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Abstract. — This paper explores the study of the general Hermite constant associ-
ated with the general linear group and its irreducible representations, as defined by T.
Watanabe. To that end, a height, which naturally applies to flag varieties, is built and
notions of perfection and eutaxy characterising extremality are introduced. Finally we
acquaint some relations (e.g., with Korkine–Zolotareff reduction), upper bounds and
computation relative to these constants.

Résumé (Constantes d’Hermite généralisées, théorie de Voronoï et hauteurs de va-
riétés drapeaux)

Nous présentons une étude de la constante d’Hermite générale introduite par T.
Watanabe et associée au groupe GLn et ses représentations fortement rationnelles.
A cette fin, nous construisons une hauteur qui s’applique naturellement aux variétés
drapeaux et nous définissons une notion de perfection et une notion d’eutaxie propres à
caractériser l’extrêmalité. Enfin, nous présentons quelques relations (par exemple avec
la réduction de Korkine–Zolotareff), majorations et calculs relatifs à ces constantes.
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128 B. MEYER

Introduction

The traditional Hermite constant can be defined by the following formula

(1) γn = max
A

min
x∈Zn,
x 6=0

A[x]

(det(A))1/n

when A runs through the set of all positive definite quadratic forms, or else,
from the lattice standpoint, by the equivalent formula

(2) γn = max
Λ

min Λ

(det(Λ))1/n

where Λ stands for a lattice of Rn.
These constants appear in various areas ; in particular, they account for the

highest density one can reach by regularly packing balls of equal radius.
Diverse generalisations of these constants have been set forth, the most ac-

complished taking the following shape [23]:

(3) γπ(‖ · ‖Ak) = max
g∈G(Ak)1

min
γ∈G(k)

‖π(gγ)xπ‖2/[k:Q]
Ak .

In this formula, an algebraic number field k is fixed, as well as a connected
reductive algebraic group G. The notation G(Ak)1 stands for the unimodular
part (i.e. the intersection of the kernels of the characters of the group G(Ak)).
Besides, π is an irreducible strongly rational representation, xπ is a highest
weight vector of the representation, Ak is the ring of the adèles on k and ‖ · ‖Ak
denotes a height on Sπ(kn), the vector space that carries the action of the
representation π.

When the representation π is the natural representation of GLn on kn (i.e.
when for any x ∈ kn and any g ∈ GLn(k), π(g)x is simply g(x)), we recover
the Hermite–Humbert constant [10] and in particular the traditional Hermite
constant expounded above (equation (1)) when in addition k is the rationnal
field. Likewise if π is the representation on the exterior power

∧d(kn), we get
the Rankin-Thunder constant [21], or simply the Rankin constant [17] if in
addition k is the field of rationnals.

The constant γGLn
π (‖·‖Ak) admits also a geometrical interpretation. Indeed,

let us define Qπ the (parabolic) subgroup of G which stabilises the line spanned
by the highest weight vector xπ. The map

(4) g 7→ π(g−1)xπ

provides an embedding of the flag variety Qπ\GLn into the projective space
P (Sπ(kn)). For A ∈ GLn(Ak), and D a flag represented by x ∈ Sπ(kn), one
can define the twisted height HA by HA(D) = ‖Ax‖Ak . Let us denote by m the
sum of the dimensions of the nested spaces of the flag D . Then the generalised
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GENERALISED HERMITE CONSTANTS 129

Hermite constant can be read into as the smallest constant C such that for any
A ∈ GLn(Ak), there exists a rational flag D satisfying

HA(D) 6 C1/2|det(A)|m/nAk ,

which joins up with the definition by J. L. Thunder in [21] as far as subspaces
of kn of fixed dimension are concerned.

In the case of the traditional Hermite constant, G. Voronoï stated two prop-
erties, perfection and eutaxy, which enable to characterise extreme quadratic
forms, or in other words, forms that constitute a local maximum of the quotient
minA/ det(A)1/n. Generalisations of the notions of eutaxy and perfection have
been put forward to fit in the framework of the Rankin [5] or Hermite-Humbert
constants [6]. The point of this paper is to define appropriate notions in the
case of the constant γπ(‖ · ‖Ak) associated with any irreducible polynomial
representation π of the group GLn.

Our text is organised as follows. In a first part, we fix the conventions
we shall stick to in the sequel ; we shall recall what is to be known about
irreducible representations of GLn ; we shall also give a detailed construction of
the height that is let invariant by the action of the compact subgroupKn(Ak) =∏
v∈V∞

On(kn) ×
∏
v∈Vf

GLn(ov) (Think of this subgroup as an adelic analog of

the orthogonal group in the real case). In a second part, we shall commit
ourselves to exhibit a link between the adelic definition of γπ(‖ · ‖Ak) with an
ad hoc definition built on Hermite–Humbert forms. This second definition has
the advantage of relying only on finitely many places of k: the archimedian
places. This allows us, in a third place, to define adequate notions of perfection
and eutaxy for Hermite–Humbert forms and to demonstrate a theorem à la
Voronoï. Eventually we bring forth some easy relations, upper bounds and
computations relative to the Hermite constants.

1. Representations and heights

1.1. Conventions. — In the sequel, an integer n is fixed and the algebraic group
we shall consider will always be the general linear group G = GLn.

1.1.1. Global field. — The letter k refers to a number field, that is an algebraic
extension of Q, of degree d = r1 + 2r2, where r1 counts its real embeddings
and r2 counts its pairs of complex embeddings. Sometimes, r may designate
r1 + r2. The embedings of k into R or C are denoted by (σj)16j6r, the r1

first embeddings being real, the r2 last embeddings being complex. The ring
of integers of k will be written ok or simply o. The field k encompasses h ideal
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130 B. MEYER

classes, the representative a1 = o, a2, . . . , ah of which we fix once for all. The
norm of an ideal will be denoted by N (a).

1.1.2. Local fields. — The set of the places of k is denoted by V and divides
up into two parts, the set of archimedian or infinite places, denoted by V∞
and the set of ultrametric or finite places, denoted by Vf . The completion of
k (of o respectively) at the place v (where v belongs to V) is denoted by kv
(ov respectively). We shall call dv the local degree [kv : Qv]. The completion
kv is equiped with two absolute values: the absolute value ‖ · ‖v which is the
unique extension of either the absolute value of the real field Q∞ when v is an
archimedean place or the one of the p-adic field Qp when v divides p (that is
‖p‖v = p−1), and the normalised absolute value | · |v = ‖ · ‖dv , which offers the
benefit of satisfying the product formula, i.e. the equality

∏
v∈V |α|v = 1 holds

for any α ∈ k×.

1.1.3. Partition and related items. — The letter λ will always refer to a parti-
tion of any integer m, which we shall note down by λ ` m. Within the borders
of this article, we suppose additionnaly that a partition has always less than
n parts. Any partition can be depicted by a bar diagram (called Ferrer di-
agram) drawn in the first quadrant of the plane. The boxes which make up
the diagram are indexed by their “cartesian coordinates”, the most South–West
box being the box (1, 1). The symbol ∗ pertains to the transpose partition λ∗,
the diagramm of which is by definition the symmetric with respect to the first
bissector line of the diagramm of λ. The letters s and t refer to the width and
the height of the Ferrer diagramm.

Example 1.1. — Let λ = (4, 1) be the partition 5 = 4 + 1, its diagramm is

λ =

and the conjugate partition is λ∗ = (2, 1, 1, 1). Here s = 4 and t = 2.

With such a partition λ is associated a character χλ defined on the torus
(k×)n by χλ : (x1, . . . , xn) ∈ (k×)n 7→ (xλ1

1 xλ2
2 . . . xλnn ) ∈ k×.

When M is a real (respectively complex) vector or square matrix, M ′ is the
transpose (respectively transconjugate) vector or matrix.

