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SIZE MINIMIZING SURFACES

 T D PAUW

A. – We prove a new existence theorem pertaining to the Plateau problem in 3-dimen-
sional Euclidean space. We compare the approach of E.R. Reifenberg with that of H. Federer and W.H.
Fleming. A relevant technical step consists in showing that compact rectifiable surfaces are approxi-
matable in Hausdorff measure and in Hausdorff distance by locally acyclic surfaces having the same
boundary.

R. – Nous obtenons un nouveau théorème d’existence relatif au problème de Plateau dans
l’espace euclidien de dimension 3. Ce faisant, nous comparons les approches d’E.R. Reifenberg d’une
part, et de H. Federer et W.H. Fleming d’autre part. Un pas technique important consiste à démontrer
qu’on peut approcher tout ensemble compact et rectifiable, en mesure de Hausdorff et en distance de
Hausdorff, par une surface localement acyclique ayant le même bord.

PART I

INTRODUCTION

1. Foreword

The Plateau problem can be stated informally like this: Given a boundary B ⊆ R3, we
seek a surface S ⊆ R3 spanningB and having least area among all such surfaces. Solving the
problem partly consists in making sense of the italicized words. One expects that the mini-
mizing surfaces model soap films, which are the objects J. Plateau was interested in, [22]. In
his classical book [3], R. Courant reports on the work of J. Douglas where surfaces are under-
stood as continuous mappings. This setting is shown to be an actual restriction for instance
in W.H. Fleming’s paper [14].

The author is a chercheur qualifié of the Fonds National de la Recherche Scientifique, Belgium.
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38 T. D PAUW

We start by recalling why an application of the direct method of the calculus of variations
may be a troublesome task. Indeed some minimizing sequence may have “thin tentacles”, or
“filigree”, that will not contribute for a lot of area but yet might persist for some substan-
tial part of the limit (e.g. in the sense of Hausdorff distance). Think of B being a (planar)
circle and let S denote the 2-dimensional flat disk bounded by B. Referring to the observa-
tion that the nearest point projection on the plane containing B and S has Lipschitz con-
stant 1 (and therefore does not increase area), we infer that S is the unique area minimizer
in any reasonable sense (1). Choose, for Sj , j = 1, 2, . . . , the flat disk S from which j non-
overlapping small disks have been removed and replaced with “curvy conical” surfaces (the
tentacles) whose vertices are points a1, . . . , aj chosen in advance. This can be done in order
for the total contribution in area of the tentacles to be bounded by j−1, so that S1, S2, . . .

is indeed a minimizing sequence. The reader may enjoy tickling their imagination by staring
at Figures 1.3.1–1.3.4, in [20]. Letting a1, a2, . . . be a dense sequence in space we see that we
can arrange for the Hausdorff limit of that particular minimizing sequence to be the whole
space R3. Therefore the required semicontinuity of area does not hold. One way to circum-
vent the problem is to modify the minimizing sequence (cutting off the tentacles and patch-
ing the holes with controlled disks); another way consists in considering a weaker concept of
convergence of surfaces so that the filigree disappear in the limit. We explain below the two
points of view.

Two nearly simultaneous theories were published in 1960. One by E.R. Reifenberg [23],
and the other by H. Federer and W.H. Fleming [12]. Both dealt with general dimensions and
codimensions — and as a matter of fact this was one of their main striking features —, yet in
this paper we will purposely restrict ourselves to 2-dimensional surfaces in R3. We now turn
to giving a brief account of these contributions.

2. The approach of E.R. Reifenberg

Assume for the sake of illustration thatB ⊆ R3 is a simple closed Jordan curve, andS ⊇ B
is a compact set. We say that B bounds S if the homomorphism H1(B;G) → H1(S;G) in-
duced in homology by the inclusion map is trivial. Upon a moment of reflection it should
be clear that this indeed says that S fills the hole in B (see the intriguing example [23, Ap-
pendix, Example 9] though). The definition also readily depends on G, a fixed “coefficients
group”. Furthermore, as we shall see soon enough the choice of a particular homology
theory is not indifferent. In this setting area is understood as the 2-dimensional spher-
ical measure S 2 (see [11, 2.10.2(2)] for a definition (2)). Letting S1, S2, . . . be any se-
quence of competitors (i.e. compact sets bounded by B in the above sense) converging
to some S in Hausdorff distance we first want to make sure that the boundary condi-
tion is preserved in the limit. This will be the case if we consider Čech homology groups
in the definition of “B bounds S” (see Proposition 17.1). After possibly projecting the
sets Sj , j = 1, 2, . . . , on the convex hull of B we infer from the Blaschke selection

(1) In the present paper we consider only area induced by the Euclidean metric of R3.
(2) In case S is (H 2, 2) rectifiable then S 2(S) = H 2(S) where the latter is the 2-dimensional Hausdorff measure
of S, [11, 3.2.26].
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SIZE MINIMIZING SURFACES 39

principle that some subsequence Sj(1), Sj(2), . . . converges in Hausdorff distance. Be-
fore referring to this principle E.R. Reifenberg performs a careful cutting and pasting
surgery on the sets Sj , j = 1, 2, . . . , in order that semicontinuity of area holds along
the modified minimizing sequence S̃j , j = 1, 2, . . . . Checking that the sets S̃j verify the
same boundary condition as Sj turns out to rely on the Exactness Axiom of Eilenberg-
Steenrod (among many other things of course). This axiom is verified when G is a com-
pact abelian group (see [8, Chap. IX, Theorem 7.6]) but not necessarily otherwise (in
particular exactness does not hold when G = Z, see [8, Chap. X, §4]). Thus existence
theory in this setting is restricted to the case when G is compact and abelian, and in fact
E.R. Reifenberg concentrates on G = Z2 and G the group of reals modulo 1.

We are now ready to state a corollary of E.R. Reifenberg’s work. Letting B ⊆ R3 be
a closed simple Jordan curve and G be a compact abelian group, the following variational
problem admits a minimizer:

(PR,G,B)

{
minimize S 2(S) among compact sets S ⊇ B
such that Ȟ1(iB,S) : Ȟ1(B;G)→ Ȟ1(S;G) is trivial

where iB,S denotes the inclusionB → S. Moreover Reifenberg proves that if S∗ is a (proper)
minimizer of the problem then in a neighborhood of S 2-almost every x ∈ S∗ \ B, the set
S∗ is a topological disk. In a subsequent analysis [24] he was able to improve this regularity
result to showing that at such point S∗ is in fact a real analytic graph.

3. The approach of H. Federer and W.H. Fleming

Here boundaries and surfaces are meant as currents. Anm-dimensional current in R3 is a
continuous linear form on the space Dm(R3) of smooth differential forms of degree m with
compact support. A current T ∈ Dm(R3) is called rectifiable whenever the following holds.
There exist

1. A bounded H m measurable (H m,m) rectifiable set M ⊆ R3;
2. An H m measurable orientation ξ : M → ∧mR3;
3. An H m measurable multiplicity θ : M → Z \ {0};

such that

(1) M(T ) :=

∫
M

|θ|dH m <∞

and

〈T, ω〉 =

∫
M

〈ω, ξ〉θdH m

whenever ω ∈ Dm(R3). By M being (H m,m) rectifiable we mean that H m(M) < ∞
and there are finitely many or countably many m-dimensional submanifolds of class C1,
M1,M2, . . . , such that H m(M \∪jMj) = 0. This impliesM has anm-dimensional approx-
imate tangent space Tanm(M,x) at H m-almost every x ∈M (see e.g. [11, 3.2.16,3.2.19] or
[26, 11.4,11.6]). At such points x ∈M an orientation ξ(x) consists in a unit m vector gener-
ating Tanm(M,x). The integer multiplicity θ can be thought of as the number of sheets pass-
ing through a point. The combinatorics of “sheets” and “multiplicities” accounts for the way
the boundary of T is computed: The boundary operator ∂ of currents is defined by duality
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40 T. D PAUW

F 1. Size minimizing but not mass minimizing

of exterior differentiation, thereby generalizing Stokes’ theorem for smooth orientable sur-
facesM . In this context the area of a 2-dimensional rectifiable current T is understood as the
mass M(T ) defined in (1) — the H 2 measure of the underlying setM counting multiplicities.

The group of m-dimensional rectifiable currents in R3 is denoted by Rm(R3). We say
T ∈ Rm(R3) is an integral current if also ∂T ∈ Rm−1(R3) (3). The group of m-dimensional
integral currents in R3 is denoted by Im(R3). The compactness theorem relevant to the
Plateau problem is the following.

3.1. T (Federer-Fleming). – Let T1, T2, . . . be a sequence of 2-dimensional inte-
gral currents in R3 whose supports are all contained in some fixed compact set, and such that
supj M(Tj) + M(∂Tj) < ∞. There then exists a subsequence Tj(1), Tj(2), . . . converging
weakly* to a 2-dimensional integral current T in R3.

The weak* convergence to a current of some subsequence of T1, T2, . . . follows from the
uniform mass bound together with the Banach-Alaoglu theorem and the separability of
D2(R3). Thus the deep content of the theorem is that the limit T is rectifiable as well. We
notice that the boundary operator ∂ is continuous with respect to weak* convergence and
that mass is lower semicontinuous. The latter follows from the following formula:

M(T ) = sup{〈T, ω〉 : ω ∈ Dm(R3) and ‖ω(x)‖ 6 1 for all x ∈ R3}

where ‖ · ‖ is a suitable norm on ∧mR3. Thus the following variational problem admits a
minimizer:

(PFF,∂T0
)

{
minimize M(T )

among T ∈ R2(R3) with ∂T = ∂T0.

Here T0 ∈ R2(R3) is fixed. The filigree disappear automatically in the weak* limit due to
cancelations of orientations of nearby points in “horizontal sections of the tentacles”.

(3) The condition is void when m = 0.
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4. Mass versus size

Mass minimizing currents model some but not all soap films. For instance if ∂T0 consists
of two similarly oriented circles lying in close parallel planes then the mass minimizer is the
sum of the two oriented flat disks bounded by these circles rather than the singular surface
shown on Figure 1. This is because in order to meet the boundary requirement, a current
supported in that surface must have multiplicity 2 on the middle disk and hence has larger
mass than the two multiplicity 1 disks as is implied by the triangular inequality. As a matter
of fact if T ∗ ∈ R2(R3) is a mass minimizer (a solution of (PFF,∂T0)) then spt(T ∗)\spt(∂T ∗)

is a real analytic submanifold of R3 according to a theorem of W.H. Fleming [15].
The surface shown in Figure 1 can be realized as a soap film. As a current it minimizes size

rather than mass. The size of a rectifiable current T ∈ R2(R3) is the area of the underlying
rectifiable set without counting multiplicities, i.e.

S(T ) = H 2(M) .

The Plateau problem can now be put as follows.

(PFF,S,∂T0)

{
minimize S(T )

among T ∈ R2(R3) such that ∂T = ∂T0

Unfortunately a size minimizing sequence need not be bounded in mass (see the example
given in [7, Introduction, p. 407-408]) so that the compactness theorem 3.1 does not ap-
ply. The paper [7] proves the existence of currents which minimize an energy interpolating
between mass and size. In case ∂T0 is a smooth submanifold contained in the boundary
of a convex body then F. Morgan has proved existence of a size minimizer [19] (this result
holds in general dimension and codimension 1, the proof shows that some size minimizing
sequence is uniformly bounded in mass). However existence of a size minimizing current is
unknown for instance when the given boundary curve ∂T0 is a trefoil knot (see next section
though).

Note that, akin to size, the energy being minimized by E.R. Reifenberg does not take the
multiplicity into account. Since in the rectifiable currents setting one allows for integer mul-
tiplicities, it should now be clear that minimizing size among rectifiable currents corresponds
to minimizing S 2 in the Reifenberg context with coefficient group G = Z. In the first case
existence is unknown because of a lack of compactness. In the second case it is unknown
because the suitable cut and paste procedure is not available to produce a bald minimizing
sequence.

5. Main result

In the remainder of this paper B denotes a smooth compact 1-dimensional subman-
ifold of R3. We also let B0 ∈ R1(R3) be a 1-dimensional rectifiable current such that
sptB0 = B, i.e. B0 consists in a choice of an orientation and multiplicity of each compo-
nent of B. Furthermore we let L denote the subgroup of Ȟ1(B; Z) generated by B0 (see
Remark 17.4). Given a set S ⊆ R3 containing B we say that the kernel of the homomor-
phism Ȟ1(iB,S) : Ȟ1(B; Z)→ Ȟ1(S; Z) is the algebraic boundary of S. We will be interested
in sets S whose algebraic boundary contains L.
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We can then consider the following two formulations of the Plateau problem. First, in
E.R. Reifenberg’s context:

(PR,Z,L)

{
minimize H 2(S) among compact (H 2, 2) rectifiable sets S

containing B and whose algebraic boundary contains L.

Second, in the setting introduced by H. Federer and W.H. Fleming:

(PFF,S,B0
)

{
minimize S(T )

among T ∈ R2(R3) with ∂T = B0.

Our main result reads as follows.

5.1. T. – With the same notations as above one has:

(A) inf(PR,Z,L) = inf(PFF,S,B0);
(B) The variational problem (PR,Z,L) admits a minimizer.

Proving conclusion (A) amounts to constructing a minimizing sequence for one problem
which is also a minimizing sequence for the other problem. Note this is not trivial since it is
not clear whether a competitor for one problem is also a competitor for the other. In other
words it is not immediately obvious that any set S whose algebraic boundary containsL sup-
ports a rectifiable current whose boundary isB0, and vice versa. The question boils down to
the comparison of the Čech homology group Ȟ1(S; Z) with the homology group H1(S) cor-
responding to the chain complex of integral currents supported in S,

I3(S)
∂−−−−→ I2(S)

∂−−−−→ I1(S)
∂−−−−→ I0(S) −−−−→ Z

In the section 17 we will state a theorem to that effect which has been proved in [5]. In order
that this theorem applies, the minimizing sequence S1, S2, . . . needs to be slightly modified
first, so that each Sj is replaced with some locally acyclic (4) S̃j of nearly the same area. The
relevant approximation procedure is developed in Parts 2 and 3 of the present paper.

As a matter of fact it is so far unknown whether the Čech homology group Ȟ1(S∗; Z)

and the integral currents homology group H1(S∗) coincide in case S∗ is a minimizer whose
existence is stated in (B). According to Proposition 17.3 it is sufficient to prove that S∗ is
locally acyclic at each of its points x ∈ S∗. That this holds true at interior points x ∈ S∗\B is
a consequence of J. Taylor’s regularity theorem [27]. At boundary points though the situation
is more complex and full regularity has not yet been proved (there are ten conjectured pictures
arising at boundary points according to G. Lawlor and F. Morgan [18], see also [20, Figure
13.9.3]) (5).

The lack of known boundary regularity makes it impossible to apply F. Morgan’s method
in [19, Theorem 2.11] (see also [7, Remark 2.3.5]) to prove the existence part (B) of our re-
sult. Recall that the point is to find a minimizing sequence which does not grow tentacles, in
order that Hausdorff measure be lower semicontinuous along that sequence. To achieve this
goal we will apply the Federer-Fleming compactness theorem for integral currents and find

(4) With respect to integral currents homology.
(5) Potential fun includes the case when the size minimizing set is a subset of that shown in Figure 1, and the new
smooth boundary curve wanders on different sheets near the singular circle, intersecting that circle (when it changes
from one sheet to another) along a Cantor set of positive length.
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F 2. A conjectured size minimizer

a sequence T1, T2, . . . of currents which minimize size plus a small amount of mass (this pe-
nalization was studied in [7]). The key property that yields lower semicontinuity is the mono-
tonicity of each such current. We face again the problem that Sj = sptTj does not need to be
a proper competitor in the setting of E.R. Reifenberg, yet the ad hoc approximation proce-
dure evoked above fills the gap and we are able to produce the sought for minimizing sequence
S̃1, S̃2, . . . without armful filigree.

We believe it is worth mentioning at least one example of a (conjectured) minimizer. Here
we let B be a smooth nicely symmetric trefoil knot in R3. We conjecture that the minimizing
set S∗ of problem (PR,Z,L) is the one shown (from two different angles) in Figure 2. It is
made of one “disk” in the middle to which three quarter moons (6) are attached along por-
tions of the given boundaryB and portions of a singular curveC ⊆ S∗\B. Along the singu-
lar curveC three sheets meet at equal angles of 120◦. Some portions of the boundary knotB
touch one sheet of S∗, and some touch two sheets of S∗ (corresponding to the tangent cone
number 5 in [20, Figure 13.9.3], and to the tangent cone number 4 in that list at “transition
points” between B and C). In order that the boundary condition be met one needs to give
the middle disk a multiplicity 2, whereas the quarter moons each have multiplicity 1. I do not
know of any technique to establish that the surface shown in Figure 2 is indeed a minimizer
— calibrations apply mainly to proving mass minimization.

6. An approximation theorem

As we alluded to above, we shall need a specific approximation theorem for 2-dimensional
“surfaces” in R3. The sets X ⊆ R3 that we wish to approximate are assumed to be compact
and (H 2, 2) rectifiable. The latter is equivalent to saying that H 2(X) < ∞ and at H 2 al-
most every x ∈ X, the 2-dimensional Hausdorff measure carried by the homothetic expan-
sions X−xr converges weakly as Radon measure (when r ↓ 0) to the 2-dimensional Hausdorff

measure carried by some linear subspace Wx ∈ G(3, 2).

(6) Manufactured with soap of course! With this regard one can read the advices of J. Plateau reported by E. Lamarle
in [17, Deuxième partie, §25, second footnote] about mixing Marseille soap with French glycerol from Lamoureux.
Alternatively one can use nowadays K. Brakke’s surface evolver [2] to experiment with (virtual) soap films. The
figures of the present paper were designed with that software.
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The approximating set Y should be close toX in Hausdorff distance and should have H 2

measure close to that ofX. Moreover Y should be (H 2, 2) rectifiable as well. So far of course
we could let Y = X, but most importantly we want Y to be “simpler” than X from a topo-
logical point of view — say that in small neighborhoods of each of its points Y should consist
in one piece with no hole nor handle and no little sphere floating around. Polyhedral sets con-
stitute a good class of approximating sets to look for. Being finite unions of 2-dimensional
parallelograms in R3 they certainly enjoy the required topological property. From the very
construction of the set Y it will turn out that there is a (Lipschitzian (7)) map f defined in
a neighborhood of X such that f(X) ⊆ Y . Theorems of this flavor have by now become a
classic in geometric measure theory, as for instance in the realm of integral currents [11, 12]
(specifically the “Approximation theorem” [11, 4.2.20]).

The extra requirement (8) we want the approximating set Y to meet is “to have the same
boundary” as the original set X. Since X is not assumed to be a current in the first place,
we need to say what we mean by boundary of X. For the purpose of applying our result to
the proof of our main theorem 5.1 we choose J.F. Adams’ definition in the Appendix of E.R.
Reifenberg’s paper [23]. To make things simpler without missing the main point, assume that
the given “boundary” B ⊆ R3 is a smooth simple closed Jordan curve in R3. We recall from
the previous sections that B bounds X ⊇ B if the homomorphism induced by inclusion
in homology Ȟ1(B; Z) → Ȟ1(X; Z) is trivial (9). Upon a moment of reflection it should be
clear that this indeed means thatX fills the hole inB (10). With this vocabulary at hand we can
state our added condition: in case B bounds X we want to find an approximating Y which
is bounded by B as well. This will certainly hold if we can guarantee that f mapping X in Y
is so that f(B) = B and the restriction f � B is homotopic to the identity of B.

On the other hand it is now obvious that we should abandon the idea of approximating
X with a polyhedral set — think for instance ofB being a circle andX being a spherical cap.
We thus need to involve another notion of local topological connectedness. In order that it be
applicable to proving our existence theorem 5.1 we use the chain complex of integral currents
to compute homology groups in this context. Specifically if Z ⊆ R3 we consider the chain
complex

I3(Z)
∂−−−−→ I2(Z)

∂−−−−→ I1(Z)
∂−−−−→ I0(Z)

α−−−−→ Z
and the corresponding (reduced) homology groups Hq(Z). Here Iq(Z) is the group of q-
dimensional integral currents whose support is contained in Z, ∂ denotes the boundary op-
erator of currents and α is the augmentation map defined as α(T ) = 〈T, 1〉 where 1 stands
for any test function equal to 1 in a neighborhood of sptT . We can now state the topologi-
cal requirement we set for Y . Given y ∈ Y and an open neighborhood U of y there should
exist a smaller neighborhood U ′ of y such that the homomorphism induced in homology by
inclusion Hq(Y ∩ U ′) → Hq(Y ∩ U) is trivial for q = 0, 1, 2. In that case we say that Y
is (H, 1) locally connected. The homology theory evoked above is studied for instance in [5]

(7) The connoisseur will spot the need for X being closed at this stage — this will be touched upon in section 7.
(8) With respect to H. Federer and W.H. Fleming’s approximation theorem.
(9) The use of Čech homology is by no means essential in the present introduction and the reader may safely assume
this is singular homology (in hopes that this makes them feel better).
(10) Not quite though! See the intriguing example [23, Appendix, Example 9].
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where one shows the relevance of the stated local connectedness condition for comparison
of H1(Y ) with Ȟ1(Y ; Z).

We are now ready to state our approximation result.

6.1. T. – Assume that

(A) X ⊆ R3 is compact and (H 2, 2) rectifiable;
(B) B ⊆ X is either empty or a compact 1-dimensional submanifold of R3 of class C3 (with-

out boundary);
(C) ε > 0.

There then exist a Lipschitzian map f : R3 → R3 and an (H 2, 2) rectifiable set Y ⊆ R3

verifying the following properties:

(D) f(X) ⊆ Y ;
(E) distH (X,Y ) < ε;
(F) |H 2(X)−H 2(Y )| < ε;
(G) H 2(Clos(Y ) \ Y ) = 0;
(H) Y is (H, 1) locally connected;
(I) In case B is nonempty, f(B) = B and f � B is homotopic in the Lipschitzian category

to idB .

It is most likely that this theorem generalizes to any dimension and codimension even
though some steps of the proof described below do not apply trivially to the more general
situation. Investigations in this direction are under way, particularly so regarding the case
when there is no added boundary condition, [13, 21]. Part 2 of the present paper deals with
the no-boundary problem in any dimension but is restricted to codimension 1. Part 3 deals
with the presence of a boundary and is written entirely in the context of R3 for the purpose
of homogeneity — the reader will notice which statements do not depend on the low dimen-
sion. At any rate the application to minimizing surfaces in theorem 5.1 is already new in 3-
dimensional space.

