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SEMI-CLASSICAL LIMIT OF THE LOWEST EIGENVALUE
OF A SCHRÖDINGER OPERATOR ON A WIENER SPACE:

I. UNBOUNDED ONE PARTICLE HAMILTONIANS

by

Shigeki Aida

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — We study a semi-classical limit of the lowest eigenvalue of a Schrödinger
operator on a Wiener space. The Schrödinger operator is a perturbation of the sec-
ond quantization operator of an unbounded self-adjoint operator by a C3-potential
function. This result is an extension of [1].

Résumé (Limite semi-classique de la plus petite valeur propre d’un opérateur de Schrödinger sur

l’espace de Wiener: cas d’un Hamiltonien non borné à une particule.)

Nous étudions le comportement semi-classique de la plus petite valeur propre
d’un opérateur de Schrödinger sur l’espace de Wiener. L’opérateur de Schrödinger
est obtenu par perturbation de l’opérateur de seconde quantification associé à un
opérateur non-borné autoadjoint donné par un potentiel C3. Ce résultat est une
extension de [1].

1. Introduction

In [1], we studied the semi-classical limit of the lowest eigenvalue of Schrödinger
operators which are perturbations of the number operator. In that case, one particle
Hamiltonian (the coe�cient operator of the second order di�erential operator) is
identity operator. However, we need to study the case where the coe�cient operator
is unbounded to study P (�)-type Hamiltonians. For example, the typical coe�cient
operator is

p
m2 ��, where m > 0 and � is the Laplace-Bertlami operator on R.

In this paper, we study the asymptotics of the lowest eigenvalue of a Schrödinger
operator in the case where the coe�cient operator is unbounded linear operator and
the potential function is C3. In P (�)-type model cases, the potential functions are
defined by using a renormalization and they are not continuous. In [2], we studied
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2 S. AIDA

Schrödinger operators on path spaces over Riemannian manifolds. In that case, the
di�erential operators are variable coe�cient ones and the coe�cient operators are not
bounded linear because they contain stochastic integrals. Moreover, the dependence on
the path of the coe�cients are discontinuous in the natural topology. The discontinuity
comes from the discontinuity of solutions of stochastic di�erential equations as a
functional of Brownian motion. Thus, we need to consider two kind of discontinuity
for potential functions and coe�cient operators in that case. But, the di�culties are
di�erent from that of the P (�)-type potentials. We will study semi-classical limit of
the lowest eigenvalue of a P (�)2-Hamiltonian on a finite interval in [3].

2. Preliminaries

Let (W,H, µ) be an abstract Wiener space. That is,
(i) H is a separable Hilbert space and W is a separable Banach space. Moreover

H is continuously and densely embedded into W ,
(ii) µ is the unique Gaussian measure on W such that for any ' 2 W ⇤,

Z

W

e
p
�1'(w)dµ(w) = e�

1
2k'k

2
H .

Here we use the natural inclusion and the identification by the Riesz theorem
W ⇤ ⇢ H⇤ ' H.

In this paper, we assume that W is a Hilbert space. This is equivalent to that
there exists a positive self-adjoint trace class operator S such that W is a completion
of H with respect to the Hilbert norm k

p
ShkH . That is, khkW = k

p
ShkH for all

h 2 H. We denote the sets of bounded linear operators, Hilbert-Schmidt operators,
trace class operators on H by L(H), L1(H), L2(H). Also we denote their operator
norms, trace norms, Hilbert-Schmidt norms by k k, k k1, k k2, respectively. For � > 0,
we define the new measure µ� on W by µ�(E) = µ

Äp
�E

ä
(E ⇢ W ). Now we define

our Schrödinger operators.

Definition 2.1. — Let A be a strictly positive self-adjoint operator on H. That is,

we assume that inf �(A) > 0, where �(A) denotes the spectral set of A. We de-

note cA = inf �(A2). We denote by FC1
A

(W ) the space of all smooth cylindrical

functions f(w) = F ('1(w), . . . ,'n(w)) (F 2 C1
b

(Rn),'i 2 W ⇤ \n2N D(An)). For

such a f , we define Df(w) =
P

n

i=1 @iF (w)'i 2 H. Here we use the identifica-

tion 'i 2 W ⇤ ⇢ H⇤ ' H and @iF (w) denotes the partial derivative with respect

to the i-th variable. Moreover we define DAf(w) =
P

n

i=1 @iF (w)A'i. We define a

Dirichlet form on L2(W,dµ�) by E�,A(f, f) =
R

W
kDAf(w)k2

H
dµ�(w). �L�,A de-

notes the generator. Let V be a real-valued measurable function on W such that

V 2 \�>0L1(W,µ�). Under the assumption that for all � > 0, E�,A,V (f, f) =
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SEMI-CLASSICAL LIMIT 3

E�,A(f, f) +
R

W
�2V (w)f(w)2dµ�(w) (f 2 FC1

A
(W )) is a lower bounded symmet-

ric form, we denote the generator of the smallest closed extension by �L�,A,V . Also

let E0(�, A, V ) = inf �(�L�,A,V ).

Remark 2.2. — (1) �L�,A can be viewed as the second quantization of A2 on H. Let
H = H1/2(R) be the Hilbert space with the norm khk2

H
=
R

R |(m2 ��)1/4h(x)|2dx,
where m > 0. Consider A = (m2��)1/4 on H. In this case, �L1,A is the time 0 field
free Hamiltonian in P (�)2-model. However note that �L1,A is usually identified with
the second quantization of

p
m2 �� on H⇤ = H�1/2(R). See also Example 3.3.

(2) In [1, 5], the Schrödinger operator with semi-classical parameter � is defined in
a di�erent way. Let V�(w) = �V

Ä
wp
�

ä
. The semi-classical limit of �L1,A + V� on

L2(W,dµ) is studied in the above papers. However note that this operator is unitarily
equivalent to �L�,A,V /� on L2(W,µ�). We adopt the similar definition to �L�,A,V in
the case of Schrödinger operators on path spaces over Riemannian manifolds because
the scaling w/

p
� can not defined on the curved spaces but the measure corresponding

to µ� can be defined on curves spaces too. See Remark 5.3 in [1] and [2].

Let us introduce the following assumptions on potential functions of Schrödinger
operators.

Assumption 2.3. — The following assumptions (A1), (A2) are standard in semi-
classical analysis. (A4) assures that the symmetric form E�,A,V is bounded from
below by Corollary 2.8 (2). Note that (A5) implies that A is an unbounded operator.

(A1) V is a C2-function on H. Let U(h) = 1
4kAhk2

H
+ V (h) (h 2 D(A)). Then

minh2D(A) U(h) = 0 and the zero point set is a finite set N = {h1, . . . , hn}.
(A2) 1

2D2U(hi) = 1
4A2 + Ki is a strictly positive self-adjoint operator on H, where

Ki = 1
2D2V (hi) 2 L(H,H).

(A3) V can be extended to a C3-function on W such that for any R > 0 and 0  k  3

sup
�
kDkV (w)kL(W⇥···⇥W,R) | kwkW  R

 
 C(R) < 1.

(A4) V can be extended to a continuous function on W and there exists p > 1 such
that

lim sup
�!1

��1 log

Z

W

e�
2p�

cA
V (w)dµ�(w) < 1,

(A5) There exists �0 > 1 such that A��0 2 L2(H).

For r > 0 and z 2 W,k 2 H, we denote Br(z) = {w 2 W | kw � zkW  r} and
Br,H(k) = {h 2 H | kh� kkH  r}.

Lemma 2.4. — (1) Suppose that (A4) holds or inf{V (h) | h 2 H} > �1. Then we

have lim
khkH!1

⇣cA

4
khk2

H
+ V (h)

⌘
= +1.
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4 S. AIDA

(2) Assume (A1), the same assumptions in (1) and for any L > 0, sup{|V (h)| | khkH 
L} < 1. Then for any " > 0,

(") := inf {U(h) | h 2 {[n

i=1B"(hi)}c} > 0.

Proof. — (1) If inf{V (h) | h 2 H} > �1, the statement is trivial. We assume (A4).
Let C be a positive number such that lim sup

�!1 ��1 log
R

W
e�

2p�

cA
V dµ� < C. Take

R > 0. Then for su�ciently large �, we have

1

�
log

Z

W

exp

Å
�2p�

cA

(R ^ V (w) _ (�R))

ã
dµ�(w)

 1

�
log

ÅZ

W

Å
e�

2p�

cA
R + exp

Å
�2p�

cA

(V (w) _ (�R))

ã
dµ�(w)

ãã

 1

�
log

⇣
e�C + e�

2p�

cA
R

⌘
 C +

log 2

�
.

By the Large deviation estimate, we have

sup
h

Å
�1

2
khk2

H
� 2p

cA

((�R) _ V (h) ^R)

ã
 C.

Since R is an arbitrary number, we get

�cA

4
khk2

H
� pV (h)  C · cA

2
for all h 2 H.

Suppose that there exists {hn} such that khnkH !1 and
sup

n

�
cA

4 khnk2H + V (hn)
�

=: l < +1. Then limn!1 V (hn) = �1. Hence

cA

4
khnk2H + pV (hn) =

cA

4
khnk2H + V (hn) + (p� 1)V (hn)  l + (p� 1)V (hn) ! �1.

This is a contradiction. So we are done.
(2) By the result in (1), we need to prove that for su�ciently large positive number L,

inf{U(h) | h 2 BL,H(0) \ ([n

i=1B"(hi))
c} > 0.

Suppose that there exists {'l} ⇢ BL,H(0)\ ([n

i=1B"(hi))
c such that liml!1 U('l) =

0. By the assumption, there exists a subsequence {'l(i)} which converges to a certain
element '1 2 H weakly. Since 1

4kA'l(i)k2H = U('l(i))�V ('l(i)), sup
i
kA'l(i)kH < 1

holds. Hence again by choosing a subsequence {'p(i)}, A'p(i) also converges to some
�1 weakly. By the Banach-Saks theorem, we see that '1 2 D(A) and A'1 = �1. On
the other hand, since the embedding H ⇢ W is compact, limi!1 k'p(i)�'1kW = 0

which implies limi!1 V ('p(i)) = V ('1). Since kA'1k2H  lim infi!1 kA'p(i)k2H , we
obtain U('1)  lim infi!1 U('p(i)) = 0. This implies '1 2 N and 'p(i) 2 B"(hj)

for some large i and 1  j  n. This is a contradiction.
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SEMI-CLASSICAL LIMIT 5

Lemma 2.5. — Let A be a strictly positive self-adjoint operator and K be a trace class

self-adjoint operator on H. Assume that A2 + K is also a strictly positive operator.

Then
p

A2 + K �A 2 L1(H) and

���
p

A2 + K �A
���

1
 kKk1

min
¶
inf �(

p
A2 + K), inf �(A)

© .

Proof. — We prove this in three steps: (i) A = I +T and T is a trace class operator,
(ii) A is a bounded linear operator, (iii) General cases.
(i) We denote S1 =

p
A2 + K and S0 = A. Note that S1 � S0 =

p
A2 + K � A

is a trace class operator. We denote the all eigenvalues and corresponding complete
orthonormal system of S1 � S0 by {↵n} and {en}. Then

|(Ken, en)| = |
�
(S2

1 � S2
0)en, en

�
|

=
����S1(S1 � S0) + (S1 � S0)S1 � (S1 � S0)

2
�
en, en

���

= |↵n ((S1 + S0)en, en)|
� |↵n| inf �(S1 + S0).

This implies that

k
p

A2 + K �Ak1 =
1X

n=1

|↵n| 
kKk1

inf �(
p

A2 + K + A)
.

(ii) Let {um} be all eigenvectors of K which is a c.o.n.s. of H. Set Pmh =
P

m

i=1(h, ui)ui

and Am =
p

PmA2Pm + P?
m

. Then A2
m
! A2, Am ! A converge strongly. On the

other hand, A2
m

+K = Pm(A2 +K)Pm +P?
m

(IH +P?
m

KP?
m

)P?
m

. Hence for su�ciently
large m, we have

min
¶
inf �(

p
A2

m
+ K), inf �(Am)

ä
� min

Ä
inf �(

p
A2 + K), 1/2, inf �(A)

ä
.

Since Am � IH is a trace class operator, by (i),

k
p

A2
m

+ K �Amk1 
kKk1

min (inf �(A2 + K), inf �(A), 1/2)
.

By taking the limit m !1, we see that
p

A2 + K �A 2 L1(H). Therefore again by
the same argument as in (i), we can prove (ii).
(iii) Let �n(x) be a function such that �n(x) = 1 for x  n and �n(x) = 0 for
x > n. Then �n(A) is a projection operator which commutes with A. Let An =

A�n(A) + (1� �n(A)) and Kn = �n(A)K�n(A). Then
p

A2 + Kn �A =
»

A2�n(A) + �n(A)K�n(A)�A�n(A)

=
p

A2
n

+ Kn �An 2 L(Im(�n(A)))
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6 S. AIDA

By (ii), we have

k
p

A2 + Kn �Ak1  kKnk1
inf �

Äp
A2�n(A) + �n(A)K�n(A) + A�n(A)

ä(2.1)

 kKnk1
min

Ä
inf �(

p
A2 + K), inf �(A)

ä .

For l > n > m,
Äp

A2
n

+ Kn �An

ä
�
Äp

A2
m

+ Km �Am

ä
=

p
A2 + Kn �

p
A2 + Km

=
»

A2
l

+ Kn �
»

A2
l

+ Km.

This and (ii) implies that
p

A2
n

+ Kn � An converges in the trace norm. It is not
di�cult to check that the strong limit is equal to

p
A2 + K � A. Therefore, (2.1)

implies the conclusion.

Proposition 2.6. — Let A be a strictly positive self-adjoint operator. For a trace class

self-adjoint operator K on H and h 2 D(A2), we set

VK,h(w) =
1

4
kAhk2

H
� 1

2
(A2h, w) + (K(w � h), w � h) .

We assume that A2 + 4K is a strictly positive self-adjoint operator and AKA can be

extended to a trace class operator. Then E�,A,VK,h
is a symmetric form bounded from

below and E0(�, A, VK,h) = �e(A, K) holds, where

(2.2) e(A, K) =
1

2
tr
Äp

A4 + 4AKA�A2
ä

.

Moreover it is the lowest eigenvalue of �L�,A,VK,h
and the corresponding normalized

positive eigenfunction is

⌦�,A,VK,h
(w) = det (IH + TK)1/4

⇥ exp

ß
��

4

ÄÄ
A�1{A4 + 4AKA}1/2A�1 � IH

ä
(w � h), (w � h)

ä™

⇥ exp

Å
�

2
(h, w)� �

4
khk2

H

ã
,

where TK = A�1(
p

A4 + 4AKA�A2)A�1
.

Proof. — If A is bounded linear operator, the proof is a straightforward calcu-
lation. Suppose that A is unbounded. Let An and Kn be the operators which
are defined in the proof of (iii) in Lemma 2.5. Then AKnA = AnKnAn. Thus�
A�1{A4 + 4AKnA}1/2A�1 � IH

�
2 L1(H)\k D(Ak). Therefore for su�ciently large

n, ⌦�,A,VKn,h
2 L2(µ�) and the simple calculation shows that

�L�,A,VKn,h
⌦�,A,VKn,h

= �e(A, Kn)⌦�,A,VKn,h
.

ASTÉRISQUE 327



SEMI-CLASSICAL LIMIT 7

Letting n !1, we have

�L�,A,VK,h
⌦�,A,VK,h

= �e(A, K)⌦�,A,VK,h
.

To prove that �e(A, K) = inf �
�
�L�,A,VK,h

�
, we note that for any f 2 FC1

A
(W ), it

holds that

E�,A,VK,h
(f, f) =

Z

W

kDA(f⌦�1
�,A,VK,h

)k2
H

⌦�,A,VK,h
(w)2dµ�(w)

+ �e(A, K)kfk2
L2(µ�).

We use the following estimate to prove a lower bound in Lemma 3.4. We refer the
reader to [7, 12, 14] for this estimate.

Theorem 2.7 (NGS estimate). — Let E(f, f) be a closed form on L2(X,m), where

(X, F , m) is a probability space. Assume that there exists ↵ > 0 such that for any

f 2 D( E), Z

X

f(x)2 log
Ä
f(x)2/kfk2

L2(X,m)

ä
dm(x)  ↵ E(f, f).

Then for any bounded measurable function V , it holds that

(2.3) E(f, f) +

Z

X

V (x)f(x)2dm(x) � � 1

↵
log

ÅZ

X

e�↵V (x)dm(x)

ã
kfk2

L2(X,m).

The following follows from the above estimate and Gross’s logarithmic Sobolev
inequality [7]: For any f 2 FC1

I
(W ),

Z

W

f(w)2 log
Ä
f(w)2/kfk2

L2(µ�)

ä
dµ�(w)  2

�

Z

W

kDf(w)k2
H

dµ�(w).

Originally NGS(=Nelson, Glimm, Segal) estimate (2.3) was proved by the hyper-
contractivity of the corresponding semigroup. See [14]. Corollary 2.8 (2) is proved
by Lemma 4.5 in [2] which follows from Gross’s log-Sobolev inequalities and finite
dimensional approximations.

Corollary 2.8. — (1) It holds that

E0(�, A, V ) � ��cA

2
log

ÅZ

W

exp

Å
�2�

cA

V

ã
dµ�(w)

ã
.

(2) Suppose that there exists a Hilbert-Schmidt operator T such that A = I +T . Then

E0(�, A, V )(2.4)

� ��
2

log

ßZ

W

exp

Å
�2�V (w)� � : (Tw,w) :µ�

��
2
kTwk2

H

ã
dµ�(w)

™

+
�

2
log det (2)(IH + T )� �

2
tr
�
T 2

�
.
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In (2.4), : (Tw,w) :µ�
is defined by the limit limn!1

�
(PnTPnw, w)� 1

�
trPnTPn

 
,

where Pn is a projection on to a finite dimensional subspace of H such that Pn " IH .
det (2) denotes the Carleman-Fredholm determinant.

3. Results

Theorem 3.1 (Bounded case). — We assume that A is a bounded linear operator and

satisfies the assumptions (A1), (A2), (A3), (A4). Then we have

(3.1) lim
�!1

E0(�, A, V )

�
= min

1in

e(A, Ki).

In the unbounded case, we can prove the following. The assumption is too strong
to cover the P (�)-type Hamiltonian. We will relax the assumptions and discuss such
a case in a separate paper.

Theorem 3.2 (Unbounded case). — Assume (A5). Let � � 1+ �0 and S = A�2�
. Then

AKiA is a trace class operator and (2.2) is well-defined. Furthermore, we assume that

(A1), (A2), (A3), (A4) hold. Then the asymptotics (3.1) holds.

Example 3.3. — Let I = [� l

2 , l

2 ] (l > 0) be an interval of R. Let �� be the Laplacian
with periodic boundary condition on X = L2(I ! R, dx). Let m > 0. For ↵ 2 R, let
H↵ = D((m2 ��)↵/2) and khkH↵ = k(m2 ��)↵/2hkX .
(1) Let H = H1/2. Then for any " > 0, we can take W = H�". Let 0 < " < 1/2.
Then using the inclusion and the identification H1/2 ⇢ H" = (H�")⇤, we can see
that µ satisfies that

R
W H�" (w, h)2

H" dµ(w) = k(m2 � �)�1/4hk2
X

for h 2 H. Let
U : X ! H1/2 be the natural isometry operator and define A = U(m2 ��)1/4U�1.
This is a standard example in P (�)2-model on finite interval. Let P (u) =

P2M

k=0 akuk

be a polynomial with real coe�cients with a2M > 0. For h 2 H, Ṽ (h) =
R

I
P (h(x))dx

is well-defined by the Sobolev embedding theorem. However H�" is the space of
distribution and P (w(x)) is not defined for w 2 H�". Actually, it should be defined
by

R
I

: P (w(x)) :µ�
dx where : P (w(x)) : denotes the Wick product. However this

is not a smooth function on W = H�" and cannot be covered by Theorem 3.2. This
will be studied in [3].
(2) Let H = H2. Then µ can be defined on W = H1. For 0 < � < 1/2, let A =

U(m2 � �)
1
2 ( 1

2��)U�1, where U is the natural isometry from X to H. Let Q(u) =
1
4m1�2�u2 + P (u), where P (u) is the polynomial defined in (1). Let {c1, . . . , cn} be
the minimum points of Q and asssume that Q00(ci) > 0 (1  i  n). Again let
Ṽ (h) =

R
I
P (h(x))dx for h 2 H. Then we see that Ṽ (h)� l min Q can be extended to

a smooth function V (w) on W . Then the zero point set of U(h) = 1
4kAhk2

H
+ V (h)

is the set of the constant functions {c1, . . . , cn}. For this V and A, all assumptions in
Theorem 3.2 hold with �0 = 1 + 4�

1�2�
and � = 1 + �0.
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We prove these theorems after preparations. Here we just prove AKiA 2 L1(H)

under (A5). Since V 2 C2(W ), there exists a bounded linear operator K̂i on W such
that D2V (hi)(u, v) =

Ä
K̂iu, v

ä
W

for any u, v 2 W . By the definition of the norm of
W , there exists K̃i 2 L(H) such that K̂i = A�K̃iA�� . Thus for any u, v 2 H ⇢ W ,

D2V (hi)(u, v) =
Ä
K̂iu, v

ä
W

=
Ä
A��A�K̃iA

��u,A��v
ä

H
=

Ä
A��K̃iA

��u, v
ä

H
.

This shows Ki = A��K̃iA�� and AKiA = A1��K̃iA1�� . Because � � 1 � �0, A1��

is a Hilbert-Schmidt operator and this implies AKiA is a trace class operator on H.
In our main theorems, we may assume that cA = 1. Because, if Theorems hold

in the case where cA = 1, then it implies that E0

Ä
�, Ap

cA

, V

cA

ä
= e

Ä
Ap
cA

, V

cA

ä
. This

shows the general cases.
The proof of upper bound is standard. Let � be a smooth function on R satisfying

0  �(x)  1, �(x) = 1 for x 2 [�1, 1] and �(x) = 0 for |x| � 2. For 2/3 < � < 1, set

⌦̃�,A,VKi,hi
(w) = Z�⌦�,A,VKi,hi

(w)�
�
��kw � hik2W

�
.

Here Z� is a normalization constant which makes the L2-norm to be equal to 1.
It holds that lim�!1 Z� = 1. Since hi is a minimizer of U , for any k 2 D(A),
1
2 (Ahi, Ak)

H
+ DV (hi)(k) = 0. The fact DV (hi) 2 H⇤ implies that hi 2 D(A2) and

DV (hi) = � 1
2A2hi. Using this and by the Taylor expansion, we have

V (w) = V (hi) + DV (hi)(w � hi) + (Ki(w � hi), w � hi)(3.2)

+
1

3!
DV 3(w + ✓(w � hi))((w � hi)

⌦3)

=
1

4
kAhik2H �

1

2

�
A2hi, w

�
+ (Ki(w � hi), w � hi) + Rhi

(w)

= VKi,hi
(w) + Rhi

(w).

Here we denote the remainder term by Rhi
(w). If �(��kw � hik2W ) 6= 0, then

|Rhi
(w)|  C��3�/2. This and the tail estimate of the Gaussian measure shows that

E�,A,V

Ä
⌦̃�,A,VKi,hi

, ⌦̃�,A,VKi,hi

ä
= E0(�, A,Ki) + O(�2� 3

2 �).

This proves the upper bound.
To prove the lower bound estimates, it su�ces to prove the following Lemma 3.4.

Let R be a su�ciently large positive number. Set �i,R(w) = �
�
Rkw � hik2W

�
(1 

i  n) and �0,R(w) =
p

1�
P

n

i=1 �i,R(w)2.

Lemma 3.4. — Let us assume that the conditions of either Theorem 3.1 or Theo-

rem 3.2 hold.
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(1)There exists a constant C > 0 such that for all i, �i,R 2 D(DA) and

kDA�i,R(w)k2
H
 CR µ�-a.e. w. Moreover it holds that

E�,A,V (f, f)(3.3)

=
nX

i=0

E�,A,V (f�i,R, f�i,R)�
nX

i=0

Z

W

kDA�i,R(w)k2
H

f(w)2dµ�(w).

(2) For 1  i  n,

E�,A,V (f�i,R, f�i,R) � �(1 + g(�))e(A, Ki)kf�i,Rk2L2(µ�),

where lim�!1 g(�) = 0.

(3) There exists a constant C > 0 such that

E�,A,V (f�0,R, f�0,R) � C�2kf�0,Rk2L2(µ�).

The essential part of this lemma is in (3). In the case where A = I +

Hilbert-Schmidt operator, we can apply the same method as in [1] without any
modification by using Corollary 2.8 (2) to prove (3). In general cases, we need to
approximate A by such kind of operators.

Lemma 3.5. — Assume that A is a bounded linear operator and (A1), (A3), (A4)
hold. Also we assume that cA = 1. Let R be a su�ciently large positive number such

that

inf

ß
1

4
khk2

H
+ V (h) | khkW � R

™
� 1

and " be a small positive number. Set D",R = BR(0) \ ([n

i=1B3"(hi))
c
. Then there

exists a self-adjoint operator T" 2 L1(H) and a positive number �(") such that

(1) it holds that for any h 2 D(A), kAhk2
H
� k(IH + T")hk2H ,

(2)
inf

ß
1

4
k(IH + T")hk2H + V (h)

��� h 2 D",R \H

™
� �(").

Proof. — It holds that for a large positive number L,

inf

ß
1

4
khk2

H
+ V (h)

��� h 2 D",R \BL,H(0)c

™
� 1.

Hence we prove the lemma on D",R \ BL,H(0). For a natural number k, we define
Ak =

P1
i=2k

i

2k 1Ik,i
(A), where Ik,i =

�
x 2 R | i

2k  x < i+1
2k

 
. Then

0  kAhk2
H
� kAkhk2

H
 3

2k
kAhk2

H
 3

2k
kAk2khk2

H
.

By Lemma 2.4 (2), for su�ciently large k0,

inf

ß
1

4
kAk0hk

2
H

+ V (h)
��� h 2 D",R \BL,H(0)

™
� 1

2
("),

3

2k0
kAk2L2  1

4
"2k
p

Sk�2.
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Note that there exists a family of finite dimensional projection operators on H such
that Pn " IH and Ak0Pn = PnAk0 for all n � 1. Hence, it holds that for any h 2 H

and n

kAk0hk2H = kAk0Pnhk2
H

+ kAk0P
?
n

hk2
H
� kAk0Pnhk2

H
+ kP?

n
hk2

H
.

Let h 2 BL,H(0). Then |V (h)�V (Pnh)|  kDV (Pnh+ ✓P?
n

h)kW⇤kP?
n

hkW (0 < ✓ <

1). Noting

kPnh + ✓P?
n

hkW  Lk
p

Sk,
kP?

n
hkW = k

p
SP?

n
hkH  k

p
SP?

n
k2khkH ,

lim
n!1

k
p

SP?
n
k2 = 0,

by (A2),
lim

n!1
sup {|V (h)� V (Pnh)| | h 2 BL,H(0)} = 0.

Now we take a natural number n0 such that

sup {|V (h)� V (Pn0h)| | h 2 BL,H(0)}  1

4
min

Ä
("), 1, "2k

p
Sk�2

ä
.

Let h 2 D",R \BL,H(0). Then three cases are possible for Pn0h such that (i) Pn0h 2
D"/3,R \BL,H(0), (ii) Pn0h 2 BR(0)c, (iii) Pn0h 2 [n

i=1B"(hi).
In the case of (i),

1

4
kAk0Pn0hk2H + V (h) =

1

4
kAk0Pn0hk2H + V (Pn0h) + (V (h)� V (Pn0h)) � 1

4
(").

If (ii) happens, then
1

4
kAk0Pn0hk2H + V (h) =

1

4
kAk0Pn0hk2H + V (Pn0h) + (V (h)� V (Pn0h)) � 3/4.

In the case where Pn0h 2 B"(hi) for some i,

kP?
n0

hkW = kh� Pn0hkW = kh� hikW � khi � Pn0hkW � 2".

Thus kP?
n0

hkH � k
p

Sk�1kP?
n0

hkW � 2"k
p

Sk�1. Therefore, we have for h 2 D",R \
BL,H(0) satisfying (iii),

1

4
kAk0Pn0hk2H +

1

4
kP?

n0
hk2

H
+ V (h)

=
1

4
kP?

n0
hk2

H
+

1

4
kAPn0hk2H + V (Pn0h)� 1

4

�
kAPn0hk2H � kAk0Pn0hk2H

�

+ (V (h)� V (Pn0h))

� "2k
p

Sk�2 � 3

2k0
kAk2L2 � 1

4
"2k
p

Sk�2 � 1

2
"2k
p

Sk�2.

Consequently,

inf

ß
1

4
kAk0Pn0hk2H +

1

4
kP?

n0
hk2

H
+ V (h)

��� h 2 D",R

™
� �(").
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This implies that the operator T" = (Ak0�IH)Pn0 satisfies the desired properties.

In Theorem 3.2, we assume � � 1 + �0. But � � �0 is su�cient for �i,R 2 D(DA).

Lemma 3.6. — (1) Assume that A is bounded. Then kwkW 2 D(DA) and kDAkwkW kH 
kA
p

Sk.
(2) Assume (A5) and let S = A�2�

, where � � �0. Then kwkW 2 D(DA) and

kDAkwkW kH  kA1��k.

Proof. — (1) We have DkwkW = Sw

kwkW

. So DAkwkW = ASw

kwkW

and kDAkwkW kH 
kA
p

Sk.
(2) This is proved in the same way as in (1).

Lemma 3.7. — Assume (A1), (A3), (A4), (A5) and cA = 1. Let � � �0 and S = A�2�
.

Then the same results as in Lemma 3.5 hold .

Proof. — For a > 0 let  a(x) be the positive function such that  a(x) = 1 for x  a

and  a(x) = a/x for x � a. Then for h 2 H

k a(A)hk2
W

= k a(A)A��hk2
H
 kA��hk2

H
= khk2

W
,

k a(A)h� hk2
W

 k( a(A)� 1)A��hk2
H
 1

a2�
khk2

H
.

Therefore,

k a(A)h� hikW = k a(A)h� h + h� hikW

� kh� hikW � 1

a�
khkH

Thus, if kh � hikW � 3" and khkH  3a
�

2 ", hold, then k a(A)h � hikW � 3"

2 .
Let A(a) = A a(A). Let L be a positive number such that for h with khkH � L,
1
4khk

2
H

+ V (h) � 1
2("). Now let a be a positive number satisfying that

C(L)

a�
L  min

Å
1

2
("),

1

4
"2k
p

Sk�2

ã
,

3a�

2
" � L.

Here C(L) is the number which appeared in (A3). Then for such an a, for h with
khkH  L, by the above estimates, we have

|V (h)� V ( a(A)h)|  C(L)

a�
L  1

2
("),

1

4
kA a(A)hk2

H
+ V ( a(A)h) � (").

Consequently, we have, for su�ciently large a,

inf

ß
1

4
kA(a)hk2

H
+ V (h) | h 2 D",R \H

™
� 1

2
(").

Therefore, it su�ces for us to do the same calculation as in the bounded case replacing
A by A(a). But of course, the norm of W is still defined by S = A�2� . Note that
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(A(a))k0 is defined first and next Pn0 is defined by (A(a))k0 . Case (iii) requires some
additional care. That is, we use the following estimate:
1

4
k(A(a))k0Pn0hk2H +

1

4
kP?

n0
hk2

H
+ V (h)

=
1

4
kP?

n0
hk2

H
+

1

4
kA(a)Pn0hk2H + V (Pn0h)� 1

4

Ä
kA(a)Pn0hk2H � k(A(a))k0Pn0hk2H

ä

+ (V (h)� V (Pn0h))

� "2k
p

Sk�2 +
1

4
kA a(A)Pn0hk2H + V ( a(A)Pn0h) + (V (Pn0h)� V ( a(A)Pn0h))

� 3

2k0
kA(a)k2L2 � 1

4
"2k
p

Sk�2

� 1

4
"2k
p

Sk�2.

Therefore, it su�ces to put T" =
Ä�

A(a)
�
k0
� IH

ä
Pn0 .

Proof of Lemma 3.4. — (1) The first assertion is proved in Lemma 3.6. (3.3) can be
proved by a simple calculation

(2) In the Taylor expansion (3.2) when �i,R(w) 6= 0, we have |Rhi
(w)|  Ckw �

hik3B  CR�1/2kw � hik2W . This implies

E�,A,V (f�i,R, f�i,R) � �e(A, Ki � CR�1/2S)kf�i,Rk2L2(µ�).

Here S is the trace class operator which defines the norm of W . Using the fact that

lim
R!1

e(A, Ki � CR�1/2S) = e(A, Ki)

which follows from Lemma 2.5, we complete the proof of (2).
(3) Let ⇢ be a continuous function on W such that (i) 0  ⇢(w)  1, (ii) ⇢ is 0 near
the neighborhood U(N) of the zero point set N , (iii) ⇢ is 1 in V (N)c, where V (N) is
a neighborhood of N such that U(N) ⇢ V (N). Moreover assume that {w | �0,R(w) 6=
0} ⇢ {w | ⇢(w) = 1}. Let r be a small positive number. Then

E�,A,V (f�0,R, f�0,R) = E�,A,V�r⇢(f�0,R, f�0,R) +

Z

W

r�2⇢f2�2
0,R

dµ�

= E�,A,(V�r⇢)⇢(f�0,R, f�0,R) +

Z

W

r�2f2�2
0,R

dµ�.

L2-norm of the second term on the right-hand side is r�2kf�0,Rk2. To estimate the
first term, we use again IMS localization formula. We write g0 = f�0,R. Let '0(w) =

�
⇣
kwk2

W

R2

⌘
and '1(w) =

p
1� '0(w)2. Then

E�,A,(V�r⇢)⇢(g0, g0) =
X

i=0,1

E�,A,(V�r⇢)⇢(g0'i, g0'i)�
X

i=0,1

Z

W

kDA'ik2Hg2
0dµ�.
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14 S. AIDA

We use Corollary 2.8 (2) to estimate the term containing g0'0. Let '̃0(w) =

�
⇣
kwk2

W

3R2

⌘
. We can find a positive number "0 and R0 such that {w 2 W | ⇢(w)'̃0(w) 6=

0} ⇢ D"0,R0 . Let T"0 be a trace class operator which satisfies the property in Lemma 3.5
for D"0,R0 . Then

E�,A,(V�r⇢)⇢(g0'0, g0'0) � E�,IH+T
"0 ,(V�r⇢)⇢'̃0

(g0'0, g0'0)

� ��
2

log I(�)kg0'0k2L2(µ�)

+

Å
�

2
log det (2)(IH + T"0)�

�

2
tr
�
T 2

"0
�ã
kg0'0k2L2(µ�),

where

I(�) =

Z

W

exp
⇣
�2� ((V (w)� r⇢(w)) ⇢(w)'̃0(w)

� � : (T"0w, w) :� �
�

2
kT"0wk2H

⌘
dµ�(w).

Let U"0(h) = 1
4k(IH + T"0)hk2H + (V (h)� r⇢(h))⇢(h)'̃0(h). Then

U"0(h) =
1

4
k(IH + T"0)hk2H(1� ⇢(h)'̃0(h))

+

ß
1

4
k(IH + T"0)hk2H + (V (h)� r⇢(h))

™
⇢(h)'̃0(h).

By the property of T"0 , by taking r to be su�ciently small, we haveß
1

4
k(IH + T"0)hk2H + (V (h)� r⇢(h))

™
⇢(h)'̃0(h) � 0 for all h 2 H.

Therefore by the Large deviation estimate, for such an r, lim�
1
�

log I(�)  0. This
shows that for any c > 0 it holds that for large �

E�,A,(V�r⇢)⇢(g0'0, g0'0) � �c�2kg0'0k2L2(µ�).

Next, we give a lower bound estimate for the another term. Let '̃1(w) =…
1� �

⇣
3kwk2

W

R2

⌘2
. Then {w | g0(w)'1(w) 6= 0} ⇢ {w | '̃1(w) = 1}. By using

Corollary 2.8 (1),

E�,A,(V�r⇢)⇢(g0'1, g0'1) � �
�

2
log

ÅZ

W

exp (�2�(V � r⇢)⇢'̃1) dµ�

ã
kg0'1k2L2(µ�).

If R is su�ciently large and r is small, then

inf

ß
1

4
khk2

H
+ (V (h)� r⇢(h)) ⇢(h)'̃1(h)

��� '̃1(h) 6= 0, h 2 H

™
> 0.

Thus, by the Large deviation results, for any c > 0 it holds that for large �

E�,A,(V�r⇢)⇢(g0'1, g0'1) � �c�2kg0'1k2L2(µ�).

These prove (3).
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Remark 3.8. — Let Ṽ be a bounded measurable function on W . Assume that A4 +

4AKA is strictly positive and AKA is a trace class operator. Let

cA,K = inf �
Äp

A4 + 4AKA
ä

.

Then it holds that for any f 2 FC1
A

(W ),

E
�,A,Vk,h+Ṽ

(f, f)

� E0(�, A, VK)kfk2
L2(µ�)

��cA,K

2
log

ÅZ

W

exp

Å
� 2�

cA,K

Ṽ (w)

ã
⌦�,A,VK,h

(w)2dµ�(w)

ã
kfk2

L2(µ�).

By this estimate, we can prove local estimates near N in Lemma 3.4 (2) using the
Laplace method. This proof could be extended to the case of Schrödinger operators
with more general potential functions.
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INFINITE DIMENSIONAL OSCILLATORY INTEGRALS
WITH POLYNOMIAL PHASE FUNCTION AND THE TRACE

FORMULA FOR THE HEAT SEMIGROUP

by

Sergio Albeverio & Sonia Mazzucchi

It is a special honour and pleasure to dedicate this work
to Jean-Michel Bismut, as a small sign of gratitude

for all he has taught us by his inspiring work

Abstract. — Infinite dimensional oscillatory integrals with a polynomially growing
phase function with a small parameter ✏ 2 R+ are studied by means of an analytic
continuation technique, as well as their asymptotic expansion in the limit ✏ # 0. The
results are applied to the study of the semiclassical behavior of the trace of the heat
semigroup with a polynomial potential.

Résumé (Intégrales oscillantes en dimension infinie avec une phase polynomiale et formule de la
trace pour le semigroupe de la chaleur)

Nous étudions les intégrales oscillantes en dimension infinie avec une phase de
croissance polynomiale à petit paramètre ✏ 2 R+ au moyen d’une technique de pro-
longement analytique. Nous donnons aussi leur développement asymptotique en ✏
lorsque ✏ # 0. Nous présentons une application de ces résultats à l’étude du compor-
tement semiclassique de la trace du noyau de la chaleur avec un potentiel polynomial.

1. Introduction

Oscillatory integrals on finite dimensional Hilbert spaces, i.e. expressions of the
form

(1)
Z

Rn

e�
i
✏ �(x)g(x)dx,
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18 SERGIO ALBEVERIO & SONIA MAZZUCCHI

(where � : Rn ! R is the phase function and ✏ 2 R+ a real positive parameter) are a
classical topic of investigation, having several applications, e.g. in electromagnetism,
optics and acoustics. They are part of the general theory of Fourier integral operators
[27, 35]. Particularly interesting is the study of the asymptotic behavior of these
integrals in the limit ✏ # 0. The generalization of the definition of oscillatory integrals
to the case where the integration is performed on an infinite dimensional space, in
particular a space of continuous functions, presents a particular interest in connection
with applications to quantum theory such as the mathematical realization of Feyn-
man path integrals [1, 7] (see also, e.g. [26, 36] and references therein; applications
include—besides quantum mechanics—quantum field theory and low dimensional ge-
ometry, see, e.g. [10] and references therein). In the case where the integration is
performed on such spaces and on general real separable Hilbert spaces, the theory
was for a long time restricted to oscillatory integrals with phase functions � which
can be written as sums of a quadratic form and a bounded function belonging to the
class of Fourier transforms of complex measures. In [8, 9] these results have been gen-
eralized to phase functions with quartic polynomial growth. In this paper we consider
a generalization of the oscillatory integral (1) and its infinite dimensional analogue,
in the case where the imaginary unity i in the exponent is replaced by a complex
parameter s 2 C+ ⌘ {z 2 C : Re(z) � 0}:

(2) I(s) ⌘
Z

e�
s
✏ �(x)g(x)dx.

Strictly speaking I(s) has an oscillatory behavior only for s being a pure imaginary
number. By generalizing the results of [8], we prove (in section 2) a representation
formula which allows us to compute an infinite dimensional oscillatory integral of
the form (2), with a phase function � having an arbitrary even polynomial growth,
in terms of a Gaussian integral. In the non degenerate case (i.e. when the Hessian
of the phase function is non degenerate), we compute (in section 3) the asymptotic
expansion of the integral as ✏ # 0 in powers of ✏. In the degenerate case the situation
is more involved. In section 4 we handle in detail a particular example and apply
this result to the study of the asymptotic behavior of the trace of the heat semigroup
Tr[e�

t
~ H ], t > 0, in the case where H is the essentially self-adjoint operator on C1

0 ⌘
C1

0 (Rd) ⇢ L2(Rd) given on the functions � 2 C1
0 by

(3) H�(x) =
⇣
� ~2

2
�x + V (x)

⌘
�(x),

where ~ > 0 and V is a polynomially growing potential of the form V (x) = |x|2N ,
x 2 Rd, N 2 N. This corresponds to exhibiting the detailed behavior of Tr[e�

t
~ H ],

t > 0, “near the classical limit". Indeed H can be interpreted as a Schrödinger Hamil-
tonian (in which case ~ is the reduced Planck’s constant), and consequently e�

t
~ H
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as a Schrödinger semigroup with imaginary time, i.e. the heat semigroup. In recent
years a particular interest has been devoted to the study of the trace of the heat semi-
group and of the corresponding Schrödinger group e�

it
~ H , t 2 R, (related to the heat

semigroup by analytic continuation in the “time variable" t) and their asymptotics in
the “semiclassical limit ~ # 0" (see, e.g., [46], [1, 4, 12] and also [16, 17, 18, 20]
for related problems). In particular one is interested in the proof of a trace formula
of Gutzwiller’s type, relating the asymptotics of the trace of the Schrödinger group
and the spectrum of the quantum mechanical energy operator H with the classical
periodic orbits of the system. Gutzwiller’s heuristic trace formula, which is a basis
of the theory of quantum chaotic systems, is the quantum mechanical analogue of
Selberg’s trace formula, relating the spectrum of the Laplace-Beltrami operator on
manifolds with constant negative curvature with the periodic geodesics (see, e.g., [25]
and [3, 4, 12]).
In the case where the potential V is the sum of an harmonic oscillator part and
a bounded perturbation V0 that is the Fourier transform of a complex (bounded
variation) measure on Rd, rigorous results on the asymptotics of the trace of the
Schrödinger group and the heat semigroup have been obtained in [4, 12] by means of
an infinite dimensional version of the stationary phase method for infinite dimensional
oscillatory integrals (see [7] for a review of this topic).
The paper is organized as follows. In section 2 we give the definition and the main
results on infinite dimensional oscillatory integrals of the form (2) with a polynomial
phase function �, in section 3 we study the asymptotic expansion of the integral in
the case where the origin is a non degenerate critical point of �, while in section 4
we study a degenerate case and apply these results to the asymptotics of Tr[e�

t
~ H ],

t > 0, as ~ # 0.

2. Infinite dimensional oscillatory integrals

The present section is devoted to the study of the oscillatory integrals with complex
parameter s. In the following we shall denote by (H , h , i, k k) a real separable infinite
dimensional Hilbert space, s will be a complex number such that Re(s) � 0, g : H ! C
a Borel function.
Let us consider the generalization of the oscillatory integral (1) to the case (2) where
the imaginary unity i in the exponent is replaced by a complex parameter s 2 C+ ⌘
{z 2 C : Re(z) � 0}:

(4) I(s) ⌘
Z

Rn

e�
s
✏ �(x)g(x)dx.
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In the case where s is a pure imaginary number, by exploiting the oscillatory behavior
of the integrand, the oscillatory integral (4) can still be defined as an improper Rie-
mann integral even if the (continuous) function g is not summable. In the case where
the phase function � is a quadratic form, the integral (4) is called Fresnel integral.
We propose here for the general case (4) a modification of the Hörmander’s defini-
tion [27], also considered in [5, 23] in connection to the generalization to the infinite
dimensional case. This modification is as follows:

Definition 2.1. — Let f : Rn ! C be a Borel function, s 2 C+ a complex parameter.
Let S be a subset of the space of the Schwartz test functions S(Rn). If for each � 2 S
such that �(0) = 1 the integrals

I�(f,�) :=

Z

Rn

(2⇡s�1)�n/2e�
s
2 |x|2f(x)�(�x)dx

exist for all � > 0 and lim�!0 I�(f,�) exist and is independent of �, then this limit
is called the Fresnel integral of f with parameter s (with respect to the space S of
regularizing functions) and denoted by

(5) F s(f) ⌘
gZ s

Rn

e�
s
2 |x|2f(x)dx.

By an adaptation of the definition of infinite dimensional oscillatory integrals given
in [23] it is possible to define the oscillatory integral with parameter s on the Hilbert
space H , namely

(6) I(s) =
›Z s

H
e�

s
2kxk

2

g(x)dx

as the limit of a sequence of (suitably normalized) finite dimensional approximations
[12].

Definition 2.2. — A Borel measurable function f : H ! C is called F s integrable
if for each sequence {Pn}n2N of projectors onto n-dimensional subspaces of H , such
that Pn  Pn+1 and Pn ! I strongly as n !1 (I being the identity operator in H ),
the finite dimensional approximations of the Fresnel integral of f , with parameter s,

(7) F s

Pn
(f) ⌘

flZ s

Pn H
e�

s
2kPnxk2f(Pnx)d(Pnx)

exist (in the sense of definition 2.1) and the limit limn!1 F s

Pn
(g) exists and is inde-

pendent of the sequence {Pn}.
In this case the limit is called the infinite dimensional Fresnel integral of f with
parameter s and is denoted by

›Z s

H
e�

s
2kxk

2

f(x)dx.
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f is then said to be integrable (in the sense of Fresnel integrals with parameter s).

The description of the largest class of functions which are integrable in this sense
is an open problem, even in the finite dimensional case. Clearly it depends on the
class S of the regularizations. The common choice is S ⌘ S(Rn), [5, 23]. In this case
[5, 7, 23] the space of integrable functions includes (in finite as well as in infinite
dimensions) the Fresnel class F (H ), that is the set of functions f : H ! C that are
Fourier transforms of complex bounded variation measures on H :

f(x) =

Z

H
eihy,xidµf (y) ⌘ µ̂f (x), x 2 H

sup
X

i

|µf (Ei)| < 1,

where the supremum is taken over all sequences {Ei} of pairwise disjoint Borel subsets
of H , such that [iEi = H .
In fact for any f 2 F (H ) it is possible to prove a Parseval type equality that allows to
compute the infinite dimensional oscillatory integral of f (with purely imaginary pa-
rameter s) in terms of an absolutely convergent integral with respect to the associated
complex-valued measure µf [5, 23]. Indeed given a self-adjoint trace-class operator
B : H ! H , such that (I � B) is invertible, a function f 2 F (H ), f = µ̂f and a
positive parameter ~ 2 R+, it is possible to prove that the function e�

i
2~ hx,Bxif(x) is

Fresnel integrable and the corresponding Fresnel integral with parameter s = �i/~ is
given by

(8)
‡Z �i/~

H
e

i
2~kxk

2

e�
i
2~ hx,Bxieihx,yif(x)dx

= (det(I �B))�1/2

Z

H
e�

i~
2 h↵+y,(I�B)�1(↵+y)iµf (d↵)

where det(I � B) = |det(I � B)|e�⇡i Ind (I�B) is the Fredholm determinant of the
operator (I � B), |det(I � B)| its absolute value and Ind((I � B)) is the number of
negative eigenvalues of the operator (I �B), counted with their multiplicities.

Let us also recall, for later use, a known result on infinite dimensional oscillatory
integrals.

Let H be a Hilbert space with norm | · | and scalar product (·, ·). Let also k · k be
an equivalent norm on H with scalar product denoted by h·, ·i. Let us denote the new
Hilbert space by H̃ . Let us assume moreover that

hx1, x2i = (x1, x2) + (x1, Tx2), x1, x2 2 H̃

kxk2 = |x|2 + (x, Tx), x 2 H̃ ,
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where T is a self-adjoint trace class operator on H . The following holds (see [11, 12]):

Theorem 2.3. — Let f : H ! C be a Borel function. f is integrable on H (in the
sense of definition 2.2) if and only if f is integrable on H̃ and in this case

(9)
›Z

H̃
e�

s
2 |x|2f(x)dx = det(I + T )1/2

›Z

H
e�

s
2 |x|2f(x)dx

Recently the class of “Fresnel integrable functions" in the sense of definition 2.2
has been further enlarged. In particular in [9] the Parseval type equality (8) has been
generalized to the case where H is finite dimensional but the phase function is an even
degree (not necessarily second order) polynomial, while in [8] a corresponding result
has been proved for infinite dimensional Hilbert spaces and phase functions which are
the sum of a quadratic and a quartic term.
Let us also remark that definition 2.2 can be seen as an extension of a line of develop-
ment relating infinite dimensional integrals of probabilistic and oscillatory type, going
back to Cameron, see, e.g., [19], [37] and corresponding references under “analytic
approach" in [1, 7].

In the following we shall extend these results to infinite dimensional Hilbert spaces
and suitable polynomial phase functions of higher degrees. The main idea is a gen-
eralization of a Parseval-type equality, obtained by modifying the definition 2.1 by
restricting the class of regularizing functions to a class S of analytic functions.
Let ↵ 2 R, in the following I↵ will denote the open interval (0,↵) if ↵ > 0 and (↵, 0)

if ↵ < 0; D↵ will denote the sector of the complex z� plane

D↵ := {z = |z|ei' 2 C : |z| > 0, ' 2 I↵},

and S
↵
(Rn) will denote the space of functions � 2 S(Rn) satisfying the following

assumptions:

1. for any x 2 Rn the function

z 7! �(zx), z 2 R, x 2 Rn

can be extended to an analytic function in D↵, which is continuous in the closure
D̄↵ of D↵.

2. for any z 2 D̄↵ the map

x 7! �z(x) := �(zx), z 2 C, x 2 Rn

is bounded.

Clearly S
�
(Rn) ⇢ S

↵
(Rn) if ↵ < �. As an example the function x 2 Rn 7! e�kxk

2

is
an element of S

⇡/4(Rn).
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Given a real separable Hilbert space of H , with inner product h , i and norm
k k, let us consider the abstract Wiener space (H , B) built on H , where (B, | |) is
the Banach space completion of H with respect to the measurable norm | | and
let µ be the standard Gaussian measure on B associate with H (see [24, 32] and
the Appendix of the present paper). H is sometimes called the reproducing kernel
Hilbert space of B. Let us denote by c the norm of the continuous inclusion of H in B.

Theorem 2.4. — Let s, r 2 C, s = |s|ei↵ and r = |r|ei�, with ↵,� 2 [�⇡/2,⇡/2]. Let
us assume that for any ' belonging to the closure Ī�↵/2 of I�↵/2, the angle � + 2N'

is included in the interval [�⇡/2,⇡/2].
Let B : H ! H be a trace class symmetric operator such that (I � B) is strictly
positive. Let V2N : H ! R be a positive, continuous in the | |-norm and homogeneous
function of order 2N , i.e. V2N (�x) = �2NV2N (x), for any � 2 R, x 2 H . Let g : H !
C satisfy the following assumptions:

– for any x 2 H the map

z 7! g(zx), z 2 R, x 2 H

can be extended to a function which is analytic on D�↵/2 and continuous in
D̄�↵/2.

– 9K1 > 0, 9K2 2 (0, 1/c2), 8x 2 H

(10) |g(zx)|  K1|e
sz2

2 (K2|x|2�hx,Bxi)|, 8z 2 D̄�↵/2

– the function x 7! g↵(x) ⌘ g(e�i↵/2x), x 2 H , is continuous in the | · |-norm.

Then the infinite dimensional oscillatory integral with parameter s and regularizing
class S�↵/2 of the function f : H ! C

(11) f(x) = e
s
2 hx,Bxi�rV2N (x)g(x), x 2 H ,

is well defined and it is given by

(12)
›Z s

H
e�

s
2 hx,(I�B)xi�rV2N (x)g(x)dx =

Z

B
e

1
2 h!,B!i�rs

�N
Ṽ2N (!)g̃↵(|s|�1/2!)dµ(!),

Ṽ2N resp. g̃↵ being the stochastic extensions of V2N resp. g↵ to B.

Proof. — The right hand side of (12) is well defined, indeed under the assumption
of | |-norm continuity, the functions V2N and g↵ can be extended by continuity to
random variables V̄2N and ḡ↵ on B, which coincide with the stochastic extensions of
Ṽ2N and g̃↵ of V2N and g↵ µ-a.e. (cfr. Appendix, which is based on [24]). Moreover
for any � 2 C+ and for any increasing sequence of n�dimensional projectors Pn in
H , the family of bounded random variables e��V2N�P̃n( · ) ⌘ e��V

n
2N ( · ) (P̃n being the
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stochastic extension of Pn to B)converges µ�a.e. to e��V̄2N ( · ).
As B is symmetric trace class, the quadratic form on H ⇥ H :

x 2 H 7! hx,Bxi

can be extended to a random variable on B, denoted again by h · , B · i. Moreover the
random variable e

1
2 h · ,B · i is in L1(µ) (see appendix). The bound (10) for z = s�1/2

extends by continuity to g̃↵ : B ! C and by Fernique’s theorem the integral on the
right hand side of (12) is convergent.
Let {Pn}n2N be a sequence of finite dimensional projection operators on H converging
strongly to the identity as n !1. Let � 2 S�↵/2(Rn) be a regularizing function. For
any � > 0 let us consider the regularized finite dimensional approximations

(13) (2⇡s�1)�n/2

Z

Pn H
e�

s
2 hPnx,(I�B)Pnxi�rV2N (Pnx)g(Pnx)�(�Pnx)d(Pnx).

For any z 2 R+ the integral (13) is equal to

(14)
�z2s

2⇡

�n/2
Z

Pn H
e�

sz2

2 hPnx,(I�B)Pnxi�rz
2N

V2N (Pnx)g(zPnx)�(z�Pnx)d(Pnx).

By the assumptions on the functions �, g, as well as on the parameters s and r, and
by Fubini and Morera theorems, the integral (14) is a function of the variable z which
is analytic in the sector D�↵/2 and continuous on D̄�↵/2, and coincides with the
value of the integral (13) on R+. By a straightforward application of the reflection
principle [33] it is a constant function on the whole closed sector D̄�↵/2. In particular
for z = s�1/2 := |s|�1/2e�i↵/2, we conclude that

(2⇡s�1)�n/2

Z

Pn H
e�

s
2 hPnx,(I�B)Pnxi�rV2N (Pnx)g(Pnx)�(�Pnx)d(Pnx)

= (2⇡)�n/2

Z

Pn H
e�

1
2 hPnx,(I�B)Pnxi�rs

�N
V2N (Pnx)g(s�1/2Pnx)�(s�1/2�Pnx)d(Pnx)

By letting � # 0 and using again the dominated convergence theorem the latter is
equal to

Z

Pn H
e

1
2 hPnx,BPnxi�rs

�N
V2N (Pnx)g(s�1/2Pnx)

e�
1
2kPnxk2

(2⇡)n/2
d(Pnx)

=

Z

B
e

1
2 hPnx,BPnxi�rs

�N
Ṽ2N (Pnx)g̃↵(|s|�1/2Pnx)dµ(x)

By letting n ! 1 and by the dominated convergence theorem the latter converges
to the right hand side of (12)
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Remark 2.5. — Theorem 2.4 generalizes the results obtained in [8] concerning the
oscillatory integrals of the form

(15)
›Z

H
e

i
2 hx,xiei�V4(x)g(x)dx.

Indeed the Parseval type equality (12) allows one to compute explicitly infinite di-
mensional oscillatory integrals with polynomial phase of higher degree, provided that
the parameter s has a non vanishing real part. For instance one can compute infinite
dimensional oscillatory integrals of the form

›Z s

H
e�

|s|ei↵

2 hx,xiei�V2N (x)g(x)dx

with � 2 R+ and ↵ 2 [�⇡/N, 0].

Remark 2.6. — In the case s 2 R+, theorem 2.4 relates a Gaussian integral on the
Banach space B with an integral on its reproducing kernel Hilbert space H .

If the operator (I � B) : H ! H is not strictly positive, formula (12) does not
hold. In the following we shall generalize the results of theorem 2.4 to the case where
(I � B) has non positive eigenvalues, by restricting the class of polynomial phase
functions V2N .
Given a trace class symmetric operator B : H ! H , the number of non positive
eigenvalues of (I � B) (counted with their multiplicity) is finite. We shall denote
by H 0 the kernel of I � B, by H � the subspace of H where I � B is negative
definite, and by H + the subspace of H where I � B is positive definite. We have
H = H � � H 0 � H +. Let us introduce the notation H 1 ⌘ H � � H 0, H 2 ⌘ H +

and x 2 H = x1 + x2, with xi 2 H i, i = 1, 2. Clearly dim(H 1) < +1 and this
fact will be used in the following. Let us denote by (H 2, B2) the abstract Wiener
space associated with H 2 and by µ2 the Gaussian measure on B2 associated with H 2.

Theorem 2.7. — Let s, r 2 C, s = |s|ei↵ and r = |r|ei�, with ↵,� 2 [�⇡/2,⇡/2]. Let
us assume that for any ' 2 Ī�↵/2, the angle � + 2N' is included in the interval
(�⇡/2,⇡/2).
Let B : H ! H be a trace class symmetric operator. Let V2N : H ! R satisfy the
assumptions of theorem 2.4. Let us assume moreover that there exists a constant K3

such that for any x1 2 H 1, x2 2 H 2 one has V2N (x1 + x2) � V2N (x1) � K3. Let
g : H ! C satisfy the following assumptions:

– for any x 2 H the map

z 7! g(zx), z 2 R, x 2 H
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can be extended to a function which is analytic in D�↵/2 and continuous in
D̄�↵/2.

– 9K4, K5, � > 0, 9K6 2 (0, 1/c2), 8x1 2 H 1, x2 2 H 2, 8z 2 D̄�↵/2:

(16) |g(z(x1 + x2))|  K4|eK5|zx1|2N��+ sz2

2 (K6|x2|2B2�hx2,Bx2i)|,

– the function x 7! g↵(x) ⌘ g(e�i↵/2x), x 2 H , is continuous in the | |-norm.

Then the infinite dimensional oscillatory integral with parameter s and regularizing
class S�↵/2 of the function (11) is well defined and it is given by

(17)
›Z s

H
e�

s
2 hx,(I�B)xi�rV2N (x)g(x)dx = (2⇡)�dim( H 1)/2

Z

H 1⇥B2

e�
1
2 hx1,(I�B)x1i

e
1
2 h!2,B!2i�rs

�N
Ṽ2N (x1+!2)g̃↵(|s|�1/2(x1 + !2))dµ(!2)⇥ dx1

Proof. — The proof is completely analogous to the proof of theorem 2.4. Let us con-
sider a sequence {Pn}n2N of finite dimensional projection operators on H 2 converg-
ing strongly to the identity as n ! 1. Because of the conditions on the parameters
s, r 2 C, the regularized finite dimensional approximations of the integral

(2⇡s�1)�(n+dim( H 1))/2

Z

H 1⇥Pn H 2

e�
s
2 hx1,(I�B)x1ie�

s
2 hPnx2,(I�B)Pnx2i�rV2N (Pnx2+x1)

g(Pnx2 + x1)�(�(Pnx2 + x1))dx1 ⇥ d(Pnx2)

are equal to

(18) (2⇡)�dim( H 1)/2

Z

H 1⇥Pn H 2

e�
1
2 hx1,(I�B)x1ie

1
2 hPnx2,BPnx2i�rs

�N
V2N (Pnx2+x1)

g(s�1/2(Pnx2 + x1))
e�

1
2kPnx2k2

(2⇡)n/2
dx1 ⇥ d(Pnx2)

= (2⇡)�dim( H 1)/2

Z

H 1⇥B2

e�
1
2 hx1,(I�B)x1ie

1
2 hPnx2,BPnx2i�rs

�N
Ṽ2N (Pnx2+x1)

g̃↵(|s|�1/2(Pnx2 + x1))dx1 ⇥ dµ(!2).

As by our hypothesis we have the inequality

|e� 1
2 hx1,(I�B)x1ie

1
2 hPnx2,BPnx2i�rs

�N
Ṽ2N (Pnx2+x1)g̃↵(|s|�1/2(Pnx2 + x1))|

 K4e
K5|s�1/2

x1|2N��

e�
1
2 hx1,(I�B)x1i�|r||s|�N cos(��N↵)V2N (x1)

e�|r||s|�N cos(��N↵)K3e
K6
2 |Pnx2|2B2 ,

the dominated convergence theorem can be applied and by letting n !1 the integral
(18) converges to the right hand side of (17).
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Remark 2.8. — In theorem 2.7 the convergence of the integral on the subspace H 1 is
due to the fast decreasing behavior of the function e�rs

�N
V2N instead of e�

1
2 h·,(I�B)·i,

as the latter has an exponential growth on H 1. For this reason the assumptions of
theorem 2.7 include the condition that for any ' 2 Ī�↵/2, the angle �+2N' is included
in the open interval (�⇡/2,⇡/2), instead of the closed one (as in theorem 2.4). On
the other hand this restriction allows us to admit a stronger growth of the function g

on the subspace H 1 and to replace condition (10) of theorem 2.4 by condition (16).

3. The asymptotic expansion

In the following we shall put s := s
0

✏
, s0 = |s0|ei↵, r := r

0

✏
, with ✏ 2 R+ and s0, r0

satisfying the assumptions of theorem 2.4, and we shall study the asymptotic behavior
of the integral

(19) I(✏) :=
›Z s

H
e�

s0
2✏ hx,(I�B)xi� r0

✏ V2N (x)g(x)dx

in the limit ✏ # 0. Let us assume the operator B : H ! H be of trace class, symmetric
and such that I �B > 0 and the functions V2N , g satisfy the assumptions of the the-
orem 2.4. Let us denote by gs0 : B ! C the function given by gs0(!) := g̃↵(|s0|�1/2!)

(g̃↵ being the stochastic extension of x 7! g(e�i↵/2x), x 2 H ). Assume that gs satisfies
the following hypothesis:

1. 8! 2 B, the function � 7! gs0(�!) is 2m�times continuously di�erentiable in
� 2 R.

2. 8k = 1, . . . , 2m, 9 a polynomial Qk in the variables |�̄| and |!| such that 8! 2 B,
8�̄ 2 R

���
dk

d�k
gs0(�!)|�=�̄

���  Qk(|�̄|, |!|)

For notational simplicity in the following we shall adopt the short writing

g(k)(�̄,!) :=
dk

d�k
gs0(�!)|�=�̄

.

The following holds:

Theorem 3.1. — Under the assumptions above the integral I(✏) admits the following
asymptotic expansion

(20) I(✏) =
m�1X

n=0

✏nCn + O(✏m)

and the leading term is C0 = det(I �B)�1/2g̃(0).
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Proof. — By equation (12) the integral I(✏) is equal to

(21)
Z

B
e

1
2 h!,B!i�r

0
s
0�N

✏
N�1

Ṽ2N (!)gs0(
p
✏!)dµ(!)

For any ! 2 B, let us consider the function f : R+ ! C, given by

f(✏) := e�r
0
s
0�N

✏
N�1

Ṽ2N (!)gs0(
p
✏!), ✏ 2 R+

By expanding f(✏) in power series of
p
✏ we get

f(✏) =
2m�1X

n

cn

p
✏
n

+ R2m(
p
✏)

where
cn =

X

k,l : k+(2N�2)l=n

1

l!k!
g(k)(0,!)(�r0s0�N )lṼ2N (!)l

and R2m = ✏
m

(2m�1)!

R 1

0 f (2m)(t
p
✏)(1� t)2m�1dt, with

f (2m)(�) =
2mX

k=0

2m!

k!(2m� k)!
g(k)(�,!)P2m�k(�,!)e�r

0
s
0�N

�
2N�2

Ṽ2N (!),

and Pk(�̄,!) are polynomials (in � and V (!)) defined by d
k

d�k |�=�̄
e�r

0
s
0�N

�
2N�2

Ṽ2N (!) =

Pk(�̄,!)e�r
0
s
0�N

�
2N�2

Ṽ2N (!). By substituting into (21) we get

I(✏) =
m�1X

n=0

Cn✏
n + Rm(✏)

(22) Cn =
X

k,l : k+(2N�2)l=2n

(�r0)ls0�Nl

l!k!

Z

B
e

1
2 h!,B!ig(k)(0,!)Ṽ2N (!)ldµ(!)

and

Rm(✏) =
✏m

(2m� 1)!

Z

B

Z 1

0
e

1
2 h!,B!if (2m)(t

p
✏)(1� t)2m�1dt dµ(!).

By the assumptions on the function g, the integrals in the formula (22) are well
defined, as well as the remainder that satisfies the following estimate

(23) |Rm(✏)|  ✏m

(2m� 1)!

Z

B

Z 1

0
e

1
2 h!,B!i|f (2m)(t

p
✏)|(1� t)2m�1dt dµ(!)

=
✏m

(2m� 1)!

Z

B

Z 1

0
e

1
2 h!,B!i

2mX

k=0

2m!

k!(2m� k)!
|g(k)(t

p
✏,!)|

|P2m�k(t
p
✏,!)|e�r

0
s
0�N

t✏
N�1

Ṽ2N (!)(1� t)2m�1dt dµ(!)

 ✏m
Z

B

Z 1

0
e

1
2 h!,B!i Pm(t

p
✏, |!|)(1� t)2m�1dt dµ(!),
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where Pm(�, |!|) denotes a polynomial in the variables �, |!| and

lim
✏#0

Z

B

Z 1

0
e

1
2 h!,B!i Pm(t

p
✏, |!|)(1� t)2m�1dt dµ(!) < 1.

The leading term is given by

C0 = g̃(0)

Z

B
e

1
2 h!,B!idµ(!) = g̃(0) det(I �B)�1/2,

with det(I�B) being the Fredholm determinant of the operator I�B (see Appendix).

Remark 3.2. — Theorem 3.1 allows one to handle the asymptotic behavior of infinite
dimensional integrals with a complex phase function � of the form

�(x) := �s0

2
hx, (I �B)xi � r0V2N (x), x 2 B.

It generalizes both the Laplace method (for the study of the asymptotics of integrals
with real phase functions) and the stationary phase method (for the study of the
asymptotics of integrals with purely imaginary phase functions). According to theorem
3.1, the only critical point contributing to the asymptotic behavior is the origin x = 0.
Indeed one can easily verify that the only real stationary point of the phase functional
is x = 0 and formula (20) is the asymptotic expansion around this critical point.

If the operator (I �B) : H ! H is not strictly positive, the results of theorem 3.1
are no longer valid. For instance, in the case where (I � B) has a non trivial kernel,
the phase function � : H ! C,

�(x) := �s0

2
hx, (I �B)xi � r0V2N (x)

has a degenerate critical point in x = 0, i.e. �0(0) = 0 and Ker�00(0) 6= {0}. In the
case where the negative eigenspace of the operator I � B is not empty, the phase
function � could have critical points xc 2 H di�erent from 0 and the asymptotic
behavior of the integral should be determined by these critical points. Let us consider
for instance a factorisable integral of the following form:

(24) I(✏) :=
·�Z

s

H 1⇥ H 2

e�
s0
2✏ hx1,(I�B)x1i� s0

2✏ hx2,(I�B)x2i� r0
✏ V2N (x1)� r0

✏ V2N (x2)dx1dx2

where dim H 1 = 1. By theorem 2.7 I(✏) = I1(✏)I2(✏), with
I2(✏) =

R
B2

e
1
2 h!2,B!2ie�r

0(s0)�N
✏

N�1
Ṽ2N (!2)dµ2(!2) satisfies the assumptions of theo-

rem 3.1, and I1 is of the form I1(✏) =
R

R e
a2

2✏ y
2��

✏ y
2N

dy, with a � 0 and � 2 C+. In
particular if a = 0,� = 1, then I1(✏) = ✏1/2N �(1/2N)

N
, while if a = 1,� = 1/2N , then

I1(✏) ⇠ e
N�1
2N✏ (where ⇠ means that the quotient of both sides tends to 1 as ✏ # 0).

In the non factorisable case the situation is more involved. Indeed in principle one
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should apply an infinite dimensional version of the saddle point method and analyze
the behavior of the integral around non real stationary points. Actually a detailed
treatment of the saddle point method in the case where the dimension of the space
on which the integral is performed is greater than 1 is still lacking (see however [31]).
In the following we give an example of the study of the asymptotics of the integral in
a degenerate (non factorisable case) and apply this result to the study of the trace of
the heat semigroup with a polynomial potential.

4. A degenerate case

Let (H p,t, h , i, kk) be the Hilbert space

H p,t := {� 2 H1([0, t]; Rd) : �(0) = �(t)}

with inner product

h�1, �2i =

Z
t

0
�̇1(⌧)�̇2(⌧)d⌧ +

Z
t

0
�1(⌧)�2(⌧)d⌧.

The present section is devoted to the study of the asymptotic behavior as ✏ # 0 of an
infinite dimensional Fresnel integral (with parameter s/✏) of the form

(25) I(✏) :=
flZ s/✏

H p,t

e
� s

2✏

R t

0
�̇(⌧)2d⌧� r

✏

R t

0
|�(⌧)|2N

d⌧
d�

with N 2 N, N � 2, and s, r 2 C+ satisfying the assumptions of theorem 2.7.

Heuristically the integral (25) can be written as ”eR 1/✏

H p,t
e

1
✏ �(�)d�”, where the phase

function � : H p,t ! R is given by

(26) �(�) = �s

2

Z
t

0
�̇(⌧)2d⌧ � r

Z
t

0
|�(⌧)|2Nd⌧

and the asymptotic behavior of I(✏) should be determined by the stationary points
of the phase functional �, i.e. the points such that

�0(�)(�) = 0, 8� 2 H p,t,

�0 being the Fréchet derivative. One can easily verify that the null path � = 0 is a
stationary point of � and it is degenerate, namely Ker (�00(0)) is not trivial. Indeed

(27) h�00(0)(�), i = �s

Z
t

0
�̇(⌧) ̇(⌧)d⌧ := �sh�, (I + L) i,

where L is the unique self-adjoint operator on H p,t defined by the quadratic form

h�, L i = �
Z

t

0
�(⌧) (⌧)d⌧.
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We easily see that L for any  2 H p,t is given by:

(28) L (⌧) =

Z
⌧

0
sinh(⌧ � u) (u)du� 1

(1� et)(1� e�t)

Z
t

0
sinh(⌧ � u) (u)du+

+
1

(1� et)(1� e�t)

Z
t

0
sinh(t + ⌧ � u) (u)du,

The kernel of I + L is given by the solution of the equation

(29)  (⌧) +
1

(1� et)(1� e�t)

Z
t

0
(sinh(t + ⌧ � u)� sinh(⌧ � u)) (u)du+

+

Z
⌧

0
sinh(⌧ � u) (u)du = 0

with the periodic condition  (0) =  (t). By di�erentiating (29) twice, it is easy to
see that if  satisfies (29) then

 ̈(⌧) = 0, 8⌧ 2 [0, t],

so that the only solutions of (29) satisfying the periodic condition  (0) =  (t) are
the constant paths. From (27) the kernel of �00(0) is the d� dimensional subspace:

Ker[�00(0)] = {� 2 H p,t : �(⌧) = x 8⌧ 2 [0, t], x 2 Rd}.

Let us decompose the Hilbert space H p,t into the direct sum H p,t = H 1 � H 2,
where H 1 = Ker[�00(0)] and H 2 = Ker[�00(0)]?, �(⌧) = �1(⌧) + �2(⌧), �1(⌧) =

t�1
R

t

0 �(u)du, �2(⌧) = �(⌧)� �1(⌧). In particular

H 2 = {� 2 H p,t :

Z
t

0
�(⌧)d⌧ = 0}.

As one can easily verify that for any �2 2 H 2, �1 2 H 1 one has

V2N (�1 + �2)� V2N (�1) =

Z
t

0
|�1(⌧) + �2(⌧)|2Nd⌧ �

Z
t

0
|�1(⌧)|2Nd⌧ � 0,

the assumptions of theorem 2.7 (with g = 1) are satisfied and

(30) I(✏) = (2⇡)�d/2

Z

B2⇥ H 1

e
� 1

2 h!2,L!2i��✏
N�1

R t

0
|�1(⌧)+!2(⌧)|2N

d⌧
dµ2(!2)⇥ d�1

= (2⇡)�d/2

Z

B2⇥Rd

e
� 1

2 h!2,L!2i��✏
N�1

R t

0
| y

t +!2(⌧)|2N
d⌧

dµ2(!2)⇥ dy,

where � = rs�N and (H 2, B2) is the abstract Wiener space built on H 2.
By putting x :=

p
✏y/t and expanding the term |

p
✏!2(⌧) + x|2N we have

I(✏) =
⇣2⇡✏

t2

⌘�d/2
Z

Rd

e�
t�
✏ |x|2N

f(x, ✏)dx,
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where

f(x, ✏) =

Z

B2

e
�( 1

2 h!2,L!2i+ �
✏

R t

0
|
p

✏!2(⌧)+x|2N
d⌧��t

✏ |x|2N )
dµ(!2)

=
fiZ

H 2

e
�( 1

2

R t

0
�̇2(⌧)2d⌧+ �

✏

R t

0
|
p

✏�2(⌧)+x|2N
d⌧��t

✏ |x|2N )
d�2.

The asymptotic behavior of f(x, ✏) as ✏ # 0 can be simply determined by expanding
the integrand in powers of ✏. Indeed

f(x, ✏) =
fiZ

H 2

e�
1
2 (h�2,(I+Lx)�2ie�

�
✏ P2N (x,

p
✏�2)d�2,

where Lx : H 2 ! H 2 is the unique bounded self adjoint operator determined by the
quadratic form

(31) h�, (I + Lx) i =

Z
t

0
�̇(⌧) ̇(⌧)d⌧ + 2N�|x|2N�2

Z
t

0
�(⌧) (⌧)d⌧

+ 4N(N � 1)�|x|2N�4

Z
t

0
x�(⌧) x (⌧)d⌧, �, 2 H 2,

and one can easily see that Lx is given by

(32)

Lx (⌧) = B

Z
⌧

0
sinh(u� ⌧) (u)du +

B

(1� et)(1� e�t)

Z
t

0
sinh(⌧ � u) (u)du+

� B

(1� et)(1� e�t)

Z
t

0
sinh(t + ⌧ � u) (u)du.

B is the d⇥ d matrix defined by B := A2(x)� 1d⇥d and

A2(x)i,j = 2N�|x|2N�2�j

i
+ 4N(N � 1)�|x|2N�4xixj , i, j = 1, . . . , d.

Moreover

(33) P2N (x,
p
✏�2) =

Z
t

0
|
p
✏�2(⌧) + x|2Nd⌧ � t|x|2N � 2N |x|2N�2

Z
t

0

p
✏x�2(⌧)d⌧

� ✏N |x|2N�2

Z
t

0
|�(⌧)|2d⌧ � 2N(N � 1)✏|x|2N�4

Z
t

0
(x�(⌧))2d⌧ =: ✏3/2g(x, ✏, �2)

(where we have used the fact that
R

t

0 �2(⌧)d⌧ = 0 as �2 2 H 2), and for any x, �2 we
have

(34) lim
✏#0

g(x, ✏, �2) =
N !

(N � 3)!3!
8|x|2N�6

Z
t

0
(x�2(s))

3ds+

+ 2N(N � 1)|x|2N�4

Z
t

0
x�2(s)|�2(s)|2ds.
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By expanding e��✏
1/2

g(x,✏,�2) around ✏ = 0:

(35) f(x, ✏) =
fiZ

H 2

e�
1
2 (h�2,(I+Lx)�2ie��✏

1/2
g(x,✏,�2)d�2 = f1(x, ✏) � �✏1/2f2(x, ✏),

where

f1(x, ✏) =
fiZ

H 2

e�
1
2 (h�2,(I+Lx)�2id�2 = det(I + Lx)�1/2

and

(36) f2(x, ✏) =
fiZ

H 2

g(x, ✏, �2)e
� 1

2 (h�2,(I+Lx)�2ie�u�✏
1/2

g(x,✏,�2)d�2,

with u 2 (0, 1).
For the calculation of the spectrum �(Lx) of Lx, it is convenient to replace the stan-
dard basis of Rd with an orthonormal basis which diagonalizes the symmetric matrix
A2(x). By denoting its eigenvalues by a2

i
, i = 1, . . . , d, it is easy to verify that the

spectrum of Lx is given by �(Lx) = {�i,n, i = 1, . . . , d, n = 1, 2, . . .}, where

�i,n =
a2

i
� 1

1 + 4⇡2n2

t2

, i = 1, . . . , d, n = 1, 2, . . .

are eigenvalues of multiplicity 2. By applying Lidskij’s theorem [45] and the Hadamard
factorization theorem (see [47], theorem 8.24) one gets

det(I + Lx) =

8
<

:
det

⇣
cosh(A(x)t)�1

A2(x)(cosh t�1)

⌘
, for x 6= 0

(2 cosh t� 2)�d, for x = 0

The next result follows easily by the integral representation (36) of the function f2.

Lemma 4.1. — f2(x, ✏) is a C1 function of both x 2 Rd and ✏ :=
p
✏ 2 R+. Moreover

for any x 2 Rd, f2(x, 0) = 0 and lim✏#0
f2(x,✏)�f2(x,0)

✏1/2 = C(x), where C is a positive
function of x 2 Rd.

Proof. — First of all we have

(37) f2(x, ✏) =
fiZ

H 2

e
u�t|x|2N

✏ g(x, ✏, �2)e
� 1

2

R t

0
�̇
2
2(s)ds

e
�u�

✏

R t

0
|
p

✏�2(s)+x|2N
ds

e
� 1�u

2

⇣
2N |x|2N�2

R t

0
|�(s)|2ds+4N(N�1)|x|2N�4

R t

0
(x�(s))2ds

⌘

d�2.
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By expressing the infinite dimensional integral on the Hilbert space H 2 as an integral
on the abstract Wiener space (i, H 2, B2) associated with H 2 one gets:

(38) f2(x, ✏) = e
u�t|x|2N

✏

Z

B2

g̃(x, ✏,!2)e
1
2 h!2,L0!2ie

�u�
✏

R t

0
|
p

✏!2(s)+x|2N
ds

e
� 1�u

2

⇣
2N |x|2N�2

R t

0
|!2(s)|2ds+4N(N�1)|x|2N�4

R t

0
(x!2(s))

2
ds

⌘

dµ(!2),

where the functions

!2 7! g̃(x, ✏,!2)

!2 7! h!2, L0!2i

!2 7!
Z

t

0
|
p
✏!2(s) + x|2Nds

!2 7! 2N |x|2N�2

Z
t

0
|!2(s)|2ds + 4N(N � 1)|x|2N�4

Z
t

0
(x!2(s))

2ds

represent the stochastic extensions to B2 of the corresponding functions on H 2. The
stochastic extensions are well defined because of the regularity of the functions in-
volved. Analogously

(39) f2(x, ✏) =

Z

B2

g̃(x, ✏,!2)e
� 1

2 (h!2,Lx!2ie�u�✏
1/2

g̃(x,✏,!2)dµ(!2).

Representation (38) shows the absolute convergence of the integrals involved, while
representation (39) shows the regularity of f2 as a function of

p
✏.

By a direct computation we obtain

f2(x, 0) =

Z

B2

g̃(x, 0,!2)e
� 1

2 (h!2,Lx!2idµ(!2),

where

(40) g̃(x, 0,!2) =

8
>>>>><

>>>>>:

N !
(N�3)!3!8|x|2N�6

R
t

0 (x!2(s))3ds+

+2N(N � 1)|x|2N�4
R

t

0 x!2(s)|!2(s)|2ds, 2N � 6

4
R

t

0 x!2(s)|!2(s)|2ds, 2N = 4

and

(41) lim
✏#0

f2(x, ✏)� f2(x, 0)

✏1/2
=

Z

B2

g4(!2, x)e�
1
2 (h!2,Lx!2idµ(!2) < 1,
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where

(42) g4(!2, x) =

8
>>>>>>><

>>>>>>>:

R
t

0 |!2(s)|4ds, 2N = 4

3|x|2
R

t

0 |!2(s)|4ds + 12
R

t

0 (x!2(s))2|!2(s)|2ds, 2N = 6
�
N

2

�
|x|2N�4

R
t

0 |!2(s)|4ds

+4
�
N

2

��
N�2

1

�
|x|2N�6

R
t

0 (x!2(s))2|!2(s)|2ds

+16
�
N

4

�
|x|2N�8

R
t

0 (x!2(s))4ds, 2N � 8.

By equation (35), the integral I(✏) can be represented as the sum I(✏) = I1(✏) +

I2(✏), where

I1(✏) =
⇣2⇡✏

t2

⌘�d/2
Z

Rd

e�
t�
✏ |x|2N

f1(x, ✏)dx,

I2(✏) = ��✏1/2
⇣2⇡✏

t2

⌘�d/2
Z

Rd

e�
t�
✏ |x|2N

f2(x, ✏)dx

Lemma 4.2. — I2(✏) = O(✏
4�d
2 � 4�d

2N ), as ✏ # 0.

Proof. — By scaling

(43) I2(✏) = ��✏1/2td(2⇡)�d/2✏d/2N�d/2

Z

Rd

e�t�|x|2N

f2(✏
1/2Nx, ✏)dx

= ��td(2⇡)�d/2✏d/2N�d/2+1/2

Z

Rd

e�t�(1�u)|x|2N
Z

B2

g̃(✏1/2Nx, ✏,!2)

e
� 1�u

2

⇣
2N |✏1/2N

x|2N�2
R t

0
|!2(s)|2ds+4N(N�1)|✏1/2N

x|2N�4
R t

0
(✏1/2N

x!2(s))
2
ds

⌘

e
�u�

✏

R t

0
|
p

✏!2(s)+✏
1/2N

x|2N
ds

e
1
2 h!2,L0!2idµ(!2)dx

By the dominated convergence theorem, the definition (33) of the function g, lemma
4.1 and equation 41 we get:

(44) lim
✏#0

I2(✏)

✏
3�d
2 � 3�d

2N

= ��td(2⇡)�d/2

Z

Rd

e�t�(1�u)|x|2N

Z

B2

g̃(x, 0,!2)e
1
2 h!2,L0!2idµ(!2)dx = 0,

where g̃(x, 0,!2) is given by (40), and

(45) lim
✏#0

I2(✏)

✏
4�d
2 � 4�d

2N

= ��td(2⇡)�d/2

Z

Rd

e�t�(1�u)|x|2N

Z

B2

g4(!2, x)e
1
2 h!2,L0!2idµ(!2)dx < 1,

g4(!2, x) being given by (42).
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Lemma 4.3. — I1(✏) = ✏�d
N�1
2N (cosh t�1)d/22d/2t�d/2N��d/2N �(d/2N)

N�(d/2)+O(✏(2�d) N�1
2N )

as ✏ # 0.

Proof. —

(46) I1(✏) =
⇣2⇡✏

t2

⌘�d/2
Z

Rd

e�
�t
✏ |x|2N

det(I + Lx)�1/2dx

=
⇣2⇡✏

t2

⌘�d/2
Z

Rd

e�
�t
✏ |x|2N

det
⇣ cosh(A(x)t)� 1

A2(x)(cosh t� 1)

⌘�1/2
dx

= td
⇣cosh t� 1

2⇡✏

⌘d/2
Z

Rd

e�
�t
✏ |x|2N

det
⇣cosh(A(x)t)� 1

A2(x)

⌘�1/2
dx

By scaling

I1(✏) = Ct✏
d

2N � d
2

Z

Rd

e��t|x|2N

det
⇣cosh(A(✏1/2Nx)t)� 1

A2(✏1/2Nx)

⌘�1/2
dx

= Ct✏
d

2N � d
2

Z

Rd

e��t|x|2N

det
⇣cosh(✏(N�1)/2NA(x)t)� 1

✏(N�1)/NA2(x)

⌘�1/2
dx

with Ct = td
⇣

cosh t�1
2⇡

⌘d/2
. Let a2

i
(x), i = 1, ..., d be the eigenvalues of the matrix

A2(x). Then

I1(✏) = Ct✏
d

2N � d
2

Z

Rd

e��t|x|2N ✏
d(N�1)

2N
Q

i
ai(x)

Q
i

p
cosh(✏(N�1)/2Nai(x)t)� 1

dx

= Ct✏
d

2N � d
2

Z

Rd

e��t|x|2N 2d/2t�d

Q
i

»
1 + cosh(✓i)

12 ✏(N�1)/Na2
i
(x)t2

dx

= Ct✏
d

2N � d
2 2d/2t�d

Z

Rd

e��t|x|2N Y

i

⇣
1�

cosh(✓i)
24 ✏(N�1)/Na2

i
(x)t2

(1 + ⇠i cosh(✓i)
12 ✏(N�1)/Na2

i
(x)t2)3/2

⌘
dx

with ✓i 2 (0, ✏(N�1)/2Nai(x)t) and ⇠i 2 (0, 1). We have

I1(✏) = I1,1(✏) + I1,2(✏),

where the first term is equal to

I1,1(✏) = ✏�d
N�1
2N

⇣cosh t� 1

2⇡

⌘d/2
2d/2

Z

Rd

e��t|x|2N

dx

= ✏�d
N�1
2N

⇣cosh t� 1

2⇡

⌘d/2
2d/2t�d/2N��d/2N

Z

Rd

e�|x|2N

dx

= ✏�d
N�1
2N (cosh t� 1)d/22d/2t�d/2N��d/2N

�(d/2N)

N�(d/2)
,
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and the second term is equal to

I1,2(✏) =
⇣cosh t� 1

2⇡✏

⌘d/2
✏d/2N2d/2

Z

Rd

e��t|x|2N

⇣ Y

i

⇣
1�

cosh(✓i✏
(N�1)/2N

ai(x)t)
24 ✏(N�1)/Na2

i
(x)t2

(1 + ⇠i cosh(✓i✏
(N�1)/2N ai(x)t)

12 ✏(N�1)/Na2
i
(x)t2)3/2

⌘
� 1

⌘
dx

and it satisfies the following relation

lim
✏#0

I1,2(✏)

✏�d
N�1
2N + N�1

N

= � t2

24

⇣cosh t� 1

2⇡

⌘d/2
2d/2

Z

Rd

e��t|x|2N X

i

a2
i
(x)dx < 1.

By combining lemma 4.2 and 4.3 we get:

Theorem 4.4. — As ✏ # 0 the infinite dimensional oscillatory integral I(✏) (25) has
the following asymptotic behavior:

(47) I(✏) = ✏�d
N�1
2N (cosh t� 1)d/22d/2t�d/2N��d/2N

�(d/2N)

N�(d/2)
+ O(✏(2�d) N�1

2N )

The latter result can be applied to the study of the asymptotic behavior of the
trace Tr[e�

t
~ H ], t > 0 of the heat semigroup, where H : D(H) ⇢ L2(Rd) ! L2(Rd) is

the quantum mechanical Hamiltonian given on the dense set of vectors  2 S(Rd) by

(48) H (x) = �~2

2
�x (x) + V (x) (x),

with V (x) = �|x|2N , N 2 N, N � 2, � > 0, x 2 Rd, N 2 N.
It is well known that H is an essentially self adjoint operator on C1

0 (Rd) (see [42],
theorem X.28). H is a positive operator and is the generator of an analytic semigroup,
denoted by e�

t
~ H , t � 0 (the “heat semigroup" with potential V ). Its trace Tr[e�

t
~ H ]

is well defined as V (x) is smooth and increases at least quadratically at infinity, hence
the spectrum of H consists of (real positive) eigenvalues �n̄, n̄ 2 Nd. By a standard
WKB argument one can deduce that there exists a positive constant ↵ (depending
on N) with

lim inf
|n̄|!1

�n̄

|n̄|↵ > 0.

Theorem 4.5. — The trace of the heat semigroup Tr[e�
t
~ H ], t > 0, for H as in equation

(48), is given by the infinite dimensional Fresnel integral (with parameter s = 1/~, in
the sense of definition 2.2)

(49) Tr[e�
t
~ H ] = (2 cosh t� 2)�d/2

flZ

H p,t

e
� 1

2~
R t

0
�̇(s)2ds��

~
R t

0
�(s)2N

ds
d�

For ~ # 0 the following asymptotics holds:

(50) Tr[e�
t
~ H ] = ~�d

N�1
2N t�d/2N��d/2N

�(d/2N)

2d/2N�(d/2)
+ O(~(2�d) N�1

2N )
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Proof. — The proof of (49) is divided into 3 steps.
1st Step: By Feynman-Kac formula (see e.g.[45, 46]) Tr[e�

t
~ H ] is given, for t > 0 by:

(51) Tr[e�
t
~ H ] =

Z

Rd

dx

(2⇡t)d/2

Z

C[0,t]

e
� 1

~
R t

0
V (
p

~↵(s)+
p

~x)ds
dµ(↵)

=

Z

Rd

dx

(2⇡t)d/2

Z

C[0,t]

e
��~N�1

R t

0
|↵(s)+x|2N

ds
dµ(↵)

where C[0,t] is the space of continuous paths ↵ : [0, t] ! Rd such that ↵(0) = ↵(t) and
µ is the Brownian bridge probability measure on it (see, e.g. [46] for this concept).
Let us introduce the Hilbert spaces Y0,t and Yp,t of paths,

{� 2 H1(0, t; Rd) : �(0) = �(t) = 0}

with norms

k�k2
Y0,t

⌘ |�| =

Z
t

0
�̇(s)2ds.

k�k2
Yp,t

⌘ k�k =

Z
t

0
�̇(s)2ds +

Z
t

0
�(s)2ds.

