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HYPERBOLIC GEOMETRY AND MODULI
OF REAL CUBIC SURFACES

 D ALLCOCK, J A. CARLSON
 D TOLEDO

A. – Let MR0 be the moduli space of smooth real cubic surfaces. We show that each
of its components admits a real hyperbolic structure. More precisely, one can remove some lower-
dimensional geodesic subspaces from a real hyperbolic space H4 and form the quotient by an arith-
metic group to obtain an orbifold isomorphic to a component of the moduli space. There are five com-
ponents. For each we describe the corresponding lattices in PO(4, 1). We also derive several new and
several old results on the topology of MR0 . Let MRs be the moduli space of real cubic surfaces that are
stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure
whose restriction to MR0 is that just mentioned. The corresponding lattice in PO(4, 1), for which we
find an explicit fundamental domain, is nonarithmetic.

R. – On note MR0 l’espace des modules des surfaces cubiques réelles lisses. Nous montrons
que chacune de ses composantes admet une structure hyperbolique réelle. Plus précisément, en enle-
vant de l’espace hyperbolique réel H4 certaines sous-variétés totalement géodésiques de dimension in-
férieure, puis en prenant le quotient par un groupe arithmétique, on obtient une orbifold isomorphe à
une composante de l’espace des modules. Il y a cinq composantes. Nous décrivons le réseau de PO(4, 1)

qui correspond à chacune d’entre elles. Nous démontrons également quelques résultats sur la topologie
de MR0 , dont certains sont nouveaux. On note MRs l’espace des modules des surfaces cubiques réelles
qui sont stables au sens de la théorie géométrique des invariants. Nous montrons que cet espace ad-
met une structure hyperbolique dont la restriction à MR0 est celle évoquée ci-dessus. Nous décrivons un
domaine fondamental pour le réseau correspondant de PO(4, 1), qui s’avère être non arithmétique.

1. Introduction

The purpose of this paper is to study the geometry and topology of the moduli space of
real cubic surfaces in RP 3. It is a classical fact, going back to Schläfli [31, 33] and Klein
[21], that the moduli space of smooth real cubic surfaces has five connected components.

First author partly supported by NSF grants DMS 0070930, DMS-0231585 and DMS-0600112. Second and
third authors partly supported by NSF grants DMS 9900543, DMS-0200877 and DMS-0600816. The second
author thanks the Clay Mathematics Institute for its support.
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70 D. ALLCOCK, J. A. CARLSON AND D. TOLEDO

We show in this paper that each of these components has a real hyperbolic structure that
we compute explicitly, both in arithmetic and in geometric terms. We use this geometric
structure to compute, to a large extent, the topology of each component. These structures
are not complete. We also prove a more subtle result, that the moduli space of stable
real cubic surfaces has a real hyperbolic structure, which is complete, and that restricts, on
each component of the moduli space of smooth surfaces, to the (incomplete) structures just
mentioned. The most surprising fact to us is that the resulting discrete group of isometries
of hyperbolic space is not arithmetic.

To describe our results, we use the following notation. We write C for the space of non-
zero cubic forms with complex coefficients in 4 variables, ∆ for the discriminant locus (forms
where all partial derivatives have a common zero), C0 for the space C−∆ of forms that define
a smooth hypersurface in CP 3, and C s for the space of forms that are stable in the sense of
geometric invariant theory for the action of GL(4,C) on C . It is classical that these are the
forms that define a cubic surface which is either smooth or has only nodal singularities [18,
§19].

We denote all the corresponding real objects with a superscript R. Thus CR denotes the
space of non-zero cubic forms with real coefficients, and ∆R, CR

0 and CR
s the intersection with

CR of the corresponding subspaces of C . We will also use the prefix P for the corresponding
projective objects, thus P CR ∼= RP 19 is the projective space of cubic forms with real
coefficients, and P∆R, P CR

0 , P CR
s are the images of the objects just defined. The group

GL(4,R) acts properly on CR
0 and CR

s (equivalently, PGL(4,R) acts properly on P CR
0 and

P CR
s ) and we write MR

0 and MR
s for the corresponding quotient spaces, namely the moduli

spaces of smooth and of stable real cubic surfaces.
The spaceP∆R has real codimension one inP CR, its complementP CR

0 has five connected
components, and the topology of a surface in each component is classically known [21, 33,
34]. We label the components P CR

0,j , for j = 0, 1, 2, 3, 4, choosing the indexing so that a

surface in P CR
0,j is topologically a real projective plane with 3 − j handles attached (see

table 1.1; the case of −1 many handles means the disjoint union RP 2 t S2). It follows that
the moduli space MR

0 has five connected components, MR
0,j , for j = 0, 1, 2, 3, 4. We can now

state our first theorem:

T 1.1. – For each j = 0, . . . , 4 there is a union H j of two- and three-dimensional
geodesic subspaces of the four-dimensional real hyperbolic space H4 and an isomorphism of
real analytic orbifolds

MR
0,j
∼= PΓR

j \ (H4 − H j).

Here PΓR
j is the projectivized group of integer matrices which are orthogonal with respect to

the quadratic form obtained from the diagonal form [−1, 1, 1, 1, 1] by replacing the last j of
the 1’s by 3’s.

The real hyperbolic structure on the component MR
0,0 has been studied by Yoshida [41].

The other cases are new.

The space P CR
s is connected, since it is obtained from the manifold P CR by removing a

subspace of codimension two (part of the singular set of P∆R). Thus the moduli space MR
s

is connected. We have the following uniformization theorem for this space:

4 e SÉRIE – TOME 43 – 2010 – No 1



MODULI OF REAL CUBIC SURFACES 71

T 1.2. – There are a nonarithmetic lattice PΓR ⊂ PO(4, 1) and a homeomor-
phism

MR
s
∼= PΓR \H4.

Moreover, there is a PΓR-invariant union of two- and three-dimensional geodesic subspaces H ′

of H4 so that this homeomorphism restricts to an isomorphism of real analytic orbifolds,

MR
0
∼= PΓR \ (H4 − H ′).

To our knowledge this is the first appearance of a non-arithmetic lattice in a moduli
problem for real varieties. Observe that the group PΓR uniformizes a space assembled from
arithmetic pieces much in the spirit of the construction by Gromov and Piatetskii-Shapiro of
non-arithmetic lattices in real hyperbolic space. We thus view this theorem as an appearance
“in nature” of their construction.

W0

W1

W2

W3

W4

F 1.1. Coxeter polyhedra for the reflection subgroups Wj of PΓRj . The
blackened nodes and triple bonds correspond to faces of the polyhedra that
represent singular cubic surfaces. See the text for the explanation of the edges.

We obtain much more information about the groups PΓR
j and PΓR than we have stated

here. Section 5 gives an arithmetic description of each PΓR
j and shows that they are es-

sentially Coxeter groups. (Precisely: they are Coxeter groups for j = 0, 3, 4 and contain a
Coxeter subgroup of index 2 if j = 1, 2.) We use Vinberg’s algorithm to derive their
Coxeter diagrams and consequently their fundamental domains. So we have a very explicit
geometric description of the groups PΓR

j . The results are summarized in Fig. 1.1. In these
diagrams the nodes represent facets of the polyhedron, and two facets meet at an angle of
π/2, π/3, π/4 or π/6, or are parallel (meet at infinity) or are ultraparallel, if the number of
bonds between the two corresponding nodes is respectively 0, 1, 2, 3, or a heavy or dashed
line. See Section 5 for more details.
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72 D. ALLCOCK, J. A. CARLSON AND D. TOLEDO

j Topology Real Lines Real Tritang. Monodromy on Lines
of Surface Planes

0 RP 2 # 3T 2 27 45 A5

1 RP 2 # 2T 2 15 15 S3 × S3

2 RP 2# T 2 7 5 (Z/2)3 o Z/2
3 RP 2 3 7 S4

4 RP 2 t S2 3 13 S4

T 1.1. The classical results on the components of the moduli space of real
cubic surfaces. The components are indexed by j according to our conventions. The
third item in the last column corrects an error of Segre.

j Euler Volume Fraction πorb
1 ( MR

0,j)

0 1/1920 .00685 2.03% S5

1 1/288 .04569 13.51% (S3 × S3) o Z/2
2 5/576 .11423 33.78% (D∞ ×D∞) o Z/2
3 1/96 .13708 40.54% ™ ∞
4 1/384 .03427 10.14%

T 1.2. The orbifold Euler characteristic, volume, fraction of total volume,
and orbifold fundamental groups of the moduli spaces MR0,j . See Theorem 7.1 for
the notation.

The groupPΓR is not a Coxeter group (even up to finite index) but we find that a subgroup
of index two has a fundamental domain that is a Coxeter polyhedron. We describe this
polyhedron explicitly in Section 12, thus we have a concrete geometric description of PΓR,
and we also find a representation of this group by matrices with coefficients in Z[

√
3].

Much of the classical theory of real cubic surfaces, as well as new results, are encoded
in these Coxeter diagrams. The new results are our computation of the groups πorb

1 ( MR
0,j)

(see table 1.2) and our proof that each MR
0,j has contractible universal cover. These results

appear in Section 7, where we describe the topology of the spaces MR
0,j . As an application

to the classical theory, we re-compute the monodromy representation of π1(P CR
0,j) on the

configuration of lines on a cubic surface, which was first computed by Segre in his treatise
[34]. We confirm four of his computations and correct an error in the remaining one (the
case j = 2). See the last column of table 1.1 and Section 8 for details. We also compute the
hyperbolic volume of each component in Section 9. The results are summarized in table 1.2.

Our methods are based on our previous work on the complex hyperbolic structure of
the moduli space of complex cubic surfaces [1]. We proved that this moduli space Ms is
isomorphic to the quotient PΓ \ CH4 of complex hyperbolic 4-space CH4 by the lattice

4 e SÉRIE – TOME 43 – 2010 – No 1



MODULI OF REAL CUBIC SURFACES 73

PΓ = PU(4, 1, E) in PU(4, 1), where E is the ring of integers in Q(
√
−3). We also

showed that there is an infinite hyperplane arrangement H in CH4 which isPΓ-invariant and
corresponds to the discriminant. Thus there is also an identification of the moduli space M0

of smooth cubic surfaces with the quotient PΓ \ (CH4 − H ). The natural map MR
0 → M0

(which is finite to one but not injective) allows us to give a real hyperbolic structure on MR
0

and thus prove Theorem 1.1. The essence of the proof appears in Section 3, with refinements
in Sections 4–6. Theorem 1.2 is considerably more subtle, and does not follow simply from
the corresponding map MR

s → Ms. Its proof occupies Sections 11–13.

The subject of real cubic surfaces has a long and fascinating history. It was Schläfli who
first discovered that there are five distinct types of real smooth cubic surfaces, distinguished
by the numbers of real lines and real tritangent planes; see table 1.1. He summarized his
results in his 1858 paper [31]. In a later paper [33], followed by corrections after correspon-
dence with Klein, Schläfli also determined the topology (more precisely, the “connectivity”)
of a surface in each of his five types. In particular he showed that the topology is constant
in each type. It is clear from these two later papers that he had a mental picture of the adja-
cency relationship of the components and how the topology of a smooth surface changes by
“surgery” in going from one class to a neighboring one by crossing the discriminant.

Even though it is not closely related to the present discussion, we should also mention
Schläfli’s monumental paper [32] where he classifies all possible real cubic surfaces with all
their possible singularities. One particular fact is that a cubic surface can have at most four
nodes, and that there is a real cubic surface with four real nodes.

In 1873 Klein [21] gave a very clear picture of the space of smooth real cubic surfaces, of
how the discriminant separates it into components, and of the topology of a surface in each
of Schläfli’s classes. He obtained all cubic surfaces by deforming the four-real-nodal cubic
surface, and in this way he could see the topology of each nodal or smooth real cubic surface.
He also proved that the space of smooth real cubic surfaces has five connected components
and that Schläfli’s classes coincide with the components. The proof required the knowledge
of the space of nodal cubic surfaces, and also some information on cuspidal ones. Klein was
not satisfied with the arguments in his original 1873 paper [21], and made corrections and
substantial amplifications in the version published in his collected works in 1922.

A proof, by Klein’s method, that P CR
0 has five connected components is given in §24 of

Segre’s book [34]. Segre also determines in §64–68 the topology of a surface in each compo-
nent by studying how the surface is divided into cells by its real lines. This book also contains
a wealth of information about the real cubic surfaces, including the monodromy representa-
tions mentioned above, and much detailed information on the various configurations of lines.

Since the classification of real cubic surfaces is a special case of the classification of real
cubic hypersurfaces, we also review the history of the latter. The earliest work is Newton’s
classification of real cubic curves [28, 29]. But in dimensions higher than two the classifi-
cation results are very recent. We have Krasnov’s classification of real cubic threefolds [22],
which is based on Klein’s method of determining the discriminant and then deforming away
to see the components. Finashin and Kharlamov have two papers on the classification of
real cubic fourfolds. The first one [12] is based partly on complex period maps (to study the
discriminant) and partly on Klein’s method. The second [13] is based on the surjectivity of
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74 D. ALLCOCK, J. A. CARLSON AND D. TOLEDO

the period map for complex cubic fourfolds recently proved by Laza and Looijenga [23, 24].
We are not aware of any classification of real cubic hypersurfaces beyond dimension four.

Our approach to MR
0 , namely studying a complex period map and its interaction with anti-

holomorphic involutions, has been used before, for instance, by Kharlamov in the study of
quartic surfaces [19], by Nikulin for all the families of K3 surfaces [30] and by Gross and
Harris for curves and abelian varieties [16]. In particular, Nikulin parametrizes the different
connected components of real K3 surfaces by quotients of products of real hyperbolic spaces
by discrete groups generated by reflections. Vinberg’s algorithm has been used by Kharlamov
[20] and more recently by Finashin and Kharlamov [12] to study the topology of some real
moduli spaces.

Many authors, in addition to the ones already cited, have studied moduli of real algebraic
varieties in terms of Coxeter diagrams or in terms of the action of complex conjugation on
homology. We would like to mention the work of Degtyarev, Itenberg and Kharlamov on
Enriques surfaces [10] and of Moriceau on nodal quartic surfaces [27]. There is considerable
literature on moduli of n-tuples in RP 1; see for example [36], [40], [5] and the papers they
cite. Chu’s paper [8] gives a real hyperbolic cone manifold structure to the moduli space of
stable real octuples in P 1.

We have two expository articles [3, 4] that develop the ideas of this paper less formally,
and in the context of related but simpler moduli problems, for which the moduli space has
dimension ≤ 3. The lower dimension means that all the fundamental domains can be
visualized directly. The results of this paper were announced in [2].

We would like to thank János Kollár for helpful discussions at the early stages of this work.
And we would like to thank the referee for numerous constructive comments that have greatly
improved our exposition.

2. Moduli of complex cubic surfaces

We record here the key constructions and results of our description [1] of the moduli
space of smooth complex cubic surfaces as a quotient of an open dense subset of complex
hyperbolic 4-space CH4. Everything we need from that paper appears here. Only the results
through Theorem 2.4 are required for Section 3 (moduli of smooth real surfaces). The
last part of this section is needed for Sections 4 and 8 (relations with classical work). For
background on singular complex cubic surfaces, see Section 10.

2.1. Notation

The key object is the moduli space M0 of smooth cubic surfaces in CP 3, which we now
define. As in [1, (2.1)], and in the introduction, let C be the space of all nonzero cubic forms
in 4 complex variables, ∆ the discriminant locus, and C0 = C −∆ the set of forms defining
smooth cubic surfaces. We take g ∈ GL(4,C) to act in the usual way on the left on C4, and
on the left on C by

(2.1) (g.F )(X) = F (g−1X)

for X ∈ C4. This is as in [1, (2.17)]. The action on C is not faithful: the subgroup acting
trivially is D = {I, ωI, ω̄I} where ω = e2πi/3 is a primitive cube root of unity fixed
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MODULI OF REAL CUBIC SURFACES 75

throughout the paper. We write G for the group GL(4,C)/D acting effectively, and define
M0 as G \ C0. As discussed in [1, (2.18) and (3.1)], G acts properly on C0, so the moduli
space M0 is a complex-analytic orbifold in a natural way.