7. Sketch of proof of the approximation theorem

We now turn to roughly describing the proof of Theorem 6.1 with no attempt at rigor (11).
We start by explaining how to construct an approximating set P dismissing for now conclu-
sion (I) of our theorem, i.e. assuming there is no boundary condition to be preserved (this
is the content of Theorem 11.4). Let G denote the subset of X consisting of those points x
such that (the 2-dimensional Hausdorff measure carried by) the homothetic expansions X−xr
converge as r ↓ 0 (in the sense of Radon measures) to (the 2 dimensional Hausdorff measure
carried by) some planeWx ∈ G(3, 2). If Cx,r denotes a cube centered at x of diameter r > 0

and Sx,r = X ∩Cx,r \B(x+Wx, ηr) is the part ofX in Cx,r which is not ηr close to x+Wx

then the weak convergence as Radon measures guarantees that H 2(Sx,r) < ηr2 for r > 0

small enough (depending on η and x) and x ∈ G. The set X being rectifiable we recall that

(11) In order to avoid confusion we denote by η > 0 a small real number whose role will be to control local error
terms, and it should be thought of as being smaller than ε assigned in the statement of the theorem.
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H 2(X \ G) = 0. Therefore (referring to Besicovitch’s covering theorem) we can find pair-
wise disjoint finitely many cubes Cx1,r1 , . . . , Cxp,rp centered at G, whose diameter is smaller
than some r0 > 0 to be determined later, and such that H 2(X \ ∪pi=1Cxi,ri) < η. In order
to keep the notation short we put Ci = Cxi,ri . We now explain what is the intersection of
the (sought for) approximating set P with each cube Ci. The main piece of P in Ci is the flat
piece (xi +Wxi)∩Ci (having nearly the same area as X ∩Ci). We also add to P the narrow
strips in B(xi +Wxi , ηri)∩BdryCi (which do not contribute much to area). The reason for
adding these strips is that we want to define a map fi on Ci such that fi(X ∩Ci) ⊆ P ∩Ci,
and the fi will be as follows. We divide Ci into two convex bodies C±i along the affine plane
xi + Wxi . We will somehow choose points b±i ∈ C

±
i \ B(xi + Wxi , ηri) and let f±i denote

the central projection on the faces of BdryC±i centered at b±i . Since b±i 6∈ B(xi +Wxi , ηri)

it is clear that the image by f±i of the part ofX ∩Ci contained in the slab B(xi+Wxi , ηri) is
a subset of the part of P defined so far. It remains to take care of the “dust” Sxi,ri . Remem-
ber that it has small area (relative to that of X ∩ Ci). Now we need to choose properly the
points b±i so that the area of f±i (Sxi,ri) is not more than a fixed factor times that of Sxi,ri .
That this be possible follows from the fact that the convex bodies C±i are not too long and
thin (thereby allowing for a control of the Lipschitz constant of f±i away from b±i , see Corol-
lary 9.5) together with an averaging argument involving Fubini’s theorem (see Proposition
9.7). We then add to P some “polyhedral covering” of f±i (Sxi,ri). We also point out that by
choosing b±i 6∈ X, and referring to the compactness of X, the map f±i is defined in a neigh-
borhood of X in Ci (namely Ci minus two tiny balls centered at b±i ) where it is Lipschitzian
and homotopic to the identity.

Next we need to say what to do outside of ∪pi=1Ci. For that purpose we first observe that
there is no major trouble in making the above argument valid if we replace the Ci by nearby
“pseudo-dyadic” sets, i.e. if we assume that the Ci contain all the dyadic cubes that they in-
tersect nontrivially (then the Ci need not be exactly centered at xi anymore but it does not
matter). Now the complement of ∪pi=1Ci can be partitioned by small dyadic cubes, all of the
same generation. Only finitely many of them, sayD1, . . . , Dq, meetX. Again in each of these
cubes we can define a central projection (centered away fromX) pushing the part ofX inDj

onto a set having area controlled by that of X ∩Dj . It should then be clear how to define P
inDj as well. The mapping f defined in a neighborhood ofX is obtained by gluing together
the pieces defined in theC±i and in theDj . That the global map be Lipschitzian follows from
the fact that each local map coincides with the identity on the boundaries of the C±i andDj .

Looking at this construction we see that the Hausdorff distance between P and X is es-
sentially controlled by the maximal diameter of the Ci and the Dj ; and that the Hausdorff

measure of P is essentially
∑p
i=1 H 2(X ∩Ci) and all the error terms are controlled by some

multiple of η. We also see that we have defined a Lipschitzian map f in a neighborhood U of
X, homotopic to the identity of U . From now on f will be denoted by f0.

Next we assume thatX bounds some smooth simple closed curveB. Of courseB may be
moving under f0, thus there is no reason that B bounds P . We need to bring B back to its
original position. Notice that B has not moved very far away, in particular it is contained in
a tubular neighborhood B(B, r) of B provided ‖f0 − idU‖∞ < r. We may choose r > 0 so
small that the nearest point projection π onto B is well defined in B(B, 2r). Then we let gr :

R3 → R3 coincide with π in B(B, r), coincide with the identity outside of B(B, 2r), and be
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an affine interpolation between both in the annular region (the “speed” of the interpolation
along rays will matter below). We now discuss whether f = gr ◦f0 and Y = gr(P ) verify the
conclusions of Theorem 6.1. The fact that f(B) = B and f � B is homotopic to the identity
of B are simple consequences of the choice of r > 0 and the construction of P applied so
that ‖f0 − idU‖∞ < r.

We need to check the measure estimate appearing in conclusion (F), mainly that Y has
not much more area than X, in other words that the stretching of P by gr near B does not
contribute much to area. The relevant error term here is H 2(gr(P ∩ B(B, 2r))). For one
thing the Lipschitz constant of gr can be controlled independently of r > 0 (but, of course,
involves a dependence onB). This owes to a particular choice of an interpolation in the def-
inition of gr, see Theorem 12.3(B). Next we need to control H 2(P ∩ B(B, 2r)). Now the
part of P lying in the tubular neighborhood B(B, 2r) comes from points ofX which are not
more than a distance δ = ‖f0− idU‖∞ away from that neighborhood. Here we need to know
that H 2(P ∩ B(B, 2r)) is not more than H 2(X ∩ B(X, 2r + δ)) (this is enough because
the latter is small, provided 2r + δ is small, since H 2(B) = 0). In other words, we need a
localized version of the measure estimate in the construction of P . Something like this can
be obtained provided r is essentially the same scale as δ (the scale of the cubes Ci above, the
maximal displacement performed by f0). All of this can be taken care of, as stated in Theo-
rem 11.4(G) (see also the beginning of the proof of the main result in section 16).

The main technical trouble that needs to be addressed is whether or not Y = gr(P ) is
(H, 1) locally connected. Let y ∈ Y \B. It is not hard to show (essentially Theorem 12.3(C))
that g−1

r {y} = {x} is a singleton and that gr is a C1 diffeomorphism in a neighborhood of
x. Since P is (H, 1) locally connected at x (in fact a neighborhood of x in P is Lipschitz con-
tractible in P to {x}), so is Y at y. The situation is different when y ∈ B. For instance it can
occur that (gr � P )−1{y} is an infinite set. Let us describe one way this can happen. Notice
that the level sets of gr are flat disks (i.e. contained in affine planes; Theorem 12.1(D) and
Remark 12.2(4)). From now on we denote by W (y) ∈ G(3, 2) the plane such that g−1

r {y}
is contained in y + W (y), y ∈ B. If also we denote by WP the collection of 2-dimensional
directions “used” by P , we see that g−1

r {y} is infinite when W (y) ∈ WP . This situation can
be avoided by a small generic rotation of P , Lemma 13.4. Under some further mild con-
ditions that are met generically as well it is possible to show that g−1

r {y} is finite (see the
first half of the proof of Theorem 14.3, relying on Theorem 13.3 and Lemma 13.6). Now
we look at {x1, . . . , xκ} = g−1

r {y}. Notice that each xk belongs to the “cylindrical” surface
Mr = R3 ∩ {ξ : dist(ξ,B) = r}. It is possible that xk belongs to several of the affine par-
allelograms (12) that P is made of. Let us denote by WP (xk) the collection of W ∈ G(3, 2)

such that xk +W “contributes” to P (e.g. H 2(P ∩ (xk +W )) > 0). We want that for each
W ∈ WP (xk) the intersection (xk +W ) ∩Mr is a smooth curve (in a neighborhood of xk).
This will be the case provided W 6= TxkMr. Translating P by a small generic amount if nec-
essary, we can assume this is indeed the case (Theorem 13.3(2)). Now we consider the small
“half disks” Ek,W = (xk +W ) ∩B(xk, ρ) \U(B, r), ρ > 0 small. Their “diameter” is a C1

curve which gets closer to an actual diameter as ρ gets close to 0. Then a neighborhood of

(12) Actually P will not be made of finitely many parallelograms, see Definition 11.1, but this does not matter in our
sketch of proof.
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y in Y is made of the union of the finitely many gr(Ek,W ), k = 1, . . . , κ, W ∈ WP (xk) (this
requires a justification which will follow from stronger estimates that will be needed soon
anyway). In order to show that it is acyclic (13) we first look at each of the individual pieces.
Of course a single Ek,W is acyclic for there is a Lipschitzian deformation retraction in Ek,W
to {xk}. We wish to copy one such deformation retraction from Ek,W to gr(Ek,W ), thereby
showing that gr(Ek,W ) is acyclic as well. This requires gr � Ek,W to be a bi-Lipschitzian
homeomorphism. That this be the case will depend on the relative position of the three planes
W , TxkMr andW (y), namely their intersection should be {0}— see Theorem 12.3(D). Some
bad cases can be avoided again by a generic position argument, but not all of them — see Re-
mark 12.4(3). Instead, in some cases we are forced to “pleat” P near xk in order to force the
directions in WP (xk) to meet the desired requirements. Such pleating must be performed so
as not to increase much the Hausdorff area, see Lemma 14.1. Once this is done we end up
with acyclic pieces gr(Ek,W ). In order to show that their union is acyclic as well we would
need some sort of Mayer-Vietoris argument which is not immediately available. Instead we
want to prove acyclicity “by hand” (Theorem 15.1) using particular deformation retractions
Hk,W of gr(Ek,W ) to {y}. We will use these homotopies Hk,W to show that integer multi-
plicity rectifiable cycles supported in the union of gr(Ek,W ), k = 1, . . . , κ,W ∈ WP (xk), are
boundaries of integer multiplicity rectifiable currents supported in the same set. The tools
used here are the homotopy formula for currents [11, 4.1.9] or [25, §14], the explicit rep-
resentation of 1-dimensional rectifiable cycles [11, 4.2.25] and the constancy Theorem [11,
4.1.31(2)]. In order for this to work we need theHk,W to meet consistency requirements. For
instance we want that any two such maps Hk,W and Hk′,W ′ coincide on the common por-
tion of boundary curve B ∩ Ek′,W ′ ∩ Ek,W . Notice that if k is such that there are distinct
W1,W2 ∈ WP (xk) then there is also an intersection curve gr(Ek,W1

) ∩ gr(Ek,W2
) \B along

which we wantHk,W1
andHk,W2

to coincide as well. For that purpose we consider deforma-
tion retractions on Ek,W1

and Ek,W2
which coincide on Ek,W1

∩ Ek,W2
. Here it is handy to

assume that card WP (xk) 6 2 for each k = 1, . . . , κ. By genericity this is no restriction (The-
orem 13.3(1)) provided we constructed our initial set P with some care (see Definition 11.2).
Having constructed the homotopies Hk,W so that they verify the consistency conditions we
can now glue them together and obtain a global continuous deformation retraction of the
relevant neighborhood of y in Y on {y}. Therefore we conclude at once that this neighbor-
hood is acyclic in singular homology. The acyclicity with respect to the homology of integral
currents requires the extra argument sketched above, Theorem 15.1, which may be of inde-
pendent interest.

Parts 2 and 3 of this paper consist in a documented version of the argument sketched
above.

8. Notations and preliminaries

We use the following convention after D.H. Fremlin. The proof of a claim (which is itself
part of the proof of a lemma, say) is given between the symbols p . . . q.

(13) By Z being acyclic here we mean that Hq(Z) = {0} for q = 0, 1, 2.
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Most of our notations are consistent with those of H. Federer’s treatise [11] (see pages
670-671 op. cit. for a table of symbols), and the variants are self-explanatory. We start by a
short review of the most useful symbols. We denote by Int, Clos and Bdry the topological
interior, closure and boundary respectively. We let 〈u, v〉 be the canonical inner product of
u, v ∈ Rn. The associated Euclidean norm is denoted by | · |, and sometimes by | · |2 when the
companion maximum norm | · |∞ is used in neighboring calculations. We define dist(x,A) =

inf{|x − a| : a ∈ A} and B(A, r) = Rn ∩ {x : dist(x,A) 6 r} and U(A, r) = Rn ∩ {x :

dist(x,A) < r}. When A = {a} is a singleton we abbreviate B(a, r) and U(a, r). When
the distance is defined in terms of the maximum norm instead, the corresponding balls are
denoted by B∞(a, r) and U∞(a, r). The Hausdorff distance of A,B ⊆ Rn is distH (A,B).
The m-dimensional Hausdorff measure in Euclidean space Rn, 0 6 m 6 n, is denoted by
H m. The Grassmannian G(n,m) is the collection ofm-dimensional linear subspaces of Rn.
Finally, given sets A ⊆ X and a function f : X → R we let f � A denote the restriction of f
to A. The indicatrix function of A is 1A.

We now define some concepts for further reference and prove some elementary lemmas.

8.1. D. – A set E ⊆ Rn is called H m essential if H m((ClosE) \ E) = 0.

Notice that an H m essential set is also H m measurable, and the finite union of H m es-
sential sets is H m essential as well.

8.2. D. – Let Y ⊆ Rn and m > 0 an integer. We say that Y is (H,m) locally
connected at y ∈ Y if the following condition holds. For every open neighborhood U of y
there exists an open neighborhood U ′ ⊆ U of y such that the homomorphisms induced in
(reduced) homology

Hq(Y ∩ U ′)→ Hq(Y ∩ U)

are trivial, q = 0, . . . ,m+ 1. We say that Y is (H,m) locally connected if it is (H,m) locally
connected at each y ∈ Y .

In other words we require that for every T ∈ Iq(Rn) with sptT ⊆ Y ∩ U ′ and ∂T = 0

there exists S ∈ Iq+1(Rn) such that sptS ⊆ Y ∩ U and ∂S = T .

8.3. E. – Assume that y ∈ Y has a base of open neighborhoods each of which
being contractible to {y} in the Lipschitzian category, i.e. for every open set U containing y
there exist an open set U ′ ⊆ U containing y and a map H : [0, 1] × Y ∩ U ′ → Y ∩ U ′ with
LipH < ∞, H(0, ζ) = y and H(1, ζ) = ζ for every ζ ∈ Y ∩ U ′. Then Hq(Y ∩ U ′) = {0}
(reduced homology) for every q = 0, 1, 2, . . . . Let us prove this for q > 1. Indeed if T ∈
Iq(Y ∩ U ′) and ∂T = 0 then S = H#([[0, 1]]× T ) ∈ Iq+1(Y ∩ U ′) and ([11, 4.1.9])

∂S = H#(δ1 × T )−H#(δ0 × T )−H#([[0, 1]]× ∂T ) = T

because on the one hand H#(δ0 × T ) = 0, p One has

H q(sptH#(δ0 × T )) 6H q(H({0} × sptT ))

= H q({y})
= 0 (if q > 1)
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and the conclusion follows since H#(δ0 × T ) ∈ Rq(Rn). q and on the other hand
H#(δ1 × T ) = T because H(t, ζ) = ζ whenever (t, ζ) ∈ spt(δ1 × T ) ⊆ {1} × U ′ and [11,
4.1.15].

We state the following without its obvious proof. It is relevant to notice that the homology
theory H satisfies the axioms of Eilenberg-Steenrod, [5].

8.4. L. – Let Y ⊆ Rn be (H,m) locally connected at y ∈ Y and f : Rn → Rn be a
Lipschitzian map which is a bi-Lipschitzian homeomorphism of a neighborhood of y in Y onto
its image. Then f(Y ) is (H,m) locally connected at f(y).

Whenever W ∈ G(n,m) we let PW : Rn → Rn denote the nearest point projection on
W . For W1,W2 ∈ G(n,m) we define dist(W1,W2) = ‖PW1 − PW2‖ (the operator norm)
and we will use the following equality

dist(W1,W2) = max{dist(z,W2) : z ∈W1 ∩B(0, 1)} .

Notice that dist(W1,W2) 6 1 with equality if and only if W1 ∩W⊥2 6= {0}. In Section 14 we
will refer to the following.

8.5. L. – Let V0, V1, V2 ∈ G(3, 2) be such that dimV0 ∩ V1 ∩ V2 = 0. Then

dist(V0 ∩ V1, V0 ∩ V2) 6 dist(V1, V2)

Å
1 +

1

max{dist(V0, V1),dist(V0, V2)}

ã
.

Proof. – We choose e ∈ V0 ∩ (V0 ∩ V2)⊥ such that |e| = 1 and we let PV2,e : R3 → R3

denote the “projection on V2 parallel to e”. A simple computation reveals that

PV2,e(v) = PV2
(v)− 〈v, e

∗〉
〈e, e∗〉

PV2
(e) ,

v ∈ R3, where e∗ ∈ V ⊥2 has norm 1. One easily checks that PV2,e(v) ∈ V0 whenever v ∈ V0.
Now if z ∈ V0 ∩ V1 ∩B(0, 1) then PV2,z ∈ V0 ∩ V2 and therefore

dist(z, V0 ∩ V2) 6 |z − PV2,e(z)|
6 |z − PV2

(z)|+ |PV2
(z)− PV2,e(z)|

= dist(z, V2) +
|〈z, e∗〉|
|〈e, e∗〉|

|PV2
(e)| .

Readily |〈z, e∗〉| =
∣∣∣PV ⊥2 (z)

∣∣∣ = dist(z, V2) and |〈e, e∗〉| = dist(V0, V2). Consequently

dist(z, V0 ∩ V2) 6 dist(z, V2)

Å
1 +

1

dist(V0, V2)

ã
6 dist(V1, V2)

Å
1 +

1

dist(V0, V2)

ã
,

and the conclusion follows from the arbitrariness of z ∈ V0∩V1∩B(0, 1) and the symmetric
role of V1 and V2.

The following is well-known. It says that if one sees a Lipschitz graph and tilts one’s head
a small angle, then one still sees a Lipschitz graph.

8.6. L. – Assume that
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(A) W1,W2 ∈ G(n,m);
(B) r > 0, f : W1 ∩U(0, r)→W⊥1 is Lipschitzian, f(0) = 0 and S = graph(f);
(C) Lip f < 1 and dist(W1,W2) < 1− Lip f .

Then 0 belongs to the interior of PW2
(S) relative to W2 and there exists a Lipschitzian map

g : W2 ∩ PW2
(S)→W⊥2 such that graph(g) = S.

Proof. – The proof of the existence of a Lipschitzian map g can be based on [4, Lemma
8.2]. Indeed it suffices to show that for every x ∈ S and every ρ > 0 one has B(x, ρ) ⊆ B(x+

W2, σρ) for some appropriate 0 < σ < 1. Let x′ ∈ S ∩B(x, ρ) and abbreviate ξ = PW1
(x)

and ξ′ = PW1
(x′). Readily

dist(x′, x+W2) = dist(x′ − x,W2)

6 |(x′ − x)− (ξ′ − ξ)|+ dist(ξ′ − ξ,W2)

6 |f(ξ′)− f(ξ)|+ ρdist(W1,W2)

and the conclusion holds with σ := Lip f + dist(W1,W2). Finally, letting f̃(w) = w+ f(w),
w ∈W1 ∩U(0, r), and g̃(w) = w+ g(w), w ∈ PW2

(S), one checks that PW2
◦ f̃ and PW1

◦ g̃
are inverse of each other and both Lipschitzian. This implies that 0 is an interior point of
PW2

(S).

PART II

APPROXIMATION: THE CASE OF NO BOUNDARY

9. Central projections

We start with two notations. If a, b ∈ Rn then we set [[[a, b]]] = Rn∩{a+t(b−a) : 0 6 t 6 1}.
Next, with each a ∈ Rn and u ∈ Rn \ {0} we associate La,u = Rn ∩ {a+ tu : t > 0}.

Let C ⊆ Rn be a compact convex set with IntC 6= ∅. Given a ∈ IntC and u ∈ Rn \ {0}
we note that La,u ∩BdryC is a singleton. p First notice that La,u ∩C is a compact convex
subset of La,u containing a, therefore La,u ∩ C = [[[a, b]]] for some b ∈ C. Since a ∈ IntC it
follows easily that [[[a, b]]] \ {b} ⊆ IntC and, in turn, that La,u ∩ BdryC = {b}. q

9.1. D. – LetC ⊆ Rn be a compact convex set with IntC 6= ∅, and a ∈ IntC.
For each x ∈ C \ {a} we define πC,a(x) ∈ Rn by the requirement that

La,x−a ∩ BdryC = {πC,a(x)} .

We will now study the (local) modulus of continuity of the map

πC,a : C \ {a} → BdryC .

The following is rather trivial and better understood with the help of a drawing.

9.2. L. – Assume that:

(A) V is a 2-dimensional Hilbert space and e1, e2 is an orthonormal basis of V ;
(B) 0 < λ 6 1 < Λ <∞ and x = λe1;
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(C) h ∈ V , 〈h, e2〉 > 0 and

|h| 6 1

2

λ

Λ

 
Λ− 1

Λ + 1
.

Then the following conclusions hold:

(D) There exist ξ1, ξ2 ∈ V such that |ξ1| = |ξ2| = 1, 〈ξi,Λe1 − ξi〉 = 0, i = 1, 2, and
〈ξ1, e2〉 > 0, 〈ξ2, e2〉 < 0;

(E) There exist ζ1, ζ2 ∈ V such that

L0,x+h ∩ [[[ξ1,Λe1]]] = {ζ1}

and
L0,x+h ∩ Lξ2,Λe1−ξ2 = {ζ2} ;

(F) −Λ
√

Λ2 − 1 |h|
|x|−|h| 6 〈ζ1, e1〉 − Λ 6 0;

(G) 0 6 〈ζ2, e1〉 − Λ 6 Λ
√

Λ2 − 1 |h|
|x|−Λ|h| ;

(H) For each ζ ∈ [[[ζ1, ζ2]]] one has

|〈ζ − Λe1, e1〉| 6 Λ
√

Λ2 − 1
|h|

|x| − Λ|h|
;

(I) If we assume furthermore that
(i) V ⊆ Rn;

(ii) C ⊆ Rn is compact, convex, and 0 ∈ IntC;
(iii) ξ1, ξ2, x, x+ h ∈ C;
(iv) πC,0(x) = Λe1

then
πC,0(x+ h) ∈ [[[ζ1, ζ2]]] .

Proof. – It is trivial to check that there are ξ1, ξ2 ∈ V verifying the conditions stated in
(D) and that

(2) 〈ξ1, e1〉 = 〈ξ2, e1〉 =
1

Λ

and

〈ξ1, e2〉 =

√
Λ2 − 1

Λ

〈ξ2, e2〉 = −
√

Λ2 − 1

Λ
.

(3)

In order to prove (E) we seek pairs (ti, si), i = 1, 2, such that

(4) ξi + ti(Λe1 − ξi) = si(λe1 + h) , i = 1, 2 .