1.1.4. Hermite–Humbert forms. — We also recall the the space of Hermite–
Humbert forms Pn(k) is by definition the space

Pn(k) = (S >0
n )r1 × (H >0

n )r2

where S >0
n denotes the set of determinant 1 symmetric positive definite ma-

trices and H >0
n the set of determinant 1 Hermitian positive definite matrices.
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GENERALISED HERMITE CONSTANTS 131

(Depending on the authors, the condition concerning the determinant is not
always retained but gives rise here to a convenient normalisation.) In the se-
quel, we may identify without more precision a quadratic form on kn with the
matrix which represents it in the canonical basis. Furthermore, the letter I
means the r-tuple of identity matrices: I = (In)16j6r ∈ Pn(k).

1.2. Irreducible representations of the general linear group. — With a partition
λ and a character χλ on the torus are classically associated a vector space
Sλ(kn) and a representation πλ of the group GLn(k), i.e. an action of the
group GLn(k) on the space Sλ(kn). The space Sλ(k) is sometimes called Weyl
module or Schur module. We recall two equivalent constructions of it. For
further details, one can consult [8] from which are excerpted the following two
very explicit contructions.

1.2.1. Description of the Schur module by tableaux of vectors. — The cartesian
product E×m of a set E is generally denoted in line by E×E×· · ·×E. In the
sequel, we shall index each component of the product by one of the boxes of a
partition λ ` m and we shall write E×λ to strengthen visually this convention.
The first definition of Sλ(kn) leans upon the universal property described below.
This definition will be held to represent elements of Sλ(kn).

Definition 1.2. — Let A be a commutative ring. For any A-module E, the
Schur module Sλ(E) is the A-module equiped with a projection morphism
ρλ : E×λ → Sλ such that for any map ϕ: E×λ → F from E×λ to a A-module
F , enjoying the following properties:

1. ϕ is multilinear,
2. the restriction of ϕ to any column of λ is alternate,
3. for any pair of columns, for any choice of p positions in the rightmost

column, for any v ∈ E×λ,

ϕ(v) =
∑
w

ϕ(w)

where the sum concerns all the w ∈ E×λ obtained from v by flipping p
coefficients fixed in advance in the rightmost column with any p coefficient
in the leftmost column in an order preserving way within each column,

there exists a unique homomorphism of A-modules ϕ̃ such that for any m-tuple
of vectors v ∈ E×λ, ϕ(v) = ϕ̃(ρλ(v)).
This construction can be summed up by the following commutative diagram
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132 B. MEYER

E×λ
ϕ //

ρλ

��

F

Sλ(E)

ϕ̃

<<z
z
z
z

The Schur module Sλ(kn) can be realised as the quotient of E×λ by some
relations. We refer to [8] for more details and examples about this definition.

Remark 1.3. — When the partition λ ` m admits only one part (horizontal
diagram), the Schur module Sλ(E) is the space of the m-th symmetric pow-
ers Symm(E) ; whereas when λ ` m admits m parts all equal to 1 (vertical
diagram), the Schur module Sλ(E) is the space of the m-th exterior products∧m(E).

One can see elements of the Schur module Sλ(E) as linear combinations of
diagrams of shape λ inscribed with vectors from E. Yet, for a given element of
Sλ(E), this script is not necessarily unique. For example, as well as x ∧ y and
x∧ (x+ y) represent the same projection of the pair (x, y) ∈ E2 in

∧2(E), the
notation in the shape of an inscribed diagram

t

x y z

stands for the projection of the quadruplet (t, x, y, z) ∈ E4 in the module

S (E).

Proposition 1.4. — When E is a free A-module, the Schur module Sλ(E) is
also a free A-module and the theory even affords a basis. Namely, this basis is
made out the vectors

eT =

eT1,t

eT1,t−1

eT1,1
eT2,1

eTs,1

where (ei)16i6n is a basis of E and T a Young tableau, i.e. a diagram of shape
λ, inscribed with numbers chosen in [[1, n]], the inscription of which are strictly
increasing along the column and non-decreasing along the rows.
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Example 1.5. — Let us set E = R3 and take B = (~i,~j,~k) a basis of R3, then

a basis of the Schur module S (R3) is given by
~j

~i ~i
,

~k

~i ~i
,

~j

~i ~j
,

~k

~i ~j
,

~j

~i ~k
,

~k

~i ~k
,

~k

~j ~j
,

~k

~j ~k


Remark 1.6. — In the case of exterior products or symmetric powers, this
results is nothing more than the well–known following fact: the vectors ei1 ∧

ei2 ∧ · · · ∧ eim constitute a basis of S (E) =
∧m(E) for i1 < · · · < im and

the vectors ei1 � ei2 � · · · � eim constitute a basis of S (E) = Symm(E) for
i1 6 · · · 6 im.

1.2.2. Description of the Schur module by spaces of polynomials. — In the
sequel, we shall also need a second description of the Schur module, adapted
to define a scalar product. Indeed, the Schur module Sλ(E) can be realised as
a certain subspace of polynomials in many variables. Let Z be the matrix of
indeterminates

Z =

Ü
z1,1 . . . z1,n

...
...

zt,1 . . . zt,n

ê
and k[Z] the space of polynomials of the nt variables of Z. Beware that elements
of k[Z] are not polynomials of the matrix Z.

For integers i1, . . . , ir, let D(i1,...,ir) be the following determinant

D(i1,...,ir) =

∣∣∣∣∣∣∣∣∣∣∣

z1,i1 . . . z1,ir

z2,i1 . . . z2,ir

...
...

zr,i1 . . . zr,ir

∣∣∣∣∣∣∣∣∣∣∣
.

When T is a tableau inscribed with integers taken between 1 and n, we call φT
the polynomial

φT = D(T (1,1),...,T (1,λ∗1)︸ ︷︷ ︸
relative to the 1st column

D(T (2,1),...,T (2,λ∗2)︸ ︷︷ ︸
relative to the 2nd column

. . . D(T (s,1),...,T (s,λ∗s)︸ ︷︷ ︸
relative to the last column

.

The linear map E×λ → k[Z] defined by eT 7→ φT factors out through the
universal property of the Schur module into an injective map Sλ(E) → k[Z].
This shows that Sλ(E) is isomorphic to the subspace Dλ(E) of k[Z] spanned by
the set of polynomials φT where T runs through the set of all Young tableaux.
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134 B. MEYER

Proposition 1.7. — The image Dλ(E) in k[Z] of φ is isomorphic to the
Schur module Sλ(E).

We identify these two spaces by an isomorphism that we again call φ.

1.3. The representations of the general linear group. — By functoriality of the
construction of the Schur module, the standard action of GLn(k) on kn deter-
mines an action πλ of the general linear group GLn(k) on the Schur module
Sλ(kn).

Definition 1.8. — We call πλ the action of the general linear group on the
Schur module described on split vectors by

(5) ∀g ∈ GLn(k), ∀X =
x2

x1 y1 . . .
πλ(g).X =

g(x2)

g(x1) g(y1) . . .

The vector eU(λ) of the Schur module Sλ(kn) where U(λ) stands for the
Young tableau

(6) U(λ) =

λ∗1

· · · λ∗2

2 · · · · · · 2

1 1 1 1 1

is invariant under the action of the subgroup of unipotent upper triangular
matrices (with ones on the diagonal). This vector is said to direct the line of
the highest weight vectors of πλ. It is invariant under the action of the parabolic
subgroup Pλ of G which stabilises the flag D0 = {span(e1, . . . , eλ∗

`
)}16`6s.

Under the action of a diagonal matrix h, the vector eU(λ) is simply multiplied
by χλ(h). Thus, the character of the torus χλ is called the weight of πλ.

Let us eventually notice that the isomorphism φ turns the action of the
general linear group GLn(k) on the Schur module Sλ(kn) into an action of
right multiplication on the subspace Dλ(kn) of the polynomials k[Z]. In other
words, if X is a vector of Sλ(kn), if the polynomial P (Z) is its image by φ in
Dλ, and if g belongs to the group GLn(k), then

φ(πλ(g).X) = P (Z.g).
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GENERALISED HERMITE CONSTANTS 135

Proposition 1.9. — Up to isomorphisms, there are no other irreducible poly-
nomial representations of GLn(k) than the representations (πλ,Sλ(kn)) de-
scribed above.

1.4. The height. — We define now a specific multiplicative height H on Sλ(kn)

by its local factors:

(7) H(x) = h0

∏
v∈V

Hv(x)

where h0 is a normalisation constant and Hv is a norm on the kv-vector space
Sλ(knv ) compatible with the absolute value | · |v.