2.2. Framed cubic surfaces

The relation between M0 and CH4 depends on a (multi-valued) period map whose
construction involves cubic threefolds. Briefly, we first construct the space F 0 of “framed
smooth cubic forms”, a certain covering space of C0, and then we define a (single-valued)
period map g : F 0 → CH4. This map is equivariant with respect to the deck group of the
cover. Taking the quotient by this action gives a period map from C0 to a quotient of CH4,
and this map factors through M0. It takes some work to define F 0, so we begin with that.

If F ∈ C then we write S for the surface it defines in CP 3 and T for the threefold in CP 4

defined by

(2.2) Y 3 − F (X0, . . . , X3) = 0.

Whenever we have a form F in mind, we implicitly define S and T in this way. T is the
3-fold cyclic covering of CP 3 with ramification along S. We call it the cyclic cubic threefold
associated to F . We define σ ∈ GL(5,C) by

(2.3) σ(X0, . . . , X3, Y ) = (X0, . . . , X3, ωY ).

It generates the deck group of T over CP 3. All the notation of this paragraph is from
[1, (2.1)].

Now suppose F ∈ C0. Then it is easy to see that T is smooth. In [1, (2.2)] we show that
H3(T,Z) ∼= Z10 and that σ fixes no element of this cohomology group (except 0). Because
there are no σ-invariant elements, we may regard H3(T,Z) as a module over the Eisenstein
integers E := Z[ω], with ω acting as (σ∗)−1. This gives a free E-module of rank 5, which we
call Λ(T ). It is a key ingredient in the rest of the construction. (In [1, (2.2)] we tookω to act as
σ∗, but unfortunately this made the period map antiholomorphic rather than holomorphic,
as discussed in the note added in proof.)

Combining the action of σ with the natural symplectic form Ω on H3(T,Z) gives an
E-valued Hermitian form on Λ(T ), defined by

(2.4) h(x, y) = 1
2

[
Ω(θx, y) + θΩ(x, y)

]
.

Here and throughout the paper, θ represents the Eisenstein integer ω − ω̄ =
√
−3; in

particular, the first θ in (2.4) is the action of θ on Λ(T ), namely (σ∗)−1− σ∗. This definition
of h is from [1, (2.3)], except that the sign is changed because of the change of E-module
structures. The fact that h is E-valued, E-linear in its first coordinate and E-antilinear in its
second is part of [1, Lemma 4.1]. Finally, in [1, (2.7)] we show that Λ(T ) is isometric to the
lattice Λ := E4,1, meaning the free module E5 equipped with the Hermitian form

(2.5) h(x, y) = −x0ȳ0 + x1ȳ1 + · · ·+ x4ȳ4.

Even though Λ(T ) is isometric to Λ, there is no preferred isometry, so we must treat them
all equally. So we define a framing of F ∈ C0 as a projective equivalence class [i] of E-linear
isometries i : Λ(T )→ Λ; thus [i] = [i′] just if i and i′ differ by multiplication by a unit of E.
A framed smooth cubic form is a pair (F, [i]) with F ∈ C0 and [i] a framing of it, and F 0
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76 D. ALLCOCK, J. A. CARLSON AND D. TOLEDO

denotes the family of all framed smooth cubic forms. Usually we blur the distinction between
i and [i]; the main reason for introducing the equivalence relation is to make the action of G
on F 0 well-defined (see below). In [1, (3.9)] we defined a natural complex manifold structure
on F 0, for which the obvious projection F 0 → C0 is a holomorphic covering map, and we
proved the following.

T 2.1 ([1, (3.9)]). – F 0 is connected.

2.3. Group actions on the space of framed surfaces

The deck group for F 0 → C0 is obviously PAut(Λ). We will write Γ for Aut Λ and PΓ for
PAut(Λ). The meaning of PΓ is the same as in [1], but the meaning of Γ is slightly different.
There, Γ was the linear monodromy group, defined precisely in [1, (2.11)], and it was proved
in [1, Theorem 2.14] that Aut Λ = Γ× {±I}, so that PAut Λ = PΓ. Since the precise linear
monodromy group will not be needed here, it will be convenient to use the abbreviation Γ for
Aut Λ.

As in [1, (3.9)] we write the action of PΓ on F 0 explicitly by

(2.6) γ.
(
F, [i]

)
=
(
F, [γ ◦ i]

)
,

and define an action of G on F 0 as follows. Any h ∈ GL(4,C) acts on C5 by

(2.7) h(X0, . . . , X3, Y ) = (h(X0, . . . , X3), Y ).

If (F, [i]) ∈ F 0 then h carries the points of the threefold TF defined by (2.2) to those of
the one ThF defined by the same formula with hF replacing F . So h induces an isometry
h∗ : Λ(ThF )→ Λ(TF ). Therefore i ◦ h∗ is an isometry Λ(ThF )→ Λ, so

(
hF, [i ◦ h∗]

)
∈ F 0.

We may therefore define an action of GL(4,C) on F 0 by

(2.8) h.
(
F, [i]

)
:=
(
h.F, [i ◦ h∗]

)
=
(
F ◦ h−1, [i ◦ h∗]

)
.

This action factors through G because ωI ∈ GL(4,C) fixes every F and acts on CP 4 in the
same way as a power of σ. That is, ωI sends every Λ(T ) to itself by a scalar, so it fixes every
framing.

As in [1, (2.18)] we define the moduli space of framed cubic surfaces Mf
0 as G \ F 0. It is

an analytic space because G acts properly on F 0 (since it does on C0). But more is true:

T 2.2 ([1, Lemma 3.14]). – The action of G on F 0 is free, so Mf
0 is a complex

manifold.

2.4. The period map

Having described F 0, we now describe the period map F 0 → CH4, following [1, (3.11)].
Using the Griffiths residue calculus, one can work out the Hodge numbers of T , which turn
out to be h3,0 = h0,3 = 0, h2,1 = h1,2 = 5. This calculation [1, Lemma 2.6] also gives the
refinement of the Hodge decomposition by the eigenspace decomposition

H3(T,C) = H3
σ=ω(T,C)⊕H3

σ=ω̄(T,C)

under σ, namely h2,1
ω̄ = h1,2

ω = 1, h1,2
ω̄ = h2,1

ω = 4.
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Given a framing [i], we may obtain a point of CH4 as follows. Define i∗ : H3
ω̄(T,C) →

C4,1 as the composition

(2.9) H3
ω̄(T,C) ∼= H3(T,R) = Λ(T )⊗ E C−→

i⊗1
Λ⊗ E C = C4,1.

Here the leftmost isomorphism is the eigenspace projection H3(T,R) → H3
ω̄(T,C), which

is an isomorphism of complex vector spaces. This statement has meaning because we have
definedω to act onH3(T,Z) as (σ∗)−1. The map is C-linear because the actions of ω̄ ∈ C and
σ∗ agree on the domain (by the definition of the ω-action as (σ∗)−1) and on the target (since
it is the ω̄-eigenspace of σ∗). Since the eigenspace projection is obviously σ-equivariant, it is
also ω̄-equivariant, i.e., C-linear.

Our model for complex hyperbolic space CH4 is the set of negative lines in C4,1 := Λ⊗ EC.
It follows from the Riemann bilinear relations that i∗

(
H2,1
ω̄ (T,C)

)
∈ P (C4,1) is a negative-

definite line, i.e., a point of CH4. See [1, Lemmas 2.5–2.6], and note that the map called Z
there is the eigenspace projection. The period map g : F 0 → CH4 is then defined by

(2.10) g(F, [i]) = i∗
(
H2,1
ω̄ (T,C)

)
∈ CH4.

It is holomorphic since the Hodge filtration varies holomorphically [1, (2.16)].

The period map F 0 → CH4 factors through Mf
0 because CH4 is a complex ball and

bounded holomorphic functions on G are constant. So we may also regard g as a map

(2.11) g : Mf
0 = G \ F 0 → CH4.

This is PΓ-equivariant, so it descends to another map

(2.12) g : M0 = G \ C0 = (G× PΓ) \ F 0 → PΓ \ Mf
0 → PΓ \ CH4,

also called “the period map”.

2.5. The main theorem of [1] in the smooth case

It turns out that the period map F 0 → CH4 is not quite surjective. To describe the image,
let H ⊆ CH4 be the union of the orthogonal complements of the norm 1 vectors in Λ. It
turns out that points of H represent singular cubic surfaces; see Section 10. We will need
the following combinatorial result about H , as well as the smooth case of the main theorem
of [1].

L 2.3 ([1, (7.29)]). – Any two components of H that meet are orthogonal along their
intersection.

T 2.4 ([1, Theorem 2.20]). – The period map g sends Mf
0 = G\ F 0 isomorphically

to CH4 − H . In particular, g has everywhere rank 4 on Mf
0 . Moreover, the induced map

M0 → PΓ \ (CH4 − H ) is an isomorphism of complex analytic orbifolds.
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2.6. Standard model for H2(S); vector spaces over F3

This material may be skipped until needed in Sections 4 and 8. We write L for the lattice
Z1,6, whose bilinear form is

(2.13) x · y = x0y0 − x1y1 − · · · − x6y6,

and write η for (3,−1, . . . ,−1) ∈ L. It is standard that L(S) := H2(S; Z) is isometric
to L by an isometry identifying the hyperplane class η(S) with η. (See [25, Thm 23.8]; our
expression for η corrects a sign error in [1, (3.2)].) Also, the isometry group of (L, η) is the
Weyl group W (E6), generated by the reflections in the norm −2 vectors of L0 := η⊥ (see
[25, Theorem 23.9]). We define L0(S) as the corresponding sublattice of L(S), namely the
primitive cohomology η(S)⊥ ⊆ L(S). Our notation L, η, L(S), η(S) is from [1, (3.2)] and
L0, L0(S) is from [1, (4.8)].

In [1, (4.10)] we found a special relationship between Λ(T ) and L(S) that is needed in
Sections 4 and 8. There is no natural map between them, in either direction. But there
is a natural isomorphism between certain F3-vector spaces associated to them. In our
explanation we will identify H∗ and H∗ by Poincaré duality.

Suppose we have a primitive 2-cycle c on S. Since S ⊂ T and T has no primitive
cohomology, there is a 3-chain d in T bounding it. The chain σ∗(d) − σ−1

∗ (d) is a 3-cycle
on T , whose reduction modulo θ depends only on c and whose homology class modulo θ
depends only on the homology class of c. So we have a natural map L0(S)→ Λ(T )/θΛ(T ).
It turns out that the kernel is 3L′0(S), where the prime denotes the dual lattice. The result is
a natural isomorphism from V (S) := L0(S)/3L′0(S) to V (T ) := Λ(T )/θΛ(T ), both five-
dimensional vector spaces over F3. We will write V for Λ/θΛ.

Also, reducing inner products in L′0(S) modulo 3 gives a symmetric bilinear form q on
V (S), and similarly, reducing inner products in Λ(T ) modulo θ gives one on V (T ). We have
no special symbol for the latter because it is essentially the same as q:

L 2.5 ([1, (4.10)]). – The map V (S)→ V (T ) just defined is an isometry.

A consequence is that the monodromy action of π1( C0, F ) on V (S) is the same as on
V (T ). Since PO(V ) ∼= W (E6), the classical monodromy map

π1( C0, F )→ Aut
(
L(S), η(S)

) ∼= W (E6)

can be recovered from our monodromy representation π1( C0, F )→ PΓ→ PO
(
V (T )

)
.

3. Moduli of smooth real cubic surfaces

The purpose of this section is to prove those results on moduli of smooth real cubic
surfaces which follow more or less automatically from the general results on moduli of
complex cubic surfaces that we proved in [1] and summarized in Section 2.
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3.1. Anti-involutions and real structures

We write κ for the standard complex conjugation map on C4, and also for the induced
map on C given by

(3.1) (κ.F )(x) = F (κ−1(x)) = F (κx).

In coordinates this amounts to replacing the coefficients of F by their complex conjugates.
This action of κ on functions carries holomorphic functions to holomorphic functions
(rather than anti-holomorphic ones). Similarly, if α is an anti-holomorphic map of a com-
plex variety V1 to another V2, then α∗ : H∗(V2; C) → H∗(V1; C) is defined as the usual
pullback under V1 → V2 followed by complex conjugation in H∗(V1; C). If V1 and V2 are
compact Kähler manifolds, then α∗ is an antilinear map that preserves the Hodge decompo-
sition. Many different complex conjugation maps appear in this paper, so we call a self-map
of a complex manifold (resp. complex vector space or E-module) an anti-involution if it is
anti-holomorphic (resp. anti-linear) and has order 2. We also use the term real structure for
an anti-involution. By the real locus of a real structure we mean the fixed point set of the
corresponding anti-involution.

3.2. Notation

We write CR, ∆R and CR
0 for the subsets of the corresponding spaces of § 2.1 whose

members have real coefficients. Note that it is possible for the zero locus in RP 3 of F ∈ ∆R

to be a smooth manifold, for example it might have two complex-conjugate singularities. We
writeGR for the group GL(4,R), which is isomorphic to the group of real points ofG, and we
write MR

0 for the space GR \ CR
0 . This is a real-analytic orbifold in the sense that it is locally

the quotient of a real analytic manifold by a real analytic action of a finite group. There is
a natural map MR

0 → M0 which is finite-to-one and generically injective, but not injective
(since a cubic surface may have several inequivalent real structures). So MR

0 is not quite the
same as the real locus of M0.

3.3. Framed smooth real cubic surfaces; anti-involutions of Λ

We write F R
0 for the preimage of CR

0 in the space F 0 of §2.2. This is not the real locus
of any real structure on F 0, but rather the union of the real loci of many different real
structures. We consider these many different real loci simultaneously because no one of them
is distinguished. They are all lifts of κ : C0 → C0. To develop this idea, let A denote the set
of anti-involutions of Λ and let P A denote the set of their projective equivalence classes. If
(F, [i]) ∈ F R

0 then κ acts on Λ(T ) as an anti-involution, so χ = i◦κ∗ ◦ i−1 lies in A. Because
of the ambiguity in the choice of representative i for [i], χ is not determined by [i]; however,
its class [χ] in P A is well-defined. Clearly [χ] does not change if (F, [i]) varies in a connected
component of F R

0 . Thus we get a map π0( F R
0 )→ P A.

The “many different real loci” we referred to are the following subspaces F χ
0 of F 0, one

for each [χ] ∈ P A:

(3.2) F χ
0 =

{
(F, [i]) ∈ F R

0 : [i ◦ κ∗ ◦ i−1] = [χ]
}
.

Here and in many other places we omit the brackets of [χ] to simplify the notation. The
various F χ

0 cover F R
0 , because any (F, [i]) ∈ F R

0 lies in F χ
0 with χ = i◦κ∗ ◦i−1. We will see

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



80 D. ALLCOCK, J. A. CARLSON AND D. TOLEDO

that each F χ
0 is nonempty. One can check that the lift of κ to F 0 that fixes (F, [i]) has fixed-

point set equal to F χ0 . In fact we give a formula for the action of χ on F 0 in Equation (3.4)
below.

Similarly, if χ ∈ P A then we define H4
χ as its fixed-point set in CH4 ⊆ P (Λ ⊗ E C). The

notation reflects the fact that H4
χ is a copy of real hyperbolic 4-space. Just as for F 0, there

is no natural choice of lift CH4 → CH4 of the action of κ on M0
∼= PΓ \ CH4. So we

consider all the χ ∈ P A simultaneously, and the various H4
χ’s are the real loci of the various

real structures χ on CH4.

3.4. The real period map gR

We need the following lemma in order to define the real period map.

L 3.1. – In the notation of §3.3, g
(
F χ

0

)
⊂ H4

χ.

Proof. – The key is that κ∗ is an antilinear map of H3(T ; C) which preserves the Hodge
decomposition and each eigenspace of σ. Therefore it preserves the inclusion i∗

(
H2,1
ω̄ (T )

)
→ Λ.

The lemma is a formal consequence of this and the relation χ = i ◦ κ∗ ◦ i−1.

We define the real period map gR : F R
0 → CH4 × P A by

(3.3) gR(F, [i]) =
(
g(F, [i]) , [i ◦ κ∗ ◦ i−1]

)
.

The previous lemma asserts that g(F, [i]) ∈ H4
χ, so gR(F, [i]) is a point of CH4 together with

an anti-involution fixing it. Therefore gR can be regarded as a map F R
0 →

∐
χ∈P A H

4
χ. The

next lemma shows that gR descends to a map GR \ F R
0 →

∐
χ∈P A H

4
χ.

L 3.2. – The real period map gR : F R
0 →

∐
χ∈P A H

4
χ is constant on GR-orbits.