We easily check that the upper bound on |h| stated in hypothesis (C) guarantees the existence
of solutions for these two systems of linear equations. It remains to show that

(a) s1 > 0;
(b) s2 > 0;
(c) t1 6 1;
(d) 0 6 t1;
(e) t2 > 1.
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In order to establish (a) and (b) we take the inner product of (4) with ξi, i = 1, 2, and we plug
(2) in the resulting equation to infer that 1 = si(λΛ−1+〈h, ξi〉), which yields our conclusions
on noticing that |h| 6 1

2λΛ−1 according to hypothesis (C). Next we take the inner product
of (4) with e2, which yields 〈ξi, e2〉(1 − ti) = si〈h, e2〉, i = 1, 2, and we see that (c) and (e)
now follow from (a) and (b) respectively. Finally we prove (d) as follows. We take the inner
product of (4) with Λe1 − ξ1 to infer that

t1|Λe1 − ξ1|2 = s1

(
λ(Λ− Λ−1) + Λ〈h, e1〉 − 〈h, ξ1〉

)
and we use hypothesis (C) again to show that the factor of s1 is nonnegative.

We now turn to proving (F). We notice from (C) that |h| 6 1
2 |x| and we infer from (4) and

(c) and (d) above that

(|x| − |h|)s1 6 s1|x+ h| = |ξ1(1− t1) + t1Λe1| 6 (1− t1) + t1Λ 6 Λ

therefore

(5) s1 6
Λ

|x| − |h|
.

Next we take the inner product of (4) with e2:

〈ξ1, e2〉(1− t1) = s1〈h, e2〉

and we use (3) together with (5) to conclude that

(6) 0 6 1− t1 6
Λ2

√
Λ2 − 1

|h|
|x| − |h|

.

Finally, taking the inner product of (4) with e1 yields

〈ξ1, e1〉(1− t1) + t1Λ = 〈ζ1, e1〉 ,

in other words

〈ζ1, e1〉 − Λ =

Å
1

Λ
− Λ

ã
(1− t1)

and conclusion (F) now immediately follows from (6).
In order to prove (G) we first take the inner product of (4) with ξ2 and referring to (2) we

obtain

1 = s2

Å
λ

1

Λ
+ 〈h, ξ2〉

ã
> s2

Å
1

Λ
|x| − |h|

ã
,

therefore

(7) s2 6
Λ

|x| − Λ|h|
because Λ|h| 6 1

2 |x| according to (C). Taking the inner product of (4) with e2 we see that

〈ξ2, e2〉(1− t2) = s2〈h, e2〉

which together with (7), (3) and (e) yields

(8) 0 6 t2 − 1 6
Λ2

√
Λ2 − 1

|h|
|x| − Λ|h|

.

Finally taking the inner product of (4) with e1 yields

〈ξ2, e1〉(1− t2) + t2Λ = 〈ζ2, e1〉 ,
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in other words,

〈ζ2, e1〉 − Λ =

Å
1

Λ
− Λ

ã
(1− t2)

and conclusion (G) is now a consequence of (8).

We notice that (H) trivially follows from (F) and (G). In order to prove (I) we let ζ =

πC,0(x+h). Suppose |ζ| > |ζ2|. Since [[[ζ, ξ2]]] ⊆ C we would have that if {ζ ′} = [[[ζ, ξ2]]]∩L0,e1

then ζ ′ ∈ C, but |ζ ′| > Λ = |πC,0(x)|, a contradiction. Therefore |ζ| 6 |ζ2|. Furthermore,
since ξ1 ∈ C we have [[[ξ1, πC,0(x)]]] ⊆ C, whence also ζ1 ∈ C, and in turn |ζ1| 6 |ζ|.

The above lemma was designed to estimate the local Lipschitz constant of πC,a. We now
state the relevant definition and result.

9.3. D. – Let (X, dX) and (Z, dZ) be metric spaces, f : X → Z and x ∈ X.
We define the local Lipschitz constant of f at x as follows

Lipxf = lim
r↓0

sup

ß
dZ(f(x), f(y))

dX(x, y)
: y ∈ B(x, r) \ {x}

™
.

9.4. R. – Given an open ball U ⊆ Rn and f : Rn → R we infer that

Lip f � U = sup {Lipxf : x ∈ U} .

9.5. C. – Assume that:

(A) C ⊆ Rn is compact convex with IntC 6= ∅;
(B) a ∈ IntC;
(C) 0 < r < R and B(a, r) ⊆ IntC ⊆ B(a,R);
(D) x ∈ C \ {a}.

Then

LipxπC,a 6
R2

r

1

|x− a|
.

Proof. – It is clearly sufficient to prove it in case a = 0. We assume first that r = 1. We
let W ∈ G(n, n − 1) be such that W = Rn ∩ {z : 〈z, x〉 = 0}. We observe that for each
y ∈ C \ {0}:

|PW (πC,0(y))− PW (πC,0(x))| = |PW (πC,0(y))| =
∣∣PW (y|y|−1|πC,0(y)|)

∣∣
6 R|y|−1|PW (y)| = R|y|−1|PW (y − x)|

6 R|y|−1|y − x| .
(9)

On the other hand, assuming that y and x are linearly independent we may apply Lemma
9.2 with V = span{y, x}, λ = |x|, Λ = |πC,0(x)| (notice that 1 < Λ 6 R), e1 = x|x|−1,

h = y−x. If |y−x| 6 |x|2Λ

»
Λ−1
Λ+1 =: γ then it follows from Lemma 9.2(H) and (I) (recall that

ξ1, ξ2 ∈ B(0, 1) ⊆ C) that∣∣〈πC,0(y)− πC,0(x), x|x|−1〉
∣∣ 6 Λ

√
Λ2 − 1

|y − x|
|x| − Λ|y − x|

6 R
√
R2 − 1

|y − x|
|x| −R|y − x|

.

(10)
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From (9) and (10) we now infer that

(11) |πC,0(y)− πC,0(x)|2 6 |y − x|2
Å
R2

|y|2
+

R2(R2 − 1)

(|x| −R|y − x|)2

ã
provided y ∈ C ∩B(x, γ) \W⊥. Letting y → x in (11) we obtain

(12) LipxπC,0 6
R2

|x|
.

This proves the corollary in case r = 1. For r 6= 1 we notice that πC,0(z) = rπr−1C,0(r−1z)

whenever z ∈ C \ {0} and we apply (12) with r−1C, r−1R and r−1x in place of C, R and x:

|πC,0(y)− πC,0(x)| = r|πr−1C,0(r−1y)− πr−1C,0(r−1x)|

6 r
(
|r−1y − r−1y|+ o(|r−1y − r−1x|)

) (r−1R)2

|r−1x|

=
(
|y − x|+ o(|r−1y − r−1x|)

) R2

r

1

|x|
.

The conclusion follows on letting y → x.

9.6. R. – When C = B(0, R), letting r → R we find that LipxπC,0 6
R
|x| . Since

πC,0(z) = R z
|z| , one easily checks that in fact LipxπC,0 = R

|x| . Furthermore we notice that
the corollary and its proof remain valid in infinite dimensional Hilbert spaces.

9.7. P. – Assume that

(A) C ⊆ Rn is compact convex and a ∈ IntC;
(B) 0 < r < R and B(a, r) ⊆ IntC ⊆ B(a,R);
(C) 0 < m 6 n− 1 and E ⊆ C is H m measurable with H m(E) <∞.

Then there exists b ∈ B(a, r) \ E such that

H m(πC,b(E)) 6
n2n−m+1

n−m

Å
R

r

ãn+m

H m(E) .

Proof. – For use in the present proof we define the function

Lip : B(a, r)× C → R : (b, x) 7→ R2

r

1

|x− b|

which is readily Borel measurable, and continuous on

Z := B(a, r)× C ∩ {(b, x) : b 6= x}) .
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Let µ = H m E. Applications of Tonelli’s Theorem below will show that Lip is L n×µ
summable. Indeed, letting τ = R/r we note that∫

B(a,r)

dL n(b)

∫
C

Lip(b, x)mdµ(x) =

∫
B(a,r)

dL n(b)

∫
C

Å
R2

r

1

|x− b|

ãm
dµ(x)

= τ2mrm
∫
C

dµ(x)

∫
B(a,r)

1

|x− b|m
dL n(b)

6 τ2mrm
∫
C

dµ(x)

∫
B(x,2R)

1

|x− b|m
dL n(b)

= τ2mrmµ(C)
nα(n)(2R)n−m

n−m

= τ2mrmµ(C)
nα(n)2n−mτn−m

n−m
rn−m

=
τn+mn2n−m

n−m
µ(C)L n(B(a, r)) .

(13)

Since L n(E) = 0, it readily follows from (13) that there exists b ∈ B(a, r) \ E such that

(14)
∫
C

Lip(b, x)mdµ(x) 6
τn+mn2n−m+1

n−m
µ(C) .

The proposition now becomes a consequence of the inequality

(15) H m(πC,b(E)) 6

∫
C

Lip(b, x)md(H m E)(x)

which we will establish subsequently.

We start by observing that if N ⊆ E and H m(N) = 0 then H m(πC,b(N)) = 0. p
Indeed for each x ∈ N there exists r(x) > 0 such that Lip(πC,b � B(x, r(x))) 6 1+LipxπC,b.
Since N is Lindelöf there is a sequence x1, x2, · · · ∈ N such that N ⊆ ∪∞i=1N ∩B(xi, r(xi)).
Therefore

H m(πC,b(N)) 6
∞∑
i=1

Lip(πC,b � B(xi, r(xi)))
mH m(N ∩B(xi, r(xi))) = 0 . q

Next we fix j = 1, 2, . . . and we infer from the Besicovitch-Vitali covering Theorem, [11,
2.8.15], that there exists a (at most countable) disjoint collection of balls B(xj,i, rj,i), i ∈ Ij ,
such that {xj,i : i ∈ Ij} ⊆ E, sup{rj,i : i ∈ Ij} 6 j−1 and H m(Nj) = 0 where

Nj = E \ ∪i∈IjB(xj,i, rj,i) .

Therefore

H m(πC,b(E)) 6
∑
i∈Ij

H m (πC,b(E ∩B(xj,i, rj,i)))

6

∫
Rn

∑
i∈Ij

(LipπC,b � B(xj,i, rj,i))
m
1B(xj,i,rj,i)d(H m E) .

(16)

Denote by fj the integrand in the last line of the above inequality. Put N = ∪∞j=1Nj so that
H m(N) = 0 and notice that for each x ∈ E \ N and each j = 1, 2, . . . there is a unique
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i(j, x) ∈ Ij such that x ∈ B(xj,i(j,x), rj,i(j,x)), whence

lim inf
j→∞

fj(x) = lim inf
j→∞

(
LipπC,b � B(xj,i(j,x), rj,i(j,x))

)m
6 lim inf

j→∞

(
LipπC,b � B(x, 2j−1)

)m
= lim inf

j→∞

(
sup

{
LipξπC,b : ξ ∈ B(x, 2j−1)

})m
6 lim inf

j→∞

(
sup

{
Lip(b, ξ) : ξ ∈ B(x, 2j−1)

})m
= Lip(b, x)m ,

according to Corollary 9.5 and the continuity of Lip at (b, x) ∈ Z. Plugging this into (16)
and referring to Fatou’s Lemma we obtain

H m(πC,b(E)) 6 lim inf
j→∞

∫
Rn
fj(x)d(H m E)(x)

6

∫
Rn

lim inf
j→∞

fj(x)d(H m E)(x)

6

∫
Rn

Lip(b, x)md(H m E)(x) .

Whence (15) is established and the proof is complete.

10. Homotopy equivalence in the Lipschitzian category

Here we state and prove some easy results to be used in the next section. Given x, y ∈ Rn

we call path joining x and y a continuous function γ : [0, 1] → Rn such that γ(0) = x and
γ(1) = x. We say that γ is a path in Z, for some Z ⊆ Rn, if im γ ⊆ Z. Finally we recall that

length(γ) = sup

{
κ∑
k=1

|γ(tk)− γ(tk−1)| : 0 = t0 < · · · < tκ = 1

}
.

Whenever γ is injective one has length(γ) = H 1(im γ).

10.1. D. – Let S ⊆ Rn be such that Rn \ S is arcwise connected. For each
x, y ∈ Rn \ S we let

dS(x, y) = inf
{

length(γ) : γ is a path in Rn \ S joining x and y
}
.

It is most obvious that |x−y| 6 dS(x, y), x, y ∈ Rn\S. In some cases dS is a metric equiv-
alent to the restriction of the Euclidean metric, for instance under the following hypothesis.

10.2. L. – Let S1, . . . , Sκ be disjoint compact convex sets with nonempty interiors,
and S = ∪κk=1Sk. There exists C > 0 such that

dS(x, y) 6 C|x− y| .
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Proof. – We start by observing that dIntS = dS . Next we select ak ∈ IntSk, 0 < rk 6 Rk
such that B(ak, rk) ⊆ IntSk ⊆ B(ak, Rk), k = 1, . . . , κ. Given x, y ∈ Rn \S we let γ denote
an arclength parametrization of the line segment joining x and y, so that length(γ) = |x−y|.
Denoting byK the collection of those indexes k = 1, . . . , κ such that IntSk∩[[[x, y]]] 6= ∅ and,
for each k ∈ K, by [sk, tk] the interval γ−1(Sk ∩ [[[x, y]]]), we define a new path γ′ in Rn \ IntS

joining x and y in the following way: we replace each γ � [sk, tk], k ∈ K, with πSk,bk ◦ γ
where bk is as in the conclusion of Proposition 9.7 (applied withm = 1 andE = Sk ∩ [[[x, y]]]).
Since dIntS(x, y) 6 length(γ′) we obtain at once

dIntS(x, y) 6
n2n

n− 1
max

®Å
Rk
rk

ãn+1

: k = 1, . . . , κ

´
|x− y| .

10.3. L. – Assume that κ is a positive integer and

(A) Ck ⊆ Rn, k = 1, . . . , κ are compact convex sets whose interiors are pairwise disjoint;
(B) bk ∈ Rn, σk > 0 and B(bk, σk) ⊆ IntCk, k = 1, . . . , κ;
(C) S = ∪κk=1B(bk, σk) and

H : [0, 1]× Rn \ S → Rn \ S

is defined as follows:H(t, x) = x+ t(πCk,bk(x)−x) in case x ∈ Ck \B(bk, σk) for some
k = 1, . . . , κ, and H(t, x) = x otherwise.

Then H is Lipschitzian.

Proof. – Define f(x) = H(1, x), x ∈ Rn \ S. Recalling that πCk,bk � Ck \ B(bk, σk)

is Lipschitzian (according to Corollary 9.5 together with Lemma 10.2) and that πCk,bk �
BdryCk = idBdryCk , we infer e.g. from [7, 2.3.2] that for each closed ball B ⊆ Rn \ S one
has Lip f � B 6 Λ where

Λ = max{LipπCk,bk � Ck \B(bk, σk) : k = 1, . . . , κ} .

According to Lemma 10.2 and the fundamental theorem of calculus for Lipschitzian func-
tion we infer that Lip f 6 CΛ where C = C(S) is associated with S in that lemma. Finally
one readily checks that

LipH 6 2 max{1 + Lip f,max{diamC1, . . . ,diamCk}} .

We end this section with a slight strengthening of the notion of homotopy.

10.4. D. – Let U ⊆ Rn be open and 0 < ε 6∞. We say that two Lipschitzian
maps h0, h1 : U → U are ε-homotopic in the Lipschitzian category if there exists a Lips-
chitzian map

H : [0, 1]× U → U

such that H(0, x) = h0(x), H(1, x) = h1(x) and |H(t, x) − x| < ε for every x ∈ U and
0 6 t 6 1. When ε = ∞ we simply say that h0 and h1 are homotopic in the Lipschitzian
category.

10.5. R. – If h0 and h1 are ε-homotopic then readily |h0(x)−h1(x)| < ε for every
x ∈ U . In particular distH (h0(A), h1(A)) 6 ε for every A ⊆ U .
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10.6. R. – We notice that if H is an affine homotopy, i.e. H(t, x) = h0(x) +

t(h1(x) − h0(x)), and if |h0(x) − h1(x)| < ε for every x ∈ U , then readily h0 and h1 are
ε-homotopic. This observation applies to the homotopy defined in Lemma 10.3.

10.7. R. – We leave it to the reader to check that if h0, h1 : U → U are
ε-homotopic in the Lipschitzian category and if h′0, h

′
1 : U → U are ε′-homotopic in

the Lipschitzian category, then h′0 ◦ h0 and h′1 ◦ h1 are ε′ + ε-homotopic in the Lipschitzian
category.

11. Deformation and approximation theorem

The approximating sets will be of the type described in the next definition.

11.1. D. – Let m ∈ {1, . . . , n− 1}. A set P ⊆ Rn is m-dimensional polyhedral
provided there exist finitely many m-dimensional linear subspaces Wk ∈ G(n,m), xk ∈ Rn,
and relatively open (14) sets Zk ⊆ xk +Wk, k = 1, . . . , κ, such that

P = ∪κk=1Zk .

In order that the argument to be made in Part 3 runs smoothly we will also require that
the polyhedral sets meet some nondegeneracy requirement.

11.2. D. – Let P ⊆ Rn be an m-dimensional polyhedral set. For each x ∈ P
we let

WP (x) = G(n,m) ∩ {W : H m((x+W ) ∩ P ∩B(x, r)) > 0 for every r > 0} .

We also define
WP = ∪{WP (x) : x ∈ P}

(which is a finite subset of G(n,m)). We say thatP is nondegenerate whenever for every x ∈ P
the following holds. If card WP (x) > 3 then dim ∩WP (x) 6 m− 2.

Notice that if P is a nondegenerate m-dimensional polyhedral set then so is each of its
relatively open subsets.

For use in the proof we introduce the following definition. In the remainder of this section
we let Ck,n denote the collection of dyadic cubes of mesh 2−k in Rn.

11.3. D. – A pseudodyadic cell is a convex set C ⊆ Rn with the property that

C = ∪{D : D ∈ Ck,n and D ⊆ C}

for some integer k ∈ N. The smallest such integer is called the generation of C and denoted
by genC.

We are now ready to state the main result of this Part.

(14) We insist that the sets Zk appearing in this definition be relatively open. This prevents from having to deal with
“boundary points” in applying Theorem 12.3 when we prove the approximation Theorem 6.1. That way, one techni-
cal burden is indeed avoided, but the statement and proof of Lemma 14.1 feel somewhat unpleasant — an annoyance
reflected in the several cases to be dealt with in the proof of Theorem 14.3. There is no free lunch.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



60 T. D PAUW

11.4. T. – Assume that

(A) X ⊆ Rn is compact and (H n−1, n− 1) rectifiable;
(B) ε > 0.

There then exist an open set U ⊇ X, a Lipschitzian map f : U → U and a set P such that
ClosP ⊆ U verifying the following properties:

(D) |f(x)− x|∞ < ε for every x ∈ U ;
(E) f(X) ⊆ P ;
(F) distH (X,P ) 6 ε;
(G) For every S ⊆ Rn and η > ε one has

H n−1 (P ∩U∞(S, η)) < ε+ H n−1 (X ∩U∞(S, 3η)) ;

(H)
∣∣H n−1(X)−H n−1(P )

∣∣ < ε;
(I) P is an H n−1 essential nondegenerate n− 1-dimensional polyhedral set;
(J) f is ε

√
n-homotopic to the identity of U in the Lipschitzian category.

Proof. – We letG ⊆ X be the set of points x ∈ X such that there existsWx ∈ G(n, n−1)

with (15)

(17) r1−nTx,r#(H n−1 X) ⇀ H n−1 Wx as r → 0+

(weakly as Radon measures). Then H n−1(X \G) = 0.
We let β > 0 and δ > 0 be some constants to be determined later. For each x ∈ G we

choose a decreasing sequence of positive numbers rj(x) ↓ 0 as j ↑ ∞ such that r1(x) 6 ε/4

and

(18) (H n−1 X)(B∞(x, rj(x)) \U∞(x, rj(x))) = 0 .

We notice that for every x ∈ G one has

0 = (H n−1 Wx)(B∞(0, 1) \U2(Wx, δ))

> lim sup
j→∞

rj(x)1−n(H n−1 X)(B∞(x, rj(x)) \U2(x+Wx, δrj(x))) .

Therefore there exists an integer j1(x) so that

(19) (H n−1 X)(B∞(x, rj(x)) \U2(x+Wx, δrj(x))) < βrj(x)n−1

whenever j > j1(x).
For x ∈ G we also notice that

lim sup
j→∞

rj(x)1−n(H n−1 X)(B∞(x, rj(x))) 6 (H n−1 Wx)(B∞(0, 1))

= (H n−1 Wx)(U∞(0, 1))

6 lim inf
j→∞

rj(x)1−n(H n−1 X)(U∞(x, rj(x))) .

Therefore,

lim
j→∞

rj(x)1−n(H n−1 X)(U∞(x, rj(x))) = (H n−1 Wx)(U∞(0, 1)) .

(15) Tx,r(y) = (y − x)/r.
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In other words there exists an integer j2(x) such that

(20)
∣∣(H n−1 X)(U∞(x, rj(x)))− (H n−1 (x+Wx))(U∞(x, rj(x)))

∣∣ < βrj(x)n−1

whenever j > j2(x).

Next we infer from the Vitali-Besicovitch covering Theorem (16) and (17) that there are
x1, . . . , xp ∈ G and ρi = rj(xi)(xi), i = 1, . . . , p, with

j(xi) > max{j1(xi), j2(xi)},

i = 1, . . . , p, the cubes B∞(xi, ρi) are pairwise disjoint and

(21) H n−1(X \ ∪pi=1B∞(xi, ρi)) < β .

We claim that for each i = 1, . . . , p there exists a pseudodyadic cellCi ⊆ U∞(xi, ρi)(recall
Definition 11.3) such that on letting C̄i = ClosCi the following hold

(i) (H n−1 X)(B∞(xi, ρi) \ Ci) < β/p;
(ii) (H n−1 X)(C̄i \U2(xi +Wxi , δρi)) < βρn−1

i ;

(iii)
∣∣(H n−1 X)(Ci)− (H n−1 (xi +Wxi))(C̄i)

∣∣ < βρn−1
i ;

(iv) B2(xi, ρi/2) ⊆ C̄i ⊆ B2(xi,
√
nρi).

In order to see this we fix i = 1, . . . , p and we define for every k = 1, 2, . . .

Ci,k = ∪{D : D ∈ Ck,n and D ⊆ U∞(xi, ρi)} .

Notice that the Ci,k are bounded convex pseudodyadic cells. Also Ci,k ⊆ Ci,k+1 and

∪∞k=1Ci,k = U∞(xi, ρi) .

It immediately follows that

lim
k→∞

(H n−1 X)(B∞(xi, ρi) \ Ci,k)

= (H n−1 X)(B∞(xi, ρi) \U∞(xi, ρi)) = 0 ,

according to (18), so that (i) is verified with Ci = Ci,k whenever k is large enough. We also
infer that for every k = 1, 2, . . .

(H n−1 X)(C̄i,k \U2(xi +Wxi , δρi))

6 (H n−1 X)(B∞(xi, ρi) \U2(xi +Wxi , δρi)) < βρn−1
i ,

according to (19). This shows that (ii) holds for Ci = Ci,k. On the other hand,

lim
k→∞

(H n−1 X)(Ci,k) = (H n−1 X)(U∞(xi, ρi)) ,

and

lim
k→∞

(H n−1 (xi +Wxi))(Ci,k) = (H n−1 (xi +Wxi))(U∞(xi, ρi)) .

We then infer from (20) that (iii) holds for Ci = Ci,k if k is sufficiently large. Condition (iv)
trivially holds for large k as well. This completes the proof of our claim.