Contrary to the generally used heights, we do not define the local norm with
respect to a unique foregone basis, because the heights obtained in this way are
not invariant under the action of the compact group Kn(Ak) =

∏
v∈V∞

On(kn) ×∏
v∈Vf

GLn(ov). The rest of this paragraph is devoted to the description of the

height that the action of this group leaves invariant.

1.4.1. Infinite places. — Let v ∈ V∞ be an infinite place. There exists on
the space of polynomials Dλ(knv ) a Euclidean (or Hermitian) scalar product for
which two monomials are orthogonal when they are distinct and for which the
scalar square of the monomial zα1,1

k1,1
z
α1,2

k1,2
· · · zαt,nkt,n

is α! = α1,1!α1,2! · · ·αt,n!. It
can be checked that the scalar product can also be described by

∀P,Q ∈ kv[Z], 〈P,Q〉 = L0

(
P (∂)Q(Z)

)
where the matrix ∂ is the matrix of the derivation operators

∂ =

Ü
∂z1,1 . . . ∂z1,n
...

...
∂zλ∗

1
,1
. . . ∂zt,n

ê
and L0 is the operator that evaluates the polynomials in zero.

Example 1.10. — Consider the two polynomials P (Z) = z1,1 + z2,2 and
Q(Z) = z2

1,1+z2,2, then we have P (∂)Q(Z) = (∂1,1+∂2,2)(z2
1,1+z2,2) = 2z1,1+1,

and their scalar product is just 〈P,Q〉 = 1.

Definition 1.11. — We set in that case

Hv(X) =
dim

(
Sλ(kn)

)
n!

〈X,X〉dv/2,

for any vector X of the Schur module Sλ(knv )
φ
' Dλ(knv ).
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136 B. MEYER

Lemma 1.12. — When v is a real place (respectively when v is a complex
place), the action of the orthogonal group On(R) (respectively the unitary group
Un(C)) on Sλ(knv ) is orthogonal (respectively unitary).

Proof. — We handle the real case ; the complex case can be demonstrated
similarly. Let us take ω ∈ On(R), and P,Q ∈ Dλ(Rn). Since the action of
an isometry commutes with the derivation with respect to a polynomial of
differential operators, we get the equality

(8) [(ω.P )(∂)][(ω.Q)(Z)] = ω[P (∂)][Q(Z)].

Indeed, by linearity, it suffices to show this result on monomials. We proceed
by induction. Let us denote by ω = ((ωi,j))16i,j6n the coefficients of the
orthogonal element ω.

– If P and Q are reduced to one variable, let us say P = zi,j and Q = zi′,j′ ,
then ω.P (∂) =

∑n
k=1 ωk,j∂zi,k and ω.Q =

∑n
k=1 zi′,kωk,j′ . Thereby

(ω.P (∂))(ω.Q) =



0 if i 6= i′
n∑
k=0

ωk,jωk,j′ = 0 if i = i′ and j 6= j′

n∑
k=0

ωk,jωk,j′ = 1 if i = i′ and j = j′

since the derivatives are all zero in the case i 6= i′ and by orthogonality
in the other cases.

– If P = zi,j is of degree one, and if we suppose having demonstrated the
relation for any monomial Q of degree less than or equal to n, let Q be a
monomial of degree n+ 1 that we write Q = zi′,j′Q1,

(ω.P (∂))(ω.Q) = ((ω.P (∂))(ω.zi′,j′))(ω.Q1) + zi′,j′(ω.P (∂)).Q1

= ω.(P (∂)zi,j) + (ω.zi′,j′)ωP (∂).(ω.Q1).

Using the induction hypothesis, (ω.P (∂))(ω.Q) = ω.(P (∂)Q).
– Eventually, let us suppose the relation demonstrated for any monomial Q

and any monomial P of degree less or equal to n. Let P be a monomial
of degree n+ 1, let us say P = zi,jP1, then,

(ω.P (∂))(ω.Q) = (ω.P1(∂))[(ω.∂zi,j )(ω.Q)]

= (ω.P1(∂))[ω.(∂zi,jQ)]

= ω.(P1(∂)∂zi,jQ)

= ω.(P (∂)Q).

which completes the proof of the relation (8).
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When this relation is evaluated in zero, we get as expected

〈ω.P, ω.Q〉 = 〈P,Q〉.

Definition 1.13. — The notation ∆` symbolises henceforth the principal mi-
nor of order ` of any matrix (of size greater than or equal to `× `).

We express through these minors the local height Hv(πλ(g).eU(λ)) in a pleas-
ant form.

Proposition 1.14. — Let πλ be the representation defined above, eU(λ) the
highest weight vector defined by (6) and g ∈ GLn(k), the local height of
πλ(g).eU(λ) is equal to the product of the following minors:

(9) Hv(πλ(g).eU(λ)) =
(
∆λ∗1

(g′g)∆λ∗2
(g′g) . . .∆λ∗s

(g′g)
)dv/2 Hv(eU(λ))

where v is an archimedean place.

Proof. — The place v being fixed, the group GLn(k) can by embedded into
GLn(C). Take g ∈ GLn(k), g can be written according to Iwasawa decomposi-
tion into the product g = udb where u is a unitary matrix, d = Diag(α1, . . . , αn)

is a diagonal matrix and b a unipotent upper triangular matrix.

– We already know that the action of Un(C) does not alter the norm (lemma
1.12). Thus Hv(πλ(g).eU(λ)) = Hv(πλ(db).eU(λ)). On the other hand, for
any l, ∆l(g

′g) = ∆l(b
′d′db). Thus we can assume that u = Id.

– Besides, as eU(λ) is the highest weight vector, we have

πλ(db).eU(λ) = χλ(d)eU(λ) =

(
n∏
i=1

αλii

)
eU(λ),

hence

Hv

(
πλ(db).eU(λ)

)
=

∣∣∣∣∣ n∏
i=1

αλii

∣∣∣∣∣Hv(eU(λ)).

But db is an upper triangular matrix. In particular, db can be writ-

ten block by block in the shape

(
m1 ∗
0 m2

)
with sizes ` and n − ` and

thus (db)′db =

(
m′1m1 ∗
∗ ∗

)
, which justifies the equality ∆`((db)

′db) =

‖∆`(db)‖2. Accordingly, ∆`(b
′d′db) = |∆`(d)|2/dv =

∏`
i=1 |αi|2/dv . But,∏s

`=1 ∆λ∗
`
(g′g) =

∏n
i=1 |α

λi
i |2/dv since the term αi appears exactly λi

times among the determinants (∆λ∗
`
(g′g))16`6s. This last equality ends

up the proof the proposition.
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1.4.2. Finite places. — We know already a basis of Sλ(knv ), given by the vectors
eT where the T are Young tableaux, that is a diagram inscribed with increasing
integers along columns and non-decreasing integers along lines, all coefficients
being in [[1, n]].

Definition 1.15. — For a finite place v, we set the local norm Hv(x) as the
maximum of the absolute value of the coordinates of x in this basis.

In this way, we have in addition that the Schur module of the cartesian
product of the ring of integers is given by the following equality

Sλ(onv ) = {X ∈ Sλ(knv );Hv(X) 6 1}

which motivates the choice of our local norm.

1.4.3. Normalisation. — The constant h0 is chosen such that H(eU(λ)) = 1.
Examples suggest that h0 should be equal to 1.

Remark 1.16. — In the case when πλ is the representation on the space of
exterior powers of kn, the height we get is the one studied as example 1 in [23]
page 43, since the basis used for finite places is also orthonormal for the scalar
products of the infinite places. As a result, the constant studied in this article
matches with the constant defined by J. Thunder in [21].

2. A second formulation with Hermite–Humbert forms

2.1. Adelic definition of the constant. — Let us recall before we start the def-
inition of the constant we intend to study. From the adelic view point, this
constant is given by

(10) γn,λ = max
g∈GLn(Ak)1

min
γ∈GLn(k)

H(πλ(gγ) eU(λ) )2/d

which is the constant defined by the equality (3) associated with the general
linear group GLn, to the height suggested in the previous section and to the
representation πλ also previously described.