Proof. – We must show for (F, [i]) ∈ F R
0 and h ∈ GR that gR(h.(F, [i])) = gR(F, [i]).

We have

gR(h.(F, [i])) = gR(h.F, [i ◦ h∗])
=
(
g
(
h.F, [i ◦ h∗]

)
,
[
i ◦ h∗ ◦ κ∗ ◦ (h∗)−1 ◦ i−1

])
=
(
g
(
h.(F, [i])

)
, [i ◦ κ∗ ◦ i−1]

)
=
(
g(F, [i]), [i ◦ κ∗ ◦ i−1])

= gR(F, [i]).

Here the first line uses the Definition (2.8) ofG’s action on F 0, the second the Definition (3.3)
of gR, the third the fact that h and κ commute, and the fourth the fact that the complex period
map g is G-invariant.
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3.5. The main theorem for smooth real surfaces

We know that gR cannot map F R
0 onto all of

∐
χ∈P A H

4
χ, because g( F 0) misses the

hyperplane arrangement H . Therefore we define K0 =
∐
χ∈P A

(
H4
χ − H

)
. Now we can

state the main theorem of this section.

T 3.3. – The real period map gR descends to a PΓ-equivariant real-analytic
diffeomorphism gR : GR \ F R

0 → K0 =
∐
χ∈P A

(
H4
χ− H

)
. Thus F R

0 is a principalGR-bundle
over K0. Taking the quotient by PΓ yields a real-analytic orbifold isomorphism

gR : MR
0 = (PΓ×GR) \ F R

0 → PΓ \K0 .

Equivalently, we have an orbifold isomorphism

MR
0
∼=
∐
χ

PΓR
χ \ (Hχ − H ),

where χ now ranges over a set of representatives for the set C A of PΓ-conjugacy classes of
elements of P A, and PΓR

χ is the PΓ-stabilizer of H4
χ.

To prove the theorem we extend some of the constructions of Section 2 to include anti-
holomorphic transformations. These notions will not be needed later in the paper. First, let
GL(4,C)′ be the group of all linear and antilinear automorphisms of C4. We regard it as also
acting on C5, with an element h acting by (2.7) if h is linear and by

h(X0, . . . , X3, Y ) = (h(X0, . . . , X3), Ȳ )

if h is antilinear. If h is linear then it acts on C as in (2.1), and if h is antilinear then we define

(h.F )(X0, . . . , X3) = F (h−1(X0, . . . , X3)).

This is consistent with our Definition (3.1) of the action of κ.
We let F ′0 be the space of all pairs (F, [i]) where F ∈ C0, i : Λ(T ) → Λ is either

a linear or antilinear isometry, and [i] is its projective equivalence class. F ′0 is a disjoint
union of two copies of F 0. Since F 0 is connected (Theorem 2.1), F ′0 has 2 components.
Formula (2.8) now defines an action of GL(4,C)′ on F ′0. We also let Γ′ be the group of all
linear and antilinear isometries of Λ, and observe that (2.6) defines an action of it on F ′0.
The antilinear elements in each group exchange the two components of F ′0. The subgroup
D = {I, ωI, ω2I} of GL(4,C)′ acts trivially, inducing an action of the quotient group, which
we callG′. The scalars in Γ′ also act trivially, inducing an action of the quotient group, which
we call PΓ′. Each of G′ and PΓ′ acts freely on F ′0, because G and PΓ act freely on F 0

(Theorem 2.2).
The following two lemmas are generalities about group actions that we will need in the

proof of Theorem 3.3. We omit the proof of the first one.

L 3.4. – Let Y be a set and suppose L and M are groups with commuting free
actions on it. Suppose y ∈ Y has images m ∈ L \ Y and l ∈M \ Y . For any χ ∈ L preserving
l, there exists a unique χ̂ ∈M such that (χχ̂).y = y. Furthermore, the map χ 7→ χ̂ defines an
isomorphism from the stabilizer Ll of l to the stabilizer Mm of m.

L 3.5. – If a group G acts freely on a set X, φ is a transformation of X normalizing
G, and Z is the centralizer of φ in G, then the natural map Z \Xφ → G \X is injective.
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Proof. – If h ∈ G carries x ∈ Xφ to y ∈ Xφ then so does φ−1hφ, so φ−1hφ = h by
freeness, so h ∈ Z.

Proof of Theorem 3.3. – First observe that gR : GR\ F R
0 → K0 is a local diffeomorphism.

This follows immediately from the fact that the rank of gR is the same as that of g, which is
4 everywhere in G \ F 0 by Theorem 2.4.

To prove surjectivity, suppose χ ∈ P A and x ∈ H4
χ − H . We must exhibit a point of

F R
0 mapping to (x, [χ]) under gR. First, by the surjectivity of the complex period map, there

exists (F, [i]) ∈ F 0 with g(F, [i]) = x. Now we apply Lemma 3.4 with Y = F ′0, y = (F, [i]),
L = PΓ′ and M = G′. Our choice of y gives

l = x ∈ CH4− H = G′ \ F ′0 = M \ Y.
By hypothesis, χ is an anti-involution in PΓ′ fixing x. By Lemma 3.4 there exists χ̂ ∈ G′,
of order 2, with χχ̂ fixing (F, [i]). Since χ swaps the components of F ′0, χ̂ does too, so χ̂ is
antiholomorphic. We have constructed a complex cubic surface {F = 0} preserved by an
anti-involution χ̂ ∈ G′. Now we will verify that it (or rather a translate of it in CR

0 ) maps to
x under gR.

Since GL(4,C)′ → G′ has kernel Z/3, there is an anti-involution α ∈ GL(4,C)′ lying over
χ̂. (In fact all 3 elements lying over χ̂ are anti-involutions.) The fact that χχ̂ fixes (F, [i])

implies α.F = F and [χ ◦ i ◦ α∗] = [i], i.e., [i ◦ α∗ ◦ i−1] = χ−1 = χ. Because all real
structures on a complex vector space are equivalent, α is conjugate to κ, that is, there exists
h ∈ GL(4,C) with α = h−1κh. We claim h.(F, [i]) lies in F R

0 and maps to (x, χ) under gR.
That it lies in F R

0 is just the claim h.F ∈ CR
0 ; here is the verification:

κ.hF = hh−1κh.F = hα.F = h.αF = hF.

And finally:

gR(h.(F, [i])) = gR(h.F, [i ◦ h∗])
=
(
g(h.F ),

[
i ◦ h∗ ◦ κ∗ ◦ (h∗)−1 ◦ i−1

])
=
(
g(F ),

[
i ◦ (h−1 ◦ κ ◦ h)∗ ◦ i−1

])
=
(
x, [i ◦ α∗ ◦ i−1]

)
= (x, χ).

This finishes the proof of surjectivity.
To prove injectivity it suffices to show that gR : GR\ F χ

0 → G\ F 0 = CH4− H is injective
for each χ ∈ P A. This also follows from a general principle, best expressed by regarding F χ

0

as the fixed-point set of χ in F 0. We have formulated an action of PΓ′ on F ′0, but we can
regard it as acting on F 0 by identifying F 0 with 〈κ〉 \ F ′0. The subgroup PΓ acts by (2.6) as
before, but an anti-linear γ ∈ PΓ′ now acts by

(3.4) γ.(F, [i]) = (κ.F, [γ ◦ i ◦ κ∗]) .
It follows from these definitions that F χ

0 is the fixed-point set of χ. We apply Lemma 3.5
with X = F 0, G = G and φ = χ; then Xφ = F χ

0 and Z = GR. The conclusion is that
GR \ F χ

0 → G \ F 0 = CH4 − H is injective. This concludes the proof of the first statement
of the theorem. The remaining statements follow.
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4. The five families of real cubics

Theorem 3.3 described MR
0 in terms of the H4

χ, where [χ] varies over a complete set of
representatives ofC A, the set ofPΓ-conjugacy classes in the setP A of projective equivalence
classes of anti-involutions of Λ. In this section we find such a set of representatives. That is,
we classify the χ up to conjugacy by Γ; there are exactly 10 classes, and we give a recognition
principle which allows one to easily compute which class contains a given anti-involution.
In fact there are only five classes up to sign, so C A has 5 elements, and there are 5 orbits of
H4
χ’s underPΓ. Unlike in the rest of the paper, in this section we will be careful to distinguish

between an anti-involution χ of Λ and its projective equivalence class [χ].

4.1. Classification of anti-involutions of Λ

Using the coordinate system (2.5), we define the following five anti-involutions of Λ:

χ0 : (x0, x1, x2, x3, x4) 7→ (x̄0, x̄1, x̄2, x̄3, x̄4)

χ1 : (x0, x1, x2, x3, x4) 7→ (x̄0, x̄1, x̄2, x̄3,−x̄4)

χ2 : (x0, x1, x2, x3, x4) 7→ (x̄0, x̄1, x̄2,−x̄3,−x̄4)

χ3 : (x0, x1, x2, x3, x4) 7→ (x̄0, x̄1,−x̄2,−x̄3,−x̄4)

χ4 : (x0, x1, x2, x3, x4) 7→ (x̄0,−x̄1,−x̄2,−x̄3,−x̄4) .

(4.1)

The subscript indicates how many of the coordinates are replaced by the negatives of their
complex conjugates rather than just their conjugates.

In order to distinguish their conjugacy classes we will use the 5-dimensional vector space
V = Λ/θΛ over the field F3 = E/θ E, and its quadratic form q, the reduction of the
Hermitian form (2.5). These were defined in §2.6. The dimensions of χ’s eigenspaces and
the determinants of q’s restrictions to them are conjugacy invariants of χ (the determinants
lie in F∗3/(F∗3)2 = {±1}). We use the abbreviation negated space for the (−1)-eigenspace of
χ.

T 4.1. – An anti-involution of Λ is Γ-conjugate to exactly one of the ±χj . Two
anti-involutions of Λ are conjugate if and only if the restrictions of q to the two fixed spaces in
V (or to the two negated spaces) have the same dimension and determinant.

C. – The obvious analogue of the theorem fails for some other En,1, for example
n = 3. See Remark 6 at the end of [4].

Proof. – It is classical that P CR
0 has 5 connected components [34, §24]. Because −1 lies

in the identity component of GR, it follows that CR
0 itself has 5 components, and thence that

MR
0 has at most 5 components. The surjectivity part of Theorem 3.3 implies that for every

χ ∈ A there exists F ∈ CR
0 such that

(
Λ(T ), [κ∗]

) ∼= (Λ, [χ]). Therefore the number of
components of MR

0 is at least the cardinality of C A, so |C A| ≤ 5. Also, the elements of [χ]

are χ·(−ω)i, i = 0, . . . , 5, and these fall into at most two conjugacy classes (proof: conjugate
by scalars). Therefore there are at most 10 classes of anti-involutions of Λ.

Now we exhibit 10 distinct classes. It is easy to check that χj has negated (resp. fixed)
space of dimension j (resp. 5 − j) and the restriction of q to it has determinant +1 (resp.
−1). For −χj , the negated and fixed spaces are reversed. Therefore ±χ0, . . . ,±χ4 all lie in

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



84 D. ALLCOCK, J. A. CARLSON AND D. TOLEDO

distinct conjugacy classes. Since we have exhibited 10 classes, they must be a complete set
of representatives, justifying the first part of the theorem. In distinguishing them, we also
proved the second part.

LetH4
j be the fixed-point set of χj in CH4, and let PΓR

j be the stabilizer ofH4
j in PΓ. We

have the following improvement on Theorem 3.3.

C 4.2. – The set C A has cardinality 5 and is represented by χ0 . . . , χ4 of (4.1).
We have an isomorphism MR

0 =
∐4
j=0 PΓR

j \ (H4
j − H ) of real analytic orbifolds. For each j,

PΓR
j \ (H4

j − H ) is connected.

4.2. The classical labeling of the five components

The classical labeling of the 5 types of real cubic surfaces was in terms of the topology of
the real locus of S, or the action of complex conjugation κ on the 27 lines of S, or the action
of κ on H2(S). We will develop enough of this to establish the correspondence between the
5 types of surfaces and our PΓR

j \ (H4
j − H ).

Recall from §2.6 the lattice L(S) = H2(S; Z), the hyperplane class η(S), the primitive
cohomology L0(S), and their “standard models” L, η, L0. As stated there, the isometries of
L(S) preserving η(S) form a copy of the Weyl groupW (E6) = Aut(L, η), which is generated
by the reflections in the roots (norm −2 vectors) of L0.

Since κ is antiholomorphic, it negates η(S) and hence acts on L(S) by the product of −I
and some element g of Aut(L(S), η(S)) of order 1 or 2. Therefore, to classify the possible
actions of κ onL(S) we will enumerate the involutions ofW (E6) up to conjugacy. According
to [9, p. 27] or [25, Table 1], there are exactly four conjugacy classes of involutions. Each class
may be constructed as the product of the reflections in 1 ≤ j ≤ 4 mutually orthogonal roots.
To make this explicit we choose four distinct commuting reflections R1, . . . , R4 in W (E6).

We write CR
0,0, . . . , C

R
0,4 for the set of those F ∈ CR

0 for which (L(S), η(S), κ∗) is

equivalent to (L, η,−g) for g = I, R1, R1R2, R1R2R3, R1R2R3R4. The j in CR
0,j is the

number of R’s involved. By the previous paragraph, the CR
0,j are disjoint and cover CR

0 . We

will write MR
0,j for GR \ CR

0,j .

Now we relate the κ-action on L(S) to the configuration of lines. In the terminology of
[34, §23], a line is called real if it is preserved by κ, and a non-real line is said to be of the first
(resp. second) kind if it meets (resp. does not meet) its complex conjugate. The terminology
becomes a little easier to remember if one thinks of a real line as being a line of the 0th kind.
The lines define 27 elements of L(S), which are exactly the 27 vectors of norm −1 that have
inner product 1 with η(S), [25, §23]. Two lines meet (resp. do not meet) if the corresponding
vectors have inner product 1 (resp. 0). So which lines of S are real or nonreal of the first
or second kind can be determined by studying the action of κ on L(S). The number of
lines of the various types depends only on the isometry class of (L(S), η(S), κ∗), with the
results given in the first five columns of table 4.1. This allows us to identify our CR

0,j with the
classically defined families. For example, Segre [34, §23] names the families F1, . . . , F5; his
Fj+1 corresponds to our CR

0,j .
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class of non-real of fixed fixed class of
action real 1st 2nd space space action

family on L(S) lines kind kind in V (S) in V (T ) on Λ(T )

CR
0,0 −I 27 0 0 [ ] [++++−] χ0

CR
0,1 −R1 15 0 12 [+] [+++−] χ1

CR
0,2 −R1R2 7 4 16 [++] [++−] χ2

CR
0,3 −R1R2R3 3 12 12 [+++] [+−] χ3

CR
0,4 −R1R2R3R4 3 24 0 [++++] [−] χ4

T 4.1. Action of complex conjugation on various objects associated to
F ∈ CR0,j . The 6th and 7th columns indicate diagonalized F3-quadratic forms with
±1’s on the diagonal.

4.3. Relation between our anti-involutions and the classical labeling

In Corollary 4.2 and §4.2 we give two labelings for the components of MR
0 , namely

4∐
j=0

MR
0,j = MR

0
∼=

4∐
j=0

(GR × PΓR
j ) \ F χj

0
∼=

4∐
j=0

PΓR
j \ (H4

j − H ).

Our next goal is Corollary 4.5, which shows that the labelings correspond in the obvious
way. We defined the spaces CR

0,j and MR
0,j in terms of the action of complex conjugation

κ on L(S), and we defined the spaces F χj

0 in terms of κ’s action on Λ(T ). To relate them,
we consider the action of κ on the 5-dimensional quadratic F3-vector spaces V (S), V (T )

defined in terms of L(S) and Λ(T ) in §2.6.

L 4.3. – Let F ∈ CR
0 and denote the actions of κ on V (S) and V (T ) by κ̂. Then

(V (S), κ̂) and (V (T ),−κ̂) are isomorphic as quadratic spaces equipped with isometries.

Proof. – By Lemma 2.5 there is a natural isometry V (S)→ V (T ), which we will denote
by A. If a ∈ V (S) then A(a) is defined by lifting a to some c ∈ L0(S) and then applying
the construction in §2.6. The result is the reduction modulo θ of the homology class of
σ∗(d)− σ−1

∗ (d) for some 3-chain d in T . (The asterisk in the subscript comes from our
identification of homology and cohomology in §2.6.) From this and the fact that κσ = σ−1κ

it follows that Aκ̂ = −κ̂A. Therefore A is an isometry between the pairs (V (S), κ̂) and
(V (T ),−κ̂).