(16) Here the Vitali-Besicovitch covering Theorem is applied to a family of balls with respect to the maximum norm
in Rn, see [11, 2.8.9 and 2.8.15]
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We let g = max{genC1, . . . , genCp}. Notice that 2−g 6 diam∞ C1 6 2ρ1 6 ε/2. There
are finitely many dyadic cubes of generation g, D1, . . . , Dq, which are disjoint from ∪pi=1Ci
and are such that

X ⊆
(
∪pi=1C̄i

)
∪
Ä
∪qj=1Dj

ä
and Dj ∩X 6= ∅ for each j = 1, . . . , q.

We now explain how we possibly need to rotate slightly the Wxi , i = 1, . . . , p, in order to
meet the nondegeneracy requirement of the approximating piecewise flat set (to be defined
later on). For each i = 1, . . . , p and l = 1, . . . , 2n we let Ai,l denote the n − 1 dimensional
affine subspaces of Rn characterized by the relation BdryCi ⊆ ∪2n

l=1Ai,l. We define similarly
Bj,l, j = 1, . . . , q, l = 1, . . . , 2n, by the requirement that BdryDj ⊆ ∪2n

l=1Bj,l. Next we put

A′i,l = Ai,l ∩U(Ai,l ∩ BdryCi, 2
−g−3)

and

B′j,l = Bj,l ∩U(Bj,l ∩ BdryDj , 2
−g−3) ,

i = 1, . . . , p, j = 1, . . . , q, l = 1, . . . , 2n. We will define, inductively on i = 0, 1, . . . , p,
families Fi of subsets of Rn such that ∪Fi is a nondegenerate n− 1 dimensional piecewise
flat set. We start with

F0 = {A′i,l : i = 1, . . . , p, l = 1, . . . , 2n} ∪ {B′j,l : j = 1, . . . , q, l = 1, . . . , 2n}

and we readily check that ∪F0 is nondegenerate. Our induction hypothesis about Fi will
also include that dist(S, xi′) > 0 for each S ∈ Fi and each i′ = i+ 1, . . . , p (notice that this
holds for i = 0). Given i = 1, . . . , p and assuming that Fi−1 has already been defined we
notice that

Bi = G(n, n− 1) ∩
{
W : for some distinct S, S′ ∈ Fi,

(xi +W ) ∩ S ∩ S′ generates an n− 2-dimensional affine subspace
}

is a finite set. Therefore there exists W ′xi ∈ G(n, n − 1) \Bi as close as we wish to Wxi , in
particular we can assume that estimates (ii) and (iii) above hold with Wxi replaced by W ′xi .
Finally we can choose 0 < δi < ε/2 such that

(22) (H n−1 (xi +W ′xi))(B∞(Ci, δi)) 6 (H n−1 (xi +W ′xi))(C̄i) + β/p

and also such that

Fi = Fi−1 ∪
{

(xi +W ′xi) ∩U∞(Ci, δi)
}

has the property that ∪Fi is nondegenerate (because W ′xi 6∈ Bi) and Fi verifies our induc-
tion hypothesis.

We now turn to preparing for the definitions of f and P (P will be a relatively open subset
of Fp). For each i = 1, . . . , p we let C−i and C+

i denote the closure of the two components
of Ci \ (xi +W ′xi). We observe that there exist a±i ∈ C

±
i such that

B(a±i , ρi/8) ⊆ IntC±i ⊆ B(a±i , (1 +
√
n)ρi)

and

(23) B(a±i , ρi/8) ∩U((xi +W ′xi), δρi) = ∅
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as follows from (iv) above, and provided we assume that δ < 1/4. Define

E±i = X ∩ IntC±i \U(xi +W ′xi , δρi) .

According to Proposition 9.7 there exist b±i ∈ B(a±i , ρi/8) \ E±i such that

H n−1
Ä
πC±

i
,b±
i

(E±i )
ä
6 C1(n)H n−1(E±i )

where
C1(n) = n26n−1(1 +

√
n)2n−1 .

We choose H n−1 essential relatively open sets

E′i ⊆ ∪2n
l=1A

′
i,l ⊆ ∪Fp

such that

(24) πC−
i
,b−
i

(E−i ) ∪ πC+
i
,b+
i

(E+
i ) ⊆ E′i ⊆ ∪Fp

and

(25) H n−1(E′i) 6 C1(n)H n−1(E−i ∪ E
+
i ) + β/p .

It follows from (23) and b±i ∈ B(a±i , ρi/8) that

(26) πC±
i
,b±
i

(
C±i ∩U(xi +W ′xi , δρi)

)
⊆ U(xi +W ′xi , δρi) ∩ BdryCi ,

and we observe that

H n−1
(
U(xi +W ′xi ,δρi) ∩ BdryCi

)
6H n−1

(
U(xi +W ′xi , δρi) ∩ Bdry B∞(xi, ρi)

)
6 C2(n)δρn−1

i ,

(27)

where
C2(n) = n2n/2 .

We also define
E[ = X ∩

(
∪pi=1(BdryCi) \U(xi +W ′xi , δρi)

)
and we choose an H n−1 essential relatively open set

E′[ ⊆ ∪
p
i=1 ∪

2n
l=1 A

′
i,l

such that

(28) E[ ⊆ E′[
and

(29) H n−1(E′[) 6H n−1(E[) + β .

Notice that

(30) H n−1(E[) 6
p∑
i=1

H n−1
(
X ∩ C̄i \U(xi +W ′xi , δρi)

)
6 β

p∑
i=1

ρn−1
i

according to (ii).
Similarly, referring to Proposition 9.7, for each j = 1, . . . , q, we find cj ∈ IntDj \X such

that
H n−1

(
πDj ,cj (Fj)

)
6 C3(n)H n−1(Fj)
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where

Fj = X ∩Dj

and

C3(n) = 4nn+1/2 .

We choose H n−1 essential relatively open sets

F ′j ⊆ ∪2n
l=1B

′
j,l

such that

(31) πDj ,cj (Fj) ⊆ F ′j

and

(32) H n−1(F ′j) 6 C3(n)H n−1(Fj) + β/q .

We are now ready to define P .

P =
(
∪pi=1(xi +W ′xi) ∩U(Ci, δi)

)
∪
(
∪pi=1U(xi +W ′xi) ∩ BdryCi

)
∪ (∪pi=1E

′
i) ∪ E′[ ∪

Ä
∪qj=1F

′
j

ä
.

As P ⊆ ∪Fp is relatively open and ∪Fp is a nondegenerate n − 1 dimensional polyhedral
set, we conclude P has the same property. Furthermore all the sets arising in the definition
of P are H n−1 essential, so that P is as well. We now turn to proving that

(33) distH (X,P ) 6 ε .

Each ξ ∈ ∪Fp is ε/2 close (in the norm | · |∞) to either some Ci or some Dj , each of which
meets X nontrivially and has diameter less than ε/2. Therefore

P ⊆ ∪Fp ⊆ B∞(X, ε) .

Furthermore if ξ ∈ X then either ξ ∈ C̄i for some i = 1, . . . , p, whence |ξ−xi|∞ 6 ρi 6 ε/4,
or ξ ∈ Dj for some j = 1, . . . , q, and then |πDj ,cj (ξ) − ξ|∞ 6 diam∞Dj 6 ε. As xi ∈ P
and imπDj ,cj � X ∩Dj ⊆ P we conclude that

X ⊆ B∞(P, ε) .

This completes the proof of (33).

Prior to estimating the measure of P we observe that

2

p∑
i=1

ρn−1
i 6

p∑
i=1

(2ρi)
n−1 =

p∑
i=1

H n−1
(

(xi + span{e1, . . . , en−1}) ∩B∞(xi, ρi)
)

6
p∑
i=1

H n−1
(

(xi +Wxi) ∩B∞(xi, ρi)
)

which, according to (20), is bounded by

6
p∑
i=1

(
βρn−1

i + H n−1(X ∩B∞(xi, ρi))
)
6 β

p∑
i=1

ρn−1
i + H n−1(X) .
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If β 6 1 — as we will subsequently assume —, then

(34)
p∑
i=1

ρn−1
i 6H n−1(X) .

We are ready to prove (locally, at a scale not too small) an upper estimate for the measure of
P . Let S ⊆ Rn and η > ε and define

IS = {1, . . . , p} ∩ {i : U∞(S, η) ∩ (xi +W ′xi) ∩U∞(Ci, δi) 6= ∅} .

Notice that if i ∈ IS and ξ ∈ X ∩ B∞(xi, ρi) then ξ ∈ U∞(S, 3η). p Indeed choose ζ ∈
U∞(S, η)∩(xi+W

′
xi)∩U∞(Ci, δi), so that |ζ−xi|∞ 6 ρi+δi < ε, and in turn choose ζ ′ ∈ S

such that |ζ−ζ ′|∞ < η. Then |ξ−ζ ′|∞ 6 |ξ−xi|∞+ |xi−ζ|∞+ |ζ−ζ ′|∞ < ρi+ε+η 6 3η.
q Therefore

H n−1 (P ∩U∞(S, η)) 6
∑
i∈IS

H n−1
(
(xi +W ′xi) ∩U∞(Ci, δi)

)
+

p∑
i=1

H n−1
(
U(xi +W ′xi , δρi) ∩ BdryCi

)
+

p∑
i=1

H n−1(E′i)

+ H n−1(E′[)

+

q∑
j=1

H n−1(F ′j)

6
∑
i∈IS

(
H n−1(X ∩B∞(xi, ρi)) + βρn−1

i + 2β/p
)

+

p∑
i=1

C2(n)δρn−1
i

+

p∑
i=1

(
C1(n)βρn−1

i + β/p
)

+ β

(
1 +

p∑
i=1

ρn−1
i

)
+ β(C3(n) + 1)

6H n−1 (X ∩U∞(S, 3η))

+ β
(

5 + C3(n) + (2 + C1(n))H n−1(X)
)

+ δC2(n)H n−1(X) ,

where we have used the following inequalities in order to estimate each of the five terms in the
above sum: (22), (i) and (iii) for the first term; (27) for the second term; (25) and (ii) for the
third term; (29) and (30) for the fourth term; and (32) and (21) for the fifth term. Choosing β
and δ small enough (depending upon ε, C1(n), C2(n), C3(n) and H n−1(X)) we can readily
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achieve the following inequality

H n−1 (P ∩U∞(S, η)) < ε+ H n−1 (X ∩U∞(S, 3η)) ,

(which is conclusion (G)), in particular

H n−1(P ) 6H n−1(X) + ε .

On the other hand,

H n−1(P ) >
p∑
i=1

H n−1
(
(xi +W ′xi) ∩ C̄i

)
which, according to (iii), (i) and (34), is bounded below by

>
p∑
i=1

H n−1(X ∩B∞(xi, ρi))− β(1 + H n−1(X))

>H n−1(X)− β(2 + H n−1(X)) ,

where the last inequality follows from (21). We obtain that

H n−1(P ) >H n−1(X)− ε

provided β is small enough.

In order that the proof of the theorem be complete it remains to define U and f so that
they verify the stated properties. For each i = 1, . . . , p we choose σ±i > 0 such that

B(b±i , σ
±
i ) ∩X = ∅ and B(b±i , σ

±
i ) ⊆ IntC±i ,

and for each j = 1, . . . , q we choose τj > 0 such that

B(cj , τj) ∩X = ∅ and B(cj , τj) ⊆ IntDj .

We put

U = Rn \

[(
∪pi=1 B(b−i , σ

−
i )
)
∪
(
∪pi=1 B(b+i , σ

+
i )
)
∪
(
∪qj=1 B(cj , τj)

)]
and we define f as follows.

f � C̄±i \B(b±i , σ
±
i ) = πC̄±

i
,b±
i
, i = 1, . . . , p

f � D̄j \B(cj , τj) = πD̄j ,cj , j = 1, . . . , q

f � Rn \
((
∪pi=1 C̄i

)
∪
(
∪qj=1 D̄j

))
= id

Rn\
((
∪p
i=1

C̄i

)
∪
(
∪q
j=1

D̄j

)) .
It is then immediate from the definition of P that f(X) ⊆ P . Notice also that im f ⊆ U .
Since diam∞ Ci < ε, i = 1, . . . , p, and diam∞Dj < ε, j = 1, . . . , q, we readily infer that
|f(x) − x|∞ < ε, x ∈ U . Finally, that f is Lipschitzian and ε

√
n-homotopic to idU in the

Lipschitzian category is an application of Lemma 10.3.
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PART III

APPROXIMATION: THE BOUNDARY CASE

12. Interpolating a particular retraction on the boundary

We start by stating a version of the standard “tubular neighborhood theorem”.

12.1. T. – Let B ⊆ R3 be a 1-dimensional compact submanifold of class Ck,
k = 2, 3, . . . . There exists R > 0 with the following properties.

(A) For every x ∈ U(B,R) there exists a unique ξ ∈ B such that |ξ − x| = dist(x,B) and
this ξ is denoted by π(x);

(B) The map π : U(B,R)→ B is Lipschitzian and of class Ck−1;
(C) The map d : U(B,R)→ R : x 7→ dist(x,B) is of class Ck;
(D) For every ξ ∈ B, letting W (ξ) = (TξB)⊥ ∈ G(3, 2) we have that π−1{ξ} = (ξ +

W (ξ)) ∩U(ξ,R).
(E) For every 0 < r < R the set R3 ∩ {x : dist(x,B) = r} is a 2-dimensional submanifold

of class Ck of R3.

12.2. R. – The following comments are in order.

(1) The existence of R > 0 such that conclusion (A) holds is, by definition, saying that B
has positive reach. For that purpose the mere assumption thatB be of classC1,1 is suffi-
cient, see [10, 4.12]. In caseB is only of classC1 it does not need to have positive reach,
as shown by the example B = R3 ∩ {x : x2 = |x1|3/2 and x3 = 0}. Notwithstand-
ing there still exists a map π defined in a neighborhood ofB which is an “approximate
nearest point projection” of class C1 and having flat level sets (as stated in conclusion
(D) above), see [28, Chap. IV Theorem 10A].

(2) Conclusion (B) follows from straightforward computations; an expression for Dπ
showing that ‖Dπ(x) − PTπ(x)B‖ = O(dist(x,B)) can be found for instance in [1,
2.2(2)].

(3) The fact that d(x) = dist(x,B) = |x− π(x)|, x ∈ U(B,R) \ B, has one more degree
of differentiability (with respect to x) than π itself can be seen for instance (following
R.L. Foote, [16]) on noticing that∇d2(x) = 2(x− π(x)).

(4) Conclusion (D) is a consequence of (A) and x−π(x) ∈ (Tπ(x)B)⊥ (which follows from
a simple variational argument). Notice (D) implies W (π(x)) = kerDπ(x), a fact that
will be used repeatedly without reference.

(5) It readily follows from (D) that each 0 < r < R is a regular value of d, so that (E)
holds.

In the remaining part of this section we will use the symbolsB, π, d andW with the mean-
ing given in Theorem 12.1. We will also abbreviate

Vr = R3 ∩ {x : dist(x,B) < r}, 0 < r 6 R ,

as well as
Mr = R3 ∩ {x : dist(x,B) = r}, 0 < r < R .

One easily checks that Mr = Bdry Vr.
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12.3. T. – Assume that B, π, d, Vr and Mr are as above. There then exists
Λ > 0 with the following property. For every 0 < r < R/4 there exists a Lipschitzian map
gr : R3 → R3 such that the following hold.

(A) gr(x) = π(x) for every x ∈ ClosVr, gr(x) = x for every x ∈ R3 \ V2r, and
|x− gr(x)| < 2r for every x ∈ R3;

(B) Lip gr 6 Λ;
(C) The restriction gr : R3 \ ClosVr → R3 \B is a C1 diffeomorphism;
(D) Suppose that x0 ∈Mr, W0 ∈ G(3, 2) and

(D1) dim W0 ∩ Tx0
Mr = 1;

(D2) W0 ∩ Tx0
Mr ∩W (π(x0)) = {0};

There then exists ρ0 > 0 such that the restriction of gr to (x0 +W0) ∩U(x0, ρ0) \ Vr is
a bi-Lipschitzian homeomorphism onto its image.

Proof. – Let 0 < r < R/4. We choose a function λr : (0,∞)→ (0,∞) with the following
properties.

(a) λr is of class C∞ on (r,∞);
(b) λr(ρ) = 0 if 0 < ρ 6 r;
(c) λr(ρ) = ρ− r if r 6 ρ 6 3r/2;
(d) λr(ρ) = ρ if 2r 6 ρ;
(e) λr is Lipschitzian and Lipλr 6 4;
(f) λr(ρ) 6 ρ for every ρ > 0;
(g) λ′r(ρ) > 1 for every r < ρ < 2r.

We define gr : R3 → R3 by the formula

gr(x) =

{
x if x ∈ B ∪ R3 \ V2r

π(x) + λr(d(x))x−π(x)
d(x) if x 6∈ B ∪ R3 \ V2r .

Conclusion (A) is an immediate consequence of the definition and property (b) of λr. Notice
that gr is of class C1 on R3 \ClosVr (the formula defining gr in V2r \B also coincides with
gr on the whole VR \B according to property (d) of λr). Moreover for x ∈ VR \ClosVr and
h ∈ R3 one checks that

Dgr(x)(h) = Dπ(x)(h)

+ λ′r(d(x))〈∇d(x), h〉
Å
x− π(x)

d(x)

ã
+
λr(d(x))

d(x)

Å
h−Dπ(x)(h)−

Å
x− π(x)

d(x)

ã
〈∇d(x), h〉

ã
.

(35)

We also recall that Lip d 6 1 (and therefore |∇d(x)| 6 1 for every x ∈ VR \B). Referring to
(35) as well as properties (e) and (f) of λr we infer that

‖Dgr(x)‖ 6 Lipπ + 4 + (1 + Lipπ + 1)

for every x ∈ VR \B. We also notice that the pointwise Lipschitz constant of gr at points of
R3 \ (VR \ B) is bounded by max{1,Lipπ}. It readily follows that gr is Lipschitzian on R3

with Lip gr 6 6 + 2Lipπ =: Λ. Conclusion (B) follows.
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In order to prove conclusion (C) we observe that the restriction

gr : R3 \ ClosVr → R3 \B

is bijective, thus it is sufficient to show that it is locally a C1 diffeomorphism. If d(x) > 2r

then gr = idR3 in a neighborhood of x. If d(x) = 2r then Dgr(x) = idR3 according to (35)
together with properties (a) and (d) of λr, so that gr is a C1 diffeomorphism of a neighbor-
hood of x onto its image. The case 0 < d(x) < 2r is dealt with by showing that in fact the
restriction

gr : V2r \ ClosVr → V2r \B
is a C1 diffeomorphism. Indeed, letting µr denote the inverse of λr : (r, 2r)→ (0, 2r) (recall
property (g) of λr) we define

hr : V2r \B → V2r \ ClosVr

by the formula

hr(y) = π(y) + µr(d(y))
y − π(y)

d(y)
.

It is obvious that hr is of class C1 and it is a simple matter to verify explicitly that hr is the
inverse of gr.

It remains to address conclusion (D). We have already established that gr is Lipschitzian.
Therefore the proof will be completed upon showing that there are ρ0 > 0 and η > 0 such
that

|gr(x)− gr(y)| > η|x− y|
for every x, y ∈ (x0 +W0) ∩U(x0, ρ0) \ Vr.

For each x ∈ U(B,R) \B we abbreviate

n(x) =
x− π(x)

|x− π(x)|
.

Notice that n(x) ∈
(
TxMd(x)

)⊥
in view of Remark 12.2(3). Since x − π(x) ∈ W (π(x))

we also infer that n(x) ∈ W (π(x)), so that n(x) is the unit exterior normal to the circle
Md(x) ∩ (π(x) +W (π(x)))∩U(π(x), R), at the point x, in the affine plane π(x) +W (π(x)).

C #1. There exist ρ1 > 0, β0 > 0, θ0 > 0 and a unit vector v0 ∈ R3 with the following
properties. For every x ∈ U(x0, ρ1) one has

dimW0 ∩W (π(x)) = 1(36)

dimW0 ∩ TxMd(x) = 1(37)

dimW0 ∩W (π(x)) ∩ TxMd(x) = 0 .(38)

Furthermore if we let u(x) be a unit vector spanningW0∩W (π(x)) such that 〈n(x), u(x)〉 > 0,
0 6 θ(x) 6 π/2 be the angle between W0 ∩W (π(x)) and TxMd(x), and e(x) be a unit vector
spanning W0 ∩ TxMd(x) then the following hold.

θ0 6 θ(x)(39)

〈v0, Dπ(x)(e(x))〉 > β0(40) ∣∣PW (π(x))(v0)
∣∣ 6 β2

0

64Λ2
.(41)
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p Regarding relations (36), (37) and (38) we simply notice that these hold when x = x0

according to hypotheses (D1) and (D2), and the fact that the maps

VR \B → G(3, 2) : x 7→W (π(x)) = ker Dπ(x)

and

VR → G(3, 2) : x 7→ TxMd(x) = ker∇d(x)

are continuous, so that these relations hold in a neighborhood of x0 as well. With regard
to inequality (39) we observe that θ(x) = arccos

∣∣PW (π(x))(u(x))
∣∣ is continuous and that

θ(x0) > 0 for otherwise u(x0) ∈ Tx0
Mr in contradiction with hypothesis (D2). This clearly

shows that θ(x) > θ0 > 0 for x in some neighborhood of x0. Next we can assume that the
choice of e(x) is continuous in x. We let v0 span Tπ(x0)B = (W (π(x0)))

⊥ and be such that

〈v0, Dπ(x0)(e(x0))〉 > 0

(notice that necessarily 〈v0, Dπ(x0)(e(x0))〉 6= 0 for otherwise e(x0) ∈ ker Dπ(x0) =

W (π(x0)) in contradiction with hypothesis (D2)). Since inequalities (40) and (41) depend
continuously on x we can restrict to a smaller neighborhood of x0 where these hold as well.
q

Now we let x, y ∈ (x0+W0)∩U(x0, ρ1)\Vr. In order to estimate the norm of gr(x)−gr(y)

we will estimate separately the norms of gr(x) − gr(z) and gr(z) − gr(y) for some point z
such that

z ∈Md(y) ∩ (π(x) +W (π(x))) ∩ (x0 +W0).

Before we start we need to estimate how far z will be from x and y and to ensure the existence
of a curve joining z and y on the “cylinder” Md(y).

Abbreviate

ε =
sin θ0

2
.