Definition 2.1. — Let us denote by Sλ] (kn) the set of non zero vectors X ∈
Sλ(kn) that have the shape

X =

xt

:

x2 x2

x1 x1 . . x1

,
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with (x`)16`6t ⊂ kn. We shall call these particular vectors flag vectors, in
reference to their characterising, up to a multiplicative constant, the flag of
nested subspaces spanned by (xi)16i6λ∗

k
when k varies between 1 and s.

Definition 2.2. — When an automorphism A ∈ GLn(Ak) is fixed, it is possi-
ble to define a twisted height HA by the formula HA(X) = H(πλ(A)(X)) which
applies to any vector X ∈ Sλ(kn) as well as any flag D represented by a flag
vector X. The Hermite constant γn,λ is then the smallest constant c such that
there exists a flag D satisfying the inequality

HA(D) 6 c1/2|det(A)||λ|/nAk

for any automorphism A ∈ GLn(Ak). By homogeneity of the inequality, the
constant γn,λ is still the smallest constant c such that there exists a flag D
satisfying

HA(D) 6 c1/2

for any automorphism A ∈ GLn(Ak) of determinant of norm |det(A)|Ak = 1.

Remark 2.3. — As it can be acknowledged, the constant γn,λ depends only
the heights of flag vectors. A more sophisticated way to describe the heights
could have been to consider the one obtained through the embedding (4) with
a section and a metrised line bundle on the flag variety Pλ\G itself. This latter
construction turns out to define the same heights as we did.

To state a precise result, we shall use the following notation. The flag Pλ\G
is actually the collection of nested subspaces the dimension of which is equal
to one of the λ∗i for some integer i between 1 and s. The letter ad will refer to
number of occurences of the integer d among the parts of the partition λ∗, or
in other words the number of times the subspaces of dimension d are repeated.

Using the maps that send one of the nested subspace of dimension d of the
flag into the Grassmanian space Gd(kn) of the corresponding dimension d, the
maps that send a subspace V into

∧dimV V , and the Veronese embeddings that
send V into SymaV , we dispose of the following chain of embeddings:

Pλ\G ⊂
∏

d∈{λ∗
i
, 16i6s}

Gd(k
n) ⊂

∏
d∈{λ∗

i
, 16i6s}

P

(
d∧
kn

)
⊂ · · ·

· · · ⊂
∏

d∈{λ∗
i
, 16i6s}

P

(
Symad(

d∧
kn)

)
⊂ P

Ñ ⊗
d∈{λ∗

i
, 16i6s}

Symad(
d∧
kn)

é
.

It is classical to attach to any Grassmanian space Gd the line bundle V 7→
(V,
∧dimV V ) whereupon the metric is defined using the standard metric for

the ultrametric places and the Fubini–Study metric for the archimedean places
(see section 2.9 in [4]). Taking the a-th tensor product gives a metrised line
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bundle on Syma and by tensoring again, we get a metrised line bundle of
P
Ä⊗

d∈{λ∗
i
, 16i6s} Sym

ad(
∧d kn)

ä
which we denote O(a1, . . . , at).

The metrised line bundle O(a1, . . . , at) on Pλ\G is equal to the line bundle
O(1) obtained through the embedding of the flag variety into P(Sλ(kn)) (see
for more detail section 9.3 of [8]) and the metric we defined previously. See
also description in [19].

2.2. Definition based on Hermite–Humbert forms. — We first define the evalua-
tion of a Humbert form at a flag vector.

Definition 2.4. — Let A = (Aj)16j6r1+r2 ∈ Pn(k) be a Hermite-Humbert
form and take a flag vector X ∈ Sλ] (kn), then the notation A[X] symbolises
the evaluation of A in X, which means:

A[X] =

r1+r2∏
j=1

t∏
`=1

(
∆λ∗

`

(
[x1, . . . , xs]

′Aj [x1, . . . , xs]
))dj

=
t∏
`=1

(
r1∏
j=1

∆λ∗
`

(
[x1, . . . , xs]

′Aj [x1, . . . , xs]
)

·
r1+r2∏
j=r1+1

(
∆λ∗

`

(
[x1, . . . , xs]

′Aj [x1, . . . , xs]
))2
)
.

2.2.1. Minimum and determinant of a form. — When L is a lattice of kn, we
know that L admits a pseudo basis and can be decomposed into

(11) L = c1u1 ⊕ · · · ⊕ cnun
where the (ci)16i6n are fractional ideals and the system (ui)16i6n is a vectorial
basis of kn. Following [7], we define the determinant of a Hermite–Humbert
quadratic form A = (Aj)16j6r1+r2 with respect to the lattice L by the following
product of the determinants computed in the system of vectors (ui)16i6n:

(12) detL(A) = N (c1c2 . . . cn)

r1+r2∏
j=1

(
det(u1,...,un)(Aj)

)dvj .
We define also, again with respect to a lattice L of kn and a vector X of the

Schur module Sλ(kn), the fractionnal ideal ALX according to the formula:

(13) (ALX)−1 =
{
α ∈ k, αX ∈ Sλ(L)

}
.

In the case when λ is the partition of 1, the ideal ALX is nothing else than the
greatest common divisor of the coordinates of X (in that case X is simply a
vector of kn).
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We define the minimum of a Hermite–Humbert form A ∈ Pn(k) relatively
to the lattice L as the quantity

(14) mL(A) = min
X∈Sλ

]
(L)

A[X]

N (ALX)
.

2.2.2. A new Hermite constant. — We call generalised Hermite invariant of
the Hermite–Humbert form A relative to the lattice L the number

(15) γL(A) =
mL(A)

(detLA)
m
n
.

We eventually define the constant

(16) γL = sup
A∈Pn(k)

γL(A).

Recall that the Steinitz class of lattice means the ideal class c = c1c2 · · · cn
(with the notation of equality 11). If L and L′ are two lattices with the same
Steinitz class, then they are isomorphic and as a result, the constants γL and
γL′ coincide. The canonical basis of kn being (ei)16i6n, let us fix the following
representatives for each class of lattice

(17) ∀ 1 6 ι 6 h, Lι = oe1 ⊕ · · · ⊕ on−1en−1 ⊕ aιen.

Let us denote by γ̂n,λ a new Hermite constant

(18) γ̂n,λ = max
L lattice of kn

γL = max
16ι6h

γLι .

2.3. Equivalence of the definitions

Proposition 2.5. — The constant γ̂n,λ is equal to the constant γn,λ intro-
duced by T. Watanabe.

Proof. — The group GLn(Ak) admits a double cossets decomposition (see
[15]),

(19) GLn(Ak) =
h⊔
ι=1

GLn(Ak,∞)λι GLn(k)

obtained by the action of GLn(k) on the right and the action of GLn(Ak,∞) on
the left, where

(20) GLn(Ak,∞) =
∏
v|∞

GLn(kv)×
∏
v∈-∞

GLn(ov).

Here come the details:
For 1 6 ι 6 h, the ideal aι ⊗ ov localised in kv (v finite place) of the rep-
resentative aι of an ideal class becomes a principal ideal and takes the shape
of aι,vov where aι,v ∈ kv. Let us denote aι ∈ Ak the adèle we get by filling
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out with aι,v = 1 for archimedian places v. Let λι be the diagonal matrix
Diag(1, . . . , 1, a−1

ι ) of GLn(Ak). Let us notice that

(21) λιLι = L1 and |detλι|Ak = N (aι).

Then the decomposition of GLn(Ak) proves to be

GLn(Ak) =
h⊔
ι=1

GLn(Ak,∞)λι GLn(k).

The value of min
γ∈GLn(k)

H
(
πλ(gγ)eU(λ)

)2 does not depend actually of the class

of g ∈ GLn(Ak) modulo GLn(k). Moreover,when γ runs through GLn(k),
πλ(γ)eU(λ) describes all the decomposed vectors of Sλ] (kn). Thus, the constant
γn,λ can be rewritten

γλ = max
g∈GLn(Ak)/GLn(k)

min
X∈Sλ

]
(kn)

H(πλ(g)X)

|det g|
2m
n

Ak

= max
g∈GLn(Ak,∞)

max
16ι6h

min
X∈Sλ

]
(kn)

H(gλι.X)

|det gλι|
2m
n

Ak

.