It is well known that (i, Y0,t, C[0,t]) is an abstract Wiener space.
First of all (see remark 2.6) the integral in (51) on C[0,t] with respect to the Brownian
bridge measure can also be written in terms on an infinite dimensional integral (with
parameter s = 1) on the Hilbert space Y0,t (in the sense of definition 2.2):

Z

C[0,t]

e
� 1

~
R t

0
V (
p

~↵(s)+
p

~x)ds
dµ(↵) =

fiZ

Y0,t

e�
1
2 |�|2e

� 1
~
R t

0
V (
p

~�(s)+
p

~x)ds
d�,

so that

(52) Tr[e�
t
~ H ] =

Z

Rd

dx

(2⇡t)d/2

fiZ

Y0,t

e�
1
2 |�|2e

� 1
~
R t

0
V (
p

~�(s)+
p

~x)ds
d�

2nd Step: By the transformation formula relating infinite dimensional integrals on
Hilbert spaces with varying norms (theorem 2.3), we get a relation between the inte-
gral on Y0,t and the integral on Yp,t. Indeed

k�k2 = |�|2 + (�, T�)

where T is the unique self-adjoint trace class operator on Y0,t defined by the quadratic
form

(�1, T�2) =

Z
t

0
�1(s)�2(s)ds.
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Indeed (see [12] for details) ⌘ = T�, � 2 Y0,t if and only if

(53)

8
>><

>>:

⌘̈(s) + �(s) = 0, s 2 [0, t]

⌘̇(0) = 0

⌘̇(t) = 0

and det(I + T ) =
⇣

sinh t

t

⌘d

. By inserting this into equation (9) we obtain:

fiZ

Y0,t

e�
1
2 |�|2e

� 1
~
R t

0
V (
p

~�(s)+
p

~x)ds
d�

=
⇣ t

sinh t

⌘d/2 fiZ

Yp,t

e�
1
2 |�|2e

� 1
~
R t

0
V (
p

~�(s)+
p

~x)ds
d�

and by equation (52)

(54) Tr[e�
t
~ H ] =

Z

Rd

dx

(2⇡ sinh t)d/2

fiZ

Yp,t

e�
1
2 |�|2e

� 1
~
R t

0
V (
p

~�(s)+
p

~x)ds
d�

3rd Step: The final step is a transformation of variable formula for integrals on the
Hilbert space H p,t. Yp,t can be regarded as a subspace of H p,t and any vector � 2 H p,t

can be written as a sum of a vector ⌘ 2 Yp,t and a constant in the following way:

�(s) = ⌘(s) + x, s 2 [0, t], � 2 H p,t, ⌘ 2 Yp,t, x = �(0).

We have to compute a constant Ct such that for integrable functions f

flZ

H p,t

e�
1
2k�k

2

f(�)d� = Ct

Z

Rd

dx
fiZ

Yp,t

e�
1
2k⌘+xk2f(⌘ + x)d⌘.

By Fubini theorem

(55)
flZ

H p,t

e�
1
2k�k

2

f(�)d� =
fiZ

Y
?

p,t

⇣fiZ

Yp,t

e�
1
2k⌘+⇠k2f(⌘ + ⇠)d⌘

⌘
d⇠,

where Y ?
p,t

is the space orthogonal to Yp,t in H p,t. One can easily verify that
Y ?

p,t
is d�dimensional and it is generated by the vectors {vi}i=1,...,d, with vi(s) =

êi

⇣
e

s(1�e
�t)+e

�s(et�1)

2
p

2
p

sinh t(cosh t�1)

⌘
, s 2 [0, t], êi being the ith vector of the canonical basis in Rd.

The right hand side of (55) is equal to
Z

Rd

1

(2⇡)d/2

⇣fiZ

Yp,t

e�
1
2k⌘+

P
i
yivik2f(⌘ +

X

i

yivi)d⌘
⌘
dy,

where ⇠(s) =
P

i
yivi(s), i = 1, . . . , d. By writing the finite dimensional approximation

of fiR
Yp,t

e�
1
2k⌘+

P
i
yivik2f(⌘ +

P
i
yiv1)d⌘, by the formula for the change of variables
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in finite dimensional integrals and by noting that

huj , vii H p,t
= �j

i

p
2 cosh t� 2p

sinh t
,

where uj 2 H p,t is the vector given by uj(s) = êj , s 2 [0, t], we get

Z

Rd

1

(2⇡)d/2

⇣fiZ

Yp,t

e�
1
2k⌘+

P
i
yivik2f(⌘ +

X

i

yivi)d⌘
⌘
dy

=
⇣p2 cosh t� 2p

sinh t

⌘d
Z

Rd

1

(2⇡)d/2

⇣fiZ

Yp,t

e�
1
2k⌘+

P
i
xiuik2f(⌘ +

X

i

xiui)d⌘
⌘
dx,

so that the constant Ct is equal to
⇣p

2 cosh t�2p
2⇡ sinh t

⌘d

.
By combining these results we get equation (49).
The asymptotic behavior of the trace Tr[e�

t
~ H ] as ~ # 0 follows by equation (49) and

theorem 4.4.

Remark 4.6. — In [6, 12] the representation (49) is proved for the case where V is a
quadratic function plus a bounded perturbation (of the type of a Fourier transform of
a complex measure) by means of a di�erent technique (a Fubini theorem for infinite
dimensional oscillatory integrals with respect to non-degenerate quadratic forms),
that cannot be applied in our present case. Indeed the quadratic part of the phase
function appearing in the integral on the right hand side of (49) can be written as

Z
t

0
�̇2(s)ds = �h�, L�i,

with L : H p,t ! H p,t is the operator (28). As we have seen, L is not invertible and
detL = 0. This fact forbids the application of the Fubini theorem as stated in [6, 12]
and a direct application of the methods of [6, 12].

Remark 4.7. — A representation equivalent to (51) is discussed in [46] for other con-
tinuous potential V with e�V 2 L1. However the limit ~ # 0 discussed in [46] is not
the semiclassical limit we discuss here. To the best of our knowledge our limit for our
type of polynomially growing potentials has not been rigorously discussed before. In
addition our result on this problem, besides coming as a direct application of a study
concerning oscillatory integrals, also provides a method to derive an explicit expan-
sion formula in fractional powers of ~ in terms of classical orbits (we shall however
not provide here details on this, our main point was to indicate the method which
permits us to obtain them).
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Appendix
Abstract Wiener spaces

Let (H , h , i, k k) be a real real separable Hilbert space. Let ⌫ be the finitely additive
cylinder measure on H , defined by its characteristic functional ⌫̂(x) = e�

1
2kxk

2

. Let
| | be a “measurable" norm on H , that is | | is such that for every ✏ > 0 there exist a
finite-dimensional projection P✏ : H ! H , such that for all P ? P✏ one has

⌫({x 2 H | |P (x)| > ✏}) < ✏,

where P and P✏ are called orthogonal (P ? P✏) if their ranges are orthogonal in
(H , h , i). One can easily verify that | | is weaker than k k. Denoting by B the comple-
tion of H in the | |-norm and by i the continuous inclusion of H in B, one can prove
that µ ⌘ ⌫ � i�1 is a countably additive Gaussian measure on the Borel subsets of
B. The triple (i, H , B) is called an abstract Wiener space (see, e.g., [24, 32]). Given
y 2 B⇤ one can easily verify that the restriction of y to H is continuous on H , so that
one can identify B⇤ as a subset of H . Moreover B⇤ is dense in H and we have the
dense continuous inclusions B⇤ ⇢ H ⇢ B. Each element y 2 B⇤ can be regarded as
a random variable n(y) on (B, µ). A direct computation shows that n(y) is normally
distributed, with covariance kyk2. More generally, given y1, y2 2 B⇤, one has

Z

B
n(y1)n(y2)dµ = hy1, y2i.

The latter result allows the extension to the map n : H ! L2(B, µ), because B⇤ is
dense in H . Given an orthogonal projection P in H , with

P (x) =
nX

i=1

hei, xiei

for some orthonormal e1, . . . , en 2 H , the stochastic extension P̃ of P on B is well
defined by

P̃ ( · ) =
nX

i=1

n(ei)( · )ei.

Given a function f : H ! B1, where (B1, k kB1
) is another real separable Banach

space, the stochastic extension f̃ of f to B exists if the functions f � P̃ : B ! B1

converge to f̃ in probability with respect to µ as P converges strongly to the identity
in H . If g : B ! B1 is continuous and f := g| H , then one can prove [24] that the
stochastic extension of f is well defined and it is equal to g µ�a.e. Moreover for any
h 2 H the sequence of random variables

nX

i=1

hin(ei), hi = hei, hi
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converges in L2(B, µ), and by subsequences µ a.e., to the random variable n(h).
Given a self-adjoint trace class operator B : H ! H , the quadratic form on H ⇥ H :

x 2 H 7! hx,Bxi

can be extended to a random variable on B, denoted again by h · , B · i. Indeed
for each increasing sequence of finite dimensional projectors Pn converging strongly
to the identity, Pn(x) =

P
n

i=1 eihei, xi ({ei} being a CONS in H ), the sequence of
random variables

! 2 B 7!
nX

i,j=1

hei, Bejin(ei)(!)n(ej)(!)

is a Cauchy sequence in L1(B, µ). By passing if necessary to a subsequence, it con-
verges to h · , B · i µ�a.e..
Let us assume that the largest eigenvalue of B is strictly less than 1 (or, in other
words, that (I � B) is strictly positive). Then one can prove that the random vari-
able g( · ) := e

1
2 h · ,B · i is µ-summable. Indeed by considering a CONS {ei} made of

eigenvectors of the operator B, bi being the corresponding eigenvalues, the sequence
of random variables

gn : B ! C, ! 7! gn(!) = e
1
2

Pn

i=1
bi([n(ei)(!)]2 ,

converges to g(!) µ-a.e., as n !1.
On the other hand one has

Z

B
gn(!)dµ(!) =

nY

i=1

Z
e�

1
2 (1�bi)x

2
i

p
2⇡

dxi = (
nY

i=1

(1� bi))
�1/2

so that
R

gndµ converges, as n !1, to (det(I�B))�1/2, where det(I�B) denotes the
Fredholm determinant of (I�B), which is well defined as B is trace class. Moreover 0 
gn  gn+1 for each n . It follows that, as n !1,

R
gndµ !

R
gdµ = (det(I�B))�1/2.

By an analogous reasoning one can prove that, for any y 2 H , the sequence of random
variables fn:

! 7! fn(!) = e
Pn

i=1
yin(ei)(!)e

1
2

Pn

i=1
bi([n(ei)(!)]2 ,

where yi = hy, eii, converges µ�a.e. as n goes to 1 to the random variable f( · ) =

en(y)( · )e
1
2 h · ,B · i and that

(56)
Z

fndµ !
Z

fdµ = (det(I �B))�1/2e
1
2 hy,(I�B)�1

yi

(see [29, 32]).
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A NEW TECHNIQUE FOR PROVING
UNIQUENESS FOR MARTINGALE PROBLEMS

by

Richard F. Bass & Edwin Perkins

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — A new technique for proving uniqueness of martingale problems is intro-
duced. The method is illustrated in the context of elliptic di�usions in Rd.

Résumé (Une nouvelle technique pour démontrer l’unicité de la solution de problèmes de martin-
gales)

Une nouvelle technique est introduite pour démontrer l’unicité de la solution de
problèmes de martingales. On applique les résultats aux di�usions elliptiques dans Rd.

1. Introduction

When trying to prove uniqueness of a stochastic process corresponding to an op-
erator, one of the most useful approaches is to consider the associated martingale
problem. If L is an operator and w is a point in the state space S, a probability P on
the set of paths t! Xt taking values in S is a solution of the martingale problem for
L started at w if P(X0 = w) = 1 and f(Xt)� f(X0)�

R t

0 Lf(Xs) ds is a martingale
with respect to P for every f in an appropriate class C of functions.

The archetypical example is to let

(1.1) Lf(x) =
dX

i,j=1

aij(x)Dijf(x).

Here, and for the rest of this paper, the state space S is Rd, the probability measure is
on the set of functions that are continuous maps from [0,1) into Rd with the �-field
generated by the cylindrical sets, Dijf = @2f/@xi@xj , and the class C of functions
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is the collection C2
b of C2 functions which are bounded and whose first and second

partial derivatives are bounded.
Stroock and Varadhan introduced the notion of martingale problem and proved

in the case above that there was existence and uniqueness of the solution to the
martingale problem provided the aij were bounded and continuous in x and the
matrix a(x) was strictly positive definite for each x. See [2] or [4] for an account of
this result.

In this paper we present a new method of proving uniqueness for martingale prob-
lems. We illustrate it for the operator L given in (1.1) under the assumption that
the aij are Hölder continuous in x. Our proof does not give as strong a result as that
of Stroock and Varadhan in that we require Hölder continuity. (Actually, we only
require a Dini-like condition, but this is still more than just requiring continuity.) In
fact, when the aij are Hölder continuous, an older method using Schauder estimates
can be applied.

Nevertheless our technique is applicable to situations for which no other known
method seems to work. A precursor of our method, much disguised, was used in [1]
to prove uniqueness for pure jump processes which were of variable order, i.e., the
operator can not be viewed as a perturbation of a symmetric stable process of any
fixed order. The result of [1] was improved in [5] to allow more general jump processes.
Moreover our technique is useful in problems arising from certain infinite dimensional
situations in the theory of stochastic partial di�erential equations and the theory of
superprocesses; see [3]. Finally, even in the elliptic di�usion case considered here, the
proof is elementary and short.

Stroock and Varadhan’s method was essentially to view L given in (1.1) as a
perturbation of the Laplacian with respect to the space Lp for appropriate p. The
method using Schauder estimates views L as a perturbation of the Laplacian with
respect to the Hölder space C↵ for appropriate ↵. We use a quite di�erent approach.
We view L as a mixture of constant coe�cient operators and use a mixture of the
corresponding semigroups as an approximation of the semigroup for L.

We use our method to prove the following theorem.

Theorem 1.1. — Suppose L is given by (1.1), the matrices a(x) are bounded and uni-
formly positive definite, and there exist c1 and ↵ such that

(1.2) |aij(x)� aij(y)|  c1(1 ^ |x� y|↵)

for all i, j = 1, . . . , d and all x, y 2 Rd. Then for each w 2 Rd the solution to the
martingale problem for L started at w is unique.

We do not consider existence, since that is much easier, and we have nothing to
add to the existing proofs. The same comment applies to the inclusion of drift terms.
In Section 2 we give some easy estimates and in Section 3 we prove Theorem 1.1. The
letter c denotes constants whose exact value is unimportant and may change from
occurrence to occurrence.
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2. Some estimates

All the matrices we consider will be d by d, bounded, symmetric, and uniformly
elliptic, that is, there exist constants ⇤m and ⇤M such that

(2.1) ⇤m

dX

i=1

z2
i 

dX

i,j=1

aijzizj  ⇤M

dX

i=1

z2
i , (z1, . . . , zd) 2 Rd.

Given any such matrix a, we use A for a�1. It follows easily that

(2.2) sup
j

⇣ dX

i=1

a2
ij

⌘1/2
 ⇤M , sup

j

⇣ dX

i=1

A2
ij

⌘1/2
 ⇤�1

m

Define

(2.3) pa(t, x, y) = (2⇡t)�d/2(det a)�1/2e�(y�x)T A(y�x)/(2t),

and let

(2.4) P a
t f(x) =

Z
pa(t, x, y)f(y) dy

be the corresponding transition operator. We assume throughout that the matrix
valued function a(y) satisfies the hypotheses of Theorem 1.1 and (2.1). Note that for
a fixed, pa(t, x, y) dy is a Gaussian distribution for each x, but that pa(y)(t, x, y) dy
need not be a probability measure. All numbered constants will depend only ⇤m,⇤M

and d.
We have the following.

Proposition 2.1. — There exist c1, c2 and a function c3(p), p > 0, depending only on
⇤M and ⇤m, such that for all t, N, p > 0 and x 2 Rd,

(a)
R

pa(y)(t, x, y) dy  c1.
(b) Z

|y�x|>N/
p

t
pa(y)(t, x, y) dy  c1e

�c2N2

.

(c) For each i  d,
Z ⇣ |xi � yi|2

t

⌘p
pa(y)(t, x, y) dy  c3(p).

Proof. — For (a), after a change of variables z = (y � x)/
p

t, we need to bound
Z

(2⇡)�d/2(det a(x + z
p

t))�1/2e�zT A(x+z
p

t)z/2 dz


⇣⇤M

⇤m

⌘d/2
Z

(2⇡⇤M )�d/2e�zT z/2⇤M dz 
⇣⇤M

⇤m

⌘d/2
.

(b) and (c) are similar.

Let kfk be the C0 norm of f .
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Proposition 2.2. — Let g 2 C2 with compact support and let

F"(x) =

Z
g(y)pa(y)("2, x, y) dy.

Then F"(x) converges to g(x) boundedly and pointwise as "! 0.

Proof. — Because g is bounded, using Proposition 2.1(a) we see that the quantity
sup">0 kF"k is finite. We next consider pointwise convergence. After a change of vari-
ables, we have

F"(x) =

Z
g(x + "z)(2⇡)�d/2(det a(x + "z))�1/2e�zT A(x+"z)z/2 dz.

Since |g(x + "z)� g(x)|  "|z| krgk, F" di�ers from

g(x)

Z
(2⇡)�d/2(det(a(x + "z))�1/2e�zT A(x+"z)z/2 dz

by at most

krgk
Z

(2⇡)�d/2(det(a(x + "z)))�1/2"|z|e�zT A(x+"z)z/2 dz,

and this goes to 0 as " ! 0 by a change of variables and Proposition 2.1(c) with
p = 1/2. Let

V (", x, z) = (2⇡)�d/2(det(a(x + "z)))�1/2e�zT A(x+"z)z/2.

It therefore su�ces to show
Z

V (", x, z) dz !
Z

V (0, x, z) dz,

where we note this right-hand side is 1. Using Proposition 2.1(b) and the same change
of variables, it su�ces to show

Z

|z|N
V (", x, z) dz !

Z

|z|N
V (0, x, z) dz.

But this last follows by dominated convergence.

Proposition 2.3. — There exists a constant c4 such that
Z

|aij(y)� aij(x)| |Dijp
a(y)(t, x, y)| dy 

(
c4t

↵
2�1, t  1,

c4t�1, t � 1.

Proof. — A computation shows that

Dijp
a(y)(t, x, y)(2.5)

= t�1pa(y)(t, x, y)
hX

k

X

l

(yk � xk)Aki(y)Alj(y)(yl � xl)

t
�Aij(y)

i
.
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By (2.2) and Cauchy-Schwarz we have
Z

|aij(y)� aij(x)| |Dijp
a(y)(t, x, y)| dy


hZ

|aij(y)� aij(x)|t�1pa(y)(t, x, y)[|x� y|2t�1⇤�2
m + ⇤�1

m ] dy.(2.6)

Suppose first that t  1. By the Hölder condition on a the above is at most

c

Z
|y � x|↵

t↵/2

h |x� y|2

t
+ 1

i
pa(y)(t, x, y) dy t↵/2�1

 ct↵/2�1,

where we have used Proposition 2.1(c) in the last inequality.
For the case t > 1 simply use the boundedness of a in (2.6) and Proposition 2.1

again to bound it by ct�1.

3. Proof of Theorem 1.1

For f 2 C2
b and a a matrix with constant coe�cients define

Maf(x) =
dX

i,j=1

aijDijf(x).

Define the corresponding semigroup by (2.4), and let

Ra
�f =

Z 1

0
e��tP a

t f dt.

For f 2 C2
b we have

Lf(x) = Ma(x)f(x).

Note that

(3.1) (�� Ma(y))Ra(y)
� P a(y)

" f(x) = P a(y)
" f(x).

One way to verify that the superscript a(y) does not cause any di�culty here is to
check that

dX

i,j=1

aij(y)
@2

@xi@xj
pa(y)(s, x, y) =

@

@s
pa(y)(s, x, y),

and then in the definition of Ra(y)
� use integration by parts in the time variable. By

replacing " with "/2, setting f(z) = pa(y)("/2, z, y) and using Chapman-Kolmogorov,
we see that (3.1) implies

(3.2) (�� Ma(y))(Ra(y)
� pa(y)(", ·, y))(x) = pa(y)(", x, y).

We are now ready to prove Theorem 1.1.
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Proof. — Suppose P1, P2 are two solutions to the martingale problem for L started
at a point w. Define

Si
�f = E i

Z 1

0
e��tf(Xt) dt, i = 1, 2,

and
S�

� f = S1
�f � S2

�.

We make two observations. First, because Pi need not come from a Markov process,
Si

�f is not a function, and so S�
� is a linear functional. Second, if

⇥ = sup
kfk1

|S�
� f |,

then ⇥ <1.
If f 2 C2

b , then by the definition of the martingale problem

E if(Xt)� f(w) = E i

Z t

0
Lf(Xs) ds, i = 1, 2.

Multiply both sides by �e��t, integrate over t from 0 to 1, and use Fubini to obtain

f(w) = Si
�(�f � Lf), i = 1, 2,

or

(3.3) S�
� (�f � Lf) = 0.

Let g 2 C2 with compact support and set

f"(x) =

Z
Ra(y)

� (pa(y)(", ·, y))(x)g(y) dy.

Since this is the same as

e��"

Z Z 1

"
e��tpa(y)(t, x, y) dt g(y) dy,

we see that f" is in C2
b in x by dominated convergence.

To calculate (� � L)f" it is easy to di�erentiate under the dy integral and so we
may write

(�� L)f"(x) = (�� Ma(x))f"(x)

=

Z
(�� Ma(y))Ra(y)

� (pa(y)(", ·, y))(x)g(y) dy

+

Z
(Ma(y) � Ma(x))Ra(y)

� (pa(y)(", ·, y))(x)g(y) dy

:= I"(x) + J"(x).
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By Proposition 2.3,

|J"(x)| 
dX

i,j=1

Z 1

0
e��t

Z
|aij(y)� aij(x)|

⇥ |Dijp
a(y)(" + t, x, y)| |g(y)| dy dt

 d2kgk
Z 1

0
e��tc4t

�1(t↵/2 ^ 1) dt

 1

2
kgk,

for � � �0(↵, d, c4). By (3.2), I"(x) =
R

pa(y)(", x, y)g(y) dy, and so by Proposition
2.2, I"(x) converges to g boundedly and pointwise. Since S�

� (� � L)f" = 0 by (3.3),
we have |S�

� I"| = |S�
� J"|. Letting "! 0,

|S�
� g| = lim

"!0
|S�

� I"| = lim
"!0

|S�
� J"|  ⇥ lim sup

"!0
kJ"k  1

2⇥kgk.

Using a monotone class argument, the above inequality holds for all bounded g, and
then taking the supremum over g such that kgk  1, we have ⇥  1

2⇥. Since ⇥ <1,
this implies that ⇥ = 0.

From this point on, we use standard arguments. By the uniqueness of the Laplace
transform together with continuity in t, E 1f(Xt) = E 2f(Xt) for all t if f is contin-
uous and bounded. Using regular conditional probabilities, one shows as usual that
the finite dimensional distributions under P1 and P2 agree. This su�ces to prove
uniqueness; see [2] or [4] for details.

Note that no localization argument is needed in the above proof.
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FEYNMAN INTEGRALS AS HIDA DISTRIBUTIONS: THE
CASE OF NON-PERTURBATIVE POTENTIALS

by

Martin Grothaus, Ludwig Streit & Anna Vogel

Dedicated to Jean-Michel Bismut as a small token of appreciation

Abstract. — In this note the concepts of path integrals as generalized expectations
of White Noise distributions is presented. Combining White Noise techniques with
a generalized time-dependent Doss’ formula Feynman integrands are constructed as
Hida distributions beyond perturbation theory.

Résumé (Les intégrales de chemins comme distributions de Hida: le cas de potentiel non-

perturbatif)

Dans cette note, on introduit les intégrales de chemins comme étant des espérances
de bruits blancs généralisés. On combine les techniques de bruits blancs avec une
généralisation de la méthode de Doss pour construire les « intégrales » de Feynman
comme distributions de Hida, au-delà de la théorie perturbative.

1. Introduction

Feynman “integrals", such as

J =

Z
d
1

x exp

Ç
i

Z t

0
(T (ẋ(s))� V (x(s))) ds

å
f(x(·))

are commonplace in physics and meaningless mathematically as they stand. Within
white noise analysis [1, 2, 9, 10, 12, 14, 15, 16, 17] the concept of integral has
a natural extension in the dual pairing of generalized and test functions and allows
for the construction of generalized functions (the “Feynman integrands") for various
classes of interaction potentials V , see e.g. [5, 6, 7, 10, 11, 13, 17], all of them by
perturbative methods. This work extends this framework to the case where these fail,
using complex scaling as in [4], see also [3].

In Section 2 we characterize Hida distributions. In Section 3 the U -functional is
constructed, see Theorem 3.3. We prove in Section 4 that we obtain a solution of the
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Schroedinger equation, see Theorem 4.4. The strategy for a general construction of
the Feynman integrand is provided in Section 5. Examples are given in Section 6.

2. White Noise Analysis

The white noise measure µ on Schwartz distribution space arises from the charac-
teristic function

C(f) := exp
⇣
� 1

2kfk
2
2

⌘
, f 2 S(R),

via Minlos’ theorem, see e.g. [1, 9, 10]:

C(f) =

Z

S0
exp

�
ih!, fi

�
dµ(!).

Here h·, ·i denotes the dual pairing of S
0(R) and S(R). We define the space

�
L

2
�

:= L
2(S0(R), B, µ).

In the sense of an L
2-limit to indicator functions 1[0,t), t > 0, a version of Wiener’s

Brownian motion is given by:

B(t,!) := h!,1[0,t)i =

Z t

0
!(s) ds, t > 0.

One then constructs a Gel’fand triple:

(S) ⇢ L
2(µ) ⇢ (S)0

of Hida test functions and distributions, see e.g. [10]. We introduce the T -transform
of � 2 (S)0 by

(T�)(g) :=
⌦⌦

�, exp
�
ih·, gi

�↵↵
, g 2 S(R),

where hh·, ·ii denotes the bilinear dual pairing between (S)0 and (S). Expectation
extends to Hida distributions � by

Eµ(�) := hh�, 1ii.

Definition 2.1. — A function F : S(R) ! C is called U -functional if
(i): F is “ray-analytic": for all g, h 2 S(R) the mapping

R 3 y 7! F (g + yh) 2 C
has an analytic continuation to C as an entire function.

(ii): F is uniformly bounded of order 2, i.e., there exist some constants 0 < K,D <

1 and a continuous norm k · k on S(R) such that for all w 2 C, g 2 S(R)

|F (wg)|  K exp(D|w|2kgk2).

Theorem 2.2. — The following statements are equivalent:
(i): F : S(R) ! C is a U -functional.
(ii): F is the T -transform of a unique Hida distribution � 2 (S)0.

For the proof and more see e.g. [10].

ASTÉRISQUE 327



FEYNMAN INTEGRALS AS HIDA DISTRIBUTIONS 57

3. Hida distributions as candidates for Feynman Integrands

In this section we construct Hida distributions as candidates for the Feynman
integrands. First we list which properties potentials must fulfill.

Assumption 3.1. — For O ⇢ R open, where R \ O is a set of Lebesgue measure zero,
we define the set D ⇢ C by

D :=
n

x +
p

iy

��� x 2 O and y 2 R
o

,

and consider analytic functions V0 : D ! C and f : C ! C. Let 0  t  T < 1.
We require that there exists an 0 < " < 1 and a function I : D ! R such that its
restriction to O is measurable and locally bounded and
(3.1)

E

"����� exp

 
�i

Z t

0
V0

⇣
z+
p

iBs

⌘
ds

!
f

⇣
z+
p

iBt

⌘����� exp

 
"kBk2sup,T

2

!#
 I(z), z 2 D,

uniformly in 0  t  T . Here E denotes the expectation w.r.t. a Brownian motion B

starting at 0. k · ksup,T denotes the supremum norm over [0, T ].

We shall consider time-dependent potentials of the form

Vġ : [0, T ]⇥ D ! C
(t, z) 7! V0(z) + ġ(t)z(3.2)

for g 2 S(R).

Remark 3.2. — One can show that (3.1) implies that

E

"
exp

 
� i

Z t�t0

0
Vġ

⇣
t� s, z +

p
iBs

⌘
ds

!
f

⇣
z +

p
iBt�t0

⌘#
,

is well-defined for all g 2 S(R), 0  t0  t  T and z 2 D.

Theorem 3.3. — Let 0 < T < 1 and ' : R ! R be Borel measurable, bounded with
compact support. Moreover we assume that V0 and f fulfill Assumption 3.1. Then for
all 0  t0  t  T , the mapping

F',t,f,t0 : S(R) ! C

g 7! exp

 
� 1

2

Z

[t0,t]c
g
2(s) ds

!Z

R
exp(�ig(t0)x)'(x)

Å
G(g, t, t0) exp(ig(t)·)f

ã
(x) dx(3.3)

is a U -functional where for x 2 O
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(3.4)
Å

G(g, t, t0) exp(ig(t)·)f
ã

(x) := E

"
exp

 
� i

Z t�t0

0
Vġ

⇣
t� s, x +

p
iBs

⌘
ds

!

⇥ exp
⇣
ig(t)

⇣
x +

p
iBt�t0

⌘⌘
f

⇣
x +

p
iBt�t0

⌘#
.

Proof. — F',t,f,t0 is well-defined: (3.4) is finite because of (3.1), and the integral in
(3.3) exists since ' is bounded with compact support.

To show that F',t,f,t0 is a U -functional we must verify two properties, see Definition
2.1.

First F',t,f,t0 must have a “ray-analytic" continuation to C as an entire function.
I.e., for all g, h 2 S(R) the mapping

R 3 y 7! F',t,f,t0(g + yh) 2 C
has an entire extension to C.

We note first that this is true for the expression

(3.5) u(y) := exp

 
� i

Z t�t0

0
Vġ+yḣ

⇣
t� s, x +

p
iBs

⌘
ds

!

⇥ exp
⇣
i (g + yh) (t)

⇣
x +

p
iBt�t0

⌘⌘
f

⇣
x +

p
iBt�t0

⌘

inside the expectation in (3.4). Hence the integral of u over any closed curve in C is
zero. By Lebesgue dominated convergence the expectation E[u(w)] is continuous in
w. With Fubini I

E [u (w)] dw = E

ïI
u (w) dw

ò
= 0,

for all closed paths, hence by Morera E(u(w)) is entire. This extends to (3.3) since '
is bounded with compact support. Thus

C 3 w 7! F',t,f,t0(g + wh) 2 C
is entire for all 0  t0  t  T and all g, h 2 S(R).

Verification is straightforward that F',t,f,t0 is of 2nd order exponential growth,
F',t,f,t0 is a U-functional.

One can show the same result by choosing the delta distribution �x, x 2 O, instead
of a test function ':

Corollary 3.4. — Let V0 and f fulfill Assumption 3.1 and let x 2 O. Then for all
0  t0  t  T the mapping

F�x,t,f,t0 : S(R) ! C

g 7! exp

 
� 1

2

Z

[t0,t]c
g
2(s) ds

!
exp(�ig(t0)x)

⇣
G(g, t, t0) exp(ig(t)·)

⌘
f(x)
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is a U -functional, where
⇣
G(g, t, t0) exp(ig(t)·)

⌘
f(x) is defined as in Theorem 3.3.

4. Solution to time-dependent Schrödinger equation

Assumption 4.1. — Let V0 : D ! C and f : C ! C such that Assumption 3.1 is
fulfilled and Vġ, g 2 S(R), as in (3.2).

(i): For all u, v, r, l 2 [0, T ] and all z 2 D we require that

E
1

"����� exp

 
� i

Z u

0
Vġ

⇣
v � s, z +

p
iB

1
s

⌘
ds

!

⇥E
2

"
exp

 
� i

Z r

0
Vġ

⇣
l � s, z +

p
iB

1
u +

p
iB

2
s

⌘
ds

!
f

⇣
z +

p
iB

1
u +

p
iB

2
r

⌘#�����

#
< 1.

(4.1)

(ii): For all z 2 D, 0  t0  t  T and some 0 < "  T the functions

! 7! sup
0h"

�����

 
Vġ

⇣
t, z +

p
iBh(!)

⌘
+

Z h

0

@

@t
Vġ

⇣
t + h� s, z +

p
iBs(!)

⌘
ds

!

⇥ exp

 
� i

Z h

0
Vġ

⇣
t + h� s, z +

p
iBs(!)

⌘
ds

!
f

⇣
z +

p
iBh(!)

⌘�����(4.2)

and

! 7! sup
h2[0,T ]

������E
2

"
exp

 
� i

Z t�t0

0
Vġ

⇣
t� s, z +

p
iB

1
h(!) +

p
iB

2
s

⌘
ds

!

⇥ f

⇣
z +

p
iB

1
h(!) +

p
iB

2
t�t0

⌘#�����(4.3)

are integrable.
Here B

1 and B
2 are Brownian motions starting at 0 with corresponding expectations

E
1 and E

2, respectively. Moreover � denotes @2

@z2 and @
@t the derivative w.r.t. the first

variable.

We define H(D) to be the set of holomorphic functions from D to C. As pointed
out by H. Doss, see [4], under specified assumptions (similar to Assumption 3.1 and
Assumption 4.1 (ii)) there is a solution  : [0, T ] ⇥ D ! C to the time-independent
Schrödinger equation, i.e., for all t 2 [0, T ] and x 2 O

(
i

@
@t (t, x) = � 1

2� (t, x) + V0(x) (t, x)

 (0, x) = f(x),

which is given by

 (t, x) = E

"
exp

 
� i

Z t

0
V0

⇣
x +

p
iBs

⌘
ds

!
f

⇣
x +

p
iBt

⌘#
.
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Remark 4.2. — Let us consider the case of the free motion, i.e., V0 ⌘ 0. We assume
that f : D ! C is an analytic function, such that E

h
f

⇣
z+

p
iBt

⌘i
, z 2 D, 0  t  T ,

exists and is uniformly bounded on [0, T ]. Moreover let

! 7! sup
h2[0,T ]

����f

⇣
z +

p
iBh(!)

⌘ ���

be integrable, then
@

@t
E

h
f

⇣
x +

p
iBt

⌘i
= �i

1

2
�E

h
f

⇣
x +

p
iBt

⌘i
,

for x 2 O, 0  t  T , see [4].

For our purpose a generalization to the time-dependent case

(4.4)

(
i

@
@t

�
U(t, t0)f

�
(x) =

�
H(t)U(t, t0)f

�
(x)

�
U(t0, t0)f

�
(x) = f(x),

x 2 O, 0  t0  t  T,

where H(t) := � 1
2�+Vġ(t, ·) for g 2 S(R) and 0  t  T , is necessary. In the following

we show that the operator U(t, t0) : D(t, t0) ⇢ H(D) ! H(D), 0  t0  t  T , given
by

U(t, t0)f(z) := E

"
exp

 
� i

Z t�t0

0
Vġ

⇣
t� s, z +

p
iBs

⌘
ds

!
f

⇣
z +

p
iBt�t0

⌘#
, z 2 D,

(4.5)

provides us with a solution to (4.4). Here by D(t, t0) we denote the set of functions
f 2 H(D) such that the expectation in (4.5) is a well-defined object in H(D).

Lemma 4.3. — Let V0 and f fulfill the Assumptions 3.1 and 4.1 then the opera-
tor U(t, t0), 0  t0  t  T , as in (4.5), maps from D(t, t0) to H(D). Moreover
U(r, t0)f 2 D(t, r) and one gets that

U(t, t0)f(z) = U(t, r)(U(r, t0)f)(z),

for all 0  t0  r  t  T and z 2 D.

Proof. — The property that U(t, t0), 0  t0  t  T , as in (4.5), maps from D(t, t0) to
H(D) follows by using Morera and Assumption 3.1. The fact that U(r, t0)f 2 D(t, r)
follows by Assumption 4.1 (i). Let 0  t0  r  t  T and z 2 D, then one gets with
the Markov property and the time-reversibility of Brownian motion that

(4.6) U(t, t0)f(z) = E

"
exp

 
� i

Z t�t0

0
Vġ

⇣
t� s, z +

p
iBs

⌘
ds

!
f

⇣
z +

p
iBt�t0

⌘#

= E

"
exp

 
� i

Z t�r

0
Vġ

⇣
t� s, z +

p
iBs

⌘
ds

!

⇥ exp

 
� i

Z t�r+r�t0

t�r
Vġ

⇣
t� s, z +

p
iBs

⌘
ds

!
f

⇣
z +

p
iBt�t0

⌘#
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= E

"
exp

 
� i

Z t�r

0
Vġ

⇣
t� s, z +

p
iBs

⌘
ds

!

⇥ exp

 
� i

Z r�t0

0
Vġ

⇣
r � s + t� r, z +

p
iBs+t�r

⌘
ds

!
f

⇣
z +

p
iBt�r+r�t0

⌘#

= E
1

"
exp

 
� i

Z t�r

0
Vġ

⇣
t� s, z +

p
iB

1
s

⌘
ds

!

⇥E
2

"
exp

 
� i

Z r�t0

0
Vġ

⇣
r�s, z+

p
iB

1
t�r +

p
iB

2
s

⌘
ds

!
f

⇣
z+

p
iB

1
t�r +

p
iB

2
r�t0

⌘##

= U(t, r)
�
U(r, t0)f

�
(z).

One can show that by U(t, t0), 0  t0  t  T , a pointwise-defined (unbounded)
evolution system is given.

Theorem 4.4. — Let 0 < T < 1, V0, Vġ, g 2 S(R), as in (3.2), and f such that
Assumption 3.1 and 4.1 are fulfilled. Then U(t, t0)f(x), 0  t0 < t  T , x 2 O, given
in (4.5) solves the Schrödinger equation (4.4).

Proof. — Let 0  t0 < t  T , x 2 O and g 2 S(R). If we have a look at the di�erence
quotient from the right side, we get with Lemma 4.3 that

@

@t

+

U(t, t0)f(x) = lim
h&0

U(t + h, t0)� U(t, t0)

h
f(x)

= lim
h&0

U(t + h, t)� U(t, t)

h
U(t, t0)f(x).

Hence it is left to show that

lim
h&0

U(t + h, t)k(x)� U(t, t)k(x)

h
= H(t)k(x),

for k = U(t, t0)f . Note that

(4.7)

lim
h&0

1

h
E

"
exp

 
�i

Z t+h�t

0
Vġ

⇣
t+h�s, x+

p
iBs

⌘
ds

!
k

⇣
x+

p
iBh

⌘
�k

⇣
x+

p
iB0

⌘#

= lim
h&0

E

"
1

h
exp

 
� i

Z h

0
Vġ

⇣
t+h�s, x+

p
iBs

⌘
ds

!
k

⇣
x+

p
iBh

⌘
� 1

h
k

⇣
x+

p
iBh

⌘#

+ lim
h&0

E

"
1

h
k

⇣
x +

p
iBh

⌘
� 1

h
k

⇣
x +

p
iB0

⌘#
.

The integrand of the first summand yields

lim
h&0

1

h

 
exp

 
� i

Z h

0
Vġ

⇣
t + h� s, x +

p
iBs

⌘
ds

!
� 1

!
k

⇣
x +

p
iBh

⌘
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=� iVġ

⇣
t, x +

p
iB0

⌘
k

⇣
x +

p
iB0

⌘
= �iVġ(t, x)k(x).

Hence by Assumption 4.1 (ii), the mean value theorem and Lebesgue dominated
convergence

lim
h&0

E

"
1

h

 
exp

 
� i

Z h

0
Vġ

⇣
t + h� s, x +

p
iBs

⌘
ds

!
� 1

!
k

⇣
x +

p
iBh)

⌘#
= �iVġ(t, x)k(x).

Moreover we know by Remark 4.2 and Assumption 4.1 (ii) that E

h
k(x+

p
iBt)

i
solves

the free Schrödinger equation, hence

lim
h&0

E

h
k

⇣
x +

p
iBh

⌘
� k

⇣
x +

p
iB0

⌘i
= � i

2
�k(x).

Similar with

@

@t

�
U(t, t0)f(x) = lim

h&0

U(t� h, t0)� U(t, t0)

h
f(x)

= lim
h&0

U(t� h, t� h)� U(t, t� h)

h
U(t� h, t0)f(x)

one can show the same for the di�erence quotient from the left side.

5. General construction of the Feynman integrand

Of course one is interested in the Feynman integrand IV0 for a general class of po-
tentials V0 : O ! C, where R\ O is of measure zero, having an analytic continuation to
D. I.e., we are interested in the Feynman integrand corresponding to the Hamiltonian

H = �1

2
� + V0(q),

where q is the position operator, i.e.,

H'(x) = �1

2
�'(x) + V0(x)'(x), x 2 O,

for suitable ' : R ! R (see the introduction for a comprehensive list of references).
In all cases it turned out that for a test function g 2 S(R) and 0  t0 < t  T we
have that

(TIV0)(g) = exp

 
� 1

2

��g1[t0,t]c
��2

+ ig(t)x� ig(t0)x0

!
K

(ġ)
V0

(x, t|x0, t0),(5.1)

where K
(ġ)
V0

(x, t|x0, t0) denotes the Green’s function corresponding to the potential Vġ

(see [8] for a justification of (5.1) under natural assumptions on IV0). This leads us
to the following definition (see e.g. [6]).
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Definition 5.1. — Let V0 : D ! C be an analytic potential, f : C ! C an analytic
initial state, Vġ, g 2 S(R), as in (3.2), and ' : R ! R, Borel measurable, bounded with
compact support. Assume that V0, Vġ and f fulfill Assumption 3.1 and Assumption
4.1. Then by Theorem 3.3 one has that for all 0  t0  t  T , the function F',t,f,t0

exists and forms a U -functional. Moreover by Theorem 4.4 it follows that for all x 2 D
and all 0  t0  t  T

Uġ(t, t0)f(x) = E

"
exp

 
� i

Z t�t0

0
Vġ

⇣
s, x +

p
iBs

⌘
ds

!
f

⇣
x +

p
iBt�t0

⌘#

exists and solves the Schrödinger equation (4.4) corresponding to the Hamiltonian

H(t) = �1

2
� + V0(q) + ġ(t)q,

for all g 2 S(R). Then by Theorem 2.2 we define the Feynman integrand

IV0,',f := T
�1

F',t,f,t0 2 (S)0.

Definition 5.2. — Again let V0 : D ! C be an analytic potential, f : C ! C an
analytic initial state, Vġ, g 2 S(R), as in (3.2) and x 2 O. Analogously with Theorem
2.2, Corollary 3.4 and Theorem 4.4 we define the Feynman integrand

IV0,�x,f := T
�1

F�x,t,f,t0 2 (S)0.

Remark 5.3. — Note that the Green’s function K
(ġ)
V0

(x, t|x0, t0), if it exists, is the in-
tegral kernel of the operator Uġ(t, t0).

6. Examples

To show the existence of the Feynman integrand for concrete examples one only
has to verify Assumption 3.1 and 4.1. In this section we look at analytic potentials
V0 which are already considered in [4]. First we introduce the set of initial states f .
For m 2 N we choose the function

fm : C ! C

z 7! (2m
m!)�

1
2 (�1)m

⇡
� 1

4 e
1
2 z2

 
@

@z

!m

e
�z2

.(6.1)

Note that the set of functions given by the restrictions of fm, m 2 N, to R are the
Hermite functions, whose span is a dense subset of L

2(R).

Lemma 6.1. — Let k : R+
0 ! R+

0 be a measurable function and B a real-valued Brow-
nian motion, then

E

h
k(kBksup,T )

i
 2

 
2

⇡T

!1/2 Z 1

0
k(u)e�

u2

2T du.

For the proof see [4, Sec.1, Lem.1].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



64 MARTIN GROTHAUS, LUDWIG STREIT & ANNA VOGEL

Lemma 6.2. — Let fm, m 2 N, be as in (6.1). Then for all l 2 N0 and " > 0 there
exists a locally bounded measurable function cm,l : C ! R+ such that
���f (l)

m

⇣
z +

p
iy

⌘���  cm,l(z)|y|m+l exp

  
1

2
+

1p
2"

!
|z|2
!

exp

Å
"

2
|y|2

ã
for all z 2 C, y 2 R,

where f
(l)
m denotes the l-th derivative of f .

6.1. The Feynman integrand for polynomial potentials. — Here for n 2 N0

we have a look at the potential

V0 : C ! C

z 7! (�1)n+1
a4n+2z

4n+2 +
4n+1X

j=1

ajz
j
,(6.2)

for a0, . . . , a4n+1 2 C and a4n+2 > 0. If we have a look at the function

y 7! �iVġ

⇣
t, x +

p
iy

⌘

for g 2 S(R), x 2 C and t 2 [0, T ], then it is easy to see that the term of highest
order of the real part is given by �a4n+2y

4n+2. So it follows that for all compact sets
K ⇢ C there exists a constant CK > 0 such that

sup
z2K

sup
t2[0,T ]

sup
y2R

���� exp
⇣
|g(t)| (|z| + |y|)� iV0

⇣
z +

p
iy

⌘⌘����  CK .(6.3)

Hence the function

! 7! exp

 
� i

Z t

0
Vġ

⇣
s, z +

p
iBs(!)

⌘
ds

!
(6.4)

is bounded uniformly in 0  t  T and locally uniformly in z 2 C.

Theorem 6.3. — Let 0 < T < 1, V0 as in (6.2) and fm, m 2 N, as in (6.1). Then
it is possible to define the corresponding Feynman integrand IV0,',fm , ' Borel mea-
surable, bounded with compact support, and IV0,�x,fm , x 2 R, as in Definition 5.1 and
Definition 5.2, respectively.

Proof. — As discussed above V0 and fm are analytic. Moreover with Lemma 6.1 and

kz,l : R+
0 ! R+

0

u 7! cm,l(z)um+l exp

  
1

2
+

1p
2"

!
|z|2
!

exp

Å
"

2
u

2

ã
,(6.5)

l 2 N0, we get that

E

"
exp

 
"kBk2sup,T

2

!���fm

⇣
z +

p
iBt

⌘���

#
 E

"
exp

 
"kBk2sup,T

2

!
kz,0(kBksup,T )

#
< 1,

(6.6)
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for 0 < " <
1

2T , z 2 C and cm,l as in Lemma 6.2. If we multiply the integrand in
(6.6) with the bounded function in (6.4) we still have an integrable function for all
z 2 C and all 0  t  T . So for showing Assumption 3.1 one has to check whether
there exists a function I : C ! R+ whose restriction to R is locally bounded and
measurable, such that relation (3.1) holds. It is easy to see that this is true for the
function

I : C ! R+

z 7! E

"����� exp

 
Re

 
� i

Z t

0
V0

⇣
z +

p
iBs

⌘
ds

!!����� exp

 
"kBk2sup,T

2

!
kz,0(kBksup,T )

#
.

The locally boundedness of the restriction of I to R follows from (6.3) and the fact
that cm,l is locally bounded. Since O = R one can choose an arbitrary ', Borel
measurable, bounded with compact support, to apply Theorem 3.3. Moreover if we
omit the integration the assumptions of Corollary 3.4 are also fulfilled.

So it is only left to check whether Assumption 4.1 is fulfilled. To show (4.1) again
by the boundedness of (6.4) one only has to show that

E
1

"�����E
2

"
fm

�
z +

p
iB

1
t�r +

p
iB

2
r�t0

�
#�����

#
< 1, z 2 C, 0  t0  r  t  T.

But this follows directly by Lemma 6.1 and Lemma 6.2. To show Assumption 4.1
(ii) note first that di�erentiation and integration in (4.3) can be interchanged since
the integrand is analytic and its derivatives are integrable. Since V is polynomial,
using the functions kz,0, kz,1 and kz,2, see (6.5), Lemma 6.1 and Lemma 6.2 one
can show a estimate similar to (6.6) for (4.2) and (4.3), respectively. Hence they are
integrable.

Remark 6.4. — For n = 0 we are not dealing with the harmonic oscillator. Neverthe-
less it is possible to handle a potential of the form

x 7! a0 + a1x + a2x
2
,

for a0, a1 2 C and a2 2 R such that a2 <
1

2T 2 . In this case the function in (6.4) might
be unbounded. So one has to estimate the potential as in Lemma 6.2, separately.

6.2. Non-perturbative accessible potentials. — In this section O = R \ {b},
b 2 R. We first consider analytic potentials of the form

V0 : D ! C

z 7! exp
⇣
log(a)� n

2
log

Ä
(z � b)2

ä⌘
,(6.7)

where n 2 N, a 2 C and b 2 R. Note that for x 2 O one has that V (x) = a
|x�b|n .
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Lemma 6.5. — Let V0 be defined as in (6.7). Then V0 is analytic on D and for all
z 2 D, z = x +

p
iy, x 2 O, y 2 R, and all 0  t  T we get that

���V0

⇣
z +

p
iBt

⌘��� = |a|
��� exp

⇣
� n

2
log
⇣�

z � b +
p

iBt

�2⌘���  |a| exp

 
� n

2
log

 
(x� b)2

2

!!
.

For the proof see [4].

Theorem 6.6. — Let 0 < T < 1, O = R\{b}, V0 as in Lemma 6.5 and fm, m 2 N, as
in (6.1). Then it is possible to define the corresponding Feynman integrand IV0,',fm ,
' : R \ {b} ! C, Borel measurable, bounded with compact support and IV0,�x,fm ,
x 2 R \ {b}, as in Definition 5.1 and Definition 5.2, respectively.

Proof. — W.l.o.g. we set a = 1 and b = 0. Then O = R \ {0}. So let z 2 D,
z = x +

p
iy, x 2 O, y 2 R, and 0  t  T . Again we have to check Assumption 3.1

and 4.1. From Lemma 6.5 know that V0 is analytic on D.
Now we check whether relation (3.1) is true. From Lemma 6.5 we know that

����� exp

 
� i

Z t

0
V0

⇣
z +

p
iBs

⌘
ds

!
exp

 
"kBk2sup,T

2

!
fm

⇣
z +

p
iBt

⌘�����

 exp

 
t exp

 
� n

2
log

 
x

2

2

!!!
exp

 
"kBk2sup,T

2

!���fm

⇣
z +

p
iBt

⌘���.

So with

kz,l : R+
0 ! R+

0

u 7! exp

 
T exp

 
� n

2
log

 
x

2

2

!!!
cm,l(z)um+l exp

  
1

2
+

1p
2"

!
|z|2
!

exp

Å
"

2
u

2

ã
,(6.8)

l 2 N0, Lemma 6.1 and Lemma 6.2 we get that

E

"����� exp

 
� i

Z t

0
V0

⇣
z +

p
iBs

⌘
ds

!����� exp

 
"kBk2sup,T

2

!���fm

⇣
z +

p
iBt

⌘���

#

2

 
2

⇡T

!1/2

exp

 
T exp

 
n

2
log

 
x

2

2

!!!
(6.9)

⇥
Z 1

0
cm,l(z)um+l exp

  
1

2
+

1p
2"

!
|z|2
!

exp

Å
"

2
u

2

ã
e
� u2

2T du =: I(z),(6.10)

for all z 2 D, 0 < " <
1

4T and cm,l as in Lemma 6.2. Again since cm,l is measurable
and locally bounded it follows that the restriction of I to O is also measurable and
locally bounded. Now we check whether Assumption 4.1 is true. Relation (4.1) follows
by Lemma 6.1, Lemma 6.2 and Lemma 6.5. Again with Lemma 6.1, Lemma 6.2 and
Lemma 6.5 and the functions kz,0, kz,1 and kz,2 one can show integrability for (4.2)
and (4.3), respectively.
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Corollary 6.7. — In the same way one can also show the existence of the Feynman
integrand for potentials of the form

V0 : D ! C

z 7! a

(z � b)n
,(6.11)

for a 2 C, b 2 R and n 2 N. Moreover one can choose linear combination of the
potentials given in (6.2),(6.7) and (6.11).
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SMOOTH DENSITY OF CANONICAL STOCHASTIC
DIFFERENTIAL EQUATION WITH JUMPS
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Dedicated to Professor J.-M. Bismut for his sixtieth birthday

Abstract. — We consider jump di�usion process ⇠t on Rd
determined by a canonical

SDE:

d⇠t =
Pm

i=1 Vi(⇠t) ⇧ dZi
t + V0(⇠t)dt,

where Zt = (Z1
t , ..., Zm

t ) is an m-dimensional Lévy process and V0, ..., Vm are smooth

vector fields. We prove that the law of the solution ⇠t has a C1-density under the fol-

lowing two conditions. (1) The Lévy process Zt is nondegenerate. (2) {V0, V1, ..., Vm}
can be degenerate but satisfies a uniform Hörmander condition (H). For the proof we

make use of the Malliavin calculus on the Wiener-Poisson space studied by Ishikawa-

Kunita.

Résumé (Densité lisse pour les solutions d’équations diVérentielles stochastiques avec sauts)
Nous considérons un processus de di�usion à sauts ⇠t dans Rd

déterminé par une

EDS canonique:

d⇠t =
Pm

i=1 Vi(⇠t) ⇧ dZi
t + V0(⇠t)dt,

où Zt = (Z1
t , ..., Zm

t ) est un processus de Lévy m-dimensionnel et V0, ..., Vm sont des

champs de vecteurs. Nous montrons que la loi de ⇠t a une densité C1 si les condi-

tions suivantes sont satisfaites. (1) Le processus de Lévy Zt est non dégénéré. (2) La

distribution {V0, V1, ..., Vm} peut être dégénérée mais elle satisfait à une condition de

Hörmander uniforme (H). Pour la démonstration, nous utilisons le calcul de Malliavin

sur l’espace de Wiener-Poisson étudié par Ishikawa-Kunita.

1. Introduction and main results

Let V0, V1, · · ·Vm be smooth vector fields on Rd whose derivatives (including higher
orders) are all bounded. Let Zt = (Z1

t , ..., Zm
t ), t � 0 be an m-dimensional nondegen-

erate Lévy process. In this paper, we consider a jump di�usion determined by a

2010 Mathematics Subject Classification. — 60H07; 60J75.

Key words and phrases. — Malliavin calculus, jump process, canonical process, density function.
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canonical SDE based on {V0, V1, · · · , Vm} and Zt;

(1.1) d⇠t =
mX

i=1

Vi(⇠t) ⇧ dZi
t + V0(⇠t)dt.

Canonical SDE’s are studied in mathematical finance. Let Zt be a one dimensional
Lévy process. We consider a one dimensional linear canonical SDE.

dSt = St ⇧ dZt.

The solution starting from S0 at time 0 is unique and it is written as St := S0 exp Zt

(See Section 2). It is called a geometric Lévy process. The solution St describes the
movement of a stock. If Zt is a Lévy process with finite Lévy measure (a compound
Poisson process), the process St is the Merton model or the Kou model, according
as the normalized Lévy measure is a Gaussian distribution or a double exponential
distribution, respectively. See [16],[8]. The precise definition of the canonical SDE
will be given at Section 2.

The main purpose of this paper is to show the existence of the smooth density for
the law of the random variable ⇠t that is a solution of equation (1.1). For this purpose
we need to assume suitable nondegenerate conditions both for the Lévy process Zt

and the family of vector fields {V0, ..., Vm}.
We first consider the Lévy process. The Lévy process Zt is represented for arbitrary

� > 0, by

Zt = �Wt +

Z t

0

Z

0<|z|�
zÑ(drdz) +

Z t

0

Z

|z|>�
zN(drdz) + b�t,

where � is an m⇥m-matrix, Wt is an m-dimensional standard Brownian motion.
N(dtdz) is a Poisson random measure which is independent of Wt with intensity
N̂(dtdz) = dt⌫(dz), ⌫ being the Lévy measure. Further, Ñ(dtdz) = N(dtdz)�N̂(dtdz)

and b� = (b1
� , ..., b

m
� ) is a drift vector. Set A = (aij) = ��T . It is a covariance of the

Gaussian part �W1 (Lévy-Itô decomposition). Throughout this paper, we assume that
the Lévy measure ⌫ has finite moments of any order. Set v(⇢) :=

R
|z|<⇢ |z|2⌫(dz). If

there exists ↵ 2 (0, 2) such that

lim inf
⇢!0

v(⇢)

⇢↵
> 0,

then the Lévy measure is said to satisfy an order condition. Note that the Lévy
measure ⌫ satisfying an order condition is an infinite measure: Indeed, we have
⌫({z; 0 < |z| < �}) = 1 for any � > 0. In case of one dimensional Lévy process,
the above order condition is known as a su�cient condition for the existence of the
smooth density of the law of the Lévy process (Orey’s theorem. See Sato [20], Propo-
sition 28.3). Then the law of the geometric Lévy process St has a smooth density if
the order condition is satisfied.
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Now we set bij(⇢) =
R
|z|⇢ zizj⌫(dz)/v(⇢) and B(⇢) = (bij(⇢)). The infinitesimal

covariance B is a symmetric and nonnegative definite matrix, which coincides with
the greatest lower bound of the matrix B(⇢) as ⇢ ! 0. If the Lévy measure satisfies an
order condition and the matrix A+B is nondegenerate (invertible), then we say that
the Lévy process is nondegenerate. In this paper, we assume that the Lévy process Zt

is nondegenerate.
We will next consider nondegenete properties for the family of vector fields

{V0, ..., Vm}. In Ishikawa-Kunita [6], we studied the case where the family of vector
fields {V1, ..., Vm} is uniformly nondegenerate, i.e., there exists a positive constant C

such that the inequality
mX

i=1

|lT Vi(x)|2 � C|l|2, 8x 2 Rd, 8l 2 Rd

holds valid, where lT is the transpose of l and lT V (x) denotes the inner product of
two vectors l and V (x). We showed the existence of the smooth density of its law by
applying Malliavin calculus on the Wiener-Poisson space.

In this paper we want to relax the above uniformly nondegenerate condition. Let
V0, ..., Vm be C1-vector fields such that their derivatives (including higher orders)
are all bounded. Then Lie brackets [Vi1 [· · · [Vin�1 , Xin ] · · · ], i1, ..., in 2 {0, 1, ...,m} are
bounded vector fields. We introduce families of vector fields. Let ⌃0 = {V1, ..., Vm} be
a linear space of vector fields spanned by V1, ..., Vm. Given � > 0, we set

V̂ �
0 = V0 +

mX

i=1

bi
�Vi.

Set ⌃�
0 = ⌃0 and define for k = 1, 2, ...

⌃�
k =

n
[V̂ �

0 , V ] +
1

2

mX

i,j=1

aij [Vi, [Vj , V ]], [Vi, V ], i = 1, ...,m, V 2 ⌃�
k�1

o
.

Theorem 1.1. — Assume that for the family of vector fields {V0, ..., Vm} there exist

a positive integer N0 and a positive number �0 such that for any 0 < � < �0 the

inequality

(1.2)
N0X

k=0

X

V 2⌃�
k

|lT V (x)|2 � C(�)|l|2, 8x 2 Rd, 8l 2 Rd

holds valid, where C(�) are positive numbers satisfying

lim inf
�!0

C(�)/v(�)2 = 1.

Then for any initial random variable ⇠0 and 0 < T0 < 1, the law of the solution ⇠T0

of the canonical SDE (1.1) has a C1-density.
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The condition required for vector fields in the above theorem is complicated, since
�’s are involved. We can replace it by a simpler one if we restrict the Lévy process Zt

to a simpler one, namely if we assume

(1.3) b0 = lim
�!0

b� exists and is finite.

The existence of b0 is equivalent to that of lim�!0

R
�<|z|1 z⌫(dz). In this case, it

holds b0 = b1 � lim�!0

R
�<|z|1 z⌫(dz). In particular, if the integral

R
0<|z|1 |z|⌫(dz)

is finite, b0 exists and is finite. Hence for any stable process whose exponent is less
than 1, b0 exists. Further, if the Lévy measure ⌫ is symmetric, b0 exists and is equal
to b1 even if

R
0<|z|1 |z|⌫(dz) is infinite. Hence for any symmetric stable process, b0

exists and is equal to b1.
Now, assume (1.3) and let � ! 0 in the Lévy-Itô decomposition of Zt. Then we

obtain

Zt = �Wt +

Z t

0

Z

|z|>0
zN(drdz) + b0t.

Hence b0 can be regarded as the drift vector of the Lévy process Zt. We define a new
drift vector field V̂0 by

V̂0 = V0 +
mX

i=1

bi
0Vi,

and introduce families of vector fields by ⌃0 = {V1, ..., Vm} and for k = 1, ...

⌃k =
n

[V̂0, V ] +
1

2

mX

i,j=1

aij [Vi, [Vj , V ]], [Vi, V ], i = 1, ...,m, V 2 ⌃k�1

o
.

Theorem 1.2. — Assume (1.3) for the Lévy process Zt. Assume further that the family

of vector fields {V̂0, V1, ..., Vm} satisfy the uniform Hörmander condition (H), i.e.,

there exists a positive integer N0 and a positive constant C such that

(1.4)
N0X

k=0

X

V 2⌃k

|lT V (x)|2 � C|l|2, 8x 2 Rd, 8l 2 Rd

holds valid. Then for any initial random variable ⇠0 and 0 < T0 < 1, the law of the

solution ⇠T0 of the canonical SDE (1.1) has a C1-density.

Observe that Theorem 1.2 indicates that both the canonical SDE with jumps and
Stratonovich SDE (di�usion) have the common local criterion (Hörmander’ condition)
for the existence of the smooth density of their laws. This is partly because that we
restrict our attention to small jumps of the SDE, ignoring the e�ect of big jumps.
Loosely speaking, under an order condition, the solution of equation (1.1) could behave
like a di�usion if sizes of jumps are small.
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Perhaps, Bismut [2] is the first work toward the smooth density of the law of the
solution of SDE with jumps, where he developed the Malliavin calculus for jump pro-
cesses. After this fundamental work, the similar problem has been discussed in some
di�erent contexts by Léandre [13],[14],[15], Bichteler-Gravreau-Jacod [1], Komatsu-
Takeuchi [7] and others. A common feature in the above works might be that they
assumed for the Lévy measure ⌫ the existence of a smooth density and an asymptotic
of the density as z ! 0. Furthermore, a formula of integration by parts holds valid in
these cases, which are shown through Girsanov’s theorem for jump di�usion.

In our discussion any Lévy measure (singular or not) is allowed, as far as it satis-
fies an order condition. Then no formula of integration by parts is known. We take
another approach to the Malliavin calculus, developed in Ishikawa-Kunita [6]. It will
be presented in the next section.

2. Malliavin calculus for canonical SDE

Let Zt, t � 0 be an m-dimensional Lévy process admitting the Lévy-Itô decomposi-
tion and let ⇠0 be an Rd-valued random variable independent of Zt. By the solution of
equation (1.1) starting from ⇠0 at time 0, we mean a cadlag Rd-valued semimartingale
{⇠t; t � 0} adapted to F t = �(⇠0, Zr; r  t) satisfying

⇠t = ⇠0 +
mX

i=1

Z t

0
Vi(⇠r) ⇧ dZi

r +

Z t

0
V0(⇠r)dr(2.1)

= ⇠0 +
mX

i,k=1

Z t

0
Vi(⇠r)�ik � dW k

r +

Z t

0
V̂ �

0 (⇠r)dr.

+

Z t

0

Z

|z|<�
{�z

1(⇠r�)�⇠r�}Ñ(drdz)

+

Z t

0

Z

|z|��
{�z

1(⇠r�)�⇠r�}N(drdz)

+

Z t

0

Z

|z|<�
{�z

1(⇠r)�⇠r�
mX

i=1

ziVi(⇠r)}N̂(drdz).

Here ” � ” denotes the Stratonovitch integral. Using Itô integral, it holds
mX

k=1

Z t

0
Vi(⇠r)�ik � dW k

r

=
mX

k=1

Z t

0
Vi(⇠r�)�ikdW k

r +
1

2

mX

j=1

aij

Z t

0

⇣ dX

l=1

@Vi

@xl
V l

j

⌘
(⇠r�)dr.

Further, for z = (z1, ..., zm) 2 Rm �z
s , s 2 R is the one parameter group of di�eomor-

phisms generated by the vector field
Pm

i=1 ziVi, i.e., �z
s = exp s(

P
i ziVi).
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The equation has a unique solution ⇠�
t . It holds ⇠�

t = ⇠�0
t for any � > 0 and �0 > 0.

Hence the common solution is denoted by ⇠t. In the case where ⇠0 = x, we denote the
solution by ⇠0,t(x). Then it has a modification such that the maps ⇠0,t;Rd ! Rd are
onto di�eomorphisms a.s. and further the Jacobian matrix r⇠0,t(x) is invertible for
any x a.s. It defines a stochastic flow of di�eomorphisms (Fujiwara-Kunita [3]). We
have ⇠t = ⇠0,t(⇠0).

We will consider a one dimensional linear SDE dSt = St ⇧dZt. In this case we have
V1(x) = x. Then it holds (exp szV1)(x) = eszx. Hence equation (2.1) is written by

St = S0 + �

Z t

0
Sr�dWr +

1

2
�2

Z t

0
Sr�dr + b�

Z t

0
Sr�dr

+

Z t

0

Z

0<|z|�
(ez�1)Sr�Ñ(drdz) +

Z t

0

Z

|z|>�
(ez�1)Sr�N(drdz)

+

Z t

0

Z

0<|z|�
(ez�1�z)Sr�dr⌫(dz).

The solution is given by St = S0 exp Zt. Indeed apply Itô’s formula to the function
F (x) = ex and the semimartingale Zt (Theorem 2.5 in [10]). Then we find that
St := expZt satisfies the above equation.

Now, for the proof of theorems stated in Section 1, we need the Malliavin calculus
on the Wiener-Poisson space studied in Ishikawa-Kunita [6]. We will quickly recall it.
Let T0 be an arbitrarily fixed positive number and let U = [0, T0]⇥Rm. Elements of
U are denoted by u = (t, z). Let "+

u be a perturbation of the Poisson random measure
N such that N(A) � "+

u = N(A\ {u}c) + 1A(u). If we apply "+
(t1,z1)

to the solution ⇠t

of SDE (2.1), we have ⇠t � "+
(t1,z1)

= ⇠t if t1 > t and ⇠t � "+
(t1,z1)

= ⇠t1,t � �z1
1 � ⇠t1� if

t1  t, where ⇠s,t := ⇠0,t � ⇠�1
0,s are di�eomorphisms of Rd, a.s.

For u=(u1, ..., un), we set "+
u = "+

u1
� · · · �"+

un
. Let u=((t1, z1), ..., (tn, zn)) where

t1 < t2 < · · · < tn. Then ⇠u
t := ⇠t � "+

u is represented by

⇠u
t = ⇠ti,t � �zi

1 � ⇠ti�1,ti� � · · · � �z1
1 � ⇠t1�, if ti  t < ti+1.

Malliavin covariances R and K̃ of the random variable ⇠T0 with respect to the Wiener
space and the Poisson space are defined by

R =

Z T0

0
r⇠t,T0(⇠t�)C(⇠t�)AC(⇠t�)Tr⇠t,T0(⇠t�)T dt,

K̃ =

Z T0

0
r⇠t,T0(⇠t�)C(⇠t�)BC(⇠t�)Tr⇠t,T0(⇠t�)T dt,

respectively. Here r⇠t,T0(x) is the Jacobian matrix of the map ⇠t,T0(x). The d ⇥ m

matrix C(x) is given by C(x) = (V1(x), ..., Vm(x)).
We set Q = R + K̃ and call it as the Malliavin covariance of ⇠T0 . Set Qu = Q � "+

u .
Then Qu is the Malliavin covariance of ⇠u

T0
.
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Now consider Q̂ = r⇠0,T0(⇠0)�1Q(r⇠0,T0(⇠0)T )�1 (modified Malliavin covariance

of ⇠T0). It is written as

Q̂ =

Z T0

0
(r⇠t�)�1C(⇠t�)(A + B)C(⇠t�)T (r⇠T

t�)�1dt,

where r⇠t = r⇠0,t(⇠0). Then the modified Malliavin covariance Q̂u of ⇠u
T0

equals
Q̂ � "+

u .
A criterion for the existence of the smooth density of the law of ⇠T0 is given by the

following.

Lemma 2.1. — Assume that

(2.2) sup
u2A(1)n

sup
l2Sd�1

E[(lT Q̂ul)�p] < 1

holds for any positive integer n and p > 1. Then the law of ⇠T0 has a C1-density.

Proof. — It is shown in [6], Proposition 6.1 that if Qu is invertible a.s. and

(2.3) sup
u2A(1)n

sup
l2Sd�1

E[(lT Qul)�p] < 1

is satisfied for any positive integer n and p > 1, then the law of ⇠T0 has a C1-density.
Here, we set A(1) = {(t, z); t 2 (0, T0), |z|  1} and Sd�1 = {l 2 Rd; |l| = 1}.

We will show that condition (2.2) implies condition (2.3). Note that (2.2) implies
supu2A(1)n E[supl2Sd�1

(lT Q̂ul)�p] < 1. Then the minimum eigenvalue ⇤u
1 of the

matrix Q̂u satisfies supu2A(1)n E[(⇤u
1 )�p] < 1 for any p > 1. Since the equality

(Qu)�1 = r⇠T
0,T0

(Q̂u)�1r⇠0,T0 holds and r⇠0,T0 2 Lp holds for any p > 1,

{(lT Qul)�1, l 2 Sd�1,u 2 A(1)n}

is also Lp bounded for any p > 1. Thus we have (2.3).

Theorem 2.2. — Assume that for any l 2 Sd�1 and u 2 A(1)n
, the random variable

X

V 2⌃0

Z T0

0

���lT (r⇠u
t )�1V (⇠u

t )
���
2
dt

is strictly positive a.s. Assume further that for any p > 1 and positive integer n there

exists a positive constant Cn,p such that

(2.4) E

" 
X

V 2⌃0

Z T0

0

���lT (r⇠u
t )�1V (⇠u

t )
���
2
dt

!�p#
< Cn,p,

for any l 2 Sd�1 and u 2 A(1)n
. Then the law of ⇠T0 has a C1-density.
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Proof. — Let �1 > 0 be the minimum eigen value of the matrix A+B. Then we have

lT Q̂ul � �1

X

V 2⌃0

Z T0

0
|lT (r⇠u

t )�1V (⇠u
t )|2dt.

Therefore the assertion follows from Lemma 2.1.

The proof of our main theorem will be completed by checking the above criterion
(2.4). However its process will be quite long. Our program for the proof is as follows.
In Section 4, instead of the uniform Hörmander condition (H), we will present another
criterion that ensures the existence of the smooth density of the law of ⇠T0 (Theorem
4.1). Sections 3,4 and 6 are devoted to the proof of Theorem 4.1. Section 3 is a prelim-
inary part. We will discuss SDE governed by semimartingales (r⇠t)�1V (⇠t), where
V is a vector field. In Theorem 6.1 (Appendix), we obtain an estimate for probabili-
ties of events concerned with these semimartingales, where “Komatsu-Takeuchi’s key
lemma” plays an important role. The estimate is analogous to the one obtained by
Kusuoka-Stroock [12] or Norris [17] in case of di�usion process. The proof of Theorem
4.1 will be completed by proving criterion (2.4) through these estimates.

In Section 5 we show that the uniform Hörmander condition fulfills the criterion
of Theorem 4.1 and then we give the proof of our main theorems (Theorems 1.1-1.2).

3. SDE’s for derivatives of stochastic flow

Let V (x) be a vector field. We begin by studying the SDE which governs
(r⇠t)�1V (⇠t).
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Lemma 3.1. — We have a.s.

(r⇠t)
�1V (⇠t) = V (⇠0) +

mX

i,j=1

Z t

0
(r⇠s�)�1[Vi, V ](⇠s�)�ijdW j(s)

+
1

2

mX

i,j=1

aij

Z t

0
(r⇠s�)�1[Vi, [Vj , V ]](⇠s�)ds

+

Z t

0
(r⇠s�)�1[Ṽ �

0 , V ](⇠s�)ds

+

Z t

0

Z

|z|<�
(r⇠s�)�1{r�z

1(⇠s�)�1V (�z
1 � ⇠s�)� V (⇠s�)}Ñ(dsdz)

+

Z t

0

Z

|z|��
(r⇠s�)�1{r�z

1(⇠s�)�1V (�z
1 � ⇠s�)�V (⇠s�)}N(dsdz)

+

Z t

0

Z

|z|<�
(r⇠s�)�1

n
r�z

1(⇠s�)�1V (�z
1 � ⇠s�)�V (⇠s�)

�
X

i

zi[Vi, V ](⇠s�)
o

N̂(dsdz),

where r�z
1(x) is the Jacobian matrix of �z

1(x);Rd ! Rd
and r�z

1(x)�1
is its inverse

matrix.

Proof. — It is shown in Ishikawa-Kunita [6] that the inverse matrix (r⇠t)�1 satisfies
a.s.

(r⇠t)
�1 = I �

X

i,j

Z t

0
(r⇠s�)�1rVi(⇠s�)�i,j � dW j(s)

�
Z t

0
(r⇠s�)�1rṼ �

0 (⇠s�)ds

+

Z t

0

Z

|z|<�
(r⇠s�)�1{r�z

1(⇠s�)�1�I}Ñ(dsdz)

+

Z t

0

Z

|z|��
(r⇠s�)�1{r�z

1(⇠s�)�1�I}N(drdz)

+

Z t

0

Z

|z|<�
(r⇠s�)�1{r�z

1(⇠s�)�1 � I

+
X

i

zirVi(⇠s�)}N̂(dsdz).
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On the other hand, in view of Itô’s formula for semimartingale with jumps, we have

V (⇠t) = V (⇠0) +
X

i,j

Z t

0
rV (⇠s�)Vi(⇠s�)�ij � dW j(s)

+

Z t

0
rV (⇠s�)Ṽ �

0 (⇠s�)ds

+

Z t

0

Z

|z|<�
(V (�z

1 � ⇠s�)�V (⇠s�))Ñ(dsdz)

+

Z t

0

Z

|z|��
(V (�z

1 � ⇠s�)�V (⇠s�))N(dsdz)

+

Z t

0

Z

|z|<�
{V (�z

1 � ⇠s�)�V (⇠s�)

�
X

i

zirV (⇠s�)Vi(⇠s�)}N̂(dsdz).

For the product of two semimartingales Xt = (r⇠t)�1 and Yt = V (⇠t), we have the
formula

XtYt = X0Y0+

Z t

0
Xs � dY c

s +

Z t

0
(�dXc

s)Ys

+

Z t

0
Xs�dY d

s +

Z t

0
dXd

s Ys�+[Xd, Y d]t,

where Xc
t , Y c

t are continuous parts of semimartingales Xt, Yt, respectively and Xd
t , Y d

t

are discontinuous parts of Xt, Yt, respectively. A direct application of the above for-
mula implies the equation of the lemma.

Now define

 �
0V (x) =

1

2

mX

i,j=1

aij [Vi, [Vj , V ]](x)(3.1)

+[V̂ �
0 , V ](x) +

Z

0<|z|�

⇣
r�z

1(x)�1V (�z
1(x))�V (x)

�
mX

i=1

[Vi, V ](x)zi
⌘
⌫(dz),

and set

(3.2) �s(z)V (x) := r�z
s(x)�1V (�z

s(x))� V (x).

To simplify notations, we introduce the following. We set S = R̂m[Rm[{�}, where
R̂m is an m-dimensional Euclidean space. Elements of R̂m and Rm are denoted
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by y = (y1, ..., ym) and z = (z1, ..., zm), respectively. We define stochastic process
Y (1)

l,V (t, v) with parameter l 2 Sd�1, vector field V and v 2 S by

Y (1)
l,V (t,�) = lT (r⇠t)

�1 �
0V (⇠t),

Y (1)
l,V (t, y) =

mX

i=1

lT (r⇠t)
�1[Vi, V ](⇠t)

yi

|y| ,

Y (1)
l,V (t, z) = lT (r⇠t)

�1�1(z)

|z| V (⇠t).

Let W (dsdy) be a Gaussian orthogonal random measure on [0, T0] ⇥ R̂m such
that E[W (dsdy)] = 0 and �Wt =

R t

0

R
R̂m yW (dsdy). Then the intensity measure

E(W (dsdy)2) = dsw(dy) satisfies (
R
R̂m yiyjw(dy)) = A. We set ŵ(dy) = |y|2w(dy).

Then, setting Yl,V (t) = lTr⇠tV (⇠t), the equation of Lemma 3.1 is written as

Yl,V (t) = lT V (⇠0) +

Z t

0
Y (1)

l,V (s�,�)ds(3.3)

+

Z t

0

Z

R̂m

Y (1)
l,V (s�, y)|y|dW

+

Z t

0

Z

|z|�
Y (1)

l,V (s�, z)|z|dÑ

+

Z t

0

Z

|z|>�
Y (1)

l,V (s�, z)|z|dN.

We will continue the above argument inductively. Let k � 1. We will define a family
of k-th step semimartingales with spatial parameter associated with a given vector
field V . We set  (�)V =  �

0V ,  (y)V =
P

k[Vk, V ]yk/|y| and  (z)V = �1(z)V/|z|.
Define for vk, ..., v1 2 S

(3.4)  (vk, ..., v1)V =  (vk) � · · · � (v1)V.

Apply equality (3.3) to the vector field  (vk, ..., v1)V in place of V . Then, setting

Y (k)
l,V (t, vk, ..., v1) = lT (r⇠t)

�1 (vk, ..., v1)V (⇠t),
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equality (3.3) is written as

Y (k)
l,V (t, vk, ..., v1) = Y (k)

l,V (0, vk, ..., v1)(3.5)

+

Z t

0
Y (k+1)

l,V (s�,�, vk, ..., v1)ds

+

Z t

0

Z
Y (k+1)

l,V (s�, yk+1, vk, ..., v1)|yk+1|W (dsdyk+1)

+

Z t

0

Z

|zk+1|�
Y (k+1)

l,V (s�, zk+1, vk, ..., v1)|zk+1|Ñ(dsdzk+1)

+

Z t

0

Z

|zk+1|>�
Y (k+1)

l,V (s�, zk+1, vk, ..., v1)|zk+1|N(dsdzk+1).

4. Alternative criterion for the smooth density

We will now study the existence of the smooth density of the law of ⇠t. In this
section we present an alternative criterion which ensures the existence of the smooth
density. The condition will be given at Theorem 4.1. In the next section we will study
how the condition given in this section is related to Hörmander’s condition in Theorem
1.1.

Let ✏ > 0. Associated with the Lévy measure ⌫, we define a probability measure
µ̂✏ on Rm by

µ̂✏(dz) =
1

v(✏)
|z|21[0,✏](|z|)⌫(dz),

where v(⇢) =
R
|z|<⇢ |z|2⌫(dz). We denote by µ✏ the measure on S such that it is equal

to µ̂✏ on Rm, equals to !̂ on R̂m and equals to �{�} on �.
Keeping Theorem 6.1 (in Appendix) in mind, we introduce some positive constants.

Let ↵ be the exponent of the order condition of ⌫ and let � and r be positive numbers
such that 3

2 < ↵(1+�) < 2 and r > (2�↵(1+�))�1. Let q > 4r and q(k) = (1+�)rq�k.
For a positive integer N0 and ", � > 0, define LN0

✏,� (w, x), w, x 2 Rd by

LN0
✏,� (w, x) =

X

V 2⌃0

n
|wT V (x)|2+

+
N0X

k=1

Z
· · ·
Z

|wT (vk, ..., v1)V (x)|2µ"q(k)(dvk) · · ·µ"q(1)(dv1)
o

.

( (vk, ..., v1) may depend on �).

Theorem 4.1. — For the canonical SDE (1.1), assume that there exists a positive in-

teger N0, a nonnegative integer n0, �0, ✏0 > 0 and a positive number C such that

(4.1) LN0
",�0

(w, x) � C|w|2

(1 + |x|)n0
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holds for any 0 < ✏ < ✏0 and w, x 2 Rd
. Then for any initial random variable ⇠0 and

0 < T0 < 1, the law of the solution ⇠T0 has a C1-density.

For the proof of the above theorem, we need Norris’ type estimate stated in The-
orem 6.1 in Appendix. We fix �0 satisfying (4.1). We define events (with parameter
l 2 Sd�1 and " > 0) by

E =

(
X

V 2⌃0

Z T0

0
|Yl,V (t�)|2dt < "

)
.

We want to prove that for any p > 1 there exists Cp > 0 such that P (E)  Cp✏p holds
for any 0 < ✏ < ✏0 and l 2 Sd�1. In order to prove this, associated with the vector
field V we introduce a sequence of events E(k)

V (with parameter l 2 Sd�1 and ") by
nZ T0

0

ÅZ
|Y (k)

l,V (t�, vk, ..., v1)|2µ"q(k)(dvk) · · ·µ"q(1)(dv1)

ã
dt < "q�k

o
,

for k = 0, 1, 2, ..., where Y (0)
l,V = Yl,V . Then we have E ⇢ \V 2⌃0E(0)

V and the set E(0)
V

is included in

(E(0)
V \ (E(1)

V )c) [ (E(1)
V \ (E(2)

V )c) [ · · · [ (E(N0�1)
V \ E(N0)

V )c) [GV ,

where
GV = E(0)

V \ E(1)
V \ · · · \ E(N0)

V .

Consequently, in order to prove that P (E) is small, it is su�cient to prove that both
P (E(k)

V \ (E(k+1)
V )c) and P (\V 2⌃0GV ) are small. These two assertions will be shown

in the following two lemmas.

Lemma 4.2. — For any p > 1 there exists a positive constant Cp such that

(4.2) P (E(k)
V \ (E(k+1)

V )c)  Cp"
p, k = 0, 1, .., N0�1

holds for all 0 < " < "0 and l 2 Sd�1.

Proof. — We first consider the case k = 0. We want to apply Theorem 6.1 in Ap-
pendix to the semimartingale Yl,V (t). The integrand functions of the right hand side
of (3.3) have finite moments of any order ([3]), i.e.,

E[sup
t

|Y (1)
l,V (t)|p

0
+ sup

t,y
|Y (1)

l,V (t, y)|p
0
+ sup

t,z
|Y (1)

l,V (t, z)|p
0
] < 1.

Therefore the functional ✓� defined by (6.2) satisfies E[(sup� ✓�)p0 ] < 1 for any p0.
Then we can apply Theorem 6.1 and we get

P (E(0)
V \ (E(1)

V )c)  Cp0"
p0

for all 0 < " < "0 and l 2 Sd�1.
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We want to apply Theorem 6.1 again to Y (k)
l,V (t, vk, ..., v1), which is written by (3.5).

Set � = (vk, ..., v1) and ⇡(d�) = µ"q(k)(dvk) · · ·µ"q(1)(dv1). It can be shown that for
any p0 > 1, E[(sup� ✓�)p0 ] < 1 holds. Then the inequality

P (E(k)
V \ (E(k+1)

V )c)  Cp0"
p0q�(k+1)

, k = 1, 2, ...

holds for all 0 < " < "0 and l 2 Sd�1 by Theorem 6.1. Set p = p0q�N0 . Then (4.2)
holds valid for any k.

Lemma 4.3. — Assume (4.1). Then for any p > 1 there exists a positive constant C 0p
such that

(4.3) P (\V 2⌃0GV ) < C 0p"
p,

for all 0 < " < 1 and l 2 Sd�1.

Proof. — Set

K✏ =
N0X

k=0

X

V 2⌃0

Z T0

0

ÅZ
|Y (k)

l,V (t�, vk, ..., v1)|2µ"q(k)(dvk) · · ·µ"q(1)(dv1)

ã
dt.

Then, if ! 2 G := \V 2⌃0GV , we have the inequality

K"(!) < m
N0X

k=0

"q�k

< m(N0+1)"q�N0

if "1/q < 1. Therefore, we have G ⇢ {K" < m(N0+1)"q�N0}. Thus, the problem is
reduced to getting the estimate of P (K" < m(N0+1)"q�N0 ).

Observe that K" is written as

K" =

Z T0

0
LN0

",�0
((r⇠t�)�1l, ⇠t�)dt.

Inequality (4.1) implies

K" � C

Z T0

0

|(r⇠t�)�1l|2

(1 + |⇠t�|)n0
dt.

Further, for any l 2 Sd�1, we have the inequality
ÇZ T0

0

|(r⇠t�)�1l|2

(1 + |⇠t�|)n0
dt

å�1

 1

T 2
0

Z T0

0
|r⇠t�|2(1 + |⇠t�|)n0dt,

by using Jensen’s inequality. Therefore

G ⇢
®Z T0

0
|r⇠t�|2(1 + |⇠t�|)n0dt >

CT 2
0

m(N0+1)"q�N0

´
.

Then we get by Chebyschev’s inequality, P (G)  C 0p"
p where

C 0p =

Å
m(N0+1)

CT 2
0

ã p

q�N0

E

"ÇZ T0

0
|r⇠t�|2(1 + |⇠t�|)n0dt

å p

q�N0

#
.
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We have thus obtained the estimate (4.3) for all 0 < " < 1 and l 2 Sd�1.

Proof of Theorem 4.1. — It su�ces to prove (2.4). Inequalities of Lemmas 4.1 and
4.2 imply

P

 
X

V 2⌃0

Z T0

0
|Yl,V (t�)|2dt < ✏

!
< C 00p ✏p

for all 0 < " < "0 and l 2 Sd�1. Consequently we obtain

sup
l2Sd�1

E

2

4
 
X

V 2⌃0

Z T0

0
|lT (r⇠t)

�1V (⇠t)|2dt

!�p
3

5  Cp

for any p > 1.
Consider next the case where u 6= 0. Let u = {(t1, z1), ..., (tn, zn)}, where we

have 0 < t1 < · · · < tn < T0. We set ⇠u
t = ⇠t � "+

u and Y u
l,V (t) = lT (r⇠u

t )�1V (⇠u
t ).

Then there exists an interval [ti, ti+1] such that its length is greater than or equal to
T0/(n + 1). Choose t0i < t0i+1 such that [t0i, t

0
i+1] ⇢ [ti, ti+1] and t0i+1� t0i = T0/(n + 1).

Then ⇠u
t , t 2 [t0i, t

0
i+1] is a solution of SDE (1.1) with the initial data ⇠u

ti
. We can apply

the argument of this section to the process Y u
l,V (t), t 2 [t0i, t

0
i+1]. Then we have

sup
l2Sd�1

E

2

4
 
X

V 2⌃0

Z t0i+1

t0i

|lT (r⇠u
t )�1V (⇠u

t )|2dt

!�p
3

5 < Cp,u.

Note that the family of initial data satisfies

sup
u2A(1)n

E[|⇠u
ti
|p]  c(n, ⇢0, p) < 1.

Then we can choose a positive constant Cn,p such that it dominates all Cp,u. Therefore,

sup
u2A(1)n

sup
l2Sd�1

E

2

4
 
X

V 2⌃0

Z T

0
|lT (r⇠u

t )�1V (⇠u
t )|2dt

!�p
3

5 < Cn,p

for any n and p.

5. Relation with Lie algebra

In this section we want to prove the following.

Theorem 5.1. — Under the same condition as in Theorem 1.1, there exists �00, ✏
0
0 > 0

and C 0 > 0 such that the inequality

(5.1) LN0

",�00
(w, x) � C 0|w|2, 8w, x 2 Rd

holds for all 0 < " < "00.
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If the above theorem is established, Theorem 1.1 follows from Theorem 4.1 and
Theorem 5.1, immediately. Theorem 1.2 is an easy consequence of Theorem 4.1. In-
deed, it is verified as follows.

Proof of Theorem 1.2. — Since b0 exists by the assumption of the theorem, there
exists �0 > 0 such that for any 0 < � < �0, the inequality

N0X

k=0

X

V 2⌃�
k

|lT V (x)|2 � 1

2

N0X

k=0

X

V 2⌃k

|lT V (x)|2 � C

2

holds. Then Theorem 1.2 follows from Theorem 1.1.

Before we proceed to the proof of Theorem 5.1, we shall approximate the vec-
tor field  (vk, ..., v1)V given by (3.4) by a linear sum of vector fields of the form
 kk kk�1 · · · k1V where  ki are such that  0 =  �

0V or  iV = [Vi, V ], i = 1, ...,m,
in the case where v1, ..., vk 2 R̂m [Rm are small.

We first consider the case k = 1. We have  (�)V =  �
0V ,  (y)V =

P
i[Vi, V ]yi/|y|

and  (z)V = �1(z)V/|z|. Set z = (z1, ..., zm). Then �s(z) given by (3.2) satisfies the
di�erential equation

�s(z)V (x)

ds
= (r�z

s(x))�1
⇣ mX

i=1

[Vi, V ](�z
s(x))zi

⌘
.