C #2. There exist C0 > 0 and 0 < ρ2 < ρ1 with the following property. For every
0 < ρ < ρ2 and every x, y ∈ (x0 +W0) ∩U(x0, ερ) such that d(y) > max{d(x), r} the set

Md(y) ∩ (π(x) +W (π(x))) ∩ (x0 +W0) ∩U(x0, ρ)

is a singleton, and if z denotes its single element then

(42) max{|z − y|, |z − x|} 6 C0|x− y| .

p For each x ∈ U(x0, ρ1) the set (π(x) + W (π(x))) ∩ (x0 + W0) is an affine line, say
L(x), according to (36). We notice that x ∈ L(x). On the other hand the setMd(y) ∩ (π(x) +

W (π(x))) ∩U(π(x), R) is a circle centered at π(x) of radius d(y). We let {z1, z2} = L(x) ∩
Md(y) ∩U(π(x), R). Since zj − x ∈W (π(x)) ∩W0 we see that zj − x is a multiple of u(x),
j = 1, 2. We label z1, z2 so that 〈z1 − x, n(x)〉 > 0. Projecting z1 − x on span{x− π(x)} we
infer from (39) that

(43) |z1 − x| 6
d(y)− d(x)

sin θ(x)
6

ερ

sin θ0
6
ρ

2
,
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whence z1 ∈ U(x0, ρ) if x, y ∈ U(x0, ερ) because |x − x0| < ερ 6 ρ/2. On the other hand,
letting x′ be such that {x, x′} = L(x) ∩Md(x) ∩U(π(x), R) we readily see that

|z2 − x|2 > |x′ − x|2 = 2r2(1− cos 2θ(x))

and, in turn,

|z2 − x0| > |z2 − x| − |x− x0| > r
»

2(1− cos 2θ0)− ερ > ρ

where the last inequality occurs provided ρ < ρ2 and ρ2 is chosen small enough depending
upon r, θ0 and ε.

With regard to inequality (42) we recall from (43) that

|z − x| 6 d(y)− d(x)

sin θ(x)
6
|y − x|
sin θ0

because Lip d 6 1. Also

|z − y| 6 |z − x|+ |x− y| 6
Å

1

sin θ0
+ 1

ã
|x− y| . q

For use in the remaining part of this proof we let

Γδ = Mδ ∩ (x0 +W0) ,

0 < δ < R. We notice that Γδ ∩ U(x0, ρ1) is (either empty or) a 1-dimensional C1 sub-
manifold of R3 according to (37). Furthermore it follows from (38) that π � Γδ ∩U(x0, ρ1)

has everywhere a derivative of maximal rank. The following claim follows at once from these
remarks.

C #3. There exists 0 < ρ3 < ερ2 such that π � Γr ∩U(x0, ρ3) is a C1 diffeomorphism
onto its image. We let h denote its inverse.

C #4. There exists 0 < ρ4 < ρ3 with the following property. For every 0 < ρ < ρ4 and
every x, y ∈ (x0 +W0) ∩U(x0, ερ) with d(y) > max{d(x), r} if we let z be such that

{z} = Md(y) ∩ (x0 +W0) ∩ (π(x) +W (π(x))) ∩U(x0, ρ)

(recall Claim #2) then there exists a curve of finite length γ : [a, b]→ R3 such that γ(a) = y,
γ(b) = z and im γ ⊆Md(y) ∩ (x0 +W0) ∩U(x0, ρ1).

p We choose ρ4 small enough for π(U(x0, ρ4)) ⊆ π(Γr∩U(x0, ρ3)). Given ρ, x and y as
in the statement we let I denote the closed connected subset of π(U(x0, ρ4)) with endpoints
π(y) and π(z). For each ξ ∈ I we infer from Claim #3 that there exists xξ ∈ Γr ∩U(x0, ερ2)

such that π(xξ) = ξ. It follows in turn from Claim #2 (applied with xξ in place of x) that

Md(y) ∩ (ξ +W (ξ)) ∩ (x0 +W0) ∩U(x0, ρ2)

is a singleton. In other words, letting

E = Md(y) ∩ (x0 +W0) ∩U(x0, ρ2)

we conclude that π is a bijection fromE∩π−1(I) onto I. SinceE∩π−1(I) ⊆ Γd(y)∩U(x0, ρ1)

is a compact subset, the inverse of the said map is Lipschitzian. The claim readily follows. q
For the purpose of brevity we introduce the following convenient notation. For ζ ∈ VR\B

we put

q(ζ) =
ζ − π(ζ)

d(ζ)
.
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We observe that for each ζ ∈ U(x0, r/2)\Vr we have λr(d(ζ)) = d(ζ)−r thanks to property
(c) of λr, therefore

(44) gr(ζ) = π(ζ) + (d(ζ)− r)
Å
ζ − π(ζ)

d(ζ)

ã
= ζ − rq(ζ) .

We set ρ5 = min{ρ4, r/2}.
From now on we let x, y ∈ (x0 +W0)∩U(x0, ερj) \Vr (for j = 5, 6, . . . as we proceed in

the proof) with d(y) > d(x). We also let z be associated with x and y as above.

Estimate of |gr(x)− gr(z)|. We write

(45) gr(x)− gr(z) = x− z − r(q(x)− q(z)) .

Since each (ξ+W (ξ))∩Mr∩U(ξ,R), ξ ∈ B, is a circle of radius r one checks that there exists
ρ6 > 0 such that for every ζ0 ∈ (ξ + W (ξ)) ∩Mr ∩U(ξ,R) and every ζ1, ζ2 ∈ U(ζ0, ρ6) ∩
(ξ +W (ξ)) \ Vr one has

(46) r|〈n(ζ0), q(ζ1)− q(ζ2)〉| 6 ε|ζ1 − ζ2| .

p By translating and rescaling we reduce to the case when ξ = 0, r = 1, W (ξ) =

span{e1, e2}, ζ0 = e1, and q(ζ) = ζ|ζ|−1 for ζ ∈ W (ξ). Near e1 the circle W (ξ) ∩
Bdry B(0, 1) is a C1 graph on its tangent line and therefore there exists ρ6 > 0 such that

|〈e1, q(ζ1)− q(ζ2)〉| 6 ε|〈e2, q(ζ1)− q(ζ2)〉|

whenever ζ1, ζ2 ∈W (ξ) ∩U(e1, ρ6). If also ζ1, ζ2 6∈ U(0, 1) then

|〈e1, q(ζ1)− q(ζ2)〉| 6 ε|〈e2, q(ζ1)− q(ζ2)〉| 6 ε|q(ζ1)− q(ζ2)| 6 ε|ζ1 − ζ2| . q

We define

ζ0 = ζ0(x) = π(x) + r

Å
x− π(x)

d(x)

ã
and we notice that n(ζ0) = n(x). Recalling that x − z ∈ W0 ∩W (π(x)) (and is therefore a
multiple of u(x)) and assuming that x, z ∈ U(ζ0, ρ6) we obtain

|gr(x)− gr(z)| > |〈n(ζ0), gr(x)− gr(z)〉|
> |〈n(x), x− z〉| − r|〈n(ζ0), q(x)− q(z)〉|

> sin θ(x)|x− z| − sin θ0

2
|x− z| > ε|x− z| .

(47)

We now claim that there exists 0 < ρ7 < ρ5 such that if x, y ∈ U(x0, ρ7) then x, z ∈
U(ζ0(x), ρ6). This will imply that (47) holds provided x, y ∈ U(x0, ερ7). p Clearly

|x− ζ0(x)| =
Å

1− r

d(x)

ã
6
ρ

R

and

|z − ζ0(x)| 6 |x− ζ0(x)|+ |x− z| 6 ρ

R
+ 2C0ρ

where we have referred to Claim #2. The existence of ρ7 follows at once. q

Estimate of |gr(z)− gr(y)|. We let γ : [a, b]→ R3 be an arc length parametrization of the
curve joining y and z inMd(y) as stated in Claim #4. Notice that γ′(t) = ±e(γ(t)), t ∈ [a, b],
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with the sign not changing as t varies (so we may as well assume that γ′ = e ◦ γ by reversing
the orientation of γ if necessary). Writing d(y) = r + δ we observe that

gr(z)− gr(y) = z − y − r

r + δ
(z − y − (π(z)− π(y)))

=
δ

r + δ
(z − y) +

r

r + δ

∫ b

a

Dπ(γ(t))(γ′(t))dt

=: v1 + v2 .

Furthermore (40) yields

〈v0, v2〉 =
r

r + δ

Æ
v0,

∫ b

a

Dπ(γ(t))(γ′(t))dt

∏
=

r

r + δ

∫ b

a

〈v0, Dπ(γ(t))(γ′(t))〉dt

>
rβ0

r + δ
length(γ) >

rβ0

r + δ
|z − y| .

Notice also that

|〈v0, v1〉| 6 |v1| =
r

r + δ
|z − y| .

Therefore

〈v0, gr(z)− gr(y)〉 > rβ0 − δ
r + δ

|z − y| .

We infer that if δ 6 min{r, β0r/2} then

(48) |gr(z)− gr(y)| > 〈v0, gr(z)− gr(y)〉 > β0

4
|z − y| .

This can be achieved by requiring that y ∈ U(x0, ρ8) with

ρ8 = min{ρ7, r, β0r/2} .

Estimate of the angle between gr(x)−gr(z) and gr(z)−gr(y). We observe that π(x) = π(z)

and therefore q(x), q(z) ∈W (π(x)). In turn gr(x)− gr(z) ∈W (π(x)). Therefore

〈gr(x)− gr(z)〉, gr(z)− gr(y)〉 = 〈gr(x)− gr(z)〉, PW (π(x))(gr(z)− gr(y))〉 .

Recalling (48) and (41), and abbreviating u := gr(z)− gr(y) we infer that∣∣PW (π(x))(gr(z)− gr(y))
∣∣ =

∣∣PW (π(x)) (〈v0, u〉v0 + (u− 〈v0, u〉v0))
∣∣

6 |u|
∣∣PW (π(x))(v0)

∣∣+
»
|u|2 − 〈v0, u〉2

6 |gr(z)− gr(y)|

(∣∣PW (π(x))(v0)
∣∣+

 
1− β2

0

16Λ2

)
= (1− λ)|gr(z)− gr(y)|

(49)

where λ := β2
0/(64Λ2). Consequently,

(50) |〈gr(x)− gr(z)〉, gr(z)− gr(y)〉| 6 (1− λ)|gr(x)− gr(z)||gr(z)− gr(y)| .
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Final estimate. We let ρ0 = ερ8 and we observe that (47), (48) and (50) hold whenever
x, y ∈ (x0 +W0)U(x0, ρ0) \ Vr. Whence

|gr(x)− gr(y)|2 = |gr(x)− gr(z)|2 + |gr(z)− gr(y)|2

+ 2〈gr(x)− gr(z), gr(z)− gr(y)〉

> |gr(x)− gr(z)|2 + |gr(z)− gr(y)|2

− 2(1− λ)|gr(x)− gr(z)||gr(z)− gr(y)|

>
λ

2
(|gr(x)− gr(z)|+ |gr(z)− gr(y)|)2

>
β2

0

128Λ2

Å
ε|x− z|+ β0

4
|z − y|

ã2

.

In turn
|gr(x)− gr(y)| > η|x− y|

where

η =
β0

12Λ
min

ß
ε,
β0

4

™
and the proof of the theorem is complete.

12.4. R. – We now discuss the necessity of hypotheses (D1) and (D2). For that
purpose we let B = span{e1} (near the origin), r = 1 and x0 = e2.

(1) If W0 = span{e1, e3} = Tx0
M1 then the restriction of g1 to any neighborhood of x0

in (x0 +W0) \ V1 is clearly a Lipschitzian homeomorphism. However its inverse is no
better than Hölder continuous of exponent 1/2 (it suffices to notice that g1(e2 +te3) =

(1 −
√

1 + t2)/
√

1 + t2 when t is close enough to 0). It turns out that this situation is
exceptional and we can avoid it by a “general position argument” to be made precise
in the next section.

(2) The case when W0 = span{e2, e3}, i.e. W0 = W (π(x0)), can also be ruled out generi-
cally, see next section.

(3) If W0 = span{e3, e1 + e2} then it is easily seen that g1 is not a bijection from any
neighborhood of x0 in (x0 + W0) \ V1 onto its image – it is in fact two-to-one on
(x0 + W0) ∩ Bdry V1 in a neighborhood of x0. Most importantly, the restriction of
g1 to any neighborhood of x0 in {x : 〈x, e3〉 > 0}∩ (x0 +W0)\V1 is a bijection but its
inverse is no better than Hölder continuous with exponent 1/2 (same calculation as in
(1) above). Unlike the two preceding cases, the present situation cannot be avoided by
a general position argument (small translations or rotations of W0 make the problem
arise nearby on the curve (x0 +W0) ∩ Bdry V1). Instead we will “pleat” W0.

13. General position

We now explain how to avoid the situation described in Remark 12.4(1).

13.1. L. – Let M ⊆ R3 and let E ⊆ R3 be a finite or countable set. If there exists
r > 0 such that (h+ E) ∩M 6= ∅ for every h ∈ B(0, r) then L 3(M) > 0.
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Proof. – For each z ∈ E write Sz = B(0, r) ∩ {h : z + h ∈ M}. Then B(0, r) =

∪z∈ESz and accordingly L 3(Sz0) > 0 for some z0 ∈ E. Since z0 + Sz0 ⊆ M the proof is
complete.

13.2. P. – Assume that k = 1, 2, W ∈ G(3, k) and M ⊆ R3 is a 2-
dimensional compact submanifold of class Ck. Then the set

G = R3 ∩ {a : dimW ∩ TxM = k − 1 for every x ∈ (a+W ) ∩M}

is open and dense.

Proof. – First notice that for every V ∈ G(3, 2) either dimV ∩ W = k − 1 or
dimV ∩ W = k, the latter occurring if and only if W ⊆ V . Letting B = R3 \ G we
proceed to showing that B is closed. Assume a1, a2, · · · ∈ B and a ∈ R3 are such that
aj → a as j → ∞. For each j = 1, 2, . . . there exists xj ∈ (aj + W ) ∩ M such that
W ⊆ TxjM . Since M is compact there are x ∈ M and a subsequence k(1), k(2), . . . of
1, 2, . . . such that xj(k) → x as k → ∞. Clearly x ∈ (a + W ) ∩ M . On the other hand
Txj(k)M → TxM (for instance locally in Hausdorff distance) because M is of class C1.
Therefore W ⊆ TxM .

It remains to prove that G is dense. Let a ∈ R3. We consider the maps

τ−a : M → R3 : x 7→ x− a

and

πW : R3 → R3/W

(the natural projection). Both are obviously of class Ck. According to the Morse-Sard The-
orem there are regular values hj ∈ R3/W , j = 1, 2, . . . , of πW ◦ τ−a such that hj → 0 as
j → ∞. Choose hj ∈ R3 such that πW (hj) = hj , j = 1, 2, . . . , and hj → 0 as j → ∞. We
define aj = a+ hj and we will show that aj ∈ G, j = 1, 2, . . . . Indeed if x ∈ (aj +W ) ∩M
one easily checks that (πW ◦ τ−aj )(x) = hj . Therefore the following linear map is surjective:
d(πW ◦τ−aj )(x) = πW ◦d(τ−aj )(x) = πW ◦ iTxM (where iTxM : TxM → R3 is the canonical
injection). From this we infer that TxM +W = R3, i.e. dimW ∩ TxM = k − 1.

13.3. T. – Assume that

(A) M ⊆ R3 is a compact 2-dimensional submanifold of class 2;
(B) P is a 2-dimensional nondegenerate polyhedral set in R3.

Then there exists an open dense set D ⊆ R3 such that for every a ∈ D the following conditions
hold.

(1) dist (M, (a+ P ) ∩ {x : card Wa+P (x) > 3}) > 0, in particular for every x ∈ (a+ P ) ∩M :
card Wa+P (x) 6 2;

(2) For every x ∈ (a+ P ) ∩M and every W ∈ Wa+P (x): dimW ∩ TxM = 1;
(3) For every x ∈ (a + P ) ∩M such that card Wa+P (x) = 2: dimW1 ∩W2 ∩ TxM = 0,

where {W1,W2} = Wa+P (x).
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Proof. – For j = 1, 2, 3 we let Dj denote the set of a ∈ R3 such that conclusion (j) holds.
It suffices to show that D1, D2 and D3 each contain a subset which is open and dense in R3.
We now introduce some notations for use in the present proof. For a given polyhedral set
Q we let A2,Q denote the (finite) collection of 2-dimensional affine subspaces Y of R3 such
that H 2(Y ∩Q) > 0. We also let A1,Q denote the (finite) collection of 1-dimensional affine
subspaces Z of R3 such that Z = Y1 ∩ Y2 for some Y1, Y2 ∈ A2,Q. Finally we define EQ =

Q ∩ {x : card WQ(x) > 3}.
From the nondegeneracy of P we infer that each x ∈ EP is associated with someZ1, Z2 ∈

A1,P such that {x} = Z1 ∩ Z2. Therefore EP is a finite set. Noticing that Ea+P = a + EP
for every a ∈ R3, the openness of D1 follows from the finiteness of EP and the closedness of
M . That D1 be dense is a consequence of Lemma 13.1.

For eachY ∈ A2,P we selecthY ∈ Y and we apply Proposition 13.2 to k = 2,W = Y−hY
and M . Denoting by GY the set appearing in the conclusion of that proposition we observe
that D2 contains ∩{GY − hY : Y ∈ A2,P } which is itself open and dense.

Similarly, for each Z ∈ A3,P we select hZ ∈ Z and we apply Proposition 13.2 to k = 1,
W = Z − hZ and M . Letting GZ denote the set appearing in the conclusion of that propo-
sition we note that D3 contains ∩{GZ − hZ : Z ∈ A1,P } which is open and dense.

We now show how to avoid the situation described in Remark 12.4(2).

13.4. L. – Assume that

(A) B ⊆ R3 is a 1-dimensional compact submanifold of class C1,1;
(B) P ⊆ R3 is a 2-dimensional polyhedral set.

Then there exists an open dense set A ⊆ O(3) such that for every A ∈ A one has

WA(P ) ∩ {W (π(x)) : x ∈ B} = ∅ .

13.5. R. – Since Wa+A(P ) = WA(P ) whenever a ∈ R3 we see that in fact
Wa+A(P ) ∩ {W (π(x)) : x ∈ B} = ∅ whenever A ∈ A and a ∈ R3.

Proof. – We consider the map n : B → G(3, 1) : x 7→ (TxB)
⊥ which is Lipschitzian

according to assumption (A). Thus the Hausdorff dimension of imn is 1. Identifying G(3, 1)

to a quotient of S2 through the (bi-Lipschitzian) canonical map ι : S2 → G(3, 1) we recall
that φ = ι#H 2 is an O(3) invariant measure on G(3, 1). It follows now that φ(imn) = 0.

Letting E = G(3, 1) ∩ {V : H 2
(
(h+ V ⊥) ∩ P

)
> 0 for some h ∈ R3}, and noticing

thatE is finite, an argument similar to that of the proof of Lemma 13.1 implies that for every
neighborhood U of the identity in O(3) there exists A ∈ U such that (A · E) ∩ imn = ∅.
The conclusion follows at once.

Next we establish the following. After applying the preceding lemma, the set of points
where the worst situation occurs — with regard to hypothesis (D2) of Theorem 12.3 — is
discrete. This is for use in the proof of Theorem 14.3.

13.6. L. – Assume that

(A) B ⊆ R3 is a 1-dimensional compact submanifold of class C3;
(B) R and Mr are as in section 12, 0 < r < R;
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(C) x0 ∈Mr, W0 ∈ G(3, 2), dimW0 ∩ Tx0
Mr = 1, dimW0 ∩ Tx0

Mr ∩W (π(x0)) = 1 and
W0 6= W (π(x0)).

Then there exists δ > 0 such that for every x ∈ (x0 +W0) ∩Mr ∩U(x0, δ) \ {x0} one has

dimW0 ∩ TxMr ∩W (π(x)) = 0 .

Proof. – Since dimW0∩Tx0
Mr = 1 we infer that the set Γ = (x0 +W0)∩Mr ∩U(x0, δ)

is a 1-dimensional submanifold of class C2, for some δ > 0. Let I ⊆ R be an open interval
containing 0 and γ : I → Γ an arclength parametrization of Γ such that γ(0) = x0. The map
π ◦γ is of class C2 according to Theorem 12.1(B) and our hypothesis (A). Since (π ◦γ)′(t) =

Dπ(γ(t))(γ′(t)), t ∈ I, we notice that (π ◦γ)′(t) = 0 if and only if γ′(t) ∈ kerDπ(γ(t)), that
is if and only γ′(t) ∈W (π(γ(t))) (in view of Remark 12.2(4)), which in turn is equivalent to
dimW0 ∩ Tγ(t)Mr ∩W (π(γ(t))) = 1.

Differentiating twice we obtain

(π ◦ γ)′′(0) = D2π(γ(0))(γ′(0), γ′(0)) +Dπ(γ(0))(γ′′(0)) .

Since γ′(0) ∈ W0 ∩ Tx0Mr ⊆ W (π(x0)) we deduce from Remark 12.2(4) and the very defi-
nition of D2π that D2π(γ(0))(γ′(0), γ′(0)) = 0. Next we claim that the second term above
does not vanish. Since Γ is a plane curve in x0 + W0 and γ an arclength parametrization
we see that γ′′(0) ∈ W0 ∩ (Tx0Mr ∩W (π(x0)))⊥. Since W0 6= W (π(x0)) according to our
hypothesis (C), either γ′′(0) = 0 or γ′′(0) 6∈ W (π(x0)). We next observe that γ′′(0) 6= 0.
This can be seen by differentiating twice the relation r2 = d2(γ(t)), t ∈ I, and referring to
Remark 12.2(3)

0 = −1

2

d2

dt2
d2(γ(t))t=0

= 〈Dπ(γ(0))(γ′(0))− γ′(0), γ′(0)〉+ 〈Dπ(γ(0))− γ(0), γ′′(0)〉
= −1 + 〈Dπ(γ(0))− γ(0), γ′′(0)〉 .

Therefore γ′′(0) 6∈ kerDπ(γ(0)) and we obtain (π◦γ)′′(0) 6= 0. The conclusion of the lemma
then follows from the fundamental theorem of calculus applied to (π ◦ γ)′.

14. Pleating

We first describe the building block of the pleating. The deformation h transforms
(x + W2) ∩ B(x, ρ) into a set (a “pleat”) which is polyhedral in a narrow slab around the
plane T , close to the original (x+W2)∩B(x, ρ) (in area and Hausdorff distance), and uses
only directions which are far from W2. Moreover the deformation is the identity outside the
ball B(x, ρ) and leaves the disk (x+W1) ∩B(x, ρ) unchanged.

14.1. L. – Assume that

(A) W1,W2, T ∈ G(3, 2) and dimW1 ∩W2 ∩ T = 0.

Then there exists c(W1,W2, T ) > 0 with the following property. Whenever

(B) x ∈ R3 and U ⊆ R3 is an open neighborhood of x;
(C) 0 < η < 1/6, ρ > 0 and B(x, ρ) ⊆ U ;

there exist a map h : U → U and a set S∗ ⊆ B(x, ρ) such that the following hold.
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(D) Liph 6 2, h is ρ-homotopic to the identity of U in the Lipschitzian category and is a
bi-Lipschitzian homeomorphism of U onto itself;

(E) There is a neighborhood V of x such that ClosV ⊆ U(x, ρ) and h(y) = y if y 6∈ V

whereas h(y) ∈ V if y ∈ V ;
(F) Letting S = (x+W1) ∪ (x+W2) one has

(F1) h(S ∩ V ) ⊆ S∗ ∩ V ;
(F2) H 2(S∗ ∩B(x, ρ) \ h(S ∩B(x, ρ))) < η;
(F3) S ∩ (B(x, ρ) \ V ) ⊆ S∗ ∩ (B(x, ρ) \ V );
(F4) distH (S∗ ∩B(x, ρ), S ∩B(x, ρ)) < 2ρ;
(F5) H 2(S∗ ∩ V ) 6 2H 2(S ∩ V );
(F6) S∗ is H 2 essential;
(F7) There exists an open V̂ with the following properties: ClosV ⊆ V̂ ⊆ Clos V̂ ⊆

U(x, ρ), S∗ ∩B(x, ρ) \ V̂ = S ∩B(x, ρ) \ V̂ and S∗ is (H, 1) locally connected
at each point of S∗ ∩ Clos V̂ ;

(F8) S∗ ∩U(x+ T, ηρ) ∩U(x, ρ) is 2-dimensional polyhedral;
(F9) If y ∈ S∗ ∩U(x + T, ηρ) ∩ ClosV̂ the following hold: card WS∗(y) 6 2 and for

every W ∈ WS∗(y) the following cases arise:
(a) W = W1;
(b) W1 ∩W2 ⊆W (whence dimW ∩ T = 1) and

dist(W ∩ T,W2 ∩ T ) > ηc(W1,W2, T ) ;

(c) W = W2 and then y 6= x and y ∈ x+W2.