Because of the product formula, it can be assumed that X runs only through
the set Sλ] (Lι). Because of the invariance of the local heights under the action
of, GLn(ov), g can be restricted to GLn(k∞) =

∏
v|∞GLn(kv). To summarize:

γn,λ = max
16ι6h

max
g∈GLn(k∞)

min
X∈Sλ

]
(Lι)

H(gλi.X)

|det g|
2m
n

Ak (N (aι))
2k
n

.

Let us associate with any g ∈ GLn(k∞) the Hermite–Humbert form A = g′g.
The product of the archimedian local heights

∏
v|∞Hv(gvλι,vX) is equal to

A[X] according to proposition (1.14) and the fact that λι,v = Id when v is an
archimedian place. The product of ultrametric local heigths

∏
v-∞Hv(λι,vX)

is exactly 1
N (Aι

X
) .

Indeed, let us decompose X =
∑
T XT eT (where T runs among Young

tableaux) in the canonical basis of Sλ. The action of λι in that basis boils
down to multiplying eT by a−#{(i,j);Ti,j=n}

ι , whence the formula

Hv(λιX) = max
T
|a−#{(i,j);Ti,j=n}
ι |v|XT |v.

But αX belongs to Sλ(Lι) =
⊕
T

a#{(i,j);Ti,j=n} eT if and only if |αXT |v is

greater than or equal to |a#{(i,j);Ti,j=n}ι |v for any finite place v. Therefore
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|(AιX)−1|v is equal to maxT
|a

#{(i,j);Ti,j=n}
ι |v
|XT |v . By bringing all the equalities

together, we get the expected formula. Thereby,

(22) γn,λ = max
16ι6h

max
A∈Pn(k)

min
X∈Sλ

]
(Lι)

A[X]

N (AιX)(detLιA)
m
n

= γ̂n,λ

as expected.

3. Eutaxy and perfection

The classical Voronoi theory [22] is based on two properties of quadratic
forms, perfection and eutaxy, which characterise extreme forms, i.e. those that
are a local maximum of the Hermite invariant γ.

In his article [1], Christophe Bavard has set forth a general framework we
make ours here to propose appropriate definitions of eutaxy and perfection. The
framework is as follows: the Hermite invariant of an object p is defined as the
minimum of the evaluation in p of a familly of “length functions”(fc)c∈C , which
are positive real-valued functions, defined on a space V which parametrises the
set of objects p in mind. To redound to the classical case of Voronoi theory,
V has to be chosen as the space of determinant 1 symmetric definite positive
matrices, the length functions are the functions A 7→ u′Au ∈ R+ and are
indexed by the set of non-zero vectors u ∈ Zn.

In this geometrical framework, eutaxy and perfection of an object p can
be formulated in terms of properties on gradients of the length functions that
attain the minimum (cf. infra.). Moreover, when the following condition (C )

is met, the Voronoi theorem holds, i.e. the Hermite invariant of p is a local
maximum if and only if p is eutactic and perfect.

Let S(p) be the set of indices ς ∈ C of the length functions fς that are
minimal in p. The condition (C ) can be stated as follows:

“For any point p of V , for any subset T ⊂ S, for any non zero vector x
orthogonal to the gradients (∇fϑ)ϑ∈T , there exists a C1 stalk of curve
c : [0, ε[→ V such that c(0) = p, c′(0) = x and for any ϑ ∈ T , fϑ(c(t)) >

fϑ(p) when t ∈]0, ε[.”

3.1. Terms reformulation. — In our case, the set of Hermite–Humbert forms
are parametrised by the space Pn(k) embedded with a Riemannian structure,
and in particular the scalar product defined on the tangent space by:

(23) ∀X , Y ∈ TAPn(k), 〈X ,Y〉A =

r1+r2∑
j=1

Tr(A−1
j Xj A

−1
j Yj),
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where A = (Aj)16j6r, X = (Xj)16j6r and Y = (Yj)16j6r are elements from
the tangent space TAPn(k) = {X = (Xj)16j6r; Tr(A−1

j X) = 0}. Remember
that in the sequel the letter I designates I = (In)16j6r ∈ Pn(k).

Definition 3.1. — The length functions defined on Pn(k) will be the func-
tions `ιV , indexed by ς = (ι, V ) where ι is an integer 1 6 ι 6 h and V a flag
vectors belonging to Sλ] (Lι) , and defined by:

(24) ∀A ∈ Pn(k), `ιV (A) = ln

Å A[V ]

N (AιV )2N (aι)
m
n

ã
.

Remark 3.2. — Actually, in this way, many distinct indexes can parametrise
the same length function. For instance, if α belongs to the field k, then the
functions `ιV and `ιαV coincide.

Let V be a flag vector of Sλ] (Lι) given in the shape:

V =

xt

...

x1 . . . x1

For any integer p 6 t, let us agree on Xp being the matrix n× p of which the
columns are the vectors (xl)16l6p ∈ kn. The gradient expressed at the point
A of `ιV is the result of the following computation:

∇
(
`ιV (A)

)
=
[
dj∇

(
lnAj [V ]

)]
16j6r1+r2

=

[
dj

s∑
l=1

∇ ln
Ä
det(X

σj
λ∗
l

′
AjXλ∗

l
)
ä]

16j6r1+r2

=

[
dj

s∑
l=1

Å
AjX

σj
λ∗
l

Ä
X
σj
λ∗
l

′
AjX

σj
λ∗
l

ä−1
X
σj
λ∗
l

′
Aj −

λ∗l
n
Aj

ã]
16j6r1+r2

.

Let us the endomorphism pA,X and simply pX when A = Id by pA,X =

X(X ′AX)−1X ′A. This endomorphism turns out to be the A-orthogonal pro-
jection on the space spanned by the column vectors of X.

Lemma 3.3. — The gradient of the length functions can be also expressed in
the following shape:

(25) ∇
(
`ιV (A)

)
=

[
djAj

(
s∑
l=1

p
Aj ,X

σj

λ∗
l

− m

n
Id

)]
16j6r1+r2

.
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In particular, the norm of the gradients can be easily computed∥∥∥∇(`ιV (A)
)∥∥∥ =

r1+r2∑
j=1

d2
j Tr

(
s∑
l=1

p
Aj ,X

σj

λ∗
l

− m

n
Id

)2

= (r1 + 4r2)

(
s∑
l=1

(1 + 2(l − 1)− m

n
)λ∗l +

(m
n

)2
)
.

The norm of the gradients is constant, independant of the length function.

Definition 3.4. — When A ∈ Pn(k) is fixed, S(A) will denote the set of
parameters ς = (ι, V ) such that `ιV (A) is minimal.

Lemma 3.5. — A Hermite–Humbert form A being given, there exists only
finitely many distinct length functions that reach the minimum mLι(A).

Indeed, we know already that, decomposing A into A = (g′g), it is possible
to represent A[V ]

N (Aι
V

)2N (aι)
m
n

byH(gλιV ). The mapX 7→ H(gλιX) defines again

a height. Now it is classical that there are only finitely many points of bounded
height ; this property is usually known as Northcott property and was initially
the point of designing heights.

This finiteness result, associated with the computation of the norm of the
gradient, ensures the local finiteness of the set of length functions required
to define the Hermite invariant (see remarque 1.1 of [2]). This observation is
essential to use Ch. Bavard’s theory.

According to [1], we set the following definitions:

Definition 3.6. — A Hermite–Humbert form A ∈ Pn(k) is said to be perfect
if the familly of gradients

(
∇`ιV

)
ς=(ι,V )∈S(A)

spans affinely the tangent space
TAPn(k).
A Hermite–Humbert form A ∈ Pn(k) is called eutactic if the zero vector be-
longs to the affine interior of the convex span of the family of the gradients
(∇`ιV )ς=(ι,V )∈S(A) .