Hence �1(z)V (x) is written as

�1(z)V (x)�
mX

i=1

[Vi, V ](x)zi

=
1

2
(r�z

✓(x))�1
X

i,j

[Vj , [Vi, V ]](�z
✓(x))zizj ,

where 0  ✓  1, by the mean value theorem. Consequently we obtain
����1(z)V (x)�

mX

i=1

[Vi, V ](x)zi
���  c1|z|2.

Since  (z) = �1(z)/|z|, we get
��� (z)V (x)�

mX

i=1

[Vi, V ](x)
zi

|z|

���  c1|z|

for su�ciently small z.
We next consider the case k � 2. Suppose vk = zk, ..., v1 = z1. We can show

similarly that there exists �0 > 0 such that the inequality

��� (zk, ..., z1)V (x)�
mX

ik,...,i1=1

 ik · · · i1V (x)
zik
k

|zk|
· · · zi1

1

|z1|

���  c2

kX

i=1

|zi|
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holds for |zi|  �0, i = 1, ..., k, where zi = (z1
i , ..., zm

i ). For the general vk, ..., v1, we
have

(5.2)
��� (vk, ..., v1)V (x)�

mX

ik,...,i1=0

 ik · · · i1V (x)'ik(vk) · · ·'i1(v1)
���

 c2

⇣ X

i2{k;vk=zk}

|zi|
⌘
.

Here '0(�) = 1, 'k(�) = 0, k = 1, ...,m and '0(y) = '0(z) = 0, 'k(z) = zk

|z| and

'k(y)= yk

|y| , k = 1, ...,m.
We claim:

Lemma 5.2. — For any � > 0 and c > 0 there exists "0 = "0(�, c) > 0 such that for

any 0 < " < "0 and l 2 Sd�1, we have
Z

· · ·
Z

|lT (vk, ..., v1)V (x)|2µ"q(k)(dvk) · · ·µ"q(1)(dv1)(5.3)

� �̂1
k

2

 
mX

ik,...,i1=0

|lT ik · · · i1V (x)|2
!
� c,

where �1 is the minimal eigen value of the matrix A + B and �̂1 = � ^ 1.

Proof. — Let us consider F✏ given by
Z Z ⇣ mX

ik,...,i1=0

lT ik · · · i1V 'ik(vk) · · ·'i1(v1)
⌘2

µ"q(k)(dvk) · · ·µ"q(1)(dv1).

Since

lim
"!0

Z Z
'ik(vk) · · ·'i1(v1)'i0

k
(vk) · · ·'i01

(v1)µ"q(k)(dvk) · · ·µ"q(1)(dv1)

�
kY

j=1

(aiji0j
+ biji0j

+ ciji0j
),

(where cij = 1 if i = j = 0 and = 0 otherwise), the inferior limit of F✏ is greater than
or equal to

mX

ik,...,i1=0

mX

i0
k
,...,i01=0

lT ik · · · i1V lT i0
k
· · · i01

V

⇥(aik,i0
k

+ bik,i0
k

+ ciki0
k
) · · · (ai1i01

+ bi1,i01
+ ci1i01

).

The above has the lower bound �̂k
1

Pm
ik,...,i1=0 |lT ik · · · i1V |2. Therefore, we have

F✏ � �̂k
1

 
mX

ik,...,i1=0

|lT ik · · · i1V (x)|2
!
� c

2
,
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for su�ciently small ".
On the other hand, we have from (5.2) the inequality

R R ⇣
lT (vk, ..., v1)V �

Pm
ik,...,i1=0 lT ik · · · i1V 'ik(vk) · · ·'i1(v1)

⌘2

⇥µ"q(k)(dvk) · · ·µ"q(1)(dv1)  c2

0X
"2q(i)  1

2
c

for su�ciently small ", where
P0 is the summation for i 2 {k; vk = zk}. Consequently

we get the inequality (5.3).

Proof of Theorem 5.1. — We shall first introduce another family of vector fields.
Given � > 0, we define a linear transformation  �

0 of vector fields by (3.1). We may
consider  �

0V as a modification of the vector field [V̂ �
0 , V ]. We define

��
0 = ⌃0, · · · ,��

k = { �
0V, [Vi, V ], i = 1, ...,m, V 2 ��

k�1}.

These can be regarded as a modification of ⌃�
k of Section 1.

Now, apply (5.3) to each term of L",�(l, x). Then for any 0 < " < "0(�, c) and
l 2 Sd�1, L",�(l, x) is greater than or equal to

(5.4)
X

V 2⌃0

|lT V (x)|2 +
�̂N0

1

2

N0X

k=1

X

V 2⌃0

mX

ik=0

. . .
mX

i1=0

|lT ik · · · i1V (x)|2

�(m + 1)N0N0c �
�̂N0

1

2

(
X

V 2[N0
k=0

��
k

|lT V (x)|2
)
� (m + 1)N0N0c.

We want to rewrite the right hand side of the above by using vector fields in ⌃�
k. We

set

��
0V = [V̂ �

0 , V ] +
1

2

mX

i,j=1

aij [Vi, [Vj , V ]].

Then we have
���lT �

0V (x)� lT��
0V (x)

���
2

=

�����

Z

|z|�

⇣
�1(z)V (x)�

X

i

[Vi, V ](x)zi
⌘
⌫(dz)

�����

2

 c1v(�)2.

We can show by induction
���lT ( �

0)
kV (x)� lT (��

0)
kV (x)

���
2
 2kc1v(�)2.

Therefore,

|lT ( �
0)

kV (x)|2 � 1

2
|lT (��

0)
kV (x)|2 � 2k+1c1v(�)2.
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Summing up these inequalities, we obtain
N0X

k=0

X

V 2��
k

|lT V (x)|2 � 1

2

N0X

k=0

X

V 2⌃�
k

|lT V (x)|2 �N2N0+1c1v(�)2,

where N is the number of terms of the sum
PN0

k=0

P
V 2⌃�

k
. Therefore, assuming (1.2),

the right hand side of (5.4) dominates

C 0 :=
n �̂N0

1

4

⇣C(�)

2
�N2N0+1c1v(�)2

⌘
� (m + 1)N0N0c

o
.

The above constant C 0 becomes positive if we choose �, c su�ciently small, say � = �00
and c = c00. Set "00 = "0(�00, c

0
0). Then we get the inequality (5.1) for l 2 Sd�1 and

x 2 Rd. The inequality is extended to any w, x 2 Rd.

6. Appendix. An analogue of Norris’ estimate

In this section, we will consider semimartingales with parameter �, which is directly
related to the solution of an SDE. We consider a semimartingale Y �

t , 0  t  T0

defined by

Y �
t = y� +

Z t

0
a�(s)ds +

X

i

Z t

0
f�

i (s)dW i
s(6.1)

+

Z t

0

Z

|z|�
g�(s, z)dÑ +

Z t

0

Z

|z|>�
g�(s, z)dN,

where a�(s), f�(s), g�(s, z) are left continuous predictable processes, continuous with
respect to parameters z 2 Rm, � 2 �. Here � is a compact space. We assume further
that a�(t) is a semimartingale represented by

a�(t+) = a� +

Z t

0
b�(s)ds +

X

i

Z t

0
e�
i (s)dW i

s

+

Z t

0

Z

|z|�
h�(s, z)dÑ +

Z t

0

Z

|z|>�
h�(s, z)dN,

where b�(s), e�
i (s), h�(s, z), s � 0 are left continuous predictable processes continuous

with respect to z and �. We set

✓� = k(a�)2 + (b�)2k+
X

i

k(f�
i )2 + (e�

i )2k(6.2)

+

Z

|z|�
kg�(z)2 + h�(z)2k⌫(dz) + sup

|z|>�
kh�(z)2k,

where kFk = sup0tT0
|F (t)|. Set further

ĝ�(t, z) =
g�(t, z)

|z| , µ̂✏(dz) =
1

v(✏)
|z|21[0,✏](|z|)⌫(dz).
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We shall consider two events for given r > 0, q > 4r, � > 0 and ✏ > 0

A(✏) =
nR

�

⇣ R T0

0 |Y �
t�|2dt

⌘
⇡(d�) < "q

o
,

B(✏) =
nR

�

R T0

0

n
a�(t)2+

P
i |f

�
i (t)|2+

R
ĝ�(t, z)2µ̂"(1+�)r (dz)

o
⇡(d�)dt > "

o
.

We will show that the probability where both A(✏) and B(✏) occur simultaneously
is small if ✏ is small.

Theorem 6.1. — Let ↵ be the exponent of the order condition of the Lévy measure ⌫.

Let � > 0 be a number such that 3/2 < ↵(1 + �) < 2. Let r > 1
2�↵(1+�) and q > 4r.

Assume E[(sup� ✓�)p] < 1 holds for any p > 1. Then for any p > 1, there exists a

positive constant Cp such that the inequality

(6.3) P (A(✏) \B(✏)) < Cp✏
p

holds for any semimartingale Y �
t represented by (6.1), any probability measure ⇡ on

� and any 0 < " < "0, where 0 < "0 < 1 is a positive number independent of p.

In order to prove the above theorem, we need the following. Let Y �
t be the process

of (6.1) and let � be an arbitrary positive number.

Komatsu-Takeuchi’s estimate. ([7], Theorem 3) For any 0 < � < 1
4 , there

exist a positive random variable E(�, �) with E[ E(�, �)]  1 and positive constants

C, C0, C1, C2 such that the inequality

�4

Z T0

0
|Y �

t |2 ^ 1

�2
dt + ��� log E(�, �) + C �(6.4)

C0�
1�4�

Z T0

0
|a�(t)|2dt + C1�

2�2�
X

i

Z T0

0
|f�

i (t)|2dt

+C2�
2�2�

Z T0

0

Z

Rm

|g�(t, z)|2 ^ 1

�2
dt⌫(dz)

holds on the set {✓�  �2�} for all � > 1 and Y �
.

Remark 6.2. — In Theorem 3 in [7], the assertion is stated in the case where Y �
t , a�(t)

etc. do not depend on the parameter �. Further the Lévy measure is assumed to be
of the form ⌫(dz) = |z|�m�↵dz. However their result can be applied to the present
case.
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Proof of Theorem 6.1. — By the choice of � and r, it holds 0 < 2�↵(1+�)� 1
r . We

will choose � such that 0 < � < (2�↵(1 + �)� 1
r )^ 1

8 . We want to rewrite inequality
(6.4) in order to apply it for the estimate (6.3). Our aim is to get (6.5) below on
the set {sup� ✓�  e��r}. We first consider the last term of (6.4). It holds for any
0 <  < �

Z

Rm

⇣
|g�(t, z)|2 ^ 1

�2

⌘
⌫(dz) �

Z

|z|< 
�

⇣
|ĝ�(t, z)|2 ^ 1

|z|2�2

⌘
|z|2⌫(dz)

� v
⇣

�

⌘Z

|z|< 
�

⇣
|ĝ�(t, z)|2 ^ 1

2

⌘
µ̂

�
(dz).

Now set � = "�r and  = "�r. Then 
� = "(1+�)r and v(

� ) � C4"↵(1+�)r by the order
condition for v(⇢). Therefore, (6.4) is rewritten by

"�4r

Z T0

0
|Y �

t |2 ^ "2rdt + "�r log E("�r, �) + C

� C0"
�r(1�4�)

Z T0

0
|a�(t)|2dt + C1"

�r(2�2�)
X

i

Z T0

0
|f�

i (t)|2dt

+C2C4"
�r(2�2�)+↵(1+�)r

Z T0

0

Z

Rm

|ĝ�(t, z)|2 ^ "�2�rdtµ̂"(1+�)r (dz).

Now set ⇢ = min{r(1� 4�), r(2� 2�)� ↵(1 + �)}� 1. In view of the choice of �, we
have ⇢ > 0. Set C5 = min{C0, C2, C4}. Then the above inequality yields

"�4r

Z T0

0
|Y �

t |2 ^ "2rdt + "�r log E("�r, �) + C �

C5"
�(⇢+1)

Z T0

0

n
|a�(t)|2 +

X

i

|f�
i (t)|2

+

Z
|ĝ�(t, z)|2 ^ "�2�rµ̂"(1+�)r (dz)

o
dt,

on the set {✓�  ✏��r}.
Next, integrate each term of the above by the measure ⇡ with respect to the

parameter �. We have by Jensen’s inequality
R

log E(�, �)⇡(d�)  log E(�), where
E(�) =

R
E(�, �)⇡(d�) is a positive random variable such that E[ E(�)]  1. Therefore

we have

"�4r

Z

�

⇣Z T0

0
|Y �

t |2 ^ "2rdt
⌘
⇡(d�) + "�r log E("�r) + C �(6.5)

C5"
�(⇢+1)

Z

�

Z T0

0

n
|a�(t)|2 +

X

i

|f�
i (t)|2

+

Z
|ĝ�(t, z)|2 ^ "�2�rµ̂"(1+�)r (dz)

o
dt⇡(d�)
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on the set {sup� ✓�  ✏��r}.
We can now give the proof of (6.3). We define three events by

A1(") =
n

sup
�

✓� > ✏��r
o

,

A2(") =
n

sup
�

✓�  ✏��r
o\nZ

�

Z T0

0
|Y �

t�|2 ^ "2rdt⇡(d�) < "q
o

\n
sup

�
kĝ�k  "�2�r

o\
(Z

�

Z T0

0

⇣
a�(t)2+

X

i

|f�
i (t)|2+

+

Z
ĝ�(t, z)2 ^ "�2�rµ̂"(1+�)r (dz)

⌘
dt⇡(d�)>"

)
,

A3(") =
n

sup
�
kĝ�k > "�2�r

o
.

Then it holds A(")[B(") ⇢ A1(")[A2(")[A3(") for any �. Therefore, the probability
of (6.3) is dominated by P (A1(")) + P (A2(")) + P (A3(")). We shall get estimates
of P (Ai(")), i = 1, 2, 3. In view of our assumption of the theorem, the first one is
estimated as

P (A1("))  "pE
h
(sup

�
✓�)p/r

i
 cp"

p.

A similar estimate is valid for P (A3(")). For the estimate of P (A2(")), we remark
that (6.5) implies

A2(") ⇢
¶

E("�r)"�r

� exp
�
�"q�4r+C5"

�⇢�C
�©

.

Therefore, by Chebyschev’s inequality

P (A2("))  eC exp
�
"q�4r�C5"

�⇢
�
E
î
E("�r)"�ró

.

Further "q�4r < C5
2 "�⇢ holds for " < "0, where "q�4r

0 = C5/2. Therefore,

P (A2("))  eC exp

Å
�C5

2
"�⇢

ã
 c0p"

p

for " < "0.
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TWO-PARAMETER STOCHASTIC CALCULUS
AND MALLIAVIN’S INTEGRATION-BY-PARTS

FORMULA ON WIENER SPACE

by

James R. Norris

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — The integration-by-parts formula discovered by Malliavin for the Itô map
on Wiener space is proved using the two-parameter stochastic calculus. It is also
shown that the solution of a one-parameter stochastic di�erential equation driven by
a two-parameter semimartingale is itself a two-parameter semimartingale.

Résumé (Calcul stochastique à deux paramètres et formule d’intégration par parties de Malliavin
sur l’espace de Wiener)

La formule d’intégration par parties, qui a été établie par Malliavin pour l’appli-
cation d’Itô sur l’espace de Wiener, est démontrée en utilisant le calcul stochastique
à deux paramètres. On montre aussi que la solution d’une équation di�érentielle sto-
chastique à un paramètre, guidée par une semimartingale à deux paramètres, est
elle-même une semimartingale à deux paramètres.

1. Introduction

The stochastic calculus of variations was conceived by Malliavin [6, 7, 8] as follows.
Let (zt)t>0 denote the Ornstein–Uhlenbeck process on Wiener space (W, W , µ) and
let � : W ! Rd denote the (almost-everywhere unique) Itô map obtained by solving
a stochastic di�erential equation in Rd up to time 1. Then (zt)t>0 is stationary and
reversible, so, for functions f, g on Rd, setting F = f � �, G = g � �,

(1) E [{F (zt)� F (z0)}{G(zt)�G(z0)}] = �2E [F (z0){G(zt)�G(z0)}] .

Once certain terms of mean zero are subtracted, a di�erentiation of this identity with
respect to t inside the expectation is possible, and leads to the integration-by-parts

2010 Mathematics Subject Classification. — 60H07; 60H15.
Key words and phrases. — Malliavin calculus, two-parameter stochastic calculus, integration by parts
formula.
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formula on Wiener space

(2)
Z

W
rif(�)�ijrjg(�)dµ = �

Z

W
f(�)LGdµ,

where LG and the covariance matrix � will be defined below. As is now well known,
this formula and its generalizations hold the key to many deep results of stochastic
analysis.

Malliavin’s proof of the integration-by-parts formula was based on a transfer princi-
ple, allowing some calculations for two-parameter random processes to be made using
classical di�erential calculus. Stroock [11, 12, 13] and Shigekawa [10] gave alterna-
tive derivations having a a more functional-analytic flavour. Bismut [1] gave another
derivation based on the Cameron–Martin–Girsanov formula. Elliott and Kohlmann
[3] and Elworthy and Li [4] found further elementary approaches to the formula.
The alternative proofs are relatively straightforward. Nevertheless, we have found it
interesting to go back to Malliavin’s original approach in [8] and to review the calcu-
lations needed, especially since this can be done now in a more explicit way using the
two-parameter stochastic calculus, as formulated in [9].

In Section 2 we review in greater detail the various mathematical objects men-
tioned above. Then, in Section 3, we review some points of two-parameter stochastic
calculus from [9]. Section 4 contains the main technical result of the paper, which
is a regularity property for two-parameter stochastic di�erential equations. We con-
sider equations in which some components are given by two-parameter integrals and
others by one-parameter integrals. It is shown, under suitable hypotheses, that the
components which are presented as one-parameter integrals are in fact two-parameter
semimartingales. This is useful because one can then compute martingale proper-
ties for both parameters by stochastic calculus. The sorts of di�erential equation to
which this theory applies are just one way to realise continuous random processes
indexed by the plane. See the survey [5] by Léandre for a wider discussion. But this
regularity property makes our processes more tractable to analyse than some others.
This is illustrated in Section 5, where we do the calculations needed to obtain the
integration-by-parts formula.

2. Integration-by-parts formula

The Wiener space (W, W , µ) over Rm is a probability space with underlying
set W = C([0,1), Rm), the set of continuous paths in Rm. Let W o denote the
�-algebra on W generated by the family of coordinate functions w 7! ws : W ! Rm,
s > 0, and let µo be Wiener measure on W o, that is to say, the law of a Brownian
motion in Rm starting from 0. Then (W, W , µ) is the completion of the probability
space (W, W o

, µo). Write W s for the µ-completion of �(w 7! wr : r 6 s). Let
X0, X1, . . . ,Xm be vector fields on Rd, with bounded derivatives of all orders. Fix
x0 2 Rd and consider the stochastic di�erential equation

@xs = Xi(xs)@wi
s + X0(xs)@s.
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Here and below, the index i is summed from 1 to m, and @ denotes the Stratonovich
di�erential. There exists a map x : [0,1)⇥W ! Rd with the following properties:

– x is a continuous semimartingale on (W, W , (W s)s>0, µ),
– for µ-almost all w 2 W , for all s > 0 we have

xs(w) = x0 +

Z s

0
Xi(xr(w))@wi

r +

Z s

0
X0(xr(w))dr.

The first integral in this equation is the Stratonovich stochastic integral. Moreover,
for any other such map x0, we have xs(w) = x0s(w) for all s > 0, for µ-almost all w.
We have chosen here a Stratonovich rather than an Itô formulation to be consistent
with later sections, where we have made this choice in order to take advantage of the
simpler calculations which the Stratonovich calculus allows. The Itô map referred to
above is the map �(w) = x1(w).

We can define on some complete probability space, (⌦, F , P) say, a two-parameter,
continuous, zero-mean Gaussian field (zst : s, t > 0) with values in Rm, and with
covariances given by

E(zi
stz

j
s0t0) = �ij(s ^ s0)e�|t�t0|/2.

Such a field is called an Ornstein–Uhlenbeck sheet. Set zt = (zst : s > 0). Then,
for t > 0, both z0 and zt are Brownian motions in Rm and (z0, zt) and (zt, z0) have
the same distribution. We have now defined all the terms in, and have justified, the
identity (1).

Consider the following stochastic di�erential equation for an unknown process (Us :
s > 0) in the space of d⇥ d matrices

@Us = rXi(xs)Us@wi
s +rX0(xs)Us@s, U0 = I.

This equation may be solved, jointly with the equation for x, in exactly the same sense
as the equation for x alone. Thus we obtain a map U : [0,1)⇥W ! Rd⌦ (Rd)⇤, with
properties analogous to those of x. Moreover, by solving an equation for the inverse,
we can see that Us(w) remains invertible for all s > 0, for almost all w. Write U⇤

s for
the transpose matrix and set �s = UsCsU⇤

s , where

Cs =

Z s

0
U�1

r Xi(xr)⌦ U�1
r Xi(xr)dr.

Set also

Ls = �Us

Z s

0
U�1

r Xi(xr)@wi
r + Us

Z s

0
U�1

r {r2Xi(xr)@wi
r +r2X0(xr)dr}�r,

+ Us

Z s

0
U�1

r rXi(xr)Xi(xr)dr

and define for G = g � �

LG = Li
1rig(x1) + �ij

1 rirjg(x1).

We have now defined all the terms appearing in the integration-by-parts formula (2).
We will give a proof in Section 5.
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3. Review of two-parameter stochastic calculus

In [9], building on the fundamental works of Cairoli and Walsh [2] and Wong and
Zakai [14, 15], we gave an account of two-parameter stochastic calculus, suitable for
the development of a general theory of two-parameter hyperbolic stochastic di�erential
equations. We recall here, for the reader’s convenience, the main features of this
account.

We take as our probability space (⌦, F , P) the canonical complete probability space
of an m-dimensional Brownian sheet (wst : s, t > 0), extended to a process (wst : s, t 2
R) by independent copies in the other three quadrants. Thus wst = (w1

st, . . . , w
m
st) is

a continuous, zero-mean Gaussian process, with covariances given by

E(wi
stw

j
s0t0) = �ij(s ^ s0)(t ^ t0), i, j = 1, . . . ,m, s, t > 0, s0, t0 > 0.

It will be convenient to define also w0
st = st for all s, t 2 R. For s, t > 0, write F st for

the completion with respect to P of the �-algebra generated by wru for r 2 (�1, s]
and u 2 (�1, t]. We say that a two-parameter process (xst : s, t > 0) is adapted if xst

is F st-measurable for all s, t > 0, and is continuous if (s, t) 7! xst(!) is continuous on
(R+)2 for all ! 2 ⌦. The previsible �-algebra on ⌦⇥ (R+)2 is that generated by sets
of the form A⇥ (s, s0]⇥ (t, t0] with A 2 F st. If we allow A 2 F s1 in this definition,
we get the s-previsible �-algebra.

The classical approach to defining stochastic integrals, by means of an isometry of
Hilbert spaces, adapts in a straightforward way from one-dimensional times to two,
allowing the construction of stochastic integrals with respect to certain two-parameter
processes, in particular with respect to the Brownian sheet. Given an s-previsible
process(1) (as(t) : s, t > 0), such that

E
Z s

0

Z t

0
ar(u)2drdu < 1

for all s, t > 0, we can define, for i = 1, . . . ,m and all t1, t2 > 0 with t1 6 t2,
one-parameter processes M and A by

(3) Ms =

Z s

0

Z t2

t1

ar(t)drdtw
i
rt, As =

Z s

0

Z t2

t1

ar(t)
2drdt.

Then M is a continuous ( F s1)s>0-martingale, with quadratic variation process [M ] =
A. A localization argument by adapted initial open sets (see below) allows an extension
of the integral under weaker integrability conditions. By the Burkholder–Davis–Gundy
inequalities, for all ↵ 2 [2,1), there is a constant C(↵) < 1 such that

(4) E
 �����

Z s2

s1

Z t2

t1

as(t)dsdtw
i
st

�����

↵!
6 C(↵)E

Ñ�����

Z s2

s1

Z t2

t1

as(t)
2dsdt

�����

↵/2
é

.

(1) We write any time parameter with respect to which a process is previsible, here s, as a subscript.
Where previsibility is not assumed, here in t, we write the parameter in parentheses.
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By an (s, t)-semimartingale, s-semimartingale, t-semimartingale, we mean, respec-
tively, previsible processes (xst : s, t > 0), (pst : s, t > 0), (qst : s, t > 0) for which we
may write

xst � xs0 � x0t + x00

=
mX

i=0

Z s

0

Z t

0
(x00ru)idrduwi

ru +
mX

i,j=0

Z s

0

Z t

�1

ÇZ s

�1

Z t

0
(x00ru(r0, u0))ijdr0duwj

r0u

å
drdu0wi

ru0

and

pst�p0t =
mX

i=0

Z s

0

Z t

�1
(p0rt(u

0))idrdu0wi
ru0 , qst�qs0 =

mX

i=0

Z s

�1

Z t

0
(q0su(r0))idr0duwi

r0u.

Here, (x00st : s, t > 0) is a previsible process, having components (x00st)i, subject to
certain local integrability conditions, which are implied, in particular, by almost sure
local boundedness. The process (x00st(r, u) : s, t > 0, r, u 2 R) is required to be previs-
ible in (!, s, t) and (Borel) measurable in (r, u), with x00st(r, u) = 0 for r > s or u > t,
and is subject to similar local integrability conditions. The inner and outer parts of
the second integral are both cases of the stochastic integral at (3), or its t-analogue,
or of the usual Lebesgue integral, and the value of the iterated integral is unchanged
if we reverse the order in which the integrals are taken. The integrals appearing in
the expression for xst are called stochastic integrals of the first and second kind. The
processes (p0st(u) : s, t > 0, u 2 R) and (q0st(r) : s, t > 0, r 2 R) are required to be
previsible in (!, s, t) and measurable in u and r, respectively, with p0st(u) = 0 for
u > t and q0st(r) = 0 for r > s, and are subject to similar local integrability condi-
tions. For fixed t > 0, if (xs0 : s > 0) is a continuous ( F s0)s>0-semimartingale, then
(xst : s > 0) is a continuous ( F st)s>0-semimartingale, in the usual one-parameter
sense. Also (pst : s > 0) is a continuous ( F st)s>0-semimartingale, for all t > 0.

The heuristic formulae

dsdtxst =
mX

i=0

(x00st)idsdtw
i
st +

mX

i,j=0

Z s

�1

Z t

�1
(x00st(r, u))ijdsduwi

sudrdtw
j
rt,

dspst =
mX

i=0

Z t

�1
(p0st(u))idsduwi

su,

dtqst =
mX

i=0

Z s

�1
(q0st(r))idrdtw

i
rt

provide a good intuition in representing the two-parameter increment

dsdtxst = xs+ds,t+dt � xs,t+dt � xs+ds,t + xst

and the one-parameter increments dspst = ps+ds,t � pst and dtqst = qs,t+dt � qst in
terms of a linear combinations of increments, and of products of increments of the
Brownian sheet.
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By a (two-parameter) semimartingale, we mean a process which is at the same time
an (s, t)-semimartingale, an s-semimartingale and a t-semimartingale. Such processes
are necessarily continuous. An (s, t)-semimartingale which is constant on the s-axis
and t-axis is a semimartingale. By an obvious choice of integrands, the process (wst :
s, t > 0) is itself a semimartingale. The choice of lower limit �1 is useful to us
in allowing as semimartingales a pair of independent Rm-valued Brownian motions
(zs0 : s > 0) and (b0t : t > 0), given by

zs0 =

Z s

0

Z 0

�1
drduwru, b0t =

Z 0

�1

Z t

0
drduwru,

which are moreover independent of (wst : s, t > 0). Here and below, we bring one-
parameter processes defined on the s or t axes into the class of two-parameter processes
by extending them as constant in the second parameter.

We say that a subset D ✓ (R+)2 is an initial open set if it is non-empty and
is a union of rectangles of the form [0, s) ⇥ [0, t), where s, t > 0. A random subset
D ✓ ⌦⇥ (R+)2 is adapted if the event {(s, t) 2 D} is F st-measurable for all s, t > 0.
For an adapted initial open set D, a process (xst : (s, t) 2 D) is a semimartingale in
D if there exists a sequence of adapted initial open sets Dn " D, almost surely, and
a sequence of semimartingales (xn

st : s, t > 0), such that xst = xn
st for all (s, t) 2 Dn

for all n. The notion of an s-semimartingale in D is defined analogously. We write
⇣(D) for the boundary of D as a subset of (R+)2. In particular, if D = (R+)2, then
⇣(D) = ?.

The theory which we now describe is symmetrical in s and t. Where a statement is
made for s, there is also a corresponding statement for t, which we shall often omit.
Let (xst : s, t > 0) and (x0st : s, t > 0) be s-semimartingales and let (ast : s, t > 0) be a
locally bounded previsible process, for example, a continuous adapted process. There
exist s-semimartingales which, for each t > 0, provide versions of the one-parameter
stochastic integral and the one-parameter covariation process

⇣1
st =

Z s

0
artdrxrt, ⇣2

st =

Z s

0
drxrtdrx

0
rt.

From now on, when we write these integrals, we assume that such a version has
been chosen. We define also four types of two-parameter integral, each of which is a
(two-parameter) semimartingale. These are written

⇣3
st =

Z s

0

Z t

0
arudrduxru, ⇣4

st =

Z s

0

Z t

0
drxruduyru,

⇣5
st =

Z s

0

Z t

0
drxrudrduyru, ⇣6

st =

Z s

0

Z t

0
drduxrudrduyru.

In the first and last integral, we require x to be an (s, t)-semimartingale, whereas,
in the second and third, x should be an s-semimartingale. We require that y be a
t-semimartingale in the second integral and an (s, t)-semimartingale in the third and
fourth. All these integrals are defined as sums of certain integrals of the first and
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second kind with respect to the Brownian sheet. We refer to [9] for the details. We
use the following di�erential notations:

dszst = astdsxst means zst � z0t = ⇣1
st,

dszst = dsxstdsx
0
st means zst � z0t = ⇣2

st,

dsdtzst = astdsdtxst means zst � zs0 � z0t + z00 = ⇣3
st,

dsdtzst = dsxstdtyst means zst � zs0 � z0t + z00 = ⇣4
st,

dsdtzst = dsxstdsdtyst means zst � zs0 � z0t + z00 = ⇣5
st,

dsdtzst = dsdtxstdsdtyst means zst � zs0 � z0t + z00 = ⇣6
st.

The integrals ⇣2
st, ⇣5

st and ⇣6
st all vanish if dsxst = astds. It is shown in [9] that a series

of identities hold among the various types of integral, which can be expressed conve-
niently in terms of this di�erential notation. Some identities assert the associativity
of products involving a combination of three di�erentials or processes, the others are
written as the following three rules

ds(f(xst)) = f 0(xst)dsxst + 1
2f 00(xst)dsxstdsxst,

ds(astdtxst) = dsastdtxst + astdsdtxst + dsastdsdtxst,

ds(dtxstdtyst) = dsdtxstdtyst + dtxstdsdtyst + dsdtxstdsdtyst.

These rules combine the usual calculus of partial di�erentials with Itô calculus in an
obvious way. As a consequence, we can obtain a geometrically simpler Stratonovich-
type calculus by defining, for processes (xst : s, t > 0) and (yst : s, t > 0), some further
integrals, corresponding to the following di�erential rules

Xst@sXst = XstdYst + 1
2dsXstdsYst, @sXst@sYst = @sXstdsYst = dsXstdsYst,

where Xst may stand for any one of xst, dtxst,@txst and Yst may stand for any one of
yst, dtyst,@tyst. Then we have

@s(f(xst)) = f 0(xst)@sxst,

@s(ast@txst) = @sast@txst + ast@s@txst,

@s(@txst@tyst) = @s@txst@tyst + @txst@s@tyst.

The Brownian sheet (wst : s, t > 0) and the boundary Brownian motions (zs0 : s > 0)
and (b0t : t > 0) have some special properties, which are reflected in the following
di�erential formulae, for 1 6 i, j 6 m,

dsdtw
i
stdsdtw

j
st = �ijdsdt, dsz

i
s0dsz

j
s0 = �ijds, dtb

i
0tdtb

j
0t = �ijdt,

and, for any semimartingale (xst : s, t > 0),

dsxstdsdtw
i
st = dtxstdsdtw

i
st = 0.
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4. A regularity result for two-parameter stochastic di�erential equations

We discussed in [9] a class of two-parameter hyperbolic stochastic di�erential equa-
tions, in which there is given, for a system of processes (xst, pst, qst : s, t > 0), one
equation for the mixed second-order di�erential dsdtxst, together with two further
equations for the one-parameter di�erentials dspst and dtqst. We review briefly the
details below, and then give a new regularity result, which we need for our application
to Malliavin’s integration-by-parts formula, but which may be of independent interest.
This result concerns the process (pst : s, t > 0) (and analogously also (qst : s, t > 0)),
which, since integrated in s, has naturally the regularity of an s-semimartingale. The
point at issue is whether (pst : s, t > 0) is a full (two-parameter) semimartingale. A
method to establish this is stated in [9, pp. 299, 315-316], but the argument given is
incomplete. A full proof is given below in Theorem 4.2. As an illustrative example,
we note that, if (wst : s, t > 0) is a Brownian sheet with values in Rm, then the result
will show that there is a two-parameter semimartingale (xst : s, t > 0) such that, for
all t > 0, the process (xst : s > 0) satisfies the one-parameter stochastic di�erential
equation

@sxst = Xi(xst)@sw
i
st + X0(xst)@s,

with given initial values x0t = x0, say. This is useful because, now, despite the irregular
dependence of the Brownian sheet on t, we can use a di�erential calculus in t as well
as in s.

Consider the class of hyperbolic stochastic di�erential equations in (R+)2 of the
form

dsdtxst = a(dsdtwst) + b(dsxst, dtxst),(5)
dspst = c(dsxst),(6)
dtqst = e(dtxst).(7)

Here wst = (w1
st, . . . , w

m
st),with (wi

st : s, t > 0), i = 1, . . . ,m, independent Brown-
ian sheets, as above. The unknown processes (xst : s, t > 0), (pst : s, t > 0) and
(qst : s, t > 0) take values in Rd, Rn and Rn, respectively, and are subject to given
boundary values (xs0 : s > 0), (x0t : t > 0), both assumed to be semimartingales, and
(p0t : t > 0), (qs0 : s > 0), both assumed continuous and adapted. The coe�cients
a, b, c, e are allowed to have a locally Lipschitz dependence on the unknown processes,
with the restriction that b depends only on x. Thus, for example, we would write
a(xst, pst, qst, dsdtwst) and b(xst, dsxst, dtxst), but have not done so in order to keep
the notation compact. Moreover, we allow a dependence on the di�erentials which is
a sum of linear and quadratic terms. Thus, in an expanded notation, we would write

dsdtxst = a1(dsdtwst) + a2(dsdtwst, dsdtwst)

+ b11(dsxst, dtxst) + b12(dsxst, dtxst, dtxst),

+ b21(dsxst, dsxst, dtxst) + b22(dsxst, dsxst, dtxst, dtxst),
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dspst = c1(dsxst) + c2(dsxst, dsxst),

dtqst = e1(dtxst) + e2(dtxst, dtxst),

where, for i, j, k = 1, 2,

ai : Rd ⇥ Rn ⇥ Rn ! Rd ⌦ ((Rm)⇤)⌦i,

bjk : Rd ! Rd ⌦ ((Rd)⇤)⌦j+k,

cj : Rd ⇥ Rn ⇥ Rn ! Rn ⌦ ((Rd)⇤)⌦j ,

ek : Rd ⇥ Rn ⇥ Rn ! Rn ⌦ ((Rd)⇤)⌦k.

We may and do assume with loss that a2, b12,b21, b22,c2, e2 are symmetric in any pair
of repeated di�erential arguments.

By a local solution of (5–7) with domain D we mean an adapted initial open set D,
together with a semimartingale (xst : (s, t) 2 D), an s-semimartingale (pst : (s, t) 2
D), and a t-semimartingale (qst : (s, t) 2 D), all continuous on D, such that, for all
(s, t) 2 D,

xst = xs0 + x0t � x00 +

Z s

0

Z t

0
a(drduwru) +

Z s

0

Z t

0
b(drxru, duxru),

pst = p0t +

Z s

0
c(drxrt),

qst = qs0 +

Z t

0
e(duxsu).

Given such a solution, for each t > 0, we can define processes (ust : (s, t) 2 D) and
(u⇤st : (s, t) 2 D), taking values in Rd⇥ (Rd)⇤ and Rd⇥ (Rd)⇤⇥ (Rd)⇤ respectively, by
solving the linear one-parameter stochastic di�erential equations

dsust = b11(dsxst, ·)ust + b12(dsxst, dsxst, ·)ust,(8)

dsu
⇤
st = u�1

st {b12(dsxst, ust·, ust·)
+ b22(dsxst, dsxst, ust·, ust·)� b11(dsxst, b12(dsxst, ust·, ust·))}.(9)

Here u�1
st denotes the inverse of the linear map ust. For fixed t > 0, almost surely,

ust remains in the set of invertible maps while (s, t) 2 D. To see this, one can obtain
formally a linear equation for the process (u�1

st : (s, t) 2 D), and then check that
its solution is indeed an inverse for ust. Similarly, for each s > 0, we can define
processes (vst : (s, t) 2 D) and (v⇤st : (s, t) 2 D), taking values in Rd ⇥ (Rd)⇤ and
Rd ⇥ (Rd)⇤ ⇥ (Rd)⇤, by solving the analogous equations

dtvst = b11(·, dtxst)vst + b21(·, dtxst, dtxst)vst.(10)

dtv
⇤
st = v�1

st {b21(vst·, vst·, dtxst)

+ b22(vst·, vst·, dtxst, dtxst)� b11(b21(vst·, vst·, dtxst), dtxst)}.(11)

We specify initial conditions u00 = v00 = I, so determining completely (u0s : s > 0)
and (v0t : t > 0). Then we complete the determination of the above processes by
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specifying that u0t = v0t, u⇤0t = 0, vs0 = us0, and v⇤s0 = 0 for all s, t > 0. Let us
say that (xst, pst, qst : (s, t) 2 D) is a regular local solution(2) if there exist continuous
s-semimartingales (ust : (s, t) 2 D) and (u⇤st : (s, t) 2 D) satisfying, for each t > 0, the
equations (8–9), and if there exist also continuous t-semimartingales (vst : (s, t) 2 D)
and (v⇤st : (s, t) 2 D) satisfying, for each s > 0, the equations (10–11). A local
solution is maximal if it is not the restriction of any local solution with larger domain.
The notion of a maximal regular local solution is defined analogously. We assume
that the boundary semimartingales (xs0 : s > 0), (x0t : t > 0), (p0t : t > 0) and
(qs0 : s > 0) are regular(3). By this we mean that the Lebesgue–Stieltjes measures
defined by their quadratic variation processes and by the total variation processes of
their finite variation parts are all dominated by Kds, or Kdt as appropriate, for some
constant K < 1. We give a result first for the case where b = 0.

Lemma 4.1. — Assume that b = 0. Let U be an open subset of Rd ⇥ Rn ⇥ Rn and
let m : U ! [0,1) be a continuous function with m(x, p, q) ! 1 as (x, p, q) ! @U .
Assume that, for all M > 1, the coe�cients a, c, e are bounded and Lipschitz on the
set UM = {(x, p, q) 2 U : m(x, p, q) < M}. Then, for any set of regular boundary
semimartingales (xs0 : s > 0), (x0t : t > 0), (p0t : t > 0) and (qs0 : s > 0),
with (x00, p00, q00) 2 U , the equations (5–7) have a unique maximal local solution
(xst, pst, qst : (s, t) 2 D) with values in U . Moreover, we have, almost surely(4)

sup
r6s,u6t

m(xru, pru, qru) !1 as (s, t) " ⇣(D).

Proof. — In the case where m is bounded (so UM = U = Rd⇥Rn⇥Rn for large M),
the existence of a (global) solution is proved in [9, Theorem 3.2.2]. The proof is of a
standard type, using Picard iteration, Gronwall’s lemma and Kolmogorov’s continuity
criterion, and gives also the uniqueness of local solutions on the intersections of their
domains. When m is unbounded, we can find, for each M > 1, bounded Lipschitz
coe�cients aM , cM , eM on Rd ⇥ Rn ⇥ Rn, which agree with a, c, e on UM . For each
M0 > 1, the corresponding global solutions (xM

st , pM
st , qM

st : s, t > 0) agree, for all
integers M > M0, almost surely, on DM0 , where

DM = {(s, t) 2 (R+)2 : sup
r6s,u6t

m(xM
ru, pM

ru, qM
ru) 6 M}.

Hence, we obtain a local solution with all the claimed properties by setting D =
[M DM and by setting, for all M > 1, (xst, pst, qst) = (xM

st , pM
st , qM

st ) for all (s, t) 2
DM \ DM�1.

Our main result deals with the case when b is non-zero.

(2) It is not hard to see that, for any local solution, the processes just defined have previsible versions,
which are then s-semimartingales or t-semimartingales, depending on the variable of integration.
However, we have not determined whether they have a continuous version in general.
(3) No connection with the notion of regular local solution is intended.
(4) To clarify, we mean that, for all (s⇤, t⇤) 2 ⇣(D), the given limit holds whenever (s, t) " (s⇤, t⇤).
In particular, in the case where D = (R+)2, there are no such points (s⇤, t⇤) and nothing is claimed.
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Theorem 4.2. — Assume that the coe�cients a, b, c, e are uniformly bounded and Lip-
schitz. Then, for each set of regular semimartingale boundary values (xs0 : s > 0),
(x0t : t > 0), (p0t : t > 0), (qs0 : s > 0), the system of equations (5–7) has a unique
maximal regular solution, with domain D say. As (s, t) " ⇣(D), we have

(12) mst = sup
s06s,t06t

|(us0t0 , u
�1
s0t0 , vs0t0 , v

�1
s0t0)|!1.

Moreover, if c has Lipschitz first and second derivatives and has no dependence on q,
then (pst : s, t 2 D) is a semimartingale in D.

Proof. — We consider first the question of existence. We follow, to begin, the strategy
used in the proof of [9, Theorem 3.2.3]. Consider the following system of di�erential
equations, for unknown processes yst, zst, x0st, ust, u⇤st, pst, x00st, vst, v⇤st, qst, taking val-
ues in Rd, Rd, Rd, Rd ⌦ (Rd)⇤, Rd ⌦ (Rd)⇤ ⌦ (Rd)⇤, Rn,Rd, Rd ⌦ (Rd)⇤, Rd ⌦ (Rd)⇤ ⌦
(Rd)⇤, Rn respectively:

dsdtyst = u�1
st a(dsdtwst)� u⇤st(u

�1
st a(dsdtwst)⌦ u�1

st a(dsdtwst)),(13)

dsdtzst = v�1
st a(dsdtwst)� v⇤st(v

�1
st a(dsdtwst)⌦ v�1

st a(dsdtwst)),(14)
dsx

0
st = vst(dszst + v⇤stdszst ⌦ dszst),(15)

dsust = b11(vst(dszst + v⇤stdszst ⌦ dszst), ·)ust + b21(vstdszst, vstdszst, ·)ust,(16)

dsu
⇤
st = u�1

st {b12(vst(dszst + v⇤stdszst ⌦ dszst), ust·, ust·)
+ b22(vstdszst, vstdszst, ust·, ust·)(17)
� b11(vstdszst, b12(vstdszst, ust·, ust·))},(18)

dspst = c(vst(dszst + v⇤stdszst ⌦ dszst)),(19)
dtx

00
st = ust(dtyst + u⇤stdtyst ⌦ dtyst),(20)

dtvst = b11(·, ust(dtyst + u⇤stdtyst ⌦ dtyst))vst + b12(·, ustdtyst, ustdtyst)vst,(21)

dtv
⇤
st = v�1

st {b21(vst·, vst·, ust(dtyst + u⇤stdtyst ⌦ dtyst))

+ b22(vst·, vst·, ustdtyst, ustdtyst)(22)
� b11(b21(vst·, vst·, ustdtyst), ustdtyst)},(23)

dtqst = e(ust(dtyst + u⇤stdtyst ⌦ dtyst)).(24)

We evaluate the coe�cients a, b, c and e here at (x0st, pst, qst) (rather than at x00st).
Note that this system has the same form as the system (5–7) with b = 0. We use the
boundary conditions given above for ust, pst, vst, qst. Define boundary values for yst

and zst by

(25) dsys0 = dszs0 = v�1
s0 dsxs0, dty0t = dtz0t = u�1

0t dtx0t, y00 = z00 = 0.

Set u⇤0t = v⇤s0 = 0 and use the given boundary values (x0t : t > 0) for x0st and
(xs0 : s > 0) for x00st. Define, on the set U where u and v are invertible,

m(y, z, x0, u, u⇤, p, x00, v, v⇤, q) = |(u, u�1, v, v�1)| + |(u⇤, v⇤)|.
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Then the preceding lemma applies, to show that (13–24) has a unique maximal local
solution with the given boundary values, with domain D say, such that ust and vst

are invertible for all (s, t) 2 D, and such that, almost surely, as t " ⇣(D), either

(26) mst = sup
s06s,t06t

|(us0t0 , u
�1
s0t0 , vs0t0 , v

�1
s0t0)| " 1,

or

(27) nst = sup
s06s,t06t

|(u⇤s0t0 , v
⇤
s0t0)| " 1.

Now vst and v⇤st are continuous t-semimartingales (in D) and zst is a semimartin-
gale. Moreover dtastdsdtzst = 0 for any t-semimartingale ast. Hence, by [9, Theorem
2.3.1], x0st is a semimartingale and we may take the t-di�erential in (15) to obtain

dsdtx
0
st = dtvst(dszst + v⇤stdszst ⌦ dszst)

+ vst(dsdtzst + dtv
⇤
stdszst ⌦ dszst + v⇤stdsdtzst ⌦ dsdtzst)

+ dtvst(dtv
⇤
stdszst ⌦ dszst)

= a(dsdtwst) + b(dsx
0
st, dtx

00
st).

Similarly, by taking the s-di�erential in (20), we obtain

dsdtx
00
st = a(dsdtwst) + b(dsx

0
st, dtx

00
st).

We also have x000 = x0000 and

dsx
0
s0 = vs0dszs0 = dsx

00
s0, dtx

0
0t = u0tdty0t = dtx

00
0t,

so x0st = x00st for all (s, t) 2 D, almost surely. Denote the common value of these
processes by xst. Then (xst : (s, t) 2 D) satisfies (5). On using (15) and (20) to
substitute(5) for dszst and dtyst in (16, 19, 21, 24), we see also that pst, qst, ust, u⇤st,
vst, v⇤st satisfy (6–11) respectively. Hence (xst, pst, qst : (s, t) 2 D) is a regular local
solution to (5–7), which is moreover maximal by virtue of (26–27).

We turn to the question of uniqueness. Suppose that (x̃st, p̃st, q̃st : (s, t) 2 D̃)

is any regular local solution to (5–7). Write (ũst, ũ⇤st, ṽst, ṽ⇤st : (s, t) 2 D̃) for the
associated processes, satisfying (8–11). Define semimartingales (ỹst : (s, t) 2 D̃) and
(z̃st : (s, t) 2 D̃) by

dsdtỹst = ũ�1
st a(dsdtwst)� ũ⇤st(ũ

�1
st a(dsdtwst)⌦ ũ�1

st a(dsdtwst)),(28)

dsdtz̃st = ṽ�1
st a(dsdtwst)� ṽ⇤st(ṽ

�1
st a(dsdtwst)⌦ ṽ�1

st a(dsdtwst)),(29)

with boundary values (25). The following equations may be verified by checking that
the initial values and di�erentials of left and right hand sides agree

(30) dsx̃st = ṽst(dsz̃st + ṽ⇤stdsz̃st ⌦ dsz̃st), dtx̃st = ũst(dtỹst + ũ⇤stdtỹst ⌦ dtỹst).

(5) Such substitutions result in di�erential formulae corresponding to valid identities between pro-
cesses. This is because the two-parameter stochastic di�erential calculus is associative, as mentioned
above, and as discussed in [9, pp. 290–291].

ASTÉRISQUE 327



TWO-PARAMETER STOCHASTIC CALCULUS 105

Then, using these equations to substitute for dsx̃st and dtx̃st in (6–11), we see that
(ỹst, z̃st, x̃st, ũst, ũ⇤st, p̃st, x̃st, ṽst, ṽ⇤st, q̃st : (s, t) 2 D̃) is a local solution to (13–24).
By local uniqueness for this system, D̃ ✓ D and (x̃st, p̃st, q̃st) = (xst, pst, qst) for all
(s, t) 2 D̃, almost surely. Thus (xst, pst, qst : (s, t) 2 D) is the unique maximal regular
local solution to (5–7).

Our next goal is to obtain ↵th-moment and L↵-Hölder estimates on the process
(xst, pst, qst, ust, u⇤st, vst, v⇤st : (s, t) 2 D), for ↵ 2 [2,1). Write K for a uniform bound
on a, b, c, e which is also a Lipschitz constant for b. Fix M, N, T > 1 and set

DM = {(s, t) 2 D : s, t 6 T and mst 6 M},
DM,N = {(s, t) 2 D : s, t 6 T,mst 6 M and nst 6 N}.

Fix ↵ and define

g(s, t) = sup
s06s,t06t

E(|(u⇤s0t0 , v
⇤
s0t0)|↵1{(s0,t0)2 DM,N}).

Let (as : s > 0) be a locally bounded, ( F s1)s>0-previsible process. The following
identities follow from equations (29) and (30): for (s, t) 2 D, respectively in Rd and
Rd ⌦ Rd,
(31)Z s

0
ardrxrt =

Z s

0
ardrxr0 +

Z s

0

Z t

0
arvrt

�
v�1

ru a(drduwru) + (v⇤rt � v⇤ru)(v�1
ru a(drduwru))⌦2

 

and

(32)
Z s

0
ardrxrt ⌦ drxrt =

Z s

0
ardrxr0 ⌦ drxr0 +

Z s

0

Z t

0
ar(vrtv

�1
ru a(drduwru))⌦2.

Hence, using the estimate (4), we obtain a constant C = C(↵,K, M, T ) < 1 such
that, for all s, t > 0,

E
Å����
Z s

0
ardrxrt

����
↵

1{(s,t)2 DM,N}

ã

6 CE
 �����

ÅZ s

0
a2

rdr

ã1/2

+

Z s

0

Z t

0
|ar|(|v⇤rt| + |v⇤ru|)drdu

�����

↵

1{(s,t)2 DM,N}

!
(33)

and

(34) E
Å����
Z s

0
ardrxrt ⌦ drxrt

����
↵

1{(s,t)2 DM,N}

ã
6 CE

Å����
Z s

0
|ar|dr

����
↵

1{(s,t)2 DM,N}

ã
.

Here and below, we suppress any dependence of constants on the dimensions d, n,m.
If we allow C to depend also on N , then (33) may be simplified to

(35) E
Å����
Z s

0
ardrxrt

����
↵

1{(s,t)2 DM,N}

ã
6 CE

Ç����
Z s

0
a2

rdr

����
↵/2

1{(s,t)2 DM,N}

å

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



106 J. R. NORRIS

We use these estimates, along with analogous estimates for integrals dtxst, in the
equations (9) and (11), to arrive at the inequality

g(s, t) 6 C

Ç
1 +

Z s

0
g(s0, t)ds0 +

Z t

0
g(s, t0)dt0

å
,

for a constant C = C(↵,K, M, T ) < 1. Since N < 1, we know that g(s, t) < 1
for all s, t, so this inequality implies that g(s, t) 6 C for another constant C < 1 of
the same dependence. Similar arguments yield a further constant C < 1 of the same
dependence such that, for all s, s0 > 0 and all t, t0 > 0,

(36) E(|(xst, ust, u
⇤
st, pst)� (xs0t, us0t, u

⇤
s0t, ps0t)|↵1{(s,t),(s0,t)2 DM,N}) 6 C|s� s0|↵/2

and

(37) E(|(xst, vst, v
⇤
st, qst)� (xst0 , vst0 , v

⇤
st0 , qst0)|↵1{(s,t),(s,t0)2 DM,N}) 6 C|t� t0|↵/2.

Here, we have used Cauchy–Schwarz to obtain in an intermediate step
Z s0

s

Z t

0
|v⇤ru|drdu 6 |s� s0|1/2

ÇZ s0

s

Z t

0
|v⇤ru|2drdu

å1/2

.

On going back to (31) and (32) with these Hölder estimates, we obtain, using (4)
again, a constant C < 1 of the same dependence such that
(38)

E
Å����
Z s

0
ar(drxrt � drxrt0)

����
↵

1{(s,t),(s,t0)2 DM,N}

ã
6 C|t� t0|↵/2

Å
E
����
Z s

0
a2

rds

����
↵ã1/2

and

E
Å����
Z s

0
ardrxrt ⌦ (drxrt � drxrt0)

����
↵

1{(s,t),(s,t0)2 DM,N}

ã

6 C|t� t0|↵/2

Å
E
����
Z s

0
a2

rds

����
↵ã1/2

.

(39)

Now

ds(u
�1
st ust0) = u�1

st {b(xst0 , dsxst0 , ·)� b(xst, dsxst, ·)}ust0

� u�1
st b11(xst, dsxst, ·){b11(xst0 , dsxst0 , ·)� b11(xst, dsxst, ·)}ust0 .

We have made explicit the dependence of b and b11 on xst or xst0 . We use the estimates
(33), (34), (37–39) to find a constant C = C(↵,K, M, T ) < 1 such that

(40) E(|ust � ust0 |↵1{(s,t),(s,t0)2 DM,N}) 6 C|t� t0|↵/2.

Moreover, the same estimates, applied to the di�erence of (9) at t and at t0, show that
C may be chosen such that

(41) E(|u⇤st � u⇤st0 |↵1{(s,t),(s,t0)2 DM,N}) 6 C|t� t0|↵/2.
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Since C does not depend on N , by monotone convergence, we can replace DM,N by
DM in these estimates By symmetry, there are analogous estimates for vst and v⇤st.
Hence, using [9, Theorem 3.2.1], almost surely, for all M > 1, nst remains bounded
on DM . Thus (27) implies (26) so, in any case, (12) holds.

It remains to consider the case where c has Lipschitz first and second derivatives and
has no dependence on q, and to show then that (pst : (s, t) 2 D) is a semimartingale.
For ease of writing, we shall assume that c has no dependence on x either. This is
done without loss of generality, by the device of adding to our system the equation
dsxst = dsxst, thus making xst a component of pst.

We seek to find a solution in a smaller class of processes, in which pst is a semi-
martingale. Recall that

(42) dspst = c(dsxst) = c1(pst)(dsxst) + c2(pst)(dsxst, dsxst).

By Itô’s formula, if pst is a semimartingale, then

dsdtpst = c0(dtpst, dsxst) + 1
2c00(dtpst, dtpst, dsxst) + c(dsdtxst) + c0(dtpst, dsdtxst)

+ 2c2(dsxst, dsdtxst) + 2c02(dtpst, dsxst, dsdtxst)

= c0(dtpst, dsxst) + 1
2c00(dtpst, dtpst, dsxst) + c(a(dsdtwst)) + c(b(dsxst, dtxst))

+ c0(dtpst, b(dsxst, dtxst)) + 2c2(dsxst, b(dsxst, dtxst))

+ 2c02(dtpst, dsxst, b(dsxst, dtxst)).

Here we are writing c0, c00 for the derivatives with respect to p. We set d̃ = d + n and
combine this equation with the equation (5) to obtain a two-parameter equation for
the Rd̃-valued process x̃st = ( xst

pst ), which we can write in the form

dsdtx̃st = ã(dsdtwst) + b̃(dsx̃st, dtx̃st).(43)

(The ⇠ notation in this paragraph has nothing to do with that used in the paragraph
on uniqueness above.) We impose regular semimartingale initial values x̃s0 = ( xs0

ps0 )
and x̃0t = ( x0t

p0t ), where (ps0 : s > 0) is obtained by solving the one-parameter equa-
tion (42) along xs0. Introduce the two companion equations for d̃ ⇥ d̃ matrix-valued
processes ũst and ṽst

dsũst = b̃11(dsx̃st, ·)ũst + b̃12(dsx̃st, dsx̃st, ·)ũst,(44)

dtṽst = b̃11(·, dtx̃st)ṽst + b̃21(·, dtx̃st, dtx̃st)ṽst.(45)

Impose boundary conditions for ũst and ṽst analogous to those for ust and vst. Write
(7) in the form

(46) dtq̃st = ẽ(dtx̃st).

By assumption, there exists a K 0 < 1 which is both a uniform bound for a, b, c, e and
is also a Lipschitz constant for b, c, c0, c00. We can then find a uniform bound K̃ < 1
on ã, b̃, ẽ, which is also a Lipschitz constant for b̃, and which depends only on K 0. The
above argument shows that the system of equations (43–46) has a unique maximal
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regular solution (x̃st, q̃st, ũst, ṽst : (s, t) 2 D̃), with the property that, as (s, t) " ⇣( D̃),
almost surely,

m̃st := sup
rs,ut

|(ũru, ũ�1
ru , ṽru, ṽ�1

ru )| " 1.

Write

x̃st =

 
x1

st

x2
st

!
, ũst =

 
u11

st u12
st

u21
st u22

st

!
, ṽst =

 
v11

st v12
st

v21
st v22

st

!
,

and use analogous block notation for the tensors ũ⇤st and ṽ⇤st. Note that

b̃(dsx̃st, ·) =

 
b(dsx1

st, ·) 0

f(dsx1
st) c0(·, dsx1

st)

!
, b̃(·, dtx̃st) =

 
b(·, dtx1

st) 0

g(dtx̃st) 0

!
,

where

f(dsx
1
st) = c(b(dsx

1
st, ·)) + 2c2(dsx

1
st, b(dsx

1
st, ·)),

g(dtx̃st) = c0(dtx
2
st, ·) + 1

2c00(dtx
2
st, dtx

2
st, ·) + c(b(·, dtx

1
st)) + c0(dtx

2
st, b(·, dtx

1
st)).

Here, we have written b(dsxst, ·) as a short form of b11(dsxst, ·) + b12(dsxst, dsxst, ·),
and analogously for b(·, dtxst) and b̃(dsx̃st, ·). On multiplying out in blocks, we see
that the process (x1

st, x
2
st, q̃st, u11

st , (u
⇤
st)

111, v11
st , (v⇤st)

111 : (s, t) 2 D̃) satisfies equations
(5–11). Hence, we must have D̃ ✓ D and (x1

st, x
2
st, q̃st, u11

st , v
11
st ) = (xst, pst, qst, ust, vst)

for all (s, t) 2 D̃. In particular, (pst : (s, t) 2 D̃) is a semimartingale.
It remains to show that D̃ = D, which we can do by showing that, almost surely,

m̃st remains bounded on D̃M,N = D̃ \ DM,N , for all M, N > 1. We first obtain a
Hölder estimate in t for pst. We have

ds(pst � pst0) = c(pst, dsxst)� c(pst0 , dsxst0),

where we have now made the dependence of c on p explicit. Set

f(s) = E
Ä
|pst � pst0 |↵1{(s,t),(s,t0)2 D̃M,N}

ä
.

We use the estimates (34) and (35) to obtain a constant C = C(↵,K 0, M, N, T ) < 1
such that

f(s) 6 C

Å
|t� t0|↵/2 +

Z s

0
f(r)dr

ã
.

This implies that f(s) 6 C|t� t0|↵/2 for all s > 0 for a constant C < 1 of the same
dependence. We now know that, for such a constant C < 1, we have

(47) E
Ä
|ps0t0 � pst|↵ 1{(s,t),(s0,t0)2 D̃M,N}

ä
6 C(|s� s0|↵/2 + |t� t0|↵/2).

We turn to ũst and ṽst. The following equations hold

dsu
12
st = b(dsxst, ·)u12

st , dtv
12
st = b(·, dtxst)v

12
st , dtv

22
st = g(dtx̃st)v

12
st .

By uniqueness of solutions, we obtain u12
st = ustu

�1
0t u12

0t so, in particular, u12
s0 = 0.

Similarly, v12
st = vstv

�1
s0 v12

s0 , so v12
0t = 0. Since ũ0t = ṽ0t and ũs0 = ṽs0, we deduce that

u12
st = v12

st = 0. Then dtv22
st = 0, so v22

st = v22
s0 = u22

s0. We also have the equations

dsu
21
st = f(dsxst)ust + c0(., dsxst)u

21
st , dsu

22
st = c0(., dsxst)u

22
st , dtv

21
st = g(dtx̃st)vst
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and we note that

ũ�1
st =

 
u�1

st 0

�(u22
st )

�1u21
st u

�1
st (u22

st )
�1

!
, ṽ�1

st =

 
v�1

st 0

�(v22
st )�1v21

st v�1
st (v22

st )�1

!
,

and
ds(u

22
st )

�1 = �(u22
st )

�1c0(., dsxst) + (u22
st )

�1c0(., dsxst)c
0(., dsxst).

We use the inequalities (34), (35) and (47), and an easy variation of the argument
leading to (36) and (40) to obtain a constant C = C(↵,K 0, M, N, T ) < 1 such that

(48) E
Ä��(ũs0t0 , ũ

�1
s0t0)� (ũst, ũ

�1
st )

��↵ 1{(s,t),(s0,t0)2 D̃M,N}

ä
6 C(|s� s0|↵/2 + |t� t0|↵/2).

Then, using [9, Theorem 3.2.1] as above, we can conclude that, almost surely,
(ũst, ũ

�1
st ) remains bounded on D̃M,N . It remains to show that the same is true for

(ṽst, ṽ
�1
st ) and, given the relations already noted, it will su�ce to show this for v21

st .
We have

dsũ
⇤
st = ũ�1

st {b̃12(dsx̃st, ũst·, ũst·)

+ b̃22(dsx̃st, dsx̃st, ũst·, ũst·)� b̃11(dsx̃st, b̃12(dsx̃st, ũst·, ũst·))}
= h(xst, pst, ũst, ũ

�1
st , dsxst),

where h is defined by the final equality and where we have used (6) to write dsx̃st in
terms of dsxst. A variation of the argument used for ũst shows that, almost surely,
ũ⇤st remains bounded on D̃M,N . Then, we can use the ⇠ and t-analogue of equations
(31) and (32) to express v21

st as a sum of integrals with respect to (x0t, p0t : t > 0)
and (wst : s, t > 0). This leads, as above, to L↵-Hölder estimates which allow us to
conclude that, almost surely, v21

st remains bounded on D̃M,N , as required.

5. Derivation of the formula

Let (wst : s, t > 0) be an Rm-valued Brownian sheet and let (zs0 : s > 0) be
an independent Rm-valued Brownian motion. Thus wst = (w1

st, . . . , w
m
st) and zs0 =

(z1
s0, . . . , z

m
s0), and each component process is an independent scalar Brownian sheet, or

Brownian motion, respectively. The two-parameter hyperbolic stochastic di�erential
equation

(49) dsdtzst = dsdtwst � 1
2dszstdt, s, t > 0,

with given boundary values (zs0 : s > 0) and z0t = 0, for t > 0, has a unique
solution (zst : s, t > 0). Set zt = (zst : s > 0), then (zt)t>0 is a realization of the
Ornstein-Uhlenbeck process on the m-dimensional Wiener space. See [8] or [9]. The
Stratonovich form of (49) is given by

@s@tzst = @s@twst � 1
2@szst@t, s, t > 0.

Fix x 2 Rd and consider for each t > 0 the Stratonovich stochastic di�erential equation

@sxst = Xi(xst)@sz
i
st + X0(xst)@s, s > 0,
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with initial value x0t = x. This can be written in Itô form as

(50) dsxst = Xi(xst)dsz
i
st + X̃0(xst)ds, s > 0,

where X̃0 = X0 + 1
2

Pd
i=1rXi.Xi. Consider also, for each t > 0, the stochastic

di�erential equation

@sUst = rXi(xst)Ust@sz
i
st +rX0(xst)Ust@s, s > 0,

with initial value U0t = I, and its Itô form

(51) dsUst = rXi(xst)Ustdsz
i
st +rX̃0(xst)Ustds, s > 0.

Proposition 5.1. — There exist (two-parameter) semimartingales (zst : s, t > 0), (xst :
s, t > 0) and (Ust : s, t > 0) such that (zst : s, t > 0) satisfies (49) and, for all t > 0,
(xst : s > 0) and (Ust : s > 0) satisfy (50) and (51), with the boundary conditions
given above. Moreover, almost surely, Ust is invertible for all s, t > 0.

Proof. — We seek to apply Theorem 4.2. There are three minor obstacles: firstly to
deal with the ds and dt di�erentials appearing in the equations, secondly, to show
that the domain of the solutions is the whole of (R+)2 and, thirdly, to deal with the
fact that the coe�cients in (51) do not have the required boundedness of derivatives.

Let us introduce a further equation

dsdtz
0
st = 0,

with boundary conditions z0
s0 = s and z0t = t for all s, t > 0. We then replace dt and

ds in (49) and (50), respectively, by dtz0
st and dsz0

st. When we obtain a solution, it
will follow that z0

st = s + t, so dtz0
st = dt and dsz0

st = ds, as required.
In order to show that D = (R+)2, it will su�ce to show that the companion

processes ust and vst associated with the equations

dsdtz
0
st = 0, dsdtzst = dsdtwst �

1

2
dszstdtz

0
st,

according to equations (8) and (10), along with their inverses, remain bounded on
compacts in s and t. We leave this to the reader.

Finally, choose for each M 2 N a smooth and compactly supported function  M

on Rd⌦ (Rd)⇤, such that  M (U) = U whenever |U | 6 M . We can apply Theorem 4.2
to the system (49), (50), together with the modified equation

dsU
M
st = rXi(xst) M (UM

st )dsz
i
st +rX̃0(xst) M (UM

st )ds.

Define
DM = {(s, t) : |UM

s0t0 | 6 M for all s0 6 s, t0 6 t}.
By local uniqueness, we can define consistently U on D = [M DM by Ust = UM

st for
(s, t) 2 DM . By some straightforward estimation using the one-parameter equations
(51), we obtain, for all T < 1 and all p 2 [1,1), a constant C < 1 such that

sup
s,s0,t,t06T

E(|Ust � Us0t0 |p1{(s,t),(s0t0)2 D}) 6 C(|s� s0|p/2 + |t� t0|p/2).
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Then, by [9, Theorem 3.2.1], almost surely, U is bounded uniformly on D \ [0, T ]2.
Hence D = (R+)2, and we have obtained the desired semimartingale U . The invert-
ibility of U can be proved by applying the same argument to the usual equation for
the inverse.

By the Stratonovich chain rule,

@s@txst = rXi(xst)@sz
i
st@txst +rX0(xst)@s@txst + Xi(xst)@s@tz

i
st.

Now

@s@tUst = rXi(xst)@sz
i
st@tUst +rX0(xst)@s@tUst

+(r2Xi(xst)@txst)Ust@sz
i
st + (r2X0(xst)@txst)Ust@s +rXi(xst)Ust@s@tz

i
st,

so
@tUst@s@tz

i
st = 1

2@s@tUst@s@tw
i
st = 1

2rXi(xst)Ust@s@t

and

@s(U
�1
st @tUst) = U�1

st

�
r2Xi(xst)@sz

i
st@txst +r2X0(xst)@s@txst +rXi(xst)@s@tz

i
st

 
Ust.

Define also a two-parameter, Rd-valued, semimartingale (yst : s, t > 0) by

@tyst = U�1
st @txst, ys0 = 0.

Then
@s@tyst = U�1

st Xi(xst)@s@tz
i
st.

Note that

@tyst@s@tz
i
st = @tyst@s@tw

i
st = 1

2@s@tyst@s@tw
i
st = 1

2U�1
st Xi(xst)@s@t.

So

@s(@tyst⌦ @tyst) = @s@tyst⌦ @tyst + @tyst⌦ @s@tyst = U�1
st Xi(xst)⌦U�1

st Xi(xst)@s@t.

Note also that

@s(U
�1
st Xi(xst)) = U�1

st [Xi, Xj ](xst)@sz
j
st + U�1

st [Xi, X0](xst)@s.

So

@s(U
�1
st Xi(xst))@s@tz

i
st = U�1

st [Xi, Xj ](xst)@sz
j
st(@s@tw

i
st � 1

2@sz
i
st@t) = 0.

Moreover
@t(U

�1
st Xi(xst))ds@tz

i
st = @t(U

�1
st Xi(xst))ds@tw

i
st = 0.

Hence, we have

dsdtyst = U�1
st Xi(xst)dsdtz

i
st = U�1

st Xi(xst)(@s@tw
i
st � 1

2@sz
i
st@t).

We compute

@s(U
�1
st @tUst@tyst)

= U�1
st

�
r2Xi(xst)@sz

i
st +r2X0(xst)@s

 
@txst ⌦ @txst + U�1

st rXi(xst)Xi(xst)@s@t.
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Define

Rst = �
Z s

0
U�1

rt Xi(xrt)drz
i
rt, Cst =

Z s

0
U�1

rt Xi(xrt)⌦ U�1
rt Xi(xrt)dr.

Our calculations show that the ( F st : t > 0)-semimartingale (yst : t > 0) has finite-
variation part (ȳst : t > 0) and quadratic variation given by

dtȳst = 1
2Rstdt, @tyst ⌦ @tyst = Cstdt.

Moreover
dtxst = Ustdtyst + 1

2@tUst@tyst,

so (xst : t > 0) has finite-variation part (x̄st : t > 0) and quadratic variation given by

dtx̄st = 1
2Lstdt, @txst ⌦ @txst = �stdt,

where

Lst = UstRst + Ust

Z s

0
U�1

rt {r2Xi(xrt)@rz
i
rt +r2X0(xrt)@r}�rt

+ Ust

Z s

0
U�1

rt rXi(xrt)Xi(xrt)@r

and where �st = UstCstU⇤
st.

Note that both (�st : t > 0) and (Lst : t > 0) are stationary processes and that, by
standard one-parameter estimates, �s0 and Ls0 have finite moments of all orders. By
Itô’s formula, for any C2 function f , setting fst = f(xst), the process (fst : t > 0) is
an ( F st : t > 0)-semimartingale with finite-variation part (f̄st : t > 0) and quadratic
variation given by

dtf̄st = 1
2

Ä
Li

strif(xst) + �ij
strirjf(xst)

ä
dt, @tfst@tfst = rif(xst)�

ij
strjf(xst)dt.

In particular, if mst = fst�fs0� f̄st, then (mst : t > 0) is a (true) martingale. Hence,
for f, g 2 C2

b (Rd), we obtain the integration-by-parts formula

E[rif(xs0)�
ij
s0rjg(xs0)] = lim

t#0

1

t
E [{f(xst)� f(xs0)}{g(xst)� g(xs0)}]

= �2 lim
t#0

1

t
E[f(xs0){g(xst)� g(xs0)}] = �E[f(xs0){Li

s0rig(xs0) + �ij
s0rirjg(xs0)}].

An obvious limit argument allows us to deduce the following simple formula, corre-
sponding to the case g(x) = xj . For all f 2 C2

b (Rd) and for j = 1, . . . , d, we have

E[rif(xs0)�
ij
s0] = �E[f(xs0)L

j
s0].

The general formula can then be recovered by replacing f by frjg and summing
over j.

The basic observation underlying this formula is that the distributions of (z0, zt)
and (zt, z0) are identical, and hence that the same is true for (xs0, xst) and (xst, xs0),
when (xst : s > 0) is obtained by solving a stochastic di�erential equation driven
by (zst : s > 0), with initial condition independent of t. In fact a stronger notion of
reversibility is true. The distributions of (zsu : s > 0, u 2 [0, t]) and (zs,t�u : s >
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0, u 2 [0, t]) are identical, and hence the same is true for (xsu : s > 0, u 2 [0, t]) and
(xs,t�u : s > 0, u 2 [0, t]). This may be combined with the fact that the Stratonovich
integral is invariant under time-reversal to see that

E
ñ
{f(xst)� f(xs0)}

Z t

0
U�1

su @uxsu

ô
= �2E

ñ
f(xs0)

Z t

0
U�1

su @uxsu

ô
.

From this identity, by a similar argument, we obtain the following alternative
integration-by-parts formula. For all f 2 C2

b (Rd), we have

E[rf(xs0)Us0Cs0] = �E[f(xs0)Rs0].

This formula is the variant discovered by Bismut, which is closely related to the
Clark–Haussmann formula.
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WITTEN LAPLACIAN ON A LATTICE SPIN SYSTEM

by

Ichiro Shigekawa

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — We consider an unbounded lattice spin system with a Gibbs measure.

We introduce the Hodge-Kodaira operator acting on di�erential forms and give a

su�cient condition for the positivity of the lowest eigenvalue.

Résumé (Laplacien de Witten sur un système de spin sur réseau). — Nous considérons un

réseau de spin muni d’une mesure de Gibbs. Nous introduisons l’opérateur de Hodge-

Kodaira agissant sur les formes di�érentielles, et nous donnons une condition su�-

sante pour la positivité de la plus petite valeur propre.

1. Introduction

In this paper, we consider the spectral gap problem for a lattice spin system. Here,
in our case, the single spin space is R and so it is non-compact. This is sometimes
called an unbounded spin system.

We consider a model that each spin sits on the lattice Zd, and so the configuration
space is RZd

. We suppose that a Gibbs measure is given in RZd

, which has the following
formal expression:

(1.1) ⌫ = Z
�1 exp

ß
�2J

X

i,j2Zd

i⇠j

(xi � x
j)2 � 2

X

i2Zd

U(xi)

™ Y

i2Zd

dx
i
.

Here U is a function of R, called a self potential and i ⇠ j means that ki � jk1 =P
k |ik � jk| = 1. Under this measure we define the Hodge-Kodaira operator and

discuss the positivity of the lowest eigenvalue of the operator. For unbounded spin

2010 Mathematics Subject Classification. — 60H07, 47D08, 47A10.

Key words and phrases. — Lattice spin system, Witten Laplacian, spectral gap.
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systems, the Poincaré inequality, the logarithmic Sobolev inequality and other prop-
erties are well discussed, e.g., Zegarlinski [11], Yoshida [10], etc. In particular, Hel�er
[5, 6, 7, 8] dealt with this problem in connection to the Witten Laplacian. In fact, he
proved the positivity of the lowest eigenvalue of the Hodge-Kodaira operator acting
on 1-forms. From this point of view, we generalize his result to any p-forms (p � 1),
i.e., we will prove that the lowest eigenvalue of the Hodge-Kodaira operator acting on
p-forms is positive.

The organization of the paper is as follows. In Section 2, we discuss the Witten
Laplacian on a finite dimensional space and in Section 3, we summarize di�erential
forms, the Hodge-Kodaira operator and the Weitzenböck formula, which is crucial in
the later argument. In Section 4, we give an estimate of spectral gap for 1-dimensional
case. Last in Section 5, we prove the positivity of the lowest eigenvalue of the Hodge-
Kodaira operator. We only consider the finite region case but we give a uniform
estimate. In fact, it is independent of the choice of region and the boundary condition.
So the result is valid for the infinite volume case as well.

2. Witten Laplacian in finite dimension

We give a quick review of the Witten Laplacian, which we need later. Details
and related topics can be found in Hellfer [8], Albeverio-Daletskii-Kondratiev [1],
Elworthy-Rosenberg [4], etc. Simon et al [3] is also a good reference for the super-
symmetry.

Our interest is in the infinite dimensional case, but we start with the finite dimen-
sional case. Suppose we are given a C

2 function � on RN and define a measure ⌫

by

(2.1) ⌫(dx) = Z
�1

e
�2�

dx.

Here Z =
R

RN e
�2�

dx so that ⌫ is a probability measure. Define a Dirichlet form E

by

(2.2) E (f, g) =

Z

RN

(rf,rg)e�2�
dx,

where r = (@1, . . . , @N ), @k = d
dxk

. (rf,rg) stands for the Euclidean inner product.
We must specify the domain of E . (2.2) is well-defined for f , g 2 C

1
0 (RN ). So at first,

E is defined on C
1
0 (RN ). Let us give an explicit form of the dual operator @

⇤
j of @j

in L
2(⌫). To do this, note that
Z

RN

@jfge
�2�

dx = �
Z

RN

f@j(ge
�2�)dx = �

Z

RN

f(@jg � 2@j�g)e�2�
dx,

which means

(2.3) @
⇤
j = �@j + 2@j�.
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Here @
⇤
j is the dual operator of @j in L

2(⌫).
From this, we can see that the dual operator of r has dense domain and so r is

closable. Moreover the generator A is given by

(2.4) Af = �
X

j

@
⇤
j @j =

X

j

(@2
j f � 2@j�@jf) = 4f � 2(r�,rf).

This is valid for f 2 C
1
0 (RN ). We can show that A is essentially self-adjoint and so,

by taking closure, we may regard A as self-adjoint operator. The domain of E is a set
of all functions f 2 L

2(⌫) with rf 2 L
2(⌫; RN ).

We now define a Witten Laplacian. Let I : L
2(dx) �! L

2(⌫) be a unitary operator
defined by

(2.5) If(x) = e
�
f.

Let us obtain a operator Xj which satisfies the following commutative diagram:

(2.6)

L
2(dx)

I����! L
2(⌫)

Xj

??y
??y@j

L
2(dx)

I����! L
2(⌫)

It is not hard to see that

Xj = e
��

@je
� = @j + @j�.

We denote the dual operator of Xj in L
2(dx) by X̃j . Here we use the following

convention. ⇤ stands for the dual operator in L
2(⌫) and ˜ stands for the dual operator

in L
2(dx), dx being the Lebesgue measure in RN . X̃j has the following form:

X̃j = �@j + @j�.

This is also equal to e
��

@
⇤
j e

�. The operator A associated with the generator A =

�
P

j @
⇤
j @j is computed by

A = e
��Ae

� = �e
��(

X

j

@
⇤
j @j)e

� = �
X

j

X̃jXj

= �
X

j

(�@j + @j�)(@j + @j�) =
X

j

(@2
j + @

2
j �� (@j�)2)

= 4+4�� |r�|2.

Definition 2.1. — A = 4+4�� |r�|2 in L
2(dx) is called a Witten Laplacian.

A and A are unitarily equivalent to each other but we distinguish them and call A

as the Witten Laplacian, which is an operator in L
2(dx).

The following commutation relation is easily checked.
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Proposition 2.1. — In L
2(⌫), we have

[@i, @j ] = 0,(2.7)

[@i, @
⇤
j ] = 2@i@j�,(2.8)

[@⇤j , @
⇤
k ] = 0.(2.9)

Further, in L
2(dx), we have

[Xi, Xj ] = 0,(2.10)

[Xi, X̃j ] = 2@i@j�,(2.11)

[X̃j , X̃j ] = 0.(2.12)

3. Witten Laplacian acting on di�erential forms

In Section 2, we have introduced the Witten Laplacian. We now proceed to the
Witten Laplacian acting on di�erential forms.

Let us quickly review the exterior algebra. In the sequel, we will deal with multi-
linear functionals on RN . Let t be a p-linear functional and s be a q-linear functional,
e.g., t is a functional from RN ⇥ · · ·⇥ RN

| {z }
p

into R which is linear in each coordinate.

We define p + q-linear functional t⌦ s by

(3.1) t⌦ s(v1, . . . , vp, vp+1, . . . , vp+q) = t(v1, . . . , vp)s(vp+1, . . . , vp+q).

t⌦ s is called a tensor product. We also define the alternation mapping Ap by

(3.2) Apt(v1, . . . , vp) =
1

p!

X

�2Sp

(sgn�) t(v�(1), . . . , v�(p))

for p-linear functional t. Here Sp is the symmetric group of degree p and sgn� stands
for the signature. If p-linear functional ✓ satisfies Ap✓ = ✓, ✓ is called alternating. We
denote the set of all alternating functionals of degree p by

Vp(RN )⇤. For ✓ 2
Vp(RN )⇤

and ⌘ 2
Vq(RN )⇤, we define their exterior product ✓ ^ ⌘ by

(3.3) ✓ ^ ⌘ =
(p + q)!

p!q!
Ap+q(✓ ⌦ ⌘).

Taking an orthonormal basis ✓1, . . . , ✓N in (RN )⇤, any element of
Vp(RN )⇤ is repre-

sented as a unique linear combination of the following elements

(3.4) ✓i1 ^ · · · ^ ✓ip .

We define an inner product in
Vp(RN )⇤ so that all elements of the form (3.4) become

an orthonormal basis in
Vp(RN )⇤.

A
p(RN ) = RN⇥

Vp(RN )⇤ has a structure of vector bundle and a section of A
p(RN )

is called a di�erential form of degree p. The set of all sections is denoted by �(Ap(RN )).
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Since the vector bundle A
p(RN ) is trivial, any section can be identified with a mapping

from RN into
Vp(RN )⇤. In the sequel, we use this convention. �1(Ap(RN )) denotes

the set of all smooth di�erential forms and �10 (Ap(RN )) denotes the set of all smooth
di�erential forms with compact support.

We introduce some operators in
Vp(RN )⇤ as follows. For ✓ 2 (RN )⇤, we define

ext(✓) :
Vp(RN )⇤ �!

Vp+1(RN )⇤ by

(3.5) ext(✓)! = ✓ ^ !

and for v 2 RN , we define int(✓) :
Vp(RN )⇤ �!

Vp�1(RN )⇤ by

(3.6) (int(v)!)(v1, . . . , vp�1) = !(v, v1, . . . , vp�1).

Taking a standard basis {e1, . . . , eN} of RN and its dual basis {✓1
, . . . , ✓

N}, we define
operators a

i, (ai)⇤ by

a
i = int(ei),(3.7)

(ai)⇤ = ext(✓i).(3.8)

Here we regard a
i, (ai)⇤ as operators on an exterior algebra R� (RN )⇤ �

V2(RN )⇤ �
· · ·�

VN (RN )⇤. They satisfy the following commutation relation:

[ai
, a

j ]+ = 0,(3.9)

[ai
, (aj)⇤]+ = �ij ,(3.10)

[(ai)⇤, (aj)⇤]+ = 0.(3.11)

Here [ , ]+ stands for an anti-commutator, i.e., [ai
, a

j ]+ = a
i
a

j + a
j
a

i.
For di�erential forms, the covariant di�erentiation r can be defined. More gener-

ally, the covariant di�erentiation r is defined for tensor fields as follows:

rt =
X

i

✓
i ⌦ @it.

Here we remark that the operator is considered in L
2(⌫), i.e., the reference measure

is ⌫. The dual operator of r in L
2(⌫) is given by

r⇤(
X

i

✓
i ⌦ ti) =

X

i

@
⇤
i ti

and so we have

r⇤rt =
X

i

@
⇤
i @it = �

X

i

(@2
i � 2@i�@i)t.

For di�erential forms, we can define the exterior di�erentiation as follows. Let !

be a di�erential form of degree p. Then its exterior derivative is defined by d! =

(p + 1)Ap+1r! and it is written as

(3.12) d =
X

i

ext(✓i)@i =
X

i

(ai)⇤@i.
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Hence, its dual operator is expressed as

(3.13) d
⇤ =

X

i

a
i
@
⇤
i .

Using these operators, the Hodge-Kodaira Laplacian is defined as �(dd
⇤ + d

⇤
d).

The following formula is called the Weitzenböck formula:

Theorem 3.1. — We have the following identity.

(3.14) dd
⇤ + d

⇤
d = r⇤r+ 2

X

i,j

@i@j� (ai)⇤aj
.

Proof. — By (3.12) and (3.13), we have

dd
⇤ + d

⇤
d =

X

i,j

{(ai)⇤@i a
j
@
⇤
j + a

j
@
⇤
j (ai)⇤@i}

=
X

i,j

{(ai)⇤aj
@i@

⇤
j � (ai)⇤aj

@
⇤
j @i + (ai)⇤aj

@
⇤
j @i + a

j(ai)⇤ @
⇤
j @i}

=
X

i,j

{(ai)⇤aj [@i, @
⇤
j ] + [(ai)⇤, aj ]+@

⇤
j @j}

=
X

i,j

{2(ai)⇤aj
@i@j� + �ij@

⇤
j @i}

=
X

i,j

2@i@j� (ai)⇤aj +
X

i

@
⇤
i @i

= r⇤r+
X

i,j

2@i@j� (ai)⇤aj
.

This is what we wanted.

So far, the reference measure has been ⌫. The isomorphism I : L
2(dx) �! L

2(⌫)

can be extended to di�erential forms. Under the Lebesgue measure, the corresponding
exterior di�erentiation and its dual operator are given by

D = e
��

de
�
,(3.15)

D̃ = e
��

d
⇤
e
�
.(3.16)

So the operator D̃D+DD̃ can be defined similarly and it has the following expression:

Theorem 3.2. — We have the following identities:

(3.17) D̃D + DD̃ =
X

i

X̃iXi + 2
X

i,j

@i@j� (ai)⇤aj
.

We call the operator D̃D +DD̃ in L
2(dx) as the Witten Laplacian and distinguish

from dd
⇤+d

⇤
d, which is defined in L

2(d⌫) and is called the Hodge-Kodaira Laplacian.
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We remark that the operators a
j , (ai)⇤ are independent of the underlying measure

and so we used the same notation.

Proof. — We easily have

D̃D + DD̃ = e
��(dd

⇤ + d
⇤
d)e�

= e
��{r⇤r+ 2

X

i,j

@i@j� (ai)⇤aj}e�

=
X

i

X̃iXi + 2
X

i,j

@i@j� (ai)⇤aj
.

This is the desired result.

Due to this unitary equivalence, the following theorem is well-known (see, e.g., [2]).

Theorem 3.3. — The Hodge-Kodaira operator D̃D+DD̃ with a domain �10 (Ap(RN ))

is essentially self-adjoint in L
2(dx;

Vp(RN )⇤). Furthermore, d
⇤
d + d

⇤
d with a domain

�10 (Ap(RN )) is essentially self-adjoint in L
2(⌫;

Vp(RN )⇤).

4. Witten Laplacian in one-dimension

In this section, we give an estimate of the bottom of the spectrum in 1-dimensional
case. In the sequel, the state space is R and the underlying measure is Lebesgue
measure. We denote the Hamiltonian by � instead of � to distinguish. We define an
operator X� = @t + �

0, @t = d
dt . Using this operator, the Witten Laplacian can be

written as

(4.1) �⇤0 = X̃�X�,

which acts on scalar functions, and

(4.2) �⇤1 = X̃�X� + 2�
00(t)

which acts on 1-forms. Here we identify 1-forms with scalar functions. This is possible
since the dimension of fiber space is 1-dimension. Our aim is to give an estimate of
the lowest eigenvalue of �⇤1, which we denote by �1(�). From (4.2), we can see that
�1(�) � 2c if � is convex and �

00(t) � c. Noting that X̃� = �@t + @t�, we have

X̃�X� �X�X̃� = (�@t + �
0)(@t + �

0)� (@t + �
0)(�@t + �

0)

= �@
2
t � �

00 � �
0
@t + �

0(@t + �
0) + @

2
t � �

00 � �
0
@t � �

0(�@t + �
0)

= �2�
00
,

which means

(4.3) �⇤1 = X�X̃�.
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As in Definition 2.1, we have

(4.4) �⇤0 = X̃�X� = � d
2

dt2
+ �

0(t)2 � �
00(t)

and further

(4.5) �⇤1 = X�X̃� = � d
2

dt2
+ �

0(t)2 + �
00(t).

We note that the pair of ⇤0 and ⇤1 has a supersymmetric structure. In fact, in
the space L

2(R)� L
2(R), we define

(4.6) Q =

 
0 X̃�

X� 0

!
.

Then Q is symmetric and satisfies

Q
2 =

 
X̃�X� 0

0 X�X̃�

!
=

 
�⇤0 0

0 �⇤1

!
.

By using the following well-known fact (see, e.g., [3, Theorem 6.3]), we can see that
�⇤0 and �⇤1 have the same spectrum except for 0.

Proposition 4.1. — Let T be a closed operator in a Hilbert space H. Then T
⇤
T and

TT
⇤ has the same spectrum except for 0.

By this special structure, we have that eigenvalues of �⇤0 coincide with those of
�⇤1 excluding 0.

The next Lemma shows that a bounded perturbation preserves the positivity of
the lowest eigenvalue.

Lemma 4.2. — Let � be a bounded function. We denote by �sup, �inf the infimum
and the supremum of �, respectively. Then we have

(4.7) �1(�) � e
�2(�sup��inf )�1(� + �).

Proof. — Note that

e
��(�@t + �

0 + �
0)e� = �e

��
@te

� + �
0 + �

0

= �e
��(e�

�
0 + e

�
@t) + �

0 + �
0 = �@t + �

0 = X̃�.

Hence we have

(�⇤1u, u) = (X̃�u, X̃�u)

= ((�@t + �
0)u, (�@t + �

0)u)

= (e��(�@t + �
0 + �

0)e�
u, e

��(�@t + �
0 + �

0)e�
u)

� e
�2�sup((�@t + �

0 + �
0)e�

u, (�@t + �
0 + �

0)e�
u)

� e
�2�sup�1(� + �)ke�

uk22
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� e
�2�sup�1(� + �)e2�infkuk22

= e
�2(�sup��inf )�1(� + �)kuk22.

This means (4.7).

The equation (4.7) can be written as

�1(� + �) � e
�2(�sup��inf )�1(�).