L 4.4. – Suppose F ∈ CR
0,j . Then the isometry classes of the fixed spaces for κ in

V (S) and V (T ) are given by the 6th and 7th columns of table 4.1, and (Λ(T ), κ∗) is isometric
to (Λ, χj) as indicated in the last column.

Proof. – Since the conjugacy class of the action of κ on L0(S) is known, it is easy to
compute the fixed space in V (S). It is just the span of the images of the roots corresponding
toR1, . . . , Rj . This space has dimension j, and its determinant is +1 because the roots have
norm−2 ≡ 1 (mod 3). This justifies the 6th column. Lemma 4.3 shows that the fixed space
in V (T ) is isometric to the negated space in V (S), justifying the 7th column. The last claim
follows from Theorem 4.1.
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C 4.5. – We have MR
0,j
∼= PΓR

j \ (H4
j − H ) for j = 0, . . . , 4.

5. The stabilizers of the H4’s

In this section we continue to make Theorem 3.3 more explicit; we know that
MR

0 =
∐4
j=0 PΓR

j \ (H4
j − H ), and now we will describe the PΓR

j . We give two descriptions,
one arithmetic and one in the language of Coxeter groups. The arithmetic description is
easy:

T 5.1. – PΓR
j
∼= PO(Ψj), where Ψj is the quadratic form on Z5 given by

Ψ0(y0, . . . , y4) = −y2
0 + y2

1 + y2
2 + y2

3 + y2
4

Ψ1(y0, . . . , y4) = −y2
0 + y2

1 + y2
2 + y2

3 + 3y2
4

Ψ2(y0, . . . , y4) = −y2
0 + y2

1 + y2
2 + 3y2

3 + 3y2
4

Ψ3(y0, . . . , y4) = −y2
0 + y2

1 + 3y2
2 + 3y2

3 + 3y2
4

Ψ4(y0, . . . , y4) = −y2
0 + 3y2

1 + 3y2
2 + 3y2

3 + 3y2
4 .

The mnemonic is that j of the coefficients of Ψj are 3 rather than 1. To prove the theorem,
write Λj := Λχj for the Z-lattice of χj-invariant vectors in Λ, so Λj = Z5−j ⊕ θZj ⊆ E5.
The theorem now follows from this lemma:

L 5.2. – For each j, every isometry of the Z-lattice Λj is induced by an isometry
of Λ.

Proof. – One can check that the Z-lattice L := Λj ∩ θΛ can be described in terms of Λj
alone as L = 3(Λj)

′, where the prime denotes the dual lattice. Therefore every isometry of
Λj preserves the E-span of Λj and 1

θL, which in each case is exactly Λ.

5.1. Reflection groups and Coxeter diagrams

Now we describe the PΓR
j more geometrically; this is interesting in its own right, and

also necessary for when we allow our cubic surfaces to have singularities (Section 11). Our
description relies on the good fortune that the subgroup Wj generated by reflections has
index 1 or 2 in each case. The Wj are Coxeter groups, described in figures 1.1 and 5.1
using an extension of the usual conventions for Coxeter diagrams, which we now explain.
For background on Coxeter groups in this context, see [37].

Namely, the mirrors (fixed-point sets) of the reflections in Wj chop H4
j into components,

which Wj permutes freely and transitively. The closure of any one of these components is
called a Weyl chamber; we fix one and call it Cj . Then Wj is generated by the reflections
across the facets of Cj , and Cj is a fundamental domain in the strong sense that any point
of H4

j is Wj-equivalent to a unique point of Cj . We describe Wj by drawing its Coxeter
diagram: its vertices (“nodes”) correspond to the facets of Cj , which are joined by edges
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(“bonds”) that are decorated according to how facets meet each other, using the following
scheme:

(5.1)

no bond ⇐⇒ they meet orthogonally;

a single bond ⇐⇒ their interior angle is π/3;

a double bond ⇐⇒ their interior angle is π/4;

a triple bond ⇐⇒ their interior angle is π/6;

a strong bond ⇐⇒ they are parallel;

a weak bond ⇐⇒ they are ultraparallel.

Parallel walls are those that do not meet in hyperbolic space but do meet at the sphere at
infinity. Ultraparallel walls are those that do not meet even at infinity.

Note that the diagram for Wj admits a symmetry for j = 1 or 2; this represents an
isometry of Cj . We now state the main theorem of this section.

T 5.3. – PΓR
j is the semidirect product of its reflection subgroup Wj , given in

Fig. 1.1 and in more detail in Fig. 5.1, by the group of diagram automorphisms, which is Z/2 if
j = 1 or 2 and trivial otherwise.

The rest of the section is devoted to the proof. For the most part the argument is uniform
in j, so we will writeH forH4

j = H4
χj

,W forWj , χ for χj andC forCj . We will write Λχ for
Λj = Λχj . We call r ∈ Λχ a root of Λχ if it is primitive, has positive norm, and the reflection
in it,

x 7→ x− 2
x · r
r2

r,

preserves Λχ. It is easy to say what the roots are:

L 5.4. – Suppose r ∈ Λχ is primitive in Λχ and has positive norm. Then r is a root
of Λχ if and only if either r2 ∈ {1, 2} or else r2 ∈ {3, 6} and r ∈ 3(Λχ)′, where the prime
denotes the dual lattice.

R. – Norm 3 and 6 roots are really just norm 1 and 2 roots of Λ in disguise. They
are primitive in Λχ but divisible by θ in Λ, and occur when χ negates rather than preserves a
norm 1 or 2 vector of Λ.

Proof. – Because Λχ is 3-elementary (the quotient by its dual lattice is an elementary
abelian 3-group), any primitive r ∈ Λχ has 3Z ⊆ r ·Λχ. If r is also a root then r ·Λχ ⊆ 1

2r
2Z,

so r2 | 6. It is obvious that every norm 1 or 2 vector is a root, and it is easy to see that a norm
3 or 6 vector is a root if and only if it lies in 3(Λχ)′.
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r5

r3

r2

r1

r4

1,−1,−1,−1, 0

0, 0, 0, 1,−1

0, 0, 1,−1, 0

0, 1,−1, 0, 0

0, 0, 0, 0, 1

W0
r3

r6

r5

r4r7

r1

r2

0, 0, 0, 1, 0

1,−1,−1,−1, 0

1, 0, 0, 0,−θ

0, 0, 0, 0, θ3,−3, 0, 0,−θ

0, 1,−1, 0, 0

0, 0, 1,−1, 0

W1

r4

r3

r5

r6r2

r1

r7

0, 0, 0, θ, 0

0, 0, 0,−θ, θ

1, 0, 0, 0,−θ

1,−1,−1, 0, 0
0, 0, 1, 0, 0

0, 1,−1, 0, 0

3,−3, 0,−θ,−θ

W2

r5

r2
r3

r4

r7

r1

r6

1, 0, 0, 0,−θ

0, 0, 0,−θ, θ

0, 0,−θ, θ, 0

0, 0, θ, 0, 0

3,−1,−θ,−θ,−θ

0, 1, 0, 0, 0

3,−3, 0,−θ,−θ

W3

r5

r1

r2

r3

r4

r61, 0, 0, 0,−θ

0, 0, 0,−θ, θ

0, 0,−θ, θ, 0

0,−θ, θ, 0, 0

0, θ, 0, 0, 0

3,−θ,−θ,−θ,−θ

W4

F 5.1. Simple roots for the Wj .

5.2. Simple roots and Vinberg’s algorithm

Given some roots r1, . . . , rn of Λχ whose inner products are non-positive, their polyhe-
dron is defined to be a particular one of the regions bounded by the hyperplanes r⊥i , namely
the image in H of{

v ∈ Λχ ⊗ R
∣∣ v2 < 0 and v · ri ≤ 0 for i = 1, . . . , n

}
.
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A set of simple roots for W is a set of roots of Λχ whose pairwise inner products are non-
positive and whose polyhedron is a Weyl chamber C. Vinberg’s algorithm [38] seeks a set of
simple roots for W . We briefly outline how we use this algorithm.

First one chooses a vector k (the “controlling vector”) representing a point p of H. We
choose k = (1, 0, 0, 0, 0), which conveniently lies in all the Λχj . Second, one considers the
finite subgroup ofW generated by the reflections inW that fix p. These are the reflections in
the roots of Λχ that are orthogonal to k.

In each case it is easy to enumerate these roots, recognize the finite Weyl group generated
by their reflections, and extract a set of simple roots for this finite group. For exam-
ple, for j = 2 the roots are (0,±1, 0, 0, 0), (0, 0,±1, 0, 0), (0, 0, 0,±θ, 0), (0, 0, 0, 0,±θ),
(0,±1,±1, 0, 0) and (0, 0, 0,±θ,±θ), the finite Weyl group has type B2 × B2, and a set of
simple roots is (0, 1,−1, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, θ̄, θ) and (0, 0, 0, θ, 0). In each of the 5
cases we called the simple roots r1, . . . , r4, and they can be found in Fig. 5.1.

In that figure, a node indicated by (resp. , , ) represents a root of norm 1
(resp. 2, 3, 6). The mnemonic is that the norm of the root is the number of white regions in
the symbol. Nodes are joined according to (5.1).

Next, one orders the mirrors of W that miss p according to their “priority”, where the
priority is any decreasing function of the distance to p. The iterative step in Vinberg’s
algorithm is to consider all roots of a given priority p, and suppose that previous batches have
enumerated all simple roots of higher priority. Batch 0 has already been defined. We discard
those roots of priority p that have positive inner product with some simple root of a previous
batch. Those that remain are simple roots and form the current batch. If the polyhedron
P defined by our newly-enlarged set of simple roots has finite volume then the algorithm
terminates. Otherwise, we proceed to the next batch. The finite-volume condition can be
checked using a criterion of Vinberg [39, p. 22] on the simple roots. There is no guarantee
that the algorithm will terminate, but if it does then the roots obtained (the union of all the
batches) form a set of simple roots for W . The algorithm terminates in our five cases, with
simple roots given in Fig. 5.1.

Now we can finish the proof of Theorem 5.3, which describes PΓR
j as the semidirect

product of Wj by its group of diagram automorphisms. Wj is obviously a normal subgroup
of PΓR

j . It follows that PΓR
j is the semidirect product of Wj by the subgroup of PΓR

j that
carries Cj to itself. In cases j = 0, 3 and 4, Cj has no symmetry, so PΓR

j = Wj as claimed.
In the remaining cases all we have to do is check is that the nontrivial diagram automorphism
γ lies in PΓR

j . In each case, the simple roots span Λj , and γ preserves their norms and inner
products. So γ ∈ PΓR

j by Lemma 5.2.

6. The discriminant in the real moduli space

Theorem 3.3 identifies the moduli space GR \ F R
0 of smooth framed real cubics with the

incomplete hyperbolic manifoldK0, which is the disjoint union of theH4
χ− H . Here χ varies

over the set P A of projective classes of anti-involutions of Λ, as in §3.3, and H is the locus in
CH4 representing the singular cubic surfaces, defined in §2.5. For a concrete understanding
of K0 we need to understand how H meets the various H4

χ’s. Since H is the union of the
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orthogonal complements r⊥ of the norm 1 vectors r of Λ, we will study how such an r⊥ can
meet one of the H4

χ’s. We will call a component r⊥ of H a discriminant mirror.
If χ is an anti-involution of Λ, then one wayH4

χ can meet r⊥ is if χ(r) = ±r; thenH4
χ∩r⊥

is a copy of H3. But a more complicated intersection can occur; to describe it we need the
idea of aG2 root system in Λχ. As in Section 5, a root of Λχ means a norm 1 or 2 vector of Λχ,
or a norm 3 or 6 vector of Λχ that is divisible in Λ by θ. By aG2 root system in Λχ we mean a
set of six roots of norm 2 and six roots of norm 6, all lying in a two-dimensional sublattice of
Λχ. Such a set of vectors automatically forms a copy of what is commonly known as the G2

root system. The reason these root systems are important is that each G2 root system R in
Λχ determines an isometric copy of E2 in Λ, and hence two discriminant mirrors. The E2 is
just Λ∩(〈R〉 ⊗Z C). To see this, introduce coordinates on the complex span ofR, in whichR
consists of the vectors obtained by permuting the coordinates of (1,−1, 0) and±(2,−1,−1)

in the space
C2 = {(x, y, z) ∈ C3 : x+ y + z = 0} ,

with the usual metric. Since Λ contains 1
θ times the norm 6 roots, it also contains

r1 =
1

θ
(2,−1,−1) + ω(1,−1, 0) = −1

θ
(ω, ω̄, 1) and

r2 = −1

θ
(2,−1,−1) + ω̄(1,−1, 0) =

1

θ
(ω̄, ω, 1) .

(6.1)

These have norm 1 and are orthogonal, so they span a copy of E2. Observe also that χ
exchanges the ri, and that each of the discriminant mirrors r⊥i meets H4

χ in the same H2,
namely H4

χ ∩R⊥.
The following lemma asserts that these are the only ways thatH4

χ can meet H . In terms of
cubic surfaces, the first possibility parametrizes surfaces with a real node, while the second
parametrizes surfaces with a complex conjugate pair of nodes.

L 6.1. – Suppose χ is an anti-involution of Λ and M is a discriminant mirror with
M ∩H4

χ 6= ∅. Then either

(i) M ∩H4
χ is a copy of H3, namely H4

χ ∩ r⊥ for a root r of Λχ of norm 1 or 3, or
(ii) M ∩H4

χ is a copy of H2, namely H4
χ ∩R⊥ for a G2 root system R in Λχ.

Conversely, if r is a root of norm 1 or 3 in Λχ (resp. R is a G2 root system in Λχ), then
H4
χ ∩ r⊥ (resp. H4

χ ∩R⊥) is the intersection of H4
χ with some discriminant mirror.

Proof. – As a discriminant mirror, M = r⊥ for some norm 1 vector r of Λ. Since
M ∩H4

χ 6= ∅, M contains points fixed by χ, so that χ(M) meets M , which is to say that r⊥

meets χ(r)⊥. By Lemma 2.3, either r⊥ = χ(r)⊥ or r⊥χ(r). In the first case, χ preserves the
E-span of r. The anti-involutions of a rank one free E-module are easy to understand: every
one leaves invariant either a generator or θ times a generator. Therefore Λχ contains a unit
multiple of r or θr. Then conclusion (i) applies. In the second case, r1 := r and r2 := χ(r)

span a copy of E2 and Λχ contains the norm 2 rootsαr1+ᾱr2 and norm 6 rootsαθr1+ᾱθ̄r2,
where α varies over the units of E. These form aG2 root systemR in Λχ, and it is easy to see
that

M ∩H4
χ = M ∩ χ(M) ∩ H4

χ = R⊥ ∩H4
χ

is a copy of H2. Therefore conclusion (ii) applies.
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The converse is easy: if r is a root of Λχ of norm 1 or 3 then we take the discriminant
mirror to be r⊥, and if R is a G2 root system in Λχ then we take M to be either r⊥1 or r⊥2 for
r1 and r2 as in (6.1).

C 6.2. – For j = 0, . . . , 4, H4
j ∩ H is the union of the orthogonal complements

of the discriminant roots of Λj and the G2 root systems in Λj .

For our applications we need to re-state this result in terms of the Weyl chamber Cj for
Wj :

L 6.3. – If x ∈ Cj then x ∈ H if and only if either

(i) x lies in r⊥ for r a simple root of Wj of norm 1 or 3, or
(ii) x lies in r⊥ ∩ s⊥, where r and s are simple roots of Wj of norms 2 and 6, whose mirrors

meet at angle π/6.

Proof. – If 6.3 holds then x obviously lies in H . If 6.3 holds then the reflections in r and
s generate a dihedral group of order 12, and the images of r and s under this group form a
G2 root system R in Λj . Then x ∈ H by Lemma 6.1.

To prove the converse, suppose x ∈ Cj ∩ H . By Lemma 6.1, either x ∈ r⊥ for a root
r of Λj of norm 1 or 3, or else x ∈ R⊥ for a G2 root system R in Λj . We treat only the
second case because the first is similar but simpler. We choose a set {r, s} of simple roots for
R, which necessarily have norms 2 and 6 and whose mirrors necessarily meet at angle π/6.
Then r⊥ and s⊥ are two of the walls for some Weyl chamber C ′ of Wj . This uses the fact
that no two distinct mirrors of Wj can meet, yet make an angle less than π/6. (If there were
such a pair of mirrors then there would be such a pair among the simple roots of Wj .) We
apply the element of Wj carrying C ′ to Cj ; since Cj is a fundamental domain for Wj in the
strong sense, this transformation fixes x. Then the images of r and s are simple roots of Wj

and the facets of Cj they define both contain x.