Remark 3.7. — If we denote by ΠA,X the sum of the projections

ΠA,X =

[
s∑
l=1

p
Aj ,X

σj

λ∗
l

]
16j6r1+r2

,

perfection and eutaxy can be rephrased as follows:

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



146 B. MEYER

– A Hermite–Humbert form is called perfect if the rank (on R) of the family
(ΠA,V )V ∈S(A) is equal to the dimension of the tangent space TPn(k)

augmented by one:

dimR TPn(k) + 1 =
r1n(n+ 1)

2
+ r2n

2 − (r1 + r2) + 1.

– A Hermite–Humbert form A = g′g is eutactic if the identity map I is a
linear combination with only strictly positive coefficients of the sum of
projection maps (ΠI,gU )U∈S(A).

Proof. — The rephrasing of the perfection is rooted in the following fact from
linear algebra. Let E be an R vector space, H ⊂ E an hyperplane and u an
additional vector supplementary to H, then the familly hi spans affinely H if
and only if the familly hi + u spans E as a vector space.
For the eutaxy, by definition, A is eutactic if there are positive coefficients
(ρς)ς∈S(A) of sum equal to 1 such that

0 =
∑

ς=(U,ι)∈S(A)

ρς∇`ιU

which is equivalent to[ ∑
ς∈S(A)

ρς dj

(
s∑
l=1

AjXλ∗
l

Ä
X ′λ∗

l
AjXλ∗

l

ä−1
X ′λ∗

l
Aj

)]
16j6r

=

[
m

n
Aj

]
16j6r

and using the decomposition Aj = g′jgj , we get[ ∑
ς∈S(A)

ρς dj g
′
iΠId,giXgi

]
16j6r1+r2

=

[
m

n
g′igi

]
16j6r1+r2

.

Whence, [ ∑
ς∈S(A)

ρU
n

m
dj ΠId,giX

]
16j6r1+r2

=

[
In

]
16j6r1+r2

.

Remark 3.8. — The notions of perfection and eutaxy coincide with the al-
ready defined notions (for example the ones in [5] or [6]).

3.2. A theorem à la Voronoi

Theorem 3.9. — A Hermite–Humbert form is extreme (with respect to λ) if
and only if it is perfect and eutactic.
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Proof. — It suffices to show that the condition (C ) stated in the introduction
of this section is fulfilled.

The proof given here is a straightforward adaptation of the one that can be
found paragraph 2.11 of Ch. Bavard’s [2]. First we go back to the neighbour-
hood of the identity with the use of the transitive and isometric action ΦR of(
SLn(R)

)r1 × (SLn(C)
)r2 on Pn(k) which acts by

ΦR

(
A
)

=
(
R′jAjRj

)
16j6r

, R ∈
(
SLn(R)

)r1 × (SLn(C)
)r2
, A ∈ Pn(k)

where R = (Rj)16j6r1+r2 and A = (Aj)16j6r1+r2 .
Let T be a finite subset of S(I), the representatives of which we select in the

shape of matrices n× t of rank t and the successive columns of which describe
the flags (remember that t = λ∗1 refers to the height of the Ferrer diagram of
λ). Let X and Y be two vectors from the tangent space TIPn(k), such that X
satisfies the conditions of orthogonality with the elements of T .

Let us consider the curve

c(t) = exp(tX + t2Y2/2)

and fix f ιV = `ιV ◦ c (V ∈ T and 1 6 ι 6 h). To prove that the condition C
holds, we need to expandf ιV (t) up to the fourth order. We have

f ιV
′(0) = 0,

because of the orthogonality conditions on X , and

f ιV
′′(0) =

r1+r2∑
j=1

dj

(
s∑
l=1

Tr
(
pV [λ∗

l
]σj Yj

)
+ Tr

(
pV [λ∗

l
]σjX

2
j

)
−Tr

(
(pV [λ∗

l
]σjXj)

2
)ä
.

Remember that the notation pV refers to the projection matrix V (V ′V )−1V ′

and that V [`] is the matrix n× ` got by extracting the ` first columns of V .
One can check that for any symmetric matrix Z,

Tr
(
(pV Z)2

)
6 Tr

(
pV Z

2
)

with equality if and only if Z commutes with pV . Let us define thus the subset
T0 ⊂ T of the parametres U ∈ T such that for any j ∈ [[1, r1 + r2]] and any
l ∈ [[1, s]],

pU [λ∗
l
]σjXj = XjpU [λ∗

l
]σj

as well as T1 = T r T0 its complement. For U in T0, one has also

f ιU
(3)(0) = 0
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and

f ιU
(4)(0) =

r1+r2∑
j=1

dj

(
s∑
l=1

Tr
(
pU [λ∗

l
]σj Y

2
j

)
− Tr

(
(pU [λ∗

l
]σj Yj)

2
))

.

These computations can be drawn from the computation of the expansion of
det(U ′AU) by Ch. Bavard [1] p 111 and from the following identity

ln

Å
1 + β

t2

2
+ δ

t4

24

ã
= β

t2

2
+ (δ − 3β2)

t4

24
+ o(t4).

We are looking for an r-tuple of matrices Y = (Yj)16j6r such that for U ∈ T1,
f ιU
′′(0) > 0 and for U ∈ T0, f ιU

′′(0) = 0 and f ιU
(4)(0) > 0. The first conditions

handling U ∈ T1 can always be satisfied provided Y is replaced by εY with
ε > 0 small enough. The second conditions handling U ∈ T0 are equivallent
to
∑r
j=1 Tr

(
pV [λ∗

l
]σj Yj

)
= 0 and there exists a pair (j0, `0) such that pU [λ∗

l
]σj

and Yj do not commute. The same argument used to build Y in the proof of
proposition 2.8 of [1] applies here, for any pair of indices (j0, `0), which supplies
us with a matrix Yj0 . For the other indices j 6= j0, Yj can be chosen equal to
0 for instance.

3.3. Algebraicity of the constant

Proposition 3.10. — 1. For a given integer n, partition λ and number
field k, there are only finitely many perfect forms up to unimodular trans-
formations.

2. The Hermite constant γn,λ is algebraic.

Proof. — 2. This property is a quite general fact that have also been mentioned
in [2]. The proof goes as follows. Perfection for a Hermite–Humbert form A
means that the algebraic subvariety CS(A) defined by the polynomial equations
`ιU (X ) = 1 for (ι, U) ∈ S(A) is of dimension zero. Thus, the equations defining
CS(A) being all polynomial with rational coefficients, the points in CS(A) are
algebraic and so is in particular the form A.

1. Now to show that there are only finitely many perfect forms up to uni-
modular transformations, we show that there is always a representative of a
perfect form that takes its minimal flag vectors among a finite set. Thus there
can be only finitely many sets of equation `ιU (X ) = 1 for (ι, U) belonging to
some S0 defining a class of perfect forms.

By Humbert reduction theory [9], a Humbert formA can always be expressed
up to unimodular equivalence as A = (Dj [Uj ]])16j6r where the (Dj) are diag-
onal matrices such that the diagonal coefficients dj(i) satisfy dj(i)

dj(i+1) 6 B for
some positive bound B and such that the (Uj) are unipotent upper triangular
matrices with bounded coefficients.
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We recall that the local height of a flag vector X ∈ Sλ] is just the square
norm Aj [X] = ‖πλ(DjUj)X‖2 where ‖ · ‖ is the norm we defined on Sλ(kvj ).
Since π(DiUi) is invertible, we get, using the operator norm,

∀X ∈ Sλ(kv), Aj [X] > ‖πλ(DjUj)
−1‖−1 ‖X‖2.

Since, Uj is triangular and unipotent, the entries of πλ(U−1
j ) are polynomial

in the entries of U, and ‖πλ(U−1
j )‖ can be uniformely bounded for the reduced

Humbert forms we consider. On the other hand πλ(D−1
j ) is a diagonal en-

domorphism which eigenvalue associated with eT is just
∏n
i=1 dj(i)

−#{i;i∈T}.
Using the bounds on the ratios of to consecutive dj(i), we notice that the eigen-
values of πλ(D−1

j ) are bounded from above by Bµ
∏n
i=1 dj(i)

−λi for some big
power Bµ. Thus, there is a constant l such that for any Humbert form A,

∀X ∈ Sλ(kv), Aj [X] > l ‖X‖2.