Proof. – We may assume that x = 0. We let u1, u2, u3 be a normed basis of R3 satisfying
the requirement that W1 ∩ T = span{u1}, W2 ∩ T = span{u2} and W1 ∩W2 = span{u3}.
On letting µ = max{|〈u1, u2〉|, |〈u2, u3〉|, |〈u1, u3〉|} < 1 we see that∣∣∣∣∣ 3∑

i=1

tiui

∣∣∣∣∣
2

=
3∑

i,j=1

titj〈ui, uj〉 > (1− µ)
3∑
i=1

t2i ,

whenever t1, t2, t3 ∈ R.

For 0 < δ < 1 we define an even function χδ,ρ : R→ R by

χδ,ρ(t) =


1 if 0 6 t 6 δρ/3

3t
(1−δ)ρ −

1
1−δ if δρ/3 6 t 6 ρ/3

0 if ρ/3 6 t

and we notice that ‖χδ,ρ‖∞ = 1 and Lipχδ,ρ = 3
(1−δ)ρ . Next we abbreviate

α =
η
√

1− µ
9

and we define an odd function pα,ρ : R→ R by

pα,ρ(t) =


αt if 0 6 t 6 ρ/6

−αt+ αρ
3 if ρ/6 6 t 6 ρ/3

0 if ρ/3 6 t
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and we notice that ‖pα,ρ‖∞ = αρ
6 and Lip pα,ρ = α. For convenience we set

ϕ(t1, t2, t3) = pα,ρ(t2)χ1/2,ρ(t1)χ3η,ρ(t3) ,

(t1, t2, t3) ∈ R3. Using the estimates stated above for pα,ρ and χδ,ρ we observe that
Lipϕ 6 3α. We are now ready to define h : R3 → R3:

h

(
3∑
i=1

tiui

)
= (t1 + ϕ(t1, t2, t3))u1 + t2u2 + t3u3 .

We observe that∣∣∣∣∣h
(

3∑
i=1

tiui

)
− h

(
3∑
i=1

t′iui

)∣∣∣∣∣ =

∣∣∣∣∣ 3∑
i=1

tiui −
3∑
i=1

t′iui − u1 (ϕ(t1, t2, t3)− ϕ(t′1, t
′
2, t
′
3))

∣∣∣∣∣
6

∣∣∣∣∣ 3∑
i=1

tiui −
3∑
i=1

t′iui

∣∣∣∣∣+ (Lipϕ)

Ã
3∑
i=1

t2i

6
Å

1 +
3α√
1− µ

ã ∣∣∣∣∣ 3∑
i=1

tiui −
3∑
i=1

t′iui

∣∣∣∣∣ .
Therefore

(51) Liph 6 1 +
3α√
1− µ

6 2 .

Furthermore we notice that

|D1ϕ(t1, t2, t3)| 6 ‖pα,ρ‖∞
(
Lipχ1/2,ρ

)
‖χ3η,ρ‖∞ = α .

Thus for each fixed t2, t3 ∈ R the Lipschitzian function

R→ R : t1 7→ t1 + ϕ(t1, t2, t3)

has derivative (whenever it exists) bounded below by 1 − α. A simple argument then shows
that h is bi-Lipschitzian. Moreover the open set

V = R3 ∩

{
:

3∑
i=1

tiui : |ti| < ρ/3, i = 1, . . . , 3

}
is contained in U(0, ρ) and h(y) = y whenever y 6∈ V . Trivially |t1 + ϕ(t1, t2, t3)| < ρ/3

when |t1| < ρ/3 so that h(y) ∈ V when y ∈ V . Since B(0, ρ) ⊆ U this in turn implies that h
is a bi-Lipschitzian homeomorphism of U onto itself. Now the map

H : [0, 1]× U → U :

(
τ,

3∑
i=1

tiui

)
7→ (t1 + τϕ(t1, t2, t3))u1 + t2u2 + t3u3

witnesses the fact that h is ρ-homotopic to the identity of U in the Lipschitzian category (be-
cause ‖ϕ‖∞ 6 αρ/6 6 ρ). Thus the proof of conclusions (D) and (E) is complete.

We now turn to proving conclusion (F). We start by observing that h(W1 ∩ ClosV ) =

W1 ∩ ClosV . p If y ∈ ClosV then h(y) ∈ ClosV as we saw above. Since
∑3
i=1 tiui ∈W1

if and only if t2 = 0 it is obvious that y ∈W1 implies h(y) ∈W1. Therefore
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h(W1 ∩ ClosV ) ⊆ W1 ∩ ClosV . Since also h � W1 ∩ Bdry V = idW1∩Bdry V the con-
clusion follows from the fact that h(W1 ∩ ClosV ) is simply connected. q Next we define

u+ =
u2 + αu1

|u2 + αu1|

u− =
u2 − αu1

|u2 − αu1|

andW+ = span{u+, u3},W− = span{u−, u3}. Notice thatW1∩W2 ⊆W+ andW1∩W2 ⊆
W−. Also, W+ ∩ T = span{u+} and W− ∩ T = span{u−}. Therefore

dist(W+ ∩ T,W2 ∩ T ) =
»

1− 〈u+, u2〉2 =

 
1− (1 + α〈u1, u2〉)2

1 + 2α〈u1, u2〉+ α2

> α

√
1− 〈u1, u2〉2

2
= η

√
(1− µ)(1− 〈u1, u2〉2)

18
.

(52)

This lower bound also holds with W+ replaced by W−.

We notice that h(W2) ∩ U(T, ηρ) = h(W2 ∩ U(T, ηρ)). p Check that
∑3
i=1 tiui ∈

U(T, ηρ) if and only if |t3| < ηρ, so that h(y) ∈ U(T, ηρ) if and only if y ∈ U(T, ηρ) for
every y ∈ R3. Therefore h(W2)∩U(T, ηρ) = h(W2 ∩U(T, ηρ)). q We define E = h(W2 ∩
U(T, ηρ)). Next we observe that h �W2∩U(T, ηρ) is piecewise affine because if

∑3
i=1 tiui ∈

W2 ∩U(T, ηρ) then

h

(
3∑
i=1

tiui

)
= (t1 + pα,ρ(t1))u1 + t2u2 + t3u3 .

Thus

E = U(T, ηρ) ∩

{(
W2 ∩ ClosV

)
∪
(
W+ ∩ {

3∑
i=1

tiui : |t2| 6 ρ/6}
)

∪
(

(a+W−) ∩ {
3∑
i=1

tiui : ρ/6 6 t2 6 ρ/3}
)

∪
(

(b+W−) ∩ {
3∑
i=1

tiui : −ρ/3 6 t 6 −ρ/6}
)}

for some appropriate a, b ∈ R3 \ {0}. Note this set is not 2-dimensional polyhedral (because
its intersection with W+ e.g. is not relatively open).

Therefore we call E∗ ⊆ U(T, ηρ) some slight enlargement of E verifying the following
properties:

(1) E ⊆ E∗;
(2) H 2(E∗) < η + H 2(E);
(3) E \U(V, ηρ) = S ∩U(T, ηρ) \U(V, ηρ);
(4) E∗ is H 2 essential;
(5) E∗ is 2-dimensional polyhedral and card WE∗(y) 6 2 for every y ∈ WE∗(y);
(6) For every y ∈ E∗ ∩ U(V, ηρ), WE∗(y) ⊆ {W+,W−} and WE∗(y) = {W+} if y ∈

E ∩W1.
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(E∗ is obtained fromE by addition of narrow affine slabs near the four line segments consti-
tuting the 1-dimensional skeleton of E). We now put

S∗ =
(
W1 ∩B(0, ρ)

)
∪
(
E∗ ∩B(0, ρ)

)
∪
(
h(W2 ∩B(0, ρ)) \U(T, ηρ)

)
.

Conclusion (F1) follows from the invariance of W1 under h, and (1) above. Conclusion (F2)
follows from (2) above. Conclusion (F3) follows from the definition of S∗, (1) above and the
fact that h coincides with the identity outside of V . Conclusion (F4) is most trivial. With
regard to conclusion (F5) we observe that

H 2(h(W2) ∩ V ) = H 2(h(W2 ∩ V )) 6 (Liph)2H 2(W2 ∩ V )

and that (Liph)2 6 2 in view of (51). Conclusion (F6) follows from (4) above. For conclusion
(F7) to hold true we let V̂ = U(V, ηρ) and we refer to (3) above and to the fact that h = idR3

outside of V for showing that S∗ ∩B(0, ρ) \ V̂ = S ∩B(0, ρ) \ V̂ . Let y ∈ S∗ ∩ Clos V̂ . If
dist(y, T ) 6= ηρ then S∗ coincides with h(S) in a neighborhood of y and is therefore (H, 1)

locally connected at y. If dist(y, T ) = ηρ then the (H, 1) local connectedness of S∗ at y
follows also on noticing that a neighborhood of y in S∗ is contractible in the Lipschitzian
category (this requires some straightforward checking that we leave to the reader). Finally,
conclusions (F8) and (F9) are immediate consequences of (5) and (6) above together with
inequality (52).

14.2. R. – It is virtually obvious that the above proof also proves the (easier)
statement when the set S (in (F)) is replaced by S = x+W2 (one then simply omits the piece
W1 ∩ B(0, ρ) in the definition of S∗). Under those circumstances the case (a) in (F9) does
not arise.

14.3. T. – Assume that

(A) B ⊆ R3 is a 1-dimensional compact submanifold of class C2 and R > 0, π and W are
associated with B as in Section 12;

(B) 0 < r < R/4 and Mr = Bdry Vr is as in Section 12;
(C) P ⊆ R3 is a 2-dimensional nondegenerate polyhedral set and is H 2 essential;
(D) U ⊆ R3 is an open set containing ClosP ;
(E) ε > 0.

Then there exist a set Q ⊆ U and a Lipschitzian map h : U → U with the following properties.

(F) Liph 6 2, h is a bi-Lipschitzian homeomorphism of a neighborhood of ClosP onto its
image, it is ε-homotopic to the identity of U in the Lipschitzian category;

(G) h(P ) ⊆ Q and H 2(Q \ h(P )) < ε;
(H) distH (P,Q) < ε;
(I) There exist a ∈ R3 and A ∈ O(3) with |a| < ε, ‖A − idR3‖ < ε and H 2(h(P )4(a +

A(P ))) < ε;
(J)

∣∣H 2(P )−H 2(Q)
∣∣ < ε;

(K) Q is H 2 essential;
(L) Q is (H, 1) locally connected;

(M) There exists δ > 0 such that Q ∩ U(Mr, δ) is 2-dimensional polyhedral and for every
x ∈Mr ∩Q the following hold:
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(M1) card WQ(x) 6 2; (17)

(M2) For every W ∈ WQ(x) one has dimW ∩ TxMr = 1;
(M3) For every W ∈ WQ(x) one has dimW ∩ TxMr ∩W (π(x)) = 0;
(M4) If card WQ(x) = 2 and {W1,W2} = WQ(x) then

dimW1 ∩W2 ∩ TxMr = 0 .

Proof. – Let δ = dist(P,BdryU). We first choose A ∈ A ∩ SO(3) such that
‖A − idR3‖ < min{ε/4, δ/4} where A is associated with B and P in Lemma 13.4.
For x ∈ U we define hA(x) = A(dist(x,BdryU))(x) where A : (0,∞) → O(3) is
Lipschitzian and such that ‖A(t) − idR3‖ < t for every t > 0 and A(t) = A when-
ever t > δ/2. One checks that hA(P ) = A(P ), hA : U → U is a bi-Lipschitzian
homeomorphism of a neighborhood of P onto its image and is ε/4-homotopic to the
identity of U in the Lipschitzian category. Notice that dist(A(P ),BdryU) > 3δ/4.
We choose a ∈ D ∩ U(0,min{ε/4, δ/4}) where D is associated with Mr and A(P )

in Theorem 13.3. For x ∈ U we define ha(x) = x + aχ(dist(x,BdryU)) where χ :

(0,∞) → (0,∞) is a C∞ function such that χ(t) = 1 if t > δ/4, χ is strictly in-
creasing, Lipschitzian and χ(t) → 0 as t → 0. One easily checks that ha(A(P )) =

a + A(P ), ha : U → U is a bi-Lipschitzian homeomorphism of a neighborhood of A(P )

onto its image, and is ε/4-homotopic to the identity of U in the Lipschitzian category. We
notice that ha ◦ hA : U → U is a bi-Lipschitzian homeomorphism of a neighborhood of P
onto its image, and is ε/2-homotopic to the identity of U according to Remark 10.7.

For a set E ⊆ R3 which is 2-dimensional polyhedral in a neighborhood of Mr we let

G(E) = Mr ∩ E ∩ {x : card WE(x) 6 2 and dimW ∩ TxMr ∩W (π(x)) = 0

for every W ∈ WE(x)}

and

B(E) = Mr ∩ E ∩ {x : card WE(x) 6 2 and dimW ∩ TxMr ∩W (π(x)) = 1

for some W ∈ WE(x)} .

ReadilyG(E)∩B(E) = ∅ andMr∩E∩{x : card WE(x) 6 2} = G(E)∪B(E). We further
consider two disjoint parts of B(E):

B1(E) = B(E) ∩ {x : card WE(x) = 1} ,
B2(E) = B(E) ∩ {x : card WE(x) = 2} .

Notice that B(a+ A(P )) = B1(a+ A(P )) ∪B2(a+ A(P )) according to Theorem 13.3(1).
We claim that

B2(a+A(P )) = Mr ∩ (a+A(P )) ∩ {x : card Wa+A(P )(x) = 2 and

there is a numbering {W1(x),W2(x)} of Wa+A(P )(x) such that

dimW1(x) ∩ TxMr ∩W (π(x)) = 0 and dimW2(x) ∩ TxMr ∩W (π(x)) = 1} .

(From now on W1(x) and W2(x) will be given the meaning from the above definition when-
ever x ∈ B2(a+A(P ))). p Let x ∈Mr ∩ (a+A(P )) be so that card Wa+A(P )(x) = 2 and

(17) Here and subsequently we abuse notation by writing WQ(x) instead of WQ∩U(Mr,δ)(x).
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write Wa+A(P )(x) = {W1,W2}. We notice that dimWj ∩ TxMr ∩W (π(x)) 6 dimTxMr ∩
W (π(x)) = 1, j = 1, 2. Assume if possible that dimWj ∩TxMr ∩W (π(x)) = 1 for j = 1, 2.
Since dimW1 ∩W2 = 1 we would have that W1 ∩W2 ⊆ TxMr in contradiction with Theo-
rem 13.3(3). q Notice that if B(a+A(P )) = ∅ then the proof of the theorem is complete
(letting h = ha ◦ hA and Q = h(P )). We henceforth assume that this set is not empty and
we will define a map hb to be a small perturbation of the identity and that “pleats” a+A(P )

near each point of B(a+A(P )), in such a way that B(hb(a+A(P ))) = ∅.
We intend to show that B(a + A(P )) is finite. For technical convenience we consider

a 2-dimensional polyhedral set P̂ in R3 with the following properties: ClosP ⊆ P̂ and
card Wa+A(P̂ )(x) 6 2 for every x ∈ Mr ∩ (a + A(P̂ )), and conclusions (2) and (3) of

Theorem 13.3 hold with a + A(P ) replaced by a + A(P̂ ) (that this be possible follows
from the fact that conclusion (1) of Theorem 13.3 holds for a + A(P ), and the con-
tinuity of the maps Mr → G(3, 2) : y 7→ TyMr and y 7→ W (π(x))). Since readily
(a + A(ClosP )) ∩ B(a + A(P̂ )) ⊇ B(a + A(P )) it is sufficient to show that the former is
finite.

Note that the set B(a+A(P̂ )) is discrete (and, as a consequence, so is (a+A(ClosP ))∩
B(a+A(P̂ ))). p Let x ∈ B(a+A(P̂ )) and select ρ > 0 so that

(a+A(P̂ )) ∩U(x, ρ)

=

{
(x+W ) ∩ u(x, ρ) if Wa+A(P̂ )(x) = {W}
(x+W1(x)) ∪ (x+W2(x)) ∩U(x, ρ) if card Wa+A(P̂ )(x) = 2 .

Assume if possible that there are xj ∈ B(a+A(P̂ )) ∩U(x, ρ), j = 1, 2, . . . , distinct from x

and such that xj → x as j →∞. We need to consider several cases separately. First assume
that xj ∈ B2(a+A(P )) for infinitely many j (and hence for all j without loss of generality).
Then necessarily x ∈ B2(a+A(P̂ )). In that case we observe that xj − x ∈W1(x) ∩W2(x).
In other words xj = x + tje (with tj 6= 0), j = 1, 2, . . . , where e is such that span{e} =

W1(x) ∩W2(x). On the other hand d(xj) = r = d(x) since xj ∈ B(a + A(P̂ )) ⊆ Mr and
from Taylor’s formula

d(x+ tje) = d(x) + tj〈e,∇d(x)〉+ o(tj) ,

letting j →∞, we infer that 〈e,∇d(x)〉 = 0. This means thatW1(x)∩W2(x) ⊆ TxMr. Now
we choose e′ ∈ W2(x) \ {0} so that e′ ∈ TxMr ∩W (π(x)) and we notice that e′ 6∈ W1(x)

(the choice is possible precisely because x ∈ B(a+A(P̂ ))). We conclude that e and e′ are lin-
early independent, and in turn that W2(x) ⊆ TxMr, in contradiction with Theorem 13.3(2).
Therefore we conclude that xj ∈ B1(a+A(P̂ )) for infinitely many j. In that case we choose
W0 ∈ Wa+A(P̂ )(x) such that xj ∈ x + W0 for infinitely many j (and hence for all j without
loss of generality). This is trivially possible in case card Wa+A(P̂ )(x) = 1 and relies on the
pigeonhole principle in case card Wa+A(P̂ )(x) = 2. Since dimW0 ∩ TxjMr ∩W (π(xj)) = 1

for every j, the continuity of the map U(B,R) → G(3, 1) : y 7→ TyMr ∩W (π(y)) would
imply that dimW0∩TxMr∩W (π(x)) = 1. SinceW0 6= W (π(x)) according to Lemma 13.4,
this would contradict Lemma 13.6. q

Next we note that the set (a + A(ClosP )) ∩ B(a + A(P̂ )) is closed. p Let xj ∈
(a+A(ClosP ))∩B(a+A(P̂ )), j = 1, 2, . . . , and x ∈Mr be such that xj → x as j →∞. It
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is clear that x ∈ a+A(ClosP ). Notice that Wa+A(P̂ )(xj) ⊆ Wa+A(P̂ )(x) if j is large enough
(a general fact about polyhedral sets). Arguing as before we choose W0 ∈ Wa+A(P̂ )(xj)

independent of j such that dimW0 ∩ TxjMr ∩ W (π(xj)) = 1 for every j. The continuity
of the map y 7→ TyMr ∩W (π(y)) thus ensures that dimW0 ∩ TxMr ∩W (π(x)) = 1, i.e.
x ∈ B(a+A(P̂ )). q

Now since (a+A(ClosP ))∩B(a+A(P̂ )) is a discrete closed subset of Mr we infer that
it is finite. This implies indeed that B(a + A(P )) is finite as well. Put B(a + A(P )) = {xi :

i = 1, . . . , xκ}. In case xi ∈ B2(a + A(P )), i = 1, . . . , κ, we give W1(xi) and W2(xi) the
same meaning as in the definition of B2(a+A(P )), otherwise we adopt the convention that
{W2(xi)} = Wa+A(P )(x) and W1(xi) is any fixed plane such that dimW1(xi) ∩ TxiMr = 1,
dimW1(xi) ∩ TxiMr ∩W (π(xi)) = 0 and dimW1(xi) ∩W2(Xi) ∩ TxiMr = 0.

We choose

0 < ρ0 < min

ß
ε

8
,

…
ε

12κπ

™
small enough for ρ0 < |xi − xj |/4 whenever i, j = 1, . . . , κ with i 6= j, and B(xi, ρ0) ⊆ U ,
i = 1, . . . , κ. We let

0 < η < min

ß
ε

1 + H 2(P )
,
ε

2κ

™
.

For each i = 1, . . . , κ we also define

βi =

∣∣∣∣P(TxiMr)
⊥(ui)

∣∣∣∣
where ui ∈ W1(xi) ∩W2(xi), |ui| = 1, (notice βi > 0 according to Theorem 13.3(3) in case
xi ∈ B2(a+A(P )) and to the choice ofW1(xi) otherwise) and we let αi > 0 be small enough
for

5αi +
αi
βi

< ciη ,

where ci = c(W1(xi),W2(xi), TxiMr) as in Lemma 14.1. Next for each i = 1, . . . , κwe select
0 < ρi < ρ0 sufficiently small for

(53) (a+A(P )) ∩B(xi, ρi) = (xi +W1(xi)) ∪ (xi +W2(xi)) ∩B(xi, ρi) ,

(54) Mr ∩B(xi, 2ρi) ⊆ B(xi + TxiMr, ηρi/2)

and, for every x ∈ B(xi, ρi),

dimW1(xi) ∩ TxMr = 1(55)

dimW2(xi) ∩ TxMr = 1(56)

dimW1(xi) ∩ TxMr ∩W (π(x)) = 0(57)

dimW1(xi) ∩W2(xi) ∩ TxMr = 0(58)

(remember that dimW1(xi) ∩W2(xi) ∩ TxiMr = 0 according to Theorem 13.3(3)) and

dist(TxMr, TxiMr) < αi(59)

dist(W (π(x)),W (π(xi))) < αi .(60)

We let hxi , S
∗
i and Vi be associated with W1(xi),W2(xi) and TxiMr in Lemma 14.1 in

case xi ∈ B2(a + A(P )), and S∗i modified according to Remark 14.2 in case xi ∈ B1(a +

A(P )). We also put hb = hxκ ◦ · · · ◦ hx1 and h = hb ◦ ha ◦ hA. That conclusion (F) of our
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theorem is satisfied should now be obvious. For further reference we notice that in fact h is
3ε/4-homotopic to the identity of U .

We define Q as follows.

Q = ((a+A(P )) \ (∪κi=1B(xi, ρi))) ∪ (∪κi=1S
∗
i ) .

Noticing that (ha ◦ hA)(P ) = a+A(P ) we infer from Lemma 14.1(E) that

h(P ) = hb(a+A(P )) ⊆

[
(a+A(P )) \ ∪κi=1Vi

]
∪

[
∪κi=1 hxi ((a+A(P )) ∩ Vi)

]
.