This implies the following. If the function � is a sum of a convex function and a
bounded function, then the lowest eigenvalue of �⇤1 is positive, and further the
operator �⇤0 has a spectral gap. To be precise, writing � = V + W with V

00 � c and
W being bounded, we have the following estimate:

�1(�) � 2ce
�2(Wsup�Winf ).

Lastly we give another type of estimate of the lowest eigenvalue for a double well
potential of the form at

4 � bt
2. To do this, we recall the harmonic oscillator �A =

� d2

dt2 + at
2 on L

2(R, dx). It is well-known that the lowest eigenvalue of this operator
is
p

a with an eigenfunction e
�
p

at2/2. Using this, we have the following:

Proposition 4.3. — If �(t) = at
4 � bt

2, then we have

(4.8) �1(�) � 2
p

3a� 2b.

Proof. — From (4.5),

(�⇤1u, u) = ((� d
2

dt2
+ �

00(t) + �
0(t)2)u, u)

� ((� d
2

dt2
+ �

00(t))u, u)

= ((� d
2

dt2
+ 12at

2 � 2b)u, u).

Here the operator� d2

dt2 +12at
2 is a harmonic oscillator and hence the lowest eigenvalue

is 2
p

3a. This yields that

(�⇤1u, u) � ((2
p

3a� 2b)u, u),

which is the desired result.

5. Positivity of the lowest eigenvalue for the Witten Laplacian

Lattice spin systems are characterized by Gibbs measures on X = RZd

. To define a
Gibbs measure, we have to introduce a Hamiltonian. Suppose we are given an potential
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U : R ! R. Then the Hamiltonian is defined by

(5.1) �(x) =
X

i,j2Zd

i⇠j

J (xi � x
j)2 +

X

i2Zd

U(xi).

Here x = (xi)i2Zd and i ⇠ j means that ki � jk1 = |i1 � j1| + · · · + |id � jd| = 1.
(xi � x

j)2 stands for an interaction between particles. We only deal with this type
of nearest neighbor interaction. We can generalize it to finite range interaction but
we restrict ourselves to nearest neighbor interaction for the sake of simplicity. The
expression of (5.1) involves an infinite sum and it is no more than a formal expression.
The Gibbs measure is sometimes expressed as

(5.2) ⌫ = Z
�1

e
�2�(x)

dx.

But it does not make sense since �(x) diverges and the Lebesgue measure dx is
nothing but a fictitious measure.

Precise characterization of Gibbs measures is given by the Dobrushin-Lanford-
Ruelle equation. For a given finite region ⇤ ✓ Zd (we denote this fact by ⇤ b Zd) and
a boundary condition ⌘ 2 X, we define a Hamiltonian on R⇤ by

(5.3) �⇤,⌘(x) =
X

i,j2⇤
i⇠j

J (xi � x
j)2 +

X

i2⇤

U(xi) + 2
X

i2⇤,j2⇤c

i⇠j

J (xi � ⌘
j)2

and introduce a measure on R⇤ by

(5.4) ⌫⇤,⌘ = Z
�1

e
�2�⇤,⌘(x)

dx⇤.

Here dx⇤ denotes the Lebesgue measure on R⇤. Let F⇤c = �{xi; i 2 ⇤c}. We also
denote x⇤ = (xi; i 2 ⇤) and x⇤c = (xi; i 2 ⇤c). Then ⌫ is called a Gibbs measure if
the conditional probability with respect to F⇤c is given as

(5.5) E
⌫ [ · |x⇤c = ⌘⇤c ] = ⌫⇤,⌘(dx⇤)⌦ �⌘⇤c (dx⇤c)

for any ⇤ b Zd. Here �⌘⇤c is the Dirac measure at a point ⌘⇤c 2 R⇤c

, ⌘⇤c being
the restriction of ⌘ to ⇤c. The existence and the uniqueness of such measures is a
subtle problem. In this paper, we only consider finite region measure and will give
uniform estimates. Then our result holds for the infinite system if it exists. In fact,
suppose that estimates are uniform. Take any di�erential form ✓ which depends on
finite variables. We can find a finite region ⇤ which contains these variables. Then,
by the identity (5.5), we have

E
⌫ [(d✓, d✓) + (d⇤✓, d⇤✓) |x⇤c = ⌘⇤c ] � kE

⌫ [(✓, ✓) |x⇤c = ⌘⇤c ].

Then, by integrating with respect to ⌘⇤c , we have

E
⌫ [(d✓, d✓) + (d⇤✓, d⇤✓)] � kE

⌫ [(✓, ✓)].
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Now we fix ⇤ b Zd and ⌘ 2 X and the Hamiltonian is given by (5.3). As was
discussed in the previous section, the Hodge-Kodaira operator dd

⇤+d
⇤
d is well-defined

on R⇤. Our aim is to show that the bottom of the spectrum �(dd
⇤ + d

⇤
d) is positive

for p-forms (p � 1). Under the unitary operator I : L
2(dx⇤) ! L

2(⌫⇤,⌘), we consider
the Witten Laplacian DD̃ + D̃D in L

2(dx⇤).
From now on, we fix p � 1. Indices I, J, . . . denote p distinct elements i1, i2, . . . , ip

of ⇤. We denote |I| = p. When I = {i1, . . . , ip}, we set dx
I = dx

i1 ^ · · ·^dx
ip . So any

p-form ✓ can be written uniquely as ✓ =
P

I ✓Idx
I . From the Weitzenböck formula,

we have

(D̃D + DD̃)✓ =
X

i

X̃iXi

X

I

✓Idx
I + 2

X

i,j

@i@j� (ai)⇤aj
X

I

✓Idx
I

=
X

I

X

i

X̃iXi✓Idx
I + 2

X

I

✓I

X

i

@
2
i � (ai)⇤ai

dx
I

+ 2
X

I

✓I

X

i 6=j

@i@j� (ai)⇤aj
dx

I

=
X

I

X

i

X̃iXi✓Idx
I + 2

X

I

✓I

X

i2I

@
2
i �dx

I

+ 2
X

I

✓I

X

i 6=j

@i@j� (ai)⇤aj
dx

I
.

Therefore

((D̃D + DD̃)✓, ✓)

= (
X

I

X

i

X̃iXi✓Idx
I + 2

X

I

✓I

X

i2I

@
2
i �dx

I

+ 2
X

I

✓I

X

i 6=j

@i@j� (ai)⇤aj
dx

I
,

X

J

✓Jdx
J)

=
X

I

(
X

i

X̃iXi✓I , ✓I) + 2
X

I

(✓I

X

i2I

@
2
i �, ✓I)

+ 2
X

I,J

(✓I

X

i 6=j

@i@j� (ai)⇤aj
dx

I
,

X

J

✓Jdx
J)

=
X

I

(
X

i2I

X̃iXi✓I , ✓I) +
X

I

(
X

i 62I

X̃iXi✓I , ✓I) + 2
X

I

(✓I

X

i2I

@
2
i �, ✓I)

+ 2
X

I,J

(✓I

X

i 6=j

@i@j�(ai)⇤aj
dx

I
,

X

J

✓Jdx
J)

�
X

I

(
X

i2I

X̃iXi✓I , ✓I) + 2
X

I

(✓I

X

i2I

@
2
i �, ✓I)

+ 2
X

I,J

(✓I

X

i 6=j

@i@j� (ai)⇤aj
dx

I
,

X

J

✓Jdx
J)
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=
X

I

X

i2I

((X̃iXi + 2@
2
i �)✓I , ✓I) + 2

X

I,J

(✓I

X

i 6=j

@i@j� (ai)⇤aj
dx

I
,

X

J

✓Jdx
J).

To get positivity of the left hand side, we estimate the right hand side term by term.
We state our result as a theorem.

Theorem 5.1. — Suppose U is decomposed as U = V +W so that V
00 � c > 0 and W

is bounded. Wsup and Winf denote the supremum and the infimum of W , respectively.
If 2(c + 8dJ )e�2(Wsup�Winf ) > 16dJ , then the lowest eigenvalue of D̃D + DD̃ for
p-forms is greater than {2(c + 8dJ )e�2(Wsup�Winf ) � 16dJ }p. Therefore there is no
harmonic p-forms for p � 1.

Proof. — We first estimate the second term. To do this, we first compute @j@i�. For
i 6= j, we have

@i@j�(x) = @i@j

ßX
k,l2⇤
k⇠l

J (xk � x
l)2 +

X

k2⇤

U(xk) + 2
X

k2⇤,l2⇤c

k⇠l

J (xk � ⌘
l)2

™

=

(
�4J , i ⇠ j

0, otherwise.

For i = j, we have

@
2
i �(x) = U

00(xi) + 8J d.

Hence

2
X

I,J

(✓I

X

i 6=j

@i@j�(ai)⇤aj
dx

I
,

X

J

✓Jdx
J)

= �8J
X

I,J

(✓I

X

i⇠j

(ai)⇤aj
dx

I
, ✓Jdx

J)

= �8J
X

I,J

(
X

i⇠j

(ai)⇤aj
dx

I
, dx

J)(✓I , ✓J)

= �8J
X

I,J

c(I, J)(✓I , ✓J).

Here we set c(I, J) = (
P

i⇠j(a
i)⇤aj

dx
I
, dx

J). c(I, J) = 1 or �1 only when I and J

di�ers by only one element and they are adjacent to each other. Otherwise c(I, J) = 0.
For each fixed I, there are utmost 2dp J ’s with c(I, J) 6= 0. Therefore we have

�8J
X

I,J

c(I, J)(✓I , ✓J) � �4J
X

I,J

|c(I, J)|{k✓Ik22 + k✓Jk22}

� �4J
X

I

2dpk✓Ik22 � 4J
X

J

2dpk✓Jk22

= �16dpJ
X

I

k✓Ik22.
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Eventually the second term is estimated as follows:

2
X

I,J

(✓I

X

i 6=j

@i@j�(ai)⇤aj
dx

I
,

X

J

✓Jdx
J) � �16dpJ

X

I

|✓I |2.

We will show that the first term is greater than the second term if J is su�ciently
small. To estimate the first term, we need to compute ((X̃iXi + 2@

2
i �)✓I , ✓I) and we

regards it as a function of x
i for a moment. So other variables are fixed. We denote

other variables by y
i, i.e.,

y
i = {xj}j2⇤\{i} 2 R⇤\{i}

.

The variables {xj}j2⇤ are decomposed into x
i and y

i. Then

�(x) = �(xi
, y

i) = U(xi) + 4dJ (xi)2 � x
i

ßX
j2⇤
j⇠i

4x
j +

X

j2⇤c

j⇠i

4⌘
j

™
+ �̂i(y

i).

It is enough to consider the 1-dimensional Hamiltonian of the form

�(t) = U(t) + 4dJ t
2 � ↵t.

In this case, let us estimate the lowest eigenvalue of a operator X̃�X� + 2�
00(t).

Here X� = @t + �
0, @t = d

dt . But we have already considered the 1-dimensional
case in the previous section and so we are ready to estimate ((X̃iXi + 2@

2
i �)✓I , ✓I).

In fact, by Lemma 4.2, the lowest eigenvalue of X̃iXi + 2@
2
i � is greater than (c +

8dJ )e�2(Wsup�Winf ).

((D̃D + DD̃)✓, ✓)

�
X

I

X

i2I

((X̃iXi + 2@
2
i �)✓I , ✓I) + 2

X

I,J

(✓I

X

i 6=j

@i@j� (ai)⇤aj
dx

I
,

X

J

✓Jdx
J)

�
X

I

X

i2I

2(c + 8dJ )e�2(Wsup�Winf )k✓Ik22 � 16dpJ
X

I

k✓Ik22

=
X

I

2p(c + 8dJ )e�2(Wsup�Winf )k✓Ik22 � 16dpJ
X

I

k✓Ik22

= p{2(c + 8dJ )e�2(Wsup�Winf ) � 16dJ }k✓k22.

This is what we wanted.

When U is a double well potential, we can give another kind of estimate. This time,
we use Proposition 4.3.

Theorem 5.2. — Assume that U is of the form U(t) = at
4�bt

2. If
p

3a�b�4dJ > 0,
then the lowest eigenvalue of D̃D + DD̃ for p-forms is not smaller than 2(

p
3a� b�

4dJ )p. Therefore there is no harmonic p-forms (p � 1).
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Proof. — A proof is almost same as the previous one. This time, one dimensional
Hamiltonian is of the form

�(t) = at
4 � bt

2 + 4dJ t
2 � ↵t.

By Proposition 4.3, the lowest eigenvalue of X̃iXi +2�
00(t)+�

0(t)2 is not smaller than
2
p

3a� 2b + 8dJ . Hence we have

((D̃D + DD̃)✓, ✓)

�
X

I

X

i2I

((X̃iXi + 2@
2
i �)✓I , ✓I) + 2

X

I,J

(✓I

X

i 6=j

@i@j� (ai)⇤aj
dx

I
,

X

J

✓Jdx
J)

�
X

I

X

i2I

(2
p

3a� 2b� 8dJ )k✓Ik22 � 16dpJ
X

I

k✓Ik22

= 2(
p

3a� b� 4dJ )pk✓k22.

This completes the proof.

Lastly we will show that any di�erential form can be decomposed into three parts;
exact, coexact and harmonic, which is usually called the Hodge-Kodaira decomposi-
tion. We have seen the positivity of the lowest eigenvalue, the decomposition follows
easily. We state it as a theorem.

Theorem 5.3. — Under the assumption of Theorem 5.1 or Theorem 5.2, the following
Hodge-Kodaira decomposition holds: For p = 0,

(5.6) L
2(⌫) = { constant functions }� Ran(d⇤)

and for p � 1,

(5.7) L
2(⌫;

Vp(R⇤)⇤) = Ran(d)� Ran(d⇤).

Proof. — We only give a proof for p � 1. Set

T = (d, d
⇤) : L

2(⌫;
Vp(R⇤)⇤) ! L

2(⌫;
Vp+1(R⇤)⇤)� L

2(⌫;
Vp�1(R⇤)⇤).

Here, by taking a closure, T is defined as a closed operator. Then we can have �⇤p =

T
⇤
T . In fact, both operator coincides for smooth p-forms with compact support. So

the identity follows from the essential self-adjointness of ⇤p. Thus we have

�⇤p = dd
⇤ + d

⇤
d

on the domain of ⇤p. Since the lowest eigenvalue of �⇤p is positive, it has an inverse
operator, which we denote by �G. Then for ! 2 L

2(⌫;
Vp(R⇤)⇤) we have

! = (dd
⇤ + d

⇤
d)G! = d(d⇤G!) + d

⇤(dG!).

The orthogonality between d(d⇤G!) and d
⇤(dG!) follows easily from the property

d
2 = 0. This completes the proof.
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PURE SPINORS ON LIE GROUPS

by

A. Alekseev, H. Bursztyn & E. Meinrenken

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday.

Abstract. — For any manifold M , the direct sum TM = TM �T ⇤M carries a natural
inner product given by the pairing of vectors and covectors. Di�erential forms on M
may be viewed as spinors for the corresponding Cli�ord bundle, and in particular there
is a notion of pure spinor. In this paper, we study pure spinors and Dirac structures
in the case when M = G is a Lie group with a bi-invariant pseudo-Riemannian
metric, e.g. G semi-simple. The applications of our theory include the construction
of distinguished volume forms on conjugacy classes in G, and a new approach to the
theory of quasi-Hamiltonian G-spaces.

Résumé (Spineurs purs sur les groupes de Lie). — Pour toute variété lisse M , le fibré TM =
TM�T ⇤M est muni d’un produit scalaire naturel défini par la dualité entre vecteurs
et co-vecteurs. Les formes di�érentielles sur M sont des spineurs pour le fibré de
Cli�ord correspondant. On définit alors les spineurs purs. Dans cet article, nous
étudions les spineurs purs et les structures de Dirac dans le cas où M est un groupe
de Lie G muni d’une métrique pseudo-riemannienne bi-invariante, par exemple un
groupe semi-simple. Comme applications de notre théorie, nous définissons une forme
volume distinguée sur les classes de conjugaison de G, et nous proposons une nouvelle
approche de la théorie des G-espaces quasi-hamiltoniens.

0. Introduction

For any manifold M , the direct sum TM = TM � T
⇤
M carries a non-degenerate

symmetric bilinear form, extending the pairing between vectors and covectors. There
is a natural Cli�ord action % of the sections �(TM) on the space ⌦(M) = �(^T

⇤
M)

of di�erential forms, where vector fields act by contraction and 1-forms by exterior
multiplication. That is, ^T

⇤
M is viewed as a spinor module over the Cli�ord bundle

Cl(TM). A form � 2 ⌦(M) is called a pure spinor if the solutions w 2 �(TM) of
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%(w)� = 0 span a Lagrangian subbundle E ⇢ TM . Given a closed 3-form ⌘ 2 ⌦3(M),
a pure spinor � is called integrable (relative to ⌘) [9, 28] if there exists a section
w 2 �(TM) with

(d + ⌘)� = %(w)�.

In this case, there is a generalized foliation of M with tangent distribution the pro-
jection of E to TM . The subbundle E defines a Dirac structure [20, 50] on M , and
the triple (M,E, ⌘) is called a Dirac manifold.

The present paper is devoted to the study of Dirac structures and pure spinors on
Lie groups G. We assume that the Lie algebra g carries a non-degenerate invariant
symmetric bilinear form B, and take ⌘ 2 ⌦3(G) as the corresponding Cartan 3-form.
Let g denote the Lie algebra g with the opposite bilinear form �B. We will describe
a trivialization

TG ⇠= G⇥ (g� g),
under which any Lagrangian Lie subalgebra s ⇢ g� g defines a Dirac structure on G.
There is also a similar identification of spinor bundles

R : G⇥ Cl(g)
⇠=�! ^T

⇤
G,

taking the standard Cli�ord action of g � g on Cl(g), where the first summand acts
by left (Cli�ord) multiplication and the second summand by right multiplication, to
the Cli�ord action %. This isomorphism takes the Cli�ord di�erential dCl on Cl(g),
given as Cli�ord commutator by a cubic element [4, 38], to the the di�erential d + ⌘

on ⌦(G). As a result, pure spinors x 2 Cl(g) for the Cli�ord action of Cl(g � g) on
Cl(g) define pure spinors � = R(x) 2 ⌦(G), and the integrability condition for �
is equivalent to a similar condition for x. The simplest example x = 1 defines the
Cartan-Dirac structure EG [14, 50], introduced by Alekseev, äevera and Strobl in
the 1990’s. In this case, the resulting foliation of G is just the foliation by conjugacy
classes. We will study this Dirac structure in detail, and examine in particular its
behavior under group multiplication and under the exponential map. When G is a
complex semi-simple Lie group, it carries another interesting Dirac structure, which
we call the Gauss-Dirac structure. The corresponding foliation of G has a dense open
leaf which is the ‘big cell’ from the Gauss decomposition of G.

The main application of our study of pure spinors is to the theory of q-Hamiltonian
actions [2, 3]. The original definition of a q-Hamiltonian G-space in [3] involves a G-
manifold M together with an invariant 2-form ! and a G-equivariant map � : M ! G

satisfying appropriate axioms. As observed in [14, 15], this definition is equivalent to
saying that the ‘G-valued moment map’ � is a suitable morphism of Dirac manifolds
(in analogy with classical moment maps, which are morphisms M ! g⇤ of Poisson
manifolds). In this paper, we will carry this observation further, and develop all the
basic results of q-Hamiltonian geometry from this perspective. A conceptual advan-
tage of this alternate viewpoint is that, while the arguments in [3] required G to be
compact, the Dirac geometry approach needs no such assumption, and in fact works
in the complex (holomorphic) category as well. This is relevant for applications: For
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instance, the symplectic form on a representation variety Hom(⇡1(⌃), G)/G (for ⌃
a closed surface) can be obtained by q-Hamiltonian reduction, and there are many
interesting examples for noncompact G. (For instance, the case G = PSL(2, R) gives
the symplectic form on Teichmüller space.) Complex q-Hamiltonian spaces appear
e.g. in the work of Boalch [13] and Van den Bergh [11].

The organization of the paper is as follows. Sections 1 and 2 contain a review of
Dirac geometry, first on vector spaces and then on manifolds. The main new results
in these sections concern the geometry of Lagrangian splittings TM = E � F of
the bundle TM . If �, 2 ⌦(M) are pure spinors defining E,F , then, as shown
in [17, 19], the top degree part of �> ^  (where > denotes the standard anti-
involution of the exterior algebra) is nonvanishing, and hence defines a volume form
µ on M . Furthermore, there is a bivector field ⇡ 2 X2(M) naturally associated with
the splitting, which satisfies

�
> ^  = e

�◆(⇡)
µ.

We will discuss the properties of µ and ⇡ in detail, including their behavior under
Dirac morphisms.

In Section 3 we specialize to the case M = G, where G carries a bi-invariant pseudo-
Riemannian metric, and our main results concern the isomorphism TG ⇠= G⇥ (g� g)
and its properties. Under this identification, the Cartan-Dirac structure EG ⇢ TG

corresponds to the diagonal g� ⇢ g � g, and hence it has a natural Lagrangian
complement FG ⇢ TG defined by the anti-diagonal. We will show that the exponential
map gives rise to a Dirac morphism (g, Eg, 0) ! (G, EG, ⌘) (where Eg is the graph
of the linear Poisson structure on g ⇠= g⇤), but this morphism does not relate the
obvious complements Fg = Tg and FG. The discrepancy is given by a ‘twist’, which
is a solution of the classical dynamical Yang-Baxter equation. For G complex semi-
simple, we will construct another Lagrangian complement of EG, denoted by “FG,
which (unlike FG) is itself a Dirac structure. The bivector field corresponding to the
splitting EG � “FG is then a Poisson structure on G, which appeared earlier in the
work of Semenov-Tian-Shansky [49].

In Section 4, we construct an isomorphism ^T
⇤
G ⇠= G⇥ Cl(g) of spinor modules,

valid under a mild topological assumption on G (which is automatic if G is simply
connected). This allows us to represent the Lagrangian subbundles EG, FG and “FG

by explicit pure spinors �G,  G, and b G, and to derive the di�erential equations
controlling their integrability. We show in particular that the Cartan-Dirac spinor
satisfies

(d + ⌘)�G = 0.

Section 5 investigates the foundational properties of q-Hamiltonian G-spaces from
the Dirac geometry perspective. Our results on the Cartan-Dirac structure give a di-
rect construction of the fusion product of q-Hamiltonian spaces. On the other hand, we
use the bilinear pairing of spinors to show that, for a q-Hamiltonian space (M,!, �),
the top degree part of e

!�⇤ G 2 ⌦(M) defines a volume form µM . This volume form
was discussed in [8] when G is compact, but the discussion here applies equally well
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to non-compact or complex Lie groups. Since conjugacy classes in G are examples of
q-Hamiltonian G-spaces, we conclude that for any simply connected Lie group G with
bi-invariant pseudo-Riemannian metric (e.g. G semi-simple), any conjugacy class in
G carries a distinguished invariant volume form. If G is complex semi-simple, one
obtains the same volume form µM if one replaces  G with the Gauss-Dirac spinor
b G. However, the form e

!�⇤ b G satisfies a nicer di�erential equation, which allows us
to compute the volume of M , and more generally the measure �⇤|µM |, by Berline-
Vergne localization [12]. We also explain in this Section how to view the more general
q-Hamiltonian q-Poisson spaces [2] in our framework.

Lastly, in Section 6, we revisit the theory of K
⇤-valued moment maps in the sense

of Lu [42] and its connections with P -valued moment maps [3, Sec. 10] from the Dirac
geometric standpoint.
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financial support from CNPq, and thanks University of Toronto, the Fields Institute
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of this work was carried out.

Notation. — Our conventions for Lie group actions are as follows: Let G be a
Lie group (not necessarily connected), and g its Lie algebra. A G-action on a man-
ifold M is a group homomorphism A : G ! Di↵(M) for which the action map
G⇥M ! M, (g, m) 7! A(g)(m) is smooth. Similarly, a g-action on M is a Lie algebra
homomorphism A : g ! X(M) for which the map g ⇥M ! TM, (⇠,m) 7! A(⇠)m

is smooth. Given a G-action A, one obtains a g-action by the formula A(⇠)(f) =
@
@t

��
t=0

A(exp(�t⇠))⇤f , for f 2 C
1(M) (here vector fields are viewed as derivations of

the algebra of smooth functions).

1. Linear Dirac geometry

The theory of Dirac manifolds was initiated by Courant and Weinstein in [20, 21].
We briefly review this theory, developing and expanding the approach via pure spinors
advocated by Gualtieri [28] (see also Hitchin [32] and Alekseev-Xu [9]). All vector
spaces in this section are over the ground field K = R or C. We begin with some
background material on Cli�ord algebras and spinors (see e.g. [19] or [47].)

1.1. Cli�ord algebras. — Suppose V is a vector space with a non-degenerate
symmetric bilinear form B. We will sometimes refer to such a bilinear form B as
an inner product on V . The Cli�ord algebra over V is the associative unital algebra
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generated by the elements of V , with relations

vv
0 + v

0
v = B(v, v

0) 1.

It carries a compatible Z2-grading and Z-filtration, such that the generators v 2
V are odd and have filtration degree 1. We will denote by x 7! x

> the canonical
anti-automorphism of exterior and Cli�ord algebras, equal to the identity on V . For
any x 2 Cl(V ), we denote by l

Cl(x), rCl(x) the operators of graded left and right
multiplication on Cl(V ):

l
Cl(x)x0 = xx

0
, r

Cl(x)x0 = (�1)|x||x
0|
x
0
x.

Thus l
Cl(x)� r

Cl(x) is the operator of graded commutator [x, ·]Cl.
The quantization map q : ^V ! Cl(V ) is the isomorphism of vector spaces defined

by q(v1 ^ · · · ^ vr) = v1 · · · vr for pairwise orthogonal elements vi 2 V . Let

str : Cl(V ) ! det(V ) := ^top(V )

be the super-trace, given by q
�1, followed by taking the top degree part. It has the

property str([x, x
0]Cl) = 0.

A Cli�ord module is a vector space S together with an algebra homomorphism
% : Cl(V ) ! End(S). If S is a Cli�ord module, one has a dual Cli�ord module given
by the dual space S⇤ with Cli�ord action %⇤(x) = %(x>)⇤.

Recall that Pin(V ) is the subgroup of Cl(V )⇥ generated by all v 2 V whose square
in the Cli�ord algebra is vv = ±1. It is a double cover of the orthogonal group O(V ),
where g 2 Pin(V ) takes v 2 V to (�1)|g|gvg

�1, using Cli�ord multiplication. The
norm homomorphism for the Pin group is the group homomorphism

(1) N : Pin(V ) ! {�1,+1}, N(g) = g
>

g = ±1.

Let {·, ·} be the graded Poisson bracket on ^V , given on generators by {v1, v2} =
B(v1, v2). Then ^2

V is a Lie algebra under the Poisson bracket, isomorphic to o(V )
in such a way that " 2 ^2

V corresponds to the linear map v 7! {", v}. The Lie algebra
pin(V ) ⇠= o(V ) is realized as the Lie subalgebra q(^2(V )) ⇢ Cl(V ).

A subspace E ⇢ V is called isotropic if E ⇢ E
? and Lagrangian if E = E

?.
The set of Lagrangian subspaces is non-empty if and only if the bilinear form is split.
If K = C, this just means that dim V is even, while for K = R this requires that
the bilinear form has signature (n, n). From now on, we will reserve the letter W for
a vector space with split bilinear form h·, ·i. We denote by Lag(W ) the Grassmann
manifold of Lagrangian subspaces of W . It carries a transitive action of the orthogonal
group O(W ).

Remark 1.1. — Suppose K = R, and identify W ⇠= R2n with the standard bilinear
form of signature (n, n). The group O(W ) ⇠= O(n, n) has maximal compact subgroup
O(n)⇥O(n). Already the subgroup O(n)⇥ {1} acts transitively on Lag(W ), and in
fact the action is free. It follows that Lag(W ) is di�eomorphic to O(n). Further details
may be found in [46].
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1.2. Pure spinors. — An irreducible module S over the Cli�ord algebra
Cl(W ) is called a spinor module. Any E 2 Lag(W ) defines a spinor module
S = Cl(W )/Cl(W )E. The choice of a Lagrangian complement F to E identifies
S = ^E

⇤, where the generators in E ⇢ W act by contraction and the generators
in F ⇢ W act by exterior multiplication. (Here F is identified with E

⇤, using the
pairing defined by h·, ·i.) The dual spinor module is S⇤ = ^E, with generators in E

acting by exterior multiplication and those in F by contraction.
For any non-zero element � 2 S of a spinor module, its null space

N� = {w 2 W | %(w)� = 0}

is easily seen to be isotropic. The element � 2 S is a pure spinor [17] provided N�

is Lagrangian. One can show that any Lagrangian subspace E 2 Lag(W ) arises in
this way: in fact, SE = {� 2 S| %(E)� = 0} is a one-dimensional subspace, with non-
zero elements given by the pure spinors defining E. Any spinor module S admits a
Z2-grading (unique up to parity inversion) compatible with the Cli�ord action. Pure
spinors always have a definite parity, either even or odd.

Example 1.2. — Let V be a vector space with inner product B. We denote by V the
same vector space with the opposite bilinear form �B. Then W = V � V is a vector
space with split bilinear form. The space S = Cl(V ) is a spinor module over Cl(W ) =
Cl(V )⌦Cl(V ), with Cli�ord action given on generators by %(v�v

0) = l
Cl(v)�r

Cl(v0).
The element 1 2 Cl(V ) is a pure spinor, with corresponding Lagrangian subspace the
diagonal V� ⇢ V � V .

1.3. The bilinear pairing of spinors. — For any two spinor modules S1,S2

over Cl(W ), the space HomCl(W )(S1,S2) of intertwining operators is one-dimensional.
Given a spinor module S, let

KS = HomCl(W )(S
⇤
,S)

be the canonical line. There is a bilinear pairing [17]

S⌦ S ! KS, �⌦  7! (�, )S,

defined by the isomorphism S⌦S ⇠= S⌦S⇤⌦HomCl(W )(S
⇤
,S) followed by the duality

pairing S⌦ S⇤ ! K. The pairing satisfies

(2) (%(x>)�, )S = (�, %(x) )S, x 2 Cl(W ),

and is characterized by this property up to a scalar. (2) implies the following invariance
property under the action of the group Pin(V ), involving the norm homomorphism
(1),

(g�, g )S = N(g)(�, )S, g 2 Pin(V ).

Theorem 1.3 (E. Cartan [17]). — Let S be a spinor modules over Cl(W ), and let �, 2
S be pure spinors. Then the corresponding Lagrangian subspaces N�, N are transverse
if and only if (�, )S 6= 0.
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A simple proof of this result is given in Chevalley’s book [19, III.2.4], see also [47,
Section 3.5].

Example 1.4. — Suppose V is a space with inner product B, and take S = Cl(V ) as
a spinor module over Cl(V � V ) (cf. Example 1.2). Then KS = det(V ), with bilinear
pairing on spinors given as

(3) (x, x
0)Cl(V ) = str(x>x

0) 2 det(V ).

Using the isomorphism q : ^(V ) ! Cl(V ) to identify S ⇠= ^(V ), the bilinear pairing
becomes

(4) (y, y
0)^(V ) = (y> ^ y

0)[top] 2 det(V ).

1.4. Contravariant spinors. — For any vector space V , the direct sum V :=
V � V

⇤ carries a split bilinear form given by the pairing between V and V
⇤:

(5) hw1, w2i = h↵1, v2i+ h↵2, v1i, wi = vi � ↵i 2 V.

Every vector space W with split bilinear form is of this form, by choosing a pair
of transverse Lagrangian subspaces V, V

0, and using the bilinear form to identify
V
0 = V

⇤. Then S = ^V
⇤, with Cli�ord action given on generators w = v � ↵ 2 V by

%(w) = ✏(↵) + ◆(v)

(where ✏(↵) = ↵ ^ ·), is a natural choice of spinor module for Cl(V). The restriction
of % to ^V

⇤ ⇢ Cl(V) is given by exterior multiplication, while the restriction to
^V ⇢ Cl(V) is given by contraction (1). The line KS = HomCl(V)(S

⇤
,S) is canonically

isomorphic to det(V ⇤) = ^top
V
⇤, and the bilinear pairing on spinors is simply

(�, )^(V ⇤) = (�> ^  )[top] 2 det(V ⇤),

similar to Example 1.4. Theorem 1.3 shows that if �, are pure spinors for transverse
Lagrangian subspaces, the pairing (�, )^(V ⇤) defines a volume form on V .

Remarks 1.5. — We mention the following two facts for later reference.
a. We have the identity

(�1)|�|(�(%(w)�)> ^  + �
> ^ (%(w) )) = ◆(v)(�> ^  ), w = v � ↵ 2 V,

which refines property (2) of the bilinear pairing.
b. One can also consider the covariant spinor module ^(V ), obtained by reversing

the roles of V and V
⇤. Suppose µ 2 det(V ) is non-zero, and let ? : ^ (V ⇤) !

^(V ) be the corresponding star operator, defined by ?� = ◆(�)µ. Let µ
⇤ be the

dual generator defined by ?((µ⇤)>) = 1 . Then ? is an isomorphism of Cl(V)-
modules. Furthermore, using µ, µ

⇤ to trivialize det(V ),det(V ⇤), the isomorphism
intertwines the bilinear pairings:

(�, )^(V ⇤) = (?�, ? )^(V ), �, 2 ^(V ⇤).

(1) We are using the convention that ◆ : ^(V )! End(^V ⇤) is the extension of the map v 7! ◆(v) as an
algebra homomorphism. Note that some authors use the extension as an algebra anti-homomorphism.
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Any 2-form ! 2 ^2
V
⇤ defines a pure spinor � = e

�!, with N� the graph of !:

Gr! = {v � ↵| v 2 V, ↵ = ◆(v)!}.

Note that, in accordance with Theorem 1.3, Gr! \V = {0} if and only if ! is non-
degenerate, if and only if (e!)[top] is non-zero. The most general pure spinor � 2 ^V

⇤

can be written in the form

(6) � = e
�!Q ^ ✓,

where !Q 2 ^2
Q
⇤ is a 2-form on a subspace Q ⇢ V and ✓ 2 det(Ann(Q))\{0} is a

volume form on V/Q. To write (6), we have chosen an extension of !Q to a 2-form
on V . (Clearly, � does not depend on this choice.) The corresponding Lagrangian
subspace is

N� = {v � ↵| v 2 Q, ↵|Q = ◆(v)!Q}.
The triple (Q,!Q, ✓) is uniquely determined by �, see e.g. [19, III.1.9]. A simple
consequence is that any pure spinor has definite parity, that is, � is either even or
odd depending on the parity of dim(V/Q). For any E 2 Lag(V) we define subspaces
ker(E) ⇢ ran(E) ⇢ V by

ker(E) = E \ V, ran(E) = prV(E),

where prV : V ! V is the projection along V
⇤. For any pure spinor �, written in the

form (6), we have ran(E�) = Q and ker(E�) = ker(!Q). In particular, �[top] is non-
zero if and only if ker(E�) = 0. Similarly, ran(E�) = V if and only if �[0] is non-zero,
if and only if � = e

�! for a global 2-form !.

1.5. Action of the orthogonal group. — Recall the identification ^2(W ) ⇠=
o(W ) (see Section 1.1). For any Lagrangian subspace E ⇢ W , the space ^2(E) is
embedded as an Abelian subalgebra of o(W ). The inclusion map exponentiates to an
injective group homomorphism,

(7) ^2 (E) ! O(W ), " 7! A
"
, A

"(v � ↵) = v � (↵� ◆(v)"),

with image the orthogonal transformations fixing E pointwise. The subgroup ^2(E)
acts freely and transitively on the subset of Lag(W ) of Lagrangian subspaces trans-
verse to E, which therefore becomes an a�ne space. Observe that A

" has a distin-
guished lift eA" = exp(") 2 Pin(W ) (exponential in the subalgebra ^(E) ⇢ Cl(W )).

For any spinor module S over Cl(W ), the induced representation of the group
Pin(W ) ⇢ Cl(W )⇥ preserves the set of pure spinors, and the map � 7! N� is equiv-
ariant. That is, if eA 2 Pin(W ) lifts A 2 O(W ), then

N
%(eA)�

= A(N�).

Consider again the case W = V. Then 2-forms ! 2 ^2
V
⇤ and bivectors ⇡ 2 ^2(V )

define orthogonal transformations

A
�!(v � ↵) = v � (↵+ ◆v!), A

�⇡(v � ↵) = (v + ◆↵⇡)� ↵.
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Their lifts act in the spin representation as follows:

(8) %( eA�!)� = e
�!

�, %( eA�⇡)� = e
�◆(⇡)

�.

1.6. Morphisms. — It is easy to see that the group of orthogonal transformations
of V preserving the ‘polarization’

(9) 0 �! V
⇤ �! V �! V �! 0

(i.e., taking the subspace V
⇤ to itself) is the semi-direct product ^2

V
⇤ o GL(V ) ⇢

O(V), where ! 2 ^2
V
⇤ acts as A

�! and GL(V ) acts in the natural way on V and by
the conjugate transpose on V

⇤.
More generally, for vector spaces V and V

0, we define the set of morphisms from
V to V0 [33] to be

Hom(V, V
0)⇥ ^2

V
⇤
,

with the following composition law:

(10) (�1,!1) � (�2,!2) = (�1 � �2, !2 + �⇤2!1).

Given w = v � ↵ 2 V and w
0 = v

0 � ↵
0 2 V0, we write

w ⇠(�,!) w
0 , v

0 = �(v), �⇤↵0 = ↵+ ◆v!.

In particular, taking V
0 = V and � = id we have w ⇠(id,!) w

0 if and only w
0 =

A
�!(w). The graph of a morphism (�,!) is the subspace

(11) �(�,!) = {(w0, w) 2 V0 ⇥ V | w ⇠(�,!) w
0}.

We have �(�1,!1)�(�2,!2) = �(�1,!1) � �(�2,!2) under composition of relations. The
morphisms (�,!) are ‘isometric’, in the sense that

(12) w1 ⇠(�,!) w
0
1, w2 ⇠(�,!) w

0
2 ) hw1, w2i = hw01, w02i.

Equivalently, �(�,!) is Lagrangian in V0 � V. We write

ker(�,!) = {w 2 V|w ⇠(�,!) 0},
ran(�,!) = {w0 2 V0| 9w 2 V : w ⇠(�,!) w

0}.

Thus ker(�,!) = {(v,�◆v!)| v 2 ker(�)} while ran(�,!) = ran(�)� (V 0)⇤.

Definition 1.6. — Let (�,!) : V ! V0 be a morphism, and E 2 Lag(V). We define the
forward image E

0 2 Lag(V0) to be the Lagrangian subspace

E
0 := �(�,!) � E = {w0 2 V0 |9w 2 E : w ⇠(�,!) w

0}.

Similarly, for F
0 2 Lag(V0) the backward image is defined as the Lagrangian subspace

F := F
0 � �(�,!) = {w 2 V | 9w

0 2 F
0 : w ⇠(�,!) w

0}.
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The proof that forward and backward images of Lagrangian subspaces are La-
grangian is parallel to the similar statement in the symplectic category of Guillemin-
Sternberg [30] (see also Weinstein [54]). It is simple to check that the composition
E
0 = �(�,!) �E is transverse if and only if ker(�,!)\E = {0}. Similarly, the compo-

sition F = F
0 � �(�,!) is transverse if and only if ran(�,!) + F

0 = V0 (equivalently, if
and only if ran(�) + ran(F 0) = V

0).

Remark 1.7. — As in the symplectic category [30, 54], one could consider morphisms
given by arbitrary Lagrangian relations, i.e. Lagrangian subspaces � ⇢ V0 � V (see
e.g. [16]). The graphs (11) of morphisms (�,!) are exactly those Lagrangian rela-
tions preserving the ‘polarization’ (9), in the sense that � � V

⇤ = (V 0)⇤ (where the
composition is transverse), see [33].

The (�,!)-relation may also be interpreted in terms of the spinor representations
of Cl(V) and Cl(V0):

Lemma 1.8. — Suppose (�,!) : V ! V0 is a morphism, and w 2 V, w
0 2 V0. Then

(13) w ⇠(�,!) w
0 , %(w)(e!�⇤ 0) = e

!�⇤(%(w0) 0),  
0 2 ^(V 0)⇤.

Proof. — This follows from (✏(↵)+◆v)(e!�⇤ 0) = e
!(✏(↵+◆v!)+◆v)�⇤ 0, for v�↵ 2

V.

Lemma 1.9. — Suppose (�,!) : V ! V0 is a morphism, and  0 is a pure spinor defin-
ing a Lagrangian subspace F

0. Then  = e
!�⇤ 0 is non-zero if and only if the com-

position F = F
0 � �(�,!) is transverse, and in that case it is a pure spinor defining

F .

Proof. — Suppose w 2 F , i.e. w ⇠(�,!) w
0 with w

0 2 F
0 = N 0 . Then w 2 N by

Equation (13). Thus F ⇢ N . For  6= 0, this is an equality since F is Lagrangian.

Example 1.10. — Suppose E,F ⇢ V are Lagrangian, with defining pure spinors �, .
Let E

> be the image of E under the map v�↵ 7! v� (�↵). Then �> is a pure spinor
defining E

>. Consider the diagonal inclusion diag : V ! V ⇥ V , so that diag⇤(�> ⌦
 ) = �

> ^  is just the wedge product. The wedge product is non-zero if and only
if the composition E

> ^ F := (E> ⇥ F ) � �diag is transverse. This is the case, for
instance, if E and F are transverse (since the top degree part of �> ^  is non-zero
in this case). Explicitly,

E
> ^ F = {v � ↵ |9v � ↵1 2 E, v � ↵2 2 F : ↵ = ↵2 � ↵1}.

Note that ran(E>^F ) = ran(E)\ran(F ), with 2-form the di�erence of the restrictions
of the 2-forms on ran(E) and ran(F ). Note also that (A�!(E))>^(A�!(F )) = E

>^F

for all ! 2 ^2
V
⇤.

This “wedge product” operation of Lagrangian subspaces was noticed independently
by Gualtieri, see [29].
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1.7. Dirac spaces. — A Dirac space is a pair (V,E), where V is a vector space
and E ⇢ V is a Lagrangian subspace. As remarked in Section 1.4, E determines a
subspace Q = ran(E) = prV (E) ⇢ V together with a 2-form !Q 2 ^2

Q
⇤,

(14) !Q(v, v
0) = h↵, v

0i = �h↵0, vi

for arbitrary lifts v � ↵, v
0 � ↵

0 2 E of v, v
0 2 Q. The kernel of !Q is the subspace

ker(E) = E \ V . Conversely, any subspace Q equipped with a 2-form !Q determines
a Lagrangian subspace E = {v� ↵ 2 V| v 2 Q, ↵|Q = !Q(v, ·)}. The gauge transfor-
mation A

�! by a 2-form ! 2 ^2
V
⇤ preserves Q, while !Q changes by the pull-back

of ! to Q.

Definition 1.11. — Let (V, E) and (V0, E0) be Dirac spaces. A Dirac morphism
(�,!) : (V,E) ! (V 0

, E
0) is a morphism (�,!) with E

0 = �(�,!) � E. It is called a
strong Dirac morphism(2) if this composition is transverse, i.e.,

ker(�,!) \ E = {0}.

Clearly, the composition of strong Dirac morphisms is again a strong Dirac
morphism. Note that the definition of a Dirac morphism (�,!) : (V,E) ! (V 0

, E
0)

amounts to the existence of a linear map ba : E
0 ! E, assigning to each w

0 2 E
0 an

element of E to which it is (�,!)-related:

(15) ba(w0) ⇠(�,!) w
0 8w0 2 E

0
.

The map ba is completely determined by its V -component

a = prV �ba : E
0 ! V,

since ba(v0 � ↵
0) = v � (�⇤↵0 + ◆v!) where v = a(v0 � ↵

0). Hence (�,!) is a Dirac
morphism if and only if there exists a map a : E

0 ! V , such that the corresponding
map ba takes values in E.

Lemma 1.12. — For a strong Dirac morphism (�,!) : (V,E) ! (V 0
, E

0), the map ba
satisfying (15) is unique. Its range is given by

(16) ran(ba) = E \ ker(�,!)?.

Proof. — The map ba associated to a Dirac morphism is unique up to addition of
elements in E\ker(�,!). Hence, it is unique precisely if the Dirac morphism is strong.
Its range consists of all w 2 E which are (�,!)-related to some element of w

0 2 E
0. By

(12), the subspace {w 2 V |9w0 2 V0 : w ⇠(�,!) w
0} is orthogonal to ker(�,!). Hence,

by a dimension count it coincides with ker(�,!)?. On the other hand, if w 2 E lies
in this subspace, it is automatic that w

0 2 E
0 since E

0 = �(�,!) � E.

(2) In the particular case when ! = 0, Dirac morphisms are also called forward Dirac maps [15, 16],
and strong Dirac morphisms are called Dirac realizations [14].
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Example 1.13. — Let E ⇢ V be a Lagrangian subspace, and let !Q be the correspond-
ing 2-form on Q = ran(E). Let ◆Q : Q ! V be the inclusion. Then (◆Q,!Q) : (Q, Q) !
(V,E) is a strong Dirac morphism. Equivalently (◆Q, 0) : (Q,Gr!Q) ! (V,E) is a
strong Dirac morphism. Here a(v � ↵) = ◆Q(v).

Example 1.14. — Suppose ⇡ 2 ^2
V and ⇡

0 2 ^2
V
0. Then (�, 0) : (V,Gr⇡) !

(V 0
,Gr⇡0) is a Dirac morphism if and only if �(⇡) = ⇡

0. It is automatically strong
(since ker(Gr⇡) = 0), with a(v0 � ↵

0) = ⇡
](�⇤↵0).

Proposition 1.15. — Suppose (�,!) : (V,E) ! (V 0
, E

0) is a Dirac morphism, and that
F
0 is a Lagrangian subspace transverse to E

0. Let � be a pure spinor defining E, and
 
0 a pure spinor defining F

0. Then  := e
!�⇤ 0 is non-zero, and is a pure spinor

defining the backward image F = F
0 � �(�,!). Moreover, the following are equivalent:

a. (�,!) is a strong Dirac morphism,
b. the backward image F is transverse to E,
c. The pairing (�, )^(V ⇤) 2 det(V ⇤) is non-zero, that is, it is a volume form on V .

Proof. — By (6), we may write  
0 = e

�!Q0
✓
0, where !Q0 is a 2-form on Q

0 =
ran(F 0), and ✓

0 2 ^top(V 0
/ ran(F 0))⇤. Identifying (V 0

/ ran(F 0))⇤ with the annihila-
tor of ran(F 0), this gives

 6= 0 , �⇤✓0 6= 0

, ker(�⇤) \ ann(ran(F 0)) = 0

, {w0 2 F
0| 0 ⇠(�,!) w

0} = {0}.

(Indeed, 0 ⇠(�,!) w
0 if and only if w

0 = 0� ↵0 with �⇤↵0 = {0}. Moreover w
0 2 F

0 =
(F 0)? if and only if ↵0 2 ann(ran(F 0)).) But the condition 0 ⇠(�,!) w

0 implies that
w
0 2 E

0. Since E
0 \F

0 = 0 it follows that {w0 2 F
0| 0 ⇠(�,!) w

0} = {0}, hence  6= 0.
Lemma 1.9 shows that it is a pure spinor defining the backward image F .

(a) , (b). By definition, E \ F consists of all w 2 E such that w ⇠(�,!) w
0 for

some w
0 2 F

0. Since E
0 = �(�,!) �E, this element w

0 also lies in E
0, and hence w

0 = 0.
Thus,

E \ F = E \ ker(�,!),

which is zero precisely if the Dirac morphism (�,!) is strong. (b) , (c) is immediate
from Theorem 1.3.

1.8. Lagrangian splittings. — Suppose W is a vector space with split bilinear
form. By a Lagrangian splitting of W we mean a direct sum decomposition W = E�F

into transverse Lagrangian subspaces.

Lemma 1.16. — Let W be a vector space with split bilinear form h·, ·i. There is a 1-1
correspondence between projection operators p 2 End(W ) with the property p+pt = 1,
and Lagrangian splittings W = E � F . (Here pt is the transpose with respect to the
inner product on W .)
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Proof. — A Lagrangian splitting of W into transverse Lagrangian subspaces is equiv-
alent to a projection operator whose kernel and range are isotropic. For any projec-
tion operator p = p2, the range ran(p) is isotropic if and only if ptp = 0, while
ker(p) = ran(1 � p) is isotropic if and only if (1 � p)t(1 � p) = 0. If both the kernel
and the range of p are isotropic, then

1� (p + pt) = (1� p)t(1� p)� ptp = 0.

Conversely, if p is a projection operator with p+ pt = 1, then ptp = (1� p)p = 0, and
similarly (1� p)t(1� p) = 0.

Again, we specialize to the case W = V. Suppose V = E � F is a Lagrangian
splitting, with associated projection operator p. The property p + pt = 1 implies that
there is a bivector ⇡ 2 ^2

V defined by

(17) ⇡
](↵) = �prV (p(↵)), ↵ 2 V

⇤
,

that is, ⇡(↵,�) = �hp(↵), �i = h↵, p(�)i, ↵,� 2 V
⇤. If {ei} is a basis of E and {f i}

is the dual basis of F , then

(18) ⇡ = 1
2 prV (ei) ^ prV (f i).

The graph of the bivector ⇡ was encountered in Example 1.10 above:

Proposition 1.17. — The graph of the bivector ⇡ is given by

(19) Gr⇡ = E
> ^ F.

In particular, ran(⇡]) = ran(E) \ ran(F ), and the symplectic 2-form on ran(⇡]) is
the di�erence of the restrictions of the 2-forms on ran(E), ran(F ). If �, are pure
spinors defining E,F , then

�
> ^  = e

�◆(⇡)(�> ^  )[top]
.

Proof. — Since both sides of (19) are Lagrangian subspaces, it su�ces to prove the
inclusion �. Let v � ↵ 2 E

> ^ F . Hence, there exist ↵1,↵2 with ↵ = ↵2 � ↵1 and
v�↵1 2 E, v�↵2 2 F . Thus v�↵1 = �p(↵), which implies that ⇡](↵) = �prV p(↵) =
v. The description of ran⇡] = ran(Gr⇡) is immediate from (19), see the discussion
in Example 1.10. The formula for �> ^  follows since both sides are pure spinors
defining the Lagrangian subspace Gr⇡, with the same top degree part.

Proposition 1.18. — Suppose V = E�F is a Lagrangian splitting, defining a bivector
⇡. If " 2 ^2

E, so that F" = A
�"

F is a new Lagrangian complement to E, the bivector
⇡" for the splitting E � F" is given by

⇡" = ⇡ + prV ("),

where prV : ^ E ! ^V is the algebra homomorphism extending the projection to V .
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Proof. — Let �, be pure spinors defining E, F . Then F" is defined by the pure
spinor  " = %(e�") . Using Remark 1.5(a), we obtain

�
> ^  " = �

> ^ %(e�") = e
�◆(prV ("))

�
> ^  .

The claim now follows from (1.17).

Proposition 1.19. — Let (�,!) : (V,E) ! (V 0
, E

0) be a strong Dirac morphism. Sup-
pose F

0 2 Lag(V0) is transverse to E
0, and F is its backward image under (�,!).

Then the bivectors for the Lagrangian splittings V = E � F and V0 = E
0 � F

0 are
�-related:

�(⇡) = ⇡
0
.

Proof. — To prove �(⇡) = ⇡
0, we have to show that (�, 0) : (V,Gr⇡) ! (V 0

,Gr⇡0) is
a Dirac morphism:

�(�,0) � (E> ^ F ) = (E0)> ^ F
0
.

Since both sides are Lagrangian, it su�ces to prove the inclusion �. If v
0 � ↵

0 2
(E0)> ^ F

0, then ↵
0 = ↵

0
2 � ↵

0
1, where v

0 � ↵
0
1 2 E

0 and v
0 � ↵

0
2 2 F

0. Since (�,!)
is a strong Dirac morphism for E,E

0, there is a unique element v � ↵1 2 E such
that v

0 = �(v), �⇤(↵01) = ↵1 + ◆v!. Let ↵2 = �⇤(↵02) � ◆v!. Then v � ↵2 2 F since
v � ↵2 ⇠(�,!) v

0 � ↵2. Hence v � �⇤(↵0) = v � (↵2 � ↵1) 2 E
> ^ F , proving that

v
0 � ↵

0 2 �(�,0) � (E> ^ F ).

We next explain how a splitting V0 = E
0 � F

0 may be ‘pulled back’ under a linear
map � : V ! V

0, given a bivector ⇡ 2 ^2
V and a linear map a : E

0 ! V satisfying
suitable compatibility relations.

Theorem 1.20. — Suppose that � : V ! V
0 is a linear map and ! 2 ^2

V
⇤ a 2-form.

Given a Lagrangian splitting V0 = E
0 � F

0, with associated projection p0 2 End(V0),
there is a 1-1 correspondence between
(i) Lagrangian subspaces E ⇢ V such that (�,!) : (V,E) ! (V 0

, E
0) is a strong Dirac

morphism, and
(ii) Bivectors ⇡ 2 ^2

V together with linear maps a : E
0 ! V , satisfying � � a =

prV 0
��
E0 and

(20) ⇡
] � �⇤ = �a � p0

��
(V 0)⇤

.

Under this correspondence, ⇡ is the bivector defined by the splitting V = E�F , where
F is the backward image of F

0, and a is the linear map defined by the strong Dirac
morphism (�,!) (see (15)).

Proof. — “(i) ) (ii)”. By Proposition 1.15, we know that the backward image F

of F
0 is transverse to E. Let p and p0 be the projections defined by the Lagrangian

splittings V = E � F and V0 = E
0 � F

0, and ⇡,⇡
0 the corresponding bivectors. As

in (15), the strong Dirac morphism (�,!) defines a linear map ba : E
0 ! E, taking
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w
0 2 E

0 to the unique element w 2 E such that w ⇠(�,!) w
0. We claim that for all

w 2 V, w
0 2 V

0,

(21) w ⇠(�,!) w
0 ) p(w) = ba(p0(w0)).

Indeed, let w1 = p(w) 2 E, so that w2 = w � w1 2 F . There is a (unique) element
w
0
2 2 F

0 with w2 ⇠(�,!) w
0
2, so let w

0
1 = w

0 � w
0
2. Since w2 ⇠(�,!) w

0
2, it follows that

w1 ⇠(�,!) w
0
1. Hence w

0
1 2 E

0 by definition of E
0. It follows that p(w) = w1 = ba(w01) =

ba(p0(w0)), as claimed. In particular, since �⇤↵0 ⇠(�,!) ↵
0 for ↵0 2 V

0, (21) implies that

⇡
](�⇤↵0) = �prV (p(�⇤↵0)) = �prV (ba(p0(↵0))) = �a(p0(↵0)), ↵

0 2 (V 0)⇤

where a = prV �ba.
“(i) ( (ii)”. Our aim is to construct the projection p with kernel F := F

0 � �(�,!)

and range E. We define p by the following equations, for v, v1, v2 2 V and ↵,↵1,↵2 2
V
⇤:

hp(v1), v2i = hp0(�(v1)),�(v2)i,
hp(↵1),↵2i = �⇡(↵1,↵2),

hp(v),↵i = ha⇤↵, �(v)i+ ⇡(◆v!,↵),

hp(↵), vi = h↵, vi � ha⇤↵, �(v)i � ⇡(◆v!,↵),

where a⇤ : V
⇤ ! (E0)⇤ = F

0 is the dual map to a. The linear map p defined in this
way has the property p + pt = 1. We claim that this linear map satisfies (21), where
ba : E

0 ! V is defined as follows,
ba(w0) = a(w0)� (�⇤ pr(V 0)⇤(w

0)� ◆a(w0)!).

For w = v� ◆v!, w
0 = �(v)�0, (21) is easily checked using the definition of p. Hence

it su�ces to consider the case w = �⇤↵0, w
0 = ↵

0 with ↵
0 2 (V 0)⇤. For all v 2 V ,

using the definition of p and � � a = prV 0 |E0 , i.e., a⇤ � �⇤ = (p0)t|(V 0)⇤ , we have:

hp(�⇤↵0), vi = h↵0,�(v)i � h(p0)t
↵
0
,�(v)i � ⇡(◆v!,�⇤↵0)

= hp0↵0,�(v)i+ ⇡(�⇤↵0, ◆v!)

hba(p0(↵0)), vi = h�⇤ pr(V 0)⇤ p0(↵0), vi � !(a(p0(↵0)), v)

= hp0↵0,�(v)i+ !(⇡](�⇤↵0), v)

which shows hp(�⇤↵0), vi = hba(p0(↵0)), vi. Similarly, for � 2 V
⇤ we have, by (20),

hp(�⇤↵0),�i = �h⇡](�⇤↵0),�i = hba(p0(↵0)),�i.
This proves (21). Equation (21) applies in particular to all elements w 2 F , since these
are by definition (�,!)-related to elements w

0 2 F
0. We hence see that p(w) = 0 for all

w 2 F . This proves that F ⇢ ker(p). Taking orthogonals, ran(pt) ⇢ F . In particular,
the range of pt is isotropic, i.e. ppt = 0, and hence p� p2 = p(1� p) = ppt = 0. Thus
p is a projection. As before, we see that ker p = ran(1� p) is isotropic as well, hence
F = ker(p) since F is maximal isotropic. It remains to show that the Lagrangian
subspace E := ran(p) satisfies �(�,!) �E ⇢ E

0. Suppose w ⇠(�,!) w
0 for some w 2 E.

By (21), we also have w = p(w) ⇠(�,!) p0(w0). Thus 0 ⇠(�,!) (w0�p0(w0)) = (p0)t(w0).
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Observe that ran(�) � �(a(E0)) = ran(E0). Hence ker(�⇤) ⇢ ann(ran(E0)). Since
E
0 \ F

0 = 0, it follows that

(22) ker(�⇤) \ ann(ran(F 0)) = 0.

Using Equation (22), the relation 0 ⇠(�,!) (p0)t(w0) 2 F
0 implies that (p0)t(w0) = 0,

i.e. w
0 2 E

0.

The proof shows that p|V = ba � p0 � �, whereas h := p|V ⇤ : V
⇤ ! E is given by

(23) h(↵) = (�⇡](↵))� (↵� �⇤ pr(V 0)⇤ a
⇤(↵)� ◆(⇡](↵))!).

It follows that E = ran(ba) + ran(h). Projecting to V , it follows in particular that

(24) ran(E) = ran(a) + ran(⇡]).

2. Pure spinors on manifolds

A pure spinor on a manifold is simply a di�erential form whose restriction to any
point is a pure spinor on the tangent space. The following discussion is carried out
in the category of real manifolds and C

1 vector bundles, but works equally well for
complex manifolds with holomorphic vector bundles.

2.1. Dirac structures. — For any manifold M , we denote by TM = TM � T
⇤
M

the direct sum of the tangent and cotangent bundles, with fiberwise inner product
h·, ·i. The fiberwise Cli�ord action defines a bundle map

(25) % : Cl(TM) ! End(^T
⇤
M).

The same symbol will denote the action of sections of Cl(TM) on sections of ^T
⇤
M ,

i.e. di�erential forms. The bilinear pairing will be denoted by

(26) (·, ·)^T⇤M : ^ T
⇤
M ⌦ ^T

⇤
M ! det(T ⇤M),

and the same notation will be used for sections. Thus (�,�
0)^T⇤M = (�> ^ �0)[top]

for di�erential forms �,�
0 2 �(^T

⇤
M) = ⌦(M). An almost Dirac structure on M is

a smooth Lagrangian subbundle E ⇢ TM . The pair (M, E) is called an almost Dirac
manifold. A pure spinor defining E is a nonvanishing di�erential form � 2 ⌦(M) such
that �|m is a pure spinor defining Em, for all m. Equivalently, � is a nonvanishing
section of the line bundle (^T

⇤
M)E . Thus E is globally represented by a pure spinor

if and only if the line bundle (^T
⇤
M)E is orientable. (Otherwise, one may still use

pure spinors to describe E locally.)
Let ⌘ 2 ⌦3(M) be a closed 3-form. A direct computation shows that the spinor

representation defines a bilinear bracket [[·, ·]]⌘ : �(TM) ⇥ �(TM) ! �(TM) by the
condition:

(27) %([[x1, x2]]⌘) = [[d + ⌘, %(x1)], %(x2)] ,  2 ⌦(M), xi 2 �(TM),
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where the brackets on the right-hand side are graded commutators of operators on
⌦(M). The bracket [[·, ·]]⌘ is the ⌘-twisted Courant bracket [35, 50]. (3) (For more on
the definition of [[·, ·]]⌘ as a ‘derived bracket’, see e.g. [9, 36, 48].) The operator on
⌦(M) defined by

[%(x1), [%(x2), [%(x3),d + ⌘]]]

is multiplication by a function

(28) ⌥(x1, x2, x3) = �h[[x3, x2]]⌘, x1i 2 C
1(M).

Given an almost Dirac structure E ⇢ TM , let ⌥E denote the restriction of the trilinear
form (x1, x2, x3) 7! ⌥(x1, x2, x3) to the sections of E. In contrast to ⌥, the trilinear
form ⌥E is tensorial and skew-symmetric. The resulting element

⌥E 2 �(^3
E
⇤)

is called the ⌘-twisted Courant tensor of E.

Definition 2.1. — A Dirac structure on a manifold M is an almost Dirac structure
E together with a closed 3-form ⌘ such that its ⌘-twisted Courant tensor vanishes:
⌥E = 0. The triple (M,E, ⌘) is called a Dirac manifold.

For E an almost Dirac structure one can always choose a complementary almost
Dirac structure F such that E�F = TM . (This is parallel to a well-known fact from
symplectic geometry [51, Proposition 8.2], with a similar proof.) As a vector bundle,
F ⇠= E

⇤ with pairing induced by the inner product on TM . We have:

Proposition 2.2. — Let E be an almost Dirac structure on M , and F be a complemen-
tary almost Dirac structure. Suppose E is represented by a pure spinor � 2 ⌦(M).
Then there is a unique section �

E 2 �(E⇤) (depending on �) such that

(d + ⌘)� = %(�⌥E + �
E)�.

Here we view ⌥E and �E as sections of ^F ⇢ Cl(TM).

Proof. — Choose a Lagrangian subbundle F complementary to E. Since

�(^F ) ! ⌦(M), x 7! %(x)�

is an isomorphism, there is a unique odd element x 2 �(^F ) ⇢ �(TM) such that
(d+ ⌘)� = %(x)�. To see that x has filtration degree 3, let x1, x2, x3 be three sections
of E. Since %(xi)� = 0, it follows that

%([x1, [x2, [x3, x]]])� = [[[%(x1), [%(x2), [%(x3), %(x)]]]� = %(x1x2x3)%(x)�

= %(x1x2x3)(d + ⌘)� = [[[%(x1), [%(x2), [%(x3),d + ⌘]]]� = ⌥E(x1, x2, x3)�,

(3) This definition agrees with the non-skew symmetric version of the Courant bracket [40, 50], called
the Dorfman bracket in [28]; the ⌘-term in the bracket, however, di�ers from the one in [50] by a
sign.
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proving that the Cli�ord commutator [x1, [x2, [x3, x]]] = ◆(x1)◆(x2)◆(x3)x (contraction
of x 2 �(^(E⇤)) with sections of E) is a scalar. This implies that x has filtration degree
3, and that the degree 3 part of x is �⌥E .

We hence see that an almost Dirac structure E ⇢ TM is integrable if and only if

(d + ⌘)� 2 %(TM)�,

for any pure spinor � 2 ⌦(M) (locally) representing E. The characterization of the
integrability condition ⌥E = 0 in terms of pure spinors was observed by Gualtieri
[28], see also [9].

Examples of Dirac structures (for a given ⌘) include graphs of 2-forms ! 2 ⌦(M)
with d! = ⌘, as well as graphs of bivector fields ⇡ 2 X2(M) defining ⌘-twisted Poisson
structures [35, 50] in the sense that 1

2 [⇡,⇡]Sch + ⇡
](⌘) = 0. One may also consider

complex Dirac structures on M , given by complex Lagrangian subbundles E ⇢ TM
C

satisfying ⌥E = 0. The defining pure spinors are complex-valued di�erential forms �
on M , given as nonvanishing sections of (^T

⇤
M

C)E . If E is a Dirac structure, then
its image E

c under the complex conjugation mapping is a Dirac structure defined by
the complex conjugate spinor �c. E is called a generalized complex structure [28, 32]
if E \ E

c = 0.
Suppose E ⇢ TM is a Dirac structure. The vanishing of the Courant tensor implies

that E is a Lie algebroid, with anchor given by the natural projection on TM , and
Lie bracket [·, ·]E on �(E) given by the restriction of the Courant bracket [[·, ·]]⌘. From
the theory of Lie algebroids, it follows that the generalized distribution ran(E) is
integrable (in the sense of Sussmann) [24]. The generalized foliation having ran(E)
as its tangent distribution is called the Dirac foliation. For any leaf Q ⇢ M of the
Dirac foliation, the collection of 2-forms on TmQ (defined as in (14)) defines a smooth
2-form !Q 2 ⌦2(Q) with

d!Q = i
⇤
Q⌘,

where iQ : Q ! M is the inclusion (for a proof, see e.g. [47, Proposition 6.10]). If E is
the graph of a Poisson bivector ⇡ (with ⌘ = 0), this is the usual symplectic foliation.

2.2. Dirac morphisms. — Suppose � : M ! M
0 is a smooth map, and ! 2 ⌦2(M)

is a 2-form. As in the linear case, we view the pair (�,!) as a ‘morphism’, with
composition rule (10). Given sections x 2 �(TM) and x

0 2 �(TM
0), we will write

x ⇠(�,!) x
0 , 8m 2 M : xm ⇠((d�)m,!m) x

0
�(m).

In terms of the spinor representation, this is equivalent to the condition

e
!�⇤(%(x0) 0) = %(x)(e!�⇤( 0)),  

0 2 ⌦(M 0).

Using the definition (27) of the Courant bracket as a derived bracket, one obtains:

Lemma 2.3 (Stienon-Xu). — [53, Lemma 2.2] Let M, M
0 be manifolds with closed 3-

forms ⌘, ⌘0, � : M ! M
0 a smooth map, and ! 2 ⌦2(M) a 2-form such that �⇤⌘0 =
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⌘ + d!. Then

xi ⇠(�,!) x
0
i, i = 1, 2 ) [[x1, x2]]⌘ ⇠(�,!) [[x01, x

0
2]]⌘0 .

That is, the morphism (�,!) : M ! M
0 intertwines both the inner product and

the (⌘- resp. ⌘0-twisted) Courant brackets on TM and TM
0.

Definition 2.4. — a. Suppose (M, E) and (M 0
, E

0) are almost Dirac manifolds.
A morphism (�,!) : M ! M

0 is called a (strong) almost Dirac morphism
(�,!) : (M,E) ! (M,E

0) if ((d�)m,!m) : (TmM, Em) ! (T�(m)M
0
, E

0
�(m)) is a

linear (strong) Dirac morphism for all m 2 M .
b. Suppose (M,E, ⌘) and (M 0

, E
0
, ⌘
0) are Dirac manifolds. A (strong) almost

Dirac morphism (�,!) : M ! M
0 is called a (strong) Dirac morphism

(�,!) : (M,E, ⌘) ! (M 0
, E

0
, ⌘
0) if ⌘ + d! = �⇤⌘0.

For ! = 0, strong Dirac morphisms coincide with the Dirac realizations of [14].

Example 2.5. — If (M, E, ⌘) is a Dirac manifold, then so is (M,A
�!(E), ⌘ + d!),

for any 2-form !, and (idM ,!) is a Dirac morphism between the two. The Dirac
structures E and A

�!(E) are isomorphic as Lie algebroids; in particular, they define
the same Dirac foliation. However, the 2-forms on the leaves of this foliation change
by the pull-back of !.

Example 2.6. — Any manifold M can be trivially viewed as a Dirac manifold M =
(M,TM, 0). A strong Dirac morphism from M to pt is then the same thing as a
symplectic 2-form on M . More generally, strong Dirac morphisms M ! N are (special
types of) symplectic fibrations.

Example 2.7. — If (M, E, ⌘) is a Dirac manifold, and Q ⇢ M is a leaf of the as-
sociated foliation of M , then the inclusion map defines a strong Dirac morphism
(◆Q,!Q) : (Q, TQ, 0) ! (M, E, ⌘).

From the linear case, it follows that a strong almost Dirac morphism gives rise to
a bundle map

ba : �⇤E0 ! E.

This is indeed a smooth bundle map: the projection TM��⇤TM
0 ! �⇤TM

0 restricts
to a bundle isomorphism ��\(E��⇤TM

0) ! �⇤E0, and ba is the inverse of this bundle
isomorphism followed by the projection to TM . We let

(29) a = prTM �ba : �⇤E0 ! ran(E) ⇢ TM

Proposition 2.8. — Suppose (�,!) : (M, E, ⌘) ! (M 0
, E

0
, ⌘
0) is a strong Dirac mor-

phism. Then the induced bundle map ba : �⇤E0 ! E is a comorphism of Lie algebroids
[43]. That is, it is compatible with the anchor maps in the sense that

d� � a = pr�⇤TM 0 |�⇤E0 ,
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and the induced map on sections

ba : �(E0) ! �(E), (ba(x0))m = ba(x0�(m))

preserves brackets.

Proof. — Compatibility with the anchor is obvious. If x
0
1, x

0
2 are section of E

0, then
(using Lemma 2.3) both ba(�⇤[x01, x02]E0) and [ba(�⇤x01),ba(�⇤x02)]E are sections of E

which are (�,!)-related to [x01, x
0
2]E0 . Hence their di�erence is (�,!)-related to 0.

Since (�,!) is a strong Dirac morphism, it follows that the di�erence is in fact 0.

The second part of Proposition 2.8 shows that (29) defines a Lie algebra homo-
morphism a : �(E0) ! X(M). That is, the strong Dirac morphism defines an ‘action’
of the Lie algebroid E

0 on the manifold M .

2.3. Bivector fields. — From the linear theory, we see that any Lagrangian split-
ting TM = E � F defines a bivector field ⇡ on M . Furthermore,

e
�◆(⇡)(�> ^  )[top] = �

> ^  

for any pure spinors �, defining E,F . Recall that (�> ^ )[top] is a volume form on
M .

For an arbitrary volume form µ on M , and any bivector field ⇡ 2 X2(M), one has
the formula [26]

(30) d(e�◆(⇡)
µ) = ◆

�
� 1

2 [⇡,⇡]Sch + X⇡

�
(e�◆(⇡)

µ).

Here [·, ·]Sch is the Schouten bracket on multivector fields, and X⇡ is the vector field
on M defined by d◆(⇡)µ = �◆(X⇡)µ. If ⇡ is a Poisson bivector field, then X⇡ 2 X(M)
is called the modular vector field of ⇡ with respect to the volume form µ [56]. (See
[37] for modular vector fields for twisted Poisson structures.)

Theorem 2.9. — Let ⇡ be the bivector field defined by the Lagrangian splitting TM =
E � F . Let ⌥E 2 �(^3

F ) and ⌥F 2 �(^3
E) be the Courant tensor fields of E,F .

a) The Schouten bracket of ⇡ with itself is given by the formula
1
2 [⇡,⇡]Sch = prTM (⌥E) + prTM (⌥F ),

where prTM : ^E ! ^TM is the algebra homomorphism extending the projection
E ! TM , and similarly for prTM : ^ F ! ^TM .

b) Given pure spinors �, 2 ⌦(M) defining E,F , let �E 2 �(F ) and �F 2 �(E) be
the unique sections such that

(d + ⌘)� = %(�⌥E + �
E)�, (d + ⌘) = %(�⌥F + �

F ) .

Then the vector field X⇡ defined using the volume form µ = (�>^ )[top] is given
by

X⇡ = prTM (�F )� prTM (�E).
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Proof. — We may assume that E,F are globally defined by pure spinors �, . Using
Remark 1.5(a), we have

d(�> ^  ) = (�1)|�|
�
�
> ^ d + (d�)> ^  

�

= (�1)|�|
�
�
> ^ (d + ⌘) + ((d + ⌘)�)> ^  

�

= (�1)|�|
�
�
> ^ (%(�⌥F + �

F ) ) + (%(�⌥E + �
E)�)> ^  

�

= ◆(prTM (�⌥F + �
F ) + prTM (�⌥E � �

E))(�> ^  ).

On the other hand, �> ^  = e
�◆(⇡)

µ gives, by (30),

d(�> ^  ) = ◆(� 1
2 [⇡,⇡]Sch + X⇡)(�

> ^  ).

Applying the star operator ? for µ, and using that ?(�> ^  ) is invertible, it follows
that

prTM (�⌥F + �
F ) + prTM (�⌥E � �

E) = � 1
2 [⇡,⇡]Sch + X⇡.

As a special case, if both E,F are Dirac structures (i.e. integrable), then the
corresponding bivector field ⇡ satisfies [⇡,⇡]Sch = 0, i.e., it is a Poisson structure.
The symplectic leaves of ⇡ are the intersections of the leaves of the Dirac structures
E with those of F . The fact that transverse Dirac structures (or equivalently Lie
bialgebroids) define Poisson structures goes back to Mackenzie-Xu [44].

Proposition 2.10. — Suppose (�,!) : (M, E) ! (M 0
, E

0) is an almost Dirac mor-
phism, and let F

0 ⇢ TM
0 be a Lagrangian subbundle complementary to E

0. Then
there is a smooth Lagrangian subbundle F ⇢ TM complementary to E, with the
property that for all m 2 M , Fm is the backward image of F

0
�(m) under (dm�,!m).

Furthermore:
a. The bivector fields ⇡,⇡

0 defined by the splittings TM = E�F and TM
0 = E

0�F
0

satisfy
⇡ ⇠� ⇡

0
,

i.e. (d�)m⇡m = ⇡
0
�(m) for all m 2 M .

b. The Courant tensors ⌥F 2 �(^3
E) and ⌥F 0 2 �(^3

E
0) are related by

⌥F = ba(�⇤⌥F 0
),

using the extension of ba : �(�⇤E0) ! �(E) to the exterior algebras.
c. The bivector field ⇡ satisfies

1
2 [⇡,⇡]Sch = a(�⇤⌥F 0

) + prTM (⌥E),

using the extension of a : �(�⇤E0) ! �(TM) to the exterior algebras.
d.

⇡
] � �⇤ = �a � p0 : T

⇤
M
0 ! TM,

where p0 : TM
0 ! E

0 is the projection along F
0.
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e. If  0 is a pure spinor defining F
0, and  = e

!�⇤ 0 the corresponding pure spinor
defining F , the sections �F

, �
F 0

are related by �F = ba(�⇤�F ), that is,

�
F ⇠(�,!) �

F 0
.

Proof. — Let  0 2 ⌦(M 0) be a pure spinor (locally) representing F
0. From the linear

case (Proposition 1.15), it follows that  = e
!�⇤ 0 is non-zero everywhere, and is a

pure spinor representing a Lagrangian subbundle F ⇢ TM transverse to E. Now (a)
follows from the linear case, see Proposition 1.19. We next verify (b), at any given
point m 2 M . Let m

0 = �(m). Given (xi)m 2 Fm for i = 1, 2, 3, let (x0i)m0 2 F
0
m0

with
(xi)m ⇠((d�)m, !m) (x0i)m0 .

Choose sections xi 2 �(F ), x
0
i 2 �(F 0) extending the given values at m, m

0. We have
to show ⌥F (x1, x2, x3)|m = ⌥F 0

(x01, x
0
2, x

0
3)|m0 . We calculate:

⌥F (x1, x2, x3)  = %(x1x2x3) (d + ⌘)(e!�⇤ 0) = %(x1x2x3) e
!�⇤(d + ⌘

0) 0

On the other hand,

(�⇤⌥F 0
(x01, x

0
2, x

0
3))  = e

!�⇤⌥F 0
(x01, x

0
2, x

0
3)  

0 = e
!�⇤%(x01x

0
2x
0
3) (d + ⌘

0) 0

These two expressions coincide at m, proving (b). Theorem 2.9 together with (b)
implies the statement (c). Part (d) follows from Proposition 1.20. Part (e) follows
from (b) together with the definition of �F , �F 0

.

Part (b) shows in particular that if F
0 is a Dirac structure, transverse to E

0, then
its backward image is again a Dirac structure.

2.4. Dirac cohomology. — In this Section, we will discuss certain cohomology
groups associated with any pair of transverse Dirac structures E,F ⇢ TM and a
given volume form µ on M . We assume that E,F are given by pure spinors �, ,
normalized by the condition (�, )^T⇤M = µ. Let �E 2 �(F ),�F 2 �(E) be sections
defined as in Theorem 2.9, and denote

� = �
F � �

E 2 �(TM).

Replacing �, with �̃ = f�,  ̃ = f
�1
 , for f a nonvanishing function on M , this

section changes by a closed 1-form:

(31) �̃ = � � f
�1df.

Indeed, letting let p be the projection from TM to E along F we have �̃F = �
F �

p(f�1df), �̃
E = �

E + (I � p)(f�1df).
We define the Dirac cohomology groups associated to a triple (E,F, µ) as the co-

homology of the operators

/@+ = d + ⌘ + %(�), /@� = d + ⌘ � %(�)

on ⌦(M), restricted to the subspace on which they square to zero:

(32) H±(E,F, µ) := ker(/@±)/ ker(/@±) \ im(/@±) ⌘ H(ker /@
2
±, /@±).
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The pure spinors �, define classes in H+(E,F, µ) and H�(E,F, µ), respectively, since
/@+� = 0 and /@� = 0. The Dirac cohomology groups are independent of the choice of
defining spinors �, : Changing the pure spinors by a function f as above, (31) shows
that the operators /@± change by conjugation, /̃@+ = f/@+f

�1 and /̃@� = f
�1

/@�f .

Example 2.11. — Let M be a manifold with volume form µ. Consider transverse Dirac
structures E = Gr! for some closed 2-form !, and F = T

⇤
M . In this case, one can

choose � = e
�!

, = µ. We obtain ⌘ = 0, � = 0, /@± = d, and the Dirac cohomology
groups H±(TM,T

⇤
M,µ) coincide with the de Rham cohomology of M .

Example 2.12. — Let M be a manifold with volume form µ and with a Poisson bivec-
tor ⇡. Let E = TM,F = Gr⇡. The choice � = 1, = e

�◆(⇡)
µ gives /@� = d � ◆(X⇡),

where X⇡ is the modular vector field. The operator /@
2
� = � L(X⇡) vanishes on dif-

ferential forms invariant under the flow generated by X⇡. The Dirac cohomology
H�(TM,Gr⇡, µ) = H(⌦(M)X⇡ , d � ◆(X⇡)) resembles the Cartan model of equivari-
ant cohomology for circle actions.

Let ⇡ be the Poisson structure defined by the splitting TM = E � F , and X⇡ =
prTM � the modular vector field. Let

(33) H⇡(M) = H(⌦(M)X⇡ , d� ◆(X⇡)).

By Remark 1.5(a) there is a pairing

H+(E,F, µ)⌦H�(E,F, µ) ! H⇡(M)

given on representatives by the formula u⌦ v 7! u
> ^ v. The pure spinors �, define

cohomology classes [�] 2 H+(E,F, µ), [ ] 2 H�(E,F, µ), and [�> ^  ] 2 H⇡(M). If
M is compact, the integration map

R
M : ⌦(M)X⇡ ! R descends to H⇡(M). Hence

Z

M
�
> ^  =

Z

M
µ > 0

shows that the cohomology classes [�] 2 H+(E,F, µ), [ ] 2 H�(E,F, µ) are both
nonzero.

There is the following version of functoriality with respect to strong Dirac mor-
phisms for Dirac cohomology.

Proposition 2.13. — Let (�,!) : (M,E, ⌘) ! (M 0
, E

0
, ⌘
0) be a strong Dirac morphism,

and let F
0 ⇢ TM

0 be a Dirac structure transverse to E
0, with backward image F . As-

sume that E,E
0 are defined by pure spinors �,�

0 such that the corresponding sections
�

E and �E0
vanish. Let  0 and  = e

!�⇤ 0 be pure spinors defining F
0 and F , and

let µ
0 and µ be the resulting volume forms. Then e

! � �⇤ intertwines /@� and /@
0
�,

and hence induces a map in Dirac cohomology e
!�⇤ : H�(E0, F 0, µ0) ! H�(E,F, µ)

taking [ 0] to [ ].

Proof. — Since �E
,�

E0
vanish we have � = �

F and �
0 = �

F 0
. By Proposition 2.10

(e), the map e
!�⇤ intertwines the Cli�ord actions of �F and �F 0

, while on the other
hand this map also intertwines d+⌘ with d+⌘

0. Hence it intertwines /@� with /@
0
�.
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2.5. Classical dynamical Yang-Baxter equation. — The following result de-
scribes the Courant tensor of Lagrangian subbundles defined by elements in �(^2

E).

Proposition 2.14 (Liu-Weinstein-Xu [40]). — Let TM = E � F be a splitting into La-
grangian subbundles, where both E,F are integrable relative to the closed 3-form
⌘, and let us identify F

⇤ = E. Given a section " 2 �(^2
E), defining a section

A
�" 2 �(O(TM)), let F" = A

�"(F ) be the Lagrangian subbundle spanned by the
sections x + ◆x" for x 2 �(F ) = �(E⇤). Then the Courant tensor ⌥" 2 �(^3

E) of F"

is given by the formula:
⌥" = dF "+ 1

2 [", "]E .

Here [·, ·]E is the Lie algebroid bracket of E, and dF : �(^•F ⇤) ! �(^•+1
F
⇤) is the

Lie algebroid di�erential of F .

Remark 2.15. — The result in [40] is stated only for ⌘ = 0. However, since the state-
ment is local, one may use a gauge transformation by a local primitive of ⌘ to reduce
to this case.

We are interested in the following special case: Let M = g⇤, with its standard linear
Poisson structure ⇡g⇤ 2 �(^2

Tg⇤) = C
1(g⇤)⌦^2g⇤, and put F = Tg⇤ and E = Gr⇡⇤g .

The bundle E is spanned by sections A0(⇠) � h✓0, ⇠i for ⇠ 2 g, where A0(⇠) is the
generating vector fields for the co-adjoint action, and h✓0, ⇠i 2 ⌦1(g⇤) is the ‘constant’
1-form defined by ⇠. The trivialization E = g⇤⇥g defined by these sections identifies E

with the action algebroid for the co-adjoint action: The bracket on �(E) = C
1(g⇤, g)

is defined by the Lie bracket on g via the Leibniz rule, and the anchor map is given
by the action map A0 : g ! Tg⇤. For " 2 �(^2

E), the bracket [", "]E is given by the
Schouten bracket on ^g. On the other hand we may view " 2 C

1(g⇤,^2g) as a 2-form
on g⇤, and then d" = dF " is just its exterior di�erential. The resulting equation reads

d"+ 1
2 [", "]Sch = ⌥".

If ⌥" is a multiple of the structure constants tensor, this is a special case of the
classical dynamical Yang-Baxter equation (CDYBE) [5, 25]. We will see below how
a solution arises from the Cartan-Dirac structure on G.

For more information on the relation between Dirac structures and the CDYBE,
see the work of Liu-Xu [41] and Bangoura-Kosmann-Schwarzbach [10].

3. Dirac structures on Lie groups

In this Section, we will study Dirac structures over Lie groups G with bi-invariant
pseudo-Riemannian metrics. This will be based on the existence of a canonical iso-
morphism

TG ⇠= G⇥ (g� g)
preserving scalar products and Courant brackets. In the subsequent section, we will
describe a corresponding isomorphism of spinor modules.
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3.1. The isomorphism TG ⇠= G⇥(g�g). — Let G be a Lie group (not necessarily
connected), and let g be its Lie algebra. We denote by ⇠L

, ⇠
R 2 X(G) the left-, right-

invariant vector fields on G which are equal to ⇠ 2 g = TeG at the group unit. Let
✓

L
, ✓

R 2 ⌦1(G)⌦ g be the left-, right-Maurer-Cartan forms, i.e. ◆(⇠L)✓L = ◆(⇠R)✓R =
⇠. They are related by ✓R

g = Adg(✓L
g ), for all g 2 G. The adjoint action of G on itself

will be denoted Aad (or simply A, if there is no risk of confusion). The corresponding
infinitesimal action is given by the vector fields

Aad(⇠) = ⇠
L � ⇠

R
.

Suppose that the Lie algebra g of G carries an invariant inner product. By this we
mean an Ad-invariant, non-degenerate symmetric bilinear form B, not necessarily
positive definite. Equivalently, B defines a bi-invariant pseudo-Riemannian metric on
G. Given B, we can define the bi-invariant 3-form ⌘ 2 ⌦3(G),

⌘ :=
1

12
B(✓L

, [✓L
, ✓

L])

Since ⌘ is bi-invariant, it is closed, and so it defines an ⌘-twisted Courant bracket
[[·, ·]]⌘ on G. The conjugation action Aad extends to an action of D = G⇥G on G, by

(34) A : D ! Di↵(G), A(a, a
0) = la0 � ra�1 ,

where la(g) = ag and ra(g) = ga. The corresponding infinitesimal action

A : d! X(G), A(⇠, ⇠0) = ⇠
L � (⇠0)R

lifts to a map

(35) s : d! �(TG), s(⇠, ⇠0) = sL(⇠) + sR(⇠0),

where
sL(⇠) = ⇠

L � 1
2B(✓L

, ⇠), sR(⇠0) = �(⇠0)R � 1
2B(✓R

, ⇠
0).

Let us equip d with the bilinear form Bd given by +B on the first g-summand and
�B on the second g-summand. Thus d = g � g is an example of a Lie algebra with
invariant split bilinear form.

Proposition 3.1. — The map s : d! �(TG) is D-equivariant, and satisfies

(36) hs(⇣1), s(⇣2)i = Bd(⇣1, ⇣2), [[s(⇣1), s(⇣2)]]⌘ = s([⇣1, ⇣2])

for all ⇣1, ⇣2 2 d. Furthermore,

(37) ⌥(s(⇣1), s(⇣2), s(⇣3)) = Bd

�
⇣1, [⇣2, ⇣3]

�

for all ⇣i 2 d, where ⌥ : �(TG)⌦3 ! C
1(G) was defined in (28).

Proof. — The D-equivariance of the map s is clear. Let % be the Cli�ord action of
TG on ^T

⇤
G. We have [%(sL(⇠)),d+⌘] = L(⇠L) and [%(sR(⇠)),d+⌘] = � L(⇠R), thus

[d + ⌘, %(s(⇣))] = L(A(⇣))
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for all ⇣ 2 d. This proves the second Equation in (36), while the first Equation is
obvious. Finally, (37) follows from (36) and the definition of ⌥. Hence,

%([[s(⇣1), s(⇣2)]]⌘) = [[d + ⌘, %(s(⇣1)], %(s(⇣2))] = %(s([⇣1, ⇣2])).

Put di�erently, the map s defines a D-equivariant isometric isomorphism

(38) TG ⇠= G⇥ d,

identifying the ⌘-twisted Courant bracket on TG with the unique Courant bracket on
G⇥ d which agrees with the Lie bracket on d on constant sections.

3.2. ⌘-twisted Dirac structures on G. — Using (38), we see that any Lagrangian
subspace s ⇢ d defines a Lagrangian subbundle

E
s ⇠= G⇥ s,

spanned by the sections s(⇣) with ⇣ 2 s. The Lagrangian subbundle E
s is invariant

under the action of the subgroup of D preserving s. Let ⌥s 2 ^3s⇤ be defined as

(39) ⌥s(⇣1, ⇣2, ⇣3) = Bd

�
⇣1, [⇣2, ⇣3]

�
, ⇣i 2 s.

By (37), the Courant tensor ⌥Es is just ⌥s, using the sections s to identify (Es)⇤ ⇠=
G⇥ s⇤. In particular, we see that s defines a Dirac structure if and only if s is a Lie
subalgebra. To summarize:

Any Lagrangian subalgebra s ⇢ d defines an ⌘-twisted Dirac structure E
s.

The Dirac structure E
s is invariant under the action of any Lie subgroup normal-

izing s, and in particular under the action of the subgroup S ⇢ D integrating s. As a
Lie algebroid, E

s is just the action algebroid for this S-action. In particular, its leaves
are just the components of the S-orbits on G. The 2-form on the orbit O = A(S)g of
an element g 2 G is the S-invariant form ! O given as follows: for ⇣i = (⇠i, ⇠0i) 2 s,

! O(A(⇣1), A(⇣2))|g = 1
2 hB(✓L

, ⇠1) + B(✓R
, ⇠
0
1), ⇠

L
2 � (⇠02)

Ri
= 1

2B(⇠2 �Adg�1 ⇠
0
2, ⇠1 + Adg�1 ⇠

0
1)

= 1
2 (B(Adg ⇠2, ⇠

0
1)�B(⇠02,Adg ⇠1)),

(40)

using B(⇠1, ⇠2) = B(⇠01, ⇠
0
2) since s is Lagrangian. By the general theory from Section

2.1, these 2-forms satisfy d! O = ◆
⇤
O⌘, where ◆ O : O ! G is the inclusion. The kernel

of ! O equals ker(Es), i.e. it is spanned by all A(⇣) such that the T
⇤
G-component of

s(⇣) is zero:

(41) ker(! O|g) = {A(⇣)|g | ⇣ = (⇠, ⇠0) 2 s, Adg ⇠ + ⇠
0 = 0}.