We deduce that the minimal flag vectors X of Humbert form have a bounded
height: their infinite part is for instance bounded by

(
1
l

)r whereas their finite
part is always less than one. According to Northcott property, there can only
be finitely many of them, which ends the proof.

4. Some relations between the constants

4.1. An equality of duality. — If λ is a partition with less than n parts, we call
complementary partition with respect to n the partition λ (also denoted by
λ
n
) such that for any ` between 1 and s, λ∗` + λ

∗
s+1−` = n. Visually, it can be

retrieved by completing the partition into a rectangle of height n:

× × ×

× × ×

© × ×

© © ×

© © ©

↑
n

↓

Proposition 4.1. — Let λ be a partition and λ
n

complementary partition
with respect to n, then the following equality holds

(26) γn,λ = γn,λn .
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Proof. — A partition λ being fixed, we consider the following representation
(ρ, Sλ(kn) where ρ = πλ(w0g

′−1w−1
0 ) and w0 is the miror automorphism of

GLn(k) which swaps the vectors ei and en+1−i. We can notice that ρ is an
irreducible representation, that eU(λ) directs the line of highest weight vectors,
that eU(λ) is stabilised by the parabolic subgroup Pλ. The character of ρ is
actually det−n ·χλ.

Taking our normalisation into account, i.e. H(eU(λ)) = H(eU(λ)) = 1, when
g belongs to GL1

n(Ak) and decomposes into g = kdu with k in the maximal
compact subgroup K(Ak), d diagonal matrix and u unipotent, we get

H(ρ(g)eU(λ)) = |χλ(d)|Ak = H(πλ(g)eU(λ)).

We derive the equality of the constants γn,λ = γn,λn from this equality.

4.2. Mordell inequality. — With the viewpoint of twisted heigths in mind, we
can show the following inequality, which generalises the Mordell inequality.

Proposition 4.2. — Let λ be a partition, m and n two integers such that
t 6 m 6 n, then,

(27) γn,λ 6 γm,λ (γn,m)
|λ|/m

.

Proof. — Consider an automorphism A satisfying |det(A)|Ak = 1. Let D be
a flag of kn which minimises the height HA(D) and let W be a subspace of
dimension m such that HA(W ) 6 γ

1/2
m,n. There exists an injective map φ which

sends km onto W ⊂ kn. Let us accept for one time the following lemma, which
will be proven below. (This lemma and its proof easily stems from corollary 4.3
in [18] where this result is proven for symmetric powers and exterior powers.)

Lemma 4.3. — Let φ : km ↪→ kn be an injective map and A an automorphism
of GLn(Ak). We denote also by φ the Ak-homomorphism which extends φ from
Amk to Ank . There exists an automorphism B ∈ GLm(Ak) such that the twisted
height HB coincides with HA in the following sense: for any partition λ and
any flag D of shape λ of nested subspaces in km, we have

(28) HA(φ(D)) = HB(D).

In particular, when λ is the partition λ = (with m vertically arranged boxes)
and if W means the image of φ, we get

(29) HA(W ) = |det(B)|Ak .
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Let us fix an automorphism B ∈ GLm(k) enjoying the properties of the
lemma.

There exists besides a flag T of km such that

HB(T ) 6 γ
1/2
m,λ|det(B)||λ|/mAk = γ

1/2
m,λHA(W )|λ|/m 6 γ

1/2
m,λγ

|λ|/2m
n,m .

Then,
HA(D) 6 HA(φ(T )) = HB(T ) 6 γ

1/2
m,λγ

|λ/2m
n,m

which ends up the proof of the proposition.

Proof of the lemma. — Let us start with building automorphisms Bv ∈
GLn(kv) for any place v such that Av ◦ φ ◦ B−1

v preserves the norm. To that
purpose, if v is an archimedean place, we consider the preimages of a family
of m Av-orthonormal vectors of knv and take as Bv, the automorphism which
sends the canonical basis of kmv on these vectors. When v is an ultrametric
place, to have the norm preserved, it is necessary and sufficient that Av◦φ◦B−1

v

send omv on a primitive ov-module of rank m in onv . We choose Bv such that
Bv(o

n
v ) = (Av ◦ φ)−1(onv ).

Let us notice that for almost every finite place, Av ◦φ is already an isometry,
and that we can content ourselves with Bv = In. This ensures that B =

(Bv)v∈V is really an element of GLm(Ak) and thus

∀x ∈ km, HA(φ(x)) = HB(x).

Let us show that this equality extends to flags of any shape. We can decom-
pose any map Av ◦ φ ◦ B−1

v into a composition ψv ◦ ι where ι is the injection
km ↪→ kn given by (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0) and ψv is an isometry.
Then the map Sλ(Av ◦φ◦B−1

v ) = πλ(ψv)◦Sλ(ι) is an isometric injection of kmv
into knv since on the one hand, ψv is an isometry and by construction our local
heights are invariant under the action of an isometry, and on the other hand,
the injection Sλ(ι) is an isometry. Thus for any partition λ and any flag D of
shape λ,

HA(φ(D)) = HB(D).

4.3. An inequality involving the Bergé–Martinet constant

Definition 4.4. — Let us recall that for a lattice the Bergé–Martinet con-
stant means the maximum of the product of the minimum of a lattice by the
minimum of the dual lattice. In adelic terms, it can be expressed like this

γ′n,λ = max
g∈GLn(Ak)

Å
min

γ∈GLn(k)
H(πλ(gγ)eU(λ)) min

γ∈GLn(k)
H(πλ(g′−1γ)eU(λ))

ã1/2

.

Of course, it is true that for any partition λ, the inequality γ′n,λ 6 γn,λ
holds. Besides
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Proposition 4.5. — Let κ be the partition κ = (n− 1, 1)∗ = , then γ′2n,(1) 6
γn,κ.

Proof. — Let us denote gc = w0
tg−1w−1

0 where w0 is the miror automor-
phism which swaps the vector ei with en+1−i. We can notice that for any
diagonal automorphism g = Diag(d1, . . . , dn), we have H(ge1)H(gc(e1)) =

F (d1e1)H(d−1
n e1) = ‖d1‖Ak‖d1 . . . dn−1‖Ak since ‖ det g‖Ak = 1. Thus, we

have the equality H(ge1)H(gce1) = H(πκ(g)eU(κ)) for any diagonal matrix.
The equality holds also trivially for unipotent upper triangular matrices (all
the terms are equal to one) and extends to any element g ∈ GL(Ak).

Now we have for any g ∈ GLn(Ak),

min
γ∈GLn(k)

H(gγe1) min
γ∈GLn(k)

H(g′−1γe1) 6 min
γ∈GLn(k)

H(gγe1)H(gcγe1).

Thus

min
γ∈GLn(k)

H(gγe1) min
γ∈GLn(k)

H(g′−1γe1) = min
γ∈GLn(k)

H(πκ(gγ)eU(κ))

which leads to the equality we wanted to prove.

5. Some exact values and upper bounds

5.1. Determination of γ3,(2,1)(Q) and of γ4,(2,1,1)(Q)

Proposition 5.1. — The constant γ
3,

(Q) is equal to 3
2 and is achieved only

for the root lattice A3 and its dual A∗3.
The constant γ

4,
(Q) is equal to 2 and is achieved only for the root lattice

D4 (which is isomorphic to its dual).

Proof. — For any reference to the reduction in the sense of Korkine and
Zolotareff, we send back the reader to [12] section 2.9 or to the original article
[11]. Let Λ be a lattice of R3 and L a sublattice of Λ, the 2× 2 determinant of
which is minimal. Two cases can occur depending on whether the sublattice L
can be found containing a minimal vector or not.

1. In the first case, let u1 be a minimal vector enjoying such properties and
let u2 be a second vector of L such that (u1, u2) forms a basis of L. Now,
u1, u2 is the beginning a Hermite–Korkine–Zolotareff reduced basis of Λ,
say (u1, u2, u3). Were it not the case, the first two vectors of an other
HKZ reduced basis would provide us a better sublattice L. In such event,
denoting A1 the norm of u1, A2 the norm of the projection of u2 on
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the orthogonal of u1 and A3 the norm on the projection of u3 on the
orthogonal of u1 and u2, the constant is

γ
3,

(Λ) =
A2

1A2

A1A2A3
=
A1

A3
.

