency relations between each J (l)

α and the corresponding higher order terms can
be checked similarly using uniform tameness of L−1

β and formal identities relating Taylor
expansions ofLwith those of J (in the special case whereK is a compact set without isolated
point of the real line this is easier to prove). Let us be more specific. By definition we have
the following formal identityÅ∑

|l|6p

J (l)
α

T l

l!

ãÅ ∑
|m|6p

L(m)
α

Tm

m!

ã
= id+Qp+1(T )

(where Qp+1 is a polynomial in the indeterminates T1, . . . , Td all terms of which are of total
degree larger or equal to p+ 1). Now, applying the differential operator ∂rT := ∂r1T1

· · · ∂rdTd to
the product in the left hand side and using Leibniz formula we get for any n = (n1, . . . , nd) :

|n| 6 p− |r| ∑
k6r

Ç
r

k

å ∑
l+m=n

J
(k+l)
α

l!

L(r−k+m)

m!
= 0.(13)

We can now prove the consistency relations by induction on r: from (11) and the induction
assumption

J
(r)
β

r!
L

(0)
β = −

∑
k6r:k 6=0

∑
n

(β − α)n
∑

l+m=n

J
(r−k+l)
α

(r − k)!l!

L
(k+m)
α

k!m!

= − 1

r!

∑
k6r:k 6=0

Ç
r

k

å∑
n

(β − α)n
∑

l+m=n

J
(r−k+l)
α

l!

L
(k+m)
α

m!

= − 1

r!

∑
n

(β − α)n
∑

k6r:k 6=0

Ç
r

k

å ∑
l+m=n

J
(r−k+l)
α

l!

L
(k+m)
α

m!
;
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but, in view of (13)

∑
k6r:k 6=0

Ç
r

k

å ∑
l+m=n

J
(r−k+l)
α

l!

L
(k+m)
α

m!
= −

∑
l+m=n

J
(r+l)
α

l!

L
(m)
α

m!

so that

J
(r)
β

r!
L

(0)
β =

1

r!

∑
|n|6p−|r|

(β − α)n
∑

l+m=n

J
(r+l)
α

l!

L
(m)
α

m!
+ Up+1−|r|(β − α)

=
1

r!

Å ∑
|l|6p−|r|

J
(r+l)
α

l!
(β − α)l

ãÅ ∑
|m|6p−|r|

L
(m)
α

m!
(β − α)m

ã
+ Vp+1−|r|(β − α)

whereUp+1−|r|(β−α), Vp+1−|r|(β−α) are polynomials, the monomials of which are of total
degree larger or equal to p+ 1− |r| and are continuous and tame in (u,∆u). Observing that

J
(r)
β =

Å ∑
|l|6p−|r|

J
(r+l)
α

l!
(β − α)l

ã
(id−Rp+1−|r|(β, α)L−1

β ) + Vp+1−|r|(β − α)L−1
β

gives the proof of the consistency relations (here we use again the fact that L−1
β is uniformly

tame). The proof of the proposition is complete. �

9.3. Other applications of the normal form writing of Theorem 8.

Nonzero twist. Moser’s Twist Theorem (see [15]). – Consider the case where F is a pertur-
bation of a twist map F0(θ, r) = (θ + φ(r), r), with φ′ bounded away from zero (this corre-
sponds to a twist coefficient a1 6= 0 in the Birkhoff normal form of F ). The map λ0 associ-
ated to F0 as in Theorem 8 satisfies λ0(c, β) = φ(c) − β, and hence is such that ∂cλ0(c, β)

is bounded away from zero, while λ0(φ−1(β), β) ≡ 0, for every β in the range of φ. By the
(usual) Implicit Function Theorem, it is hence possible to find a map β 7→ c(β) such that
λ(c(β), β) = 0, where λ is the map corresponding to F . This yields an invariant curve of
frequency β, whenever β ∈ DC(σ, τ). Furthermore, to obtain the full strength of Moser’s
Twist Theorem it is sufficient to observe as in Theorem 8 that the map associating an invari-
ant curve to β ∈ DC(σ, τ) is Whitney.

Note that Herman’s Last Geometric Theorem cannot be generalized to symplectic maps
of T ∗Tn ' Tn × Rn, for arbitrary n, although the twisted normal form writing as in The-
orem 8 still holds (if we assume that the map admits a Birkhoff normal form writing after
canonical coordinate change). The reason is that the map c 7→ β(c), even if it is not locally
constant, does not have to pass through a Diophantine vector. Nevertheless, the same argu-
mentation described in this remark does yield Moser’s Twist Theorem in arbitrary dimen-
sion.
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Maps of the solid torus ([3],[13],[15]). – Consider the case where F is a volume preserving
perturbation of a completely integrable solid torus map F0(θ, r) = (θ + φ(r), r), θ ∈ Tn. In
the neighborhood of any invariant torus of F0, it is possible to obtain a normal form writing
for F as in Theorem 8, as well as a map c 7→ β(c) such that λ(c, β(c)) vanishes. Assume that
φ is nonplanar. In this case the map c 7→ β(c) is also nonplanar which forces it to pass by
Diophantine vectors, thus yielding a positive measure set of invariant tori for F .
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