Remark 3.2. — For g a complex semi-simple Lie algebra, a complete classification of
Lagrangian subalgebras of d was obtained by Karolinsky [34]. The Poisson geometry
of the variety of Lagrangian subalgebras of d was studied in detail by Evens–Lu [27].
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Remark 3.3. — If d = s1 � s2 is a splitting into two Lagrangian subalgebras (i.e.,
(d, s1, s2) is a Manin triple), one obtains two transverse Dirac structures E

s1 , E
s2 .

As discussed after Theorem 2.9, such a pair of transverse Dirac structures gives rise
to a Poisson structure on G, with symplectic leaves the intersections of the orbits
of S1, S2. For g a complex semi-simple Lie algebra, the Manin triples were classified
by Delorme [22]. See Evens–Lu [27] for a wealth of information regarding Poisson
structures obtained from Lagrangian subalgebras. An example will be worked out in
Section 3.6 below.

Remark 3.4. — We may also use this construction to obtain generalized complex (and
Kähler) structures [28] on even-dimensional real Lie groups K, with complexification
G = K

C. Indeed, let s ⇢ d = g� g be a Lagrangian subalgebra such that

(42) s \ sc = {0},

where sc denotes the complex conjugate of s. Then the associated Dirac structure
E
s ⇢ TG satisfies E

s \ (Es)c = {0} along K. Hence it defines a generalized complex
structure on K. For a concrete example, suppose K is compact, and let g = n��t�n+
be a triangular decomposition. (That is, t = tCK is the complexification of a maximal
Abelian subalgebra, and n+, n� are the sums of the positive, negative root spaces).
Then

s = (n+ � 0)� l� (0� n�) ⇢ d = g� ḡ

has the desired property, for any Lagrangian subspace l ⇢ t � t̄ with l \ lc = {0}
(i.e., l is a linear generalized complex structure on the vector space tK). The general-
ized complex structures on Lie groups considered in Gualtieri [28, Example 6.39] are
examples of this construction.

3.3. The Cartan-Dirac structure. — The simplest example of a Lagrangian
subalgebra is the diagonal s = g� ,! d, with corresponding S the diagonal subgroup
G� ⇢ D. The associated Dirac structure EG is spanned by the sections e(⇠) := s(⇠, ⇠):

(43) EG = span {e(⇠) | ⇠ 2 g} ⇢ TG,

e(⇠) = (⇠L � ⇠
R
, B( ✓

L+✓R

2 , ⇠)
�
.

We call EG the Cartan-Dirac structure, see [15, 39, 50]. This Dirac structure was
introduced independently by Alekseev, äevera, and Strobl in the mid-1990’s. The
G�

⇠= G-action is just the action by conjugation on G, hence the Dirac foliation is
given by the conjugacy classes C ⇢ G. The formula (40) specializes to the 2-form on
conjugacy classes introduced in [31]:

! C (Aad(⇠1), Aad(⇠2)) = � 1
2B((Adg �Adg�1)⇠1, ⇠2),

The kernel at g 2 C is the span of vector fields Aad(⇠)|g with Adg ⇠ + ⇠ = 0. The
anti-diagonal in g � g is a G-invariant Lagrangian complement to the diagonal, and
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hence defines a G-invariant Lagrangian subbundle FG complementary to EG, spanned
by f(⇠) = s(⇠/2,�⇠/2):

(44) FG = span{f(⇠)| ⇠ 2 g} ⇢ TG,

f(⇠) =
� ⇠L+⇠R

2 , B( ✓
L�✓R

4 , ⇠)
�
.

The 1/2 factors in the definition of f(⇠) are introduced so that he(⇠), f(⇠0)i = B(⇠, ⇠0).
Let ⌅ 2 ^3(g) be the structure constants tensor of g, normalized as follows:

(45) ◆(⇠3)◆(⇠2)◆(⇠1)⌅ = 1
4 B(⇠1, [⇠2, ⇠3]g).

Let e : ^g! �(^EG) be the extension of e : g! �(EG) as an algebra homomorphism.
Thus e(⌅) is a section of ^3(EG).

Lemma 3.5. — The Courant tensor of FG is given by :

⌥FG = e(⌅).

Proof. — This follows from (37) since Bd(⇣1, [⇣2, ⇣3]d) = 1
4B(⇠1, [⇠2, ⇠3]g) for ⇣i =

(⇠i/2, �⇠i/2).

The element ⌅ also defines a trivector field, Aad(⌅) 2 X3(G). Theorem 2.9 implies
that the bivector field ⇡G 2 X2(G) defined by the Lagrangian splitting TG = E � F

satisfies
1
2 [⇡G,⇡G]Sch = Aad(⌅).

To give an explicit formula for ⇡G, let vi, v
i be B-dual bases of g, i.e. B(vi, v

j) = �
j
i .

Proposition 3.6. — The bivector field ⇡G is given by

(46) ⇡G = 1
2

X

i

v
i,L ^ v

R
i .

Proof. — By (18), we have

⇡G = 1
2

X

i

�
(vi)

L � (vi)
R
�
^ (vi)L + (vi)R

2
.

Since
P

i v
i,L ^ v

L
i =

P
i v

i,R ^ v
R
i , this simplifies to the expression in (46).

The bivector field ⇡G was first considered in [1, 2].

3.4. Group multiplication. — In this Section, we will examine the behavior of
the Cartan-Dirac structure under group multiplication,

Mult : G⇥G ! G, (a, b) 7! ab.

For any di�erential form � 2 ⌦(G), we will denote by �i 2 ⌦(G⇥G) its pull-back to
the i’th factor, for i = 1, 2. We will use similar notation for vector fields on G ⇥ G,
and for sections of the bundle T(G⇥G). Let & 2 ⌦2(G⇥G) denote the 2-form

(47) & = � 1
2B(✓L,1

, ✓
R,2).
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A direct computation shows that

Mult⇤ ⌘ = ⌘
1 + ⌘

2 + d&,(48)

hence we have a multiplication morphism

(Mult, &) : (G, ⌘)⇥ (G, ⌘) = (G⇥G, ⌘
1 + ⌘

2) ! (G, ⌘).

Remark 3.7. — This is expressed more conceptually in terms of the simplicial model
BpG = G

p of the classifying space BG. Let @i : G
p ! G

p�1
, 0  i  p be the ‘face

maps’ given as @i(g1, . . . , gp) = (g1, . . . , gigi+1, . . . , gp), while @0 omits the first entry
g1, and @p omits the last entry gp. Let � =

Pp
i=0 @

⇤
i : ⌦•(Gp�1) ! ⌦•(Gp). Then �

commutes with the de-Rham di�erential, turning
L

p,q ⌦q(Gp) into a double complex.
The total di�erential on ⌦q(Gp) is d+(�1)q

�. Then ⌘ 2 ⌦3(G) and & 2 ⌦2(G2) define
a cocycle of degree 4 (see [55]):

(49) d⌘ = 0, @⌘ = �d&, @& = 0.

(If G is compact, simple, and simply connected, and B the basic inner product, this
pair is the Bott-Shulman representative of the generator of H

4(BG) ⇠= H
3(G).) The

second condition is just the property (48) used above. Using the third property, one
may verify that the multiplication morphism is associative, in the sense that

(Mult, &) �
�
(Mult, &)⇥ (idG, 0)

�
= (Mult, &) �

�
(idG, 0)⇥ (Mult, &)

�
.

We will compare the morphism (Mult, &) with the groupoid multiplication of d,
viewed as the pair groupoid over g: writing ⇣ = (⇠, ⇠0), ⇣i = (⇠i, ⇠0i), i = 1, 2, the
groupoid multiplication is

⇣ = ⇣2 � ⇣1 , ⇠ = ⇠2, ⇠
0 = ⇠

0
1, ⇠

0
2 = ⇠1.

Proposition 3.8. — The isomorphism G⇥d! TG defined by s intertwines the groupoid
multiplication of d with the morphism (Mult, &), in the sense that

(50) ⇣2 � ⇣1 = ⇣ , s1(⇣1) + s2(⇣2) ⇠(Mult,&) s(⇣),

for ⇣, ⇣1, ⇣2 2 d.

Proof. — Spelling out the relations (50), we have to show that, for all ⇠ 2 g,

sR,1(⇠) ⇠(Mult,&) sR(⇠), sL,2(⇠) ⇠(Mult,&) sL(⇠),

sL,1(⇠) + sR,2(⇠) ⇠(Mult,&) 0.
(51)

The equivariance properties

Mult(ga, b) = g Mult(a, b), Mult(a, bg
�1) = Mult(a, b)g�1

,

Mult(ag
�1

, gb) = Mult(a, b)

of the multiplication map imply the following relations of generating vector fields:

�⇠R,1 ⇠Mult �⇠R
, ⇠

L,2 ⇠Mult ⇠
L
, ⇠

L,1 � ⇠
R,2 ⇠Mult 0.
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This proves the ‘vector field part’ of the relations (51). The 1-form part is equivalent
to the following three identities, which are verified by a direct computation:

1
2B(✓R,1

, ⇠) + ◆(�⇠R,1)& = 1
2 Mult⇤B(✓R

, ⇠),

1
2B(✓L,2

, ⇠) + ◆(⇠L,2)& = 1
2 Mult⇤B(✓L

, ⇠) ,

1
2B(✓L,1 + ✓

R,2
, ⇠) + ◆(⇠L,1 � ⇠

R,2)& = 0.

Theorem 3.9. — The multiplication map Mult : G⇥G ! G extends to a strong Dirac
morphism

(Mult, &) : (G, EG, ⌘)⇥ (G, EG, ⌘) ! (G, EG, ⌘),

with & 2 ⌦2(G ⇥G) as defined above. In terms of the trivialization EG = G ⇥ g, the
map ba : Mult⇤EG ! EG⇥EG associated with the strong Dirac morphism is given by
the diagonal embedding g! g⇥g. Similarly, the inversion map Inv : G ! G, g 7! g

�1

extends to a Dirac morphism

(Inv, 0) : (G, EG, ⌘) ! (G, E
>
G ,�⌘).

Proof. — By Proposition 3.8, the sections e(⇠) = s(⇠, ⇠) satisfy

e1(⇠) + e2(⇠) ⇠(Mult,&) e(⇠).

This shows that (Mult, &) is a Dirac morphism. For any given point (a, b) 2 G ⇥ G,
no non-trivial linear combination of e1(⇠)|a, e2(⇠0)|b is (Mult, &)-related to 0. Hence,
the Dirac morphism (Mult, &) is strong.

We have Inv⇤B(✓L + ✓
R
, ⇠) = �B(✓L + ✓

R
, ⇠) and ⇠L � ⇠R ⇠Inv (⇠L � ⇠R). Hence

e(⇠) ⇠(Inv,0) e(⇠)>

where e(⇠)> is the image of e(⇠) under the map (v,↵) ! (v,�↵). Since Inv⇤ ⌘ = �⌘,
this shows that (Inv, 0) : (G, EG, ⌘) ! (G, E

>
G ,�⌘) is a Dirac morphism.

Remark 3.10. — More generally, suppose that s ⇢ d is a Lagrangian subalgebra,
defining a Dirac structure E

s. Since g� � s = s, the same argument as in the proof
above shows that (Mult, &) is a strong Dirac morphism from (G, EG, ⌘) ⇥ (G, E

s
, ⌘)

to (G, E
s
, ⌘).

Let ‹FG⇥G ⇢ T(G ⇥ G) be the backward image of the Lagrangian subbundle FG

under (Mult, &). Since FG is spanned by the sections f(⇠) = 1
2 (sL(⇠) � sR(⇠)), (51)

shows that ‹FG⇥G is spanned by the sections

(52) 1
2 (sL,2(⇠)� sR,1(⇠)), 1

2 (sL,1(⇠) + sR,2(⇠)).

Since FG is a complement to EG, its backward image ‹FG⇥G is a complement to
E

1
G�E

2
G (see Proposition 1.15). Let us describe the element of ^2(E1

G�E
2
G) relating

‹FG⇥G to the standard complement F
1
G � F

2
G. Let vi 2 g and v

i 2 g be B-dual bases,
and put

(53) � = 1
2 (vi)

1 ^ (vi)2 2 ^2(g� g).
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Let

(54) e(�) = 1
2

X

i

e1(vi) ^ e2(vi) 2 �(^2(E1
G � E

2
G))

be the corresponding section.

Proposition 3.11. — The Lagrangian complement ‹FG⇥G = FG � �(Mult,&) is obtained
from F

1
G � F

2
G by the bivector e(�):

‹FG⇥G = A
�e(�)(F 1

G � F
2
G).

Proof. — We compute ◆(f1(⇠))e(�) = e(◆1(⇠)�) = 1
2e2(⇠) = 1

2 (sL,2(⇠)+ sR,2(⇠)). Thus

f1(⇠) + ◆(f1(⇠))e(�) = 1
2 (sL,1(⇠)� sR,1(⇠) + sL,2(⇠) + sR,2(⇠))

is the sum of the sections in (52). Similarly, we find that f2(⇠) + ◆(f2(⇠))e(�) is the
di�erence of the sections in (52).

The bivector field on G⇥G corresponding to the splitting (E1
G⇥E

2
G)�A

�e(�)(F 1
G⇥

F
2
G) of T(G⇥G) is given by (see Proposition 1.18(i)),

(55) e⇡ = ⇡
1
G + ⇡

2
G + A12

ad(�),

where ⇡G is the bivector field for the splitting TG = EG � FG, and A12
ad = A1

ad �
A2

ad : g � g ! X(G ⇥ G). By Proposition 2.10(c) we have ⇡̃ ⇠Mult ⇡. Furthermore,
Proposition 2.10(c) and Lemma 3.5, imply that the Schouten bracket 1

2 [e⇡, e⇡]Sch equals
the trivector field Adiag

ad (⌅), where Adiag
ad is the diagonal action on G⇥G.

3.5. Exponential map. — We will now discuss the behavior of the Cartan-Dirac
structure under the exponential map,

exp: g! G.

Let g\ ⇢ g denote the set of regular points of the exponential map, that is, all points
where d exp is an isomorphism. We begin with some preliminaries concerning Tg⇤, not
using the inner product on g for the time being. Let A0 be the action of D0 := g⇤oG

on g⇤ by
A0(�, g)⌫ = (Adg�1)⇤⌫ � �.

This action lifts to an action by automorphisms of Tg⇤, preserving the inner product
as well as the (untwisted) Courant bracket. Let d0 = g⇤ o g be the Lie algebra
of D0, equipped with the canonical inner product defined by the pairing, and let
A0 : d0 ! X(g⇤) be the infinitesimal action. To simplify notation, we denote the
constant vector field defined by � 2 g⇤ by �0 = A0(�, 0), and write A0(⇠) = A0(0, ⇠).
Let ✓0 2 ⌦1(g⇤)⌦ g⇤ be the tautological 1-form, defined by ◆(�0)✓0 = �. Consider the
D0-equivariant map

(56) s0 : d0 ! �(Tg⇤), s0(�, ⇠) = A0(�, ⇠)� h✓0, ⇠i.
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Then hs0(⇣), s0(⇣ 0)i = Bd0(⇣, ⇣
0), showing that s0 defines a D0-equivariant isometric

isomorphism
Tg⇤ ⇠= g⇤ ⇥ d0.

A direct computation shows that this isomorphism is compatible with the Courant
bracket [[·, ·]]0 on Tg⇤ and the Lie bracket on d0.

Since g ⇢ d0 is a Lagrangian Lie subalgebra, the sections e0(⇠) := s0(0, ⇠) span a
Dirac structure Eg⇤ ⇢ Tg⇤. Since Eg⇤ \ Tg⇤ = 0, this Dirac structure is of the form
Eg⇤ = Gr⇡g⇤ for a Poisson bivector field ⇡g⇤ satisfying

(57) ◆(h✓0, ⇠i)⇡g⇤ = A0(⇠), ⇠ 2 g.

The Poisson structure ⇡g⇤ is just the standard linear Poisson structure on g⇤. Similarly,
the sections f0(�) := s0(�, 0) span the Lagrangian subspace Fg⇤ = Tg⇤, which is
complementary to Eg⇤ .

Let us now use the invariant inner product B on g to identify g⇤ ⇠= g. Let

(58) $ 2 ⌦2(g), d$ = exp⇤ ⌘

be the primitive of exp⇤ ⌘ 2 ⌦3(g) defined by the de Rham homotopy operator for
the radial homotopy.

Proposition 3.12. — The sections e0(⇠) and e(⇠) are (exp,$)-related:

(59) e0(⇠) ⇠(exp,$) e(⇠).

Similarly, over the subset g\ ⇢ g, one has

(60) f0(⇠) + e0(C ⇠) ⇠(exp,$) f(⇠),

where C : g\ ! End(g) is given by the formula:

(61) C|⌫ =
�
1/2 coth(z/2)� 1/z

���
z=ad⌫

, ⌫ 2 g\.

Proof. — Recall that �0 denotes the ‘constant vector field’ A0(�, 0). We extend the
notation (·)0 to g⇤ ⇠= g-valued functions on g⇤ ⇠= g: For instance, the vector field
corresponding to the function ⌫ 7! � ad⇠ ⌫ = ad⌫ ⇠ is (ad⌫ ⇠)0 = A0(⇠).

The vector field part of the relation (59) says that A0(⇠) ⇠exp ⇠
L � ⇠

R = Aad(⇠),
which follows by the G-equivariance of exp. The 1-form part of (59) is equivalent to
the following property [3] of $:

◆(A0(⇠))$ = 1
2 exp⇤B(✓L + ✓

R
, ⇠)�B(✓0, ⇠).

Since exp is a local di�eomorphism over g\, the section f(⇠) of TG is (exp,$)-related to
a unique section ef(⇠) of Tg|g\ . Since inner products are preserved under the (exp,$)-
relation (see (12)) we have

he0(⇠
0),ef0(⇠)i = he(⇠0), f0(⇠)i = B(⇠0, ⇠) = he0(⇠

0), f0(⇠)i
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for all ⇠0 2 g, showing that the Fg-component of ef0(⇠) is equal to f0(⇠). It follows
that ef0(⇠) = f0(⇠) + e0(C(⇠)), where C is defined by B(⇠0, C(⇠)) = hf0(⇠0),ef0(⇠)i. To
compute C, we re-write (60) in the equivalent form (using (59)):

f0(⇠) ⇠(exp,$) f(⇠)� e(C(⇠))

Again, we write out the vector field and 1-form parts of this relation:

⇠0 = 1
2 exp⇤(⇠L + ⇠

R)� A0(C(⇠)),

◆(⇠0)$ = 1
4 exp⇤B(✓L � ✓

R
, ⇠)� 1

2 exp⇤B(✓L + ✓
R
, C(⇠)).

(62)

We now verify that C given by (61) satisfies these two equations. Let T,U
L
, U

R : g!
End(g) be the functions defined by

◆(⇠0)$ = B(✓0, T ⇠), exp⇤ ✓L = U
L
✓0, exp⇤ ✓R = U

R
✓0.

It is known that (for the first identity, see e.g. [45])

T |⌫ =

Å
sinh(z)� z

z2

ã����
z=ad⌫

, U
L|⌫ =

Å
1� e

�z

z

ã����
z=ad⌫

, U
R|⌫ =

Å
e
z � 1

z

ã����
z=ad⌫

.

Note that U
L and U

R are transposes relative to the inner product on g, and that
they are invertible over g\. Their definitions imply that

exp⇤ ⇠L = ((UL)�1
⇠)0, exp⇤ ⇠R = ((UR)�1

⇠)0.

The first equation in (62) becomes

⇠0 =

ÅÅ
(UL)�1 + (UR)�1

2
� ad⌫ C

ã
⇠

ã

0

which follows from the identity

1 =
1

2

Å
z

1� e�z
+

z

ez � 1

ã
� z

Å
1

2
coth

⇣
z

2

⌘
� 1

z

ã
.

In a similar fashion, the second equation in (62) follows from the identity
sinh(z)� z

z2
=

1

4

Å
e
z � 1

z
� 1� e

�z

z

ã
� 1

2

Å
e
z � 1

z
+

1� e
�z

z

ãÅ
1

2
coth(

z

2
)� 1

z

ã
.

As an immediate consequence of (59), we obtain

Theorem 3.13. — The exponential map and the 2-form $ define a Dirac morphism

(exp,$) : (g, Eg, 0) ! (G, EG, ⌘).

It is a strong Dirac morphism over the open subset g\ ⇢ g.

Let ‹Fg be the backward image (defined over g\) of FG under (exp,$), and let

" 2 C
1(g\,^2g)

be the unique map such that the associated orthogonal transformation A
�e0(") 2

�(O(Tg\)) takes Fg to ‹Fg. By (60), this section is given by ◆⇠" = C(⇠), with C given
by (61).
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Let [", "]Sch 2 C
1(g\,^3g) be defined using the Schouten bracket on ^g, and

d" 2 C
1(g\,^3g) the exterior di�erential of ", viewed as a 2-form on g\.

Proposition 3.14. — The map " satisfies the classical dynamical Yang-Baxter equa-
tion:

(63) d"+ 1
2 [", "]Sch = ⌅.

Proof. — Proposition 2.14 and the discussion following it show that d" + 1
2 [", "]Sch

equals the Courant tensor of ‹Fg (relative to the complementary subbundle Eg). By
Lemma 3.5, together with Proposition 2.10, ⌥eFg = ⌅.

This solution of the classical dynamical Yang-Baxter equation was obtained in [5],
using a di�erent argument. As a special case of Proposition 1.18, the map " relates
the linear Poisson bivector ⇡g on g ⇠= g⇤ with the pull-back exp⇤ ⇡G 2 X2(g\) of the
bivector field (46) on G:

exp⇤ ⇡G = ⇡g + A0(").

3.6. The Gauss-Dirac structure. — In this Section we assume that G = K
C is

a complex Lie group, given as the complexification of a compact, connected Lie group
K of rank l. Thus the Cartan-Dirac structure EG will be regarded as a holomorphic
Dirac structure on the complex Lie group G. We will show that G carries another
interesting Dirac structure besides the Cartan-Dirac structure. An important feature
of this Dirac structure is that the corresponding Dirac foliation has an open dense
leaf.

Take the bilinear form B on g to be the complexification of a positive definite
invariant inner product on k. Let TK be a maximal torus in K, with complexification
T = T

C
K . Let

(64) g = n� � t� n+
be the triangular decomposition relative to some choice of positive Weyl chamber,
where n+ (resp. n�) is the nilpotent subalgebra given as the sum of positive (resp.
negative) root spaces. For every root ↵, let e↵ be a corresponding root vector, with the
normalization B(e↵, e↵) = 1 and e�↵ = e↵. The unipotent subgroups corresponding
to n± are denoted N±. Recall that the multiplication map

(65) j : N� ⇥ T ⇥N+ ! G, (g�, g0, g+) 7! g�g0g+

is a di�eomorphism onto its image O ⇢ G, called the big Gauss cell. The big Gauss
cell is open and dense in G, and the inverse map j

�1 : O ! N� ⇥ T ⇥N+ is known
as the Gauss decomposition. Consider d = g� g as Section 3.1. Then

(66) s = {(⇠+ + ⇠0)� (⇠� � ⇠0) 2 d | ⇠� 2 n�, ⇠0 2 t, ⇠+ 2 n+}

is a Lagrangian subalgebra of d, corresponding to the subgroup

S = {(g+t, g�t
�1) 2 G⇥G | g� 2 N�, t 2 T, g+ 2 N+}
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of D = G⇥G. Since s is transverse to the diagonal g�, the corresponding Lagrangian
subbundle “FG := E

s is transverse to the Cartan-Dirac structure EG:

TG = EG � “FG.

We shall refer to it as to Gauss-Cartan splitting.
Unlike the complement FG defined by the anti-diagonal, “FG is integrable (since s

is a subalgebra), and it defines a Dirac manifold (G, “FG, ⌘). We refer to “FG as the
Gauss-Dirac structure. Its leaves are the orbits of S as a subgroup of D,

(67) A(g+t, g�t)(g) = g�t
�1

gt
�1

g
�1
+ .

The S-orbit of the group unit is exactly the big Gauss cell. Let ! O be the 2-form on
O, and j

⇤
! O its pull-back to N� ⇥ T ⇥N+.

Proposition 3.15. — The pull-back of the 2-form ! O on the big Gauss cell N�⇥T⇥N+

is given by:

(68) j
⇤
! O = � 1

2B(✓L
�,Adg0 ✓

R
+).

Here ✓L
±, ✓

R
± are the Maurer-Cartan-forms on N

±, and g0 is the T -component (i.e.
projection of N� ⇥ T ⇥N+ to the middle factor).

Proof. — Let ! 2 ⌦2(N�⇥T ⇥N+) denote the 2-form on the right hand side of (68).
Since both ! and ! O are S-invariant, it su�ces to check that j

⇤
! O = ! at the group

unit g = e. At the group unit, the formula (40) for ! O simplifies to

(69) ! O(A(⇣1), A(⇣2))|e = 1
2 (B(⇠01, ⇠2)�B(⇠02, ⇠1)),

for ⇣1 = (⇠1, ⇠01), ⇣2 = (⇠2, ⇠02) 2 s ⇢ d. Its kernel is

ker(! O|e) = {A(⇣)
��
e
| ⇣ = (⇠0,�⇠0), ⇠0 2 t} = Te(T )

which coincides with the kernel of � 1
2B(✓L

�, ✓
R
+)|e. Moreover, it is clear that Te(N+)

and Te(N�) are isotropic subspaces for both 2-forms. Hence it is enough to compare
on tangent vectors A(⇣1), A(⇣2) for ⇣i of the form ⇣1 = (0, ⇠�) with ⇠� 2 n�, and
⇣2 = (⇠+, 0) with ⇠+ 2 n+. (69) gives,

! O(A(0, ⇠�), A(⇠+, 0))|e = 1
2B(⇠+, ⇠�).

Since j
⇤ A(⇠+, 0)|e = (0, 0, ⇠+) 2 n+ ⇢ g = TeG and j

⇤ A(0, ⇠�)|e = (�⇠�, 0, 0), the
right hand side of (68) gives exactly the same answer.

Since FG and “FG are both complements to the Cartan-Dirac structure EG, they are
related by an element in �(^2

EG). To compute this element, let p be the anti-diagonal
in d = g� g, and let g� ⇠= g be the diagonal. Let

(70) r =
X

e�↵ ^ e↵ 2 ^2g

be the classical r-matrix.

Lemma 3.16. — The bivector taking p to s is the image r� 2 ^2g� of the classical
r-matrix under the diagonal embedding g! g� ⇢ d.
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Proof. — Let g� g⇤ carry the bilinear form defined by the pairing, and consider the
isometric isomorphism

g� g⇤ ! d = g� g, ⇠ � µ 7! (⇠ + B](µ)
2 )� (⇠ � B](µ)

2 ).

This isomorphism takes g = g� 0 to the diagonal g�, and g⇤ to the anti-diagonal, p.
The graph Grr ⇢ g� g⇤ of the bivector r is spanned by vectors of the form

0�B
[(⇠0), e↵ �B

[(e↵), e�↵ � (�B
[(e�↵)),

for ⇠0 2 t and positive roots ↵. The isomorphism g� g⇤ ⇠= d takes these vectors to

⇠0/2� (�⇠0/2), 0� e�↵, e↵ � 0.

Hence, it defines an isomorphism Grr ⇠= s.

Corollary 3.17. — The orthogonal transformation A
�e(r) 2 �(O(TG)) takes FG to

“FG.

Proof. — This follows from Lemma 3.16 and the isomorphism TG ⇠= G⇥ d.

The Gauss-Cartan splitting TG = EG � “FG also defines a bivector field b⇡G, and
Proposition1.18 implies that it is related to the bivector field ⇡G (46) by

b⇡G = ⇡G + Aad(r).

Since “FG is integrable, this bivector field is in fact a Poisson structure on G – see the
remarks before Proposition 2.10. (On the other hand, unlike ⇡G, the Poisson structure
is not invariant under the full adjoint action, but is only T -invariant.)

Proposition 3.18. — The Poisson structure b⇡G associated with the Gauss-Cartan split-
ting TG = EG � “FG is given by the formula:

b⇡G = 1
2

X

i

e
L
i ^ (ei)R �

X

↵�0

e
L
�↵ ^ e

R
↵ + 1

2 r
L + 1

2 r
R
.

Here ei is a basis of t, with B-dual basis e
i, and rL, rR are the left-, right-invariant

bivector fields defined by r. The symplectic leaves of this Poisson structure are the
connected components of the intersections of conjugacy classes in G with the orbits of
the action (67).

This Poisson structure was first defined by Semenov-Tian-Shansky, see [49].

Proof. — The vectors
1
2 (ei � (�ei)), 0� (�e�↵), e↵ � 0

form basis of s that is dual (relative to the bilinear form on d = g� g) to the basis

e
i � e

i
, e↵ � e↵, e�↵ � e�↵
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of the diagonal. Using the formula (18) for the bivector field, we obtain

b⇡G = 1
2

X

i

((ei)L � (ei)R) ^ eL
i +eR

i
2 + 1

2

X

↵�0

(eL
↵ � e

R
↵ ) ^ (�e

L
�↵) + 1

2

X

↵�0

(eL
�↵ � e

R
�↵) ^ (�e↵)R

= 1
2

X

i

e
L
i ^ (ei)R �

X

↵�0

e
L
�↵ ^ e

R
↵ + 1

2 r
L + 1

2 r
R
.

Here we have used that the left- and right-invariant bivector fields generated by
X

i

ei ^ e
i =

X

i

ei ^ e
i +

X

↵�0

e�↵ ^ e↵ +
X

↵�0

e↵ ^ e�↵

coincide.

Remark 3.19. — The Lagrangian subalgebra s defines a Manin triple (d = g�g, g�, s),
which induces a Poisson-Lie group structure on the double D = G⇥G. The Poisson
structure b⇡G is the push-forward image of this Poisson-Lie structure under the natural
projection D ! D/G ⇠= G, see e.g. [1, Sec. 3.6].

4. Pure spinors on Lie groups

In the previous section we identified TG ⇠= G⇥d as Courant algebroids. In particu-
lar, we have an identification Cl(TG) ⇠= G⇥Cl(d) of Cli�ord algebra bundles. In this
section, we will complement this isomorphism of Cli�ord bundles by an isomorphism
of spinor modules,

^T
⇤
G ⇠= G⇥ Cl(g),

where Cl(g) is given the structure of a spinor module over Cl(d). The di�erential
d+⌘ on ⌦(G) intertwines with a certain di�erential dCl on Cl(g). Hence, given a pure
spinor x 2 Cl(g) defining a Lagrangian subspace s ⇢ d, one directly obtains a pure
spinor �s 2 ⌦(G) defining E

s. We will also obtain expressions for (d + ⌘)�s from the
properties of x.

4.1. Cl(g) as a spinor module over Cl(g� g). — Recall from Examples 1.2 and
1.4 that for any vector space V with inner product B, the Cli�ord algebra Cl(V ) may
be viewed as a spinor module over Cl(V � V ). In the special case that V = g is a
Lie algebra, with B an invariant inner product, there is more structure that we now
discuss.

Let � : g ! ^2g be the map defined by the condition �◆(⇠2)�(⇠1) = [⇠1, ⇠2]g (see
Section 1.1), and let ⌅ 2 ^3g be the structure constants tensor (45). Then

{�(⇠1),�(⇠2)} = �([⇠1, ⇠2]g), {�(⇠1), ⇠2} = [⇠1, ⇠2]g

{⌅, ⇠} = �1

4
�(⇠), {⌅,⌅} = 0

for all ⇠1, ⇠2, ⇠ 2 g. The quantizations of these elements have similar properties: Let

(71) ⌧ : g! Cl(g), ⌧(⇠) = q(�(⇠)).
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Then
[⌧(⇠1), ⌧(⇠2)]Cl = ⌧([⇠1, ⇠2]g), [⌧(⇠1), ⇠2]Cl = [⇠1, ⇠2]g,

[q(⌅), ⇠]Cl = �1

4
⌧(⇠), [q(⌅), q(⌅)]Cl 2 K.

(One can show (cf. [4]) that the constant [q(⌅), q(⌅)]Cl is 1
24 times the trace of the

Casimir operator in the adjoint representation.) This last identity implies that the
derivation

(72) dCl = �4[q(⌅), ·]Cl : Cl(g) ! Cl(g)

squares to 0. We call dCl the Cli�ord di�erential [4, 38].
For the Lie algebra d = g � g, with bilinear form B � (�B), the corresponding

elements ⌅d and �d in ^d = ^g⌦ ^g are given by

⌅d = ⌅⌦ 1 + 1⌦ ⌅, �d(⇠, ⇠
0) = �(⇠)⌦ 1� 1⌦ �(⇠0), for (⇠, ⇠0) 2 d.

Note also that q(⌅d)2 = 0. Consider the Cli�ord algebra Cl(g) as a spinor module
over Cl(d), with Cli�ord action given on generators ⇣ = (⇠, ⇠0) 2 d by

%
Cl(⇠, ⇠0) = l

Cl(⇠)� r
Cl(⇠0).

Then the Cli�ord di�erential dCl is implemented as a Cli�ord action:

dCl = �4%Cl(q(⌅d)).

The elements ⌧d(⇣) = q(�d(⇣)) generate a d-action on Cl(g), with generators

LCl(⇣) = l
Cl(⌧(⇠))� r

Cl(⌧(⇠0)) = %
Cl(⌧(⇣)).

Note that

(73) LCl(⇣) = [%Cl(⇣),dCl],

which implies that
[%Cl(⇣1), [%

Cl(⇣2),dCl]] = %
Cl([⇣1, ⇣2]).

Let s ⇢ d be a Lagrangian subspace, and recall the definition of ⌥s given in (39).
Given a Lagrangian complement p to s, let prs : d! s be the projection along p, and
define a linear functional �s 2 s⇤ by

(74) h�s, ⇠i = 1
2 trace(prs � ad⇠

��
s
), ⇠ 2 s.

If s is a Lagrangian subalgebra (i.e. ⌥s = 0), we may omit prs in this formula; in this
case �s equals � 1

2 times the modular character of the Lie algebra s.

Proposition 4.1. — Let s ⇢ d be a Lagrangian subspace, with defining pure spinor
x 2 Cl(g). Choose a Lagrangian complement p ⇠= s⇤ to s to view ⌥s as an element of
the Cli�ord algebra Cl(d). Then

dCl
x = %

Cl(�⌥s + �
s)x.

In particular, s is a Lie subalgebra if and only if the defining pure spinor x is ‘inte-
grable’, in the sense that

dCl
x 2 %Cl(d)x.
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Proof. — The choice of a Lagrangian complement identifies d = s� s⇤, with bilinear
form given by the pairing. Using a basis ei of s and a dual basis f

i of s⇤, we have

4⌅d = 1
6

P
ijk Bd([ei, ej ], ek)f i ^ f

j ^ f
k + 1

2

P
ijk Bd([ej , ek], f i) ei ^ f

j ^ f
k

+ 1
2

X

ijk

Bd([f
j
, f

k], ei) ej ^ ek ^ f
i + 1

6

P
ijk Bd([f j

, f
k], f i) ej ^ ek ^ ei.

The quantization map takes the last two terms into the left ideal Cl(d)s, and it takes
the second term to

1
2

X

ik

Bd([ei, ek], f i) f
k + 1

2

X

ijk

Bd([ej , ek], f i) f
j
f

k
ei = ��s mod Cl(d)s.

This gives
�4q(⌅d) = �⌥s + �

s mod Cl(d)s,

from which the result is immediate.

Let us now assume that the adjoint action Ad: G ! O(g) lifts to a group homo-
morphism

(75) ⌧ : G ! Pin(g) ⇢ Cl(g)

to the double cover Pin(g) ! O(g). If G is connected, this is automatic if ⇡1(G) is
torsion free. Note that (75) is consistent with our previous notation ⌧(⇠) = q(�(⇠)),
since [4]

⌧(⇠) =
d

dt

����
t=0

⌧(exp t⇠).

We will write N(g) = N(⌧(g)) = ±1 for the image under the norm homomorphism,
and |g| = |⌧(g)| for the parity of ⌧(g). Since ⌧(g) lifts Adg, one has (�1)|g| = det(Adg).
The definition of the Pin group implies that conjugation by ⌧(g) is the twisted adjoint
action,

(76) ⌧(g)x⌧(g�1) = ›Adg(x) := (�1)|g||x| Adg(x)

(using the extension of Adg 2 O(g) to an automorphism of the Cli�ord algebra). This
twisted adjoint action extends to an action of the group D on Cl(g),

(77) ACl(a, a
0)(x) = ⌧(a)x⌧((a0)�1).

4.2. The isomorphism ^T
⇤
G ⇠= G ⇥ Cl(g). — Let us now fix a generator µ 2

det(g), and consider the corresponding star operator ? : ^ g⇤ ! ^g, see Remark
1.5(b). The star operator satisfies

(78) Adg � ? = (�1)|g| ? �Ad⇤g�1 .

We use the trivialization by left-invariant forms to identify ^T
⇤
G ⇠= G⇥^g⇤. Applying

? pointwise, we obtain an isomorphism q � ? : ^T
⇤
g G

⇠�! Cl(g) for each g 2 G. Let us
define the linear map

(79) R : Cl(g) ! ⌦(G), R(x)|g = (q � ?)�1(x⌧(g)).
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We denote by µ
⇤ 2 det(g⇤) the dual generator, defined by ◆((µ⇤)>)µ = 1, and let µG

be the left-invariant volume form on G defined by µ
⇤.

Proposition 4.2. — The map (79) has the following properties:
a. R intertwines the Cli�ord actions, in the sense that

R(%Cl(⇣)x) = %(s(⇣))R(x), 8x 2 Cl(g), ⇣ 2 d.

Up to a scalar function, R is uniquely characterized by this property.
b. R intertwines di�erentials:

R(dCl(x)) = (d + ⌘)R(x), 8x 2 Cl(g).

c. R satisfies has the following D-equivariance property: For any h = (a, a
0) 2 D,

and at any given point g 2 G,

A(h�1)⇤ R(x) = (�1)|a|(|g|+|x|) R(ACl(h)x).

d. R relates the bilinear pairings on the Cli�ord modules Cl(g) and ⌦(G) as follows:
At any given point g 2 G, and for all x, x

0 2 Cl(g),

(80) (R(x), R(x0))^T⇤G = (�1)|g|(dim G+1) N(g) (x, x
0)Cl(g) µG.

Here the pairing (·, ·)Cl(g) is viewed as scalar-valued, using the trivialization of
det(g) defined by µ. (Cf. Remark 1.5.)

Notice that the signs in part (c), (d) disappear if G is connected.

Proof. — (a) Given ⇠ 2 g, let ✏(⇠) : ^g! ^g be defined by ✏(⇠)⇠0 = ⇠ ^ ⇠0. Then

l
Cl(⇠) � q = q � (✏(⇠) + 1

2 ◆(B
[(⇠))), r

Cl(⇠) � q = q � (✏(⇠)� 1
2 ◆(B

[(⇠))).

Since the star operator exchanges exterior multiplication and contraction, we have

?
�1 � q

�1 � %Cl(⇠, ⇠0) =
⇣
◆(⇠ � ⇠

0) + ✏

Ä
B
[
Ä
⇠+⇠0

2

ää⌘
� ?�1 � q

�1
.

On the other hand,

(%Cl(⇠, ⇠0)x)⌧(g) = (⇠x� (�1)|x|x⇠0)⌧(g) = %
Cl(⇠,Adg�1 ⇠

0)(x⌧(g)).

This implies that, at g 2 G,

R(%Cl(⇠, ⇠0)x) =
⇣
◆(⇠ �Adg�1 ⇠

0) + ✏

⇣
B
[
⇣
⇠+Adg�1 ⇠

0

2

⌘⌘ ⌘
R(x),

which is precisely the Cli�ord action of s(⇠, ⇠0) since

s(⇠, ⇠0) = (⇠ �Adg�1 ⇠
0)�B

[
⇣
⇠+Adg�1 ⇠

0

2

⌘

under left-trivialization TG ⇠= G⇥(g�g⇤). This shows that R intertwines the Cli�ord
actions of Cl(d) ⇠= Cl(TgG). By the uniqueness properties of spinor modules, R is
uniquely characterized by this property up to a scalar.
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(b) From the global equivariance property in (c), verified below, we obtain the in-
finitesimal equivariance: L(A(⇣))R(x) = R( LCl(⇣)x). Since [%(s(⇣)),d+⌘] = L(A(⇣))

and [%Cl(⇣),dCl] = LCl(⇣), this gives

%(s(⇣))
�
(d + ⌘)R(x)� R(dCl

x)
�

= L(A(⇣))R(x)� R(%Cl(⇣)dCl
x)

= L(A(⇣))R(x)� R( LCl(⇣)x).

That is, the map (d+⌘)� R� R�dCl : Cl(g) ! �(TG) intertwines the Cli�ord actions,
and hence agrees with R up to a scalar function. Since its parity is opposite to that
of R, that function is zero.

(c) We have to show that for all a 2 G,

(81) l
⇤
a R(x) = R(x⌧(a)), r

⇤
a R(x) = (�1)|a|(|g|+|x|) R(⌧(a)x).

In terms of the left-trivialization ^T
⇤
G = G⇥ ^g⇤,

(l⇤a R(x))|g = R(x)
��
ag

, (r⇤a R(x))
��
g

= Ad⇤a�1(R(x)
��
ga

).

(Here Ad⇤a�1 stands for the contragredient action on ^g⇤, not for a pull-back on ⌦(G).)
We compute, using (76) and (78):

Ad⇤a�1

�
R(x)

��
ga

�
= (�1)|a| ?�1

q
�1 Ada(x⌧(ga))

= (�1)|a| (�1)|a|(|x|+|g|+|a|)
?
�1

q
�1(⌧(a)x⌧(g))

= (�1)|a|(|x|+|g|) R(⌧(a)x)
��
g

The equivariance property with respect to left translations is immediate from the
definition.

(d) Use the generator µ 2 det(g) and µG to trivialize both det(g) and det(^T
⇤
G).

By Remark 1.5(b) and Example 1.4 we have, at g 2 G,

(R(x), R(x0))^T⇤G = (x⌧(g), x0⌧(g))Cl(g).

This is computed as follows:

str(⌧(g)>x
>

x
0
⌧(g)) = (�1)|g|(|g|+|x|+|x0|) str(⌧(g)⌧(g)>x

>
x
0)

= N(g) (�1)|g|(1+|x|+|x0|) str(x>x
0)

Finally, replace |x|+ |x0| with dim G, using that (x, x
0)Cl(g) vanishes unless |x|+ |x0| =

dim G mod 2.

As an immediate consequence of Propositions 4.1 and 4.2, we have

Corollary 4.3. — If x 2 Cl(g) is a pure spinor defining a Lagrangian subspace s ⇢ d,
then the di�erential form �

s := R(x) 2 ⌦(G) is a pure spinor defining the Lagrangian
subbundle E

s. It satisfies the di�erential equation

(82) (d + ⌘)�s = %(s(�⌥s + �
s))�s,
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where �s 2 s⇤ is defined as in (74) (using a complementary Lagrangian subspace p ⇠=
s⇤ ⇢ d). Let H ⇢ D be a subgroup preserving s, and define the character u

s : H ! K⇥
by ACl(h)x = u

s(h)x. Then

(83) A(h�1)⇤�s = (�1)|a|(|g|+|x|)
u
s(h)�s

for all h = (a, a
0) 2 H, and at any given point g 2 G.

We are mainly interested in pure spinors defining the Cartan-Dirac structure EG

and its Lagrangian complement FG. These are obtained by taking x = 1 and x = q(µ)
in the above:

Proposition 4.4. — Let �G, G 2 ⌦(G) be the di�erential forms

(84) �G = R(1),  G = R(q(µ)).

Then �G, G are pure spinors defining the Lagrangian subbundles EG, FG. They sat-
isfy the di�erential equations,

(85) (d + ⌘)�G = 0, (d + ⌘) G = �%(e(⌅)) G.

The equivariance properties under the adjoint action of G read

Aad(a
�1)⇤�G = (�1)|a||g|�G, Aad(a

�1)⇤ G = (�1)|a|(|g|+1)
 G.

We will refer to �G as the Cartan-Dirac spinor.

Proof. — It is clear that the diagonal g� ⇢ d is defined by the pure spinor x = 1.
Similarly, the anti-diagonal p ⇢ d = g� g is defined by the pure spinor q(µ) 2 Cl(g):

%
Cl(⇠,�⇠)q(µ) = ⇠q(µ) + (�1)dim G

q(µ)⇠ = 0.

Hence �G, G are pure spinors defining EG, FG. The equivariance properties are spe-
cial cases of (83), since both g� and p are preserved under G�. Here we are using
|1| = 0, |q(µ)| = dim G mod 2, while u

p(a) = (�1)|a|(1+dim G) by the calculation:

⌧(a)q(µ)⌧(a�1) = (�1)|a| dim G
q(Ada(µ)) = (�1)|a|(1+dim G)

q(µ).

The di�erential equation for �G follows since dCl(1) = 0. It remains to check the
di�erential equation for  G. Since the anti-diagonal satisfies [p, p]d ⇢ g�, the element
�
p 2 p⇤ is just zero. On the other hand, the element ⌥p is given by ⌅�, the image of

⌅ under the the map ^g ⇠! ^g�. Hence s(⌅�) = e(⌅), confirming that  G satisfies
(85).

Remarks 4.5. — a. The map R depends on the choice of generator µ 2 det(g), via
the star operator: Replacing µ with tµ changes R to t

�1 R. Hence, the definition
of  G = R(q(µ)) is independent of the choice of µ.

b. Since (1, q(µ))Cl(g) = µ, the bilinear pairing between �G, G equals the volume
form, up to a sign:

�
�G, G

�
^T⇤G

= N(g)(�1)|g|(dim G+1)
µG.
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Proposition 4.6. — Over the open subset U of G where 1+Adg is invertible, the pure
spinor  G is given by the formula:

 G = det1/2� 1+Adg

2

�
exp

⇣
1
4 B

⇣
1�Adg

1+Adg
✓

L
, ✓

L
⌘⌘

,

at any given point g 2 U. ( The square root depends on the choice of lift ⌧ : G !
Pin(g).)

Note that the exponent in this formula becomes singular where 1 + Adg fails to
be invertible, but these singularities are compensated by the zeroes of the factor
det1/2� 1+Adg

2

�
. One proof of this formula is given in [47]; here is an outline of an

alternative approach.

Sketch of proof. — One easily checks that over U, FG coincides with the graph of
the 2-form !F := � 1

4 B

⇣
1�Adg

1+Adg
✓

L
, ✓

L
⌘
. Hence  G| U = f exp(�!F ) for some nonva-

nishing function f 2 C
1(U), with f(e) = 1. Equation (85) reads, after dividing by

f exp(�!F ),
d log(f) + ⌘ + exp(!F )%(e(⌅))

�
exp(�!F )

�
= 0.

Taking the form degree 1 parts of both sides of this equation, one obtains the following
condition on f :

d log(f) +
⇣

exp(!F )%(e(⌅))
�
exp(�!F )

�⌘

[1]
= 0.

f is uniquely determined by this Equation with the initial condition f(e) = 1. It is
straightforward (though slightly cumbersome) to verify that f(g) = det1/2� 1+Adg

2

�

solves this equation.

If G is connected, one has det(1+Adg) 6= 0 on a dense open subset of G. However,
for a disconnected group G it vanishes on the components with det(Adg) = �1.

Example 4.7. — Let G = O(2). Here O(g) = Z2 and Pin(g) = Z4. There are two
possible lifts O(g) ! Pin(g). Let ✓ 2 ⌦1(G) be the left-invariant Maurer-Cartan-form
(using the isomorphism g = R defined by a generator µ 2 det(g) = g). One finds that
on SO(2) ⇢ O(2), �G = ✓, while  G = 1. On the non-identity component O(2)\SO(2),
the roles are reversed:  G = ±✓ and �G = ±1. (The signs depend on the choice of lift.)
Observe that �G, G given by these formulas have the correct equivariance properties.

4.3. Group multiplication. — In this section, we will examine the composition
of the map R : Cl(g) ! ⌦(G) with the pull-back under group multiplication. It will
be convenient to work with the element ⇤ 2 Cl(g)⌦ ⌦(G), defined by the property

R(x) = str(x⇤)

where we have extended str : Cl(g) ! ^[top](g) = K to the tensor product with ⌦(G).
The properties of R under the Cli�ord action translate into

(lCl(⇠) + %(sR(⇠)))⇤ = 0, (�r
Cl(⇠) + %(sL(⇠)))⇤ = 0.
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Thus ⇤ is itself a pure spinor for the action of Cl(d)⇥Cl(TG), defining a Lagrangian
subbundle of d⇥ TG. The equivariance properties (81) of R translate into

l
⇤
a⇤ = ⌧(a�1)⇤, r

⇤
a�1⇤ = ⇤⌧(a)

The first identity is immediate, while for the second identity is obtained by the cal-
culation:

str(x r
⇤
a�1⇤) = r

⇤
a�1 R(x) = (�1)|a|(|x|+|g|) R(⌧(a)x)

= (�1)|a|(|x|+|g|) str(⌧(a)x⇤)

= str(x⇤⌧(a)).

(Note that |⇤| = |g| at g 2 G.) We finally observe that the pull-back of ⇤ to the group
unit is simply

(86) i
⇤
e⇤ = 1 2 Cl(g).

Let ⇤1
,⇤2 2 Cl(g)⌦ ⌦(G⇥G) be the pull-back to the first, second G-factor, and

recall the 2-form & 2 ⌦2(G⇥G) from (47).

Proposition 4.8. — The pull-back of ⇤ under group multiplication satisfies

(87) e
& Mult⇤ ⇤ = ⇤1⇤2

,

using the product in the algebra Cl(g)⌦ ⌦(G⇥G).

Proof. — Using (51), we find that both sides of (87) are annihilated by the following
operators:

l
Cl(⇠) + %(sR,1(⇠)), �r

Cl(⇠) + %(sL,2(⇠)), %(sL,1(⇠) + s
R,2(⇠)).

Hence the two sides of (87) are pure spinors, defining the same Lagrangian subbundle
of d⇥ T(G⇥G). So the two sides agree up to a scalar function.

The 2-form & is invariant under la,1 (left multiplication by a on the first factor)
and ra�1,2 (right multiplication by a

�1 on the second factor). From the equivariance
of ⇤, and since Mult �la,1 = la �Mult and Mult �ra�1,2 = ra�1 �Mult, we obtain the
following equivariance property of e

& Mult⇤ ⇤:

(la,1)
⇤(e& Mult⇤ ⇤) = ⌧(a�1) (e& Mult⇤ ⇤),

(ra�1,2)
⇤(e& Mult⇤ ⇤) = (e& Mult⇤ ⇤)⌧(a).

The product ⇤1⇤2 has a similar equivariance property. Hence, to verify (87) it su�ces
to compare the two sides at (e, e) 2 G⇥G. But by (86), both sides of (87) pull back
to 1 at (e, e).

We will use Proposition 4.8 to obtain a formula for the pull-back of  G = R(q(µ)),
the pure spinor defining the Lagrangian subbundle FG ⇢ TG. Recall the element
� 2 ^2(g� g) from (53).
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Theorem 4.9. — The pull-back of  G under group multiplication is given by the for-
mula

e
& Mult⇤  G = %(exp(�e(�))) ( 1

G ⌦  
2
G)

Note that up to a scalar function, this identity follows from Proposition 3.11.

Proof. — The element � enters the following formula (cf. [4, Lemma 3.1]) , relating
the product MultCl in Cl(g) with the wedge product Mult^ in ^(g):

q
�1 �MultCl = Mult^ � exp(�◆^(�)) � q

�1 : Cl(g� g) ! ^(g).

Since str � l
Cl(q(µ)) � q : ^ g! K is simply the augmentation map, we have

 G = R(q(µ)) = str(q(µ)⇤) = q
�1(⇤)[0],

where the subscript indicates the degree 0 part with respect to ^g. Using (87), we
calculate:

e
& Mult⇤  G = q

�1(⇤1⇤2)[0]

= q
�1 �

�
MultCl(⇤1 ⌦ ⇤2)

�
[0]

=
�
Mult^ � exp(�◆^(�)) � q

�1(⇤1 ⌦ ⇤2)
�
[0]

= exp(�e(�)) �
�
Mult^ �q�1(⇤1 ⌦ ⇤2)

�
[0]

= exp(�e(�)) � ( 1
G ⌦  

2
G).

Here we used that (◆Cl(⇠)+%(e(⇠)))⇤ = 0, hence (◆^(�)�%(e(�)))q�1(⇤1⌦⇤2) = 0.

4.4. Exponential map. — Let us return to our description (Section 3.5) Tg⇤ =
g⇤ ⇥ d0 of the Courant algebroid over g⇤, where d0 = g⇤ o g.

Let ^g⇤ be the contravariant spinor module over Cl(d0) (cf. Section 1.4), with
Cli�ord action denoted %

^. Let d^ be the exterior algebra di�erential. For all w =
(�, ⇠) 2 d0 one has

L
^(w) := [d^, %

^(w)] = d^� � (ad⇠)
⇤
.

One easily checks that L
^(w) defines an action of the Lie algebra d0. This action

exponentiates to an action of the group D0, given as

A^(�, g)y = exp(d^�) ^ (Adg�1)⇤y,

The function
⌧0 : g⇤ ! ^g⇤, ⌧0(�) = exp(d^�) 2 ^g⇤

is the counterpart to the function ⌧ : G ! Cl(g). The D0-action commutes with
the di�erential, and it is straightforward to check that the Cli�ord action is D0-
equivariant:

A^(�, g)
�
%
^(w)y

�
= %

^(Ad(�,g) w)
�
A^(�, g)y

�
,

for w 2 d0, (�, g) 2 D0, y 2 ^g⇤.
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Choose a generator µ 2 det(g⇤), and let ? : ^ g ! ^g⇤ be the associated star
operator (4). Let X⇡ denote the modular vector field of the Kirillov-Poisson structure
⇡g⇤ , relative to the translation-invariant volume form µg⇤ 2 �(det(T ⇤g⇤)) defined by
the dual generator µ

⇤ 2 det(g). (Recall that X⇡ = 0 if g is unimodular.) Define a
linear map

R0 : ^ g⇤ ! ⌦(g⇤),

given at any point ⌫ 2 g⇤ by

R0(y) = ?
�1(y ^ ⌧0(⌫)) 2 ^g = ^T

⇤
⌫ g
⇤
.

Parallel to Proposition 4.2, we have,

Proposition 4.10. — a. The map R0 intertwines the Cli�ord actions of d0:

R0 � %^(w) = %(s0(w)) � R0, w 2 d0.

It is uniquely determined by this property, up to a scalar function.
b. The map R0 intertwines the di�erentials, up to contraction by the modular vector

field:
R0 � d^ = (d� ◆(X⇡)) � R0.

c. R0 has the equivariance property, for all h = (�, a) 2 D0 = g⇤ o G,

(A0(h
�1))⇤ R0(y) = det(Ada) R0(A^(h)y).

d. R0 preserves the bilinear pairings on the spinor modules ^g⇤, ⌦(g⇤), in the sense
that

(R0(y), R0(y
0))^T⇤g⇤ = (y, y

0)^g⇤ µg⇤

for all y, y
0 2 ^g⇤.

Proof. — Each of the statements (a),(c),(d) is proved by a direct computation, par-
allel to those in Proposition 4.2. To prove (b), we first note that (c) implies the
infinitesimal equivariance, for (�, ⇠) 2 d0,

(88)
�
L(A0(�, ⇠))� tr(ad⇠)

�
R0(y) = R0( L^0 (�, ⇠)y).

Since ◆(X⇡)h✓0, ⇠i = tr(ad⇠), we have

L(A0(�, ⇠))� tr(ad⇠) = [(d� ◆(X⇡)), %(s0(�, ⇠))].

Hence we can re-write (88) as

[(d� ◆(X⇡)), %(s0(�, ⇠))] R0(y) = R0

⇣
[d^, %

^(�, ⇠)]
⌘
.

Together with (a), this implies that the linear map

(89) (d� ◆(X⇡)) � R0 � R0 � d^ : ^ g⇤ ! ⌦(g⇤)

(4) Note that in the previous Section, µ denoted a generator of det(g), and hence the star operator
went from ^g⇤ ! ^g. This change in notation is intended, since our aim is to compare the Poisson
manifold g⇤ with the Dirac manifold G.
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intertwines the Cli�ord actions of d0. Since the parity of this map is opposite to that
of R0, the uniqueness assertion in (a) implies that (89) is zero.

As before, we may use this map to construct pure spinors R0(y) 2 ⌦(g⇤) from pure
spinors y 2 ^g⇤.

The element y = 1 is the pure spinor defining the Lagrangian subspace g ⇢ d0, and
its image �g⇤ = R0(1) defines the Lagrangian subbundle Eg⇤ (spanned by the sections
e0(⇠)). The pure spinor y = µ 2 ^g⇤ defines a Lagrangian complement g⇤ ⇢ d0, and
its image  g⇤ = R0(µ) = 1 defines the Lagrangian subbundle Fg⇤ = Tg⇤ (spanned by
the sections f0(�)). For the bilinear pairing between these pure spinors, we obtain

(�g⇤ , g⇤)^T⇤g⇤ = µg⇤ .

since (1, µ)^g⇤ = µ.

Lemma 4.11. — The pure spinor �g⇤ is given by the formula

�g⇤ = (�1)n(n�1)/2
e
�◆(⇡g⇤ )

µg⇤

where n = dim G.

Proof. — The Kirillov-Poisson bivector on g⇤ is given by ⇡g⇤ |⌫ = �d^⌫ 2 ^2g⇤ =
^2

T⌫g⇤. That is, ⌧0 = exp(�⇡g⇤). The Lemma follows since ? intertwines exterior
product with contractions, and since ?�1(1) = (µ⇤)> = (�1)n(n�1)/2

µ
⇤.

Let us now return to our original setting where g carries an invariant inner product
B, used to identify g ⇠= g⇤. We take the generators µ 2 det(g) (from the last section)
and µ 2 det(g⇤) (from the present section) to be equal under this identification.

Let µg be the translation invariant volume form on g ⇠= g⇤, and µG the corre-
sponding left-invariant volume form on G. Let J 2 C

1(g) be the Jacobian of the
exponential map, defined by exp⇤ µG = J µg. Recall that g\ ⇢ g is the dense open
subset where exp is a local di�eomorphism, i.e where J 6= 0. With $ 2 ⌦2(g) as in
Section 3.5, we have:

Proposition 4.12. — Over the subset g\, the maps R0 : ^ g ! ⌦(g) and R : Cl(g) !
⌦(G) are related as follows:

(90) exp⇤(R(x)) = J
1/2

e
�$

%( eA�e0("))(R0(y)),

for x = q(y). Here " 2 C
1(g\,^2g) is the solution of the classical dynamical Yang-

Baxter equation, cf. Proposition 3.14, and J
1/2 2 C

1(g) is a smooth square root of
J , equal to 1 at the origin.

Proof. — The map ‹R0 : ^ g! ⌦(g\) given as

‹R0(y) = e
�$

%( eA�e0(")) exp⇤ R(q(y))
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intertwines the Cl(d0)-actions, hence it coincides with ‹R0 = f R0 for a scalar function.
To find f , we consider bilinear pairings. Note that

(‹R0(y), R̃0(y
0))^T⇤g = (exp⇤ R(q(y)), exp⇤ R(q(y0)))^T⇤g

= exp⇤
�
R(q(y)), R(q(y0))

�
^T⇤G

.

Taking y
0 = 1, y = µ we obtain

f
2
µg = f

2 (R0(µ), R0(1))^T⇤g = (‹R0(µ), ‹R0(1))^T⇤g = exp⇤ µG = J µg.

This shows that f
2 = J .

Remark 4.13. — Of course, exp⇤(R(x)) is defined globally on all of g, not only on
g\. It follows from the Proposition that J

1/2 exp(e0(")) extends smoothly to all of g.
Hence, the expression

J
1/2 exp(")

extends smoothly to a global function g! ^g. For a direct proof, see [5].

Applying the proposition to y = 1 and y = µ, we find in particular that

exp⇤ �G = J
1/2

e
�$

�g,

exp⇤  G = J
1/2

e
�$

%( eA�e0("))(1).
(91)

4.5. The Gauss-Dirac spinor. — We return to the set-up of Section 3.6, with
G = K

C denoting the complexification of a compact Lie group, with Cartan subgroup
T = T

C
K . Recall that the Gauss-Dirac structure “FG is defined by the Lagrangian

subspace s ⇢ d, with basis the collection of all e↵�0, 0� e�↵, ei� (�ei) where ↵ � 0
are positive roots and i = 1, . . . , l = rank(G). The element

(92) x =
Y

↵�0

e↵e�↵
Y

i

ei 2 Cl(g)

is non-zero and is annihilated by the Cli�ord action of s; hence it is a pure spinor
defining s. Note that x satisfies

⌧(h+)x = x, x⌧(h�1
� ) = x, ⌧(h0)x⌧(h0) = h

2⇢
0 x

for all h+ 2 N+, h� 2 N�, h0 2 T . Here ⇢ = 1
2

P
↵�0 ↵, and t 7! t

2⇢ 2 C⇥ is the
character of T defined by the weight 2⇢. Hence,

b G = R(x) 2 ⌦(G)

is a pure spinor defining “FG. We refer to b G as the Gauss-Dirac spinor. Its equivari-
ance properties are:

l
⇤
h+

b G = b G, r
⇤
h�1
�

b G = b G, l
⇤
h0

r
⇤
h0

b G = h
2⇢
0

b G.

That is, b G is invariant up to the character, given by the group homomorphism S ! T

followed by the 2⇢-character.
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Since the big Gauss cell O = N�TN+ ⇢ G is dense in G, the equivariance property,
together with the fact that the pull-back of  G to the group unit is equal to str(x) = 1,
completely characterizes the pure spinor  G, and allows us to give an explicit formula.
Recall the 2-form ! O on the big Gauss cell, given by (68):

Proposition 4.14. — The restriction of the pure spinor b G to the big Gauss cell O =
j(N� ⇥ T ⇥N+) is given by the formula,

b G

��
O = g

⇢
0 exp(�! O).

Here g0 : O ! T is the composition of the Gauss decomposition j
�1 : O ! N�⇥T⇥N+

with projection to the middle factor.

Proof. — Both sides are pure spinors defining the Gauss-Dirac structure over O, with
the same equivariance property under S, and both sides pull back to 1 at the group
unit e.

We now compare the Gauss-Dirac spinor b G with the pure spinor  G from Propo-
sition 4.4.

Proposition 4.15. — The pure spinors  G, b G are related by a twist by the r-matrix r:
b G = %(exp(�e(r)) G.

Proof. — Let r� 2 ^2d be the image of r under the diagonal inclusion g ,! d. We
will show that

(93) x = %
Cl(exp(�r�))q(µ).

The proposition follows from this identity by applying the map R. Up to a scalar,
(93) holds since both sides are pure spinors defining the same Lagrangian subspace.
To determine the scalar, we apply the super-trace to both sides. Recall that the
spinor action of elements ⇠� 2 g� ⇢ g is given by Cli�ord commutator with the
corresponding element ⇠ 2 g. Since the super-trace vanishes on Cli�ord commutators,
it follows that

str(%Cl(exp(�r))q(µ)) = str(q(µ)) = 1 = str(x).

Let us next compute the Cli�ord di�erential dCl = �4[q(⌅), ·] of the element (92).
Let ⇢ = 1

2

P
↵�0 ↵ 2 t⇤ be the half-sum of positive (real) roots.

Lemma 4.16. — The quantization of the structure constant tensor satisfies,

�4q(⌅) = 2⇡
p
�1⇢ mod n�Cl(g)n+.

Here B is used to identify g⇤ ⇠= g.

Proof. — By definition,

�4q(⌅) =
1

6

X
B([ea

, e
b], ec)eaebec,
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using a basis ea of g, with B-dual basis e
a. Take this basis to be the Cartan-Weil

basis, and use the Cli�ord relations to write factors e�↵ to the left and factors e↵ to
the right. Then

�4q(⌅) 2 Cl(g)T ⇢ n�Cl(g)n+ � Cl(t).

(For a T -equivariant element in Cl(g), the T -weight of the n�-factors must be com-
pensated by the T weights of the n+-factors.) Since �4q(⌅) is an odd element of
filtration degree 3, and since ⌅ has no component in ^3t, it follows that

�4q(⌅) 2 t� n�Cl(g)n+.

To compute the t-component, we calculate the constant component of

[⇠,�4q(⌅)]Cl = dCl
⇠ = q(�(⇠))

for any ⇠ 2 t. We have

�(⇠) = �
X

↵�0

[⇠, e�↵] ^ e↵ = 2⇡
p
�1

X

↵�0

h↵, ⇠ie�↵ ^ e↵,

hence (see Sternberg [52, Equation (9.25)])

q(�(⇠)) = 2⇡
p
�1

X

↵�0

h↵, ⇠ie�↵e↵ + 2⇡
p
�1 h⇢, ⇠i.

As a consequence, we obtain,

Proposition 4.17. — The element x =
Q
↵�0 e↵e�↵

Q
i ei satisfies,

⇣
dCl � 2⇡

p
�1◆Cl(⇢)

⌘
x = 0.

Proof. — dCl is given as the Cli�ord commutator with �4q(⌅). Since x is annihilated
under both left and right multiplication by elements of n�Cl(g)n+, it follows that

dCl(x) = 2⇡
p
�1[⇢, x]Cl.

As a consequence, the Gauss-Dirac spinor satisfies the di�erential equation:

(94)
�
d + ⌘ � 2⇡

p
�1%(e(⇢))

� b G = 0.

In fact, there is a more general version of this Equation, stated in the following
Proposition. For any (real) dominant weight � of G (not to be confused with the map
� above), let �� 2 C

1(G) be the function

��(g) =
hv�, g · v�i
hv�, v�i

,

where v� is a highest weight vector in the irreducible unitary representation (V�, h·, ·i)
of highest weight �. The function �� is invariant under the left-action of N�, under
the right-action of N+, and under the T -action it satisfies

(95) ��(tg) = ��(gt) = t
���(g).

Since ��(e) = 1, it follows that �� 6= 0 on the big Gauss cell. We are interested in
the product ��

b G. Away from the zeroes of ��, this is a pure spinor defining the
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Gauss-Dirac structure. Similar to b G, it is invariant under the left-action of N� and
the right-action of N+, and satisfies

(96) l
⇤
t (��

b G) = r
⇤
t (��

b G) = t
�+⇢(��

b G)

for all t 2 T .

Proposition 4.18. — For any dominant weight �, the product ��
b G satisfies the dif-

ferential equation:

(97)
�
d + ⌘ � 2⇡

p
�1%(e(�+ ⇢))

�
��

b G = 0,

where B is used to identify g⇤ ⇠= g.

Proof. — Let s ⇢ d be the Lagrangian subalgebra (66) defining the Gauss-Dirac
structure. We have, for all ⇣ = (⇠, ⇠0) 2 s,

%(s(⇣))
�
d + ⌘ � 2⇡

p
�1%(e(�+ ⇢))

�
��

b G

=
h
%(s(⇣)), d + ⌘ � 2⇡

p
�1%(e(�+ ⇢))

i
��

b G

=
�
L(⇠L � (⇠0)R))� 2⇡

p
�1B(⇠ � ⇠

0
,�+ ⇢)

�
��

b G = 0,

where the last equality follows from the equivariance properties (96) of ��
b G. (Note

that for the elements of the form ⇣ = (⇠, 0) with ⇠ 2 n+ or ⇣ = (0, ⇠) with ⇠ 2 n�, the
inner product with �+⇢ 2 t vanishes.) Hence, the left hand side of (97) is annihilated
by all s(⇣), for ⇣ 2 s. Hence it is a function times b G, and thus vanishes since it has
parity opposite to that of b G.

Remark 4.19. — The holomorphic Dirac structure “FG on G = K
C restricts to a com-

plex Dirac structure “FG|K = “FK on the real Lie group K, with defining pure spinor
the pull-back (restriction) b K of b G. On the other hand, EG|K = (EK)C. In the
notation of Section 2.4, applied to the Gauss-Cartan-splitting (TK)C = E

C
K � “FK ,

we have � = 2⇡
p
�1e(⇢) 2 �((TK)C), thus /@± = d + ⌘ ± 2⇡

p
�1%(e(⇢)). As usual,

/@+�K = 0, /@� b K = 0 (the second equation is the pull-back of (94) to K). Let
µ be the bi-invariant (real) volume form on K defined by �K , b K . Since /@

2
± =

±2⇡
p
�1 L(Aad(⇢)), the Dirac cohomology groups H±(EC

K , “FK , µ) are the cohomol-
ogy groups of /@± on the space of Aad(⇢)-invariant complex-valued di�erential forms
on K. These may be computed by the standard localization argument ([12], see also
[33]): The set of zeroes of the vector field Aad(⇢) on K is just the maximal torus
TK , and the pull-back to TK intertwines /@± with d ± 2⇡

p
�1B(✓T , ⇢)), with ✓T the

Maurer-Cartan form on TK . Hence, by localization the pull-back to TK induces an
isomorphism,

H±(EC
K , “FK , µ) ⇠= H(⌦(TK)C

,d ± 2⇡
p
�1B(✓T , ⇢))

Since ⇢ is a weight, it defines a TK-character t
⇢, and the operators d±2⇡

p
�1B(✓T , ⇢)

are obtained from d by conjugation by t
±⇢. Hence H±(EC

K , “FK , µ) ⇠= H(TK)C.
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5. q-Hamiltonian G-manifolds

In this section, we use the techniques developed in this paper to extend the theory
of group-valued moment maps, as developed in [3, 8] for the case of compact Lie
groups, to more general settings.

5.1. Dirac morphisms and group-valued moment maps. — We briefly recall
the definitions.

Definition 5.1. — A quasi-Hamiltonian g-manifold (or simply q-Hamiltonian g-
manifold) is a manifold M with a Lie algebra action AM : g ! X(M), a 2-form !,
and a g-equivariant moment map � : M ! G such that

d! = �⇤⌘

◆(AM (⇠))! = �⇤B(⇠, ✓
L+✓R

2 ) (moment map condition)
ker(!m) = {AM (⇠)m| Ad�(m) ⇠ = �⇠} (minimal degeneracy condition).

(98)

If the action of g extends to an action of the Lie group G, and if ! and � are equivariant
for the action of G, we speak of a q-Hamiltonian G-manifold.

The first two conditions in (98) imply that ! is g-invariant (see [3]). As shown
by Bursztyn-Crainic [14], the definition of a q-Hamiltonian space may be restated in
Dirac geometric terms (see also Xu [57] for another interpretation).

Theorem 5.2. — There is a 1-1 correspondence between q-Hamiltonian g-manifolds,
and manifolds M together with a strong Dirac morphism

(99) (�,!) : (M, TM, 0) ! (G, EG, ⌘).

More precisely, (M, AM ,!, �) satisfies the first two conditions if and only if (�,!)
is a Dirac morphism, and in this case the third condition is equivalent to this Dirac
morphism being strong.

Proof. — Let (M, AM ,!,�) be a q-Hamiltonian g-space. Given m 2 M , let E
0
�(m)

be the forward image of TmM under ((d�)m,!m):

E
0
�(m) = {(d�(v),↵)| v 2 TmM, (d�)⇤m↵ = ◆(v)!m}.

Taking v of the form AM (⇠)m for ⇠ 2 g, and using the moment map condition, we
see E

0
�(m) � (EG)�(m). In fact, one has equality since both are Lagrangian subspaces.

This shows that (�,!) is a Dirac morphism. In particular,

(d�)m(ker(!m)) = ker((EG)�(m)) = {Aad(⇠)�(m)|Ad�(m) ⇠ = �⇠}.

Hence, the minimal degeneracy condition holds if and only (d�)m restricts to an
isomorphism on ker(!m), i.e. if and only if (�,!) is a strong Dirac morphism. Con-
versely, given a strong Dirac morphism (99), the associated map a defines a g-action
AM (⇠) = a(�⇤e(⇠)) on M , for which the map � is g-equivariant. The above argument
then shows that (M, AM ,!, �) is a q-Hamiltonian g-space.
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Remark 5.3. — As a consequence of this result (or rather its proof), we see that
if (M, AM ,!, �) satisfies the first two conditions in (98), then the third condition
(minimal degeneracy) is equivalent to the transversality property [15, 57]

ker(!) \ ker(d�) = {0}.

Remark 5.4. — There is a similar result for q-Hamiltonian G-manifolds. Here, it is
necessary to assume the existence of a G-action on M for which the Dirac morphism
(�,!) is equivariant, and such that the infinitesimal action coincides with that defined
by a.

Example 5.5. — By Example 2.7, the inclusion of the conjugacy classes C in G,
with 2-forms defined by the Cartan-Dirac structure, defines a strong Dirac morphism
(◆ C ,! C ). Thus, conjugacy classes are q-Hamiltonian G-manifolds.

Using our results on the Cartan-Dirac structure, it is now straightforward to deduce
the basic properties of q-Hamiltonian spaces (M, AM ,!, �). In contrast with the
original treatment in [3], the discussion works equally well for non-compact Lie groups,
and also in the holomorphic category.

Theorem 5.6 (Fusion). — Let (M, AM ,�,!) be a q-Hamiltonian G⇥G-manifold. Let
Afus be the diagonal G-action, �fus = Mult ��, and !fus = ! + �⇤&, with & 2 ⌦2(G2)
the 2-form defined in (47). Then (M, Afus,�fus,!fus) is a q-Hamiltonian G-manifold.
(An analogous statement holds for q-Hamiltonian g⇥ g-manifolds.)

Proof. — Since
(�fus,!fus) = (Mult, &) � (�,!)

is a composition of two strong Dirac morphism, it is itself a strong Dirac morphism
from (M,TM, 0) to (G, EG, ⌘). The induced map M ⇥ g = �⇤fusEG ! TM is a
composition of the map Mult⇤EG ! EG⇥G defined by the strong Dirac morphism
(Mult, &), with the map �⇤EG ⇥ EG ! TM given by the strong Dirac morphism
(�,!). If we use the sections e(⇠) to identify EG

⇠= G⇥ g, the latter map is the g⇥ g-
action on M , while the former is the diagonal inclusion g! g⇥ g. This confirms that
the resulting action is just the diagonal action.

If M = M1⇥M2 is a direct product of two q-Hamiltonian manifolds, the quadruple
(M, Afus,�fus,!fus) is called the fusion product of M1, M2. In particular we obtain
products of conjugacy classes as new examples of q-Hamiltonian G-spaces.

Suppose (M, AM ,!0,�0) is a Hamiltonian g-manifold: That is, !0 is symplectic,
and �0 : M ! g⇤ is the moment map for a Hamiltonian g-action on M . As is well-
known, this is equivalent to �0 being a Poisson map from the symplectic manifold
(M,!0) to the Poisson manifold (g⇤,⇡g⇤). But this is also equivalent to

(�0,!0) : (M,TM, 0) ! (g⇤,Gr⇡, 0)

being a strong Dirac morphism. A Hamiltonian G-manifold comes with a G-action on
M integrating the g-action, and such that the Dirac morphism (�0,!0) is equivariant.
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Given an invariant inner product B on g, used to identify g⇤ ⇠= g, we may compose
the Dirac morphism (�0,!0) with the Dirac morphism (exp,$) from Theorem 3.13,
and obtain:

Theorem 5.7 (Exponentials). — Suppose (M, AM ,!0,�0) is a Hamiltonian G-
manifold, and let ! = !0 + �⇤0$, � = exp ��0. Then (M, AM ,!, �) satisfies
the first two conditions in (98). On M\ = ��1

0 (g\), the third condition (minimal de-
generacy) holds as well, thus (M\, AM ,!, �) is a q-Hamiltonian G-manifold. (Similar
statements hold for q-Hamiltonian g-manifolds.)

5.2. Volume forms. — Any symplectic manifold (M,!) carries a distinguished
volume form, given as the top degree component exp(!)[dim M ] = 1

n!!
n. For a q-

Hamiltonian G-manifold (M, AM ,!, �), the 2-form ! is usually degenerate, hence
exp(!)[top] will have zeroes. Nevertheless, any q-Hamiltonian G-manifold carries a
distinguished volume form, provided the adjoint action Ad: G ! O(g) lifts to Pin(g):

Theorem 5.8 (Volume forms). — Suppose the adjoint action Ad: G ! O(g) lifts
to Pin(g), and let  G 2 ⌦(G) be the pure spinor defined by this lift. For any
q-Hamiltonian G-manifold (M, AM ,!,�), the di�erential form

(100) µM = (exp(!) ^ �⇤ G)[dim M ]

is a volume form. It has the equivariance property AM (g)⇤µM = det(Adg) µM . More
generally, if (M, AM ,!, �) satisfies the first two conditions in (98), the form µM is
non-zero exactly at those points where ! satisfies the minimal degeneracy condition.

Of course, the factor det(Adg) = ±1 is trivial if G is connected.

Proof. — Since  G is a pure spinor defining the complementary Lagrangian subbun-
dle FG, and since (�,!) is a strong Dirac morphism, the pull-back �⇤ G is non-zero
everywhere. Furthermore, exp(!)�⇤ G is a pure spinor defining the backward image
F of FG under the Dirac morphism (�,!). Since F is transverse to TM (see Propo-
sition 1.15), the top degree part of exp(!)�⇤ G is nonvanishing. More generally, if
(M, AM ,!,�) only satisfies the first two conditions in (98), then the above argument
applies at all points of M where (�,!) is a strong Dirac morphism. But these are
exactly the points where �⇤ G is non-zero.

The equivariance property of µM is a direct consequence of the equivariance prop-
erties of �G and  G described in Proposition 4.4.

The volume form µM is called the Liouville volume form of the q-Hamiltonian
G-manifold (M, AM ,!, �). Let |µM | be the associated measure. If the moment
� is proper, the push-forward �⇤|µM | is a well-defined measure on G, called the
Duistermaat-Heckman measure.

Remark 5.9. — For the case of compact Lie groups, the q-Hamiltonian Liouville forms
and Duistermaat-Heckman measures were introduced in [8]. The fact that µM is a
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volume form was verified by ‘direct computation’. However, the argument in [8] does
not extend to non-compact Lie groups.

Remark 5.10. — The expression exp(!)�⇤ G entering the definition of the volume
form µM satisfies the di�erential equation

(101) (d + ◆(AM (⌅)))
⇣

exp(!)�⇤ G

⌘
= 0.

This follows from the di�erential equation (85) for  G together with Remark 1.5(a).

Proposition 5.11. — Suppose (M, AM ,!, �) is a q-Hamiltonian G-manifold, and that
Ad lifts to the Pin group. Then M is even-dimensional if det(Ad�) = +1, and odd-
dimensional if det(Ad�) = �1. In particular, it is even-dimensional when G is con-
nected, and in this case M carries a canonical orientation.

Proof. — The construction of  G in terms of the map R (see Proposition 4.4) shows
that the form  G has even degree at points g 2 G with det(Adg) = 1, and odd
degree at points with det(Adg) = �1. Hence, the parity of the volume form µM is
determined by the parity of det(Ad�). If G is connected, the lift of Ad (which exists
by assumption) is unique, and det(Adg) ⌘ 1.

Without the existence of a lift to Pin(g), the form  G is only defined locally,
up to sign. That is, we still obtain a G-invariant measure on M , given locally as
(e!�⇤ G)[top]. It is interesting to specialize these results to conjugacy classes:

Theorem 5.12. — Suppose G is a connected Lie group, whose Lie algebra carries an
invariant inner product B. Then:

a. Every conjugacy class C ⇢ G carries a distinguished invariant measure (depend-
ing only on B).

b. The conjugacy class C of g 2 G is even-dimensional if and only if det(Adg) = +1.
c. If the adjoint action G ! O(g) lifts to Pin(g), then every conjugacy class carries

a distinguished orientation.

Example 5.13. — Consider the conjugacy classes of G = O(2): If g 2 SO(2), the
conjugacy class of g is zero-dimensional, consisting of either one or two points. On
the other hand, the circle O(2)\SO(2) ⇠= S

1 forms a single conjugacy class. Similarly,
for G = O(3), the elements g 2 G with det(g) = �1 have det(Adg) = 1. Each of
these form a single 2-dimensional conjugacy class. The group SO(3) is the simplest
example where the adjoint action G ! SO(g) (which in this case is just the identity
map) does not lift to the spin group. Indeed the conjugacy class of rotations by 180o

is isomorphic to RP (2), hence non-orientable.

Example 5.14. — Suppose G carries an involution �, such that the corresponding
involution of g preserves B. Form the semi-direct product GoZ2, where the action of
Z2 is generated by the involution �. The G o Z2-conjugacy class of the element (e,�)
is isomorphic to the homogeneous space M = G/G

�, which therefore is an example
of a q-Hamiltonian G o Z2-space. The 2-form on M is just zero. Let us compute the
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Liouville measure on M , for the case that the restriction of B to g� = ker(� � 1) is
still non-degenerate. Let e1, . . . , en be a basis of g, with B(ei, ej) = ±�ij , such that
e1 . . . , ek are a basis of g�. Then

e� = 2(n�k)/2
ek+1 · · · en 2 Pin(g)

is a lift of �. Note that e�2 = ±1, with sign depending on n�k. Taking µ = e1^ · · ·^en

as the Riemannian volume form on g, we have

e�q(µ) = ±2(n�k)/2
e1 . . . ek

so ?q�1(e�q(µ)) = ±2(n�k)/2
ek+1 ^ · · · ^ en. We conclude that the Liouville measure

on M = G/G
� coincides with the G-invariant measure defined by the metric on

(g�)? ⇢ g.

Proposition 5.15 (Volume form for ‘fusions’). — The volume form of a q-Hamiltonian
G ⇥ G-manifold (M, AM ,!, �) (as in Theorem 5.6) coincides with the volume form
of its fusion (M, Afus,!fus,�fus):

(exp(!) �⇤ G⇥G)[dim M ] = (exp(!fus) �⇤fus G)[dim M ]
.

Proof. — Using Theorem 4.9, we have

exp(!fus) �⇤fus G = exp(! + �⇤&) �⇤Mult⇤  G

= exp(!) �⇤
�
%(exp(�e(�))) 1

G ⌦  
2
G

�

= exp(�◆(AM (�)))(exp(!)�⇤ G⇥G),

where we used Remark 1.5(a) for the last equality. Since the operator exp(�◆(AM (�)))
does not a�ect the top degree part, the proof is complete.

Example 5.16. — An important example of a q-Hamiltonian G-space is the double
D(G) = G⇥G, with moment map the commutator �(a, b) = aba

�1
b
�1. As explained

in [8] the double is obtained by fusion, as follows: Start by viewing the Lie group G

as a homogeneous space G = G ⇥G/G�, where G� is the diagonal subgroup. Since
G� is the fixed point set for the involution � of G⇥G switching the two factors, we
see as in Example 5.14 that G is a q-Hamiltonian (G⇥G) o Z2-space, with moment
map a 7! (a, a

�1
,�). The Liouville measure is simply the Haar measure on G. Fusing

two copies, the direct product G⇥G becomes a q-Hamiltonian G⇥G-space. Finally,
passing to the diagonal action one arrives at the double D(G). By Proposition 5.15,
the resulting Liouville measure on D(G) is just the Haar measure.

Proposition 5.17 (Volume form for ‘exponentials’). — Let (M, AM ,�0,!0) be a Hamil-
tonian G-space, and (M, AM ,�,!) its ‘exponential’, as in Theorem 5.7. Then

(exp(!)�⇤ G)[dim M ] = �⇤0J
1/2 exp(!0)

[dim M ]
.
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Proof. — Using the relation (91) between exp⇤  G and  g = 1, we find
exp(!) �⇤ G = exp(!0 + �⇤0$)�⇤0 exp⇤  G

= exp(!0)�
⇤
0J

1/2
%( eA�e0("))(1)

= �⇤0J
1/2 exp(�◆(AM ("))) exp(!0).

Since exp(�◆(AM ("))) does not a�ect the top degree part, the proof is complete.

5.3. The volume form in terms of the Gauss-Dirac spinor. — Suppose now
that K is a compact Lie group, with complexification G = K

C, and let B : g⇥g! C be
the complexification of a positive definite inner product on k. In this case, as discussed
in Section 3.6, EG has a second Lagrangian complement “FG, defined by the Gauss-
Dirac spinor b G. Its pull-back to K ⇢ G, denoted by b K , is thus a complex-valued
pure spinor defining a (complex) Lagrangian complement “FK ⇢ (TK)C.

Given a q-Hamiltonian K-space (M, AM ,�,!), the complex di�erential form
exp(!)�⇤ b K is related to exp(!)�⇤ K by the r-matrix,

exp(!)�⇤ b K = exp(�◆(AM (r)))
⇣

exp(!)�⇤ K

⌘
.

Since exp(�◆(AM (r))) does not a�ect the top degree part, it follows that we can write
our volume form also in terms of b K :

µM =
⇣

exp(!)�⇤ b K

⌘[dim M ]
.

Remark 5.18. — Let F̃M be the backward image of “FK under the strong Dirac mor-
phism (�,!) : (M,TM, 0) ! (K, EK , ⌘). Since F̃M is transverse to TM

C, it is given
by a graph of a (complex-valued) bivector ⇡, and H�(TM

C
, F̃M , µM ) ⇠= H⇡(M) =

H(⌦(M)X⇡ , d� ◆(X⇡)). A simple calculation shows that X⇡ = 2⇡
p
�1AM (⇢) (where

B is used to identify k⇤ ⇠= k).
The pure spinors �M = 1 and �K satisfy d�M = 0 and (d + ⌘)�K = 0. Hence, by

Proposition 2.13 the map e
!�⇤ descends to Dirac cohomology, H�(EC

K , “FK , µK) !
H⇡(M). In particular, /@� b K = 0 implies that exp(!)�⇤ b K is closed under d �
2⇡
p
�1◆(AM (⇢)). For M is compact, the class [e!�⇤ b K ] in H⇡(M) is nonvanishing

because its integral is
R

M µM > 0.

Let �� : G ! C be the holomorphic functions introduced in Section 4.5.

Proposition 5.19. — For any dominant weight �, the complex di�erential form
exp(!)�⇤(��

b K) satisfies the di�erential equation

(102) (d� 2⇡
p
�1◆(AM (�+ ⇢))

�⇣
exp(!)�⇤(��

b K)
⌘

= 0.

Her BK is used to identify k⇤ ⇠= k.

Proof. — This follows from the di�erential equation for the Gauss-Dirac spinor,
Proposition 4.18, together with Remark 1.5(a).
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As remarked in [6], the orthogonal projection of dim V���|K to the K-invariant
functions on K coincides with the irreducible character �� of highest weight �. Thus,

Z

M
exp(!)�⇤(��

b K) =

Z

M
|µM |�⇤��

=

Z

K
�⇤|µM |�� = (dim V�)

�1

Z

K
�� �⇤|µM |.

On the other hand, by (102) the integral may be computed by localization [12] to
the zeroes of the vector field AM (�+ ⇢). As shown in [6], the 2-form ! pulls back to
symplectic forms !Z = ◆

⇤
Z! on the components Z of the zero set, and the restriction

�Z = ◆
⇤
Z� takes values in T . Since ◆

⇤
T (��

b K)(t) = t
�+⇢ for t 2 T , one obtains

the following formula for the Fourier coe�cients of the q-Hamiltonian Duistermaat-
Heckman measure:

Z

K
���⇤|µM | = dim V�

X

Z⇢ AM (�+⇢)�1(0)

Z

Z

exp(!Z)(�Z)�+⇢

Eul(⌫Z , 2⇡
p
�1(�+ ⇢))

.

Here Eul(⌫Z , ·) is the T -equivariant Euler form of the normal bundle. This formula
was proved in [6], using a more elaborate argument. Taking � = 0, one obtains a
formula for the volume

R
M |µM | of M .

5.4. q-Hamiltonian q-Poisson g-manifolds. — Just as any symplectic 2-form
determines a Poisson bivector ⇡, any q-Hamiltonian G-manifold carries a distinguished
bivector field ⇡. However, since ! is not non-degenerate ⇡ is not simply obtained as
an inverse, and also ⇡ is not generally a Poisson structure.

Suppose (M, AM ,!, �) is a q-Hamiltonian g-manifold, or equivalently that (�,!)

is a strong Dirac morphism (M, TM, 0) ! (G, EG, ⌘). Let ‹F ⇢ TM be the backward
image of FG under this Dirac morphism. It is a complement to TM , hence it is of the
form ‹F = Gr⇡ for some g-invariant bivector field ⇡ 2 X2(M). By Proposition 2.10(c),
the Schouten bracket of this bivector field with itself satisfies

(103) 1
2 [⇡,⇡]Sch = AM (⌅).

Let p0 : TG ! EG be the projection along FG. Let {va} and {va} be bases of g with
B(va, v

b) = �
b
a. Then p0(x0) =

P
ahx, f(va)ie(va) for all x

0 2 �(TG). For ↵0 2 ⌦1(G) ⇢
�(TG), we have h↵0, f(va)i = 1

2 h↵
0
, v

L
a + v

R
a i e(va). Hence, (20) shows that

(104) ⇡
]�⇤↵0 = �

X

a

�⇤h↵0, vL
a +vR

a
2 i AM (va), ↵

0 2 ⌦1(G),

and, by (24), we have:

(105) ran(AM ) + ran(⇡]) = TM.