We remark that all the triple bonds in Fig. 5.1 come fromG2 root systems, so the condition
on the norms of r and s in part 6.3 of the lemma may be dropped. This leads to our final
description of the moduli space of smooth real cubic surfaces:

T 6.4. – The moduli space MR
0 falls into five components MR

0,j , j = 0, . . . , 4. As
a real analytic orbifold, MR

0,j is isomorphic to an open sub-orbifold of PΓR
j \H4

j , namely the
open subset obtained by deleting the images in PΓR

j \Hj
4 of the faces of Cj corresponding to

the blackened nodes and triple bonds of Fig. 1.1.

The two kinds of walls of the Cj play such different roles that we will use the following
language. In light of the theorem, a wall corresponding to a blackened node in Fig. 1.1 will
be called a discriminant wall. The other walls will be called Eckardt walls, because the corre-
sponding real cubic surfaces are exactly those that have real Eckardt points. (Eckardt points
are not important in this paper; they just provide a convenient name for these walls. They
are points through which pass three lines of the surface. The reader interested in more back-
ground, in particular the relation between Eckardt points and existence of automorphisms
of order two, may consult [34, §§98, 100 and 101].)
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7. Topology of the moduli space of smooth surfaces

This section and the next two are applications of the theory developed so far. The
theoretical development continues in Section 10.

The description of MR
0 in Theorem 6.4 is so explicit that many facts about real cubic

surfaces and their moduli can be read off the diagrams. In this section we give presentations
of the orbifold fundamental groups πorb

1 ( MR
0,j) of the components of MR

0 and prove that the
MR

0,j have contractible (orbifold) universal covers.

T 7.1. – The orbifold fundamental groups of the components of MR
0 are:

πorb
1 ( MR

0,0) ∼= S5

πorb
1 ( MR

0,1) ∼= (S3 × S3) o Z/2

πorb
1 ( MR

0,2) ∼= (D∞ ×D∞) o Z/2

πorb
1 ( MR

0,3) ∼= πorb
1 ( MR

0,4) ∼=
∞

where the Z/2 in each semidirect product exchanges the displayed factors of the normal
subgroup.

Here Sn is the symmetric group, D∞ is the infinite dihedral group, and the last group is a
Coxeter group with the given diagram. We have labeled the leftmost bond “∞”, indicating
the absence of a relation between two generators, rather than a strong or weak bond, because
we are describing the fundamental group as an abstract group, not as a concrete reflection
group. We remark that πorb

1 ( MR
0,2) is isomorphic to the Coxeter group of the Euclidean

(2, 4, 4) triangle.

Proof of Theorem 7.1. – The general theory of Coxeter groups (see for example [17])
allows us to write down a presentation for Wj . The standard generators for Wj are the
reflections across the facets of Cj . Two of these reflections ρ and ρ′ satisfy (ρρ′)n = 1 for
n = 2 (resp. 3, 4, or 6) if the corresponding nodes are joined by no bond (resp. a single
bond, double bond, or triple bond). These relations and the relations that the generators are
involutions suffice to define Wj .

We get a presentation of πorb
1

(
Wj \ (H4

j − H )
)

from the presentation of Wj by omitting
some of the generators and relations. Since the generators of Wj correspond to the walls
of Cj , and removing H from Cj removes the discriminant walls, we leave out those gen-
erators. Since removing these walls also removes all the codimension two faces which are
their intersections with other walls, we also leave out all the relations involving the omit-
ted generators. Finally, we leave out the relations coming from triple bonds, because re-
moving H from Cj removes the codimension two faces corresponding to these bonds. For
j = 0, 4 or 5, PΓR

j = Wj and we can read off πorb
1 ( MR

0,j) from the diagram, with the re-
sults given in the statement of the theorem. For j = 1 or 2 the same computation shows
that πorb

1

(
Wj \ (H4

j − H )
)

is S3 × S3 or D∞ ×D∞. To describe πorb
1 ( MR

0,j) one must take
the semidirect product by the diagram automorphism. This action can also be read from
Fig. 1.1.
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In the proof of the following theorem, the subgroup of Wj generated by the reflections
across the Eckardt walls of Cj (the walls represented by hollow nodes in Fig. 1.1) plays a
major role. We call it WEck

j . It has index 1 or 2 in a group Tj that plays a major role in the
next section.

T 7.2. – The MR
0,j are aspherical orbifolds, in the sense that their orbifold universal

covers are contractible manifolds.

Proof. – We write Dj for the component of H4
j − H containing Cj − H , and think of

MR
0,j as

(the stabilizer Tj of Dj in PΓR
j )
∖
Dj .

Since Dj is an orbifold cover of MR
0,j , it suffices to show that Dj is aspherical. One way to

understand Dj is as the union of the translates of Cj − H under WEck
j . Alternately, WEck

j

is the stabilizer of Dj in Wj . Now we look at the Dj individually. WEck
0 is the finite group

S5, and the four Eckardt walls are the walls containing a vertex P of C0. (Vertices in Hn

of an n-dimensional Coxeter polyhedron correspond bijectively to n-node subdiagrams of
the Coxeter diagram which generate finite Coxeter groups.) Therefore D0 is the interior of
a finite-volume polyhedron centered at P , so D0 is not just aspherical but even contractible.
The same argument works for j = 1, with S3 × S3 in place of S5.

The case j = 2 is more complicated, even though WEck
2 is still finite (the Coxeter

group G2 × G2) and the Eckardt walls are still the walls meeting at a vertex P of C2. The
complication is that the fixed-point set of each G2 factor lies in H . The result is that D2

is the interior of a finite-volume polyhedron centered at P , minus its intersection with two
mutually orthogonal H2’s that meet transversely at P . Therefore D2 is homeomorphic to a
product of two punctured open disks, so it is aspherical.

Now we will treat j = 3; the case j = 4 is just the same. What is new is that WEck
3 is

infinite. However, one of the discriminant walls (the lower of the rightmost two in Fig. 1.1)
is orthogonal to all of the Eckardt walls. Therefore WEck

3 preserves the hyperplane H
containing this discriminant wall. Furthermore, WEck

3 is the Coxeter group

(7.1)

which is a nonuniform lattice in PO(3, 1), acting on H in the natural way. In particular, H
is a component of the boundary of D3, and every WEck

3 -translate of C3 has one of its facets
lying inH. Finally,H is orthogonal to the codimension two face ofC3 associated to the triple
bond in Fig. 1.1, and therefore orthogonal to all of its WEck

3 -translates. We summarize: D3

is the interior of an infinite-volume convex polyhedron inH4
3 , minus the union of a family of

H2’s, each orthogonal to the distinguished facet H. Therefore D3 is homeomorphic to the
product of an open interval with H − Z, where Z is the intersection of H with the union of
these H2’s.
H − Z can be understood in terms of WEck

3 ’s action on it. A fundamental domain
for WEck

3 is a simplex with shape described in (7.1), and the edge corresponding to the
triple bond lies in Z. Indeed, Z is the union of the WEck

3 -translates of this edge. Direct
visualization in hyperbolic 3-space shows that Z is the union of countably many disjoint
geodesics. ThereforeH3−Z has the homotopy type of countably many circles, all identified
at a point. This follows from stratified Morse theory; see Theorem 10.8 of [14].
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8. Relation with the work of B. Segre

Classical knowledge about the topology of each connected component of the space of real
smooth cubic forms was restricted to Segre’s computation [34, §§34–54] of the monodromy of
the fundamental group of each component on the configuration of lines (real and complex)
of a surface of that type. Our methods give a transparent calculation of this monodromy
groupMj over each component CR

0,j , because the fundamental groups of these components
are almost the same as the groups πorb

1 ( MR
0,j) computed in the last section. In particular we

show that four of Segre’s computations are correct and correct an error in the remaining one.

L 8.1. – For each j = 0, . . . , 4, there is an exact sequence

(8.1) 1→ Z/2→ π1( CR
0,j)→ πorb

1 ( MR
0,j)→ Z/2→ 1.

Here, the image of the middle map is the orientation-preserving subgroup of πorb
1 ( MR

0,j) and
the kernel is π1(GR).

For use in the proof and elsewhere in this section, we write Dj for a component of
H4
j − H and Tj for its stabilizer in PΓR

j . This group is generated by the subgroup WEck
j

of Wj introduced in Section 7, together with the diagram automorphism if one is present.

Proof sketch. – There are two ingredients. One is the exact homotopy sequence of the
fibration GR → Yj → Dj , where Yj ⊆ F R

0 is the gR-preimage of Dj . The other
ingredient is the interaction of this sequence with the Tj-action on Yj and Dj . We omit the
details. We remark that it would be more classical to consider π1(P CR

0,j) instead. This would
change the Z/2 = π1(GR) on the left into (Z/2)2 = π1(PGR), but not affect our other
considerations.

The monodromy of π1( C0, F ) on lines is the classical map to the Weyl group
W (E6) ∼= Aut

(
L(S), η(S)

)
, as in §2.6. As explained there, this is the same as the reduction

modulo θ of the monodromy representation π1( C0) → PΓ. Therefore the monodromy of
π1( CR

0,j) on lines can be computed by taking the image of π1( CR
0,j) in PO(V ).

By Lemma 8.1, π1( CR
0,j) acts by the orientation-preserving subgroup of Tj , so it will

suffice to compute the map Tj → PO(V ) and then pass to the image of the subgroup.
Computing this map is very easy: one lifts each generator of Tj to an element of Γ, reduces
modulo θ to get an element of O(V ), and then passes to PO(V ). The ambiguity in the lift
is unimportant because of the passage to PO(V ). One can work out the details in each case
(see below for j = 2), with the following result:

T 8.2. – Let Mj denote the image of the monodromy representation
π1( C0,j)→W (E6). Then

M0
∼= A5

M1
∼= S3 × S3

M2
∼= (Z/2)3 o Z/2

M3
∼= M4

∼= S4.

In M2, Z/2 has fixed-point set (Z/2)2 in (Z/2)3, and this characterizes the group structure.
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C. – It turns out that πorb
1 ( MR

0,1) ∼= (S3 × S3) o Z/2 ∼= (Z/3)2 o D8 has two

subgroups isomorphic to S3×S3. The one which is the image of π1( CR
0,1), here manifesting

as M1, is not the obvious one but the other one.

R. – In the two cases where π1( CR
0,j) is finite, namely j = 0 or 1, its representation

in W (E6) is almost faithful. The kernel is precisely the central Z/2 = π1(GR).

Our results confirm Segre’s computation of M0, . . . ,M4, except for M2, which he gives
as (Z/2)2 at the end of §46 (page 72). Our M0, . . . ,M4 are his Γ1, . . . ,Γ5, introduced in
§34 and computed in §35 to §54. In each case, he also gave a very detailed description
of the action on various configurations of lines and tritangent planes of a surface in the
appropriate component. We will show how to obtain this more detailed information from
our perspective, in the case j = 2.

By definition, T2 = WEck
2 o Z/2 is generated by the reflections in r1, r3, r5 and r7 from

the middle diagram in Fig. 5.1, together with the diagram automorphism. By the choice of
roots, we already have lifts of the four reflections to Γ. For r1 and r5, reduction modulo θ
gives the reflections of V in the images of these two roots. The same applies to r3 and r7,
except that one must divide them by θ before reducing modulo θ. The point is that reflection
in r3 is the same as reflection in r3/θ, a primitive element of Λ. Therefore it acts on V as the
reflection in the image of r3/θ. We lift the diagram automorphism in the obvious way, to the
isometry of Λ that exchanges r1 ↔ r5, r3 ↔ r7 and fixes r4.

So M2 is the subgroup of PO(V ) generated by the diagram automorphism and the prod-
ucts of any evenly many reflections in the vectors (0, 1,−1, 0, 0), (0, 0, 0, 1,−1), (1, 0, 0, 0, 0)

and (0, 0, 0, 1, 1), which are the reductions modulo θ of r1, r3/θ, r5 and r7/θ, respectively.
These are mutually orthogonal, so M2

∼= (Z/2)3 o (Z/2). The action of the diagram auto-
morphism on (Z/2)3 is easy to work out, with the result stated in Theorem 8.2.

Now we work out the action on lines. A key ingredient is the dictionary on p. 26 of [9]
between the lines and tritangent planes of a cubic surface and certain objects in V . Namely,
the tritangent planes of S correspond to the “plus-points” of PV ; with our choice of q, these
are the lines 〈v〉 in V with q(v) = −1 (see p. xii of [9]). And a line of S corresponds to a
“base”, which with our choice of q means a collection of five mutually orthogonal lines in V ,
each spanned by a vector v with q(v) = −1. The fact that a base contains five plus-points
corresponds to the fact that each line on S is contained in 5 tritangent planes of S. One can
check that each plus-point is contained in exactly 3 bases, corresponding to the fact that each
tritangent plane contains 3 lines.

The anti-involution χ2 that defines the component CR
0,2 acts on V by

χ2(x0, . . . , x4) = (x0, x1, x2,−x3,−x4).

This lets one work out which lines and tritangent planes are real. Together with our explicit
generators for M2, one can obtain extremely detailed results, for example:

T 8.3. – A real cubic surface of type j = 2 has exactly five real tritangent planes.
These have exactly one line ` in common, necessarily preserved by the monodromy group M2.
This group preserves exactly one of these five planes, and also each of the lines in it, which
are real. Of the remaining four planes, two (say t1, t2) contain non-real lines and two (say
t3, t4) contain only real lines. M2 acts on these planes by Z/2, and contains an involution
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acting by t1 ↔ t2, t3 ↔ t4. The subgroup of M2 that preserves each of t1, . . . , t4 acts on
the lines they contain as follows. It consists of every permutation of the form: for any evenly
many of t1, . . . , t4, in each of them exchange the two lines of S other than `. The action of
M2
∼= (Z/2)3 o (Z/2) on these eight lines is faithful.

R. – A careful reading of §46 of [34] shows that Segre discusses actions of sub-
groups ofM2 on the set of four lines in t1 and t2, and on the set of four lines in t3 and t4, but
does not seem to discuss the whole group. It is not clear how he reaches his conclusion that
M2
∼= (Z/2)2.

9. Volumes

In this section we compute the volume of each PΓR
j \H4

j by computing its orbifold Euler
characteristic and using the general relation

vol(M) =
vol(Sn)

χ(Sn)
|χ(M)| = 2nπn/2(n/2)!

n!
|χ(M)|

for a hyperbolic orbifold M with n = dimM even. For the Euler characteristic, consider
the subgroup Wj generated by reflections, and its fundamental polyhedron Cj , described by
its Coxeter diagram in Fig. 1.1. Wj has index δ in PΓR

j with δ = 1 or 2. The latter case
occurs when the diagram has an automorphism of order two. Consider therefore the orbifold
Wj \H4

j . Since

δ · χ
(
PΓR

j \H4
j ) = χ

(
Wj \H4

j

)
,

it suffices to compute the right-hand side. To this end, consider a face F of Cj and its
stabilizer Wj(F ) in Wj . If Φ stands for the set of proper faces of Cj , then

χ
(
Wj \H4

j

)
= 1 +

∑
F∈Φ

(−1)dimFχ(F )

|Wj(F )| = 1 +
∑
F∈Φ

(−1)dimF

|Wj(F )| .

Let ∆ be a Coxeter diagram, let Σ(∆) be the set of nonempty subdiagrams describing
finite Coxeter groups, and for E in Σ, let |E| be the number of its nodes and W (E) be the
associated Coxeter group. The face of Cj corresponding to E has codimension |E| in an
even-dimensional space, so the previous equation can be written as

χ
(
Wj \H4

j

)
= 1 +

∑
E∈Σ

(−1)|E|

|W (E)| .

For the Coxeter diagrams that occur in this paper, the enumeration of subdiagrams is
lengthy but easy. We did the computations by hand and then checked them with a computer.
Consider, for instance, the case of W0. Every proper subdiagram describes a finite Coxeter
group except the one got by omitting the rightmost node; for example, the other four-node
subdiagrams (which describe vertices of C0) have types B4, A2

1 ×A2, A1 ×B3 and A4. The
resulting contribution to the Euler characteristic is

(−1)4
( 1

24 · 4!
+

1

22 · 3!
+

1

24 · 3!
+

1

5!