It has been disclosed by Korkine and Zolotareff that this ratio never
exceeds 3

2 and can only be reached when Λ = A3 or Λ = A∗3.
2. The second case to study corresponds to the situation where no dimen-

sion 2 sublattice L with minimal determinant bears a minimal vector.
Consider a reduced basis (u1, u2) of the lattice and em a minimal vector
of Λ. Then the triple (u1, u2, em) forms a basis of Λ. Indeed, assume that
there exists an other vector x of Λ which is not contained in the lattice
spanned by this triple. Even when it means performing some reductions,
one can assume the 〈x, em〉 6 1

2‖em|, 〈x, u1〉 6 1
2‖u1| and 〈x, u2〉 6 1

2‖u2|.
Then the determinant of the lattice L′ = Zx+Zu1 is bounded from above
by

detL 6 ‖x‖2‖u1‖2 6 (
1

2
‖em‖2 +

1

2
‖u1‖2 +

1

2
‖u2‖2)‖u1‖2 <

3

4
‖u2‖2‖u1‖2.

But the properties of reduction of the basis u1, u2 imply that detL >
3
4‖u2‖2‖u1‖2.
Let us denote by A3 the norm of the projection of em on the orthogonal
of L. We dispose of the chain of inequality ‖em‖2 6 ‖u1‖2 = A1 6 4

3A2

since em is a minimal vector and (u1, u2) is a reduced base. Besides,
comparing the determinants of the lattices L and Zem+Zu1, there arises
A1A3 > A1A2. Thus ‖em‖2 6 4

3A3. As a result, in this second case,

γ
3,

(Λ) =
A1A2‖em‖
A1A2A3

6
4

3

which is a lowerer bound than in the first case.
Mutatis mutandis, if Λ is a dimension 4 lattice, two cases are to be distin-

guished, whether there exists or not a dimension 3 sublattice L of minimal
determinant which contains a minimal vector. In the first case, a HKZ reduced
basis can be exhibited wherein the constant can be expressed as

γ
4,

(Λ) =
A2

1A2A3

A1A2A3A4
=
A1

A4

and is bounded from above by 2 according to the work of Korkine and Zolotareff.
This upper bound can only be reached when Λ = D4.
In the second case, a basis of Λ can be built by appending a minimal vector to
a reduced basis of a minimal dimension 3 sublattice L. It can be shown that
γ

4,
(Λ) 6 3

2 in that case.
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Remark 5.2. — It results from these determinations that γ
3,

(Q) et γ
4,

(Q)

are exactly equal to γ′3(Q) and γ′4(Q) respectively (equality case in the propo-
sition 4.5).
In dimension 5, the inequality becomes strict. According to [3], let us call γ′′5
the upper bound to the quantity A1

A5
which appears in the HKZ reduction of

a form with more than five variables. The value of γ′′5 is not known but we
dispose of the bounds 32

15 6 γ′′5 < 9
4 . They enable us to prove with the same

arguments as above that γ
5,

(Q) = γ′′5 whereas the value of γ′5 is 2, according

to the computations of [16].

5.2. Upper bound through the second Minkowski theorem. — Let A be an auto-
morphism of GLn(Ak) and D a flag of the shape λ and (xi)16i6t a sequence of
vectors that spans D , then the following Hadamard like inequality is checked:

(30) HA(D) 6
t∏
`=1

HA(x`)
λ∗` .

Indeed, up to a transformation of A, it suffices to ensure that this inequality
holds when the flag D is the flag built starting with the canonical basis, that
is when x` = e` for any `. The automorphism A can be decomposed into
A = kdu where k belongs to Kn(Ak), d is a diagonal matrix, the coefficients
of which are, say, di ∈ A×k and u is an unipotent upper triangular matrix.
The action of k does not modify the values of the terms that appear on the
two sides of the inequality (30). The action of the product du on the vector
eU(λ) boils down to multiplying the height by the quantity |χλ(d)|Ak on the left
hand side ; whereas for the right hand side, H(uei) > H(ei) and H(duei) =

|di|AkH(uei) > diH(ei), which ends up the proof of (30).
According to the adelic version of the second Minkowski theorem for convex

bodies, (see [13] or [20]), for a fixed automorphism A, there exists a basis of kn

such that
n∏
`=1

HA(x`) 6
2nrD

n/2
k

V (n)r1V (2n)r2
|detA|Ak

where Dk is the discriminant of k and V (k) the volume of the unit ball of
dimension n. We can assume without loss of generality thatHA(x) 6 HA(x2) 6
· · · 6 HA(xn), which allows us to write(

t∏
`=1

H(x`)
λ∗`

)n
6

(
n∏
`=1

HA(x`)

)|λ|
and to conclude that
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Proposition 5.3. — The following inequality holds:

(31) γn,λ(k)1/2|λ| 6
2rD

1/2
k

V (n)r1/nV (2n)r2/n

where Dk is the discriminant of k and V (k) the volume of the unit ball of
dimension n.

5.3. Upper bound by changing the base field. — The following lemma can be
proven by simultaneous diagonalisation.

Lemma 5.4. — The map ψ : H ++
n → R defined by ψ = ln ◦ det is concave.

In particular, if (Aj)16j6p ∈ (H ++
n )p, then, according to Jensen inequality,

(32)

(
det

(
p∏
j=1

Aj

)) 1
p

6
det

Ä∑p
j=1Aj

ä
p

.

This enables us to exhibit the following inequality, demonstrated in [14] for
the case λ = (1).

Theorem 5.5. — If λ ` m is a partition of m, if Dk designates the discrimi-
nant of the field k, the following inequality is true

(33) γn,λ(k) 6
|Dk|m(γnd,λ(Q))d

dd
.

Remark 5.6. — We need here to give a reference to the size n of the involved
group GLn, which we do by completing the notation γn,λ, not to be confused
with the notation γnd,λ, relative to the group GLnd.

Proof. — The idea of the demonstration is to transform all the o-modules into
Z-modules. To that end, we introduce like in [14] scalars of k (u

(ι)
1 . . . , u

(ι)
d ) that

constitute a Z-basis of the ideal aι. Then we can consider the product basis B(ι)

of Lι seen as a Z-module which consists of the vectors ε(ι)
j,l = u

(1)
j el for 1 6 j 6 d

and 1 6 l 6 n − 1 and the vectors εj,n = u
(ι)
j en for 1 6 j 6 d. Hereupon, we

associate with any Hermite–Humbert form A ∈ Pn(k) the quadratic form Φ(ι)

defined on Qnd and given by the following formula where y belongs to Qnd and
Y is the vector of kn of coordinates y in the basis B(ι)

(34) Φ(ι)(y) =

r1∑
j=1

Y ′AjY + 2

r2∑
j=r1+1

Y ′AjY.
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For any t-tuple (Y1, . . . , Yt) ∈ Lι
t, the coordinates of which in Qnd are

(y1, . . . , yt) ∈
(
Qnd

)t, and such that the vector U below is non zero:

V =

Yt

...

Y1 . . . Y1

∈ Sλ] (Lι) v =

yt

...

y1 . . . y1

∈ Sλ] (Qnd)

we have the inequality

(35) (A[V ])
1
d 6

Φ(ι)[v]

d
.

In particular, passing up to the minimum on the t-tuples, the definition of
γndλ (Q) enables us to write

(36) min
V

(A[V ])
1
d 6

γndλ (Q) det(Φ(ι))
m
nd

d
.

The determinant of Φ(ι) is detailed in [14], its value is

det(Φ(ι)) = N (aι)|Dk|n detA = |Dk|ndetLιA.

Thus

min
V ∈Sλ

]
(Lι)

(A[V ]) 6
(γndλ (Q))d |Dk|m(detLιA)

m
n

dd
.

Since the ideal AZ is always integral, we have even

(37)
mLι(A)

(detLιA)
m
n

6
(γndλ (Q))d |Dk|m

dd
.

Whence we get easily the expected inequality.
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