This last condition can be viewed as a counterpart to the invertibility of a Poisson
bivector defined by a symplectic form. Dropping this condition, one arrives at the
following definition:
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Definition 5.20. — [1, 2] A q-Hamiltonian q-Poisson g-manifold is a manifold M ,
together with a Lie algebra action AM : g ! X(M), a g-invariant bivector field ⇡,
and a g-equivariant moment map � : M ! G, such that conditions (103) and (104)
are satisfied. If the g-action on M integrates to a G-action, such that ⇡,� are G-
equivariant, we speak of a q-Hamiltonian q-Poisson G-manifold.

Example 5.21. — The basic example of a Hamiltonian Poisson G-manifold is provided
by the coadjoint action on M = g⇤, with ⇡ = ⇡g⇤ the Kirillov bivector and moment
map the identity map. Similarly, the quadruple (G, Aad,⇡G, id), with ⇡G the bivector
field (46), is a q-Hamiltonian q-Poisson G-manifold.

The techniques in this paper allow us to give a much simpler proof to the following
theorem from [14]:

Theorem 5.22. — There is a 1-1 correspondence between q-Hamiltonian q-Poisson g-
manifolds (M, AM ,⇡,�), and Dirac manifolds (M,EM , ⌘M ) equipped with a strong
Dirac morphism

(106) (�, 0) : (M, EM , ⌘M ) ! (G, EG, ⌘).

Under this correspondence, ran(EM ) = ran(AM ) + ran(⇡]).

Proof. — Suppose (�, 0) : (M,EM , ⌘M ) ! (G, EG, ⌘) is a strong Dirac morphism.
Consider the bundle map a : �⇤EG ! TM defined by � (see Section 2.2). By Propo-
sition 2.10(c), the vector fields AM (⇠) = a(e(⇠)) 2 X(M) define a Lie algebra action
of g on M for which � is equivariant. Note also that since ran(a) ⇢ ran(EM ), this
action preserves the leaves Q ⇢ M of EM . In fact, the bundle EM is g-invariant: If
EM = Gr! this follows from the g-invariance of ! (see comment after Def. 5.1), and
in the general case it follows since EM |Q is invariant, for any leaf Q. Let FM be the
backward image of FG under (�, 0), and ⇡ 2 X2(M) be the bivector field defined
by the splitting TM = EM � FM . Then ⇡ is g-invariant (since EM , FM are). Equa-
tion (103) follows from Proposition 2.10(d), while Equation (104) is a consequence of
Theorem 1.20, Equation (20).

Conversely, given a quasi-Poisson g-manifold (M, AM ,⇡,�), let a : �⇤EG ! TM

be the bundle map given on sections by �⇤e(⇠) 7! AM (⇠). The g-equivariance of �
implies that � � a = pr�⇤TG |�⇤EG . Theorem 1.20 provides a Lagrangian splitting
TM = EM � FM such that FM is the backward image of FG and EG is the forward
image of EM . It remains to check the integrability condition of EM relative to the 3-
form ⌘M = �⇤⌘. Let ⌥E 2 �(^3

FM ) be the Courant tensor of EM . We have to show
that ⌥E = 0, or equivalently that �(EM ) is closed under the ⌘M -twisted Courant
bracket. Recall that EM is spanned by the sections of two types:

“AM (⇠) := ba(�⇤e(⇠)) = AM (⇠)� �⇤B( ✓
L+✓R

2 , ⇠)

for ⇠ 2 g, and sections h(↵), for ↵ 2 ⌦1(M), where the map h is defined as in (23),
with V replaced with TM , and with ! = 0. Since ba is a comorphism of Lie algebroids
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(cf. Proposition 2.8), we have

(107) [[“AM (⇠1),“AM (⇠2)]]⌘M = “AM ([⇠1, ⇠2]).

Furthermore, since ⇡ is g-invariant, it follows from (23) that the map h is g-equivariant,
and therefore

[%(h(↵)), [%(“AM (⇠)),d + �⇤⌘]] = [%(h(↵)), L(AM (⇠))] = �%(h( L(AM (⇠)↵)).

Thus

(108) [[“AM (⇠), h(↵)]]⌘M = h( L(AM (⇠))↵)

by definition of the Courant bracket. Equations (107) and (108) show that
[[“AM (⇠), ·]]⌘M preserves �(EM ). Thus ⌥E(x1, x2, x3) vanishes if one of the three sec-
tions xi 2 �(EM ) lies in the range of “AM . It remains to show that ⌥E(h(↵1), h(↵2), h(↵3)) =
0 for all 1-forms ↵i, or equivalently that h

⇤⌥E = 0, where h
⇤ : FM ! TM is the

dual map to h : T
⇤
M ! EM = F

⇤
M . Since h = p|T⇤M , where p : TM ! EM is the

projection along FM (see (23)), we have h
⇤ = prTM |FM . Thus, we must show that

prTM ⌥E = 0. By Proposition 2.10(b), and the defining property of q-Hamiltonian
q-Poisson spaces, we have

prTM (⌥F ) = a(�⇤⌥FG) = AM (⌅) = 1
2 [⇡,⇡]Sch.

On the other hand, Theorem 2.9(a) gives prTM (⌥E) + prTM (⌥F ) � 1
2 [⇡,⇡]Sch = 0.

Taking the two results together, we obtain prTM (⌥E) = 0 as desired.

As an immediate consequence, the data (M, AM ,⇡,�) defining a q-Hamiltonian
q-Poisson G-manifold are equivalent to the data of a G-equivariant Dirac manifold
(M,EM , ⌘M ), equipped with a G-equivariant Dirac morphism (�, 0), for which the
G-action on M integrates the g-action defined by the Dirac morphism.

Proposition 5.23 (Fusion). — Suppose (M, AM ,⇡,�) is a q-Hamiltonian q-Poisson g⇥
g-manifold. Let Afus be the diagonal g-action, �fus = Mult ��, and ⇡fus = ⇡+ AM (�).
Then (M, Afus,⇡fus,�fus) is a q-Hamiltonian q-Poisson g-manifold.

Proof. — By Theorem 5.22, the given q-Poisson g ⇥ g-manifold corresponds to a
Dirac manifold (M, EM , ⌘M ) such that (�, 0) is a Dirac morphism into (G, EG, ⌘) ⇥
(G, EG, ⌘). Thus, ⌘M = �⇤(⌘1

G+⌘2
G). The bivector field ⇡ is defined by the Lagrangian

splitting TM = EM �FM , where FM is the backward image of F
1
G�F

2
G under (�, 0).

Composing with (Mult, &) (cf. Thm. 3.9), we obtain a strong Dirac morphism,

(�fus,�
⇤
&) : (M,EM , ⌘M ) ! (G, EG, ⌘),

which in turn defines a q-Hamiltonian q-Poisson g-manifold. Let ‹FM be the backward
image of FG under this Dirac morphism. By Proposition 3.11, ‹F is related to F by
the section “AM (�) 2 �(^2

EM ), where “AM : g ⇥ g ! EM is the map defined by the
Dirac morphism (�, 0). Hence, by Proposition 1.18, the bivector for the new splitting
TM = EM � ‹FM is ⇡fus = ⇡ + AM (�).
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Proposition 5.24 (Exponentials). — Suppose (M, AM ,⇡0,�0) is a Hamiltonian Pois-
son g-manifold. That is, AM is a g-action on M , ⇡0 is a g-invariant Poisson struc-
ture, and �0 : M ! g is a g-equivariant moment map generating the given action on
M . Assume that �0(M) ⇢ g\, and let

� = exp ��0, ⇡ = ⇡0 + AM (�⇤0")

where " 2 C
1(g\,^2g) is the solution of the CDYBE defined in Section 3.5. Then

(M, AM ,⇡,�) is a q-Hamiltonian q-Poisson g-manifold.

Proof. — It is well-known that (M, AM ,⇡0,�0) is a Hamiltonian g-manifold if and
only if �0 : M ! g⇤ is a Poisson map, i.e., if and only if

(�0, 0) : (M, EM , 0) ! (g⇤, E⇡g⇤ , 0)

is a strong Dirac morphism, with EM = Gr⇡0 and Eg⇤ = Gr⇡g⇤ . Using B to identify
g⇤ ⇠= g, and composing with the strong Dirac morphism (exp,$), one obtains the
strong Dirac morphism

(�,�⇤0$) : (M, EM , 0) ! (G, EG, ⌘),

which in turn gives rise to a q-Hamiltonian q-Poisson g-manifold (M, AM ,⇡,�). The
backward image ‹FM ⇢ TM of FG under the Dirac morphism (�,�⇤0$) is a Lagrangian
complement to EM = Gr⇡. Let ba : �⇤0Eg ! EM be defined by the Dirac morphism
(�0, 0), and put “AM (⇠) = ba � �⇤0e0(⇠). As explained in Section 3.5, ‹FM is related
the Lagrangian complement FM = TM by the section “AM (�⇤0"). Hence, ⇡ = ⇡0 +
AM (�⇤0").

5.5. k⇤-valued moment maps. — Let K be any Lie group. An ordinary Hamilto-
nian Poisson K-manifold is a triple (M,⇡,�) where M is a K-manifold, ⇡ 2 X2(M)
is an invariant Poisson structure, and � : M ! k⇤ is a K-equivariant map satisfying
the moment map condition,

⇡
](dh�, ⇠i) = AM (⇠).

The moment map condition is equivalent to � being a Poisson map. The following
result implies that k⇤-valued moment maps can be viewed as special cases of G =
k⇤ o K-valued moment maps. Let g = k⇤ o k carry the invariant inner product given
by the pairing.

Proposition 5.25. — The inclusion map j : k⇤ ,! k⇤ o K = G is a strong Dirac mor-
phism (j, 0), as well as a backward Dirac morphism, relative to the Kirillov-Poisson
structure on k⇤ and the Cartan-Dirac structure on G. The backward image of FG

under this Dirac morphism is Fk⇤ = T k⇤. The pure spinor  G on G = k⇤oK satisfies

j
⇤
 G = 1.
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Proof. — The Cartan-Dirac structure EG is spanned by the sections e(w) for w =
(�, ⇠) 2 g, while Ek⇤ is spanned by the sections e0(⇠) for ⇠ 2 k. The first part of the
Proposition will follow once we show that s0(�, ⇠) ⇠(j,0) s(�, ⇠), i.e.

(109) e0(⇠) ⇠(j,0) e(�, ⇠), f0(�) ⇠(j,0) f(�, ⇠).

The vector field part of the first relation follows since the inclusion j : k⇤ ,! k⇤ o K is
equivariant for the conjugation action of G = k⇤ o K. (Here, the k⇤-component of G

acts trivially on k⇤, while the K-component acts by the co-adjoint action.) For the 1-
form part, we note that the pull-back of the Maurer-Cartan forms ✓L

, ✓
R 2 ⌦1(G)⌦g

to the subgroup k⇤ ⇢ G is the Maurer-Cartan form for additive group k⇤, i.e.

j
⇤
✓

L = j
⇤
✓

R = ✓0

where the ‘tautological 1-form’ ✓0 2 ⌦1(k⇤)⌦ k⇤ is defined as in Section 3.5. Thus

j
⇤
B

� ✓L
G+✓R

G
2 , (�, ⇠)

�
= B(✓0, (�, ⇠)) = h✓0, ⇠i.

This verifies the first relation in (109); the second one is checked similarly.
Since the adjoint action Ad: G ! O(g) is trivial over k⇤, the lift ⌧ : G ! Pin(g) ⇢

Cl(g) satisfies ⌧ |k⇤ = 1. It follows that the pure spinor  G = R(q(µ)) satisfies j
⇤
 G =

1.

Corollary 5.26. — Let (M,⇡) be a Poisson manifold. Then � : M ! k⇤ is a Poisson
map if and only if the composition j � � : M ! G is a strong Dirac morphism

(j � �, 0) : (M,Gr⇡, 0) ! (G, EG, ⌘).

Put di�erently, Hamiltonian Poisson K-manifolds are q-Hamiltonian q-Poisson k⇤o
K-manifolds for which the moment map happens to take values in k⇤.

As a special case, a Hamiltonian K-manifold (M,!, �) (with ! a symplectic 2-
form, and � satisfying the moment map condition ◆(AM (⇠))! = dh�, ⇠i) is equivalent
to a q-Hamiltonian G = k⇤ o K-space for which the moment map takes values in k⇤.
Since j

⇤
 G = 1, its q-Hamiltonian volume form coincides with the usual Liouville

form (exp!)[top].

6. K
⇤
-valued moment maps

For a Poisson Lie group K, J.-H. Lu [42] introduced another type of group-valued
moment map, taking values in the dual Poisson Lie group K

⇤. For a compact Lie
group K, with its standard Poisson structure, this moment map theory turns out
to be equivalent to the usual k⇤-valued one. In this Section, we will re-examine this
equivalence using the techniques developed in this paper.

ASTÉRISQUE 327



PURE SPINORS ON LIE GROUPS 193

6.1. Review of K
⇤
-valued moment maps. — The theory of Poisson-Lie groups

were introduced by Drinfeld in [23], see e.g. [18] for an overview and bibliography.
Suppose K is a connected Poisson Lie group, with Poisson structure defined by a
Manin triple (g, k, k0). (That is, g is a Lie algebra with an invariant split inner product,
and k, k0 are complementary Lagrangian subalgebras.) Use the paring to identify k0 =
k⇤, and let K

⇤ be the associated dual Poisson Lie group. We assume that g integrates
to a Lie group G (the double) such that K, K

⇤ are subgroups and the product map
K ⇥K

⇤ ! G is a di�eomorphism. The left action of K on G descends to a dressing
action AK⇤ on K

⇤ (viewed as a homogeneous space G/K). The Poisson structure on
K
⇤, or equivalently its graph EK⇤ = Gr⇡K⇤ ⇢ TK

⇤, may be expressed in terms of the
infinitesimal dressing action, as the span of sections

eK⇤(⇠) = AK⇤(⇠)� h✓R
K⇤ , ⇠i

for ⇠ 2 k. Here ✓R
K⇤ 2 ⌦1(K⇤)⌦ k⇤ is the right-invariant Maurer-Cartan form for K

⇤.
Note that as a Lie algebroid, EK⇤ is just the action algebroid.

For the remainder of this Section 6, we will assume that K is a compact real Lie
group. The standard Poisson structure on K is described as follows. Let G = K

C be
the complexification, with Lie algebra g, and let

g = k� a� n, G = KAN

be the Iwasawa decompositions. Here a =
p
�1tK , A = exp a and N = N+ (using

the notation from Section 3.6). We denote by BK an invariant inner product on k,
and let h·, ·i be the imaginary part of 2B

C
K . Then (g, k, a� n) (where g is viewed as a

real Lie algebra) is a Manin triple. Thus K becomes a Poisson Lie group, with dual
Poisson Lie group K

⇤ = AN .
A K

⇤-valued Hamiltonian k-manifold, as defined by Lu [42], is a symplec-
tic manifold (M,!) together with a Poisson map � : M ! K

⇤. Equivalently,
(�,!) : (M, TM, 0) ! (K⇤

, EK⇤ , 0) is a strong Dirac morphism. The Poisson map �
induces a k-action on M , and if this action integrates to an action of K we speak
of a K

⇤-valued Hamiltonian K-manifold. An interesting feature is that ! is not
K-invariant, in general: Instead, the action map K ⇥M ! M is a Poisson map. Ac-
cordingly, the volume form (exp!)[top] is not K-invariant. However, let �A : M ! A

be the composition of � with projection K
⇤ = AN ! A, and (�A)2⇢ : M ! R>0 its

image under the homomorphism T ! C⇥, t 7! t
2⇢ defined by the sum of positive

roots. By [7, Theorem 5.1], the product

(110) (�A)2⇢ (exp!)[top]

is a K-invariant volume form. The proof in [7] uses a tricky argument; one of the
goals of this Section is to give a more conceptual explanation.

6.2. P -valued moment maps.— To explain the origin of the volume form (110),
we will use the notion of a P -valued moment map introduced in [3, Section 10]. Let
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g 7! g
c denote the complex conjugation map on G, and let

I(g) ⌘ g
† = (g�1)c

.

On the Lie algebra level, let ⇠ 7! ⇠
c denote conjugation, and ⇠

† = �⇠c. We have
K = {g 2 G| g

† = g
�1}. Let

P = {g†g| g 2 G}
denote the subset of ‘positive definite’ elements in G. Then P is a submanifold fixed
under I, and the product map defines the Cartan decomposition G = KP . Let EG

be the (holomorphic) Dirac structure on G defined by the inner product

B := 1p
�1

B
C
K .

Since (✓L)† = I
⇤
✓

R
, (✓R)† = I

⇤
✓

L, the Cartan 3-form on G satisfies satisfies ⌘c = I
⇤
⌘,

thus ⌘P := ◆
⇤
P ⌘ is real-valued. Similarly, the pull-backs of the 1-forms B( ✓

L+✓R

2 , ⇠) for
⇠ 2 k are real-valued. It follows that the sections

eP (⇠) := e(⇠)|P

are real-valued. Letting EP ⇢ TP be the subbundle spanned by these sections, it
follows that (P,EP , ⌘P ) is a real Dirac manifold, with (EP )C = EG|P . As a Lie
algebroid, EP is just the action algebroid for the K-action on P . Similarly, the sections
fP (⇠) := f(⇠)|P are real-valued, defining a complement FP to EP . The bundle FP is
defined by the (real-valued) pure spinor,  P := ◆

⇤
P G 2 ⌦(P ).

Remark 6.1. — Since det(Adg +1) > 0 for g 2 P (all eigenvalues of Adg are strictly
positive), one finds that ker(EP ) = {0}. Hence EP is the graph of a bivector ⇡P with
1
2 [⇡P ,⇡P ] = ⇡

]
P (⌘P ).

A P -valued Hamiltonian k-manifold [3, Section 10] is a manifold M together with
a strong Dirac morphism (�1,!1) : (M,TM, 0) ! (P,EP , ⌘P ). For any such space we
obtain, as for the q-Hamiltonian setting, an invariant volume form

(111) (exp(!1) ^ �⇤1 P )[top]
.

Here  P may be replaced by b P , the pull-back of the Gauss-Dirac spinor.(5) By
Proposition 5.19, the expression exp!1 ^ �⇤1(��

b P ) is closed under the di�erential
d� 2⇡◆(AM (�+ ⇢))), for any dominant weight �.

6.3. Equivalence between K
⇤
-valued and P -valued moment maps. — To

relate the K
⇤-valued theory with the P -valued theory, we use the K-equivariant dif-

feomorphism
 : K

⇤ ! P, g 7! g
†
g.

(5) In Section 5.3, B was taken as the complexification of BK , while here we have an extra factorp
�1. This amounts to a simple rescaling of the bilinear form BC

K , not a�ecting any of the results.
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Note that this map takes values in the big Gauss cell, O = N�KN ⇢ G. Let $ O
denote the (complex) 2-form on the big Gauss cell, and $K⇤ = 

⇤
! O. It is easy to

check that $K⇤ is real-valued. One can check that

eK⇤(⇠) ⇠(,$K⇤ ) eP (⇠)

for all ⇠ 2 k: The vector field part of this relation is equivalent to the k-equivariance,
while the 1-form part is verified in [3, Section 10]. It follows that (,$K⇤) is a Dirac
isomorphism from (K⇤

, EK⇤ , 0) onto (P,EP , ⌘P ).
Thus, if (M,!, �) is a K

⇤-valued Hamiltonian k-manifold, then (M,!1,�1) with
!1 = !+�⇤$K⇤ and �1 = �� is a P -valued Hamiltonian k-manifold. In particular,
we obtain an invariant volume form on M ,

�
exp(! + �⇤$K⇤) ^ �⇤⇤ b P

�[top]
.

Using the explicit formula (Proposition 4.14) for the Gauss-Dirac spinor, we obtain


⇤ b P = a

2⇢ exp(�$K⇤),

where a : K
⇤ ! A is projection to the A-factor. Hence,

exp(! + �⇤$K⇤) ^ �⇤⇤ P = (�A)2⇢ exp(!),

identifying the volume form for the associated P -valued space with the volume form
(110).

Proposition 6.2. — For any K
⇤-valued Hamiltonian k-space (M,!, �), the volume

form (�A)2⇢(exp!)[top] is k-invariant. Moreover, for all dominant weights � the dif-
ferential form

(�A)2(�+⇢) exp(!)

is closed under the di�erential d� 2⇡ AM (B]
K(�+ ⇢)).

Proof. — Invariance follows from the identification with the volume form for the
associated P -valued space. The second claim follows from Proposition 5.19, since the
function �� from Section 4.5 satisfies ⇤�� = a

2�.

The di�erential equation permits a computation of the integralsR
M (�A)2(�+⇢)(exp(!))[top] by localization [12] to the zeroes of the vector field
AM (B]

K(�+ ⇢)), similar to the formula in 5.3.

6.4. Equivalence between P -valued and k⇤-valued moment maps. — Finally,
let us express the correspondence [3, Section 10] between P -valued moment maps
and k⇤-valued moment maps in terms of Dirac morphisms. The exponential map for
G = K

C restricts to a di�eomorphism

expp : p :=
p
�1k! P := exp(

p
�1k).

Let $ 2 ⌦2(g) be the primitive of exp⇤ ⌘ defined in (58), and $p its pull-back to p.
Since ⌘P is real-valued, so is $p, and d$p = (exp |p)⇤⌘P . Similarly, Jp := J |p > 0.
The formulas for $p and Jp are similar to those for the Lie algebra k, but with
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sinh functions replaced by sin functions. Use B
] =

p
�1B

]
K to identify k⇤ ⇠= p. By

Proposition 3.12,
e0(⇠) ⇠(expp,$p) eP (⇠), ⇠ 2 k.

Hence (expp,$p) is a Dirac (iso)morphism from (k⇤, Ek⇤ , 0) to (P,EP , ⌘P ). This sets
up a 1-1 correspondence between P -valued and k⇤-valued Hamiltonian k-spaces. Think-
ing of the latter as given by strong Dirac morphisms (�0,!0) to (k⇤, Ek⇤ , 0), the cor-
respondence reads

(�1,!1) = (expp,$p) � (�0,!0).

The volume forms are related by (exp(!1) ^ �⇤1 P )[top] = J
1/2
p exp(!0)[top].

References

[1] A. Alekseev & Y. Kosmann-Schwarzbach – “Manin pairs and moment maps”, J.
Di�erential Geom. 56 (2000), p. 133–165.

[2] A. Alekseev, Y. Kosmann-Schwarzbach & E. Meinrenken – “Quasi-Poisson
manifolds”, Canad. J. Math. 54 (2002), p. 3–29.

[3] A. Alekseev, A. Malkin & E. Meinrenken – “Lie group valued moment maps”, J.
Di�erential Geom. 48 (1998), p. 445–495.

[4] A. Alekseev & E. Meinrenken – “The non-commutative Weil algebra”, Invent.
Math. 139 (2000), p. 135–172.

[5] , “Cli�ord algebras and the classical dynamical Yang-Baxter equation”, Math.
Res. Lett. 10 (2003), p. 253–268.

[6] A. Alekseev, E. Meinrenken & C. Woodward – “Group-valued equivariant local-
ization”, Invent. Math. 140 (2000), p. 327–350.

[7] , “Linearization of Poisson actions and singular values of matrix products”, Ann.
Inst. Fourier (Grenoble) 51 (2001), p. 1691–1717.

[8] , “Duistermaat-Heckman measures and moduli spaces of flat bundles over sur-
faces”, Geom. Funct. Anal. 12 (2002), p. 1–31.

[9] A. Alekseev & P. Xu – “Derived brackets and Courant algebroids”, unfinished
manuscript, 2002.

[10] M. Bangoura & Y. Kosmann-Schwarzbach – “Équation de Yang-Baxter dy-
namique classique et algébroïdes de Lie”, C. R. Acad. Sci. Paris Sér. I Math. 327
(1998), p. 541–546.

[11] M. Van den Bergh – “Double Poisson algebras”, Trans. Amer. Math. Soc. 360 (2008),
p. 5711–5769.

[12] N. Berline & M. Vergne – “Zéros d’un champ de vecteurs et classes caractéristiques
équivariantes”, Duke Math. J. 50 (1983), p. 539–549.

ASTÉRISQUE 327



PURE SPINORS ON LIE GROUPS 197

[13] P. Boalch – “Quasi-Hamiltonian geometry of meromorphic connections”, Duke Math.
J. 139 (2007), p. 369–405.

[14] H. Bursztyn & M. Crainic – “Dirac structures, momentum maps, and quasi-Poisson
manifolds”, in The breadth of symplectic and Poisson geometry, Progr. Math., vol. 232,
Birkhäuser, 2005, p. 1–40.

[15] H. Bursztyn, M. Crainic, A. Weinstein & C. Zhu – “Integration of twisted Dirac
brackets”, Duke Math. J. 123 (2004), p. 549–607.

[16] H. Bursztyn & O. Radko – “Gauge equivalence of Dirac structures and symplectic
groupoids”, Ann. Inst. Fourier (Grenoble) 53 (2003), p. 309–337.

[17] É. Cartan – The theory of spinors, The M.I.T. Press, Cambridge, Mass., 1967.
[18] V. Chari & A. Pressley – A guide to quantum groups, Cambridge University Press,

1995.
[19] C. C. Chevalley – The algebraic theory of spinors, Columbia University Press, 1954.
[20] T. J. Courant – “Dirac manifolds”, Trans. Amer. Math. Soc. 319 (1990), p. 631–661.
[21] T. J. Courant & A. Weinstein – “Beyond Poisson structures”, in Action hamiltoni-

ennes de groupes. Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, vol. 27,
Hermann, 1988, p. 39–49.

[22] P. Delorme – “Classification des triples de Manin pour les algèbres de Lie réductives
complexes”, J. Algebra 246 (2001), p. 97–174.

[23] V. G. Drinfel0d – “Quantum groups”, in Proceedings of the International Congress of
Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, p. 798–820.

[24] J.-P. Dufour & N. T. Zung – Poisson structures and their normal forms, Progress
in Mathematics, vol. 242, Birkhäuser, 2005.

[25] P. Etingof & A. Varchenko – “Geometry and classification of solutions of the clas-
sical dynamical Yang-Baxter equation”, Comm. Math. Phys. 192 (1998), p. 77–120.

[26] S. Evens & J.-H. Lu – “Poisson harmonic forms, Kostant harmonic forms, and the
S1-equivariant cohomology of K/T ”, Adv. Math. 142 (1999), p. 171–220.

[27] , “On the variety of Lagrangian subalgebras. II”, Ann. Sci. École Norm. Sup. 39
(2006), p. 347–379.

[28] M. Gualtieri – “Generalized complex geometry”, Ph.D. Thesis, Oxford University,
2004, arXiv:math.DG/0401221.

[29] , “Generalized complex geometry”, preprint arXiv:math.DG/0703298.
[30] V. Guillemin & S. Sternberg – “Some problems in integral geometry and some

related problems in microlocal analysis”, Amer. J. Math. 101 (1979), p. 915–955.
[31] K. Guruprasad, J. Huebschmann, L. Jeffrey & A. Weinstein – “Group systems,

groupoids, and moduli spaces of parabolic bundles”, Duke Math. J. 89 (1997), p. 377–
412.

[32] N. Hitchin – “Generalized Calabi-Yau manifolds”, Q. J. Math. 54 (2003), p. 281–308.
[33] S. Hu & B. Uribe – “Extended manifolds and extended equivariant cohomology”, J.

Geom. Phys. 59 (2009), p. 104–131.
[34] E. Karolinsky – “A classification of Poisson homogeneous spaces of complex reduc-

tive Poisson-Lie groups”, in Poisson geometry (Warsaw, 1998), Banach Center Publ.,
vol. 51, Polish Acad. Sci., 2000, p. 103–108.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009

http://arxiv.org/abs/math.DG/0401221
http://arxiv.org/abs/math.DG/0703298


198 A. ALEKSEEV, H. BURSZTYN & E. MEINRENKEN

[35] C. Klim�ík & T. Strobl – “WZW-Poisson manifolds”, J. Geom. Phys. 43 (2002),
p. 341–344.

[36] Y. Kosmann-Schwarzbach – “Derived brackets”, Lett. Math. Phys. 69 (2004), p. 61–
87.

[37] Y. Kosmann-Schwarzbach & C. Laurent-Gengoux – “The modular class of a
twisted Poisson structure”, in Travaux mathématiques. Fasc. XVI, Trav. Math., XVI,
Univ. Luxemb., Luxembourg, 2005, p. 315–339.

[38] B. Kostant & S. Sternberg – “Symplectic reduction, BRS cohomology, and infinite-
dimensional Cli�ord algebras”, Ann. Physics 176 (1987), p. 49–113.

[39] A. Kotov, P. Schaller & T. Strobl – “Dirac sigma models”, Comm. Math. Phys.
260 (2005), p. 455–480.

[40] Z.-J. Liu, A. Weinstein & P. Xu – “Manin triples for Lie bialgebroids”, J. Di�erential
Geom. 45 (1997), p. 547–574.

[41] Z.-J. Liu & P. Xu – “Dirac structures and dynamical r-matrices”, Ann. Inst. Fourier
(Grenoble) 51 (2001), p. 835–859.

[42] J.-H. Lu – “Momentum mappings and reduction of Poisson actions”, in Symplectic
geometry, groupoids, and integrable systems (Berkeley, CA, 1989), Math. Sci. Res. Inst.
Publ., vol. 20, Springer, 1991, p. 209–226.

[43] K. C. H. Mackenzie – General theory of Lie groupoids and Lie algebroids, London
Mathematical Society Lecture Note Series, vol. 213, Cambridge University Press, 2005.

[44] K. C. H. Mackenzie & P. Xu – “Lie bialgebroids and Poisson groupoids”, Duke Math.
J. 73 (1994), p. 415–452.

[45] E. Meinrenken – “The basic gerbe over a compact simple Lie group”, Enseign. Math.
49 (2003), p. 307–333.

[46] , “Lie groups and Cli�ord algebras”, lecture notes, University of Toronto, http:
//www.math.toronto.edu/mein/teaching/clif1.pdf, 2005.

[47] , “Lectures on pure spinors and moment maps”, in Poisson geometry in mathe-
matics and physics, Contemp. Math., vol. 450, Amer. Math. Soc., 2008, p. 199–222.

[48] D. Roytenberg – “Courant algebroids, derived brackets and even symplectic super-
manifolds”, Ph.D. Thesis, University of Berkeley, 1999, arXiv:math.DG/9910078.

[49] M. A. Semenov-Tian-Shansky – “Dressing transformations and Poisson group ac-
tions”, Publ. Res. Inst. Math. Sci. 21 (1985), p. 1237–1260.

[50] P. äevera & A. Weinstein – “Poisson geometry with a 3-form background”, Progr.
Theoret. Phys. Suppl. 144 (2001), p. 145–154.

[51] A. Cannas da Silva – Lectures on symplectic geometry, Lecture Notes in Math.,
vol. 1764, Springer, 2001.

[52] S. Sternberg – “Lie algebras”, lecture notes http://www.math.harvard.edu/
~shlomo/docs/lie_algebras.pdf.

[53] M. Stiénon & P. Xu – “Reduction of generalized complex structures”, J. Geom. Phys.
58 (2008), p. 105–121.

[54] A. Weinstein – Lectures on symplectic manifolds, CBMS Regional Conference Series
in Mathematics, vol. 29, Amer. Math. Soc., 1979.

[55] , “The symplectic structure on moduli space”, in The Floer memorial volume,
Progr. Math., vol. 133, Birkhäuser, 1995, p. 627–635.

ASTÉRISQUE 327

http://www.math.toronto.edu/mein/teaching/clif1.pdf
http://www.math.toronto.edu/mein/teaching/clif1.pdf
http://arxiv.org/abs/math.DG/9910078
http://www.math.harvard.edu/~shlomo/docs/lie_algebras.pdf
http://www.math.harvard.edu/~shlomo/docs/lie_algebras.pdf


PURE SPINORS ON LIE GROUPS 199

[56] , “The modular automorphism group of a Poisson manifold”, J. Geom. Phys. 23
(1997), p. 379–394.

[57] P. Xu – “Momentum maps and Morita equivalence”, J. Di�erential Geom. 67 (2004),
p. 289–333.

A. Alekseev, University of Geneva, Section of Mathematics, 2-4 rue du Lièvre, c.p. 64, 1211
Genève 4, Switzerland • E-mail : alekseev@math.unige.ch

H. Bursztyn, Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de
Janeiro, 22460-320, Brasil • E-mail : henrique@impa.br

E. Meinrenken, University of Toronto, Department of Mathematics, 40 St George Street, Toronto,
Ontario M4S2E4, Canada • E-mail : mein@math.toronto.edu

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009





Astérisque
327, 2009, p. 201–287

INDEX, ETA AND RHO INVARIANTS
ON FOLIATED BUNDLES

by

Moulay-Tahar Benameur & Paolo Piazza

Dedicated to Jean-Michel Bismut on the occasion of his sixtieth birthday

Abstract. — We study primary and secondary invariants of leafwise Dirac operators on

foliated bundles. Given such an operator, we begin by considering the associated reg-

ular self-adjoint operator Dm on the maximal Connes-Skandalis Hilbert module and

explain how the functional calculus of Dm encodes both the leafwise calculus and the

monodromy calculus in the corresponding von Neumann algebras. When the foliation

is endowed with a holonomy invariant transverse measure, we explain the compatibil-

ity of various traces and determinants. We extend Atiyah’s index theorem on Galois

coverings to foliations. We define a foliated rho-invariant and investigate its stabil-

ity properties for the signature operator. Finally, we establish the foliated homotopy

invariance of such a signature rho-invariant under a Baum-Connes assumption, thus

extending to the foliated context results proved by Neumann, Mathai, Weinberger

and Keswani on Galois coverings.

Résumé (Indices, invariants êta et rho de fibrés feuilletés). — Nous étudions certains inva-

riants primaires et secondaires associés aux opérateurs de Dirac le long des feuilles de

fibrés feuilletés. Etant donné un tel opérateur, nous considérons d’abord l’opérateur

auto-adjoint régulier Dm qui lui est associé sur le module de Hilbert maximal de

Connes-Skandalis, puis nous expliquons comment le calcul fonctionnel de Dm permet

de coder le calcul longitudinal ainsi que le calcul sur les fibres de monodromie dans

les algèbres de von Neumann correspondantes. Lorsque le feuilletage admet une me-

sure transverse invariante par holonomie, nous expliquons la compatibilité de diverses

traces et déterminants. Nous étendons le théorème de l’indice pour les revêtements

d’Atiyah aux feuilletages. Nous définissons l’invariant rho feuilleté et étudions ses

propriétés de stabilité lorsque l’opérateur en question est l’opérateur de signature.

Finalement, nous établissons l’invariance par homotopie feuilletée de l’invariant rho

de l’opérateur de signature le long des feuilles sous une hypothèse de Baum-Connes,

prolongeant ainsi au contexte feuilleté des résultats prouvés par Neumann, Mathai,

Weinberger et Keswani dans le cadre des revêtements galoisiens.
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Introduction and main results

The Atiyah-Singer index theorem on closed compact manifolds is regarded nowa-
days as a classic result in mathematics. The original result has branched into several
directions, producing new ideas and new results. One of these directions consists
in considering elliptic di�erential operators on the following hierarchy of geometric
structures:

– fibrations and operators that are elliptic in the fiber directions; for example, a
product fibration M ⇥ T ! T and a family (D✓)✓2T of elliptic operators on M

continuously parametrized by T ;
– Galois �-coverings and �-equivariant elliptic operators;
– measured foliations and operators that are elliptic along the leaves;
– general foliations and, again, operators that are elliptic along the leaves.

One pivotal example, going through all these situations, is the one of foliated bundles.
Let � ! M̃ ! M be a Galois �-cover of a smooth compact manifold M , let T

be a compact manifold on which � acts by di�eomorphism. We can consider the
diagonal action of � on M̃ ⇥ T and the quotient space V := M̃ ⇥� T , which is
a compact manifold, a bundle over M and carries a foliation F . This foliation is
obtained by considering the images of the fibers of the trivial fibration M̃ ⇥ T ! T

under the quotient map M̃ ⇥ T ! M̃ ⇥� T and is known as a foliated bundle. More
generally, we could allow T to be a compact topological space with an action of � by
homeomorphisms, obtaining what is usually called a foliated space or a lamination.
We then consider a family of elliptic di�erential operators (D̃✓)✓2T on the product
fibration M̃ ⇥ T ! T and we assume that it is �-equivariant; it therefore yields a
leafwise di�erential operator D = (DL)L2V/ F on V , which is elliptic along the leaves
of F . Notice that, if dim T > 0 and � = {1} then we are in the family situation; if
dim T = 0 and � 6= {1}, then we are in the covering situation; if dim T > 0, � 6= {1}
and T admits a �-invariant Borel measure ⌫, then we are in the measured foliation
situation and if dim T > 0, � 6= {1} then we are dealing with a more general foliation.

In the first three cases, there is first of all a numeric index: for families this is quite
trivially the integral over T of the locally constant function that associates to ✓ the
index of D✓; for �-coverings we have the �-index of Atiyah and for measured foliations
we have the measured index introduced by Connes. These last two examples involve
the definition of a von Neumann algebra endowed with a suitable trace. More generally,
and this applies also to general foliations, one can define higher indices, obtained by
pairing the index class defined by an elliptic operator with suitable (higher) cyclic
cocycles. In the case of foliated bundles there is a formula for these higher indices,
due to Connes [18], and recently revisited by Gorokhovsky and Lott [23] using a
generalization of the Bismut superconnection [13]. See also [39]. Since our main focus
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here are numeric (versus higher) invariants, we go back to the case of measured foliated
bundles, thus assuming that T admits a �-invariant measure ⌫.

The index is of course a global object, defined in terms of the kernel and cokernel
of operators. However, one of its essential features is the possibility of localizing it
near the diagonal using the remainders produced by a parametrix for D. On a closed
manifold this crucial property is encoded in the so-called Atiyah-Bott formula:

(1) ind(D) = Tr(R
N

0
)� Tr(R

N

1
) , 8N � 1

if R1 = Id � DQ and R0 = Id � QD are the remainders of a parametrix Q. Simi-
lar results hold in the other two contexts: �-coverings and measured foliations. One
important consequence of formula (1) and of the analogous one on �-coverings is
Atiyah’s index theorem on a �-covering M̃ ! M , stating the equality of the index
on M and the von Neumann �-index on M̃ . Informally, the index upstairs is equal
to the index downstairs. On a measured foliation, for example on a foliated bundle
(M̃ ⇥� T, F ) associated to a �-space T endowed with a �-invariant measure ⌫, we
also have an index upstairs and an index downstairs, depending on whether we con-
sider the �-equivariant family (D̃✓)✓2T or the longitudinal operator D = (DL)L2V/ F ;
the analogue of formula (1) allows to prove the equality of these two indices. (This
phenomenon is well known to experts; we explain it in detail in Section 4.)

Now, despite its many geometric applications, the index remains a very coarse
spectral invariant of the elliptic di�erential operator D, depending only on the spec-
trum near zero. Especially when considering geometric operators, such as Dirac-type
operators, and related geometric questions involving, for example, the di�eomorphism
type of manifolds or the moduli space of metrics of positive scalar curvature, one is
led to consider more involved spectral invariants. The eta invariant, introduced by
Atiyah, Patodi and Singer on odd dimensional manifolds, is such an invariant. This
invariant is highly non-local (in contrast to the index) and involves the whole spec-
trum of the operator. It is, however, too sophisticated: indeed, a small perturbation
of the operator produces a variation of the corresponding eta invariant. In geometric
questions one considers rather a more stable invariant, the rho invariant, typically
a di�erence of eta invariants having the same local variation. The Cheeger-Gromov
rho invariant on a Galois covering M̃ ! M of an odd dimensional manifold M is the
most famous example; it is precisely defined as the di�erence of the �-eta invariant
on M̃ , defined using the �-trace of Atiyah, and of the Atiyah-Patodi-Singer eta in-
variant of the base M . Notice that the analogous di�erence for the indices (in the
even dimensional case) would be equal to zero because of Atiyah’s index theorem on
coverings; the Cheeger-Gromov rho invariant is thus a genuine secondary invariant.
The Cheeger-Gromov rho invariant is usually defined for a Dirac-type operator D̃ and
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we bound ourselves to this case from now on; we denote it by ⇢(2)(D̃). Here are some
of the stability properties of rho:

– let (M, g) be an oriented riemannian manifold and let D̃
sign be the signature

operator on M̃ associated to the �-invariant lift of g to M̃ : then ⇢(2)(D̃
sign

) is
metric independent and a di�eomorphism invariant of M ;

– let M be a spin manifold and assume that the space R+
(M) of metrics with

positive scalar curvature is non-empty. Let g 2 R+
(M) and let D̃

spin

g
be the

spin Dirac operator associated to the �-invariant lift of g. Then the function
R+

(M) 3 g ! ⇢(2)(D̃
spin

g
) is constant on the connected components of R+

(M)

There are easy examples, involving lens spaces, showing that ⇢(2)(D̃
sign

) is not a
homotopy invariant and that R+

(M) 3 g ! ⇢(2)(D̃
spin

g
) is not the constant function

equal to zero. For purely geometric applications of these two results see, for example,
[15] and [46]. These two properties can be proved in general, regardless of the nature of
the group �. However, when � is torsion-free, then the Cheeger-Gromov rho invariant
enjoys particularly strong stability properties. Let � = ⇡1(M) and let M̃ ! M be the
universal cover. Then in a series of papers [29], [30], [31], Keswani, extending work of
Neumann [41], Mathai [36] and Weinberger [57], establishes the following fascinating
theorem:

– if M is orientable, � is torsion free and the Baum-Connes map K⇤(B�) !
K⇤(C

⇤
max
�) is an isomorphism, then ⇢(2)(D̃

sign
) is a homotopy invariant of M ;

– if M is in addition spin and R+
(M) 6= ? then ⇢(2)(D̃

spin

g
) = 0 for any g 2

R+
(M).

(The second statement is not explicitly given in the work of Keswani but it follows
from what he proves; for a di�erent proof of Keswani’s result see the recent paper
[45].) Informally: when � is torsion free and the maximal Baum-Connes map is an
isomorphism, the Cheeger-Gromov rho invariant behaves like an index, i.e. like a pri-
mary invariant: more precisely, it is a homotopy invariant for the signature operator
and it is equal to zero for the spin Dirac operator associated to a metric of positive
scalar curvature.

Let us now move on in the hierarchy of geometric structures and consider a foliated
bundle (V := M̃ ⇥� T, F ), with M̃ ! M the universal cover of an odd dimensional
compact manifold and T a compact �-space endowed with a �-invariant Borel (prob-
ability) measure ⌫. We are also given a �-equivariant family of Dirac-type operators
D̃ := (D̃✓)✓2T on the product fibration M̃ ⇥ T ! T and let D = (DL)L2V/ F be the
induced longitudinally elliptic operator on V . One is then led to the following natural
questions:

1. Can one define a foliated rho invariant ⇢⌫(D;V, F )?
2. What are its stability properties if D̃ = D̃

sign and D̃ = D̃
spin?
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3. If the isotropy groups of the action of � on T are torsion free and the maximal
Baum-Connes map with coe�cients

K
�

⇤ (E�;C(T )) ! K⇤(C(T ) omax �)

is an isomorphism, is ⇢⌫(V, F ) := ⇢⌫(D
sign

;V, F ) a foliated homotopy invariant?

The goal of this paper is to give an answer to these three questions. Along the way we
shall present in a largely self-contained manner the main results in index theory and
in the theory of eta invariants on foliated bundles.

This work is organized as follows. In Section 1 we introduce the maximal C
⇤-algebra

Am associated to the �-space T or, more precisely, to the groupoid G := T o �. We
endow this C

⇤-algebra with two traces ⌧⌫
reg

and ⌧
⌫

av
, ⌫ denoting as before the �-

invariant Borel measure on T . We then define two von Neumann algebras W
⇤
reg

( G),
W
⇤
av

( G) with their respective traces; we define representations Am ! W
⇤
reg

( G), Am !
W
⇤
av

( G) and show compatibility of the traces involved.

In Section 2 we move to foliated bundles, giving the definition, studying the struc-
ture of the leaves, introducing the monodromy groupoid G and the associated maximal
C
⇤-algebra Bm. We then introduce two von Neumann algebras, W

⇤
⌫
(G) and W

⇤
⌫
(V, F ),

to be thought of as the one upstairs and the one downstairs respectively, with their re-
spective traces ⌧⌫ , ⌧⌫F . We introduce representations Bm ! W

⇤
⌫
(G), Bm ! W

⇤
⌫
(V, F )

and define two compatible traces, also denoted ⌧
⌫

reg
and ⌧

⌫

av
, on the C

⇤-algebra Bm.
We then prove an explicit formula for these two traces on Bm. We end Section 2 with
a proof of the Morita isomorphism K0(Am) ' K0(Bm) and its compatibility with the
morphisms

⌧
⌫

reg,⇤, ⌧
⌫

av,⇤ : K0(Am) ! C, ⌧
⌫

reg,⇤, ⌧
⌫

av,⇤ : K0(Bm) ! C

induced by the two pairs of traces on Am and Bm respectively.

In Section 3 we move to more analytic questions. We define a natural Am-Hilbert
module Em with associated C

⇤-algebra of compact operators K Am
( Em) isomorphic to

Bm; we show how Em encodes both the L
2-spaces of the fibers of the product fibration

M̃ ⇥ T ! T and the L
2-spaces of the leaves of F . We then introduce a �-equivariant

pseudodi�erential calculus, showing in particular how 0-th order operators extend
to bounded Am-linear operators on Em and how negative order operators extend
to compact operators. We then move to unbounded regular operators, for example
operators defined by a �-equivariant Dirac family D̃ := (D̃✓)✓2T and study quite
carefully the functional calculus associated to such an operator. We then treat Hilbert-
Schmidt operators and trace class operators in our two von Neumann contexts and
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give su�cient conditions for an operator to be trace class. We study once again various
compatibility issues (this material will be crucial later on).

In Section 4 we introduce, in the even dimensional case, the two indices ind
up

⌫
(D̃),

ind
down

⌫
(D) with D̃ = (D̃✓)✓2T and D := (DL)L2V/ F , and show the equality

ind
up

⌫
(D̃) = ind

down

⌫
(D).

This is the analogue of Atiyah’s index theorem on Galois coverings. We also introduce
the relevant index class, in K0(Bm), and show how the von Neumann indices can be
recovered from it and the two morphisms,

⌧
⌫

reg,⇤ : K0(Bm) ! C , ⌧
⌫

av,⇤ : K0(Bm) ! C

defined by the traces ⌧⌫
reg

: Bm ! C, ⌧⌫
av

: Bm ! C.

In Section 5 we introduce the two eta invariants ⌘⌫
up

(D̃), ⌘⌫
down

(D) and, finally, the
foliated rho-invariant ⇢⌫(D;V, F ) as the di�erence of the two. This answers the first
question raised above. We end this section establishing an important link between the
rho invariant and the determinant of certain paths.

In Section 6 we study the stability properties of the foliated rho invariant, showing
in particular that for the signature operator it is metric independent and a foliated
di�eomorphism invariant. This answers the second question raised above.

Finally, in Sections 7, 8 and 9 we prove the foliated homotopy invariance of the sig-
nature rho-invariant under a Baum-Connes assumption, following ideas of Keswani.
In order to keep this paper in a reasonable size, we establish this result under the
additional assumption that the foliated homotopy equivalence is induced by an equiv-
ariant fiber homotopy equivalence of the fibration defining the foliated bundle (we
call this foliated homotopy equivalences special). Thus, Section 7 contains prepara-
tory material on determinants and Bott-periodicity; Section 8 gives a sketch of the
proof of the homotopy invariance and Section 9 contains the details. With these three
sections we give an answer, at least partially, to the third question raised above. Most
of the material explained in the previous part of the paper goes into the rather com-
plicated proof. Some of our results are also meant to clarify statements in the work
of Keswani.
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Notations

M closed manifold
� fundamental group of M

M̃ universal cover of M

F fundamental domain for the deck transformations
T a compact �-space
⌫ a �-invariant Borel measure on T

G the groupoid T o � 1.1
�(✓) isotropy group of � at ✓ 2 T 1.1
Ac = Cc(T ⇥ �): algebraic crossed product algebra 1.1
Ar = C(T ) or �: reduced crossed product algebra 1.2
Am = C(T ) omax �: maximal crossed product algebra 1.2
V = M̃ ⇥� T : the foliated space 2.1
G the groupoid (M̃ ⇥ M̃ ⇥ T )/� 2.2
Bc the compactly supported convolution algebra of G 2.2
Br the regular completion of Bc 2.2
Bm the maximal completion of Bc 2.2
BE

c the modified algebra when E ! V is a vector bundle 2.2
⌧⌫
reg regular trace of Ar or Am 1.4

⌧⌫
av trivial or averaged trace on Am 1.4

also ⌧⌫
reg regular trace of Br or Bm 2.4

also ⌧⌫
av trivial or averaged trace on Bm 2.4

Ê ! M̃ ⇥ T the �-equivariant lift of E

W ⇤
av( G) average von Neumann algebra of G 1.3

W ⇤
reg( G) regular von Neumann algebra of G 1.3

⇡reg regular representation of Ar in W ⇤
reg( G) 1.3

⇡av average representation of Am in W ⇤
av( G) 1.3

⌧⌫ trace on W ⇤
reg( G) 1.4

also ⌧⌫ trace on W ⇤
av( G) 1.4

W ⇤
⌫ (G; E) regular von Neumann algebra of G with coe�cients in E 2.3

W ⇤
⌫ (V, F ; E) leafwise von Neumann algebra with coe�cients in E 2.3

⌧⌫ trace on W ⇤
⌫ (G; E) 2.4
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⌧⌫
F trace on W ⇤

⌫ (V, F ; E) 2.4
Ec the prehilbertian Ac-module C1,0

c (M̃ ⇥ T, Ê) 3.1
Er the completion of Ec into a Hilbert Ar-module 3.1
Em the completion of Ec into a Hilbert Am-module 3.1
D = (DL)L2V/ F leafwise geometric operator 3.3
D̃ = (D̃✓)✓2T �-invariant fiberwise geometric operator 3.3
Dm the induced regular operator on Em 3.3
Dr the induced regular operator on Er 3.3
Ind(Dm) the index class of Dm in K⇤(Am) 4.2
IND(Dm) the index class of Dm in K⇤(Bm) 4.2
ind⌫

up(D̃) measured index upstairs 4.2
ind⌫

down(D̃) measured index downstairs 4.2
⌘⌫
up(D̃) eta invariant upstairs 5.1

⌘⌫
down(D) eta invariant downstairs 5.1

⇢⌫(D; V, F ) foliated rho invariant associated to D 5.2
⇢⌫(V, F ) foliated rho invariant for the signature operator 6.2

1. Group actions

1.1. The discrete groupoid G. — Let � be a discrete group. Let T be a compact
topological space on which the group � acts by homeomorphisms on the left. We shall
assume that T is endowed with a �-invariant Borel measure ⌫; this is a non-trivial
hypothesis. Thus (T, ⌫) is a compact Borel measured space on which � acts by measure
preserving homeomorphisms. We shall assume that ⌫ is a probability measure. We
consider the crossed product groupoid G := T o �; thus the set of arrows is T ⇥ �,
the set of units is T ,

s(✓, �) = �
�1
✓ and r(✓, �) = ✓.

The composition law is given by

(�
0
✓, �

0
) � (✓, �) = (�

0
✓, �

0
�) .

We denote by Ac the convolution ?-algebra of compactly supported continuous func-
tions on G and by L

1
( G) the Banach ?-algebra which is the completion of Ac with

respect to the Banach norm k · k1 defined by

kfk1 := max{sup
✓2T

X

�2�

|f(✓, �)|; sup
✓2T

X

�2�

|f(�
�1
✓, �

�1
)|}.

The convolution operation and the adjunction are fixed by the following formulae

(f ⇤ g)(✓, �) =

X

�12�

f(✓, �1)g(�
�1

1
✓, �

�1

1
�) and f

⇤
(✓, �) = f(��1✓, ��1).
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For ✓ 2 T we shall denote by �(✓) the isotropy group of the point ✓: �(✓) := {� 2
� | �✓ = ✓}. So, �(✓) is a subgroup of � and the orbit of ✓ under the action of �,
denoted �✓, can be identified with �/�(✓). Finally, we recall that G✓ := r

�1
(✓) and

that G
✓

:= s
�1

(✓).

1.2. C
⇤-algebras associated to the discrete groupoid G. — For any ✓ 2 T ,

we define the regular ⇤-representation ⇡
reg

✓
of Ac in the Hilbert space `2(�), viewed

as `2( G
✓
), by the following formula

⇡
reg

✓
(f)(⇠)(�) :=

X

�02�

f(�✓, ��
0�1

)⇠(�
0
).

It is easy to check that this formula defines a ⇤-representation ⇡
reg

✓
which is L

1 con-
tinuous. Moreover, we complete L

1
( G) with respect to the norm sup

✓2T
k⇡reg

✓
(·)k and

obtain a C
⇤-algebra Ar. The C

⇤-algebra Ar is usually called the regular C
⇤-algebra

of the groupoid G, it will also be denoted with the symbols C
⇤
r
( G) or C(T ) or �.

If we complete the Banach ⇤-algebra L
1
( G) with respect to all continuous ⇤-

representations, then we get the C
⇤-algebra Am, usually called the maximal C

⇤-
algebra of the groupoid G. See [49] for more details on these constructions. Other
notations for Am are C

⇤
m

( G) and C(T ) om �.
By construction, any continuous ⇤-homomorphism from L

1
( G) to a C

⇤-algebra B

yields a C
⇤-algebra morphism from Am to B. In particular, the homomorphism ⇡

reg

yields a C
⇤-algebra morphism

⇡
reg

: Am �! Ar.

1.3. von Neumann algebras associated to the discrete groupoid G. — At
the level of measure theory, recall that we have fixed once for all a �-invariant borelian
probability measure ⌫ on T . We associate with G two von Neumann algebras that
will be important for our purpose.

The first one is the regular von Neumann algebra W
⇤
reg

( G). It is the algebra
L
1

(T,B(`
2
�); ⌫)

� of �-equivariant essentially bounded families of bounded opera-
tors on `2�, so it acts on the Hilbert space L

2
(T ⇥ �, ⌫). An element T of W

⇤
reg

( G) is
thus (a class of) a familly (T✓)✓2T of operators in `2(�), which satisfies the following
properties:

– For any ⇠ 2 L
2
(T ⇥ �) the map ✓ 7! <T✓⇠✓, ⇠✓> is Borel measurable where

⇠✓(�) := ⇠(✓, �);
– ✓ 7! kT✓k is ⌫-essentially bounded on T ;
– For any � 2 �, we have T�✓ = �T✓.

Notice that if we denote by R
⇤
�

: `
2
�! `

2
� the operator

(R
⇤
�
⇠)(↵) := ⇠(↵�),
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then �T := R
⇤
�
�T �R⇤

��1 for any T 2 B(`
2
�). That W

⇤
reg

( G) is a von Neumann algebra
is clear since it is the commutant of a unitary group associated with the action of �.
The ⇤-representation ⇡reg is then valued in W

⇤
reg

( G) as can be checked easily, and we
have the ⇤-representation

⇡
reg

: Ar �! W
⇤
reg

( G).

This ⇤-representation then extends to the maximal C
⇤-algebra Am.

The second von Neumann algebra that will be important for us will be called
the average von Neumann algebra W

⇤
av

( G) and we proceed now to define it. We set
G

0
:= (T ⇥ �)/ ⇠ where we identify (✓, �) with (✓, �↵) whenever ↵✓ = ✓. Then G

0

is Borel and an element T of W
⇤
av

( G) is (a class of) a family (T✓)✓2T of operators in
`
2
(�✓), which satisfies the properties:

– For any measurable (as a function on G
0
) ⌫-square integrable section ⇠ of the

Borel field `
2
(�/�(✓)) over T , the map ✓ 7! <T✓⇠✓, ⇠✓> is Borel measurable

where ⇠✓[�] := ⇠[✓, �]

– ✓ 7! kT✓k is ⌫-essentially bounded on T ;
– For any � 2 �, we have T�✓ = �T✓;

Here we denote by R
⇤
�

: `
2
(�/�(✓)) ! `

2
(�/�(�✓)) the isomorphism given by

(R
⇤
�
⇠)[↵] := ⇠[↵�], and �T := R

⇤
�
� T � R

⇤
��1 . Again W

⇤
av

( G) is a von Neumann
algebra; for more details on this constructions see for instance [21], [20]

There is an interesting representation ⇡
av of L

1
( G) in W

⇤
av

( G) defined as follows.
Let f 2 Cc( G); for any ✓ 2 T , we set

⇡
av

✓
(f)(⇠)(x = [↵]) :=

X

y2�/�(✓)

X

[�]=y

f(↵✓,↵�
�1

)⇠(y), ⇠ 2 `2(�/�(✓)).

Remark 1.1. — If we identify �/�(✓) with the orbit �✓ then ⇡
av becomes

⇡
av

✓
(f)(⇠)(✓

0
) =

X

✓002�✓

X

↵✓00=✓0

f(✓
0
,↵)⇠(✓

00
) =

X

↵2�

f(✓
0
,↵)⇠(↵

�1
✓
0
).

Proposition 1.2. — For any f 2 L
1
( G) and any ✓ 2 T , the operator ⇡av

✓
(f) is bounded

and the family ⇡av
(f) = (⇡

av

✓
(f))✓2T defines a continuous ⇤-representation of L

1
( G)

with values in W
⇤
av

( G). Hence, ⇡av yields a ⇤-representations of the maximal C
⇤-

algebra Am in W
⇤
av

( G).
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Proof. — If we set for any f 2 Cc( G), f0(✓, ✓
0
) :=

P
�✓=✓0 f(✓

0
, �), then for g 2 Cc( G)

we have:

(f ⇤ g)0(✓, ✓
0
) =

X

�.✓=✓0

(f ⇤ g)(✓
0
, �)

=

X

�✓=✓0

X

�12�

f(✓
0
, �1)g(�

�1

1
✓
0
, �
�1

1
�)

=

X

✓002�.✓

X

�
�1
1 .✓0=✓00 , �

�1
2 .✓00=✓

f(✓
0
, �1)g(✓

00
, �2)

=

X

✓002�.✓

f0(✓
00
, ✓
0
)g0(✓, ✓

00
)

= (f0 ⇤ g0)(✓, ✓
0
).

Since ⇡av
(f) is simply convolution by the kernel f0, we deduce that ⇡ is a represen-

tation of the convolution algebra Ac. Now, the kernel (f
⇤
)0 is given by

(f
⇤
)0(✓, ✓

0
) =

X

�✓=✓0

f(�
�1
✓
0
, �
�1

) =

X

↵✓0=✓

f(✓,↵) = f0(✓
0, ✓).

It remains to prove that ⇡av is L
1-continuous. But, we have:

k⇡av

✓
(f)⇠k2

2
=

X

✓02�✓

|
X

�2�

f(✓
0
, �)⇠(�

�1
✓
0
)|2


X

✓02�✓

(

X

�2�

|f(✓
0
, �)|)⇥ (

X

�2�

|f(✓
0
, �)|.|⇠(��1

✓
0
)|2)

 kfk1
X

✓02�✓

X

�2�

|f(✓
0
, �)|.|⇠(��1

✓
0
)|2

 kfk1
X

�2�

X

✓002�✓

|⇠(✓00)|2|f(�✓
00
, �)|

 kfk2
1
k⇠k2

2
.

So, k⇡av
(f)k = sup

✓2T
k⇡av

✓
(f)k  kfk1.

We therefore deduce the existence of a ⇤-homomorphism of C
⇤-algebras:

⇡
av

: Am �! W
⇤
av

( G).

1.4. Traces. — For any non negative element T = (T✓)✓2T of the von Neumann
algebra W

⇤
reg

( G) (resp. W
⇤
av

( G)), we set

⌧
⌫
(T ) :=

Z

T

<T✓(�e), �e>d⌫(✓),

where in the regular case, �e stands for the � function at the unit e of �, while in the
second case it is the � function of the class [e] in �/�(✓).
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Proposition 1.3. — The functional ⌧⌫ induces a faithful normal positive finite trace.

Proof. — Positivity is clear since T is non negative in the von Neumann algebra if
and only if for ⌫-almost every ✓ the operator T✓ is non negative. If the non negative
element T = (T✓)✓2T satisfies ⌧⌫(T ) = 0 then <T✓(�e), �e> = 0 for ⌫-almost every ✓.
But, the �-equivariance of T implies that

<T✓(��), ��> = 0, 8� 2 � and ⌫ a.e.

Therefore, T✓ = 0 for ⌫-almost every ✓ and hence T = 0 in W
⇤
reg

( G). In the second
case, the proof is similar again by �-equivariance and by replacing �� by �[�].

If T (n) " T is an increasing sequence of non negative operators which converges
in the von Neumann algebra to T , then for ⌫-almost every ✓, the sequence T (n)✓

increases to T✓. But then since the state <·(�e), �e> is normal, the conclusion follows
by Beppo-Levi’s property for ⌫.

If now T is in the von Neumann algebra W
⇤
reg

( G) then writing T✓ as an infinite
matrix in `2� and using the � equivariance we deduce that

T
↵,�

�✓
= T

↵�,��

✓
.

If we now consider a second operator S in W
⇤
reg

( G), then we have

(T✓S✓)
e,e

=

X

�2�

T
e,�

✓
S
�,e

✓
=

X

�2�

S
e,�

�1

�✓
T
�
�1

,e

�✓
,

by the �-equivariance property. The �-invariance of measure ⌫ can now be applied
to yield that ⌧⌫(TS) = ⌧

⌫
(ST ). A similar proof works for the von Neumann algebra

W
⇤
av

( G).

We define the functionals ⌧⌫
reg

and ⌧⌫
av

on Ac by setting for f 2 Ac

(2) ⌧
⌫

reg
(f) :=

Z

T

f(✓, e)d⌫(✓),

(3) ⌧
⌫

av
(f) :=

Z

T

2

4
X

g2�(✓)

f(✓, g)

3

5 d⌫(✓).

Lemma 1.4. — 1. We have ⌧⌫ � ⇡reg
= ⌧

⌫

reg
and ⌧⌫ � ⇡av

= ⌧
⌫

av
.

2. Hence, ⌧⌫
reg

and ⌧⌫
av

extend to finite traces on Ar and Am.

Proof. — The statement for the regular trace is classical and we thus omit the
(easy) proof. We consider for any f 2 L

1
( G) the Borel family of operators (⇡

av

✓
(f))✓2T

defined in the previous paragraph. For any f 2 Ac, denote as before by f0 the function

f0(✓, ✓
0
) :=

X

�✓=✓0

f(✓
0
, �).
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Then we know that ⇡av
(f) is given as convolution with f0. If f 2 Ac, then we have,

using the identification �/�(✓) ⌘ �✓:
Z

T

<⇡
av

✓
(f)�✓, �✓>d⌫(✓) =

Z

T

f0(✓, ✓)d⌫(✓)

=

Z

T

X

�2�(✓)

f(✓, �)d⌫(✓)

= ⌧
⌫

av
(f).

As a Corollary of the above Lemma notice that the traces ⌧⌫
reg

: Ar ! C and
⌧
⌫

av
: Am ! C induce group homomorphisms

(4) ⌧
⌫

reg,⇤ : K0(Ar) ! R , ⌧
⌫

av,⇤ : K0(Am) ! R.

2. Foliated spaces

2.1. Foliated spaces. — Let M be a compact manifold without boundary and
let � denote its fundamental group and M̃ its universal cover. The group � acts by
homemorphisms on the compact topological space T and hence acts on the right,
freely and properly, on the space M̃ ⇥ T by the formula

(m̃, ✓)� := (m̃�, �
�1
✓), (m̃, ✓) 2 M̃ ⇥ T and � 2 �.

The quotient space of M̃ ⇥T under this action is denoted by V . We assume as before
the existence of a �-invariant probability measure ⌫. If we want to be specific about
the action of � on T we shall consider it as a homomorphism  : �! Homeo(T ). We
do not assume the action to be locally free (1) .

If p : M̃ ⇥ T ! V is the natural projection then the leaves of a lamination on V

are given by the projections L✓ = p(M̃✓), where ✓ runs through the compact space T ,
and

(5) M̃✓ := M̃ ⇥ {✓} .

It is easy to check that this is a lamination of V with smooth leaves and possibly
complicated transverse structure according to the topology of T , see for instance [11].
By definition, it is easy to check that the leaf L✓ coincides with the leaf L✓0 if and
only if ✓0 belongs to the orbit �✓ of ✓ under the action of � in T . We shall refer to
this lamination by (V, F ) and sometimes shall call it a foliated space or, more briefly,
a foliation. If �(✓) is the isotropy group of ✓ 2 T then we see from the definition
of L✓ that L✓ is di�eomorphic to the quotient manifold M̃/�(✓) through the map
L✓ ! M̃/�(✓) given by [m̃

0
, ✓
0
] ! [m̃

0
�], if ✓0 = �✓. Note however that L✓ is also

(1) Recall that an action is locally free if given � 2 � and open set U in T such that �(✓) = ✓ for any

✓ 2 U then � = 1.
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di�eomorphic to M̃/�(✓
0
) for any ✓0 2 �✓. Moreover the monodromy cover of a leaf

L is obtained by choosing ✓ 2 T such that L = L✓ and by using the composite map

M̃ ! M̃✓ ! (M̃✓)/�(✓) ' L✓ = L.

which is a monodromy cover of L corresponding to ✓.
Notice that the set of ✓ 2 T for which �(✓) is non-trivial has in general positive

measure. This is the case, for instance, when there exists a subgroup �1 of � whose
action on T has the property that ⌫(T�1) > 0, where T

�1 is the fixed-point subspace
defined by �1. In fact, one can construct simple examples where the measure of the
set of ✓ 2 T for which �(✓) is non-trivial is any value in (0, 1). See Example 2.2 for a
specific situation.

Example 2.1. — As an easy example where this situation occurs naturally, consider
any Galois covering M̃

0 of M with structure group �0 such that ⇡1(M̃
0
) 6= 1. Assume

the existence of a locally free �0-action  0 : �
0 ! Homeo(T ) on T and let V be the

resulting foliated space. Assume the existence of an invariant measure ⌫ on T . Since
�
0 is a quotient of � := ⇡1(M) we have a natural group homomorphism ⇡ : � ! �

0

and thus an action  :=  
0 � ⇡ of � on T . By definition ⌫ is also �-invariant. The

isotropy group of this action at ✓ 2 T is at least as big as the fundamental group of
M̃
0. Notice that one can show that

(M̃ ⇥ T )/� = (M̃
0 ⇥ T )/�

0 ⌘ V.

Summarizing: V is a lamination where the set of leaves with non-trivial monodromy
has measure equal to ⌫(T ) = 1.

Example 2.2. — Take M to be any manifold whose fundamental group is a free product
of copies of Z, for example a connected sum of S1 ⇥ S2’s, so that now � is the free
group of rank k. Let {�1, �2, . . . , �k} be the generators. Let T be S2. Let C ⇢ S2 be
a parallel and let U ⇢ S2 one of the two hemispheres bounded by C. Let  (�1) be
any measure-preserving di�eomorphism of S2 that fixes U . We then define  on the
other generators in an arbitrary measure-preserving way. Then any point ✓ in U would
have nontrivial isotropy group �(✓). Clearly, one can jazz up this example by selecting
any T and finding a single homeomorphism whose fixed point set is a set of nonzero
measure.

Example 2.3. — Following [38] we now give an example of a lamination with the set
of leaves with non-trivial monodromy of positive measure and, in addition, of a rather
complicated sort. Take a (generalized) Cantor set K of positive Lebesgue measure in
the unit circle. Choose now a homeomorphism � of the circle admitting K as the fixed
point set. Let M be any closed odd dimensional manifold with ⇡1(M) = Z. Consider
the foliated space V obtained by suspension of �: thus V = M̃ ⇥Z S1 with Z = ⇡1(S1

)
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acting on S1 via � and acting by deck transformations on M̃ . The set of ✓ 2 S
1 such

that {� 2 Z|�✓ = ✓} is non-trivial is equal to K, hence it has positive measure. Using
[38] page 105/106, we can find a Radon �-invariant measure ⌫ on S1 and ⌫(K) > 0.
Notice that in this class of examples, although the measure is di�use, one can even
ensure that the set of leaves with non-trivial holonomy has positive transverse measure.
These laminations show up in the study of aperiodic tillings and especially of quasi-
crystals. In [11] for instance, the measured foliated index for such laminations, a
primary invariant, is used to solve the gap-labelling conjecture. The authors expect
potential applications of the foliated rho invariant to aperiodic solid physics.

2.2. The monodromy groupoid and the C
⇤-algebra of the foliation. — Let

M̃ , � and T be as before. We define the monodromy groupoid G as the quotient space
(M̃ ⇥ M̃ ⇥ T )/� of M̃ ⇥ M̃ ⇥ T by the right diagonal action

(m̃, m̃
0
, ✓)� := (m̃�, m̃

0
�, �

�1
✓).

The groupoid structure is clear: the space of units G
(0) is the space V = M̃ ⇥� T , the

source and range maps are given by

s[m̃, m̃
0
, ✓] = [m̃

0
, ✓] and r[m̃, m̃

0
, ✓] = [m̃, ✓],

where the brackets denote equivalence classes modulo the action of the group �
It is not di�cult to show that G can be identified in a natural way with the usual

monodromy groupoid associated to the foliated space (V, F ), as defined, for example,
in [44]. More precisely given a smooth path ↵ : [0, 1] ! L, with L a leaf, choose any
lift �̃ : [0, 1] ! M̃ of the projection of the path ↵ in M through the natural projection
V ! M . Then there exists a unique ✓ 2 T with ↵(0) = [�̃(0), ✓] and we obtain in
this way a well defined element [�̃(0), �̃(1), ✓] of G which only depends on the leafwise
homotopy class of ↵ with fixed end-points. This furnishes the desired isomorphism.

We fix now a Lebesgue class measure dm on M and the corresponding �-invariant
measure dm̃ on M̃ . We denote by Bc the convolution ⇤-algebra of continuous com-
pactly supported functions on G. For f, g 2 Bc we have:

(f ⇤ g)[m̃, m̃
0
, ✓] =

Z

M̃

f [m̃, m̃
00
, ✓]g[m̃

00
, m̃

0
, ✓]dm̃

00 and f
⇤
[m̃, m̃

0
, ✓] = f [m̃0, m̃, ✓].

More generally, let E be a hermitian continuous longitudinally smooth vector bundle
over V ; thus E is a continuous bundle over V such that its restriction to each leaf
is smooth [38]. Consider END(E) := (s

⇤
E)

⇤ ⌦ (r
⇤
E) = Hom(s

⇤
E, r

⇤
E), a bundle of

endomorphisms over G. We consider BE

c
:= C

1,0

c
(G,END(E)) the space of continuous
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longitudinally smooth sections of END(E); this is also a ⇤-algebra with product and
adjoint given by

(f1 ⇤ f2)[m̃, m̃
0
, ✓] =

Z

M̃

f1[m̃, m̃
00
, ✓] � f2[m̃

00
, m̃

0
, ✓] dm̃

00
,

f
⇤
[m̃, m̃

0
, ✓] = (f [m̃

0
, m̃, ✓])

⇤
.

Let “E be its lift to fM⇥T ; denote by H✓ the Hilbert space H✓ = L
2
(fM⇥{✓}; “E|‹M⇥{✓}).

Any f 2 BE

c
can be viewed as a smooth kernel acting on H✓ by the formula

⇡
reg

✓
(f)(⇠)(m̃) :=

Z

M̃

f [m̃, m̃
0
, ✓](⇠(m̃

0
))dm̃

0
, for any ⇠ 2 H✓ ,

and this defines a ⇤-representation ⇡reg

✓
in H✓ . We point out that the representation

⇡
reg

✓
is continuous for the L

1 norm defined by:

kfk1 := max{ sup

(m̃,✓)2M̃⇥T

Z

M̃

kf [m̃, m̃
0
, ✓]kEdm̃

0
; sup

(m̃,✓)2M̃⇥T

Z

M̃

kf [m̃
0
, m̃, ✓]kEdm̃

0}.

If we complete Bc with respect to the C
⇤ norm

kfkreg := sup
✓2T

k⇡reg

✓
(f)k,

then we get BE

r
, the regular C

⇤-algebra of the groupoid G with coe�cients in E.
When E = V ⇥ C then we denote this C

⇤-algebra simply by Br In the same way, if
we complete Bc with respect to all L

1 continuous ⇤-representations, then we get the
maximal C

⇤-algebra of the groupoid G, that will be denoted by BE

m
and simply by

Bm when E = V ⇥ C.

2.3. von Neumann Algebras of foliations. — The material in this paragraph
is classical; for more details see for instance [18], [25] [8], [17], [35].

The representation ⇡
reg defined above takes value in the regular von Neumann

algebra of the groupoid G. More precisely, the regular von Neumann algebra W
⇤
⌫
(G;E)

of G with coe�cients in E, acts on the Hilbert space H = L
2
(T ⇥ M̃, “E; ⌫⌦dm̃), and

is by definition the space of families (S✓)✓2T of bounded operators on L
2
(M̃, “E) such

that

– For any � 2 �, S�✓ = �S✓ where �S✓ is defined using the action of � on the
equivariant vector bundle “E;

– The map ✓ 7! kS✓k is ⌫-essentially bounded on T ;
– For any (⇠, ⌘) 2 H

2, the map ✓ 7! <S✓(⇠✓), ⌘✓> is Borel measurable.

The von Neumann algebra W
⇤
⌫
(G;E) is a type II1 von Neumann algebra as we

shall see later. It is easy to see that for any S 2 BE

r
, the operator ⇡reg

(S) belongs to
W
⇤
⌫
(G;E).
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In the same way we define a leafwise von Neumann algebra that we shall denote by
W
⇤
⌫
(V, F ;E); this algebra acts on the Hilbert space [21] H =

R �
L

2
(L✓, E|L✓ )d⌫(✓)

where L✓ is, as before, the leaf in V corresponding to ✓. Equivalently, and using the
identification of the leaves with quotient of M̃ under isotropy, W

⇤
⌫
(V, F ;E) can be

described as the set of families (S✓)✓2T of bounded operators on (L
2
(M̃✓/�(✓), E|✓)✓2T

such that

– The map ✓ 7! kS✓k is ⌫-essentially bounded on T .
– For any square integrable sections ⇠, ⌘ of the Borel field (L

2
(M̃✓/�(✓), E✓))✓2T ,

the map ✓ 7! <S✓(⇠✓), ⌘✓> is Borel measurable.
– S�✓ = �S✓, for any (✓, �) 2 T ⇥ �.

Notice that �(�✓) = ��(✓)�
�1 and hence the definition of �S✓ is clear.

Proposition 2.4. — There is a well defined representation ⇡av from the maximal
C
⇤algebra BE

m
to the leafwise von Neumann algebra W

⇤
⌫
(V, F ;E) such that for

f 2 Cc(G,END(E)) the operator (⇡av(f))✓ is given by the kernel

f0(x, y) = 0 if Lx 6= Ly and f0([m̃, ✓], [m̃
0
, ✓]) :=

X

�2�(✓)

f [m̃, m̃
0
�, ✓].

Proof. — For simplicity we take E the product line bundle. For f 2 Cc(G) the formula

((⇡av(f))✓ ⇠) (x) :=

Z

L✓

f0(x, y)⇠(y)dy, ⇠ 2 L
2
(L✓), x 2 L✓ ⇢ V.

defines a bounded operator on L
2
(L✓). Indeed the sum on the RHS in the definition

of f0 is finite since f is compactly supported. Moreover, when restricted to the leaf
Lx the kernel f0 is supported within a uniform neighborhood of the diagonal of Lx.
We have:

k⇡av(f))✓ (⇠)k2
2

=

Z

L✓

|
Z

L✓

f0(x, x
0
)⇠(x

0
)dx

0|2dx


Z

L✓

ÇZ

L✓

|f0(x, x
0
)|dx

0
åÇZ

L✓

|f0(x, x
0
)||⇠(x0)|2dx

0
å

dx

 kf0k1
Z

L✓

|⇠(x0)|2
Z

L✓

|f0(x, x
0
)|dxdx

0

 kf0k21k⇠k22.

Here kf0k1 stands for the L
1-norm

Max( sup
x02V

Z

Lx

|f0(x, x
0
)|dx, sup

x2V

Z

Lx

|f0(x, x
0
)|dx

0
).

Therefore, we have
sup
✓2T

k⇡av(f)k  kf0k1.
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But now it is easy to check that kf0k1  kfk1. On the other hand ⇡av is a ⇤-
representation; since for f, g 2 Cc(G) one has, with proof similar to the one given
for G,

(f ⇤ g)0 = f0 ⇤ g0 and (f
⇤
)0 = (f0)

⇤
.

To sum up, these arguments prove that ⇡av on Bc extends to a continuous ⇤-
representation of the Bm in the von Neumann algebra W

⇤
⌫
(V, F ). This completes the

proof.

2.4. Traces. — We fix once and for all a fundamental domain F for the free and
proper action of � on M̃ . Let � be the characteristic function of F . Then we set for
any non-negative element S 2 W

⇤
⌫
(G;E),

⌧
⌫
(S) :=

Z

T

tr(M� � S✓ �M�)d⌫(✓),

where tr is the usual trace of a non-negative operator on a Hilbert space.
We shall also denote by � the induced function � ⌦ 1T , i.e. the characteristic

function of F ⇥ T in M̃ ⇥ T . Since F ⇥ T is a fundamental domain for the free and
proper action of � on M̃ ⇥ T , we shall also denote by �✓ the same function � but
viewed as the characteristic function of F inside a given leaf L✓, which is the image
under the projection M̃ ⇥ T ! V of M̃ ⇥ {✓}. We define a functional ⌧⌫ on the
leafwise von Neumann algebra W

⇤
⌫
(V, F ;E), by setting for any non-negative element

S 2 W
⇤
⌫
(V, F ;E)

⌧
⌫

F (S) :=

Z

T

tr(M�✓ � S✓ �M�✓ )d⌫(✓),

where the M�✓ appearing in the integrand is the multiplication operator in the L
2

space of sections over M̃✓/�(✓), by the characteristic function �✓ of F viewed in
M̃✓/�(✓).

Proposition 2.5. — With the above notations we have:

– the functional ⌧⌫ yields a positive semifinite normal faithful trace on W
⇤
⌫
(G, E);

– the functional ⌧⌫F yields a positive semifinite normal faithful trace on W
⇤
⌫
(V, F ;E).

Proof. — If R = S
⇤
S 2 W

⇤
⌫
(G;E), then for any ✓ 2 T ,

M� �R✓ �M� = (S✓M�)
⇤
(S✓M�) � 0.

Therefore, tr(M� � R✓ � M�) � 0 and hence ⌧
⌫
(R) � 0. Moreover, ⌧⌫(R) = 0 if

and only if M�R✓M� = 0 for ⌫-almost every ✓. The � equivariance of R implies the
relations

M�1�R�✓M�2� = U�

⇥
M��1�1�

R✓M��1�2�

⇤
U��1 , �, �1, �2 2 �.
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The same relations hold for S. In particular,

M��R✓M�� = U�

⇥
M�R��1✓M�

⇤
U��1 = 0.

Since ⌫ is �-invariant, we deduce that M��R✓M�� = 0 ⌫ almost everywhere. Thus
X

�02�

(M�0�S✓M��)
⇤
(M�0�S✓M��) = M��R✓M�� = 0, ⌫ � a.e. ✓ 2 T.

As a consequence, we get that for ⌫ almost every ✓ 2 T and for any �, �0 2 �,

M�0�S✓M�� = 0,

which proves that S = 0 in W
⇤
⌫
(G, E) and whence R = 0 in W

⇤
⌫
(G, E). On the other

hand for any non negative A, B 2 W
⇤
⌫
(G;E), we have

M�A✓B✓M� =

X

�2�

M�A✓M��B✓M�

=

X

�2�

M�A✓(U�M�U��1)B✓M�

=

X

�2�

M�U�A��1✓M�B��1✓U��1M�

=

X

�2�

U�

⇥
M��1�A��1✓M�B��1✓M��1�

⇤
U��1

and so,

tr(M�A✓B✓M�) =

X

�2�

tr
⇥
M��1�A��1✓M�B��1✓M��1�

⇤

=

X

�2�

tr
⇥
M�B��1✓M��1�A��1✓M�

⇤
.

Now the �-invariance of ⌫ yields again

⌧
⌫
(AB) =

Z

T

tr(M�A✓B✓M�)d⌫(✓) =

Z

T

X

�2�

tr
⇥
M�B✓M��1�A✓M�

⇤
d⌫(✓)

=

Z

T

tr(M�B✓A✓M�)d⌫(✓) = ⌧
⌫
(BA).

The normality is a consequence of normality of tr and of the Beppo-Levi property.
That ⌧⌫ is semi-finite is straightforward.

Finally, according to our description of the leafwise von Neumann algebra
W
⇤
⌫
(V, F ;E), its elements are also equivariant Borel families. So, the proof of the

first item is readily adapted to take care of the quotients by the isotropy groups.

Recall the two ⇤-representations

⇡reg : BE

r
! W

⇤
⌫
(G, E) , ⇡av : BE

m
! W

⇤
⌫
(V, F ;E) .
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Corollary 2.6. — The two functionals ⌧⌫
reg

:= ⌧
⌫ � ⇡reg and ⌧⌫

av
:= ⌧

⌫

F � ⇡av are traces
on the C

⇤-algebras BE

r
and BE

m
respectively(2). Moreover they are explicitly given, for

f 2 BE

c
longitudinally smooth by the formulas

(6) ⌧
⌫

reg
(f) :=

Z

F⇥T

trE[m̃,✓]
(f [m̃, m̃, ✓])dm̃d⌫(✓)

(7) ⌧
⌫

av
(f) :=

Z

F⇥T

X

�2�(✓)

trE[m̃,✓]
(f [m̃, m̃�, ✓])dm̃d⌫(✓).

Proof. — We only need to show the two formulas (6) and (7). The first one is tauto-
logical, so we only sketch the proof of the second one. Let then f 2 Bc longitudinally
smooth be fixed. The operator [⇡av(f)]✓ acts on L

2
(L✓, E) with Schwartz kernel f0

given by

f0([m̃, ✓], [m̃
0
, ✓]) =

X

�2�(✓)

f [m̃, m̃
0
�, ✓].

Therefore, the operator M�[⇡av(f)]✓M� has Schwartz kernel supported in F ⇥ F

viewed in L✓ ⇥ L✓. Recall that L✓ is identified with M̃/�(✓). We deduce

⌧
⌫
[⇡av(f)] =

Z

F⇥T

f0([m̃, ✓], [m̃, ✓])dµ✓(m̃)d⌫(✓),

with dµ✓(m̃) being the measure induced by dm̃ on the leaf through ✓. Whence, the
formula is readily deduced.

In the sequel we shall also denote by ⌧⌫
reg

the resulting trace on the maximal C
⇤-

algebra BE

m
, obtained via the natural epimorphism BE

m
! BE

r
.

Remark 2.7. — The proof of the tracial property of ⌧⌫
reg

and ⌧⌫
av

can also be carried out
directly. Here are the details (we only treat the averaged trace ⌧⌫

av
and for simplicity

we take E equal to the product line bundle). Let f, f
0 be two elements of Cc(G). We

have:

(f ⇤ f
0
)[m̃, m̃

0
, ✓] =

Z

F

X

↵2�

f [m̃, m̃
00
↵, ✓]f

0
[m̃

00
↵, m̃

0
, ✓]dm̃

00
.

(2) These traces will not be finite in general.
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Hence we deduce

⌧
⌫

av
(f ⇤ f

0
) =

Z

F⇥F⇥T

X

�2�(✓)

X

↵2�

f [m̃, m̃
0
↵, ✓]f

0
[m̃

0
↵, m̃�, ✓]dm̃

0
dm̃d⌫(✓)

=

Z

F⇥F⇥T

X

�2�(✓)

X

↵2�

f
0
[m̃

0
, m̃�↵

�1
,↵✓]f [m̃↵

�1
, m̃

0
,↵✓]dm̃

0
dm̃d⌫(✓)

=

Z

F⇥F

X

↵2�

Z

T

X

�02�(✓0)

f
0
[m̃

0
�
0�1

, m̃↵
�1

, ✓
0
]f [m̃↵

�1
, m̃

0
, ✓
0
]dm̃

0
dm̃d⌫(✓

0
)

=

Z

F⇥T

X

�02�(✓0)

(f
0 ⇤ f)[m̃�

0�1
, m̃

0
, ✓
0
]dm̃

0
dm̃d⌫(✓

0
).

Now note that since �0 2 �(✓
0
), we have

(f
0 ⇤ f)[m̃�

0�1
, m̃

0
, ✓
0
] = (f

0 ⇤ f)[m̃, m̃
0
�
0
, ✓
0
].

Therefore, we get
⌧
⌫

av
(f ⇤ f

0
) = ⌧

⌫

av
(f
0 ⇤ f).

Proposition 2.8. — 1. The trace ⌧
⌫

reg
induces a group homomorphism ⌧

⌫

reg,⇤ :

K0(BE

r
) �! R.

2. The trace ⌧⌫
av

induces a group homomorphism ⌧
⌫

av,⇤ : K0(BE

m
) �! R.

Proof. — We only sketch the proof of this classical result: one shows, for instance,
that L

1
(W

⇤
⌫
(G;E))\ BE

r
, with L

1
(W

⇤
⌫
(G;E)) the Schatten-ideal of ⌧⌫-trace class op-

erators, is dense holomorphically closed in BE

r
. Similarly L

1
(W

⇤
⌫
(V, F ;E))\⇡av(BE

m
)

is dense and holomorphically closed in ⇡av(BE

m
); this finishes the proof by using the

definition of ⌧⌫
av

.

2.5. Compatibility with Morita isomorphisms. — The goal of this subsec-
tion is to prove the compatibility between the di�erent traces defined so far and the
isomorphisms induced in K-theory by Morita equivalence.

Recall the C
⇤-algebras Ar and Am associated to the groupoid G := T o �. Let K

denote as usual the C
⇤-algebra of compact operators on a Hilbert space.

Proposition 2.9. — There are isomorphisms of C
⇤-algebras:

(8) Br ' Ar ⌦ K , Bm ' Am ⌦ K .

Proof. — We fix m̃0 2 M̃ and consider the subgroupoid G(m̃0) consisting of the
elements which start and end in the image of {m̃0}⇥ T in V :

G(m̃0) = {[m̃0, m̃0↵, ✓], ✓ 2 T and ↵ 2 �}.

Notice that the composition in G(m̃0) can be expressed in the following way:

[m̃0, m̃o↵
0
, ✓
0
] � [m̃0, m̃o↵,↵

0
✓
0
] = [m̃0, m̃0↵↵

0
, ✓
0
] .
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Then there is a groupoid isomorphism between G(m̃0) and the groupoid G given by

[m̃0, m̃0↵, ✓] 7�! (✓,↵
�1

).

In particular the reduced (respectively maximal) C
⇤-algebras associated to G(m̃0)

and G are isomorphic: C
⇤
r
(G(m̃0)) ' Ar (respectively C

⇤
m

(G(m̃0)) ' Am). Now the
main result in [27], see also [7], together with the fact that the image of {m̃0} ⇥ T

in V intersects every leaf of the foliation, we deduce that the stable C
⇤-algebra Br is

isomorphic to the tensor product C
⇤-algebra Ar⌦ K . In the same way, the C

⇤-algebra
Bm is isomorphic to the tensor product C

⇤-algebra Am⌦K , using the maximal version
of the stability theorem which is valid as pointed out in [27].

Denote by Mr : K0(Ar) ! K0(Br) and Mm : K0(Am) ! K0(Bm) the isomor-
phisms induced in K-theory by the isomorphisms (8).

Proposition 2.10. — The following diagrams are commutative

K0(Br)

⌧
⌫
reg,⇤

✏✏

K0(Bm)

⌧
⌫
av,⇤

✏✏

K0(Ar)

Mr

99

⌧
⌫
reg,⇤

%%

K0(Am)

Mm

99

⌧
⌫
av,⇤ &&

R R.

Proof. — Let us identify T with a fiber of the flat bundle V = M̃ ⇥� T ! M . Let
⌦ be an open connected submanifold of M̃ contained in a fundamental domain F of
the action of �. Let U be the projection in V of ⌦ ⇥ T . Then U ! T is an open
neighborhood of T in V such that the induced foliation on U is given by the fibres of
U ! T . The subgroupoid G

U

U
of G consisting of homotopy classes of paths drawn in

leaves, starting and ending in U , can be describe as

G
U

U
= {[m̃, m̃

0
�, ✓] 2 ⌦⇥ M̃ ⇥ T

�
, [m̃, ✓] 2 U and [m̃

0
�, ✓] 2 U}.