)
=

121

1920
.
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Carrying out the full enumeration and computing the orders of the corresponding Weyl
groups, one finds that

χ(PΓR
0 \H4) = 1− 5

2
+

17

8
− 11

16
+

121

1920
=

1

1920
.

This gives the first entry in table 1.1. The other calculations are similar.

10. Moduli of stable complex cubic surfaces

All of our discussions have been restricted to smooth cubic surfaces. However, one can
still discuss moduli of singular surfaces, when the singularities are mild. In this section we
recall from [1] the material necessary for our treatment in the next section of the moduli space
of stable real cubic surfaces. Here stable means stable in the sense of geometric invariant
theory (GIT). For cubic surfaces it is classical that this is simply the condition that the
singularities be no worse than nodes (ordinary double points, x2 + y2 + z2 = 0 in local
analytic coordinates). See [1, (3.1)]. It is also classical that a cubic surface can have at most
4 nodes; see [7] for a modern treatment.

We write C s for the space of all complex cubic forms defining stable surfaces. It contains
C0, and a standard result from GIT is that G acts properly on C s. Therefore Ms := G \ C s
is a complex-analytic orbifold as well as a quasi-projective variety. The main result of [1] is
an isomorphism Ms

∼= PΓ \ CH4, extending the isomorphism M0
∼= PΓ \ (CH4 − H ) of

Theorem 3.3. For Ms, this is an isomorphism of algebraic varieties, but not of orbifolds (see
below).

Here are the main ideas behind this isomorphism; Theorem 10.2 is the precise statement.
As explained in [1, (3.10) and (3.3)], the covering space F 0 → C0 extends to a ramified
covering space F s → C s. Here F s is the Fox completion (or normalization) of F 0 →
C0 over C s, and we call its elements framed stable cubic forms. The naturality of this
construction implies that the G- and PΓ-actions on F 0 extend to F s. The key facts about
F s are the following:

L 10.1 ([1, (3.14)]). – G acts freely on F s, so G \ F s is a complex manifold.

T 10.2 ([1, (3.17–19)]). – The period map g : F 0 → CH4 extends to F s, factors
through G \ F s, and induces a PΓ-equivariant diffeomorphism g : G \ F s ∼= CH4. It sends
the k-nodal cubic surfaces to the locus in CH4 where exactly k of the hyperplanes of H meet.
Furthermore, the induced map

Ms = G \ C s = (G× PΓ) \ F s → PΓ \ CH4

is an isomorphism of analytic spaces, but not of complex orbifolds.

We will need the following local description of F s → C s in the next section, and give a
refinement of it in Lemma 11.1.
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L 10.3 ([1, (3.10)]). – Suppose f ∈ F s lies over F ∈ C s, the cubic surface S defined
by F has k nodes, and x := g(f) ∈ CH4.

Then there exist coordinates t1, . . . , t4 on CH4 which identify it with the unit ball in C4

and x with the origin, whose pullbacks to F s can be extended to local coordinates t1, . . . , t20

around f , such that

(i) The components of H passing through x are defined by t1 = 0, . . . , tk = 0.
(ii) The stabilizer PΓf of f is (Z/6)k, acting on F s by multiplying t1, . . . , tk by sixth roots

of unity and leaving tk+1, . . . , t20 invariant.
(iii) The functions u1 = t61, . . . , uk = t6k, uk+1 = tk+1, . . . , u20 = t20 are local coordinates

around F ∈ C s.
(iv) The discriminant ∆ ⊆ C s near F is the union of the hypersurfaces u1 = 0, . . . , uk = 0.

In these coordinates, the period map g : F s → CH4 is given near f by forgetting t5, . . . , t20.

The failure of the variety isomorphism Ms
∼= PΓ \ CH4 to be an orbifold isomorphism

arises because of the presence of the (Z/6)k ramification of F s → C s, described in parts (ii)
and (iii) of this lemma. This is explained in more detail in [1, (3.18)]. We showed in
[1, (3.19–20)] how to modify the orbifold structure of PΓ \ CH4 so that its identification
with Ms becomes an orbifold isomorphism. The ramification of F s → C s will be the main
issue in our treatment of stable real surfaces. Although we will not strictly need the results of
[1, (3.18–20)], the ideas they embody will play a major role in our analysis.

11. Moduli of stable real cubic surfaces

The goal of this section is to understand the moduli space MR
s of stable real cubic surfaces

as a quotient of real hyperbolic space H4. In the previous section we defined C s as the
space of forms defining GIT-stable cubic surfaces, and recalled that G acts properly on it.
Therefore GR acts properly on CR

s := C s ∩ CR. We denote the quotient by MR
s , which is

a real-analytic orbifold in a natural way. In the smooth case we were able to pass from the
complex orbifold isomorphism M0

∼= PΓ \ (CH4 − H ) to the real orbifold isomorphisms
MR

0,j
∼= PΓR

j \(H4
j − H ) fairly easily. A very substantial complication in the stable case is that

the isomorphism Ms
∼= PΓ\CH4 is not an orbifold isomorphism (see the end of Section 10).

Nevertheless we will find a real-hyperbolic orbifold structure on MR
s by identifying it with

PΓR \H4 for a suitable lattice PΓR in PO(4, 1). It will be obvious that this structure agrees
with the moduli-space orbifold structure on MR

0 .

It is possible to skip the theory of this section and construct PΓR by gluing together the
5 orbifolds PΓR

j \ H4
j along their discriminant walls. There is an essentially unique way to

do this that makes sense (the one in Section 12), and one obtains the orbifold PΓR \ H4.
This is what we did at first, but this did not even give a proof that the resulting space is
homeomorphic to MR

s . The essential content of this section is to give an intrinsic definition
of the hyperbolic structure on MR

s . Then Section 12 plays the role of computing an orbifold
structure already known to exist, rather than constructing it.
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11.1. The space of framed stable real surfaces; their moduli space K

We define F R
s as the preimage of CR

s in F s, so that CR
s = PΓ \ F R

s . We will see that F R
s

is not a manifold, because of the ramification of F s → C s, but it is a union of embedded
submanifolds. We define K to be GR \ F R

s , which is not a manifold either. At this point it
is merely a topological space; below, we will equip it with a metric structure. Essentially by
definition, MR

s coincides withPΓ\K. IfK were a manifold then this would define an orbifold
structure on MR

s . But it is not, so we must take a different approach. First we will give a local
description of F R

s ⊆ F s, and then show that g : F s → CH4 induces a local embedding
K → CH4. This makes K into a metric space, using the path metric obtained by pulling
back the metric on CH4. Finally, we will study the action of PΓ onK to deduce that PΓ\K,
as a metric space, is locally modeled on quotients ofH4 by finite groups. Such a metric space
has a unique hyperbolic orbifold structure. The completeness of this structure on MR

s then
follows from the completeness of PΓ \ CH4, and orbifold uniformization then implies the
existence of a discrete group PΓR acting on H4 with MR

s
∼= PΓR \H4. See Section 12 for a

concrete description of PΓR and Section 13 for a proof that it is not arithmetic.
We begin with a local description of F R

s . This requires a refinement of the local descrip-
tion of F s given in Lemma 10.3.

L 11.1. – Under the assumptions of Lemma 10.3, suppose F lies in CR
s and defines

a surface with 2a non-real and b real nodes. Then the local coordinates of Lemma 10.3 on
CH4, F s and C s may be chosen to also satisfy the following: near F , complex conjugation
κ : C s → C s acts by

(11.1) ui 7→


ūi+1 for i odd and i ≤ 2a

ūi−1 for i even and i ≤ 2a

ūi for i > 2a.

Proof. – The coordinates t1, . . . tk of Lemma 10.3 are in one to one correspondence with
the nodes of S and, once a correspondence is fixed, each ti is unique up to multiplication
by a complex number of absolute value one. The same is therefore true of the coordinates
u1, . . . uk. Since κ permutes the sets ui = 0 in the same way that it permutes the nodes of S,
namely interchanges complex conjugate nodes and preserves real ones, it is clear that the ti
and hence the ui can be chosen so that κ acts on u1, . . . uk as in (11.1). That the coordinates
may be chosen so that κ also acts this way on uk+1, . . . , u20 can be derived from the fact that
any anti-involution of a complex manifold in a neighborhood of any fixed point is modeled
on complex conjugation of Cn.

In these local coordinates, CR
s is the fixed-point set of κ. To describe F R

s near f , we simply
compute the preimage of CR

s . The most important cases are first, a single real node (a = 0,
b = 1), and second, a single pair of conjugate nodes (a = 1, b = 0).

In the case of a single real node, F R
s near f is modeled on a neighborhood of the origin

in

(11.2) {(t1, . . . , t20) ∈ C20 : t61, t2, . . . , t20 ∈ R} .
That is, a neighborhood of f is modeled on six copies of R20, glued together along a
common R19.
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In the case of two complex conjugate nodes, F R
s near f is modeled on a neighborhood of

the origin in

(11.3) {(t1, . . . , t20) ∈ C20 : t62 = t̄ 6
1 and t3, . . . t20 ∈ R} .

That is, on the union of six copies of R20, glued together along a common R18. The R18 is
given by t1 = t2 = 0 and maps diffeomorphically to ∆ ∩ CR

s , and each component of the
complement is a six-fold cover of the part of CR

s −∆ near F .

11.2. Many different real structures

We have defined F R
s as the preimage of CR

s in F s, but it is helpful to think of it as the
union of the real loci of many different real structures. Namely, if f ∈ F R

0 lies over F ∈ CR
0

then there is a unique lift of the complex conjugation κ of C s to an anti-involution χ of F 0

that fixes f . We saw this construction in §3.3, and wrote F χ
0 for χ’s fixed points. (See also

the last part of the proof of Theorem 3.3.)

The naturality of the Fox completion implies that χ extends to F s. Then the set F χ
s of χ’s

fixed points is the real locus of one real structure, namely χ. It is clear that F R
s is the union

of the F χ
s as χ varies over the anti-involutions of F s lying over κ. We have already seen this

set of anti-involutions: it is P A, the set of projective classes of anti-involutions of Λ defined
in §3.3.

11.3. The family of isomorphisms GR \ F χ
s → H4

χ

Recall from Section 2.4 that g : F s → CH4 is the complex period map. Lemma 11.3
below is the extension of the diffeomorphism GR \ F χ

0
∼= H4

χ − H of Theorem 3.3 to
GR \ F χ

s
∼= H4

χ; to prove it we need the following general principle.

L 11.2. – LetG be a Lie group acting properly and with finite stabilizers on a smooth
manifold X, let F be a finite group of diffeomorphisms of X normalizing G, let XF be its
fixed-point set, and let GF be its centralizer in G. Then the natural map GF \XF → G \X is
proper.

Proof. – We write π and πF for the mapsX → G\X andXF → GF \XF , and f for the
natural mapGF \XF → G\X. We prove the theorem under the additional hypothesis that
F and G meet trivially; this is all we need and the proof in the general case is similar. This
hypothesis implies that the group H generated by G and F is G o F . Begin by choosing a
complete H-invariant Riemannian metric on X.

To prove f proper it suffices to exhibit for anyG-orbit O ⊆ X aG-invariant neighborhood
U ⊆ X with f−1(π(U)) precompact. Since G has finite index in H, O.H ⊆ X is the union
of finitely manyG-orbits. Using properness and Riemannian geometry one finds ε > 0 such
that (1) distinct G-orbits in O.H lie at distance > ε, and (2) any point of X at distance < ε

from O has a unique nearest point in O. We take U to be the open ε/2-neighborhood of O.

To show that f−1(π(U)) is precompact we will exhibit a compact setK ⊆ XF with πF (K)

containing f−1(π(U)). We claim that there are finitely manyGF -orbits in O∩XF , so we can
choose orbit representatives x̃1, . . . , x̃n. If O ∩XF is empty then this is trivial. If O ∩XF is
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nonempty, say containing x̃, then theGF -orbits in O∩XF are in bijection with the conjugacy
classes of splittings of

1→ Gx̃ → Gx̃ o F → F → 1 ,

where Gx̃ is the G-stabilizer of x̃. Since Gx̃ is finite, there are finitely many splittings, hence
finitely many orbits. We take K to be the union of the closed ε/2-balls around x̃1, . . . , x̃n,
intersected with XF . (In particular, K is empty if O ∩XF is.)

K is obviously compact, so all that remains is to prove f−1(π(U)) ⊆ πF (K). If
f−1(π(U)) is empty then we are done. Otherwise, suppose y ∈ f−1(π(U)) ⊆ GF \ XF

and let ỹ ∈ XF lie over it. Now, ỹ is F -invariant and F permutes theG-orbits in O.H. Since
ỹ lies within ε/2 of O, it lies at distance > ε/2 of every other G-orbit in O.H, so F preserves
O. ThereforeF preserves the unique point x̃ of O closest to ỹ, so x̃ ∈ XF . We choose g ∈ GF
with x̃.g equal to one of the x̃i. Then ỹ.g lies within ε/2 of x̃.g = x̃i, hence lies in K, and
πF (ỹ.g) = y, proving f−1(π(U)) ⊆ πF (K).

L 11.3. – For every χ ∈ P A, the restriction of the period map g : F s → CH4 to
F χ
s defines an isomorphism GR \ F χ

s
∼= H4

χ of real-analytic manifolds.

Proof. – It is a local diffeomorphism because its rank is everywhere 4 by Theorem 10.2.
Injectivity follows from the argument used for Theorem 3.3; this uses the freeness of the
G action on F s, see Lemma 10.1. To see surjectivity, we apply the previous lemma with
G = G, X = F s, F = {1, χ}, XF = F χ

s and GF = GR. Therefore the map
GR \ F χ

s → G \ F s ∼= CH4 is proper, so its image is closed. Theorem 3.3 tells us that
the image contains the open dense subset g( F χ

0 ) = H4
χ − H , so the map is surjective.

11.4. The local embedding K → CH4

The purpose of this subsection is to show that the complex period map g defines a local
embedding K = GR \ F R

s → CH4, which we will use in the next subsection to define a
piecewise-hyperbolic metric on K.

L 11.4. – Suppose f ∈ F R
s , and α1, . . . , α` are the elements of P A that fix f . Then

the map

(11.4) GR \
(
∪`i=1 F αi

s

)
→ ∪`i=1H

4
αi

induced by g is a homeomorphism.

The left side of (11.4) contains a neighborhood of the image of f in K, so the lemma
implies that g : K → CH4 is a local embedding. We will write Kf for the right side of
(11.4). It is the part of K relevant to f .

Before giving the proof, we observe that it is easy to work out formulas for α1, . . . , α`
in the local coordinates t1, . . . , t20 on F s. Since Lemma 11.1 gives a formula for κ near
F ∈ CR

s in the local coordinates u1, . . . , u20, and F s → C s is given by u1 = t61, . . . , uk = t6k,
uk+1 = tk+1, . . . , u20 = t20, one can simply write down the lifts of κ. For example, in the
one-real-node case there are 6 lifts, given by

(t1, . . . , t20) 7→ (t̄1ζ
i, t̄2, . . . , t̄20) ,
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where ζ = eπi/3, and in the conjugate-pair case there are also 6 lifts, given by

(t1, . . . , t20) 7→ (t̄2ζ
i, t̄1ζ

i, t̄3, . . . , t̄20) .

Proof of Lemma 11.4. – We first claim that for all i and j,

g : F αi

s ∩ F αj

s → H4
αi
∩H4

αj

is surjective. To see this, let C be the component of F αi

s ∩ F αj

s containing f . This is a
component of the fixed-point set of the finite group generated by αi and αj . In particular,
it is a smooth manifold whose tangent spaces are all totally real. Since C is connected,
its dimension everywhere is its dimension at f , which by our local coordinates is 16 +

dimR(H4
αi
∩H4

αj
). Since the tangent spaces are totally real and the kernel of the derivative

of the period map has complex dimension 16, the (real) rank of g|C equals dimR(H4
αi
∩H4

αj
)

everywhere. Therefore g(C) is open. It is also closed, since g induces a diffeomorphism from
each GR \ F αi

s to H4
αi

for each i. This proves surjectivity, since H4
αi
∩H4

αj
is connected.