The inclusion h(P ) ⊆ Q now becomes a consequence of Lemma 14.1(F1,F3). Next we infer
from the relation h(P∩B(xi, ρi)) = h(P )∩B(xi, ρi), i = 1, . . . , κ, (53) and Lemma 14.1(F2)
that (18)

H 2(Q \ h(P )) = H 2 (Q \ h(P ) ∩ (∪κi=1B(xi, ρi)))

=
κ∑
i=1

H 2 (Q ∩B(xi, ρi) \ h(P ∩B(xi, ρi)))

6
κ∑
i=1

H 2 (S∗i ∩B(xi, ρi) \ hxi(Si ∩B(xi, ρi))) <
ε

2
.

(61)

This proves conclusion (G).

In order to prove conclusion (H) we notice that, referring to Lemma 14.1(F4) and Remark
10.5:

distH (P,Q) 6 distH (P, h(P )) + distH (h(P ), Q)

< 3ε/4 + max{2ρi : i = 1, . . . , κ} < ε .

With regard to conclusion (I) we observe that

H 2 (h(P )4(a+A(P ))) = H 2 (hb(a+A(P ))4(a+A(P )))(62)

which equals, according to the definition of hb and Lemma 14.1(E),

=
κ∑
i=1

H 2 (Vi ∩ (hxi(a+A(P ))4(a+A(P ))))

which, according to (53), is equal to

=
κ∑
i=1

H 2 (hxi(Si ∩ Vi)4(Si ∩ Vi))

6
κ∑
i=1

H 2 (hxi(Si ∩ Vi)) + H 2 ((Si ∩ Vi))

(18) Here Si is associated with xi, W1(xi) and W2(xi) as in Lemma 14.1(F).
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which, according to Lemma 14.1(F1) and (F5), is bounded by

6 3
κ∑
i=1

H 2(Si ∩ Vi)

6 3
κ∑
i=1

H 2(Si ∩B(xi, ρi))

= 3
κ∑
i=1

2πρ2
i < ε/2

thanks to our choice of ρ0. Conclusion (J) is an immediate consequence of (61) and (62).
Since P is H 2 essential so is a + A(P ). The reader is invited to check this implies that

(a+ A(P )) \ ∪κi=1B(xi, ρi) is H 2 essential as well. Since the S∗i , i = 1, . . . , κ, are also H 2

essential (Lemma 14.1(F6)), conclusion (K) follows from the definition of Q.
In order to prove conclusion (L) we let V̂i, i = 1, . . . , κ, be as in Lemma 14.1(F7). Let

x ∈ Q. We infer from (53) and Lemma 14.1(F7) that if x 6∈ ∪κi=1Clos V̂i thenQ and a+A(P )

coincide in a neighborhood of x, and if x ∈ ClosVi for some i = 1, . . . , κ then Q and S∗i
coincide in a neighborhood of x. In both cases it follows that Q is (H, 1) locally connected
at x.

We now turn to proving conclusion (M). We put δ = min{ηρi/2 : i = 1, . . . , κ}. Assume
that y ∈ U(xi, ρi) ∩U(Mr, δ) for some i = 1, . . . , κ. Choose x ∈ Mr such that |y − x| < δ

and notice that |x−xi| 6 |x−y|+ |y−xi| 6 δ+ρi 6 2ρi. Therefore it follows from (54) that
dist(x, xi + TxiMr) < ηρi/2, and in turn that dist(y, TxiMr) < ηρi. From this observation
and the definition of Q we infer that

Q ∩U(Mr, δ) ∩U(xi, ρi) ⊆ S∗i ∩U(xi + TxiMr, ηρi) ∩U(xi, ρi)

But then, referring to Lemma 14.1(F7), we obtain (19)

(63) Q ∩U(Mr, δ) =
(
(a+A(P )) \ ∪κi=1Clos V̂i

)
∪
(
∪κi=1S

∗
i ∩U(xi + TxiMr, ηρi) ∩U(xi, ρi)

)
.

FinallyMr∩U(Mr, δ) is 2-dimensional polyhedral because every set in the finite union above
is 2-dimensional polyhedral (recall Lemma 14.1(F8)).

Now let x ∈ Mr ∩ Q. Referring to Theorem 13.3(1), Lemma 14.1(F9), (63) and the cor-
responding footnote, we conclude that WQ(x) 6 2. If x 6∈ ∪κi=1Clos V̂i then a+A(P ) and Q
coincide in a neighborhood of x as follows from conclusions (E) and (F7) of Lemma 14.1, so
that conclusions (M2) and (M4) of the present theorem follow from Theorem 13.3, respec-
tively conclusions (2) and (3), whereas our present conclusion (M3) follows from the fact that
x 6∈ B(a+A(P )) whence also x 6∈ B(Q).

Finally assume that x ∈ ClosV̂i for some i = 1, . . . , κ. Then every W ∈ WQ(x) satisfies
one of the conditions (a), (b) and (c) listed in Lemma 14.1(F9). In order to conclude that the
present conclusion (M2) holds true we refer to (55) in case W satisfies (a), we refer to (58)
in case W satisfies (b), and we refer to (56) in case W verifies (c). In order to show that our

(19) Even though this is the finite union of sets which are not pairwise disjoint, any two of them with nonempty
intersection coincide on their intersection.
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conclusion (M4) holds we proceed in the following way. Denote by W ′1 and W ′2 the elements
of WQ(x). If these verify conditions (a) and (c) of Lemma 14.1(F9) then we refer to (58) to
conclude that dimW ′1∩W ′2∩TxMr = 0. We next assume thatW ′1,W ′2 verify either conditions
(a) and (b) or conditions (b) and (c). Notice that in both cases necessarilyW1(xi)∩W2(xi) ⊆
W ′1 ∩W ′2. Assume if possible that dimW ′1 ∩W ′2 ∩ TxMr = 1 (recall (M2) to infer that this
dimension is either 0 or 1), then W ′1 ∩W ′2 ⊆ TxMr and in turn W1(xi)∩W2(xi) ⊆ TxMr in
contradiction with (58).

It remains to show that our conclusion (M3) holds at x. Let W ∈ WQ(x). If W verifies
condition (a) of Lemma 14.1(F9) then we refer to (57). If W verifies condition (c) then x ∈
xi +W2(xi), whence x ∈ a+A(P ) and W ∈ Wa+A(P )(x) in view of (53). Since also x 6= xi
we see that x 6∈ B(a + A(P )) and therefore dimW ∩ TxMr ∩W (π(x)) = 0. The last case
to be covered is when W verifies condition (b) of Lemma 14.1(F9). Remember we need to
establish that dimW ∩TxMr∩W (π(x)) = 0. If not then necessarily dimW ∩TxiMr = 1 (in
view of (M2)) and dist(W,TxiMr) > βi, by the definition of βi, becauseW1(xi)∩W2(xi) ⊆
W (according to Lemma 14.1(F9)(b)). We will use this together with the estimate stated in
Lemma 14.1(F9)(b) to infer that

dimW ∩ TxMr ∩W (π(x)) = 0 .

Indeed,

dist(W ∩ TxiMr,W2(xi) ∩ TxiMr) 6 dist(W ∩ TxiMr,W ∩ TxMr)(64)

+ dist(W ∩ TxMr,W2(xi) ∩ TxiMr) .

Notice that W2(xi) ∩ TxiMr = W (π(xi)) ∩ TxiMr because dimW2(xi) ∩ W (π(xi)) ∩
TxiMr = 1 (since xi ∈ B(a + A(P ))), W2(xi) 6= TxiMr (according to Theorem 13.3(3))
and W (π(xi)) 6= TxiMr

(20). Assume if possible that dimW ∩ TxMr ∩W (π(x)) = 1. Then
W ∩ TxMr = W (π(x)) ∩ TxMr. Inequality (64) together with Lemma 8.5 and (59), (60)
would yield

dist(W ∩ TxiMr,W2(xi) ∩ TxiMr) 6 dist(W ∩ TxiMr,W ∩ TxMr)

+ dist(W (π(x)) ∩ TxMr,W (π(xi)) ∩ TxiMr)

6 dist(TxiMr, TxMr)

Å
1 +

1

dist(W,TxiMr)

ã
+ 2dist(W (π(x)),W (π(xi)))

+ 2dist(TxMr, TxiMr)

6 αi

Å
1 +

1

βi

ã
+ 4αi 6 ciη

contradicting Lemma 14.1(F9)(b). This completes the proof of the theorem.

(20) Observe that TyMr 6= W (π(y)) for every y ∈ B(B,R), in fact dist(TyMr,W (π(y))) = 1 because∇d(y) ∈
(TyMr)⊥ ∩W (π(y)).
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15. Local connectedness with respect to integral currents homology

15.1. T. – Assume that

(A) κ = 1, 2, . . . is an integer, ιk ∈ {1, 2}, k = 1, . . . , κ, Yk,i ⊆ R3, k = 1, . . . , κ, i =

1, . . . , ιk, are Borel measurable;
(B) For every k = 1, . . . , κ such that ιk = 2 one has

Yk,1 ∩ ClosYk,2 = Yk,1 ∩ Yk,2 ;

(C) There exists Z ⊆ Rn such that Z ⊆ Yk,i for every k, i, and

Z = Yk1,i1 ∩ Yk2,i2 = ClosYk1,i1 ∩ ClosYk2,i2

whenever k1, k2 = 1, . . . , κ, i1 = 1, . . . , ιk1 , i2 = 1, . . . , ιk2 , and k1 6= k2;
(D) y0 ∈ Z and for every k = 1, . . . , κ and i = 1, . . . , ιk there exists a Lipschitzian

Hk,i : [0, 1]× Yk,i → Yk,i

such that Hk,i(0, y) = y and Hk,i(1, y) = y0 for every y ∈ Yk,i;
(E) For every k1, k2 = 1, . . . , κ and i1 = 1, . . . , ιk1 , i2 = 1, . . . , ιk2

Hk1,i1 � ([0, 1]× Yk1,i1 ∩ Yk2,i2) = Hk2,i2 � ([0, 1]× Yk1,i1 ∩ Yk2,i2) .

Then
Hq(Y ) = {0} (reduced integral currents homology)

for q = 0, 1, where Y = ∪κk=1 ∪
ιk
i=1 Yk,i.

15.2. R. – It follows from hypothesis (E) that a map

H : [0, 1]× Y → Y

is well-defined by H � ([0, 1] × Yk,i) = Hk,i. Obviously H(0, y) = y and H(1, y) = y0 for
every y ∈ Y , according to (D). Moreover one readily checks that H is continuous, there-
fore Y is (continuously) contractible to a point. As a consequence Hq(Y ; Z) = {0} (reduced
singular homology) for every q = 0, 1, 2, . . . . The point here is that the continuous homo-
topy H does not need to be Lischitzian – the Lispchitz condition is not preserved on gluing
together the pieces Hk,i. The homological triviality of Y in the Lipschitzian category will
be obtained in a somewhat more pedestrian way than in the singular case. Note also that a
“Mayer-Vietoris” argument does not apply since the pieces Yk,i are not assumed to be rela-
tively open in Y .

Proof. – We start with the case q = 0. Let 0 6= T ∈ I0(Y ) be such that 〈T, 1〉 = 0.
We need to show that T = ∂S for some S ∈ I1(Y ). There exist a positive integer m and
a1, . . . , am, b1, . . . , bm ∈ Y such that

T =
m∑
j=1

(
δbj − δaj

)
.

Fix j = 1, . . . ,m and choose kj , k′j and ij , i′j such that aj ∈ Ykj ,ij and bj ∈ Yk′
j
,i′
j
. We define

fj : [0, 1]→ Rn : t 7→

{
Hkj ,ij (2t, aj) if 0 6 t 6 1/2

Hk′
j
,i′
j
(2− 2t, bj) if 1/2 6 t 6 1 .
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We readily check that Lip fj < ∞, im fj ⊆ Y , fj(0) = aj and fj(1) = bj . Letting Sj =

fj#[[0, 1]] we obtain Sj ∈ I1(Y ) and ∂Sj = δbj − δaj . Setting S =
∑m
j=1 Sj completes the

proof in case q = 0.

Next we consider the case q = 1. Let 0 6= T ∈ I1(Y ) be such that ∂T = 0. We need to
show that T = ∂S for some S ∈ I2(Y ). According to [11, 4.2.25] there exist m ∈ Z+ ∪ {∞}
and Lipschitzian functions fj : [0, 1]→ Y , j = 1, 2, . . . ,m, such that fj [0, 1) is injective,
fj(0) = fj(1), and

m∑
j=1

M(fj#[[0, 1]]) = M(T ) <∞

T =
m∑
j=1

fj#[[0, 1]] (weakly) .

Therefore the claim will be proved if we show that for each j = 1, 2, . . . ,m there exists
Sj ∈ I2(Y ) with ∂Sj = fj#[[0, 1]] and M(Sj) 6 CM(fj#[[0, 1]]) where the con-
stant C does not depend on j. We fix j = 1, . . . ,m and from now on we drop the in-
dex j in order to keep the notation short. We start by defining a partition of [0, 1], say
{Ak,i : k = 1, . . . , κ and i = 1, . . . , ιk}, such that each Ak,i is Borel measurable and
f(ClosAk,i) ⊆ Yk,i. p Letting A′k,i = f−1(Yk,i) we notice that we can define a Borel
measurable partition of [0, 1] whose members are subsets ofA′k,i. Thus it suffices to establish
that f(ClosA′k,i) ⊆ Yk,i. Let s ∈ [0, 1] and sj ∈ A′k,i, j = 1, 2, . . . , such that sj → s

as j → ∞. Since f(s) ∈ Y there are k′ and i′ such that f(s) ∈ Yk′,i′ . Notice also that
f(s) ∈ ClosYk,i since f is continuous. If k = k′ then f(s) ∈ Yk,i according to hypothesis
(B). If k 6= k′ then f(s) ∈ Z ⊆ Yk,i according to hypothesis (C). q Referring to [9, 3.1.1
Theorem 1], we define Lipschitzian maps

Gk,i : R2 → R3

such that Gk,i(t, s) = Hk,i(t, f(s)) whenever (t, s) ∈ [0, 1] × ClosAk,i. Letting Rk,i =

E1 Ak,i
(21) we also define

Sk,i = Gk,i# ([[0, 1]]×Rk,i)

and

S =
κ∑
k=1

ιk∑
i=1

Sk,i .

Clearly S ∈ R2(R3) and sptS ⊆ Y . We notice that

(65) ∂Sk,i = Gk,i# (δ1 ×Rk,i − δ0 ×Rk,i − [[0, 1]]× ∂Rk,i) .

Observe that

H 1 (sptGk,i# (δ0 ×Rk,i)) 6H 1 (Gk,i ({0} × ClosAk,i)) 6H 1 ({x0}) = 0 .

Since Gk,i# (δ0 ×Rk,i) ∈ R1(R3) we infer that

(66) Gk,i# (δ0 ×Rk,i) = 0 .

(21) Recall that E1 = L 1 ∧ e1 is the 1-dimensional current in R corresponding to Lebesgue integration.
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We also observe that if (t, s) ∈ spt δ1 × Rk,i = {1} × ClosAk,i then Gk,i(t, s) =

Hk,i(1, f(s)) = f(s). Letting F (t, s) = f(s), (t, s) ∈ [0, 1] × [0, 1], we infer from [11,
4.1.15] that

(67) Gk,i# (δ1 ×Rk,i) = F# (δ1 ×Rk,i) = f#Rk,i .

Plugging (66) and (67) into (65) yields

∂S =
κ∑
k=1

ιk∑
i=1

(f#Rk,i −Gk,i# ([[0, 1]]× ∂Rk,i))

= f#[[0, 1]]−
κ∑
k=1

ιk∑
i=1

Gk,i# ([[0, 1]]× ∂Rk,i) .
(68)

We now intend to show that

(69)
κ∑
k=1

ιk∑
i=1

Gk,i# ([[0, 1]]× ∂Rk,i) = 0

so that T = ∂S (and consequently S ∈ I2(Y )). Consider k = 1, . . . , κ such that ιk = 2 (if
any exists). We observe that if s ∈ [0, 1] and f(s) ∈ Yk,2 \ Yk,1 then s ∈ IntAk,2

(22). p For
if not the pigeonhole principle would ensure the existence of (k′, i′) 6= (k, 2) and sj ∈ Ak′,i′ ,
j = 1, 2, . . . , such that sj → s as j →∞. Note that f(s) ∈ f(ClosAk′,i′) ⊆ Yk′,i′ . If k = k′

then necessarily i′ = 1, in contradiction with f(s) 6∈ Yk,1. Thus k 6= k′ and referring to
hypothesis (C) we infer that f(s) ∈ Yk′,i′ ∩ Yk,2 = Z ⊆ Yk,1, a contradiction. q Therefore
if s ∈ spt ∂Rk,2 ⊆ BdryAk,2 then f(s) ∈ Yk,1 ∩ Yk,2. It follows from hypothesis (E) that
Gk,1(t, s) = Gk,2(t, s) whenever (t, s) ∈ spt ([[0, 1]]× ∂Rk,2). Since [[0, 1]]×∂Rk,2 ∈ F1(R3)

we infer from [11, 4.1.15] that

(70)
2∑
i=1

Gk,i# ([[0, 1]]× ∂Rk,i) = Gk,1 #

(
[[0, 1]]× ∂

(
2∑
i=1

Rk,i

))
.

An argument similar to that given above, based on hypothesis (C), shows that if s ∈ [0, 1]

and f(s) ∈ (∪ιki=1Yk,i) \ Z then s ∈ Int ∪ιki=1 Ak,i. Consequently if s ∈ spt (∂
∑ιk
i=1Rk,i) ⊆

Bdry ∪ιki=1 Ak,i then f(s) ∈ Z. Therefore G1,1(t, s) = Gk,1(t, s) whenever k = 1, . . . , κ and

(t, s) ∈ spt

(
[[0, 1]]× ∂

(
ιk∑
i=1

Rk,i

))
,

according to hypotheses (C) and (E). It follows from (70) that
κ∑
k=1

ιk∑
i=1

Gk,i# ([[0, 1]]× ∂Rk,i) =
κ∑
k=1

Gk,1 #

(
[[0, 1]]× ∂

(
ιk∑
i=1

Rk,i

))

=
κ∑
k=1

G1,1 #

(
[[0, 1]]× ∂

(
ιk∑
i=1

Rk,i

))
= G1,1 # ([[0, 1]]× δ1)−G1,1 # ([[0, 1]]× δ0) = 0

because f(1) = f(0). This completes the proof of (74).

(22) Interior relative to the quotient topology of [0, 1] where 0 and 1 have been identified.
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To finish the proof of the case q = 1 we need to establish that

M(S) 6 CM(T ) .

Fix k = 1, . . . , κ, i = 1, . . . , ιk and 1 6 λ(1) < λ(2) 6 3. An elementary computation shows
that ∣∣d〈Gk,i(t, s), eλ(1)〉 ∧ d〈Gk,i(t, s), eλ(2)〉

∣∣ 6 2 (LipHk,i)
2 |f ′(s)|

whenever Gk,i is differentiable at (t, s). Given ωλ ∈ D0(R3) we obtain∣∣∣〈Sk,i, ωλdxλ(1) ∧ dxλ(2)〉
∣∣∣ =

∣∣∣〈[[0, 1]]×Rk,i, (ωλ ◦Gk,i)G#
k,idxλ(1) ∧ dxλ(2)〉

∣∣∣
6

∫
[0,1]×Ak,i

2ωλ(Gk,i(t, s))(LipHk,i)
2|f ′(s)|dL 1(s)

6 2|ωλ|∞(LipHk,i)
2

∫
Ak,i

|f ′(s)|dL 1(s) .

It follows that

M(Sk,i) 6 C0(LipHk,i)
2

∫
Ak,i

|f ′(s)|dL 1(s)

and summing over k and i,

M(S) 6 C

∫ 1

0

|f ′(s)|dL 1(s) = CM(f#[[0, 1]]) ,

where
C = C0 max{(Lip, Hk,i)

2 : k = 1, . . . , κ and i = 1, . . . , ιk} .

16. End of the proof

We are now ready to prove Theorem 6.1.

Proof. – We let R > 0 and Λ > 1 be associated with B respectively in Theorem 12.1 and
Theorem 12.3. We choose r0 > 0 sufficiently small for

(71) H 2(X ∩U∞(B, r0)) <
ε

6Λ2
.

p Since H 2(X) <∞ we notice that

lim
j→∞

H 2(X ∩U∞(B, j−1)) = H 2
(
X ∩

(
∩∞j=1U∞(B, j−1)

))
= H 2(B) = 0 . q

Next we define

r = min

ß
R

4
,
ε

3
,

2r0

21

™
ε11.4 = min

ß
ε

6Λ2
,
r

2
√

3

™
ε14.3 = min

{ ε

6Λ2
,
r

2

}
η11.4 = 2r + 3ε14.3 .

Observe that

(72) ε11.4 6 r 6 η11.4 6
r0

3
.
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Apply Theorem 11.4 to X, ε11.4 and η11.4 and denote by U , f0 and P the open set, Lips-
chitzian map and polyhedral set provided in the conclusion of that theorem. Next apply The-
orem 14.3 to B, r, P , U and ε14.3 as above and denote by Q and h the set and Lipschitzian
map appearing in the conclusion of that theorem.

We let f denote an arbitrary extension of gr ◦ h ◦ f0
(23) to R3 (gr is as in Theorem 12.3)

and Y = gr(Q). Notice that

f(X) = gr(h(f0(X)))

⊆ gr(h(P )) (Theorem 11.4(E))

⊆ gr(Q) (Theorem 14.3(G))

= Y .

Thus conclusion (D) is satisfied.
We next notice that

distH (X,Y ) 6 distH (X,P ) + distH (P,Q) + distH (Q, gr(Q)) < ε11.4 + ε14.3 + 2r 6 ε

according respectively to Theorems 11.4(F), 14.3(H) and 12.3(A). Therefore conclusion (E)
holds true.

We now turn to proving the measure estimate in conclusion (F). We start by noticing that
gr(Q ∩ V2r) and gr(Q \ V2r) are disjoint (according to Theorem 12.3(A,C)) and Borel mea-
surable. Furthermore gr(Q \ V2r) = Q \ V2r (Theorem 12.3(A)). Therefore

(73) H 2(Y ) = H 2(gr(Q ∩ V2r)) + H 2(Q \ V2r) .