An easy inspection of the groupoid laws in G
U

U
shows that the bijection

[m̃, m̃
0
�, ✓] 7�! (m̃, m̃

0
, ✓, �

�1
) 2 ⌦⇥ ⌦⇥ (T o �),

is an isomorphism of groupoids, so that the reduced (resp. maximal) C
⇤-algebra of

G
U

U
is isomorphic to K (L

2
⌦)⌦ [C(T )or �] (resp. K (L

2
⌦)⌦ [C(T )om�]). Recall that

K (L
2
⌦) denotes the nuclear C

⇤-algebra of compact operators in the Hilbert space
L

2
⌦.
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If we now fix a continuous compactly supported function ' on ⌦ with L
2 norm

equal to 1 then for any continuous compactly supported function ⇠ 2 Ac, we set:

T (⇠)[m̃, m̃
0
, ✓] :=

X

�,�02�

'(m̃�)'(m̃0�0)⇠(��1
✓, �

�1
�
0
).

Since ' is supported in a fundamental domain, it is clear that only one couple (�, �
0
)

gives a non trivial contribution. Moreover, the function T (⇠) is well defined on G and
is supported inside G

U

U
. The map T is a ⇤-homomorphism from the algebra Ac to

the algebra Bc which implements the Morita isomorphisms Mr and Mm in K-theory.
Indeed, we have:

T (⇠) ⇤ T (⇠
0
)[m̃, m̃

0
, ✓] =

Z

M̃

T (⇠)[m̃, m̃
00
, ✓]T (⇠

0
)[m̃

00
, m̃

0
, ✓]dm̃

00

=

X

↵,↵0,�,�02�

'(m̃↵)'(m̃0�0)

Z

M̃

'(m̃00�)'(m̃
00
↵
0
)dm̃

00 ⇥

⇠(↵
�1
✓,↵

�1
�)⇠

0
(↵
0�1

✓,↵
0�1

�
0
)

=

X

↵,↵02�

'(m̃↵)'(m̃0↵0)
X

�2�

⇠(↵
�1
✓,↵

�1
�)⇠

0
(�
�1
✓,�

�1
↵
0
)

=

X

↵,↵02�

'(m̃↵)'(m̃0↵0)(⇠ ⇤ ⇠0)(↵�1
✓,↵

�1
↵
0
)

= T (⇠ ⇤ ⇠0)[m̃, m̃
0
, ✓].

Hence, we conclude that

T (⇠) ⇤ T (⇠
0
) = T (⇠ ⇤ ⇠0).

In a similar way one checks that (T (⇠))
⇤

= T (⇠
⇤
) .

T extends to a morphism between the corresponding reduced C
⇤-algebras. More pre-

cisely, let f 2 L
2
(M̃), then the regular representation ⇡

reg is given for any m̃ 2 M̃

by:

(⇡
reg

T (⇠))✓(f)(m̃) =

Z

M̃

X

�0,�2�

'(m̃�)'(m̃0�0)⇠(��1
✓, �

�1
�
0
)f(m̃

0
)dm̃

0
.

Denote by g : �! C the function given by

g(�
0
) :=

Z

M̃

'(m̃0�0�1
)f(m̃

0
)dm̃

0
,
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then, one easily shows that the function g belongs to `2(�) and that its `2-norm can
be estimated as follows:

kgk2
2

=

X

�0

|g(�
0
)|2 =

X

�0

����
Z

M̃

�(m̃0�0�1
)f(m̃

0
) dm̃

����
2

=

X

�0

�����

Z

F�0
�(m̃0�0�1

)f(m̃
0
) dm̃

0

�����

2


X

�0

Z

F�0
|f(m̃

0
)|2dm̃

0
= kfk2

2
.

If we recall the regular representation of the algebra Ac, denoted also by ⇡reg, then,
using g we can write:

(⇡regT (⇠))✓(f)(m̃) =

X

�2�

�(m̃�)

X

�02�

⇠(�
�1
✓, �

�1
�
0
)g(�

0�1
) =

X

�2�

�(m̃�)(⇡
reg

✓
(⇠))(g)(�

�1
)

Therefore, if we compute the L
2-norm of the function (⇡

reg
T (⇠))✓(f) we get:

k(⇡regT (⇠))✓(f)k2
2

=

Z

M̃

������

X

�2�

�(m̃�)⇡
reg

✓
(⇠)(g)(�

�1
)

������

2

dm̃

=

X

↵2�

Z

F↵�1

���(m̃↵)⇡
reg

✓
(⇠)(g)(↵

�1
)
��2 dm̃

=

X

↵2�

��⇡reg

✓
(⇠)(g)(↵

�1
)
��2
Z

F↵�1

|�(m̃↵)|2dm̃

= k⇡reg

✓
(⇠)(g)k2

2

 k⇠k2Ar
kgk2

2
 k⇠k2Ar

kfk2
2
.

Summarizing: sup
✓2T

k(⇡reg
(T ⇠))✓k  k⇠k Ar

so that kT (⇠)kBr
 k⇠k Ar

as required.
It thus remains to show compatibility of the traces with respect to the homomorphism
T , and only on the compactly supported functions. Let us start with the regular trace.
We have:

⌧
⌫

reg
(T (⇠)) =

Z

F⇥T

T (⇠)[m̃, m̃, ✓]dm̃d⌫(✓)

=

Z

T

⇠(✓, 1)

Z

M̃

|'(m̃)|2dm̃d⌫(✓)

=

Z

T

⇠(✓, 1)d⌫(✓)

= ⌧
⌫

reg
(⇠).

Note that when m̃ 2 ⌦, only � = 1 contributes to the sum defining T (⇠).
Let us now check, briefly, that T induces a morphism between the maximal C

⇤-
algebras. It su�ces to show that T is continuous with respect to the L

1-norms on the
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groupoids G and G. But for ⇠ 2 Ac and for any m̃ 2 ⌦ we have

Z

M̃

|(T ⇠)[m̃, m̃
0
, ✓]| dm̃

0  |�(m̃)|
Z

M̃

|�(m̃
0
)| dm̃

0

Ñ
X

�02�

|⇠(✓, �0)|

é

 k�k1k�k1k⇠k1.

Hence,

kT (⇠)k1  k�k1k�k1k⇠k1 .

Now let us check the compatibility with the average trace ⌧⌫
av

. We have, for ⇠ 2 Ac:

⌧
⌫

av
(T (⇠)) =

Z

F⇥T

X

�2�(✓)

T (⇠)[m̃, m̃�, ✓]dm̃ d⌫(✓)

=

Z

⌦⇥T

X

�2�(✓)

T (⇠)[m̃, m̃�, ✓]dm̃ d⌫(✓)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



226 M.-T. BENAMEUR & P. PIAZZA

=

Z

T

X

�2�(✓)

⇠(✓, �)

Z

⌦

|'(m̃)|2dm̃ d⌫(✓)

=

Z

T

X

�2�(✓)

⇠(✓, �)d⌫(✓)

= ⌧
⌫

av
(⇠).

Note that in the expression T (⇠)[m̃, m̃�, ✓] for m̃ 2 ⌦, only the couple (1, �) con-
tributes non trivially to the sum.

3. Hilbert modules and Dirac operators

3.1. Connes-Skandalis Hilbert module. — Recall that V = M̃ ⇥� T where
M̃ ! M is the universal �-covering of the closed manifold M and where � acts by
homeomorphisms on the compact space T . We fix a hermitian vector bundle E over V

and we denote by “E its pull-back to M̃⇥T . We define a right action of the convolution
algebra Ac = Cc(T o �) ⌘ Cc( G) on the space Ec = C

1,0

c
(fM ⇥ T ; “E), of compactly

supported sections of the vector bundle “E which are smooth with respect to the M̃

variable and continuous with respect to the T variable, as follows.

(⇠f)(m̃, ✓) =

X

�2�

⇠(m̃�
�1

, �✓)f(�✓, �), ⇠ 2 Ec, f 2 Ac.

A Ac-valued inner product <.; .> on Ec is also defined by [27]

<⇠1; ⇠2>(✓, �) :=

Z

‹M
<⇠1(m̃, �

�1
✓); ⇠2(m̃�

�1
, ✓)>E[m̃,✓]

dm̃,

where <.; .>E is the hermitian scalar product that we have fixed of the vector bundle
E. A classical computation shows that these operations endow the space Ec with the
structure of a pre-Hilbert module over the algebra Ac.

As in the previous sections, we denote by Ar and Am the reduced and maximal
C
⇤-algebras of the groupoid G . Recall that there is a natural C

⇤-algebra morphism

� : Am �! Ar.

The pre-Hilbert Ac-module Ec can be completed with respect to the reduced C
⇤-

norm to yield a right Hilbert C
⇤-module over Ar that we shall denote by Er. In the

same way, we can complete Ec with respect to the maximal C
⇤-norm and define the

Hilbert C
⇤-module Em over the C

⇤-algebra Am. It is then clear that the natural map
Ec �! Er, extends to a morphism of Hilbert modules Em ! Er. More precisely, we
have a well defined linear map

% : Em �! Er such that %(⇠f) = %(⇠)�(f) f 2 Am and ⇠ 2 Em.
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We denote as in the previous sections by G the monodromy groupoid

G :=
M̃ ⇥ M̃ ⇥ T

�
.

The algebra BE

c
of smooth compactly supported sections of the bundle END(E) over

G is faithfully represented in Ec by the formula [19]

�(')(⇠)(m̃, ✓) :=

Z

M̃

'[m̃, m̃
0
, ✓]⇠(m̃

0
, ✓)dm̃

0
, ' 2 C

1
c

(G,END(E)), ⇠ 2 Ec.

Recall that BE

r
and BE

m
are respectively the reduced and maximal C

⇤-algebras
associated with G and with coe�cients in E. Given a C

⇤-algebra A and a Hilbert
A-module E, the algebra BA( E) consists of bounded adjointable A-linear morphisms
of E. Recall also that the C

⇤-algebra KA( E) of A-compact operators is the completion
in BA( E) of the subalgebra of A-finite rank operators. The following proposition is
proved in [27], see also [39] and [7].

Proposition 3.1. — For any ' 2 BE

c
, the map �(') : Ec ! Ec is Ac-linear and the

morphism � extends to continuous ⇤-representations

�r : BE

r
�! K Ar

( Er) and �m : BE

m
�! K Am

( Em),

which are C
⇤-algebra isomorphisms.

Notice that the proof of this proposition is usually given for the holonomy groupoid
of the foliation; however the same argument applies to the monodromy groupoid. Note
also that the proof is usually given for the reduced C

⇤-algebra but it remains valid
for the maximal C

⇤algebra too [27] [Remarque 5].
For any ✓ 2 T , we have defined in Subsection 1.3 a representation ⇡

av

✓
of the

maximal C
⇤-algebra Am in the Hilbert space `2(�/�(✓)). By using Remark 1.1 we

can write

⇡
av

✓
(f)(⇠)(✓

0
) :=

X

✓002�.✓

X

�✓00=✓0

f(✓
0
, �)⇠(✓

00
), f 2 Ac, ⇠ 2 `2(�✓) and ✓0 2 �✓.

Using the Am-Hilbert module Em together with the representation ⇡
av

✓
, one defines

the Hilbert space
H av

✓
:= Em ⌦⇡av

✓
`
2
(�✓).

Similarly
H reg

✓
:= Em ⌦⇡reg

✓
`
2
(�).

Lemma 3.2. — There exists an isomorphism of Hilbert spaces, �✓, between H av

✓
and

the Hilbert space L
2
(L✓, E) of square integrable sections of the vector bundle E over
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the leaf L✓ through ✓, induced by the formula

�✓(⇠ ⌦ f)(m̃, ✓) :=

X

�2�

f(�✓)
⇥
⇠(m̃�

�1
, �✓)

⇤
, ⇠ 2 Ec and f 2 Cc(�✓).

Similarly there exists an isomorphism  ✓ of Hilbert spaces between H reg

✓
and

L
2
(M̃✓,

“E) induced by the formula

 ✓(⇠ ⌦ ��)(m̃) := ⇠(m̃�
�1

, �✓).

where �� denotes the delta function at �.

Proof. — If ↵ 2 �(✓) then we can write for ⇠ 2 Ec:

�✓(⇠ ⌦ f)(m̃↵
�1

, ✓) =

X

�2�

f(�✓)
⇥
⇠(m̃↵

�1
�
�1

, �✓)
⇤

=

X

�2�

f(�✓) ⇠(m̃�
�1

,�✓)

= �✓(⇠ ⌦ f)(m̃, ✓).

Hence, �✓(⇠⌦ f) is a smooth section of Ê over M̃✓ which is �(✓)-invariant. Moreover,
if f = ��✓ and if we denote by K�✓ the (compact) support of ⇠ in M̃ ⇥ {�✓} then the
support of �✓(⇠ ⌦ ��✓) is contained in

[K�✓ · �] · �(✓),

and hence is �(✓)-compact.
Let now g 2 Ac be given. Then we have

�✓(⇠g ⌦ f)(m̃, ✓) =

X

�2�

f(�✓)(⇠g)(m̃�
�1

, �✓)

=

X

�2�

f(�✓)

X

↵2�

g(↵�✓,↵)⇠(m̃�
�1
↵
�1

,↵�✓)

=

X

✓0,✓002�✓

X

�✓=✓0,↵✓0=✓00

f(✓
0
)g(✓

00
,↵)⇠(m̃(↵�)

�1
, ✓
00
)

=

X

✓0,✓002�✓

X

�✓=✓00,↵✓0=✓00

f(✓
0
)g(✓

00
,↵)⇠(m̃�

�1
, ✓
00
).

On the other hand, we compute

�✓(⇠ ⌦ ⇡
av

✓
(g)(f))(m̃, ✓) =

X

✓002�✓

⇡
av

✓
(g)(f)(✓

00
)

X

�1✓=✓
00

⇠(m̃�
�1

1
, ✓
00
)

=

X

✓00,✓02�✓

X

�✓0=✓00,�1✓=✓00

f(✓
0
)g(✓

00
, �)⇠(m̃�

�1

1
, ✓
00
).

Hence, we obtain the equality �✓(⇠g ⌦ f) = �✓(⇠ ⌦ ⇡
av

✓
(g)(f)).
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In order to finish the proof, we need to identify the scalar product on the Hilbert
space H av

✓
. We have

<⇠ ⌦ f, ⇠ ⌦ f> = <⇡
av

✓
(< ⇠, ⇠>)(f), f >

=

X

✓02�✓

⇡
av

✓
(<⇠, ⇠>)(f)(✓

0
)f(✓0)

=

X

✓02�✓

f(✓0)
X

�2�

<⇠, ⇠>(✓
0
,�)f(�

�1
✓
0
)

=

X

✓0,✓002�✓

f(✓0)f(✓
00
)

X

�✓00=✓0

Z

M̃

<⇠(m̃,�
�1
✓
0
), ⇠(m̃�

�1
, ✓
0
)>dm̃

=

X

✓0,✓002�✓

f(✓0)f(✓
00
)

X

↵✓0=✓00

Z

M̃

<⇠(m̃,↵✓
0
), ⇠(m̃↵, ✓

0
)>dm̃

On the other hand, if we view �✓(⇠⌦ f) as a section over the leaf L✓ through ✓, then
we can use a fundamental domain F✓ for the free and proper action of the isotropy
group �(✓) on M̃ and write

<�✓(⇠ ⌦ f),�✓(⇠ ⌦ f)> =

Z

F✓

< �✓(⇠ ⌦ f)(m̃, ✓),�✓(⇠ ⌦ f)(m̃, ✓) > dm̃

=

X

✓1,✓22�✓

f(✓1)f(✓2)

X

�1✓=✓1,�2✓=✓2

Z

F✓

<⇠(m̃�
�1

1
, ✓1), ⇠(m̃�

�1

2
, ✓2)>dm̃

We fix a section ' : �✓ ! � of the map � 7! �✓. Then � = '(✓1)
�1
�1 is an element

of the isotropy group �(✓) and we have

<�✓(⇠ ⌦ f),�✓(⇠ ⌦ f)>

=

X

✓00,✓02�✓

f(✓
00
)f(✓0)

X

�2✓=✓
0

X

�2�(✓)

Z

F✓

<⇠(m̃�
�1
'(✓

00
)
�1

, ✓
00
), ⇠(m̃�

�1

2
, ✓
0
)>dm̃

=

X

✓00,✓02�✓

f(✓
00
)f(✓0)

X

�2✓=✓
0

X

�2�(✓)

Z

F✓�
�1'(✓00)�1

⇥

<⇠(m̃1, ✓
00
), ⇠(m̃1'(✓

00
)��

�1

2
, ✓
0
)>dm̃1

=

X

✓00,✓02�✓

f(✓
00
)f(✓0)

X

↵✓0=✓00

X

�2�(✓)

Z

F✓�
�1'(✓00)�1

<⇠(m̃1, ✓
00
), ⇠(m̃1↵, ✓

0
)>dm̃

Setting � = '(✓1)�
�1
'(✓1)

�1 and noticing that a fundamental domain F✓00 is equal
to F✓'(✓

00
)
�1 we get

<�✓(⇠ ⌦ f),�✓(⇠ ⌦ f)>

=

X

✓0,✓002�✓

f(✓
00
)f(✓0)

X

↵✓0=✓00

X

�2�(✓00)

Z

(F✓'(✓00)�1)�

<⇠(m̃1, ✓
00
), ⇠(m̃1↵,↵

�1
✓
00
)>dm̃
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=

X

✓0,✓002�✓

f(✓
00
)f(✓0)

X

↵✓0=✓00

X

�2�(✓00)

Z

F✓00�

<⇠(m̃1, ✓
00
), ⇠(m̃1↵,↵

�1
✓
00
)>dm̃

=

X

✓0,✓002�✓

f(✓
00
)f(✓0)

X

↵✓0=✓00

Z

M̃

<⇠(m̃1,↵✓
0
), ⇠(m̃1↵, ✓

0
)>dm̃.

Hence <⇠ ⌦ f, ⇠ ⌦ f> = <�✓(⇠ ⌦ f),�✓(⇠ ⌦ f)>. It now remains to show that �✓ is
surjective. Let ⌘ be a smooth compactly supported section over the leaf L✓ and denote
by ⌘̃ its lift into a �(✓)-invariant section over M̃ ⇥ ✓ and by ⇠0 any extension of ⌘̃ into
a leafwise smooth continuous section over M̃ ⇥ T . Let ' be a smooth function on M̃

such that
P
↵2�(✓)

↵' = 1 and such that for any compact set K in L✓ ' M̃/�(✓),
the intersection of the support of ' with the inverse image of K, under the projection
M̃ ! L✓, is compact in M̃ . We view ' as a function on M̃ ⇥ T independent of the T

variable and set

⇠ := '⇠0.

Then ⇠ 2 C
1,0

c
(M̃⇥T, Ẽ) and one checks immediately that �✓(⇠⌦�✓) = ⌘. The proof

of the second isomorphism is simpler and is left as an exercise.

Recall that we have defined two representations, that we have both denoted ⇡
av,

respectively of the C
⇤-algebras Am and BE

m
in the corresponding von Neumann alge-

bras of the discrete groupoid G and of the monodromy groupoid G with coe�cients
in the vector bundle E:

⇡
av

: Am ! W
⇤
av

( G) , ⇡
av

: BE

m
! W

⇤
⌫
(V, F ;E) .

Recall also that we have defined a ⇤-representation �m of BE

m
in the compact operators

of the Hilbert module Em:

�m : BE

m
! K Am

( Em) .

Proposition 3.3. — Let S be a given element of BE

m
. Then we have

⇡
av

✓
(S) = �✓ �

î
�m(S)⌦⇡av

✓
I`2(�✓)

ó
� ��1

✓
.

with �✓ : Em ⌦⇡av
✓
`
2
(�✓) ! L

2
(L✓, E) the isomorphism given in Lemma 3.2. In the

same way, we have

⇡
reg

✓
(S) =  ✓ �

î
�r(S)⌦⇡reg

✓
I`2(�)

ó
� �1

✓
.

with  ✓ : Em ⌦⇡reg
✓

`
2
(�) ! L

2
(M̃✓,

“E) the second isomorphism given in Lemma 3.2.
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Proof. — Let us fix an element k 2 C
1,0

c
(G; END(E)) and give the proof for S = k.

We compute for ⇠ 2 Ec and f 2 Cc[�✓]:

�✓(�(k)(⇠)⌦ f)(m̃, ✓) =

X

�2�

f(�✓)�(k)(⇠)(m̃�
�1

, �✓)

=

X

�2�

f(�✓)

Z

M̃

k[m̃�
�1

, m̃
0
, �✓]⇠(m̃

0
, �✓)dm̃

0

=

X

�2�

f(�✓)

Z

M̃

k[m̃, m̃
0
�, ✓]⇠(m̃

0
, �✓)dm̃

0

=

X

�2�

f(�✓)

Z

M̃

k[m̃, m̃1, ✓]⇠(m̃1�
�1

, �✓)dm̃1.

On the other hand, we have:

⇡
av

✓
(k)(�✓(⇠ ⌦ f))(m̃, ✓) =

Z

F✓

X

↵2�(✓)

k[m̃, m̃
0
↵, ✓]

X

�2�

f(�✓)⇠(m̃
0
�
�1

, �✓)dm̃
0

=

X

�2�

f(�✓)

X

↵2�(✓)

Z

F✓↵

k[m̃, m̃
00
, ✓]⇠(m̃

00
↵
�1
�
�1

, �✓)dm̃
00

=

X

�02�

f(�
0
✓)

X

↵2�(✓)

Z

F✓↵

k[m̃, m̃
00
, ✓]⇠(m̃

00
�
0�1

, �
0
✓)dm̃

00

=

X

�02�

f(�
0
✓)

Z

M̃

k[m̃, m̃
00
, ✓]⇠(m̃

00
�
0�1

, �
0
✓)dm̃

00
.

So we get
�✓(�(k)(⇠)⌦ f) = ⇡

av

✓
(k)(�✓(⇠ ⌦ f))

which proves the first statement by continuity. We omit the proof of the second
statement as it is similar and in fact easier.

3.2. �-equivariant pseudodi�erential operators. — This subsection is devoted
to a brief overview of the pseudodi�erential calculus relevant to our study. All stated
results are known and we therefore only sketch the proofs.

Let Ec be as before C
1,0

c
(M̃ ⇥T, “E) endowed with its structure of pre-Hilbert Ac-

module. Recall that if we complete the prehilbertian module Ec with respect to the
regular norm on Ac then we get a Hilbert C

⇤-module Er over the regular C
⇤-algebra

Ar. In the same way, completing Ac with respect to the maximal C
⇤-norm yields a

Hilbert C
⇤-module Em over the maximal C

⇤-algebra Am. We fix two vector bundles E

and F over V and we denote by “E and “F their pullbacks to M̃ ⇥T into �-equivariant
vector bundles; we let “E✓ be the restriction of “E to M̃✓. We set, as before, M̃✓ := M̃✓.
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Definition 3.4. — Let P : C
1,0

c
(M̃ ⇥ T, “E) ! C

1,0
(M̃ ⇥ T, “F ) be a linear map. We

shall say that P defines a pseudodi�erential operator of order m on the monodromy
groupoid G if there is a continuous family of order m pseudodi�erential operators
(P✓)✓2T ,

P✓ : C
1
c

(M̃✓,
“E✓) ! C

1
(M̃✓,

“F✓)
satisfying:
(1) (P ⇠)(m̃, ✓) = (P✓⇠(·, ✓))(m̃⇥ {✓})
(2) P is �-equivariant: R

⇤
�
PR

⇤
��1 = P ;

(3) the Schwartz kernel of P , KP , which can be thought of as a �-invariant distribu-
tional section on M̃ ⇥ M̃ ⇥ T , is of �-compact support, i.e. the image of the support
in (M̃ ⇥ M̃ ⇥ T )/� =: G is a compact set.

Notice that (2) can be then restated as: P�✓ = �P✓ 8✓ 2 T , 8� 2 �, exactly as
in the definition of the regular von Neumann algebra. The notion of continuity for
families of pseudodi�erential operators is classical and will not be recalled here, see,
for example, [10], [42], [32], [55], [56]. Finally, because of the third condition P maps
C
1,0

c
(M̃ ⇥ T, “E) into C

1,0

c
(M̃ ⇥ T, “F ).

Notice that a �-equivariant continuous family of di�erential operators acting be-
tween the sections of two equivariant vector bundles is an example of a pseudodi�er-
ential operator on G.

If m 2 Z, we shall denote by  m

c
(G; “E, “F ) the space of pseudodi�erential operators

of order  m from “E to “F (3) . We set

 
1
c

(G; “E, “F ) :=

[

m2Z
 

m

c
(G; “E, “F ) and  �1

c
(G; “E, “F ) :=

\

m2Z
 

m

c
(G; “E, “F ).

Using condition (3) , it is not di�cult to check that the space  1
c

(G; “E, “E) is
a filtered algebra. Moreover, assigning to P its formal adjoint P

⇤
= (P

⇤
✓
)✓2T gives

 
1
c

(G; “E, “E) the structure of an involutive algebra; the formal adjoint is defined also
for P 2  m

c
(G; “E, “F ) and it is then an alement in  m

c
(G; “F , “E).

Remark 3.5. — Notice that Definition 3.4 fits into the general framework of pseu-
dodi�erential calculus on groupoids, as developed by Connes and many others. More
precisely, let P = (P✓)✓2T be a pseudodi�erential operator on G as in Definition 3.4.
For any ✓ 2 T and any x = [m̃, ✓] 2 L✓ the di�eomorphism

⇢x,✓ : M̃ ! G
x

= r
�1

(x) given by ⇢x,✓(m̃
0
) = [m̃, m̃

0
, ✓] ,

(3) The notation for this space of operators is not unique: in [34] it is denoted  ⇤o,c(M̃ ⇥ T ; bE, bF )

with o denoting equivariance and c denoting again of �-compact support; in [39] it is simply denoted

as  ⇤�(bE, bF ).
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allows to define a pseudodi�erential operator Px on G
x with coe�cients in s

⇤
E, viz.

Px := (⇢
�1

x,✓
)
⇤ � P✓ � (⇢x,✓)

⇤. It is easy to check that Px only depends on x and that
the family (Px)x2V is a pseudodi�erential operator on G in the sense of Connes.
Conversely if we are given now a pseudodi�erential operator (Px)x2V in the sense
of Connes, then a choice of a base point m0 in M allows to construct P = (P✓)✓2T

satisfying the assumptions of Definition 3.4, viz. P✓ := ⇢
⇤
x(✓),✓

� Px(✓) � (⇢
�1

x(✓),✓
)
⇤ with

x(✓) = [m̃0, ✓] and [m̃0] = m0.

Remark 3.6. — According to [18] a pseudodi�erential operator as in Connes, admits
a well defined distributional Schwartz kernel over G. It is easy to check that this
Schwartz kernel coincides with our KP when the two families correspond as in the
previous remark.

Remark 3.7. — The construction explained in remark 3.5. also allows to establish an
identification between Connes’ von Neumann algebra [18] for the groupoid G and our
von Neumann algebra W

⇤
⌫
(G, E). It is easy to check that Connes’ trace [18] corre-

sponds to our trace ⌧⌫ through this identification.

Lemma 3.8. — A pseudodi�erential operator P of order m yields an Ac-linear map
P : Ec ! F c. Moreover, the following identity holds in Ac: <Pu, v> = <u, P⇤v>

8u 2 Ec, 8v 2 F c.

Proof. — Let ⇠ 2 Ec and let f 2 Ac. By definition (⇠f)(·) =
P
�
(R

⇤
��1⇠)(·)f(�⇡(·), �)

with ⇡ : M̃ ⇥ T ! T the projection. Hence:

P(⇠f) = P

 
X

�

(R
⇤
��1⇠)(·)f(�⇡(·), �)

!

=

X

�

Ä
P
Ä
R
⇤
��1⇠

ä
(·)

ä
f(�⇡(·), �)

=

X

�

Ä
R
⇤
��1 P⇠

ä
(·)f(�⇡(·), �) = (P⇠)f

where in the second equality we have used the fact that P commutes with multipli-
cation by functions in C(T ) (indeed, P is given by a continuous family) and in the
third equality we have used the �-equivariance. The equality <Pu, v> = <u, P⇤v>

is established in a straightforward way.

Proposition 3.9. — Let P be a pseudodi�erential operator of order m between Ec and
F c. Then we have:

1. If m  0 then P extends to a bounded adjointable Am-linear operator Pm from
Em to F m and to a bounded adjointable Ar-linear operator Pr from Er to F r.
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2. If m < 0, then Pm is an Am-linear compact operator from Em to F m and Pr

is an Ar-linear compact operator from Er to F r.

Proof. — We only sketch the arguments, following [55]. For simplicity we take E and
F to be the trivial line bundles, so that Ec = F c. We give the proof for the maximal
completion, the proof for the regular completion being the same.

For the first item, one applies the classical argument of Hörmander, see for example
[53], reducing the continuity of order zero pseudodi�erential operators to that of the
smoothing operators. We omit the details.

For the second item, one starts with P of order < �n, with n equal to the dimension
of M̃ . Then P is given by integration against a continuous compactly supported
element in G; in other words P = �(K), with K 2 Cc(G). We already know that such
an element extends to a compact operator P on Em, see 3.1. If P is of order less than
�n/2 then we consider Q := P⇤ P which is of order less then �n and symmetric. We
know that Q extends to a (compact) bounded operator on Em; thus if f 2 Ec then, in
particular, kPfk2  Ckfk2 which means that P extends to a bounded operator P on
Em. Similarly P⇤ extends to a bounded operator P⇤ and by density we obtain that
P is adjointable with adjoint equal to P⇤. Now, again by density, we have Q = P ⇤ P;
thus we can take the square root of Q which will be again compact since Q is. Using
the polar decomposition for P we can finally conclude that P is compact which is
what we need to prove.

If the order of P is m < 0 then we fix ` 2 N such that m2
`
< �n; then we proceed

inductively, considering (P⇤ P)
2

`

and applying the above argument.

Let P = (P✓)✓2T be an element in  `
c
(G); its principal symbol �`(P ) defines a

�-equivariant function on the vertical cotangent bundle T
⇤
V

(M̃ ⇥ T ) to the trivial
fibration M̃ ⇥ T ! T ; equivalently, �`(P ) is a function on the longitudinal cotangent
bundle T

⇤ F to the foliation (V, F ). If, more generally, P 2  `
c
(G; “E, “F ), then its

principal symbol will be a �-equivariant section of the bundle Hom(⇡
⇤
V

(“E),⇡
⇤
V

(“F )) :=

⇡
⇤
V

(”E⇤)⌦⇡⇤
V

(“F ) with ⇡V : T
⇤
V

(M̃⇥T ) ! (M̃⇥T ) the natural projection; equivalently,
�`(P ) is a section of the bundle Hom(⇡

⇤
F E,⇡

⇤
F F ) over the longitudinal cotangent

bundle ⇡ F : T
⇤ F ! V . We shall say that P is elliptic if its principal symbol �`(P )

is invertible on non-zero cotangent vectors. We end this subsection by stating the
following fundamental and classical result whose proof can be found, for example in
the work of Connes [17], see also [38]. (Notice that in this particular case the proof
can be easily done directly, mimicking the classic one on a closed compact manifold.)

Theorem 3.10. — Let P 2  `
c
(G; “E, “F ) be elliptic; then there exists Q 2  �`

c
(G; “F , “E)

such that

(9) Id� PQ 2  �1
c

(G; “F , “F ) , Id�QP 2  �1
c

(G; “E, “E).
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Notice that in our definition elements in  �1
c

are of �-compact support: this
applies in particular to both S := Id� PQ and R := Id�QP .

We end this subsection by observing that it is also possible to introduce Sobolev
modules E(k) and prove the usual properties of pseudodi�erential operators, see [56].
For simplicity we consider the case k 2 N. In order to give the definition, we fix
an elliptic di�erential operator of order k, P ; for example P = D

k, with D a Dirac
type operator. This is a regular unbounded operator (see the next subsection). We
consider the domain of its extension DomPm and we endow it with the Am-valued
scalar product

<s, t>k := <s, t> + <Pms, Pmt>.

This defines the Sobolev module of order k, E(k). One can prove for these modules
the usual properties:

– di�erent choices of P yield compatible Hilbert module structures;
– if k > ` we have E(k)

,! E(`) and the inclusion in Am-compact
– if R 2  m

c
(G, E) then R extends to a bounded operator E(k) ! E(k�m).

Since we shall make little use of these properties, we omit the proofs.

3.3. Functional calculus for Dirac operators. — Let D̃ = (D̃✓)✓2T be a �-
equivariant family of Dirac-type operators acting on the sections of a �-equivariant
vertical hermitian Cli�ord module “E endowed with a �-equivariant connection. We
shall make the usual assumptions on the connection and on the Cli�ord action ensur-
ing that each D̃✓ is formally self-adjoint. Recall that D̃ = (D̃✓)✓2T 2  1

c
(G; “E) and

that D̃ induces a Ac-linear operator on Ec that we have denoted by D.

Proposition 3.11. — The operator D is closable in Er and in Em. Moreover, the clo-
sures Dr and Dm on the Hilbert modules Er and Em respectively, are regular and
self-adjoint operators.

Proof. — We give a classical proof based on general results described for instance
in [55]. Since the densely defined operator D is formally self-adjoint, it is closable
with symmetric closures in Er and Em respectively. Let Q̃ 2  �1

c
(G, “E) be a formally

self-adjoint parametrix for D̃:

Id� D̃Q̃ = S̃ , Id� Q̃D̃ = R̃ .

For simplicity, we denote by ⇡ the regular or the maximal representation, by E⇡ the
corresponding Hilbert module and by D⇡ the closure of D. Since Q̃ has negative order,
it extends into a bounded operator on E⇡, denoted by Q⇡, or simply by Q⇡. On the
other hand, we know that the zero-th order pseudodi�erential operator D̃Q̃ extends
to a bounded A⇡-linear operator on E⇡. If ⇠ belongs to the domain of this closure
(which is E⇡) then there exists ⇠n in C

1,0

c
(M̃ ⇥ T, “E) converging in the ⇡-norm to
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⇠ and such that (D̃Q̃)⇠n is convergent in the ⇡ norm. We deduce that Q⇡(⇠) is well
defined and is the limit of Q̃⇠n. Hence we deduce that Q⇡⇠ belongs to the domain of
D⇡ and that Im Q⇡ ⇢ Dom D⇡. Hence, D⇡ Q⇡ is a bounded operator which coincides
with the extension of D̃Q̃ and we have with obvious notation,

D⇡ Q⇡ = I � S
⇡

,

so Q⇤
⇡
D⇤
⇡
⇢ (D⇡ Q⇡)⇤ = I � S⇤

⇡
and hence Dom(D⇤

⇡
) ⇢ Im( Q⇤

⇡
) + Im( S⇤

⇡
). Since Q⇡ is

self-adjoint we deduce that

Dom(D⇤
⇡
) ⇢ Im( Q⇡) + Im( S⇤

⇡
) ⇢ Dom(D⇡).

The last inclusion is a consequence of the fact that S⇤
⇡

is induced by a smoothing �-
compactly supported operator. So D⇡ is self-adjoint. Now, the graph of D⇡, G(D⇡),
is given by

G(D⇡) = {( Q⇡(⌘) + S
⇡
(⌘
0
), D⇡( Q⇡(⌘)) + D⇡( S

⇡
(⌘
0
)), ⌘, ⌘

0 2 E⇡}.

Hence G(D⇡), which is closed in E⇡ ⇥ E⇡, coincides with the image of a bounded
morphism U of A⇡-modules given by

U =

 
Q⇡ S

⇡

D⇡ Q⇡ D⇡ S
⇡

!
.

Now, as a general fact, the image of such morphism, when closed, is always ortho-
complemented. Thus D⇡ is regular.

Recall that we established in Lemma 3.2 isomorphisms of Hilbert spaces

�✓ : Em ⌦⇡av
✓
`
2
(�✓) ! L

2
(L✓, E) ,  ✓ : Em ⌦⇡reg

✓
`
2
(�) ! L

2
(M̃✓,

“E).

Proposition 3.12. — Let  : R ! C be a continuous bounded function. Then for any
✓ 2 T , the bounded operator, acting on L

2
(L✓, E), given by

�✓ �
î
 (Dm)⌦⇡av

✓
I`2(�✓)

ó
� ��1

✓
,

coincides with the operator  (DL✓ ) where DL✓ is our Dirac type operator acting on
the leaf L✓.
In the same way the operator, acting on L

2
(M̃✓,

“E✓), given by

 ✓ �
î
 (Dm)⌦⇡reg

✓
I`2(�)

ó
� �1

✓
,

coincides with the operator  (D̃✓).

Proof. — We prove only the first result, the proof of the second is similar. Since the
operator Dm is a regular self-adjoint operator, its continuous functional calculus is
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well defined. See [55]. Let ⇠ 2 Ec and let f 2 Cc[�✓], then we have

�✓(Dm(⇠)⌦ f)(m̃, ✓) =

X

�2�

f(�✓)(D⇠)(m̃��1
, �✓)

=

X

�2�

f(�✓)[R
⇤
��1(D⇠)](m̃, ✓)

=

X

�2�

f(�✓)D(R
⇤
��1⇠)(m̃, ✓).

On the other hand, the action of the operator DL✓ on the image of �✓ is given by

(DL✓ � �✓)(⇠ � f)(m̃, ✓) =

X

�2�

f(�✓)D̃✓([�
�1
⇠]✓)(m̃).

Since by definition of D we have D(�
�1
⇠)(m̃, ✓) = D̃✓([�

�1
⇠]✓)(m̃) we obtain that

�✓ � (Dm ⌦ I) � ��1

✓
= DL✓ .

If  is as above then we get as a consequence of the definition of functional calculus,

 (DL✓ ) =  
�
�✓ � (Dm ⌦ I) � ��1

✓

�

= �✓ �  (Dm ⌦ I) � ��1

✓
.

By uniqueness of the functional calculus we also deduce that  (Dm⌦I) =  (Dm)⌦I,

and hence the proof is complete.

Before proving the main result of this Subection, we recall two technical results
about trace class operators. First we establish two useful Lemmas. The first one
is classical and generalizes [53] Proposition A.3.2 while the second one is an easy
extension of similar results for coverings established in [1].

Lemma 3.13. — Let S 2 W
⇤
⌫
(G, E); then the following statements are equivalent:

– S is ⌧⌫ Hilbert-Schmidt (i.e. ⌧⌫(S⇤S) < +1);
– there exists a measurable section KS of END(E) over G such that for ⌫-almost

every ✓ the operator S✓ is given on L
2
(M̃✓,

“E✓) by

(S✓⇠)(m̃) =

Z

M̃

KS(m̃, m̃
0
, ✓)⇠(m̃

0
)dm̃

0
,

with Z

M̃⇥F⇥T

tr (KS(m̃, m̃
0
, ✓)

⇤
KS(m̃, m̃

0
, ✓)) dm̃ dm̃

0
d⌫(✓) < +1

where we interpret KS as a �-equivariant section on M̃ ⇥ M̃ ⇥ T .
Moreover in this case the ⌧

⌫ Hilbert-Schmidt norm of S, kSk2
⌫�HS

:= ⌧
⌫
(S
⇤
S), is

given by

kSk2
⌫�HS

=

Z

M̃⇥F⇥T

tr (KS(m̃, m̃
0
, ✓)

⇤
KS(m̃, m̃

0
, ✓)) dm̃ dm̃

0
d⌫(✓) .
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Proof. — We have, by definition,

kSk2
⌫�HS

= ⌧
⌫
(S
⇤
S) =

Z

T

kS✓M�k2HS
d⌫(✓)

where the integrand involves the usual Hilbert-Schmidt norm in L
2
(M̃✓,

“E✓). Therefore
the proof is easily deduced using [53][page 251]

Lemma 3.14. — Let S be a positive selfadjoint operator in W
⇤
⌫
(G, E); then the fol-

lowing statements are equivalent:

– ⌧
⌫
(S) < +1;

– for any smooth compactly supported function � on M̃ , the measurable function

T 3 ✓ �! Tr(M
�
� S✓ �M�)

is ⌫-integrable on T , where the trace is the usual trace for bounded operators on
the Hilbert space L

2
(M̃, “E);

– for any smooth compactly supported function � on M̃ , the function

T 3 ✓ �! kS1/2

✓
�M�k2HS

is ⌫-integrable on T .

Proof. — We follow the techniques in [1] and use Lemma 3.13. The second and third
items are clearly equivalent. Assume that ⌧⌫(S) < +1 and let � be a smooth com-
pactly supported function on M̃ with uniform norm k�k1. We let �� be a finite subset
of � such that the support of � lies in the union [�2��F�. Here F is a fundamenal
domain as before. Then S

1/2 is ⌧⌫ Hilbert-Schmidt and if KS1/2 is its Schwartz kernel,
then we easily deduce

Z

M̃⇥M̃⇥T

|�(m̃
0
)|2 tr (KS1/2(m̃, m̃

0
, ✓)

⇤
KS1/2(m̃, m̃

0
, ✓)) dm̃ dm̃

0
d⌫(✓)

=

X

�2��

Z

M̃⇥F�⇥T

|�(m̃
0
)|2 tr (KS1/2(m̃, m̃

0
, ✓)

⇤
KS1/2(m̃, m̃

0
, ✓)) dm̃ dm̃

0
d⌫(✓)

 k�k21 ⇥
X

�2��

Z

M̃⇥F�⇥T

tr (KS1/2(m̃, m̃
0
, ✓)

⇤
KS1/2(m̃, m̃

0
, ✓)) dm̃ dm̃

0
d⌫(✓)

= k�k21 ⇥
X

�2��

Z

M̃⇥F⇥T

tr
�
KS1/2(m̃�

�1
, m̃

0
, �✓)

⇤
KS1/2(m̃�

�1
, m̃

0
, �✓)

�
dm̃ dm̃

0
d⌫(✓)

= k�k21 ⇥ Card(��)⇥ ⌧
⌫
(S) < +1.

ASTÉRISQUE 327



INDEX, ETA AND RHO INVARIANTS ON FOLIATED BUNDLES 239

Conversely, let � be any nonnegative smooth compactly supported function on M̃

such that �� = �, where � is the characteristic function of F . Then we have

⌧
⌫
(S) =

Z

T

Tr(M� � S✓ �M�) d⌫(✓)

=

Z

T

Tr(M� �M� � S✓ �M� �M�) d⌫(✓)


Z

T

Tr(M� � S✓ �M�) d⌫(✓) < +1.

Proposition 3.15. — Let S = (S✓)✓2T be an element of the von Neumann algebra
W
⇤
⌫
(G;E). We assume that S✓ is an integral operator with smooth kernel for any ✓ in

T and that the resulting Schwartz kernel KS is a Borel bounded section over G.

– If S is positive and self-adjoint, then S is ⌧⌫ trace class and we have

(10) ⌧
⌫
(S) =

Z

F⇥T

tr(KS(m̃, m̃, ✓))dm̃d⌫(✓),

where F is a fundamental domain in M̃ and where in the right hand side we
interpret K(S) as a �-equivariant section on M̃ ⇥ M̃ ⇥ T .

– If S is assumed to be ⌧⌫ trace class, then formula (10) holds.

Proof. — Let us prove the first item. Let � be a smooth compactly supported function
on M̃ . The operator M� � S✓ � M

�
acting on L

2
(M̃✓,

“E) has a smooth compactly
supported Schwartz kernel and is therefore trace class with

Tr(M� � S✓ �M
�
) =

Z

M̃✓

|�(m̃)|2KS(m̃, m̃, ✓) dm̃ .

Since KS is bounded as a section over G and since ⌫ is a borelian measure, we have
Z

T

Tr(M� � S✓ �M
�
)d⌫(✓) < +1 .

This shows, using Lemma 3.14, that S is ⌧⌫ trace class and also that S
1/2 is ⌧⌫

Hilbert-Schmidt. By Lemma 3.13 we deduce that the S
1/2 is an integral operator

with measurable Schwartz kernel KS1/2 satisfying

kS1/2k2
HS

:=

Z

M̃⇥F⇥T

tr (KS1/2(m̃, m̃
0
, ✓)

⇤
KS1/2(m̃, m̃

0
, ✓)) dm̃ dm̃

0
d⌫(✓) < +1 .

On the other hand we also have

KS(m̃, m̃, ✓) =

Z

M̃

KS1/2(m̃, m̃
0
, ✓)KS1/2(m̃

0
, m̃, ✓) dm̃

=

Z

M̃

KS1/2(m̃, m̃
0
, ✓)KS1/2(m̃, m̃

0
, ✓)

⇤
dm̃
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The last equality employs the fact that S
1/2 is selfadjoint. Taking pointwise traces we

get:

trKS(m̃, m̃, ✓) =

Z

M̃

tr (KS1/2(m̃, m̃
0
, ✓)KS1/2(m̃, m̃

0
, ✓)

⇤
) dm̃

=

Z

M̃

tr (KS1/2(m̃, m̃
0
, ✓)

⇤
KS1/2(m̃, m̃

0
, ✓)) dm̃ .

Therefore
⌧
⌫
(S) = kS1/2k2

HS
=

Z

F⇥T

trKS(m̃, m̃, ✓)dm̃d⌫(✓) .

This finishes the proof of the first item.
Regarding the second item, assume now that S is ⌧⌫ trace class i.e. ⌧⌫(|S|) is finite.
Write S = U |S| for the polar decomposition of S in W

⇤
⌫
(G, E). Then the operators

|S|1/2 and U |S|1/2 are ⌧⌫ Hilbert-Schmidt and thus have L
2 Schwartz kernels K|S|1/2

and KU |S|1/2 . Using Lemma 3.13 and the polarization identity we deduce:

<U |S|1/2
, |S|1/2

>HS

=

Z

M̃⇥F⇥T

trKU |S|1/2(m̃, m̃
0
, ✓)K|S|1/2(m̃, m̃

0
, ✓)

⇤
dm̃ dm̃

0
d⌫(✓)

=

Z

M̃⇥F⇥T

trKU |S|1/2(m̃, m̃
0
, ✓)K|S|1/2(m̃

0
, m̃, ✓) dm̃ dm̃

0
d⌫(✓)

=

Z

F⇥T

trKS(m̃, m̃, ✓) dm̃ d⌫(✓) .

Hence
⌧
⌫
(S) = <U |S|1/2

, |S|1/2
>HS =

Z

F⇥T

trKS(m̃, m̃, ✓) dm̃ d⌫(✓) .

The proof is complete.

Remark 3.16. — A proof similar to the one given above shows, as in [1] (Propo-
sition 4.16), that if R = (R✓)✓2T has a continuous (or even Borel bounded) leaf-
wise smooth Schwartz kernel with �-compact support, then R is ⌧⌫ trace class with
⌧
⌫
(R) =

R
F⇥T

trKR(m̃, m̃, ✓)dm̃ d⌫(✓).
A similar statement holds for a leafwise operator in W

⇤
⌫
(V, F ;E) with a Borel bounded

leafwise smooth Schwartz kernel which is supported within a uniform C-neighbourhood,
C 2 R, C > 0, of the diagonal of every leaf.

Proposition 3.17. — Let  : R ! C be a measurable rapidly decreasing function. The
the operator  (D̃) := ( (D̃✓))✓2T satisfies the assumption of Proposition 3.15 (second
item). In particular  (D̃) has a bounded fiberwise-smooth Schwartz kernel K and we
have

⌧
⌫
( (D̃)) =

Z

F⇥T

tr(K [m̃, m̃, ✓])dm̃ d⌫(✓).

ASTÉRISQUE 327



INDEX, ETA AND RHO INVARIANTS ON FOLIATED BUNDLES 241

Proof. — Using [38], Theorem 7.36 (which is in fact valid for any measurable rapidly
decreasing function) we know that K is bounded and fiberwise smooth and that
 (D̃) 2 W

⇤
⌫
(G, E) . Therefore it remains to show that  (D̃) is ⌧⌫ trace class since

then we can simply apply Proposition 3.15 (second item). But | (D̃)| = | |(D̃)|
and | | is a measurable rapidly decreasing function; therefore | (D̃)| has a bounded
fiberwise smooth Schwartz and thus satisfies the assumptions of Proposition 3.15 (first
item). We conclude that  (D̃) is ⌧⌫ trace class.

A statement similar to the one just proved holds for the leafwise Dirac-type oper-
ator D := (DL)L2V/ F . In order to keep this paper to a reasonable size we state the
corresponding proposition without proof. See [52].

Proposition 3.18. — Let  : R ! C be a measurable rapidly decreasing function.
Then the operator  (D) := ( (DL))L2V/ F is ⌧⌫F trace class, has a leafwise smooth
Schwartz kernel K which is bounded as a measurable section over the equivalence
relation [L2V/ F L⇥ L,and we have

⌧
⌫

F ( (D)) =

Z

F⇥T

tr(K ([m̃, ✓], [m̃, ✓]))dm̃ d⌫(✓)

where now F ⇥ T is viewed as a subset in V .

We are now in position to prove the main results of this section.

Theorem 3.19. — Let for simplicity  : R ! C be a Schwartz class function. Then
 (Dm) 2 K Am

( Em) and the element ��1

m
( (Dm)) 2 BE

m
admits a finite ⌧⌫

av
trace and

also a finite ⌧⌫
reg

trace. Moreover

– ⌧
⌫

av
(�
�1

m
( (Dm)) = ⌧

⌫

F
⇥
( (DL))L2V/F

⇤
where ( (DL))L2V/F is the correspond-

ing element in the leafwise von Neumann algebra W
⇤
⌫
(V, F ;E) and ⌧

⌫

F is the
trace on this von Neumann algebra as defined in Subsection 2.4.

– ⌧
⌫

reg
(�
�1

m
( (Dm)) = ⌧

⌫

î
( (D̃✓))✓2T

ó
where ( (D̃✓))✓2T is the corresponding

element in the regular von Neumann algebra W
⇤
⌫
(G, E) and ⌧

⌫ is the trace on
this von Neumann algebra as defined in Subsection 2.4.

Proof. — We know from Corollary 2.6 that ⌧⌫
av

= ⌧
⌫

F � ⇡av. Therefore

⌧
⌫

av
(�
�1

m
(| (Dm)|)) = ⌧

⌫

F
⇥
(⇡

av � ��1

m
)(| (Dm)|)

⇤

= ⌧
⌫

F

Ä
(�✓ �

î
| |(Dm)⌦⇡av

✓
I

ó
� ��1

✓
)✓2T

ä
.

The last equality is a consequence of Proposition 3.3. Now, using Proposition 3.12,
we finally deduce

⌧
⌫

av
(�
�1

m
(| (Dm)|)) = ⌧

⌫

F
�
(| |(DL))L2V/F

�
< +1.
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Hence we see from Proposition 3.1 that ��1

m
(| (Dm)|) is trace class and the same

computation with  instead of | | finishes the proof of the first item. The second
item is proved repeating the same argument.

4. Index theory

Let M̃ , �, and T be as in the previous sections and let (V, F ), with V = M̃ ⇥� T ,
the associated foliated bundle. We assume in this section only that the manifold M

is even dimensional and hence that the leaves of our foliation are even dimensional.
Let E be a continuous longitudinally smooth hermitian vector bundle on V and let “E
be its lift to M̃ ⇥ T . Let D̃ = (D̃✓)✓2T be as in the previous section a �-equivariant
continuous family of Dirac-type operators. The bundle E is Z2-graded, E = E

+�E
�,

and the operator D̃ is odd and essentially self-adjoint, i.e.

D̃✓ =

 
0 D̃

�
✓

D̃
+

✓
0

!
8✓ 2 T

and (D̃
�
✓

)
⇤

= D̃
+

✓
. Let D := (DL)L2V/F be the longitudinal operator induced by D̃

on the leaves of the foliation (V, F ).

4.1. The numeric index. — We consider for each ✓ the orthogonal projection ⇧̃±
✓

onto the L
2-null space of the operator D̃

±
✓

. Similarly, on each leaf L, we consider
the orthogonal projections ⇧±

L
onto the L

2-null space of the operator DL. It is well
known that these orthogonal projections are smoothing operators, but of course are
not localized in a compact neighborhood of the unit space V , viewed as a subspace
of the graph of the foliation equivalence relation.

Proposition 4.1

– The family ⇧̃
±

:= (⇧̃
±
✓

)✓2T belongs to the regular von Neumann algebra
W
⇤
⌫
(G, E

±
). Moreover it is a ⌧⌫ trace class operator.

– The family ⇧±
:= (⇧

±
L

)L2V/F belongs to the leafwise von Neumann algebra
W
⇤
⌫
(V, F ;E

±
). Moreover it is a ⌧⌫F trace class operator.

Proof. — As we have already mentioned, for any Borel bounded function f : R ! C,
the operator f(D̃) (respectively f(D)) belongs to the von Neumann algebra W

⇤
⌫
(G, E)

(to the von Neumann algebra W
⇤
⌫
(V, F ;E)). Hence, ⇧̃± belongs to W

⇤
⌫
(G, E

±
) and

⇧
± belongs to W

⇤
⌫
(V, F ;E

±
).

Recall on the other hand from Propositions 3.17, 3.18 that e
�D̃

2

is ⌧⌫ trace class
and that e

�D
2

is ⌧⌫F trace class. Hence the proof is complete since

⇧̃ = ⇧̃e
�D̃

2

and ⇧ = ⇧e
�D

2

.
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Definition 4.2. — We define the monodromy index of D̃ as

(11) ind
⌫

up
(D̃) := ⌧

⌫
(⇧̃

+
)� ⌧

⌫
(⇧̃
�

)

We define the leafwise index of D as

(12) ind
⌫

down
(D) := ⌧

⌫

F (⇧
+
)� ⌧

⌫

F (⇧
�

).

As D̃
+ is elliptic, we can find a �-equivariant family of parametrices Q̃ := (Q̃✓)✓2T

of �-compact support with remainders R̃+ and R̃�; the remainder families are �-
equivariant, smoothing and of �-compact support, i.e.

R̃+ = I � Q̃D̃
+ and R̃� = I � D̃

+
Q̃ ; R̃± 2  �1c

(G, E
±

) .

We know that R̃± are both ⌧⌫ trace class. Let Q, R+, R� be the longitudinal operators
induced on (V, F ); thus Q, R+ 2 W

⇤
⌫
(V, F ;E

+
) and R� 2 W

⇤
⌫
(V, F ;E

�
) with R± ⌧

⌫

F
trace class, see Remark 3.16.

Proposition 4.3. — For any N 2 N, N � 1, the following formulas hold:

(13) ind
⌫

up
(D̃) = ⌧

⌫
(R̃+)

N � ⌧
⌫
(R̃�)

N
, ind

⌫

down
(D) = ⌧

⌫

F (R+)
N � ⌧

⌫

F (R�)
N

.

Proof. — Let N = 1; then the proof given by Atiyah in [1] extends easily to the
present context. Replacing the parametrix Q̃ by Q̃N := Q̃(1+ R̃�+ R̃

2

�+ · · ·+ R̃
N�1

� ,
which is again a parametrix, reduces the general case to the one treated by Atiyah.

Using these formulas we shall now sketch the proof of the precise analogue of
Atiyah’s index theorem on coverings.

Proposition 4.4. — The monodromy index and the leafwise index coincide:

(14) ind
⌫

up
(D̃) = ind

⌫

down
(D).

Proof. — Given ✏ > 0 we can choose a parametrix Q̃ 2  �1

c
(G; “E�, “E+

) with the
property that the two remainders R̃± = (R̃±)✓, ✓ 2 T are such that each (R̃±)✓ is
supported within an ✏-neighbourhood of the diagonal in M̃✓ ⇥ M̃✓. Let R±,m : E±

m
!

E⌥
m

be the induced operators on the Am-Hilbert modules E±
m

; since R̃± are smoothing
and of �-compact support we certainly know that R±,m are Am-compact operators.
Let K

±
:= �

�1

m
(R±,m) 2 BE

±

m
; K

± is simply given by the Schwartz kernel of R̃± and
is in fact an element in BE

±

c
. In particular K

± has finite ⌧⌫
reg

trace and ⌧⌫
av

trace. By
arguments very similar (in fact easier) to those establishing Theorem 3.19 we know
that
(15)
⌧
⌫
(R̃±) = ⌧

⌫

reg
(�
�1

m
R±,m) ⌘ ⌧

⌫

reg
(K

±
) , ⌧

⌫

F (R±) = ⌧
⌫

av
(�
�1

m
R±,m) ⌘ ⌧

⌫

av
(K

±
) .

Thus, from (13), it su�ces to show that

⌧
⌫

reg
(K

±
) = ⌧

⌫

av
(K

±
) .
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We can write

⌧
⌫

av
(K

±
) =

Z

F⇥T

X

�2�(✓)

K
±

[m̃, m̃�, ✓] dm̃ d⌫(✓)

=

Z

F⇥T

K
±

[m̃, m̃, ✓] dm̃ d⌫(✓) +

Z

F⇥T

X

�2�(✓);� 6=e

K
±

[m̃, m̃�, ✓] dm̃ d⌫(✓)

= ⌧
⌫

reg
(K

±
) +

Z

F⇥T

X

�2�(✓);� 6=e

K
±

[m̃, m̃�, ✓] dm̃ d⌫(✓).

Choosing ✏ small enough we can ensure that K
±

[m̃, m̃�, ✓] = 0 8� 2 �(✓), � 6= e. The
proof is complete.

Remark 4.5. — The possibility of localizing a parametrix in an arbitrary small neigh-
bourhood of the diagonal plays a crucial role in the proof of the above proposition.
There are more general situations, for example foliated flat bundles M̃ ⇥� T with M̃

a manifold with boundary, where it is not possible to localize the parametrix. In these
cases the analogue of Atiyah’s index theorem does not hold.

4.2. The index class in the maximal C
⇤-algebra. — Let D̃

+ be as in the previ-
ous subsection. As before we consider a parametrix Q̃ := (Q̃✓)✓2T 2  �1

c
(G; “E�, “E+

)

with remainders R̃+ and R̃�. The family Q̃ defines a bounded Am-linear operator
Qm from E�

m
to E+

m
. The families R̃+ and R̃� define Am-linear compact operators

R±,m on the Hilbert modules E±
m

respectively.
We now define idempotents p, p0 in M2⇥2(K Am

( Em)� C) by setting

(16) p :=

 
R2

+,m
R+,m(I + R+,m) Qm

R�,m D+

m
I � R2

�,m

!
, p0 :=

 
0 0

0 I

!
.

We thus get a K0-class [p� p0] 2 K0(K Am
( Em)).

Definition 4.6. — The (maximal) index class IND(Dm) 2 K0(Bm) associated to the
family D̃ is, by definition, the image under the composite isomorphism

K0(K Am
( Em)) ! K0(BE

m
) ! K0(Bm)

of the class [p� p0].

One also considers the index class in K0(Am):

(17) Ind(Dm) := M�1

max
(IND(Dm)) 2 K0(Am)

with Mmax : K0(Am) ! K0(Bm) the Morita isomorphism considered in Proposition
2.10.
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Recall now the morphisms ⌧⌫
av,⇤ : K0(Bm) ! C and ⌧

⌫

reg,⇤ : K0(Br) ! C. Using
the natural morphism K0(Bm) ! K0(Br) we view both morphisms with domain
K0(Bm):

(18) ⌧
⌫

av,⇤ : K0(Bm) ! C , ⌧
⌫

reg,⇤ : K0(Bm) ! C.

Recall also that using the natural morphism K0(Am) ! K0(Ar) we have induced
morphisms

(19) ⌧
⌫

av,⇤ : K0(Am) ! C , ⌧
⌫

reg,⇤ : K0(Am) ! C.

Proposition 4.7. — Let IND(Dm) 2 K0(Bm) and Ind(Dm) 2 K0(Am) be the two
index classes introduced above. Then the following formulas hold:

ind
⌫

up
(D̃) = ⌧

⌫

reg,⇤(IND(Dm)) = ⌧
⌫

reg,⇤(Ind(Dm)),(20)

ind
⌫

down
(D) = ⌧

⌫

av,⇤(IND(Dm)) = ⌧
⌫

av,⇤(Ind(Dm)).(21)

Consequently, from (14), we have the following fundamental equality:

(22) ⌧
⌫

reg,⇤(Ind(Dm)) = ⌧
⌫

av,⇤(Ind(Dm)).

Proof. — We only need to prove the first equality in each equation, for the second
one is a consequence of the definition of Ind(Dm) 2 K0(Am) and the compatibilty
result explained in Proposition 2.10. For the first equality we apply (13) with N = 2

and the parametrix Q̃. Using now (15), (16) we get

ind
⌫

up
(D̃) = ⌧

⌫
((R̃+)

2
)� ⌧

⌫
((R̃�)

2
)

= ⌧
⌫

reg
((R+,m)

2
)� ⌧

⌫

reg
((R�,m)

2
)

= ⌧
⌫

reg,⇤(IND(Dm)).

The proof of the other one is similar.

Remark 4.8. — The equalities in Proposition 4.7 can be rephrased as the equality be-
tween the numeric C

⇤-algebraic index and the von Neumann index. Notice once again
that there are more general situations where this proposition does not hold, in the
sense that there exists a well defined von Neumann index but there does not exist a
well-defined C

⇤-algebraic index we can equate it to. The simplest example is given by
a fibration of compact manifolds L ! V ! T with V and L manifolds with bound-
ary. The von Neumann index defined by the family of Atiyah-Patodi-Singer boundary
conditions is certainly well defined (this is the integral over T of the function that as-
signs to ✓ 2 T the APS index of D

+

✓
). On the other hand, unless the boundary family

associated to (D
+

✓
)✓2T is invertible, there is not a well defined Atiyah-Patodi-Singer

index class in K0(C(T )) = K
0
(T ). For more on higher Atiyah-Patodi-Singer index

theory on foliated bundles see [34], [33].
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4.3. The signature operator for odd foliations. — We briefly review the defi-
nition of the leafwise signature operator in the odd case. Recall that when dim(M) =

2m � 1, the leafwise signature operator is defined as the operator D
sign acting on

leafwise di�erential forms on V , defined on even forms of degree 2k by

D
sign

ev
= i

m
(�1)

k+1
(⇤ � d� d � ⇤),

and on odd forms of degree 2k � 1 by

D
sign

od
= i

m
(�1)

m�k
(d � ⇤+ ⇤ � d),

where d is the leafwise de Rham di�erential and ⇤ is the usual Hodge operator along
the leaves associated with the Riemannian metric on the foliation [38]. An easy com-
putation shows that the two operators D

sign

odd
and D

sign

ev
are conjugate so that their

invariants coincide and it is su�cient to work with one of them. In contrast with [3],
D

sign will be in the sequel the operator D
sign

od
. Using the lifted structure to the fibers

of the monodromy covers M̃ ⇥ {✓} of the leaves, we consider in the same way the �-
equivariant family of signature operators D̃

sign
= (D̃

sign

✓
)✓2T which actually coincides

with the lift of D
sign as can be easily checked. The following is well known, see [2],

[3] for the first part and [28] for the second:
Recall that the K1 index of D

sign is the class of the Cayley transform of D
sign, see

for instance [28].

Proposition 4.9. — The operator D
sign is a leafwise elliptic essentially self-adjoint

operator whose K1 index class is a leafwise homotopy invariant of the foliation.

The square of D
sign is proportional to the Laplace operator along the leaves and

hence it is leafwise elliptic. The proof that D
sign

ev
is formally self-adjoint is straight-

forward, see [3], and classical elliptic theory on foliations of compact spaces allows
to deduce that it is essentially self-adjoint. Now D

sign is unitarily equivalent to D
sign

ev

and hence is also formally self-adjoint. We shall get back to the index class later on.
The homotopy invariance means that if f : (V, F ) ! (V

0
, F 0) is a leafwise oriented

leafwise homotopy equivalence between odd dimensional foliations, then with obvious
notations we have

f⇤ Ind(D
sign

) = Ind(D
sign0

)

where f⇤ is the isomorphism induced by the Morita equivalence implemented by f

[28].

5. Foliated rho invariants

Recall that T is a compact Hausdor� space on which the discrete countable group
� acts by homeomorphisms, M is a compact closed manifold with fundamental group
� and universal cover M̃ and that V = M̃ ⇥� T is the induced foliated space. We are
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also given a Borel measure ⌫ on T which is �-invariant. We assume in the present
section that M is odd dimensional and whence that the leaves of the induced foliation
F of V are odd dimensional. We fix as in the previous section a Dirac-type operator
along the leaves of the foliation (V, F ) acting on the vector bundle E. We denote
by D this operator acting leafwise, so D = (DL)L2V/F where each DL is an elliptic
Dirac-type operator on the leaf L acting on the restriction of E to L. We also consider
the lifted operator D̃ to the monodromy groupoid G of the foliation (V, F ) as defined
in Section 3.2. More precisely, D̃ = (D̃✓)✓2T is a �-equivariant continuous family of
Dirac type operators on M̃ .

5.1. Foliated eta and rho invariants. — The construction of foliated eta in-
variants was first given independently in the two references [47] [43] and the two
definitions work in fact for general measured foliations. Notice that [47] works with
the measurable groupoid defined by foliation, whereas [43] works with the holonomy
groupoid. As we shall clarify in a moment, the choice of the groupoid does make a
di�erence for these non-local invariants. We give in this paragraph a self-contained
treatment of these two definitions following our set-up, but using the monodromy
groupoid instead of the holonomy groupoid considered in [43].

We denote by kt and k̃t the longitudinally smooth uniformly bounded Schwartz
kernels of the operators 't(D) and 't(D̃) obtained using the function 't(x) := xe

�t
2
x
2

for t > 0. See Lemma 3.17.

Lemma 5.1. — (Bismut-Freed estimate) There exists a constant C � 0 such that for
any (m̃, ✓) 2 M̃ ⇥ T , we have:

| tr(kt([m̃, ✓], [m̃, ✓]))|  C and | tr(k̃t([m̃, m̃, ✓]))|  C, for t  1.

Proof. — A proof of these estimates appear already in [47]. We give nevertheless a
sketch of the argument.
The Bismut-Freed estimate on a closed odd dimensional compact manifold M is a
pointwise estimate on the vector-bundle trace of the Schwartz kernel of D exp(�t

2
D

2
)

restricted to the diagonal. See the original article [14] but also [37]. As explained for
example in the latter reference the Bismut-Freed estimate is ultimately a consequence
of Getzler rescaling for the heat kernel of a Dirac laplacian on the even dimensional
manifold obtained by crossing M with S

1. Since these arguments are purely local,
they easily extend to our foliated case, using the compactness of V := M̃ ⇥� T in
order to control uniformly the constants appearing in the poinwise estimate.

The operators D
2 and D̃

2 (as well as the operators |D| and |D̃|) are non negative
operators which are a�liated respectively with the von Neumann algebra W

⇤
⌫
(V, F ;E)

and the von Neumann algebra W
⇤
⌫
(G;E). (This means that their sign operators as
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well as their spectral projections belong to the von Neumann algebra.) Moreover,
according to the usual pseudodi�erential estimates along the leaves (see for instance
[55], [8]), the resolvents of these operators belong respectively to the C

⇤-algebras
K (W

⇤
⌫
(V, F ;E), ⌧

⌫

F ) of ⌧⌫F -compact elements in W
⇤
⌫
(V, F ;E) and K (W

⇤
⌫
(G;E), ⌧

⌫
)

of ⌧⌫-compact elements of W
⇤
⌫
(G;E). We recall that these compact operators are

roughly defined using for instance the vanishing at infinity of the singular numbers,
and we refer, for example, to [8] for the precise definition of these ideals. Set

D
2

=

Z
+1

0

�dE� and D̃
2

=

Z
+1

0

�dẼ�,

for the spectral decompositions in their respective von Neumann algebras. So E� and
Ẽ� are the spectral projections corresponding to (�1,�). Since the traces are normal
on both von Neumann algebras,

N(�) = ⌧
⌫

av
(E�) and Ñ(�) = ⌧

⌫

reg
(Ẽ�),

are well defined finite (Proposition 5.6 in the next subsection) non-decreasing and
non-negative functions, which are right continuous. Hence there are Borel-Stieljes
measures # and #̃ on R, such that:

⌧
⌫

F (f(D)) =

Z

R
f(x)d#(x) and ⌧⌫(f(D̃)) =

Z

R
f(x)d#̃(x),

for any Borel function f : R ! [0,+1]. Since N and Ñ are finite, the measures #
and #̃ are easily proved to be �-finite.

Proposition 5.2. — The functions t 7! ⌧
⌫

F (De
�t

2
D

2

) and t 7! ⌧
⌫
(D̃e

�t
2
D̃

2

) are
Lebesgue integrable on (0,+1).

Proof. — We have

|⌧⌫F (De
�t

2
D

2

)|  ⌧
⌫

F (|D|e�t
2
D

2

) and |⌧⌫(D̃e
�t

2
D̃

2

)|  ⌧
⌫
(|D̃|e�t

2
D̃

2

).

Therefore and since the function x 7! |x|e�t
2
x
2

is rapidly decreasing, we know from
Propositions 3.17 and 3.18 that for any t > 0

⌧
⌫

F (|D|e�t
2
D

2

) < +1 and ⌧⌫(|D̃|e�t
2
D̃

2

) < +1.

We also have the formulae

⌧
⌫

F (|D|e�t
2
D

2

) =

Z

R+

p
xe
�t

2
x
d#(x) and ⌧

⌫
(|D̃|e�t

2
D̃

2

) =

Z

R+

p
xe
�t

2
x
d#̃(x).
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Therefore, by Tonelli’s theorem
Z

+1

1

⌧
⌫

F (|D|e�t
2
D

2

)dt =

Z 1

0

p
x

Z 1

1

e
�t

2
x

dt d#(x)

=

Z 1

0

p
xe
�x

Z 1

1

e
�(t

2�1)x
dt d#(x)

=
1

2

Z 1

0

p
xe
�x

Z 1

0

x
�1/2

(u + x)
�1/2

e
�u

du d#(x)

 1

2

ÅZ 1

0

e
�x

d#(x)

ãÅZ 1

0

u
�1/2

e
�u

du

ã

=

p
⇡

2
⌧
⌫

F (e
�D

2

).

The same proof show that
Z

+1

1

⌧
⌫
(|D̃|e�t

2
D̃

2

)dt < +1.

On the other hand, we have
Z

1

0

|⌧⌫F (De
�t

2
D

2

)|dt 
Z

1

0

Z

F⇥T

| tr(kt([m̃, ✓], [m̃, ✓])| dm̃ d⌫(✓) dt


Z

1

0

Z

F⇥T

C dm̃ d⌫(✓) dt

= C ⇥ vol(V, dm̃⌦ ⌫) < +1.

Again, the same proof works as well for the regular trace and the regular von Neumann
algebra.

We are now in position to define the foliated eta invariants.

Definition 5.3. — We define the up and down eta invariants of our longitudinal Dirac
type operator by the formulae

⌘
⌫

up
(D̃) :=

2p
⇡

Z
+1

0

⌧
⌫
(D̃e

�t
2
D̃

2

)dt and ⌘
⌫

down
(D) :=

2p
⇡

Z
+1

0

⌧
⌫

F (De
�t

2
D

2

)dt.

Since the traces on both von Neumann algebras are positive, the two eta invariants
are real numbers.

Definition 5.4. — The foliated rho invariant associated to the longitudinal Dirac type
operator D on the foliated flat bundle (V, F ) is defined as

⇢
⌫
(D;V, F ) := ⌘

⌫

up
(D̃) � ⌘

⌫

down
(D)

with D̃ the lift of D to the monodromy cover.
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We are mainly interested in the present paper in the leafwise signature operator
D

sign and its leafwise lift to the monodromy groupoid D̃
sign. In this case, we can state

the following convenient result.

Lemma 5.5. — Denote by �j the Laplace operator on leafwise j-forms. Then the
foliated eta invariant of the operator D

sign on (V, F ) is given by

⌘
⌫
(D

sign
;V, F ) =

1p
⇡

Z
+1

0

⌧
⌫

F (⇤de
�t

2
�m�1)dt =

1p
⇡

Z
+1

0

⌧
⌫

F (d ⇤ e
�t

2
�m)dt.

Similar statements hold for the lifted family D̃
sign.

Proof. — This is an immediate consequence of a straightforward leafwise version of
the computation made in [2, p. 67-68].

5.2. Eta invariants and determinants of paths. — We review the notion of
(log-)determinants of paths, adapting the work of de La Harpe-Skandalis [24] to
our context. Recall that M is odd dimensional. For any von Neumann algebra M
endowed with a positive semifinite faithful normal trace ⌧ , we denote by L

1
(M, ⌧) the

Schatten space of summable ⌧ -measurable operators in the sense of [22]. Recall that
L

1
(M, ⌧)\ M is a two sided ⇤-ideal in M. By Propositions 3.17, 3.18 we have for any

rapidly decreasing Borel function  

 (D̃) := ( (D̃✓))✓2T 2 L
1
(W

⇤
⌫
(G;E), ⌧

⌫
) \W

⇤
⌫
(G;E)

 (D) := ( (DL✓ ))✓2T 2 L
1
(W

⇤
⌫
(V, F ;E), ⌧

⌫

F ) \W
⇤
⌫
(V, F ;E).

We set D̃ = Ũ |D̃| and D = U |D| for the polar decompositions in the corresponding
von Neumann algebras. Then, this decomposition obviously coincides with the leafwise
decompositions

D̃✓ = Ũ✓|D̃✓| and DL = UL|DL|.
For any ✓ 2 T with L = L✓, we write the spectral decompositions:

|D̃✓| =

Z
+1

0

�dẼ
✓

�
and |DL| =

Z
+1

0

�dE
L

�
.

As we have already remarked, the collection of partial isometries Ũ = (Ũ✓)✓2T (resp.
U = (UL✓ )✓2T ) as well as that of spectral projections Ẽ� = (Ẽ

✓

�
)✓2T (resp. E� =

(E
L✓
�

)✓2T ), all belong to W
⇤
⌫
(G;E) (resp. W

⇤
⌫
(V, F ;E)).

Proposition 5.6. — We have ⌧⌫(Ẽ�) < +1 and ⌧⌫F (E�) < +1 for any � 2 R+.

Proof. — We know that for any � < 0 the operator (|D̃| � �)
�1 is ⌧⌫-compact in

W
⇤
⌫
(G;E). In the same way, the operator (|D|� �)

�1 is ⌧⌫F -compact in W
⇤
⌫
(V, F ;E)

[17]. Hence the spectral projections of (|D̃| � �)
�1 are ⌧

⌫-finite and the spectral
projections of (|D|� �)

�1 are ⌧⌫F -finite. This completes the proof.
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For any t > 0, the t-th singular number of the operator D̃ with respect to the
probability measure ⌫ is defined by [22]

µt(D̃) = inf{k|D̃|p̃k, p̃ = p̃
2

= p̃
⇤ 2 W

⇤
⌫
(G;E) and

Z

T

tr(M�(I � p̃✓)M�)d⌫(✓)  t}.

In the same way, we define

µt(D) = inf{k|D|pk, p = p
2

= p
⇤ 2 W

⇤
⌫
(V, F ;E) and

Z

T

tr(M�(I � pL✓ )M�)d⌫(✓)  t}.

From Proposition 5.6, we deduce that 0  µt(D̃) = µt(|D̃|) < +1 and 0  µt(D) =

µt(|D|) < +1. The spectral measure of |D̃| with respect to the probability measure
⌫ is denoted µ̃, while the spectral measure of |D| is denoted µ. So for D̃ for instance
we have

µ(B) =

Z

T

tr(M�1B(|DL✓ |)M�)d⌫(✓)

for any Borel subset B of the spectrum of |D| and

µ̃(B̃) =

Z

T

tr(M�1
B̃

(|D̃✓|)M�)d⌫(✓)

for any Borel subset B̃ of the spectrum of |D̃|.
We denote by I KE,reg (resp. I KE,triv) the subgroup of invertible operators in

W
⇤
⌫
(G;E) (resp. in W

⇤
⌫
(V, F ;E)) which di�er from the identity by an element of the

ideal K (W
⇤
⌫
(G;E), ⌧

⌫
) (resp. K (W

⇤
⌫
(V, F ;E), ⌧

⌫

F )). The subgroup of bounded oper-
ators which di�er from the identity by a ⌧⌫-summable (resp. ⌧⌫F -summable) operator
will be denoted IL

1

E,reg
(resp. IL

1

E,triv
).

Whenever possible we shall refer to both von Neumann algebras W
⇤
⌫
(G;E) and

W
⇤
⌫
(V, F ;E) as M. We shall then use the notation I K (resp. IL

1) and denote
by ⌧ the corresponding trace.

Lemma 5.7. — The space IL
1 (resp. I K ) is a subgroup of the group of invertibles

GL(M) of the von Neumann algebra M.

Proof. — We only need to check the stability for taking inverses. Let then I + T be
an invertible element in M such that T 2 L

1
(M, ⌧) (resp. K (M, ⌧)). Then we can

write

(I + T )
�1� I = (I + T )

�1
(I � (I + T )) = �(I + T )

�1
T 2 L

1
(M, ⌧) ( resp. K (M, ⌧)).

Proposition 5.8. — Let � : [0, 1] ! I K be a continuous path for the uniform norm.
For any ✏ > 0, there exists a continuous piecewise a�ne path �✏ : [0, 1] ! IL

1 such
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that for any t 2 [0, 1] we have k�(t) � �✏(t)k  ✏. Moreover, if �(0) and �(1) belong
to IL

1, then we can insure that �✏(i) = �(i) for i = 0, 1.

Proof. — Since � is continous for the operator norm, we can find � > 0 such that

|t� s|  � ) k�(t)� �(s)k  ✏/3.

We subdivide [0, 1] into 0 = x0 < x1 < · · · < xn = 1 so that |xj+1 � xj |  �

for any j. On the other hand, the ideal L
1
(M, ⌧) \ M is dense in K (M, ⌧) for the

uniform norm. Therefore, for any j = 0, · · · , n, we can find �✏(xj) 2 B(�(xj), ✏/9),
the ball centered at �(xj) with radius ✏/9, such that �✏(xj) 2 IL

1. We then define a
path �✏ : [0, 1] ! IL

1 which is a�ne on every interval [xj , xj+1] and prescribed by
the values �✏(xj) for j = 0, · · · , n. The path �✏ is then continuous and di�erentiable
outside the finite set {xj , j = 0, · · · , n}. Moreover, for t 2 [xj , xj+1] we have

k�✏(t)� �✏(xj)k = t⇥ k�✏(xj+1)� �✏(xj)k  k�✏(xj+1)� �✏(xj)k
 k�(xj+1)� �(xj)k+ 2✏/9  5✏/9.

Therefore,

k�(t)��✏(t)k  k�(t)��(xj)k+k�(xj)��✏(xj)k+k�✏(xj)��✏(t)k  ✏/3+✏/9+5✏/9 = ✏.

Definition 5.9. — Given a continuous piecewise C
1 path � : [0, 1] ! IL

1 for the L
1-

norm in M, we define the determinant w
⌧
(�) by the formula

w
⌧
(�) :=

1

2⇡
p
�1

Z
1

0

⌧(�(t)
�1
�
0
(t))dt.

When M is W
⇤
⌫
(G, E) this determinant will be denoted by w

⌫
(�) while when M is

equal to W
⇤
⌫
(V, F ;E) this determinant will be denoted w

⌫

F (�).

We summarize the properties of the determinant in the following

Proposition 5.10. — Let � : [0, 1] ! IL
1 be a continuous piecewise C

1 path for the
L

1-norm.

1. Assume that
k�(t)� Ik1 < 1, for any t 2 [0, 1].

Then, for any t 2 [0, 1] the operator Log(�(t)) is well defined in the von Neu-
mann algebra and we have

w
⌧
(�) =

1

2⇡
p
�1

[⌧(Log(�(1)))� ⌧(Log(�(0)))] .
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2. There exists �� > 0 such that for any continuous piecewise C
1 path ↵ : [0, 1] !

IL
1 for the L

1 norm, with

k↵(t)� �(t)k1  �� and ↵(i) = �(i), i = 0, 1,

we have w
⌧
(↵) = w

⌧
(�).

3. If � is a continuous piecewise C
1 path for the uniform norm, then the deter-

minant w
⌧
(�) is well defined. Moreover, w

⌧
(�) only depends on the homotopy

class of � with fixed endpoints and with respect to the uniform norm.

Proof. — This proposition is a straightforward extension of the corresponding results
in [24]. We give a brief outline of the proof here for the benefit of the reader. It is
clear in the first item, since ⌧ is a positive trace, that the function t 7! Log(�(t)) is
well defined (using for instance the series) and is a piecewise smooth path. Moreover,
we have

d

dt
⌧(Log(�(t)) = ⌧(�

�1
(t)

d�

dt
(t).

This completes the proof of the first item.
Let ↵ be a continuous piecewise C

1 path satisfying the assumptions of the second
item. We consider the continuous piecewise C

1 loop � : [0, 1] ! IL
1 given by �(t) =

�(t)
�1
↵(t) which satisfies �(0) = �(1) = I. We have

k�(t)� Ik1  k�(t)�1k ⇥ k�(t)� �(t)k1.

Therefore, with �� =
1

inft2[0,1] k�(t)�1k , we are done using the first item.
The rest of the proof is similar and is omitted.

Definition 5.11. — Let � : [0, 1] ! I K be a continous path for the uniform norm such
that �(0) and �(1) are in IL

1. We define the determinant w
⌧
(�) by w

⌧
(�) := w

⌧
(↵),

for any continuous piecewise C
1 path ↵ : [0, 1] ! IL

1 such that

k↵(t)� �(t)k1  �� and ↵(i) = �(i), i = 0, 1.

Remark 5.12. — It is clear from the previous proposition that the above definition is
well posed.

We now set

'(x) :=
2p
⇡

Z
x

0

e
�s

2

ds,  t(x) := �e
i⇡'(tx) and

ft(x) := xe
�t

2
x
2

for x 2 R, and any t � 0.

Then the function 1 �  t, the derivative  0
t

and the function ft are Schwartz class
functions for any t > 0. Using the results of the previous sections, we deduce that the
operators I� t(Dm),  t

0
(Dm) and ft(Dm) are Am-compact operators on the Hilbert

module Em. Moreover, their images under the representations in the von Neumann
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algebras W
⇤
⌫
(G;E) and W

⇤
⌫
(V, F ;E) are trace class operators. Note also that the

operator  t(Dm) is invertible with inverse given by �e
�i⇡'(t Dm), so  t(Dm) is a

smooth path of invertibles in I K Am
( Em) whose image under ⇡reg ���1

m
in W

⇤
reg

(G;E)

is also a smooth path of invertibles in IL
1

E,reg
. The same result holds for the image

under ⇡av � ��1

m
in W

⇤
⌫
(V, F ;E). We denote by

�
reg

(Dm) ⌘ (�
reg

t
(Dm))t�0 :=

�
(⇡

reg � ��1

m
)( t(Dm))

�
t�0

and
�

av
(Dm) ⌘ (�

av

t
(Dm))t�0 :=

�
(⇡

av � ��1

m
)( t(Dm))

�
t�0

the resulting smooth paths in the two von Neumann algebras. Using the traces ⌧⌫

and ⌧⌫F , we define

w
⌫

reg,✏
(Dm) := w

⌫
(�

reg,✏
(Dm)) and w

⌫

av,✏
(Dm) := w

⌫

F (�
av,✏

(Dm)).

with �reg,✏
(Dm) the path

�
(⇡

reg � ��1

m
)( t(Dm))

�t1/✏

t�✏ and similarly for �av,✏
(Dm)

Theorem 5.13. — The following relations hold:

lim
✏!0

w
⌫

reg,✏
(Dm) =

1

2
⌘
⌫

up
(D̃) and lim

✏!0

w
⌫

av,✏
(Dm) =

1

2
⌘
⌫

down
(D)

and hence
2⇢
⌫
(D;V, F ) = lim

✏!0

[w
⌫

reg,✏
(Dm)� w

⌫

av,✏
(Dm)].

Proof. — We have by definition and by straightforward computation

�
reg

t
(Dm)

�1
d

dt
�

reg

t
(Dm) = (⇡

reg � ��1

m
)

Å
i⇡ Dm

2p
⇡

e
�t

2 D2
m

ã

= 2i
p
⇡(⇡

reg � ��1

m
) (ft(Dm)) .

But we know by Proposition 3.12 that

(⇡
reg � ��1

m
) (ft(Dm)) = (ft(D̃✓))✓2T ,

where (D̃✓)✓2T is the �-invariant Dirac type family. Hence we get

�
reg

t
(Dm)

�1
d

dt
�

reg

t
(Dm) = 2i

p
⇡(ft(D̃✓))✓2T ,

where this equality holds in the von Neumann algebra W
⇤
⌫
(G;E). Applying the trace

⌧
⌫ , integrating over (0,+1) and dividing by 2i⇡, we obtain

lim
✏!0

w
⌫

reg,✏
(Dm) = lim

✏!0

1p
⇡

Z
1/✏

✏

⌧
⌫
((ft(D̃✓))✓2T )dt

=
1p
⇡

Z
+1

0

⌧
⌫
((ft(D̃✓))✓2T )dt =

1

2
⌘
⌫

up
(D̃) .

The proof of the second equality is similar and one uses the equality

(⇡
av � ��1

m
) (ft(Dm)) = (ft(DL))L2V/F ,
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which is proved in Proposition 3.12 .

6. Stability properties of ⇢⌫ for the signature operator

6.1. Leafwise homotopies. — Let �, T and M̃ be as in the previous sections.
Let V := M̃ ⇥� T be the associated foliated flat bundle. Assume that M̃

0 is another
�-coverings and let T

0 be a compact space endowed with a continuous action of � by
homeomorphisms. We consider M̃

0 ⇥ T and the foliated flat bundle V
0
:= M̃

0 ⇥� T .

Definition 6.1. — Let (V, F ) and (V
0
, F 0) be two foliated spaces. A leafwise map f :

(V, F ) ! (V
0
, F 0) is a continuous map such that

• The image under f of any leaf of (V, F ) is contained in a leaf of (V
0
, F 0).

• The restriction of f to any leaf of (V, F ) is a smooth map between smooth leaves.

Remark 6.2. — 1. We do not assume, that the leafwise derivatives to all orders of
f are also continuous.

2. If V and V
0 are smooth manifolds and f : V ! V

0 is a di�erentiable map, then
f is a leafwise map if and only if f⇤ : T (V ) ! T (V

0
) sends T F to T F 0.

Roughly speaking, a leafwise map induces a ”continuous map” between the quotient
spaces of leaves. When the foliations are trivial, a leafwise map f : M ⇥T ! M

0⇥T
0

is given by
f(m, ✓) = (h(m, ✓), k(✓)), (m, ✓) 2 M ⇥ T,

where k and h are continous and h is smooth with respect to the first variable.
An easy example of a leafwise map occurs when f is the quotient of a leafwise map

f̃ : M̃ ⇥ T ! M̃
0 ⇥ T

0 between the two trivial foliations, which is (�,�
0
)-equivariant

with respect to a group homomorphism ↵ : �! �
0. We shall get back to this example

more explicitely later on. It is easy to construct a leafwise map between V and V
0

which is not the quotient of a (�,�
0
) equivariant leafwise map f̃ . Moreover, if f̃ exists

then it is not unique: indeed, for example, if � 2 Z(�) ⇢ � is an element in the
center of �, then the leafwise map f̃� := f̃ � �⇤ (where �⇤ : M̃ ⇥ T ! M̃ ⇥ T is the
di�eomorphism induced by the action of � on the right), is equivariant with respect
to the same homomorphism ↵ : �! �

0 (because � 2 Z(�)) and also induces f .
Given a foliated space (V, F ) in the sense of [38], a subspace W of (V, F ) will

be called a transversal to the foliation if for any w 2 W there exists a distinguished
neighborhood Uw of w in V which is homeomorphic to Rp⇥ (Uw \W ). Then one can
show that the intersection of W with any leaf L of (V, F ) is a discrete subspace of
L, that is a zero dimensional submanifold of L. Such a transversal is complete if it
intersects all the leaves. In our example of foliated bundle V = M̃ ⇥� T , any fiber of
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V ! M is a complete transversal which is in addition compact, and any open subset
of such fiber is a transversal.

Definition 6.3. — 1. Let (V, F ) be a foliated space. Two leafwise maps f, g :

(V, F ) ! (V
0
, F 0) are leafwise homotopic if there exists a leafwise map

H : (V ⇥ [0, 1], F ⇥ [0, 1]) ! (V
0
, F 0) such that H(·, 0) = f and H(·, 1) = g.

2. Let (V, F ) and (V
0
, F 0) be two foliated spaces. A leafwise map f : (V, F ) !

(V
0
, F 0) is a leafwise homotopy equivalence, if there exists a leafwise map g :

(V
0
, F 0) ! (V, F ) such that
– g � f is leafwise homotopic to the identity of (V, F ).
– f � g is leafwise homotopic to the identity of (V

0
, F 0).

3. We shall say that the foliations (V, F ) and (V
0
, F 0) are (strongly) leafwise ho-

motopy equivalent if there exists a leafwise homotopy equivalence from (V, F ) to
(V

0
, F 0).

Note that according to the above definition, the homotopies in (2) are supposed to
preserve the leaves.

It is a classical fact that two leafwise homotopy equivalent compact foliated spaces
(V, F ) and (V

0
, F 0) have necessarily the same leaves dimension [9]. Note also that

each leafwise homotopy equivalence sends a transversal to a transversal.

Lemma 6.4. — A leafwise homotopy equivalence induces a local homeomorphism be-
tween transversals to the foliations.