Now we prove the lemma itself; the map (11.4) is surjective and proper because GR \
F αi

s → H4
αi

is surjective and proper for each i. To prove injectivity, suppose ai ∈ GR \ F αi

s

for i = 1, 2 have the same image in CH4. Then their common image lies in H4
α1
∩ H4

α2
, so

by the claim above there exists b ∈ GR \ ( F αi

s ∩ F αj

s ) with the same image. Since each
GR \ F αi

s → H4
αi

is injective, each ai coincides with b, so a1 = a2.

11.5. The local metric structure on PΓ \K ∼= MR
s

At this point we know that g locally embeds K = GR \ F R
s into CH4, and even have

an identification of small open sets in K with open sets in unions of copies of H4 in CH4.
The induced path-metric on K is the largest metric which preserves the lengths of paths;
under it, K is piecewise isometric to H4. K is not a manifold—it may be described locally
by suppressing the coordinates t5, . . . , t20 from our local description of F R

s . (See (11.2) and
(11.3) for two examples.) Nevertheless, Corollary 11.6 below shows us that the path metric
on MR

s = PΓ \K is locally isometric to quotients of H4 by finite groups. This is the key to
defining the hyperbolic orbifold structure on MR

s .

Our goal is to prove Corollary 11.6, that every point of PΓ \ K has a neighborhood
modeled on H4 modulo a finite group. This requires a careful analysis with several different
subgroups of PΓ associated to f ∈ F R

s . One of them is Af , the subgroup of PΓ fixing the
image of f in K = GR \ F R

s . This contains PΓf ∼= (Z/6)k, often strictly. The third group is
Bf , the subgroup of PΓf generated by the order 6 complex reflections associated to the real
nodes of S, rather than all the nodes. (The complex reflections are the elements of PΓf that
act on only one of the tj .)

Lemma 11.4 says that

(11.5) Af \Kf = (Af ×GR) \
(
∪`i=1 F αi

s

)
→ (PΓ×GR) \ F R

s = MR
s

is a homeomorphism in a neighborhood of the image of f in Kf ⊆ K, where α1, . . . , α` are
as in that lemma. Therefore it suffices to study Af \ Kf . It turns out that this is best done
by first treating the intermediate quotient Bf \Kf .

4 e SÉRIE – TOME 43 – 2010 – No 1



MODULI OF REAL CUBIC SURFACES 103

So our next goal is to understandBf \Kf in coordinates. The all-nodes-real case is much
simpler than the general case, and should allow the reader to understand all the ideas in the
rest of this section.

L 11.5. – If S has only real nodes, thenBf \Kf is isometric toH4. If S has a single
pair of conjugate nodes, and possibly also some real nodes, then Bf \Kf is isometric to the
union of six copies of H4 identified along a common H2. If S has two pairs of conjugate nodes
then Bf \Kf = Kf is the union of 36 copies of H4, any two of which meet along an H2 or at
a point.

In each case, Af/Bf acts transitively on the indicated H4’s in Bf \Kf . If H is any one of
them, and (Af/Bf )H its stabilizer, then the natural map

(11.6) (Af/Bf )H
∖
H → (Af/Bf )

∖
(Bf \Kf ) = Af \Kf

is an isometry of path metrics.

C 11.6. – Every point of PΓ \K has a neighborhood isometric to the quotient
of an open set in H4 by a finite group of isometries.

Proof. – The left term of (11.6) is a quotient of H4 by a finite group, and the right term
contains a neighborhood of the image of f in PΓ \K. The corollary follows from the fact
that (11.6) is a local isometry.

Proof of Lemma 11.5. – We take x = g(f) as before and refer to the coordinates
t1, . . . , t4 from Lemma 10.3 that identify CH4 with B4. Recall that the cubic surface S has
2a non-real and b real nodes, with k = 2a + b. The stabilizer PΓf of f in PΓ acts on CH4

by multiplying t1, . . . , tk by 6th roots of unity, and Bf acts by multiplying t2a+1, . . . , t2a+b

by 6th roots of unity. Kf may be described in the manner used to obtain (11.2) and (11.3),
with t5, . . . , t20 omitted. With concrete descriptions of Kf and Bf in hand, one can work
out Bf \Kf . Here are the results for the various cases.

First suppose S has only real nodes. Then

Kf = {(t1, . . . , t4) ∈ B4 : t61, . . . , t
6
k, tk+1, . . . , t4 ∈ R} .

Each of the 2k subsets

Kf,ε1,...,εk
= {(t1, . . . , t4) ∈ B4 : iε1t1, . . . , i

εktk ∈ [0,∞) and tk+1, . . . , t4 ∈ R} ,
indexed by ε1, . . . , εk ∈ {0, 1}, is isometric to the closed region inH4 bounded by kmutually
orthogonal hyperplanes. Their union U is a fundamental domain for Bf in the sense that it
maps homeomorphically and piecewise-isometrically onto Bf \Kf . Under its path metric,
U is isometric to H4, say by the following map, defined separately on each Kf,ε1,...,εk

by

(t1, . . . , tk) 7→ (−iε1t1, . . . ,−iεktk, tk+1, . . . , t4) .

This identifies Bf \Kf with the standard H4 in CH4.

If S has a single pair of non-real nodes and no real nodes, then Bf is trivial and
Bf \Kf = Kf . The αi are the 6 maps

αi : (t1, . . . , t4) 7→ (t̄2ζ
i, t̄1ζ

i, t̄3, t̄4)
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with i ∈ Z/6, whose fixed-point sets are

H4
αi

= {(t1, . . . , t4) ∈ B4 : t2 = t̄1ζ
i and t3, t4 ∈ R} .

It is obvious that any two of these H4’s meet along the H2 ⊆ B4 described by t1 = t2 = 0

and t3, t4 ∈ R.

If S has two pairs of non-real nodes (hence no real nodes at all) then the argument is
essentially the same. The difference is that there are now 36 anti-involutions

αm,n : (t1, . . . , t4) 7→ (t̄2ζ
m, t̄1ζ

m, t̄4ζ
n, t̄3ζ

n) ,

where m,n ∈ Z/6, with fixed-point sets

H4
αm,n

= {(t1, . . . , t4) ∈ B4 : t2 = t̄1ζ
m, t4 = t̄3ζ

n} .
If (m′, n′) 6= (m,n) then H4

αm,n
meets H4

αm′,n′ in an H2 if m = m′ or n = n′, and otherwise
only at the origin.

If S has a pair of non-real nodes and also a single real node then the argument is a mix
of the cases above. Bf ∼= Z/6 acts by multiplying t3 by powers of ζ, and there are 36 anti-
involutions, namely

αm,n : (t1, . . . , t4) 7→ (t̄2ζ
m, t̄1ζ

m, t̄3ζ
n, t̄4) .

We have
Kf = {(t1, . . . , t4) ∈ B4 : t62 = t̄ 6

1 , t
6
3 ∈ R, t4 ∈ R} .

The union U of the subsets with t3 or it3 in [0,∞) is a fundamental domain forBf ; applying
the identity map to the first subset and t3 7→ −it3 to the second identifies U with

{(t1, . . . , t4) ∈ B4 : t62 = t̄ 6
1 , t3, t4 ∈ R} .

That is,Bf \Kf is whatKf was in the case of no real nodes, as claimed. If S has two non-real
and two real nodes then the argument is only notationally more complicated.

The remaining claims are trivial unless there are non-real nodes. In every case, the
transitivity of Af/Bf on the H4’s in Bf \ Kf is easy to see because PΓf ⊆ Af contains
transformations multiplying t1, . . . , t2a by powers of ζ. If H is one of the H4’s and J =

(Af/Bf )H is its stabilizer, then it remains to prove that J \ H → Af \ Kf is an isometry.
Surjectivity follows from the transitivity of Af on the H4’s. It is obviously a piecewise
isometry, so all we must prove is injectivity. That is, if two points of H are equivalent under
Af/Bf , then they are equivalent under J . To prove this it suffices to show that for all y ∈
Bf \Kf , the stabilizer of y in Af/Bf acts transitively on the H4’s in Bf \Kf containing y.
This is easy, using the stabilizer of y in PΓf/Bf ∼= (Z/6)2a.

11.6. The hyperbolic orbifold structure

We have equipped MR
s with a path metric which is locally isometric to quotients of H4

by finite groups. It is easy to see that if X is such a metric space then there is a unique real-
hyperbolic orbifold structure onX whose path metric is the given one. (The essential point is
that ifU andU ′ are connected open subsets ofH4 and Γ and Γ′ are finite groups of isometries
of H4 preserving U and U ′ respectively, with Γ \ U isometric to Γ′ \ U ′, then there is an
isometry of H4 carrying U to U ′ and Γ to Γ′.) Therefore MR

s is a real hyperbolic orbifold.
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For completeness, we give explicit orbifold charts. Take f as before, andH one of theH4’s
comprising Bf \Kf . Recall that (Af/Bf )H is its stabilizer in Af/Bf . The orbifold chart is
the restriction of the composition

H → (Af/Bf )H \H
∼= (Af/Bf ) \ (Bf \Kf )

= Af \Kf

∼= (Af ×GR) \ (∪`i=1 F αi

s )

→ (PΓ×GR) \ F R
s = MR

s

to a suitable open subset of H. The homeomorphism of the second line is part of
Lemma 11.5, and that of the fourth is Lemma 11.4. The map in the last line is a homeo-
morphism in a neighborhood U of the image of f in (Af × GR) \

(
∪`i=1 F αi

s

)
. We take the

domain of the orbifold chart to be the subset of H which is the preimage of U .

T 11.7. – With the orbifold structure obtained by its identification with PΓ \K,
MR
s is a complete real hyperbolic orbifold of finite volume, and there is a properly discontinuous

group PΓR of motions of H4 such that MR
s and PΓR \H4 are isomorphic hyperbolic orbifolds.

Proof. – To prove MR
s complete, consider K = GR \ F R

s . We know that g maps K to
CH4; this is proper because any compact set in CH4 meets only finitely many H4

χ, χ ∈ P A,
and g carries each GR \ F χ

s homeomorphically to H4
χ (Lemma 11.3). Since K → CH4 is

proper and PΓ \ CH4 is complete, so is PΓ \K.

The uniformization theorem for complete hyperbolic orbifolds implies the existence of
PΓR with the stated properties. See Proposition 13.3.2 of [35] or Chapter IIIG of [6] for
discussion and proofs of this theorem. The volume of MR

s is the sum of the volumes of the
PΓR

j \H4
j . Since these have finite volume, so does MR

s .

R. – It turns out that the analytic orbifold structures on MR
s coming from its

definition asGR \ CR
s and its identification with PΓR \H4 are different. But they do coincide

on MR
0 . Also, the underlying topological orbifold structures coincide on a larger set, namely

the complement of the locus of real surfaces having a conjugate pair of nodes. Along this
locus, even the topological orbifold structures differ.

12. A fundamental domain for PΓR

In the previous section we equipped the moduli space MR
s of stable real cubic surfaces with

a complete hyperbolic orbifold structure, so MR
s
∼= PΓR \H4 for some discrete group PΓR.

In this section we construct a fundamental domain and the associated generators for PΓR.
Besides its intrinsic interest, this allows us to prove in Section 13 that PΓR is nonarithmetic.
Throughout this section, when we refer to MR

s as an orbifold, we refer to the hyperbolic
structure.
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12.1. The tiling of H4 by chambers

We begin by explaining how the orbifold universal coverH ∼= H4 of MR
s is tiled by copies

of the polyhedra Cj of Section 5. Consider the set of points in the orbifold MR
0 ⊆ MR

s

whose local group contains no reflections, and its preimage under the orbifold covering map
H → MR

s . Because the restriction of the hyperbolic structure of MR
s to MR

0 is the (incom-
plete) structure described in Section 3, each component of the preimage is a copy of the in-
terior of one of the Cj . We call the closure of such a component a chamber of type j. It is
clear that the union of the chambers is H and that their interiors are disjoint, so that they
tile H.

Recall from Section 7 that we call a wall of a chamber a discriminant wall if it lies over
the discriminant, and an Eckardt wall otherwise. By Theorem 6.4, it is a discriminant wall
if and only if it corresponds to a blackened node of Cj in Fig. 1.1. Because the orbifold
structure on MR

s restricts to that on MR
0 , a generic point of an Eckardt wall is fixed by some

reflection of PΓR. Therefore PΓR contains the reflections across the Eckardt walls of the
chambers. The same argument shows that if a chamber has type 1 or 2, so that it has a
diagram automorphism, then some element of PΓR carries it to itself by this automorphism.

We have seen that across any Eckardt wall of a chamber lies another chamber of the same
type, in fact the mirror image of the first. Now we describe how the chambers meet across
the discriminant walls. This is most easily understood by considering the 5 specific chambers
Cj ⊆ H4

j given in Section 5, regarding all the H4
j ’s as lying in CH4. Using the labeling of

Fig. 5.1, we refer to the kth simple root of Cj as rjk and to the corresponding wall of Cj as
Cjk. The following lemma leads to complete information about how chambers meet across
discriminant walls.

L 12.1. – As subsets of CH4, we have C04 = C14, C13 = C24, C22 = C34 and
C31 = C44. There is an element of PΓ carrying C37 isometrically to C46.

Proof. – The first assertion is just a calculation; it is even easy if organized along the lines
of the following treatment of the first equality. It is obvious that r⊥04 ⊆ H4

0 and r⊥14 ⊆ H4
1

coincide, since r14 = θ · r04. Simple roots describing C04 may be obtained by projecting
the simple roots of C0 into r⊥04, which amounts to setting the last coordinate equal to zero.
Simple roots describing C14 may be obtained by listing the walls of C1 meeting C14, namely
C11,C12,C13 andC16, and projecting the corresponding roots into r⊥14, which again amounts
to setting the last coordinate to zero. The two 4-tuples of vectors so obtained coincide, so
they define the same polyhedron in H4

0 ∩H4
1
∼= H3.

Now we prove the second claim. Since only two discriminant walls remain unmatched, we
expectC37 to coincide with some PΓ-translate ofC46. One can argue that this must happen,
but it is easier to just find a suitable element γ of PΓ. It should take θr37 to r46; it should
also carry r35, r32, r33 and r36 to r45, r41, r42 and r43 in the order stated. These conditions
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determine γ, which turns out to be

γ =



10 + 6ω 4 + 2ω 1− 4ω 1− 4ω 1− 4ω

2− 2ω 1 −2− 2ω −2− 2ω −2− 2ω

1− 4ω −2ω −2− 2ω −3− 2ω −3− 2ω

1− 4ω −2ω −3− 2ω −2− 2ω −3− 2ω

1− 4ω −2ω −3− 2ω −3− 2ω −2− 2ω

 ,

where we regard vectors as column vectors and γ acts on the left. Since γ has entries in E
and satisfies

γT · diag[−1, 1, 1, 1, 1] · γ̄ = diag[−1, 1, 1, 1, 1] ,

it lies in PΓ. By construction, it carries C37 to C46.

The lemma completes our picture of how the chambers meet along walls, as follows.
Suppose for example that P0 is a chamber of type 0, so it has one discriminant wall, which
we will call P04. The lemma implies that P04 is also a wall of a chamber of type 1 (say
P1). Furthermore, the relative positions of P0 and P1 can be determined by analyzing any
nontrivial isometries of P0, P1 and their common wall. Applying this argument to the other
cases of the lemma implies that every discriminant wall of a chamber is also a discriminant
wall of another chamber, of known type. We will do this systematically in the next subsection.

12.2. The polyhedron Q

Now we construct what will turn out to be a fundamental domain for a subgroup 1
2PΓR of

index 2 in PΓR. We choose a chamber P0 of type 0 and write P0k for its walls corresponding
to the C0k under the unique isometry P0

∼= C0. (The detailed naming of walls is not needed
for a conceptual understanding.) Across its discriminant wall P04 lies a chamber P1 of
type 1; write P1k for its walls corresponding to C1k under the unique isometry P1

∼= C1

that identifies P04 ⊆ P1 with C14. In particular, P04 = P14. P1 shares its discriminant wall
P17 with the image P ′0 of P0 under the diagram automorphism of P1; we label the walls of
P ′0 by P ′0k just as we did for P0. We write P2 for the chamber of type 2 on the other side of
P13. There are two isometries P2

∼= C2, both of which identify P13 ⊆ P2 with C24, so we
must work a little harder to fix our labeling of the walls of P2. We choose the identification
of P2 with C2 that identifies P13 ∩ P11 ⊆ P2 with C24 ∩ C21, and label the walls P2k of P2

accordingly. Now, P2 has three discriminant walls: it shares P24 with P1, and across P22 and
P26 lie chambers of type 3. We write P3 for the one across P22 and P ′3 for the one across
P26; these chambers are exchanged by the diagram automorphism. Label the walls of P3 by
P3k according to the unique isometry P3

∼= C3, and similarly for P ′3. Finally, across P31

lies a chamber P4 of type 4, whose walls we name P4k according to the isometry P4
∼= C4.