We now estimate the measure of Q ∩ V2r:

H 2(Q ∩ V2r)

6H 2(h(P ) ∩ V2r) + H 2(Q \ h(P ))

6H 2(h(P ) ∩ V2r) + ε14.3 (Theorem 14.3(G))

6H 2(h(P ∩ V2r+ε14.3)) + ε14.3 (∗)

6H 2 ((a+ P ) ∩ V2r+2ε14.3)

+ H 2(h(P ) \ (a+ P )) + ε14.3 (∗∗)

6H 2 (P ∩ V2r+3ε14.3) + 2ε14.3 (|a| < ε14.3 and Theorem 14.3(I))

6H 2(P ∩U∞(B, η14.3)) + 2ε14.3 (By definition of η14.3)

6 ε11.4 + H 2(X ∩U∞(B, 3η14.3)) + 2ε14.3 (Theorem 11.4(G))

6 ε11.4 +
ε

6Λ2
+ 2ε14.3 (By (72) and the choice of r0)

6
2ε

3Λ2
,

where (∗) follows from the inclusion h(P ) ∩ V2r ⊆ h(P ∩ V2r+ε14.3) p If y = h(x), x ∈ P ,
then |y− x| < ε14.3 according to Theorem 14.3(F), therefore dist(x,B) 6 dist(y,B) + ε14.3

q and (∗∗) follows from h(P ∩ V2r+ε14.3) \ ((a+ P ) ∩ V2r+2ε14.3) ⊆ h(P ) \ (a + P ) p
Assume y = h(x), x ∈ P ∩ V2r+ε14.3 and y 6∈ (a+ P ) ∩ V2r+2ε14.3 . Since |y − x| < ε14.3 we

(23) Which is defined on U .
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infer that dist(y,B) 6 |y − x|+ dist(x,B) < 2r+ 2ε14.3. Therefore y 6∈ a+ P . q We also
observe that

H 2(Q \ V2r) 6H 2(Q)

6 ε14.3 + H 2(P ) (Theorem 14.3(J))

6 ε14.3 + ε11.4 + H 2(X) (Theorem 11.4(H))

6
ε

3Λ2
.

Plugging the last two inequalities in (73) and referring to Theorem 12.3(B) yields

H 2(Y ) = H 2(gr(Q ∩ V2r)) + H 2(Q \ V2r)

< Λ2H 2(Q ∩ V2r) + H 2(Q \ V2r) 6 ε .

With regard to the reverse inequality we note that

H 2(Y ) = H 2(gr(Q ∩ V2r)) + H 2(Q \ V2r)

>H 2(Q \ V2r)

= H 2(Q)−H 2(Q ∩ V2r)

> H 2(Q)− 2ε

3Λ2
,

and also,

H 2(Q) >H 2(h(P )) (Theorem 14.3(G))

>H 2(a+ P )− ε14.3 (Theorem 14.3(I))

= H 2(P )− ε14.3

> H 2(X)− ε14.3 − ε11.4 (Theorem 11.4(H))

>H 2(X)− ε

3Λ2
.

Now clearly
H 2(Y ) > H 2(X)− ε

and the proof of conclusion (F) is complete.
In order to establish that Y is H 2 essential (conclusion (G)) we simply notice that gr is a

C1 diffeomorphism of R3 \ Vr onto R3 \B (Theorem 12.3(C)) — so that gr(Q \ Vr) is itself
H 2 essential because so is Q according to Theorem 14.3(K) —, and that H 2(gr(Vr)) =

H 2(B) = 0.
We now show that conclusion (I) holds true. Since f0 is ε11.4

√
3-homotopic to idU in the

Lipschitzian category (Theorem 11.4(J)), and h is ε14.3-homotopic to idU in the Lipschitzian
category (Theorem 14.3(F)) we infer that h ◦ f0 is ε14.3 + ε11.4

√
3-homotopic to idU in the

Lipschitzian category (Remark 10.7). In other words there exists a Lipschitzian map H :

[0, 1] × U → U such that H(0, x) = x, H(1, x) = h(f0(x)) and |x − H(t, x)| < ε14.3 +

ε11.4

√
3 6 r whenever x ∈ U and 0 6 t 6 1. Since H(t, x) ∈ Vr we have gr(H(t, x)) =

π(H(x, t)) ∈ B for every x ∈ B and 0 6 t 6 1 according to Theorem 12.3(A). In particular
f(B) ⊆ B. We define H ′ : [0, 1] × B → B by H ′(t, x) = gr(H(t, x)) and we notice H ′

witnesses the fact that the restriction f : B → B and idB are homotopic in the Lipschitzian
category.
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It remains to show that Y is (H, 1) locally connected. Let y0 ∈ Y = gr(Q). If y0 6∈ B

then g−1
r {y0} = {x0} is a singleton, x0 6∈ ClosVr, and gr is a C1 diffeomorphism near x0

according to Theorem 12.3(A,C). Since Q is (H, 1) locally connected (Theorem 14.3(H”))
we conclude that Y is (H, 1) locally connected at y0 (Lemma 8.4).

Assume now that y0 ∈ B and let U be an open set containing y0. We seek an open set
U ′ ⊆ U containing y0 such that the homomorphisms induced by inclusion in homology,
Hq(Q∩U ′)→ Hq(Q∩U) are trivial for q = 0, 1, 2. The cases q = 0, 1 on the one hand, and
the case q = 2 on the other hand, will follow from separate applications of Theorem 15.1
(after we define properly a family of sets Yk,i). We now turn to defining the data that puts us
in a position of applying Theorem 15.1.

We define Qy0 = Q ∩ g−1
r {y0} ∩ Mr (= Q ∩ (y0 + W (y0)) ∩ Mr ∩ B(B,R) with

the notations of Theorem 12.3). Observe that Qy0 is finite. p Since Q ∩ U(Mr, δ) is 2-
dimensional polyhedral according to Theorem 14.3(M) there is a finite set I and xi ∈ R3,
Wi ∈ G(3, 2), i ∈ I, such that Q ∩ U(Mr, δ) ⊆ ∪i∈I(xi + Wi) ∩ U(Mr, δ). If x ∈ Qy0
then x belongs to the intersection of the circle Mr ∩ (y0 +W (y0)) ∩Mr ∩U(y0, R) and an
affine line (xi +Wi)∩ (y0 +W (y0)) for some i ∈ I (notice that indeed Wi 6= W (y0) because
W (y0) = W (π(x)) 6∈ WQ(x) as follows from Theorem 14.3(M3)). There are finitely many
such points. q We choose r0 > 0 such that the balls U(x, r0), x ∈ Qy0 , are pairwise disjoint
and contained in Q∩ g−1

r (U). Next we put κ = cardQy0 , and we write Qy0 = {x1, . . . , xκ}.
For each k = 1, . . . , κ we let ιk = card WQ(xk) ∈ {1, 2} (Theorem 14.3(M1)). If
ιk = 2 we define W k = (W1(xk) ∩ W2(xk))⊥ (where {W1(xk),W2(xk)} = WQ(xk)),
otherwise we define W k = TxkMr. Notice that dist(W k, TxkMr) < 1 (in the former
case one refers to Theorem 14.3(M4)). Referring to Lemma 8.6 we see that for each
k = 1, . . . , κ there exists a “cylindrical” open set Ok ⊆ U(xk, r0) containing xk, of the

form Ok = R3 ∩ {ξ :
∣∣∣PWk

(ξ − xk)
∣∣∣ < rk and

∣∣∣P
W
⊥
k

(ξ − xk)
∣∣∣ < δk}, and a Lipschitzian

function vk : (xk + W k) ∩ Ok → W
⊥
k such that graph vk = Mr ∩ Ok. In view of Theorem

14.3(M2,M3) and Theorem 12.3(D) there is no restriction to assume that Ok is sufficiently

small for gr �
(

(xk+Wi(xk))∩Ok\Vr
)

to be bi-Lipschitzian, i = 1, . . . , ιk. For i = 1, . . . , ιk

we also let Γ0
k,i = (xk +Wi(xk)) ∩Mr ∩Ok.

We are now ready to defineZ. Note that gr(Γ0
k,i) are (for all the admissible indexes) neigh-

borhoods of y0 inB. Therefore their intersection contains an open connected neighborhood
Z of y0 in B.

Next we turn to defining the sets Yk,i and the homotopies Hk,i. First we put Γk,i = (gr �
Mr∩(xk+Wi(xk))∩Ok)−1(Z) andXk,i = (xk+Wi(xk))∩Ok∩P−1

Wk
(Γk,i)\Vr, k = 1, . . . , κ

and i = 1, . . . , ιk. Finally we put Yk,i = gr(Xk,i). We leave to the reader the straightforward
verification of hypotheses (B) and (C) of Theorem 15.1. Furthermore we define

Hk : [0, 1]×Ok → Ok : (t, x) 7→
Ä
x+ t

Ä
Pxk+Wk

(x) + vk(Pxk+Wk
(x))− x

ää
and we notice that Hk(t, x) ∈ Xk,i whenever x ∈ Xk,i. We also let

H0
k,i : [0, 1]× Yk,i → Yk,i : (t, y) 7→ gr

Ä
Hk

Ä
t, (gr � Xk,i)

−1
(y)

ää
.

Observe that LipH0
k,i < ∞ and H0

k,i(t, z) = z whenever z ∈ Z, for every t ∈ [0, 1] (this is
because of the way vk is defined; indeed x ∈ Mr implies Hk(t, x) = x for every t ∈ [0, 1],
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and if z ∈ Z one has (gr � Xk,i)
−1

(z) ∈ Γk,i ⊆ Mr). We also consider a Lipschitzian map
H : [0, 1]× Z → Z such that H(0, z) = z and H(1, z) = y0 for every z ∈ Z. We then define

Hk,i : [0, 1]× Yk,i → Yk,i : (t, y) 7→

{
H0
k,i(2t, y) if 0 6 t 6 1/2

H(2t− 1, H0
k,i(1, y)) if 1/2 6 t 6 1 .

It is now an easy matter to check that hypotheses (D) and (E) of Theorem 15.1 are verified.
On noticing that indeed Y is a neighborhood of y0 in Q we infer the existence of an open set
U ′ ⊆ R3 such that U ′ ∩Q = Y , thus

Hq(Q ∩ U ′)→ Hq(Q ∩ U)

are trivial for q = 0, 1.
Finally suppose that T ∈ I2(Q∩U ′) is so that ∂T = 0. We aim to show that in fact T = 0,

so that H2(Q ∩ U ′) = {0}. Assume if possible that T 6= 0. Define

Z∗ = Z ∪
(
∪k=1,...,κ

ιk=2
Yk,1 ∩ Yk,2

)
.

Notice that H 2(Z∗) = 0, therefore sptT 6⊆ Z∗ (for otherwise T = 0). Pick y ∈ Y ∩(sptT )\
Z∗. Choose 0 < η < dist(y,B) and define T ′ = T R3 \B(B, η) and, in turn, S′ = g−1

r#T
′

(notice that g−1
r is a well-defined and bi-Lipschitzian homeomorphism on sptT ′). Letting

{x} = g−1
r {y} we infer that x ∈ sptS′. Now it follows from the constancy Theorem [11,

4.1.31(2)] that there exist c ∈ R \ {0} and ξ ∈ ∧2R3 orienting the plane that supports Xk,i

such that for every x′ ∈ g−1
r (Yk,i \ (Z∗ ∪B(B, η))) in the same component as x there exists

ρx′ > 0 with S′ U(x′, ρx′) = cH 2 Xk,i∩U(x′, ρx′)∧ξ. Choosing x∗ ∈ (xk+Wi(xk))∩
BdryOk in the same component as x in g−1

r (Yk,i \ (Z∗ ∪B(B, η))) and observing that in a
neighborhood of x∗ the support of S′ is contained in Ok, we readily obtain x∗ ∈ spt ∂S′, a
contradiction.

PART IV

MAIN RESULT

17. Toolkit

We let Ȟ(·; Z) denote the Čech homology functor with coefficients in Z defined on the
category of compact pairs and their continuous maps (see [8, Chap. IX] and [5, 2.2]). The
following is (essentially) taken from [23].

17.1. P. – Assume that:

1. B ⊆ R3 is compact;
2. Sj ⊆ R3, j = 1, 2, . . . , are compact and B ⊆ Sj for every j;
3. L ⊆ Ȟ1(B; Z) is a subgroup and L ⊆ ker Ȟ1(iB,Sj ) for every j = 1, 2, . . . where iB,Sj

denotes the inclusion map;
4. S1, S2, . . . converge in Hausdorff distance to some compact set S ⊆ R3.

Then L ⊆ ker Ȟ1(iB,S).
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Proof. – We define a decreasing sequence of compact sets S′j = S ∪
Ä
∪∞k=jSk

ä
, j =

1, 2, . . . , and we notice that its inverse limit S∞ (see [8, Chap. VIII, Definition 3.1]) is homeo-
morphic to S. In fact letting B∞ denote the inverse limit of the inverse system “B” (indexed
by j = 1, 2, . . . and having each term constant equal to B) there are canonical homeomor-
phisms fB and fS such that the following diagram commutes (horizontal arrows denote in-
clusion)

B −−−−→ S

fB

y fS

y
B∞ −−−−→ S∞.

Observe that L is contained in the algebraic boundary of S′j because Sj ⊆ S′j , j = 1, 2, . . . .
We now consider the following commutative diagram.

Ȟ1(B; Z)
Ȟ1(iB,S)−−−−−−→ Ȟ1(S; Z)

Ȟ1(fB)

y Ȟ1(fS)

y
Ȟ1(B∞; Z)

Ȟ1(iB∞,S∞ )−−−−−−−−→ Ȟ1(S∞; Z)

l1(B)

y l1(S′)

y
lim
←
Ȟ1(B; Z)

lim
←
Ȟ1(iB,S′

j
)

−−−−−−−−−−→ lim
←
Ȟ1(S′j ; Z).

The vertical arrows in the first row are isomorphisms because fB and fS are homeomor-
phisms, whereas the vertical arrows of the second row are isomorphisms according to the
continuity property of Čech homology with coefficients in Z, [8, Chap. X, Theorem 3.1]. It
follows from the definition of lim

←
Ȟ1(iB,S′

j
), l1(B) and Ȟ1(fB) that the composition of these

three homomorphisms maps any element ofL to 0. The conclusion immediately follows.

Next we introduce the integral currents homology groups and a sufficient criterion for
their coincidence with the Čech homology groups with coefficients in Z. Given a setX ⊆ R3

we let Iq(X), q = 0, 1, 2, 3, denote the group of integral currents T ∈ Iq(R3) such that
sptT ⊆ X. The homology groups corresponding to the following chain complex are de-
noted by Hq(X).

I3(X)
∂−−−−→ I2(X)

∂−−−−→ I1(X)
∂−−−−→ I0(X)

α−−−−→ Z

(whereα is an augmentation map defined byα(T ) = 〈T, 1〉where 1 denotes any test function
which equals 1 in a neighborhood of sptT ). A functor Hq is then defined on the category of
subsets of some Euclidean space and their locally Lipschitzian maps. It satisfies the axioms
of Eilenberg-Steenrod. For details see [5] where the following result is proved as well.

17.2. D. – We say X ⊆ R3 is (H, 1) locally connected if the following holds.
For every x ∈ X and every open set U ⊆ R3 containing x there exists an open set U ′ ⊆ U

containing x such that the homomorphisms induced in homology by inclusion are trivial,
Hq(X ∩ U ′)→ Hq(X ∩ U), q = 0, 1, 2.
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17.3. P. – Let A LC,H,1 denote the category whose objects are the (H, 1) lo-
cally connected subsets of some Euclidean space Rn, together with their locally Lipschitzian
maps, and let ModZ denote the category of modules over Z. The functors

H1 : A LC,H,1 −→ ModZ (integral currents homology)

and

Ȟ1(·; Z) : A LC,H,1 −→ ModZ (Čech homology with coefficients in Z)

are naturally equivalent.

In the remainder of this paper we will denote by ν : H1 → Ȟ1(·; Z) the natural equivalence
whose existence is asserted above.

17.4. R. – With the vocabulary at hand it is now easy to relate B0 and L rigor-
ously. Indeed we let L0 be the subgroup of H1(B) generated by the class [B0], and L =

νB(L0). This is well-defined since B is (H, 1) locally connected.

The following is nearly trivial and very useful. It justifies the introduction of the (H, 1)

locally connected spaces.

17.5. P. – Assume that S ⊆ R3 contains B and is (H, 1) locally connected.
The following conditions are equivalent.

(A) L is contained in the algebraic boundary of S;
(B) There exists T ∈ R2(R3) such that sptT ⊆ S and ∂T = B0.

Proof. – Since both B and S are objects of the category A LC,H,1, Proposition 17.3 im-
plies the existence of the following commutative diagram whose vertical arrows are isomor-
phisms.

Ȟ1(B; Z)
Ȟ1(iB,S)−−−−−−→ Ȟ1(S; Z)

νB

x νS

x
H1(B)

H1(iB,S)−−−−−−→ H1(S).

Assuming (A) holds we infer that H1(iB,S)([B0]) = [iB,S#B0] = [B0] vanishes in H1(S).
The definition of H1(S) then readily implies (B). That (B) implies (A) follows from the same
observation.

In view of the previous result the approximation theorem 6.1 is useful for replacing any
set with a set of nearly the same size and verifying the required boundary condition in both
settings. When applying Theorem 6.1 the following will be handy.

17.6. P. – Let f : R3 → R3 be a Lipschitzian map such that f(B) = B and
f � B is homotopic to the identity of B in the Lipschitzian category. The following hold.

(A) If the algebraic boundary of some setS ⊇ B containsL, then so does the algebraic bound-
ary of f(S);

(B) If T ∈ R2(R3) and ∂T = B0 then ∂f#T = B0.
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Proof. – Conclusion (A) follows from the fact that Ȟ1(f) ◦ Ȟ1(iB,S) = Ȟ1(f ◦ iB,S) =

Ȟ1(iB,f(S)), the last equality being a consequence of the Homotopy Axiom and the fact that
f ◦ iB,S and iB,f(S) are homotopic. In order to prove conclusion (B) we consider a Lips-
chitzian map F : [0, 1]×B → B such that F (0, x) = x and F (1, x) = f(x) for every x ∈ B,
and we extend it to a Lipschitzian map F̂ : [0, 1] × R3 → R3. The homotopy formula for
integral currents yields

∂f#T − ∂T = f#∂T − ∂T = ∂F̂#([[0, 1]]× ∂T ) = 0 .

The latter is a consequence of the fact that F̂#([[0, 1]] × ∂T ) ∈ R2(R3) together with the
inequality

H 2
Ä
spt F̂#([[0, 1]]× ∂T )

ä
6H 2

Ä
F̂ ([0, 1]× spt ∂T )

ä
6H 2(F ([0, 1]×B)) = H 2(B) = 0 .

For a rectifiable current T ∈ R2(R3) we let ‖T‖ denote the measure |θ|H 2 M (see also
[11, 4.1.7]). For a Radon measure φ in an open set U ⊆ R3 we define

Θ2(φ, x) = lim
r↓0

φ(B(x, r))

πr2

x ∈ U (whenever the limit exists), and

set2(φ) = U ∩ {x : 0 < Θ2(φ, x) <∞} .

Size can then be defined as S(T ) = H 2(set2(‖T‖)), T ∈ R2(R3). It is lower semicontinuous
with respect to integral flat convergence (see for instance [7, Lemma 3.2.14]). Thus for every
ε > 0 the compactness Theorem 3.1 implies that the following variational problem admits a
minimizer.

(Pε
FF,S,B0

)

{
minimize S(T ) + εM(T )

among T ∈ R2(R3) such that ∂T = B0.

Simple considerations in [7, Lemma 2.1.1] show that

(74) lim
ε→0

inf(Pε
FF,S,B0

) = inf(PFF,S,B0) .

The support of a minimizing current relative to the problem above enjoys some weak regu-
larity property called monotonicity which we now describe.

17.7. D. – A Radon measure φ defined in an open set U ⊆ R3 is called
2-monotonic whenever the following holds. For every x ∈ U the function

(0,dist(x,BdryU))→ R : r 7→ φ(B(x, r))

πr2

is nondecreasing. If also Θ2(φ, x) > 1 for every x ∈ sptφ then we say thatφ is 2-concentrated.

The following can be proved for instance as in [6, Proposition 3.4.5].

17.8. P. – If T ∈ R2(R3) is a minimizing current relative to (Pε
FF,S,B0

) then
the measure

φ =
(
1 + εΘ2(‖T‖, ·)

)
H 2 set2(‖T‖)

is 2-monotonic and 2-concentrated in U = R3 \B.
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We will need two properties related to monotonicity. For a proof, see [4, Proposition 4.3
and Corollary 6.13].

17.9. P. – Let φ1, φ2, . . . be a sequence of 2-concentrated 2-monotonic mea-
sures in an open set U ⊆ R3 and assume that supj φj(U) <∞. There then exist a subsequence
φj(1), φj(2), . . . and a Radon measure φ in U such that

(A) φj(k) → φ weakly* as k →∞;
(B) φ is 2-concentrated and 2-monotonic;
(C) For every compact C ⊆ U ,

lim
k→∞

inf
{
δ > 0 : spt(φ) ∩ C ⊆ B(spt(φj(k)), δ)

and spt(φj(k)) ∩ C ⊆ B(spt(φ), δ)
}

= 0 .

17.10. P. – Let φ be a 2-concentrated 2-monotonic measure in an open set
U ⊆ R3 with φ(U) <∞. Then sptφ = set2(φ) is (H 2, 2) rectifiable.

18. Existence theorem

We are now in a position to give the proof of Theorem 5.1. Before starting we notice that
the collection of competitors is nonempty (for both formulations of the problem) as follows
from a cone construction.

First we show that

(75) inf(PFF,S,B0
) 6 inf(PR,Z,L) .

Let X be a competitor for (PR,Z,L) and ε > 0. Let Y be associated with X and ε in The-
orem 6.1. It follows from Theorem 6.1(I) together with Proposition 17.6 that the algebraic
boundary of Y contains L, and in turn we infer from Theorem 6.1(H) and Proposition 17.5
that there exists T ∈ R2(R3) with ∂T = B0 and sptT ⊆ Y . Since

S(T ) = H 2(set2(‖T‖)) 6H 2(sptT ) 6H 2(Y ) 6 ε+ H 2(X) ,

inequality (75) follows from the arbitrariness of X and ε.

Next we choose εj ↓ 0 as j → ∞ and we let Tj , j = 1, 2, . . . , denote a minimizer of
(P

εj
FF,S,B0

). We denote by φj , j = 1, 2, . . . , the 2-monotonic 2-concentrated measures as-
sociated with Tj in Proposition 17.8. Passing to a subsequence (still denoted by φj) if nec-
essary we may assume that the conclusions of Proposition 17.9 are satisfied. Letting Xj =

spt(Tj) = spt(φj) ∪ B we infer from Proposition 17.9(C) that distH (Xj , spt(φ) ∪ B) → 0

as j →∞ (Hausdorff distance). Next we let Yj and fj be associated with Xj and εj in The-
orem 6.1. Since fj � B is homotopic to the identity of B in the Lipschitzian category we
infer from Proposition 17.6(B) that ∂fj#Tj = B0, and since spt fj#Tj ⊆ fj(sptTj) ⊆ Yj
(according to Theorem 6.1(D)) we infer from Proposition 17.5 that the algebraic bound-
ary of ClosYj contains L. Theorem 6.1(E) says that distH (Xj ,ClosYj) < εj . Therefore
distH (ClosYj , spt(φ)∪B)→ 0 as j →∞. Now Proposition 17.1 implies that the algebraic
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boundary of S = spt(φ) ∪B contains L. Furthermore S is (H 2, 2) rectifiable according to
Proposition 17.10 so that it is an admissible competitor for (PR,Z,L). Finally,

H 2(S) = H 2(spt(φ))

6 φ(U) (because φ is 2-concentrated)

= lim
j
φj(U)

= lim
j

inf(P
εj
FF,S,B0

)

= inf(PFF,S,B0) ,

and both conclusions are proved at once.
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