Similarly,P ′3 sharesP ′31 with a chamberP ′4 which the diagram automorphism exchanges with
P4. We label the walls of P ′4 accordingly. Let Q be the union of all eight chambers P0, P ′0,
P1, P2, P3, P ′3, P4 and P ′4. The construction of Q is summarized in Fig. 12.1.

We remark that the diagram automorphisms of P1 and P2 coincide, in the sense that they
are the same isometry ofH, which we will call S; this isometry preservesQ. Throughout this
section, “the diagram automorphism” refers to S.
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P0 P ′
0

P1

P2

P3 P ′
3

P4 P ′
4

P04 P ′
04

P14 P17

P13

P24

P34 P ′
34

P26 P22

P31

P44

P ′
31

P ′
44

F 12.1. Assembly of the polyhedron Q from 8 chambers.

L 12.2. – Q is a Coxeter polyhedron.

Proof. – As a set, the boundary of Q is the union of the Eckardt walls of the Pj and P ′j ,
together with P37, P46, P ′37 and P ′46. Suppose W is an Eckardt wall of one of the Pj or P ′j
and H3

W is the hyperplane in H that it spans. Then Q lies entirely in one of the closed half-
spaces bounded by H3

W , because PΓR contains the reflection across H3
W , while no point in

the interior of Q can be stabilized by a reflection of PΓR. We call H3
W ∩Q an Eckardt wall

of Q. Two Eckardt walls of Q that meet make interior angle π/n for some integer n, for
otherwise some point in the interior of Q would be stabilized by a reflection.

Now we claim that for W = P37, P46, P ′37 or P ′46, the wall of Q containing W coincides
with W , and its only meetings with other walls of Q are orthogonal intersections with
Eckardt walls. We verify this for W = P37; the key point is that P37 is orthogonal to all
the walls of P3 that it meets, namely P35, P32, P33 and P36, and all these walls are Eckardt
walls of P3. By the above, we know thatQ lies in the region bounded by theH3’s containing
P35, P32, P33 and P36, so the only walls of Q which could meet W are these walls (or
rather their extensions to walls of Q). More precisely, there is a neighborhood of P37 in
H whose intersection with Q coincides with its intersection with P3. All our claims follow
from this. The same argument applies to P46, and for the remaining two walls we appeal to
symmetry.

12.3. Simple roots for Q

Since Q is a Coxeter polyhedron, it may be described as the image in H4 of the set of
vectors x having x · s ≤ 0 where s varies over a set of simple roots for Q. There is one simple
root for each wall of Q, so we may find simple roots for Q by taking all the simple roots for
the Pj and P ′j , and discarding the ones associated to the walls along which the Pj and P ′j
meet. We will also discard duplicates, which occur when walls of two different Pj or P ′j lie in
the same wall of Q.
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Therefore we will need to know simple roots for all the Pj and P ′j . We identify H with
H4

1 ⊆ CH4, such that P0 is C0. Then P1 is the image of C1 ⊆ H4
1 ⊆ CH4 under the map

T1 : (x0, . . . , x4) 7→ (x0, x1, x2, x3, ix4) ,

which is an isometry of CH4 (although not an element of PΓ). This uses the facts that C04

and C14 coincide as subsets of CH4 (Lemma 12.1) and T1 carries r14 to a negative multiple
of r04. Similarly, using the intersections of P1 with P2, P2 with P3, and P3 with P4 described
in Lemma 12.1, we find

P2 = T2(C2) where T2 : (x0, . . . , x4) 7→ (x0, x1, x2, ix3, ix4),

P3 = T3(C3) where T3 : (x0, . . . , x4) 7→ (x0, x1, ix2, ix3, ix4), and

P4 = T4(C4) where T4 : (x0, . . . , x4) 7→ (x0, ix1, ix2, ix3, ix4) .

For uniformity of notation we define T0 to be the identity map. In all cases we have
Pjk = Tj(Cjk); we selected our labelings of the walls of the Pj so that this would hold. We
write sjk for Tj(rjk), yielding simple roots for the Pj . Given rjk from Fig. 5.1, sjk is got by
replacing θ by −

√
3 wherever it appears.

Since simple roots for P1 are now known, the matrix for the diagram automorphism S

can be worked out, yielding

(12.1) S =



3 2 1 0 −
√

3

−2 −1 −1 0
√

3

−1 −1 −1 0 0

0 0 0 1 0√
3
√

3 0 0 −1

 .

Since P ′0, P ′3 and P ′4 are the images of P0, P3 and P4 under S, they are described by simple
roots s′jk = S · sjk. We now have explicit simple roots for all eight chambers comprising Q.

To obtain simple roots forQ, we take all the sjk and s′jk and discard those involved in the
gluing of Fig. 12.1, namely s04, s′04, s14, s17, s13, s24, s26, s22, s34, s′34, s31, s′31, s44 and s′44.
This leaves us with 36 simple roots. There is a great deal of duplication, for example s01 and
s43 are positive scalar multiples of each other. After eliminating duplicates, only 10 remain,
given in table 12.1. We will indicate the walls ofQ byA, . . . , E,E′, . . . , A′ and corresponding
simple roots by sA, . . . , sE , s′E , . . . , s

′
A. We have scaled them so that sA, sB , s′B and s′A have

norm 1 and the rest have norm 2. In the table we also indicate which Pjk and P ′jk lie in each
wall of Q. The diagram automorphism acts by exchanging primed and unprimed letters.
With simple roots in hand, one can work out Q’s dihedral angles, yielding Fig. 12.2 as the
Coxeter diagram of Q.

12.4. The subgroup 1
2PΓR for which Q is a fundamental domain

We already know that PΓR contains the reflections across C, D, E, E′, D′ and C ′. By
Lemma 12.1, P37 and P46 are identified in MR

s , so there exists an element τ of PΓR carrying
A = P37 to B = P46. This transformation must carry P3 to the type 3 chamber on the other
side of P46 from P4, and so it carries sA to −sB . By considering how the walls of Q meet A
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root coordinates root⊥ contains

sA (3,−1,
√

3,
√

3,
√

3) P37

sB (
√

3, 1, 1, 1, 1) P46

sC (1,−1,−1,−1, 0) P05, P16, P ′02, P ′33, P ′42

sD (
√

3,−
√

3, 0, 1, 1) P27, P36, P ′03, P ′32, P ′41

sE (0, 1,−1, 0, 0) P01, P11, P21, P43, P ′35, P ′45

s′E (1, 0, 0, 0,
√

3) P15, P25, P35, P45, P ′01, P ′43

s′D (0, 0, 0, 1,−1) P03, P23, P32, P41, P ′36

s′C (0, 0, 1,−1, 0) P02, P12, P33, P42, P ′05

s′B (3 + 2
√

3,−2−
√

3,−2−
√

3, 1, 2 +
√

3) P ′46

s′A (4 +
√

3,−2−
√

3,−2−
√

3,
√

3,
√

3) P ′37

T 12.1. Simple roots for the polyhedron Q.

A

B

C

D
E

A′

B′

C ′

D′
E′

F 12.2. The polyhedron Q.

and B, one sees that τ must fix each of s′E , s′D and s′C , and carry sD to sE . This determines
τ uniquely:

(12.2) τ =



7 + 3
√

3 3 +
√

3 −3− 2
√

3 −3− 2
√

3 −3− 2
√

3

3 +
√

3 1 −1−
√

3 −1−
√

3 −1−
√

3

3 + 2
√

3 1 +
√

3 −1−
√

3 −2−
√

3 −2−
√

3

3 + 2
√

3 1 +
√

3 −2−
√

3 −1−
√

3 −2−
√

3

3 + 2
√

3 1 +
√

3 −2−
√

3 −2−
√

3 −1−
√

3

 .

Of course, PΓR also contains τ ′ = SτS, which carries A′ to B′. We define 1
2PΓR to be the

subgroup of PΓR generated by τ , τ ′ and the reflections in C, D, E, E′, D′ and C ′.

L 12.3. – Q is a fundamental domain for 1
2PΓR. More precisely, the 1

2PΓR-images
of Q cover H ∼= H4, and the only identifications among points of Q under Q→ 1

2PΓR \H are
that A (resp. A′) is identified with B (resp. B′) by the action of τ (resp. τ ′).
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Proof. – All our claims follow from Poincaré’s polyhedron theorem, as formulated in [26,
sec. IV.H]. There are 7 conditions to verify. The key points are that any two Eckardt walls
that intersect make an angle of the form π/(an integer), and that the 4 discriminant walls
are disjoint from each other and orthogonal to the Eckardt walls that they meet. These
properties dispose of Maskit’s conditions (i)–(vi). Condition (vii) is that Q modulo the
identifications induced by τ and τ ′ is metrically complete. This follows because we already
know from Theorem 11.7 that PΓR \H4 is complete, and 1

2PΓR ⊆ PΓR.

The main theorem of this section is now an easy consequence:

T 12.4. – PΓR =
(

1
2PΓR)o Z/2, the Z/2 being the diagram automorphism S.

Proof. – Because S sends Q to itself, and Q is a fundamental domain for 1
2PΓR,

S /∈ 1
2PΓR. Since S normalizes 1

2PΓR, we have〈
1
2PΓR, S

〉
= 1

2PΓR o 〈S〉 .
Since this larger group lies in PΓR and has the same covolume as PΓR, it equals PΓR.

R. – Poincaré’s polyhedron theorem readily gives a presentation for PΓR: there
are generators C,C ′, D,D′, E,E′ (the reflections in the Eckardt walls of Q), τ, τ ′ (the maps
carrying A to B, respectively A′ to B′), and S (the diagram automorphism) with the follow-
ing relations. (1) The subgroup generated byC,D,E,C ′, D′, E′ has the Coxeter presentation
indicated in the diagram. (2) τ commutes with C ′, D′, E′ while τD = Eτ . (3) The relations
obtained from (2) by interchanging the primed and unprimed letters. (4) S is an involution
and conjugation by it interchanges all the primed and unprimed generators. A presentation
for 1

2PΓR is obtained by deleting the generator S and the relations (4).

12.5. The discriminant in MR
s
∼= PΓR \H4

We have now established Theorem 1.2, except for the nonarithmeticity and the fact that
MR

0 ⊆ MR
s corresponds to PΓR \ (H4 − H ′) where H ′ is a union of H2’s and H3’s. We will

now address H ′; see the next section for the nonarithmeticity. The part of Q that lies over
the discriminant in MR

s consists of (1) the wallsA, B, A′ andB′, (2) the faces corresponding
to triple bonds in Fig. 12.2, and (3) the walls of the Pj and P ′j along which we glued the 8
chambers to obtainQ. We will refer to a wall of case (3) as an ‘interior wall’. Setting H ′ to be
the preimage of MR

s − MR
0 inH4, we see that H ′ is the union of the 1

2PΓR-translates of these
three parts of Q. The wall A is orthogonal to all the walls of Q that it meets, all of which are
Eckardt walls, so it is easy to see that theH3 containingA is covered by the 1

2PΓR-translates
ofA. The same argument applies withB,A′ orB′ in place ofA, and also applies in case (2),
yielding H2’s.

The essential facts for treating case (3) are the following. If I is an interior wall, then every
wallw ofQwith which I has 2-dimensional intersection is an Eckardt wall ofQ, and is either
orthogonal to I or makes angle π/4 with it. In the orthogonal case, it is obvious that H ′

contains the image of I under reflection across w. In the π/4 case, one can check that there
is another interior wall I ′ with I ′ ∩ w = I ∩ w, ∠(w, I ′) = π/4 and I ⊥ I ′. Then the image
of I ′ under reflection across w lies in the same H3 as I does. Repeating this process, we see
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that theH3 containing I is tiled by 1
2PΓR-translates of interior walls ofQ. It follows that H ′

is a union of H2’s and H3’s.
We remark that the H3 tiled by translates of interior walls can be viewed as a 3-dimen-

sional analogue of our gluing process, describing moduli of real 6-tuples in CP 1; see [4] and
[3] for details. In particular, its stabilizer in PΓR is the nonarithmetic group discussed there.
Also, see [3] for the 2-dimensional analogue.

13. Nonarithmeticity

This section is devoted to proving the following result:

T 13.1. – PΓR is a nonarithmetic lattice in PO(4, 1).

Our main tool is Corollary 12.2.8 of [11]. We recall the context: G is an adjoint connected
absolutely simple non-compact real Lie group, G is an adjoint connected simple algebraic
group over R so that G is the identity component of G(R), and L is a lattice in G. Let
E = Q[Tr AdL], the field generated over Q by {Tr Ad γ : γ ∈ L}. Assume that there is
a totally real number field F and a form GF of G over F so that a subgroup of finite index
of L is contained in G( OF ), where OF is the ring of integers in F . It follows that E ⊂ F .
With this context in mind, the statement we will use is:

T 13.2 ([11, Corollary 12.2.8]). – A lattice L ⊂ G is arithmetic in G if and only
if for each embedding σ of F in R, not inducing the identity embedding of E in R, the real
group GF ⊗F,σ R is compact.

Proof of Theorem 13.1:. – To apply Theorem 13.2, we takeG to be the connected compo-
nent of SO(4, 1) and L to be the subgroup of PΓR that acts onH4 by orientation-preserving
isometries. Note that IsomH4 = PO(4, 1) = SO(4, 1), so that L is indeed a subgroup
of G. We take G to be the special orthogonal group of the form diag{−1, 1, 1, 1, 1} and
F = Q(

√
3). Then OF = Z[

√
3]. Note that G is defined over Q, hence over F , and that

L ⊂ G(Z[
√

3]). For the last statement we need two observations. First, the matrices (12.1)
and (12.2) of S and τ have entries in Z[

√
3]. Second, each root sA, . . . , sE , s′E , . . . , s

′
A in ta-

ble 12.1 has coordinates in Z[
√

3] and norm 1 or 2; it follows that the matrix of its reflection
has entries in Z[

√
3].

Next we show thatE = Q(
√

3) = F . It is clear thatE is either Q or Q(
√

3). To prove that
E = Q(

√
3) it suffices to exhibit a single γ ∈ L with Tr Ad γ /∈ Q. Almost any γ will do; we

take γ = (RCRD′RE′)2, where the R’s are the reflections in the corresponding simple roots
from table 12.1. One can compute a matrix for γ and its square and compute their traces,
yielding Tr(γ) = 13 + 6

√
3 and Tr(γ2) = 209 + 120

√
3. Since the adjoint representation of

O(4, 1) is the exterior square of the standard one, we can use the formula

Tr Ad(γ) =
1

2

(
(Tr(γ))2 − Tr(γ2)

)
= 34 + 18

√
3 /∈ Q .

This proves E = Q(
√

3).
Finally, if σ denotes the non-identity embedding of F in R, then since E = F it does

not induce the identity embedding of E. Since the form diag{−1, 1, 1, 1, 1} defining G is
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fixed by σ, the group GF ⊗F,σ R is again the non-compact group SO(4, 1). Thus L is not
arithmetic.

R. – (1) In the introduction we said that our gluing construction is philosophi-
cally that of Gromov and Piatetski-Shapiro [15]. But in technical detail it is quite different.
They glue hyperbolic manifolds with boundary whose fundamental groups are Zariski dense
inPO(n, 1) and lie in non-commensurable arithmetic lattices. We glue orbifolds with bound-
ary and corners whose orbifold fundamental groups are not Zariski dense in PO(4, 1) (but
do lie in arithmetic lattices that are not all commensurable). In particular, we cannot directly
apply their methods to prove non-arithmeticity.

(2) We wonder whether the unimodular lattice diag{−1, 1, 1, 1, 1} over Z[
√

3] plays some
deeper geometric or arithmetic role. For example, PΓR maps to PO(5,F3) ∼= W (E6) by
reduction modulo

√
3. On each component of the smooth moduli space, the action on this

F3 vector space is the same as the action on V from Sections 4 and 8. But it is not clear what
this really means.

(3) The group generated by reflections in the facets of Q, while being quite different from
PΓR, also preserves this Z[

√
3]-lattice and is also nonarithmetic.
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