Proof. — See also [9]. Let f be the leafwise homotopy equivalence with homotopy
inverse g, and denote by h : [0, 1]⇥ V ! V the C

1,0 homotopy between gf and the
identity. Let w 2 V . Let W be an open transversal of (V, F ) through w 2 W . Take a
distinguished chart U

0 in (V
0
, F 0) which is an open neighborhood of f(w) and which

is homeomorphic to D
0 ⇥ W

0 for some transversal W
0 at f(w). Then one finds an

open distinguished chart U in (V, F ) such that f(U) ⇢ U
0. Reducing W if necessary

we can assume that U is homeomorphic to D ⇥W for some disc D. Now, it is clear
that since f is leafwise, it induces a map f̂ : W ! W

0. By the same reasonning, we
can assume furthermore that g(U

0
) is contained in a distinguished chart U1 in (V, F ),

homeomorphic to D1 ⇥W1.
The homotopy h induces a continous map ĥ : W ! W1 and this map (or its

reduction to a smaller domain) is simply the holonomy of the path t 7! h(t, w). Hence
ĥ is locally invertible and it s clear that ĥ

�1
ĝ is a continuous inverse for f̂ .

When V = M̃ ⇥� T and V
0
= M̃

0 ⇥�0 T
0, a particular case of leafwise homotopy

equivalence is given by the quotient of an equivariant leafwise homotopy equivalence
between M̃⇥T and M̃

0⇥T
0. Recall that a fiberwise smooth map f̃ : M̃⇥T ! M̃

0⇥T
0
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is a continous map which can be written in the form

f(m̃, ✓) = (h(m̃, ✓), k(✓)), (m̃, ✓) 2 M̃ ⇥ T,

with h smooth with respect to the first variable. If ↵ : � ! �
0 is a group ho-

momorphism, then the fiberwise map f̃ : M̃ ⇥ T ! M̃
0 ⇥ T

0 is ↵-equivariant if
f̃((m̃, ✓)�) = (f̃(m̃, ✓))↵(�).

In the following definition we extend the action of � and �0 on M̃ ⇥T and M̃
0⇥T

0

to M̃ ⇥ [0, 1]⇥ T and M̃
0 ⇥ [0, 1]⇥ T

0 respectively, by declaring the action trivial on
the [0, 1] factor.

Definition 6.5. — We shall say that f : (V, F ) ! (V
0
, F 0) is a special homotopy equiv-

alence if there exist continuous maps f̃ : M̃ ⇥ T ! M̃
0 ⇥ T

0, g̃ : M̃
0 ⇥ T

0 ! M̃ ⇥ T ,
H : M̃⇥[0, 1]⇥T ! M̃⇥T , H

0
: M̃

0⇥[0, 1]⇥T
0 ! M̃

0⇥T
0
, and group homomorphisms

↵ : �! �
0, � : �

0 ! � such that:

– f̃ , g̃, H and H
0 are fiberwise smooth;

– f̃ is ↵-equivariant; g̃ is �-equivariant; H is �-equivariant, H
0 is �0-equivariant;

– the restriction of H to M̃⇥{0}⇥T (resp. of H
0 to M̃

0⇥{0}⇥T
0) is the identity

map and the restriction of H to M̃ ⇥ {1}⇥ T (resp. of H
0 to M̃

0 ⇥ {1}⇥ T
0) is

g̃ � f̃ (resp. f̃ � g̃);
– f : (V, F ) ! (V

0
, F 0) is induced by f̃ : M̃ ⇥ T ! M̃

0 ⇥ T
0.

If there exists such a special homotopy equivalence, we say that (V, F ) and (V
0
, F 0)

are special homotopy equivalent.

Lemma 6.6. — If the pairs (V, F ) and (V
0
, F 0) are special homotopy equivalent, then

they are leafwise homotopic equivalent.

Proof. — The equivariance of H̃ and H̃
0 with respect to ↵ and �, and the trivial

action on the [0, 1] factor, allows to induce leafwise maps H : V ⇥ [0, 1] ! V and
H
0
: V

0 ⇥ [0, 1] ! V
0 by setting,

H([m̃, ✓]; t) := [H(m̃, t, ✓)] and H
0
([m̃

0
, ✓
0
]; t) := [H

0
(m̃

0
, t, ✓

0
)].

In the same way the maps f̃ and g̃ induce leafwise maps f and g which are leafwise
homotopy equivalences through the homotopies H and H

0.

Lemma 6.7. — If f : (V, F ) ! (V
0
, F 0) is a special homotopy equivalence induced

by f̃(m̃, ✓) = (h(m̃, ✓), k(✓)) as in the previous definition, then ↵ : � ! �
0 is an

isomorphism and k : T ! T
0 is an equivariant homeomorphism.

Proof. — Let f̃ and g̃ be equivariant leafwise smooth maps which give a special
homotopy equivalence as in the above definition. We denote by k and k

0 the continuous
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equivariant maps induced by f̃ and g̃ on T and T
0 respectively. So,

k : T ! T
0 and k

0
: T

0 ! T.

Since our homotopies send leaves to leaves, the composite maps k
0 � k and k � k

0 are
identity maps. Moreover, if ↵ and � are the group homomorphisms corresponding to
the equivariance property of f̃ and g̃ respectively, then the homotopy H̃ satisfies

H̃((m̃, t, ✓)�) = H̃(m̃, t, ✓)(� � ↵)(�), 8t 2 [0, 1].

Therefore, applying this relation to t = 0, we get � � ↵ = id�. The same argument
gives the relation ↵ � � = id�0 .

Remark 6.8. — As already remaked, easy examples show that the foliations (V, F )

and (V
0
, F 0) can be leafwise homotopy equivalent with non isomorphic groups � and

�
0 and non homeomorphic spaces T and T

0.

6.2. ⇢⌫(V, F ) is metric independent. — We fix a continuous leafwise smooth
Riemannian metric g on (V, F ). g is lifted to a �-equivariant leafwise metric g̃ on
M̃ ⇥ T , see [38]. So g̃ = (g̃(✓))✓2T , where g̃(✓) is a metric on M̃ ⇥ {✓} and we
assume that this structure is transversely continuous and equivariant with respect to
the action of �. In what follows we shall refer to the bundle of exterior powers of
the cotangent bundle as the Grassmann bundle. Consider the �-equivariant vector
bundle “E over M̃ ⇥ T , obtained by pulling back from V the longitudinal Grassmann
bundle E of the foliation (V, F ). Assume for the sake of simplicity of signs that the
dimension of M is 4`� 1 that is in the notations of Section 4, m = 2`. Consider the
associated �-equivariant family of signature operators (D̃

sign

✓
)✓2T associated with g̃,

as defined in Section 4. We denote by D
sign the longitudinal signature operator on

(V, F ) associated with the leafwise metric g acting on leafwise 2`� 1 forms.
Recall that ⌫ is a �-invariant Borel measure on T . We have defined in Subsection

5.1 a foliated rho-invariant ⇢⌫(Dsign
;V, F ). We want to investigate the behavior of

⇢
⌫
(D

sign
;V, F ) under a change of metric and under a leafwise di�eomorphism. First,

we deal with the invariance of ⇢⌫ with respect to a change of metric. Up to constant,
we can replace ⇢⌫(Dsign

;V, F ), as it is usual, see [3] [16], by the ⇢ invariant of the
foliation (V, F ) defined as:

⇢
⌫
(V, F ; g) :=

1p
⇡

Z 1

0

î
⌧
⌫
(⇤̃d̃e

�t�̃
)� ⌧

⌫

F (⇤de
�t�

)

ó dtp
t
,

where �̃ and � are the Laplace operators on leafwise 2` � 1 forms, associated with
the metrics g̃ and g respectively.

Proposition 6.9. — Let �, M̃ , T , ⌫ and (V, F ) be as above. Let (gu)u2[0,1] be a con-
tinuous leafwise smooth one-parameter family of continuous leafwise smooth metrics
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on (V, F ). Then

(23) ⇢
⌫
(V, F ; g0) = ⇢

⌫
(V, F ; g1).

Proof. — The proof of this proposition in the case where T is reduced to a point was
first given by J. Cheeger and M. Gromov in [16]. The Cheeger-Gromov proof extends
to the general case of measured foliations and in particular to the case of foliated
bundles and we proceed to explain the easy modifications needed for foliated bundles.
Let Du, for 0  u  1, be the leafwise operator on 2` � 1 leafwise di�erential forms
of (V, F ), given by Du = ⇤u � d, where d is the leafwise de Rham operator and ⇤u

is the leafwise Hodge operator associated with the metric gu. It is easy to see that
u 7! ⌧

⌫

F (Due
�t�u) is smooth. Since V is compact, the elliptic estimates along the

leaves are uniform and we have for instance

R(e
�r�0) ⇢ Dom(�u), 8r > 0 and u 2 [0, 1].

Here R denotes the range of an operator and Dom the domain. Therefore, we can
follow the steps of the proof in [16] and deduce the fundamental relation

d

du
|u=0⌧

⌫

F (Due
�t�u) = ⌧

⌫

F (
d⇤
du

(0)de
�t�0) + 2t

d

dt
⌧
⌫

F (
d⇤
du

(0)de
�t�0)).

Using integration by parts, we then deduce

p
⇡

d

du
|u=0

Z
A

✏

⌧
⌫

F (Due
�t�u)

dtp
t

= 2

p
A⌧

⌫

F (
d⇤
du

(0)de
�A�0)� 2

p
✏⌧
⌫

F (
d⇤
du

(0)de
�✏�0).

Using the normality of the trace ⌧⌫F and the spectral decomposition in the type II1
von Neumann algebra W

⇤
⌫
(V, F ;E), we deduce that

lim
A!+1

2

p
A⌧

⌫

F (
d⇤
du

(0)de
�A�0) = 0.

Now, the same estimates are as well valid in the type II1 von Neumann algebra
W
⇤
⌫
(G;E) with the normal trace ⌧⌫ . Hence, we are reduced to comparing the limits

as ✏! 0 of the di�erence

2
p
✏⌧
⌫

F (
d⇤
du

(0)de
�✏�0)� 2

p
✏⌧
⌫
(
d⇤̃
du

(0)de
�✏�̃0).

Replacing the heat operators by corresponding parametrices which are localized near
the units V , in the two groupoids involved, see for instance [17], the limit of the two
terms in the above di�erence is proved to be the same by classical arguments, which
finishes the proof.

According to the previous proposition we can now denote by ⇢⌫(V, F ) the signature
rho invariant associated to any metric as before. All the leafwise maps considered in
the rest of the paper are assumed to respect the orientations.
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If we are now given a leafwise smooth homeomorphism f : V �! V
0, then we

can transport the leafwise metric g from V to f⇤g on V
0 and form the correspond-

ing signature operator D
sign 0 along the leaves of (V

0
, F 0) and also the �-equivariant

signature operator D̃
sign 0

= (D̃
sign 0

✓0)✓02T 0 corresponding to the lifted �-invariant
metric. Finally, the �-invariant measure ⌫ on T , yields a holonomy invariant trans-
verse measure ⇤(⌫) on the foliation (V, F ). The leafwise smooth homeomorphism f

sends transversals to transversals and allows to transport the measure ⇤(⌫) into a
holonomy invariant transverse measure f⇤⇤(⌫) on (V

0
, F 0). Such a measure yields by

restriction to a fiber a �0-invariant measure ⌫0 on T
0 so that f⇤⇤(⌫) = ⇤(⌫

0
). More

precisely, a fiber V
0
m
0
0

of the fibration V
0 ! M

0 is a transversal to the foliation F 0 and
hence the holonomy invariant transverse measure f⇤⇤(⌫) restricts to a measure on
V
0
m
0
0
. On the other hand, by fixing m̃

0
0

with [m̃
0
0
] = m

0
0

we get an identification of V
0
m
0
0

with the space T
0. It is an easy exercise to check that the corresponding mesure on T

0

through this identification is �0-invariant and that the associated holonomy invariant
transverse measure on the foliation (V

0
, F 0) is precisely f⇤⇤(⌫).

Proposition 6.10. — With the above notations, we have the following equalities for the
eta invariants associated with the two signature operators D

sign and D
sign 0:

⌘
⌫

down
(D

sign
) = ⌘

⌫
0

down
(D

sign 0
) and ⌘

⌫

up
(D̃

sign
) = ⌘

⌫
0

up
(D̃

sign 0
).

Proof. — Let us prove, for example, the second equality (the first one will be ob-
tained in a similar way). Let W be the regular von Neumann algebra associated to
(V, F ), the vertical Grassmann bundle “E and g. Let ⌧ be the trace defined by g and
⌫ and let W

0 and ⌧ 0 be the corresponding objects, associated to (V
0
, F 0), f⇤g and the

transported measure ⌫0 under the leafwise smooth homeomorphism f . The leafwise
smooth homeomorphism f lifts to a leafwise smooth homeomorphism f̃ between the
monodromy groupoids G and G

0. More precisely, for any x 2 V f lifts to a di�eo-
morphism f̃x : Gx ! G

0
f(x)

which induces, by the pull-back of forms, a unitary Ux

between the spaces of L
2-forms. Recall that the metric on (V

0
, F 0) is f⇤g. The sig-

nature operator on G
0
f(x)

associated with the metric f⇤g is easily identified with the
push-forward operator under f̃ , that is the conjugation of the signature operator on
Gx by the unitary Ux. Hence the functional calculus of D̃

sign 0
f(x)

is also the conju-
gation of the functional calculus of D̃

sign

x
by Ux. So, in particular, for any x 2 V we

have
D̃

sign

f(x)

0
exp(�t(D̃

sign

f(x)

0
)
2
) = UxD̃

sign

x
exp(�t(D̃

sign

x
)
2
)U

�1

x
.

Now, by definition of the trace ⌧ 0 associated with the image measure ⌫0, one easily
shows that

⌧
0
(UxD̃

sign

x
exp(�t(D̃

sign

x
)
2
)U

�1

x
) = ⌧(D̃

sign

x
exp(�t(D̃

sign

x
)
2
)).
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Therefore, the f⇤⇤(⌫) measured eta invariant of the G
0-invariant family (D̃

sign 0
x0)x02V 0

as defined by Peric in [43] coincides with the ⇤(⌫) measured eta invariant of the G-
invariant family (D̃

sign

x
)x2V . On the other hand and as we already observed, these

Peric measured eta invariants coincide with ours for the �0-invariant and �-invariant
families of signature operators on M̃

0 ⇥ T
0 and M̃ ⇥ T respectively. Hence the proof

is complete.

Corollary 6.11. — Let (V, F , ⌫) and (V
0
, F 0, ⌫0) be two foliated bundles as above

and assume that there exists a leafwise smooth homeomorphism between (V, F ) and
(V

0
, F 0) such that f⇤⌫ = ⌫

0. Then

⇢
⌫
(V, F ) = ⇢

⌫
0
(V

0
, F 0) .

Proof. — We use the two previous propositions. The first one allows to compute
⇢
⌫
(V, F ) using any metric g. Then we apply the same proposition to ⇢f⇤⌫(V

0
, F 0) and

compute it using the image metric f⇤g. Finally, the second proposition allows to finish
the proof.

7. Loops, determinants and Bott periodicity

As before, let Am be the maximal C
⇤-algebra of the groupoid T o �; let Em be

the Am-Hilbert module considered in the previous sections. Thus Em is obtained
by completion of the Ac-Module C

1
c

(fM ⇥ T, “E). Let Dm be the regular unbounded
Am-linear operator induced by a �-equivariant family of Dirac operators. Let

I K Am
( Em) := {A 2 BAm

( Em) such that A� Id 2 K Am
( Em) and A is invertible}.

Let ⌦( I K Am
( Em)) be the space of homotopy classes of loops in I K Am

( Em) which
contain the identity operator. Then, using the inverse of the Bott isomorphism
�
�1

: ⌦( I K Am
( Em)) ! K0(K Am

( Em)), the isomorphism (�
�1

m
)⇤ : K0(K Am

( Em)) !
K0(BE

m
) induced by �m : BE

m
! K Am

( Em), and the inverse of the Morita isomor-
phism Mm : K0(Am) ! K0(BE

m
) of Proposition 2.10, we obtain an isomorphism

⌦( I K Am
( Em))

�
�1

�! K0(K Am
( Em))

(�
�1
m )⇤�! K0(BE

m
)

M�1
m�! K0(Am).

We denote by ⇥ : ⌦( I K Am
( Em)) ! K0(Am) the composition of these isomorphisms.

Recall the representations

⇡
reg

: BE

m
! W

⇤
⌫
(G;E) ; ⇡

av
: BE

m
! W

⇤
⌫
(V, F ;E).

Given a morphism ↵ between two C
⇤-algebras, we denote, with obvious abuse of

notation, by ⌦↵ the induced map on homotopy classes of loops. We thus obtain maps
⌦⇡

reg, ⌦��1

m
, ⌦⇡av; we define

�
reg

: ⌦( I K Am
( Em)) ! ⌦( I K (W

⇤
⌫
(G;E))) ;
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�
av

: ⌦( I K Am
( Em)) ! ⌦( I K (W

⇤
⌫
(V, F ;E)))

with
�

reg
:= ⌦⇡

reg � ⌦��1

m
, �

av
:= ⌦⇡

av � ⌦��1

m
.

Recall, finally, that if ` is a loop in IL
1
(W

⇤
⌫
(V, F ;E)), or more generally in

I K (W
⇤
⌫
(V, F ;E)), then ` has a well defined (log-)determinant w

⌫

F (`) 2 C. Similarly,
if ` is a loop in IL

1
(W

⇤
⌫
(G;E)), or more generally in I K (W

⇤
⌫
(G;E)), then ` has a

well defined (log-)determinant w
⌫
(`) 2 C.

Proposition 7.1. — The following diagram commutes:

⌦( I K Am
( Em))

⇥ //

�
av

✏✏

K0(Am)

⌧
⌫
av,⇤

✏✏
⌦( I K (W

⇤
⌫
(V, F ;E)))

w
⌫
F // C.

Similarly, the following diagram commutes:

⌦( I K Am
( Em))

⇥ //

�
reg

✏✏

K0(Am)

⌧
⌫
av,⇤

✏✏
⌦( I K (W

⇤
⌫
(G;E)))

w
⌫
// C.

Proof. — Recall that for a C
⇤-algebra A the (inverse of the) Bott isomorphism � :

K0(A) ! K1(SA) is given by the map [p] ! [(exp(2⇡itp)]; as there will be several
C
⇤-algebras involved, we denote this map by �A. We observe that

�BE
m
� (�

�1

m
)⇤ = ⌦(�

�1

m
)⇤ � �K Am ( Em) .

Therefore,

⌦⇡
av � �BE

m
� (�

�1

m
)⇤ � ��1

K Am ( Em)
= ⌦⇡

av � ⌦(�
�1

m
)⇤ � (�K Am ( Em) � ��1

K Am ( Em)
)

= ⌦⇡
av � ⌦(�

�1

m
)⇤

= �
av

.

On the other hand, by definition of ⌦⇡av,

⌦⇡
av � �BE

m
= �K (W⇤

⌫ (V, F ;E)) � ⇡av

⇤ ;

therefore

w
⌫

F � ⌦⇡av � �BE
m

= w
⌫

F � �K (W⇤
⌫ (V, F ;E)) � ⇡av

⇤

= ⌧
⌫

F � ⇡av

⇤

= ⌧
⌫

av,⇤
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where ⌧
⌫

av
is the trace on BE

m
as defined in Subsection 2.4 and with the equality

w
⌫

F ��K (W⇤
⌫ (V, F ;E)) = ⌧

⌫

F proved by direct computation. To finish the proof we simply
apply Proposition 2.10.

Definition 7.2. — We shall denote by

w
⌫

av
: ⌦( I K Am

( Em)) ! C and w
⌫

reg
: ⌦( I K Am

( Em)) ! C

the compositions w
⌫

F � �av and w
⌫ � �reg respectively.

We can summarize the previous proposition by the following two equations

(24) w
⌫

av
= ⌧

⌫

av,⇤ �⇥ , w
⌫

reg
= ⌧

⌫

reg,⇤ �⇥.

Remark 7.3. — Definition 7.2 can be extended to a path in I K Am
( Em) provided the

two extreme points are mapped by ⇡reg ���1

m
and ⇡av ���1

m
into ⌧⌫ trace class and ⌧⌫F

trace class perturbations of the identity respectively.

8. On the homotopy invariance of rho on foliated bundles

Before plunging into foliated bundles and the foliated homotopy invariance of the
signature rho invariant defined in Section 5, we digress briefly and treat a general ori-
entable measured foliation (V, F ). We denote by ⇤ the holonomy invariant transverse
measure. We fix a longitudinal riemannian metric on (V, F ) and we denote by D

sign

the associated longitudinal signature operator. Let G be the monodromy groupoid
associated to (V, F ). Then, as already remarked, Peric has defined in [43] a foliated
eta invariant ⌘⇤

(D̃
sign

), with D̃
sign the lift of D

sign to the monodromy covers, a G-
equivariant operator on G. The work of Peric employs the holonomy groupoid, but is
is not di�cult to see that his arguments apply to the monodromy groupoid as well.
Ramachandran, on the other hand, has defined in [47] an eta invariant ⌘⇤

(D
sign

)

using the measurable groupoid defined by the foliation, as we have already observed.
We infer that the definition of foliated rho invariant is basically present in the lit-
erature. It su�ces to define ⇢⇤

(D
sign

) := ⌘
⇤
(D̃

sign
) � ⌘

⇤
(D

sign
). Assume now that

G
x

x
is torsion-free for any x 2 V , then Connes has defined in [18] a Baum-Connes

map K⇤(BG) ! K⇤(C
⇤
reg

(V, F )) which factors through a maximal Baum-Connes map
with values in the K-theory of the maximal C

⇤-algebra C
⇤
max

(V, F ). Here BG is the
classifying space of the monodromy groupoid, see [18], page 126. If (V, F ) is equal
to the foliated bundle V = M̃ ⇥� T , then BG is given by the homotopy quotient
E� ⇥� T , with E� equal to the universal space for � principal bundles. The Baum-
Connes conjecture states that the Baum-Connes map is an isomorphism. We shall
make a stronger assumption here, namely that the maximal Baum-Connes map is an
isomorphism. This is a non trivial assumption and even if it is known to be satisfied
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for instance for amenable actions, there are examples where it fails to be true. The
general conjecture one would then like to make goes as follows.

Let (V
0
, F 0) be another foliation, endowed with a holonomy invariant transverse mea-

sure ⇤0 and let f : (V, F ) ! (V
0
, F 0) be a leafwise measure preserving homotopy

equivalence.

Conjecture. — If G
x

x
is torsion-free for any x 2 V and K⇤(BG) ! K⇤(C

⇤
max

(V, F ))

is an isomorphism, then ⇢
⇤
(D

sign
) = ⇢

⇤
0
(D

sign 0
).

We shall now specialize to foliated bundles. Let �, T and M̃ be as in the pre-
vious sections. Let V := M̃ ⇥� T and let (V, F ) be the associated foliated bundle.
We assume the existence of a �-invariant measure on T ; let ⇤(⌫) be the associated
holonomy invariant transverse measure on (V, F ). Let D = (DL)L2V/ F be a longitu-
dinal Dirac-type operator. Let D̃ = (D̃✓)✓2T be the associated �-equivariant family
of Dirac operators. As already remarked the rho invariant ⇢⇤(⌫)

(D) defined above, is
indeed equal to our rho invariant ⇢⌫(D;V, F ). Assume now that M̃

0 is the �0 universal
covering of a compact manifold M

0 and let T
0 be a compact space endowed with a

continuous action of �0 by homeomorphisms. We consider M̃
0 ⇥ T

0 and the foliated
bundle V

0
:= M̃

0 ⇥�0 T
0. Let (V

0
, F 0) be the associated foliated space. We assume

the existence of a �0-invariant measure ⌫0 on T
0 and we let ⇤(⌫

0
) be the associated

transverse measure on (V
0
, F 0). Given a measure preserving foliated homotopy equiv-

alence f : V ! V
0, we can apply the general conjecture stated above to the invariants

⇢
⇤(⌫)

(D), ⇢⇤(⌫
0
)
(D

0
) with D and D

0 denoting now the signature operators. We obtain
in this way a conjecture about the homotopy invariance of the signature rho invariant
⇢
⌫
(V, F ) defined and studied in this paper; we shall deal with the general conjecture

on foliated spaces in a di�erent paper. In the rest of this section, we shall tackle the
homotopy invariance of rho for the special homotopy equivalences descending from
equivariant homotopies f̃ : M̃ ⇥ T ! M̃

0 ⇥ T
0 as described in the previous section.

8.1. The Baum-Connes map for the discrete groupoid T o�. — In order to
tackle the homotopy invariance of our ⇢⌫(V, F ) we first need to describe in the most
geometric way the Baum-Connes map relevant to foliated bundles. This subsection is
thus devoted to recall the definition of the Baum-Connes map with coe�cients in the
�� C

⇤-algebra C(T ) and, more importantly, to give a very geometric description of
it. There are indeed several definitions available in the literature, with proofs of their
compatibility sometime missing. The di�erences are all concentrated in the domain
and, consequently, in the definition of the application; the target is always the same,
namely K⇤(C(T ) or �) (which is nothing but K⇤(Ar) in our notation). Notice that
if T is a point, we also have two di�erent possibilities for the classical Baum-Connes
map, depending on whether we consider, on the left hand side, the Baum-Douglas
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definition of K-homology or, instead, Kasparov’s definition; although the compatibility
of the two pictures has been assumed for many years, a complete proof only appeared
recently, see the paper [6]. Going back to our more general situation, we begin with the
Baum-Connes-Higson definition [5], which is given is terms of Kasparov KK-theory
and the intersection product:

(25) µBCH : K
�

j
(E�; C(T )) ! Kj(C(T ) or �).

The group on the left is, by definition,

lim
X⇢E�

KK
j

�
(C0(X), C(T ))

with the direct limit taken over the directed system of all �-compact subset of E�.
Similarly, there is a maximal Baum-Connes-Higson map:

(26) µBCH : K
�

j
(E�; C(T )) ! Kj(C(T ) om �).

Next, we have the original definition of Baum and Connes [4], with the left hand side
defined in terms of Gysin maps:

(27) µBC : K
j
(T,�) ! Kj(C(T ) or �).

We are not aware of a published proof of the compatibility of these two maps.
There is a third description of the Baum-Connes map with coe�cients in C(T ): con-
sider as set of cycles the (isomorphism classes of) pairs (X,E ! X ⇥ T ) where X is
a spinc proper �-manifold and E is a �-equivariant vector bundle on X ⇥ T ; define
the usual Baum-Douglas equivalence relation on these cycles, bordism, direct sum
and bundle modification; we obtain a group that we denote by K

geo

j
(T o �) with

j = dim M mod 2. The Baum-Connes map in this case is denoted

(28) µo : K
geo

j
(T o �) ! Kj(C(T ) or �)

and is very simply described as the map that associates to [X,E ! X ⇥T ] the index
class of the �-equivariant family (D✓)✓2T , with D✓ the spinc Dirac operator on X

twisted by E
��
X⇥{✓}. Also in this case we have a maximal version of the map:

(29) µo : K
geo

j
(T o �) ! Kj(C(T ) om �).

Thanks to the Ph.D. thesis of Je� Raven [48] it is now established that the two
groups K

�

j
(E�;C(T )) and K

geo

j
(T o �) are isomorphic and the two pairs of maps

(25), (28) and (26), (29) are compatible; the proof of Raven’s isomorphism is far from
being trivial. Notice that, as in [29], we can consider orientable manifolds instead of
spinc manifolds; thus the set of cycles for this version of Raven’s group is given by
pairs (X,E ! X ⇥ T ) with X an orientable proper riemannian �-manifold and E a
�-equivariant vector bundle on X ⇥ T endowed with an equivariant Cli�ord-module
structure with respect to the Cli�ord algebra bundle of T

⇤
X. Introduce on these

cycles the equivalence relation given by bordism, direct sum and bundle modification
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as in [29] (Subsection 2.2, pages 59 and 60). The resulting group will be isomorphic
to K

geo

j
(T o �) and the resulting Baum-Connes map will be compatible. In the rest

of this work we look at the stability properties of our foliated rho-invariant for the
signature operator under a bijectivity hypothesis on the map (29). However, in order
to exhibit examples we do need to use the compatibility between (26) and (29); indeed
almost all examples where the Baum-Connes assumption is satisfied are proved using
the Baum-Connes-Higson description.

8.2. Homotopy invariance of ⇢⌫(V, F ) for special homotopy equivalences.
— We can state the main result of this section as follows:

Theorem 8.1. — Let V := M̃ ⇥� T and V
0
:= M̃

0 ⇥�0 T
0 be two foliated flat bundles,

with � and �0 discrete torsion-free groups(4). Assume that there exists a special
leafwise homotopy equivalence f : (V, F ) ! (V

0
, F 0) and let k : T ! T

0 be the induced
equivariant homeomorphism . Let ⌫0 be a �0-invariant measure on T

0; let ⌫ := k
⇤
⌫
0

be the corresponding �-invariant measure on T . Assume that the Baum-Connes map
(28) for the maximal C

⇤-algebra

µo : K
geo

j
(T o �) �! K⇤(C(T ) omax �)

is bijective. Then

(30) ⇢
⌫
(V, F ) = ⇢

⌫
0
(V

0
, F 0) .

Remark 8.2. — This theorem has been extended by Benameur and Roy to non special
leafwise homotopy equivalences in [12]. The main ingredient is the use of an appro-
priate Hilbert bimodule associated with the equivalence.

Sketch of the proof. — We follow the method of Keswani, see [30], [31] and [29].
We simply denote the relevant signature operators by D

0
= (D

0
L0)L02V 0/ F 0 , D̃

0
=

(D̃
0
✓
)✓2T , D0

m
and D = (DL)L2V/ F , D̃ = (D̃✓)✓2T , Dm. We shall first assume that

T = T
0 and � = �

0. Consider, with obvious notation, the trivial �-equivariant fibration
(M̃

0 t�M̃)⇥T ! T as well as the foliated space (X, F t), with X := V
0 t (�V ) and

F t induced by F and F 0. The longitudinal Grassmann bundles on V
0 and �V define

a longitudinally smooth bundle H over the foliated space X. Let “H be the equivariant
vector bundle on (M̃

0 t �M̃) ⇥ T ! T obtained by pulling back the bundle H. All
the constructions explained in the previous sections extend to (M̃

0 t �M̃) ⇥ T ! T

and “H as well as to (X, F t) and H. More precisely, we treat (M̃
0 t�M̃)⇥ {✓} as the

leaf of the product foliation even if it is not connected and we consider the induced
lamination F t. So the leaves are not connected for us. Clearly, we can define the

(4) The assumption on � and �0 can be replaced by the weaker assumption that the isotropy groups

are torsion-free, as can be checked in the proof.
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C
⇤-algebra BH

m
as the completion of the convolution algebra of compactly supported

continuous sections over the corresponding monodromy groupoid G
t, with respect to

the direct sum of the regular representations in L
2
(M̃

0
, Ẽ

0
) � L

2
(M̃, Ẽ). Note that

G
t can be identified with the space

G
t

= [(M̃
0 t �M̃)⇥ (M̃

0 t �M̃)⇥ T ]/�.

The reader should note that BH

m
is di�erent from the C

⇤-algebra of the monodromy
groupoid of the disjoint union of the two foliations (V

0
, F 0) and (V, F ), and that

BH

m
is Morita equivalent to the C

⇤-algebra Am. Indeed, we then have a well defined
Am-Hilbert module H m (this is nothing but E0

m
� Em) as well as an isomorphism

�m : BH

m
! K Am

(H m) constructed in the same way as in the previous sections. Now,
there are again representations

⇡
reg

= (⇡
reg

✓
)✓2T : BH

m
! W

⇤
⌫
(G

t
;H) , ⇡

av
= (⇡

av

✓
)✓2T : BH

m
! W

⇤
⌫
(X, F t;H).

Here, the von Neumann algebras W
⇤
⌫
(G

t
;H) and W

⇤
⌫
(X, F t;H) are defined using

⌫-essentially bounded families over T as in the previous sections, except that the
operators act on the direct sums of the Hilbert spaces. Said di�erently, we are again
simply allowing disconnected leaves. Finally, the previous constructions of traces and
determinants on foliations, work as well for these two von Neumann algebras. So,
extending obviously the constructions of Section 7, using the composition operation
of Hilbert modules, we can consider determinants

w
t
reg

: ⌦( I K Am
(H m)) ! C , w

t
av

: ⌦( I K Am
(H m)) ! C.

Following the notation of Subsection 5.2, consider the path in I K Am
(H m)

W ✏ :=
�
 t(D0

m
)� ( t(Dm))

�1
�t=1/✏

t=✏
.

Consider w
t
reg

(W ✏) and w
t
av

(W ✏) (one can easily show that the determinants of these
paths are indeed well defined, see Remark 7.3). The proof proceeds along the following
steps:

– we connect  ✏(D0
m

) � ( ✏(Dm))
�1 to the identity using the small time path

ST✏. This step is based on the injectivity of the Baum-Connes map and on the
homotopy invariance of the signature index class;

– we connect  1/✏(D0
m

) � ( 1/✏(Dm))
�1 to the identity via the large time path

LT1/✏. This step is based on the surjectivity of the Baum-Connes map, on the
foliated homotopy invariance of the space of leafwise harmonic forms and on the
homotopy invariance of the signature index class;

– we obtain in this way a loop ` in I K Am
(H m), i.e. an element of ⌦( I K Am

(H m));
– we prove that w

t
reg

(LT1/✏) and w
t
av

(LT1/✏) are well defined and that

(31) w
t
reg

(LT1/✏) ! 0 and w
t
av

(LT1/✏) ! 0 as ✏ # 0
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– we prove that w
t
reg

(ST✏) and w
t
av

(ST✏) are well defined and

(32) (w
t
reg

(ST✏)� w
t
av

(ST✏)) ! 0 as ✏ # 0

Now consider the map ⇥ : ⌦( I K Am
(H m)) ! K0(Am). By the surjectivity of the

Baum-Connes map one proves, using ⇥, the following fundamental equality:

(33) w
t
reg

(`)� w
t
av

(`) = 0

which means that

(w
t
reg

(W ✏)� w
t
av

(W ✏)) + (w
t
reg

(LT1/✏)� w
t
av

(LT1/✏) + (w
t
reg

(ST✏)� w
t
av

(ST✏)) = 0.

Taking the limit as ✏ # 0, using (31), (32) and recalling that

lim
✏#0

(w
t
reg

(W ✏)� w
t
av

(W ✏)) = ⇢
⌫
0
(V

0
, F 0)� ⇢

⌫
(V, F )

we end the proof in the particular case T = T
0 and � = �

0. In the general case we
know that, since we have assumed the special homotopy equivalence, T and T

0 are
homeomorphic and that the two groups are isomorphic. Therefore, the above proof
can be adapted easily.

9. Proof of the homotopy invariance for special
homotopy equivalences: details

We shall now provide more details for the proof of Theorem 8.1; most of our work
in the previous sections will go into the proof. We shall work under the additional
assumption that T = T

0 and � = �
0.

9.1. Consequences of surjectivity I: equality of determinants. — The fol-
lowing proposition will play a crucial role in our analysis. Recall that we have de-
fined traces ⌧⌫

reg,⇤ : K0(Am) ! C and ⌧
⌫

av,⇤ : K0(Am) ! C; where in our notation
Am := C(T ) om �.

Proposition 9.1. — Assume the Baum-Connes map

µo : K
geo

0
(T o �) ! K0(C(T ) om �)

surjective; then
⌧
⌫

reg,⇤ = ⌧
⌫

av,⇤.

Proof. — According to the definition of K
geo

0
(T o �), we know that each K-theory

class ↵ 2 K0(C(T ) om �) is, by the surjectivity of µo, the index class associated to a
�-equivariant family of Dirac-type operators on manifolds without boundary. Using
formula (22) (which is a consequence of the analogue of Atiyah’s index theorem on
coverings and the Atiyah-Bott formula), we end the proof.
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Proposition 9.2. — If the Baum-Connes map µo : K
geo

0
(T o �) ! K0(C(T ) om �) is

surjective, then w
⌫

av
and w

⌫

reg
coincide on ⌦( I K Am

( Em)).

Proof. — Recall that w
⌫

av
: ⌦( I K Am

( Em)) ! C and w
⌫

reg
: ⌦( I K Am

( Em)) ! C are
defined by passing to the respective von Neumann algebras and then taking the de
La Harpe–Skandalis (log-)determinant there (see Definition 7.2): in formulae

w
⌫

av
:= w

⌫ � �av
, w

⌫

reg
:= w

⌫ � �reg
.

Using the commutative diagram of Proposition 7.1, as summarized in formula (24),
and the equality of traces on K0 given by Proposition 9.1, we immediately conclude
the proof.

Corollary 9.3. — Let V = M̃ ⇥� T and V
0
= M̃

0 ⇥� T be two homotopy equivalent
foliated bundles as in the previous subsection, i.e. through a special homotopy equiva-
lence. Let H m = E0

m
� Em be the Am-Hilbert module associated to the disjoint union

of M̃
0 ⇥ T and �(M̃ ⇥ T ). Let ` be a loop in ⌦( I K Am

(H m)).
If the Baum-Connes map µo is surjective, then

(34) w
t
av

(`) = w
t
reg

(`).

If we consider, in particular, the loop ` 2 ⌦( I K Am
(H m)) defined in the sketch of

the proof of Theorem 8.1, then we have justified formula (33).

9.2. Consequences of surjectivity II: the large time path. — Let V = M̃⇥�T

and V
0
= M̃

0 ⇥� T be two homotopy equivalent foliated bundles as in the previous
subsection, i.e. through a special homotopy equivalence with � = �

0 and T = T
0.

We consider the Cayley transforms of the regular operators Dm : Em ! Em and
D0

m
: E0

m
! E0

m
:

U := (Dm � iId)(Dm + iId)
�1

, U0 := (D0
m
� iId)(D0

m
+ iId)

�1
.

Let f̃ : M̃ ⇥T ! M̃
0⇥T be a fiberwise smooth equivariant map inducing the special

homotopy equivalence between (V, F ) and (V
0
, F 0); let g and g̃ be choices for the

homotopy inverses of f and f̃ , with g̃ : M̃
0 ⇥ T ! M̃ ⇥ T inducing g. This notation

should not cause any trouble even if the metrics are denoted by the same letters.
Following [30] (Section 3) one can construct a path of unitaries in H m = E0

m
� Em,

V (t), t 2 [0, 2], connecting U0 � U�1
= V (0) to the identity Id H m

= V (2). The path
V (t), t 2 [0, 2] (which is denoted W(t) in [30]) is obtained by defining a perturbation
�(t) of the grading operator defining the signature operator; the definition of �(t),
which is due to Higson and Roe, employs the pull back operator defined by the
homotopy equivalence g̃ (precomposed and composed respectively with an extension
to Em and E0

m
of the smoothing operators (�(D̃✓))✓2T , (�(D̃

0
✓
))✓2T , � being a rapidly

decreasing smooth function with compactly supported Fourier transform). We omit
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the actual definition of V (t) since it is somewhat lengthy and refer instead to [30],
pages 968-969.

Recall that our goal is to construct a path connecting  1/✏(D0
m

)� ( 1/✏(Dm))
�1,

(where  ↵(x) = � exp(i⇡
2p
⇡

R
↵x

0
e
�u

2

du), to the identity on H m.
To this end, notice that the Cayley transform of the operator Dm can be expressed

as � exp(i⇡�(Dm)), with ⇡�(x) = 2 arctan(x).

Definition 9.4. — [30] A chopping function is an odd continuous function µ : R ! C
such that |µ(x)|  1 and limx!±1 µ(x) = ±1.

Both �(x) :=
2

⇡
arctan(x) and �(x) :=

2p
⇡

R
x

0
e
�u

2

du are chopping functions. Two
chopping functions µ1 and µ2 can be homotoped one to the other via the straight line
homotopy ks = (1� s)µ1 + sµ2. Thus U0� U�1, which is equal to � exp(i⇡�(D0

m
))�

� exp(�i⇡�(Dm)), can be joined to

� exp(i⇡�(D0
m

))�� exp(�i⇡�(Dm)) , �(x) =
2p
⇡

Z
x

0

e
�u

2

du

via the path K (s) := � exp(i⇡ks(D0
m

)) � � exp(�i⇡ks(Dm)). We denote by LT

the concatenation of K (s) and V (t). So LT is a path joining � exp(i⇡�(D0
m

)) �
� exp(�i⇡�(Dm)), with �(x) =

2p
⇡

R
x

0
e
�u

2

du, to the identity.

Definition 9.5. — Let ✏ > 0 be fixed. The large time path LT1/✏ is the path obtained
from the above construction but with the operators Dm and D0

m
replaced by 1

✏
Dm and

1

✏
D0

m
respectively. The large time path connects

 1/✏(D0
m

)� ( 1/✏(Dm))
�1

, with  1/✏(x) = � exp

Ç
i⇡(

2p
⇡

Z
x/✏

0

e
�u

2

du)

å
,

to the identity.

For later use, we notice that

(35)  1/✏ = � exp(i⇡�1/✏) , with �1/✏(x) =
2p
⇡

Z
x/✏

0

e
�u

2

du .

For each fixed ✏ > 0 LT1/✏ is a path in I K Am
(H m) (we recall that this is the

group consisting of the operators A 2 BAm
(H m) such that A � Id 2 K Am

(H m)

and A is invertible). In order to show this property we first recall that at the end
of Subsection 3.2, Sobolev modules E(`)

m
were introduced and the compactness of the

inclusion E(`)

m
,! E(k)

m
, ` > k was stated. Observe then that if � is any chopping

function with the property that �0 ⇠ 1/x
2 as |x| ! 1, then, using the compact-

ness of the inclusion of the Sobolev module E(1)

m
into Em, one proves easily that

� exp(i⇡�(Dm) 2 I K Am
(H m). Notice now that both 2

⇡
arctan(x) and 2p

⇡

R
x

0
e
�u

2

du

satisfy this condition; thus LT1/✏ 2 I K Am
.
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9.3. The determinants of the large time path. — Recall the isomorphism
�m : BH

m
! K Am

(H m), and the representations

⇡
reg

: BH

m
! W

⇤
⌫
(G

t
;H) ; ⇡

av
: BE

m
! W

⇤
⌫
(X, F t;H) , with X = [M̃t(�M̃

0
)]⇥�T.

Proceeding as in Section 7, we can use �
�1

m
and ⇡

reg in order to define a path
�

reg
(LT1/✏) in I K (W

⇤
⌫
(G

t
;H)). The end-points of this path are ⌧⌫ trace class per-

turbations of the identity; thus, see Remark 7.3, the determinant w
⌫
(�

reg
(LT1/✏)) is

well defined and we can set

w
⌫

reg
(LT1/✏) := w

⌫
(�

reg
(LT1/✏)) .

Similarly,
w
⌫

av
(LT1/✏) := w

⌫

F t(�
av

(LT1/✏))

is well defined (and we recall that F t is the foliation induced on X by the foliations
F and F 0 on V and V

0 respectively).

Proposition 9.6. — As ✏ # 0 we have

(36) w
⌫

reg
(LT1/✏) �! 0 , w

⌫

av
(LT1/✏) �! 0.

Proof. — Fix ✏ > 0 and recall that LT1/✏ is the composition of two paths: the path
V 1/✏, connecting

� exp(i⇡�(
1

✏
D0

m
))�� exp(�i⇡�(

1

✏
Dm)) (with �(x) =

2

⇡
arctan(x)) to Id H m

,

and the straight line path K 1/✏, connecting  1/✏(D0
m

))� ( 1/✏(Dm)))
�1 to

� exp(i⇡�(
1

✏
D0

m
))�� exp(�i⇡�(

1

✏
Dm)).

Consider �reg
(LT1/✏) in I K (W

⇤
⌫
(G

t
;H)); for the signature family P̃ associated to

M̃
0 t (�M̃) ⇥ T ! T denote by ⇧̃ := (⇧̃✓)✓2T the element in W

⇤
⌫
(G

t
;H) defined

by the family of orthogonal projections onto the null space. Then, proceeding as in
Keswani [30], one can show that �reg

(LT1/✏) converges strongly to the path

(37) ˜V1(t) =

(
�⇧̃+ ⇧̃

?
, t 2 [�1, 3/2]

�e(t)⇧̃+ ⇧̃
?

, t 2 [3/2, 2]

with

e(t) = �
 

exp(2⇡it) 0

0 exp(�2⇡it)

!
.

More precisely: �reg
(K 1/✏) converges strongly to the constant path ⇧̃+ ⇧̃

?, whereas
�

reg
( V 1/✏) (is homotopic, with fixed end-points, to a path that) converges strongly

to ˜V1(t). Similarly, if we denote by ⇧ 2 W
⇤
⌫
(X, F t;H) the projection onto the null
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space of the longitudinal signature operator on X, then �av
(LT1/✏) converges strongly

to the path

(38) V1(t) =

(
�⇧+⇧

?
, t 2 [�1, 3/2]

�e(t)⇧+⇧
?

, t 2 [3/2, 2].

We can now end the proof(5). Recall the function �1/✏(x) :=
2p
⇡

R
x/✏

0
e
�u

2

du, see
formula (35); consider the function ↵(x) equal to zero for x = 0, equal to 1 for x > 0

and equal to �1 for x < 0; let $1/✏(t) = (1 � t)�1/✏ + t↵ be the straight-line path
joining �1/✏ to ↵; consider the path

X1/✏(t) := � exp(i⇡$1/✏(t)(D̃
0
)�� exp(�i⇡$1/✏(t)(D̃)) .

We notice that as ✏! 0, �1/✏ converges pointwise to ↵. Using once again the spectral
theorem for unbounded operators this means that, in the strong topology,

(39) �1/✏(P̃ ) �! ↵(P̃ ) as ✏ # 0

where we recall that P̃ denotes the signature family on (M̃
0 t (�M̃)) ⇥ T ! T . We

go back to the path X1/✏(t), which is a path in W
⇤
⌫
(G

t
;H) joining �reg

( 1/✏(D0
m

))�
( 1/✏(Dm)))

�1
), i.e.  1/✏(D̃

0
))�( 1/✏(D̃)))

�1, to the constant path�⇧̃+⇧̃
?. Consider

the loop �1/✏ in W
⇤
⌫
(G

t
;H) obtained by the concatenation of X1/✏(t), ˜V1(t) and the

reverse of �reg
(LT1/✏). By the above results the loop �1/✏ is strongly null homotopic,

thus its determinant is equal to zero. Summarizing:

w
⌫
(�

reg
(LT1/✏)) = w

⌫
(
˜V1) + w

⌫
(X1/✏)

which can be rewritten as

w
⌫

reg
(LT1/✏) = w

⌫
(
˜V1) + w

⌫
(X1/✏).

Computing

˜V1(t)
�1

d
˜V1(t)

dt
=

8
>><

>>:

0 , t 2 [�1, 3/2]

(2⇡i)

 
Id 0

0 �Id

!
⇧̃ , t 2 [3/2, 2]

and recalling that the von Neumann dimension of the null space of the signature
operator is a foliated homotopy invariant, see [26], we deduce that w

⌫
(
˜V1(t)) = 0.

Thus the first part of the proposition will follow from the following result:

w
⌫
(X1/✏) �! 0 as ✏ # 0 .

(5) Notice that the proof given by Keswani for coverings contains a few imprecisions; the argument

given here corrects them.
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However, this is clear from (39) and the normality of the trace, given that, by direct
computation,

w
⌫
(X1/✏) =

1

2⇡i
⌧
⌫
Ä
�1/✏(P̃ )� ↵(P̃ )

ä
.

Essentially the same argument, using the strong convergence of �av
(LT1/✏) to V1

(see (38)), shows that w
⌫

av
(LT1/✏) �! 0.

9.4. Consequences of injectivity: the small time path. — So far, we have
connected the t = 1/✏ endpoint of the path

W ✏ :=
�
 t(D0

m
)� ( t(Dm))

�1
�t=1/✏

t=✏
in I K Am

(H m)

to the identity using the large time path LT1/✏. We also showed that

lim
✏!0

(w
⌫

reg
(LT1/✏)� w

⌫

av
(LT1/✏)) = 0 .

We now wish to close up the concatenation of W ✏ and LT1/✏ to a loop based at
the identity. This step will be achieved through the small time path ST✏, a path in
I K Am

(H m) connecting the t = ✏ end point of W ✏ to the identity. We shall want to
ensure that

(40) lim
✏!0

(w
⌫

reg
(ST✏)� w

⌫

av
(ST✏)) = 0 .

The existence of a path connecting
�
 ✏(D0

m
)� ( ✏(Dm))

�1
�

to the identity is in fact
not di�cult and follows from the proof of the Hilsum-Skandalis theorem; what is more
delicate is the construction of a path satisfying the crucial property (40). It is here
that the injectivity of the Baum-Connes map is used, as we proceed now to explain
in more details.

Let V = M̃⇥�T and V
0
= M̃

0⇥�T be two homotopy equivalent foliated bundles as
in the previous subsections, with M̃ and M̃

0 orientable. We fix leafwise �-equivariant
metrics on M̃ ⇥ T and M̃

0 ⇥ T . We denote by D̃ = (D̃✓), D = (DL)L2V/ F and Dm

respectively the �-equivariant signature family, the longitudinal signature operator on
(V, F ) and the Am-linear signature operator on the Am-Hilbert module Em. We fix
similar notations for V

0
= M̃

0 ⇥� T and we let as usual H m = E0
m
� Em. We denote

only in the rest of this paragraph by ⇤ and ⇤0 the vertical Grassmann bundles on
M̃ ⇥ T and M̃

0 ⇥ T respectively. Consider the index classes Ind(Dm), Ind(D0
m

), two
elements in K1(Am). By the foliated homotopy invariance of the signature index class
we know that Ind(Dm) = Ind(D0

m
). On the other hand, using the very definition of

the Baum-Connes map µo, we have Ind(Dm) = µo[M̃,⇤! M̃ ⇥ T ] and Ind(D0
m

) =

µo[M̃
0
,⇤
0 ! M̃

0 ⇥ T ], so that, by the assumed injectivity of µo we infer that

(41) [M̃,⇤! M̃ ⇥ T ] = [M̃
0
,⇤
0 ! M̃

0 ⇥ T ] in K
geo

1
(T o �) .
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This is the information we want to use. Before stating the main result of this subsection
we give a convenient definition.

Definition 9.7. — We shall say that a chopping function � is controlled if
– the derivative of � is a Schwartz function;
– the Fourier transform of � is supported in [�1, 1](6);
– the functions �2 � 1 and �(�

2 � 1) are Schwartz and their Fourier transforms
are supported in [�1, 1].

For the existence of such a function, see [40].

Theorem 9.8. — If [M̃,⇤ ! M̃ ⇥ T ] = [M̃
0
,⇤
0 ! M̃

0 ⇥ T ] in K
geo

1
(T o �) then

there exist a �-proper manifold Y , a longitudinally smooth �-equivariant vector bundle
bL ! Y ⇥ T and a continuous s-path of �-equivariant families on Y

B̃s := (B̃s,✓)✓2T s 2 (0, 1)

such that
1. for each s 2 (0, 1) and ✓ 2 T , (B̃s,✓) is a first order elliptic di�erential operator

on Y acting on the sections of bL|
Ỹ⇥{✓}

2. the Am-Hilbert bundle Lm obtained by completing C
1
c

(Y ⇥T, bL) contains E0
m
�

Em as an orthocomplemented submodule; thus there is an orthogonal decompo-
sition Lm = ( E0

m
� Em)� ( E0

m
� Em)

?

3. for any controlled chopping function � the path � exp(i⇡�(Bs)) is norm contin-
uous in the space of bounded operators in Lm (here, for s 2 (0, 1), Bs denotes
the regular Am-linear operator defined by the family (B̃s,✓)✓2T );

4. we have, in norm topology,

lim
s!1

(� exp(i⇡�(Bs))) = Id Lm

lim
s!0

(� exp(i⇡�(Bs))) =
�
� exp(i⇡�(D0

m
))�� exp(�i⇡�(Dm)

�
� Id?

with Id? denoting the identity on ( E0
m
� Em)

?.
5. � exp(i⇡�(Bs)) 2 I K Am

.

Proof. — If [M̃,⇤! M̃⇥T ] = [M̃
0
,⇤
0 ! M̃

0⇥T ] in K
geo

1
(T o�), then we know that

we can pass from (M̃,⇤! M̃ ⇥ T ) to (M̃
0
,⇤
0 ! M̃

0 ⇥ T ) through a finite number of
equivalences. The most delicate one is bordism, so we assume directly that we have a
manifold X endowed with a proper action of �, a �-equivariant bundle “H on X ⇥ T ,
a proper �-manifold with boundary Z

0 and an equivariant vector bundle “F 0 on Z
0⇥T

(6) Notice that it is impossible to have, as required in [30], that �̂ is smooth and compactly supported

(since, otherwise, � itself , which is the Fourier transform of �̂, would be rapidly decreasing and thus

not a chopping function).
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such that the boundary of Z
0 is equal to X and “F 0 restricted to @Z

0 ⇥ T is equal
to “H. Consider the manifold with cylindrical ends, Z, obtained by attaching to Z

0 a
cylinder [0,1)⇥X; consider the cylinder W = X ⇥R; these are proper � manifolds
if we extend the action to be trivial in the cylindrical direction; extend bundles to the
cylindrical parts in the obvious way. The � manifold Y appearing in the statement of
the theorem is the disjoint union of Z, �Z and W , as in [29]. The bundle bL is given
in terms of “H and its extension to the cylindrical parts. The equivariant families B̃s,
s 2 (0, 1), appearing in the statement of the theorem are explicitly defined (in [29]
see: the last displayed formula page 70; the last displayed formula page 72; the second
displayed formula page 76 and the first displayed formula page 77). We shall see an
example in a moment. The common feature of these operators is that they are Dirac-
type on all of Y but look like an harmonic oscillator along the cylindrical ends. Since
we have extended the action in a trivial way to the R-direction of the cylindrical
ends we can decompose the Hilbert module defined on the cylinder (X ⇥ R) ⇥ T

as Em(X) ⌦C L
2
(R). Using the spectral decomposition of the harmonic oscillator

we see, as in [29], that there is an orthogonal decomposition of Hilbert modules
Em(X ⇥ R) = ( Em(X ⇥ R))

0 �? ( Em(X ⇥ R))
00 with ( Em(X ⇥ R))

0 equal to the
tensor product of Em(X) with the 1-dimensional space generated by the kernel of the
harmonic oscillator and ( Em(X ⇥ R))

00 equal to the tensor product of Em(X) with
the orthogonal space to this kernel in L

2
(R). In particular, ( Em(X ⇥ R))

0 ' Em(X),
so that the Hilbert module Lm obtained by completing C

1,0

c
(Y ⇥T, “H) does contain

Em(X) as an orthocomplemented submodule. Regarding the statements involving the
continuity and limiting properties of � exp(i⇡ Bs), we shall treat only the first of the
four steps proving Theorem 5.1.10 in [29]. Thus Y is the cylinder X ⇥ R and

Bt =

 
0 DX

DX 0

!
+

1

t

 
x @x

�@x �x

!
with t 2 (0, 1].

The operator Bt restricted to ( Em(X⇥R))
0 is precisely

 
0 DX

DX 0

!
. Let us consider

Bt restricted to the orthocomplement ( Em(X ⇥ R))
00 and denote it C t, so that

Bt =

 
0 DX

DX 0

!
� C t .

We can prove the norm-resolvent continuity of C t (this notion extends to the C
⇤-

algebraic framework) exactly as in [29]; we also obtain that f( C t) goes to 0 in norm
as t ! 0 for any rapidly decreasing function f . Using the fact that �2 � Id is indeed
rapidly decreasing we see that �2

( C t) � Id goes to zero in norm as t ! 0. A similar
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statement holds for �( C t)(�
2
( C t)� Id). Then, writing as in [30]

� exp(i⇡z) = h(⇡
2
(1� z

2
)) + (i⇡z)g(⇡

2
(1� z

2
))

with h and g entire, we prove that � exp(i⇡�( C t)) converges in norm to the identity on
( Em(X⇥R))

00, so that � exp(i⇡�(Bt)) converges to (two copies of) � exp(i⇡ DX)�Id?

as t ! 0. Of course, it is not true in this case that � exp(i⇡�(Bt)) converges to the
identity as t ! 1 but the idea is that there will be further paths of operators in I K Am

with the property that their concatenation will produce the desired path, joining
� exp(i⇡ DX)� Id? to the identity up to stabilization. For the bordism relation these
paths are obtained by adapting to our context, as we have done above, the remaining
three paths appearing in the treatment of the bordism relation in [29]; see in particular
the Subsections 5.1.2, 5.1.3, 5.1.4 there.

Finally, let us comment about cycles that are equivalent through a bundle modifi-
cation. We are thus considering, in general,

(X,E ! X ⇥ T ) ⇠ (X
0
, E

0 ! X
0 ⇥ T ) ⌘ (“X, “E ! “X ⇥ T )

where, as explained for example in [29], “X is a sphere bundle S
2n ! “X ⇡�! X and

“E is the tensor product of (⇡ ⇥ IdT )
⇤
(E) and a certain bundle V built out of the

Grassmann bundle of “X; V is defined originally on “X and then extended trivially
on all of “X ⇥ T . Consider the two T -families of Dirac-type operators defined by the
equivariant Cli�ord modules E ! X ⇥ T and E

0 ! X
0 ⇥ T respectively and denote

them briefly by P = (P✓)✓2T and P
0

= (P
0
✓
)✓2T (for this argument we thus forget

about the tilde). Let Em and E0
m

be the two Hilbert modules associated to these data
and let P and P 0 be the regular operators defined by the two families above. Then
we want to show that there exist

(i) an orthogonal decomposition of Hilbert modules E0
m

= Em � E?
m

;
(ii) a continuous s-path of �-equivariant first order di�erential operators Rs :=

(Rs,✓)✓2T , s 2 [0, 2), on
“X with R0 = P

0 and with regular extensions Rs, s 2 [0, 2);
(iii) for any controlled chopping function � the path � exp(i⇡�(Rs)) is norm con-

tinuous in the space of
bounded operators in E0

m
;

(iv) (� exp(i⇡�(Rs))) �! (� exp(i⇡�(P)))� Id? as s ! 2.
The existence of the s-path Rs := (Rs,✓)✓2T , s 2 [0, 2), is proved following the

arguments in [29], Subsection 5.2: thus we write P
0
= P

0
+ P

1
+ Z

0 where for each
✓ 2 T , P

1

✓
is a vertical operator on the fiber bundle S

2n ! “X ⇡�! X, P
0

✓
is a horizontal

operator defined in terms of P✓ and Z
0

✓
is a 0-th order operator. Define Rs, for s 2 [0, 1]

as Rs := P
0

+ P
1

+ (1� s)Z
0 so that R0 = P

0 as required. Next observe, as in [29],
that for each ✓ 2 T the vertical operator P

1

✓
has a one-dimensional kernel, when
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restricted to each sphere of the sphere bundle S
2n ! “X ⇡�! X; using the orthogonal

projection onto the null space of these operators on spheres we obtain an orthogonal
decomposition E0

m
= U � U? with U isomorphic to Em. We can now define Rs for

s 2 [1, 2); consider R1 and its extension to E0
m

which is diagonal with respect to the
orthogonal decomposition. The restriction of R1 to U is, by definition, P0, given that
P1 is zero on U; using the isomorphism between U and Em, P0 can be connected
to P, since they di�er by the extension of a 0-th order operator Z1 (it will su�ce to
consider P

0
+ (s � 1)Z1, s 2 [1, 2]). For the restriction of R1 = P1

+ P0 to U? we
consider instead the open path P0

+
1

2�s
P1, s 2 [1, 2). Summarizing, we have defined

a continuous s-path of regular operators Rs, s 2 [0, 2). Using the fact that (P1
)
2 is

strictly positive on U? one can prove the stated continuity properties, as well as the
crucial fact that (� exp(i⇡�(Rs))) �! (� exp(i⇡�(P)))� Id? as s ! 2.
Putting together the above two constructions, the one for the bordism relation and the
one for the bundle modification relation, one can end the proof of the first four items
in the statement of the theorem. We finally tackle the property that � exp(i⇡�(Bs)) 2
I K Am

. From the fact that � is controlled, it su�ces to show that f(Bs) is in K Am
if

f is rapidly decreasing; let us see this property for the case of the cylinder considered
above. With respect to the above decomposition,

f(Bs) = f(

 
0 DX

DX 0

!
)� f( C t) .

and it su�ces to see that f( C t) is compact. Write f( C t) = (f( C t)( C2

t
)
N

) � ( C2

t
)
�N ,

where we recall that C2

t
is positive. Since f is rapidly decreasing the first operator is

bounded; thus we are left with the task of proving that ( C2

t
)
�N is compact. Recall that

C2

t
is the restriction to ( Em(X⇥R))

00 of (D2⌦Id2⇥2+t
�2

X
2
), with X =

 
x @x

�@x �x

!
.

Write ( C2

t
)
�N in terms of the heat kernel, using the inverse Mellin transform:

( C2

t
)
�N

=
1

(N � 1)!

Z 1

0

exp(�t C2

t
)t

N�1
dt .

Observe that the heat kernel of (D2 ⌦ Id2⇥2 + t
�2

X
2
) decouples. Using again the

invertibility of C2

t
, the properties of the heat kernel of D2 and, more importantly, of

the heat kernel of the harmonic oscillator, it is not di�cult to end the proof.

Let �✏(x) := �(✏x). Then, up to a harmless stabilization, the above theorem al-
lows us to connect

�
� exp(i⇡�✏(D0

m
))�� exp(�i⇡�✏(Dm)

�
to the identity; we de-

note by �
✏

1
2 I K Am

, �✏
1
⌘ (�

✏

1
(s))s2[0,1] the resulting path. Recall, however, that

our goal is rather to connect
�
� exp(i⇡�✏(D0

m
))�� exp(�i⇡�✏(Dm)

�
to the identity,

with �✏(x) =
2p
⇡

R
✏x

0
e
�u

2

du. Take the linear homotopy between the two chopping
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functions � and � and set

M(t) := t
�
�(✏D0

m
)���(✏Dm)

�
+ (1� t)

�
�(✏D0

m
)���(✏Dm)

�
.

Consider then the path
�
✏

2
(t) = � exp(i⇡M(t)) .

Definition 9.9. — The small time path ST✏ is the path obtained by the concatenation
of �✏

1
and �✏

2
.

So ST✏ is a path in I K Am
and connects  ✏(D0

m
)�( ✏(Dm))

�1 ⌘
�
� exp(i⇡�✏(D0

m
))

�� exp(�i⇡�✏(Dm)) to the identity.

9.5. The determinants of the small time path. — Let (X, F ), X = Z⇥� T , be
a foliated bundle as in the proof of Theorem 9.8. Let L be a continuous longitudinally
smooth vector bundle on X as in Theorem 9.8 and let Lm be the associated Hilbert
Am-module. Let BL

m
be the maximal C

⇤-algebra associated to the groupoid G
Z

:=

(Z⇥Z⇥T )/�. Recall the isomorphism �m : BL

m
! K Am

( Lm), and the representations

⇡
reg

: BL

m
! W

⇤
⌫
(G

Z
;L) ; ⇡

av
: BL

m
! W

⇤
⌫
(X, F ;L) .

Proceeding as in Section 7, we can use ��1

m
and ⇡reg in order to define a path �reg

(ST✏)

in I K (W
⇤
⌫
(G

Z
;L)). The end-points of this path are ⌧⌫ trace class perturbations of

the identity; thus, see Remark 7.3, the determinant w
⌫
(�

reg
(ST✏)) is well defined and

we can set
w
⌫

reg
(ST✏) := w

⌫
(�

reg
(ST✏)) .

Similarly,
w
⌫

av
(ST✏) := w

⌫

F (�
av

(ST✏))

is well defined. The goal of this subsection is to indicate a proof of the following

Theorem 9.10. — As ✏ # 0 we have

(42) w
⌫

reg
(ST✏)� w

⌫

av
(ST✏) �! 0 .

Proof. — To simplify the notation we shall assume that the injectivity radius of
(M̃✓, g̃✓) is greater or equal to 1 for each ✓ 2 T ; we also assume that for each ✓ 2 T

the distance between m̃ and m̃ � is greater than 1 for each m̃ 2 M̃✓ and for each
� 2 �(✓), � 6= e. We begin by a few preliminary remarks. Recall that ST✏ is the
concatenation of two paths: �✏

1
and �

✏

2
. Using the fundamental Proposition 3.12 we

observe that

�
reg

(�
✏

1
(t)) ⌘ �

reg
(� exp(i⇡�(Bt)) = � exp(i⇡�(B̃t))

and
�

av
(�
✏

1
(t)) ⌘ �

av
(� exp(i⇡�(Bt)) = � exp(i⇡�(Bt))
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with Bt = ((Bt)L)L2X/ F the longitudinal di�erential operator induced by the �-
equivariant family B̃t. (Once again, here and before the statement of Theorem 9.10 we
are using, is a slight extension of the results proved in Section 3, allowing for manifolds
with cylindrical ends and operators that are modeled like harmonic oscillators along
the ends). Similarly, up to a harmless stabilization by Id? (that will in any case
disappear after taking determinants), we can write

�
reg

(�
✏

2
(t)) = � exp i⇡

Ä
t�(✏P̃ ) + (1� t)�(✏P̃ )

ä
,

�
av

(�
✏

2
(t)) = � exp i⇡ (t�(✏P ) + (1� t)�(✏P ))

where P̃ and P are the signature operators on (M̃
0t (�M̃))⇥T ! T and on (X, F t)

respectively (this is the notation we had introduced in the subsection on the large time
path). One can prove that for j = 1, 2 the paths �reg

(�
✏

j
) and �

av
(�
✏

j
) are all made

of trace class perturbations of the identity. Moreover, the determinants of these two
paths are well defined individually and without the regularizing procedure explained
in Proposition 5.8. We shall justify this claim in a moment. This property granted,
we can break the proof of (42) into two distinct statements:

(43) w
⌫

reg
(�
✏

1
)� w

⌫

av
(�
✏

1
) �! 0 .

(44) w
⌫

reg
(�
✏

2
)� w

⌫

av
(�
✏

2
) �! 0 .

We now tackle (44) which is slightly easier since it involves exclusively operators on
manifolds without boundary.
First we observe that to each operator P̃✓ and PL we can apply the results of [54],
[51]. In particular, using the properties of �, which is of controlled type, and � we
have:

1. �(P̃✓) and �(PL), are given by 0-th order pseudodi�erential operators with
Schwartz kernel localized in an uniform R-neighbourhood of the diagonal (re-
member that the Fourier transform of � is compactly supported); we shall as-
sume without loss of generality that R = 1;

2. �(P̃✓) and �(PL) are each one the sum of a 0-th order pseudodi�erential oper-
ators with Schwartz kernel localized in an uniform R = 1-neighbourhood of the
diagonal and of an integral operator with smooth kernel;

3. if �̃ denotes the linear chopping function equal to sign(x) for |x| > 1 and equal
to x for |x|  1 then (�(P̃✓) � �̃(P̃✓))✓2T and (�(P̃✓) � �̃(P̃✓))✓2T are ⌧⌫ trace
class elements given by longitudinally smooth kernels (indeed, the di�erences
�� �̃ and �� �̃ are rapidly decreasing);

4. similarly, (�(PL) � �̃(PL))L2X/ F t and (�(PL) � �̃(PL))L2X/ F t are ⌧⌫F t trace
class elements given by uniformly bounded longitudinally smooth kernels;
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5. consequently, (�(P̃✓) � �(P̃✓))✓2T and (�(PL) � �(PL))L2X/ F t are both trace
class elements given by longitudinally smooth kernels; indeed it su�ces to write
(�(P̃✓)� �(P̃✓))✓2T = ((�(P̃✓)� �̃(P̃✓))✓2T + (�̃(P̃✓)� �(P̃✓))✓2T .

Notice that these properties imply easily the claim we have made about the determi-
nants of �reg

(�
✏

2
) and �

av
(�
✏

2
). We go back to our goal, i.e. proving (44). We observe

that since �✏
2

is defined in terms of a linear homotopy, we have, by direct computation,

w
⌫

reg
(�
✏

2
) = �1

2
⌧
⌫
Ä
�(✏P̃ )� �(✏P̃ )

ä
w
⌫

av
(�
✏

2
) = �1

2
⌧
⌫

F t (�(✏P )� �(✏P )) .

Write

⌧
⌫
Ä
�(✏P̃ )� �(✏P̃ )

ä
= ⌧

⌫
Ä
(�(✏P̃ )� �(✏P̃ )✏)� (�(✏P̃ )� �(✏P̃ )✏)

ä

with �(✏P̃ )✏ a compression of �(✏P̃ ) to a �-equivariant ✏-neighbourhood of
{(m̃, m̃, ✓), m̃ 2 M̃, ✓ 2 T} in M̃ ⇥M̃ ⇥T . Both �(✏P̃ )��(✏P̃ )✏) and �(✏P̃ )��(✏P̃ )✏)

are individually ⌧⌫ trace class: indeed the first term is the ✏-compression of a longi-
tudinally smooth kernel (since �(✏P̃ ) is already ✏-local) and it is therefore ⌧⌫ trace
class; the second term can be written as the sum (�(✏P̃ )��(✏P̃ ))+ (�(✏P̃ )��(✏P̃ )✏)

and both terms are trace class; thus

⌧
⌫
Ä
�(✏P̃ )� �(✏P̃ )

ä
= ⌧

⌫
Ä
(�(✏P̃ )� (�(✏P̃ )✏

ä
� ⌧

⌫
Ä
�(✏P̃ )� �(✏P̃ )✏

ä
.

A similar expression can be written for ⌧⌫F t (�(✏P )� �(✏P )). Consider now the dif-
ference w

⌫

reg
(�
✏

2
)� w

⌫

av
(�
✏

2
) which is the sum

Ä
⌧
⌫
(�(✏P̃ )� �(✏P̃ )✏)� ⌧

⌫

F t(�(✏P )� �(✏P )✏)

ä
+(45)

Ä
⌧
⌫
(�(✏P̃ )� �(✏P̃ )✏)� ⌧

⌫

F t(�(✏P )� �(✏P )✏)

ä
.(46)

As already remarked the two di�erences �(✏P̃ ) � �(✏P̃ )✏ and �(✏P ) � (�(✏P ))✏ are
given by longitudinally smooth kernel which are supported in an ✏-neighbourhood of
the diagonal. Proceeding as in the proof of Proposition 4.4 we shall now prove that
⌧
⌫
(�(✏P̃ )��(✏P̃ )✏)� ⌧⌫F t(�(✏P )��(✏P )✏) is in fact equal to zero for ✏ small enough.

Indeed, consider the �-equivariant family �(✏P̃ ); we know that �(✏P̃ ) 2  0

c
(G, E).

Similarly, consider �(✏P̃ )✏ 2  0

c
(G, E). We know that �(✏P̃ )� (�(✏P̃ ))✏ 2  �1c

(G, E)

and that this operator extends to an element P✏
�,�

2 K Am
(H m). Observe now that

(P✏
�,�

)⌦⇡reg
✓

Id = �(✏P̃✓)��(✏P̃✓)✏ , (P✏
�,�

)⌦⇡av
✓

Id = �(✏PL)��(✏PL)✏ with L = L✓.

Using Theorem 3.19 we thus can write

⌧
⌫
(�(✏P̃ )� �(✏P̃ ))✏)� ⌧

⌫

F t(�(✏P )� �(✏P ))✏) = ⌧
⌫

reg
(P✏

�,�
)� ⌧

⌫

av
(P✏

�,�
)

where we have omitted the isomorphism �
�1

m
: K Am

(H m) ! BH

m
. Taking ✏ small

enough and proceeding precisely as in the proof of Proposition 4.4 we see that the
right hand side is equal to zero for ✏ small enough (it is in this last step that we use the
fact that P✏

�,�
is given by an ✏-localized smoothing kernel). Finally, the terms in the
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second summand of (45) are individually zero since they are trace class elements given
by longitudinally smooth kernels which restrict to zero on the diagonal. Summarizing:
w
⌫

reg
(�
✏

2
)� w

⌫

av
(�
✏

2
) = 0 for ✏ small enough.

We are left with the task of proving that �✏
1

has well defined determinants and that

(47) lim
✏!0

w
⌫

reg
(�
✏

1
)� w

⌫

av
(�
✏

1
) = 0 .

To this end we begin by writing explicitly the left hand side:

(48) w
⌫

reg
(�
✏

1
) =

1

2⇡i

Z
1

0

⌧
⌫

Å
(� exp(�i⇡�(✏B̃t)))

d

dt
(� exp(i⇡�(✏B̃t)))

ã
dt

(49) w
⌫

av
(�
✏

1
) =

1

2⇡i

Z
1

0

⌧
⌫

F

Å
(� exp(�i⇡�(✏Bt)))

d

dt
(� exp(i⇡�(✏Bt)))

ã
dt

provided the right hand sides make sense. To see why the last statement is true, we
begin by making a general comment on the traces we are using. Remember that the
two paths of operators B̃s and Bs, s 2 (0, 1), are defined on foliated bundles that
might have as leaves manifolds with cylindrical ends. We define the two relevant von
Neumann algebras in the obvious way and we define the two traces ⌧⌫ and ⌧⌫F as we
did in Subsection 2.4. Needless to say, an arbitrary smoothing operator will not be
trace class on such a foliation, since its Schwartz kernel might not be integrable in the
cylindrical direction. (This is the typical situation for the heat kernel associated to a
Dirac operator which restrict to a R+-invariant operator d

dt
+D@ along the cylindrical

ends.) We now write

exp(i⇡z) = h(⇡
2
(1� z

2
)) + (i⇡z)g(⇡

2
(1� z

2
))

with h and g entire. Recall that � is of controlled type; we shall now see that this
implies that 1 � �

2
(B̃t) is ⌧⌫ trace class and 1 � �

2
(Bt) is ⌧⌫F trace class. Moreover

these operators are given by longitudinally smooth kernels that are supported within
a uniform (R = 1)-neighbourhood of the diagonal. These statements are clear when
(M̃,⇤! M̃⇥T ) ⇠ (M̃

0
,⇤
0 ! M̃

0⇥T ) through a bundle modification or a direct sum
of vector bundles (indeed, from our discussion of the bundle modification relation in
the proof of Theorem 9.8, it is clear that in this case we remain within the category
of foliations of compact manifolds without boundary and it su�ces to apply [50]
for the latter property and [22] for the first). If (M̃,⇤ ! M̃ ⇥ T ) ⇠ (M̃

0
,⇤
0 !

M̃
0 ⇥ T ) through a bordism, then we use the fact that B̃✓,t and (Bt)L are again of

bounded propagation speed and restrict to harmonic oscillators along the cylinders of
the relevant manifolds with cylindrical ends (this is needed in order to make claims
about the trace class property). For the trace class property we also make use of the
results in [22], proceeding as in [29] but using singular numbers instead of eigenvalues.
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Using exp(i⇡z) = h(⇡
2
(1� z

2
)) + (i⇡z)g(⇡

2
(1� z

2
)) we can then conclude, as in [30]

Lemma 4.1.7, that

�
reg

(�
✏

1
(t)) ⌘ � exp(i⇡�(✏B̃t)) and �

av
(�
✏

1
(t)) ⌘ � exp(i⇡�(✏Bt)) , t 2 [0, 1]

are piecewise continuosly di�erentiable in the L
1 norm and that they both have a

well defined (log-)determinant, as we had claimed (notice that in the proof of Lemma
4.1.7 in [30] only the controlled property of � is used).

Having justified (48) and (49), we next make the following:

Claim. — There exists polynomials p1, p2 such that, uniformly in s 2 [0, 1],

(50) ||�(B̃s)� �(✏B̃s)||1 < p1(
1

✏
) , ||�(Bs)� �(✏Bs)||1 < p2(

1

✏
).

Assume the claim; then using the inequality

||AB||1  ||A||1||B||1 , A 2 L
1
(M, ⌧) \ M , B 2 M

which is valid in any Von Neumann algebra M endowed with a faithful normal trace
⌧ , one can show, proceeding exactly as in Lemma 4.2.8 of [30], that there exist poly-
nomials q1 and q2 such that, uniformly in s 2 [0, 1],

(51) ||�2
(✏B̃s)� Id||1 < q1(

1

✏
) , ||�2

(✏Bs)� Id||1 < q2(
1

✏
).

We first end the proof of (47) using (51).
For any entire function f(z) =

P1
n=0

anz
n we define [f(z)]N :=

P
N

n=0
anz

n. Consider
the entire function h in the decomposition exp(i⇡z) = h(⇡

2
(1� z

2
)) + (i⇡z)g(⇡

2
(1�

z
2
)). Proceeding as in Lemma 4.2.6 in [30] we show using the first inequality in (51)

that for each ↵ > 0 there exists an ✏ > 0 and an integer N✏ such that

– ||h(⇡
2
(Id� �

2
(✏B̃s)))� [h(⇡

2
(Id� �

2
(✏B̃s)))]N✏ ||1 < ↵

– [h(⇡
2
(Id� �

2
(✏B̃s)))]N✏ is of propagation less than 1.

Remark here that N✏ is in fact fixed by ✏ and, with our conventions, can be set to
be equal to the integral part of 1/✏. Thus the left hand side of the above inequality
can be thought of as a positive function of ✏, converging to 0 when ✏ # 0. A similar
statement can be made for the derivative of h(✏B̃s) with respect to s. Applying the
same reasoning to the second summand in the decomposition exp(i⇡z) = h(⇡

2
(1 �

z
2
)) + (i⇡z)g(⇡

2
(1 � z

2
)) we conclude as in [30] Lemma 4.2.10, that for each ↵ > 0

there exists an ✏ > 0 and an integer N✏ such that
���
Z

1

0

⌧
⌫

Å
(� exp(�i⇡�(✏B̃t)))

d

dt
(� exp(i⇡�(✏B̃t)))

ã
dt

�
Z

1

0

⌧
⌫

Å
([� exp(�i⇡�(✏B̃t))]N✏)

d

dt
([� exp(i⇡�(✏B̃t))]N✏)

ã
dt

��� < ↵.

(52)
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Similarly, using the second inequality in the claim and the second inequality in (51),
we can prove that for each ↵ > 0 there exists a � > 0 and an integer N� such that

���
Z

1

0

⌧
⌫

F

Å
(� exp(�i⇡�(�Bt)))

d

dt
(� exp(i⇡�(�Bt)))

ã
dt

�
Z

1

0

⌧
⌫

F

Å
([� exp(�i⇡�(�Bt))]N�)

d

dt
([� exp(i⇡�(�Bt))]N�)

ã
dt

��� < ↵.

(53)

Since the left hand sides of the inequalities (52), (53) can be thought of as positive
functions of ✏ and � converging to 0 as ✏ # 0 and � # 0, it is clear that we can ensure the
existence of a common value, say ⌘ and N⌘, for which both inequalities are satisfied.
Consider again the di�erence |w⌫

reg
(�
✏

1
) � w

⌫

av
(�
✏

1
)| that we rewrite as |A✏ + B✏ + C✏|

with

A✏ := w
⌫

reg
�
✏

1
�
Z

1

0

⌧
⌫

Å
([� exp(�i⇡�(✏B̃t))]N✏)

d

dt
([� exp(i⇡�(✏B̃t))]N✏)

ã
dt

B✏ :=

Z
1

0

⌧
⌫

Å
([� exp(�i⇡�(✏B̃t))]N✏)

d

dt
([� exp(i⇡�(✏B̃t))]N✏)

ã
dt

�
Z

1

0

⌧
⌫

F

Å
([� exp(�i⇡�(✏Bt))]N✏)

d

dt
([� exp(i⇡�(✏Bt))]N✏)

ã
dt

C✏ :=

Z
1

0

⌧
⌫

F

Å
([� exp(�i⇡�(✏Bt))]N✏)

d

dt
([� exp(i⇡�(✏Bt))]N✏)

ã
dt� w

⌫

av
�
✏

1
.

We know that for each ↵ > 0 there exists a common ✏ such that |A✏| < ↵ and |C✏| < ↵.
On the other hand, using the fact that [� exp(i⇡�(✏Bt))]N✏ is of propagation equal
to 1, we can prove, proceeding as in Proposition 4.4, that there exists ✏ such that
B✏ = 0. Thus we have proved (47) modulo the claim.
We shall prove the claim for the particular case of the cylinder; let us prove, for
example, the first inequality. Consider

B̃t =

 
0 D̃

D̃ 0

!
+

1

t

 
x @x

�@x �x

!
with t 2 (0, 1].

Observe that the left hand side of the first inequality in the claim is nothing but the
last term in inequality (4.3) in [29]. Proceed now exactly as in the part of the proof
of Lemma 4.7 in [29] that begins with the inequality (4.3). It is not di�cult to realize
that the proof given there, i.e. the proof of the first inequality in the claim, can be
easily adapted to our von Neumann context using singular numbers and the results
of Fack and Kosaki. More precisely, the operator B̃

2

t
can be diagonalized with respect

to the eigenfunctions of the operator X
2, with

X =

 
x @x

�@x �x

!
.
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The functional calculus of B̃
2

t
is then reduced to the functional calculus of the operator

D̃
0
+

1

t
�k, with D̃

0
=

 
D̃

2
0

0 D̃
2

!

and where �k is an eigenvalue of X
2 as in [29] . Now the L

1-norm k�(B̃s)��(✏B̃s)k1
is given by the sum over k of L

1-norms in corresponding von Neumann algebras of
the operator (� � �✏)(D̃

0
+ �k). By [22], this L

1-norm is expressed in terms of the
singular numbers µ

⌫

s
(D̃

0
+�k) = µ

⌫

s
(D̃

0
)+�k. This reduces the estimate to the similar

estimate of the singular numbers of D̃
0 exactly as in [29]. This latter being a leafwise

elliptic second order di�erential operator, we can use the estimate µs(D̃
0
) ⇠ s

2/p

where p is the dimension of the leaves, see for instance [8]. Hence the proof of the
first inequality of the claim is completed following the steps of [29]. The proof of the
second inequality in the claim is similar. Thus we have proved the claim and thus
(47) in the case of cylinders. For manifolds with cylindrical ends we split the relevant
statements into purely cylindrical ones and statements on compact foliated bundles,
as in [29]. We end here our explanation of the proof of (47). The proof of Theorem
8.1 is now complete.
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Abstract. — The real counterpart of relative K-theory (considered in the complex

setting in [4]) is considered here, some direct image under proper submersion is

constructed, and a Grothendieck-Riemann-Roch theorem for Johnson-Nadel-Chern-

Simons classes is proved. Metric properties are also studied.

This needs to revisit the construction of ⌘-forms in the case where the direct

image is provided by the vertical Euler (de Rham) operator. A direct image under

proper submersions of some “non hermitian smooth” or “free multiplicative” K-theory

is deduced (in the same context).

Double submersions are also studied to establish some functoriality properties of

these direct images.

Résumé (Image directe pour certaines K-théories secondaires). — On construit un mor-

phisme d’image directe par submersion propre pour la version réelle de la K-théorie

relative (considérée dans [4] dans un contexte holomorphe), et un théorème de type

Grothendieck-Riemann-Roch est établi pour les classes de Johnson-Nadel-Chern-

Simons. On étudie aussi des propriétés métriques.

Ceci nécessite de construire des formes ⌘ (de transgression du théorème d’indice

des familles) dans le cas où l’image directe est définie par l’operateur d’Euler (de

Rham) des fibres. On en déduit également un morphisme d’image directe pour une

K-théorie « lisse non hermitienne » ou « multiplicative libre ».

La question de la fonctorialité de ces images directes pour des doubles submersions

est également abordée.

1. Introduction

In [35], Nadel proposed characteristic classes (also considered by Johnson [23],
see infra) for triples (E,F, f) where E and F are holomorphic vector bundles on
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Key words and phrases. — Relative K-theory, multiplicative K-theory, smooth K-theory, local families

index, Chern-Simons, direct image, pushforward.
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some Kähler manifold X, and f : E
⇠�! F is a C

1 vector bundle isomorphism. He
conjectured that if X is projective, his classes, which take their values in H

(0,odd)
(X),

were projections of the image by the Abel-Jacobi map of the di�erence of the Chow
group valued Chern classes of E and F . Inspired by [26] §6, I developped in [4]
a notion of relative K-theory which appeared as suitably adapted to describe such
triples considered by Nadel. This theory measures the kernel of the forgetful map
from the K

0-theory of holomorphic vector bundles on X to the usual topological K
0-

theory. As such, if X is projective, any pointed fine moduli space of vector bundles
on X naturally maps to this relative K-theory. Moreover, it is rationally isomorphic
to the Chow subgroup of homologically trivial cycles.

In [4], Johnson-Nadel classes were extended by considering a suitable projection of
the Chern-Simons transgression form associated to compatible connections on E and
F . The obtained characteristic class was proved to solve a generalised form of Nadel’s
conjecture.

I realised very recently that D. Johnson already obtained partial results in this
direction: in [24] it seems that the same classes as considered by Nadel were defined,
and in [23] some weaker version (than in [4]) of the classes were constructed and a
weaker version of the “generalized Nadel conjecture” was proved.

[4] also contains direct images and Grothendieck-Riemann-Roch type results for rel-
ative K-theory and its characteristic class, for submersions and immersions of smooth
projective varieties.

One of the goals of this article is to study the counterpart of this theory in the
context of complex flat vector bundles over some real smooth manifold M . The cor-
responding relative K-theory was defined by Karoubi [26] §6 and studied by Karoubi
and Dupont [17]. It is here described from objects of the form (E,rE , F,rF , f) where
f is a smooth vector bundle isomorphism between complex vector bundles E and F

endowed with flat connections rE and rF (see Definition 4). If M is compact, the
pointed algebraic variety V F of flat vector bundle structures on some fixed topological
vector bundle on M naturally maps to this relative K-theory.

If ⇡ : M �! B is a proper submersion, I construct here (see Definition 26 and
Theorem 27) a direct image morphism ⇡⇤ : K

0
rel(M) �! K

0
rel(B). The main technical

problem consists in finding a vector bundle isomorphism (or something equivalent)
between representatives of ⇡!E and ⇡!F as virtual flat vector bundles on B in such a
way that the direct image becomes natural and functorial.

The counterpart here of Johnson-Nadel classes is simply given by Chern-Simons
transgression forms in odd degree de Rham cohomology:

(1) N ch(E,rE , F,rF , f) =
⇥‹ch(rE , f

⇤rF )
⇤
2 H

odd
dR

(X).
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Because of its rigidity properties, this Chern-Simons class may essentially detect dif-
ferent connected components of the above algebraic variety V F , and the class of the
determinant line bundle (see §2.3).

A Grothendieck-Riemann-Roch type theorem for N ch (Theorem 29) is obtained as
a by-product of the constructions performed in pursuing the second goal of the article,
namely the study of “free multiplicative” or “non hermitian smooth” K-theory. This
K-theory, denoted by “Kch is generated by triples of the form (E,r,↵) where r is a
connection on the complex vector bundle E over M and ↵ is an odd degree di�erential
form defined modulo exact forms. Relations are direct sum and if f : E �! F is any
smooth vector bundle isomorphism:

(2) (E,rE ,↵) =
�
F,rF ,↵+ ‹ch(rE , f

⇤rF )
�

(Here ‹ch is again a Chern-Simons transgression form). K
0
rel and “Kch are related by a

commutative diagram whose lines are exact sequences (see Proposition 10):

(3)

K
1
top(M) ����! K

0
rel(M) ����! K

0
flat(M) ����! K

0
top(M)

??yk
??y N ch

??y
??yk

K
1
top(M)

ch����! ⌦
odd

(M)/d⌦
even

(M) ����! “Kch(M) ����! K
0
top(M)

In this diagram, ⌦•
(M) denotes di�erential forms, Ktop denotes ordinary K-theory,

and K
0
flat denotes the K

0 theory of the category of flat bundles modulo exact se-
quences. For any vector bundle E on M endowed with a flat connection rE , the
image in “Kch(M) of (E,rE) 2 K

0
flat(M) is the triple (E,rE , 0).

On one hand, Karoubi’s multiplicative K-theory [26] [27] [28] consists of quo-
tients (the form ↵ being defined modulo greater subgroups than only exact forms)
of subgroups (defined by restrictions on the Chern-Weil character form ch(r)) of
this theory. These subgroups and constraints stemm from natural filtrations of the
de Rham complex of M suitably adapted to the geometry studied. In [28], Karoubi
studies foliations for which he constructs generalisations of the Godbillon-Vey invari-
ant, and holomorphic and algebraic varieties for which known characteristic classes
for holomorphic or algebraic vector bundles are shown to factor through the suitable
multiplicative K-theory. Poutriquet [36] studies the context of conical singularities.
The corresponding multiplicative K-theory he constructs shows interesting similarities
with intersection cohomology. Felisatti and Neumann [18] generalise the concept of
multiplicative K-theory to simplicial manifolds with applications to classifying spaces
of Lie groups and Lie groupoids.

As an example, the multiplicative K-theory adapted to the study of flat bundles
is the subgroup of “Kch generated by triples (E,r,↵) such that

(4) ch(r)� d↵ 2 Z ⇢ ⌦even
(M)
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Removing this constraint would justify the name “free multiplicative” K-theory. Direct
image results for “Kch should have corollaries for “nonfree” multiplicative K-theories
under mild compatibility conditions on the filtrations of the de Rham complex used
to define them.

On the other hand, Bunke and Schick [14] defined a smooth (hermitian) K-theory,
which coincides with the subgroup of “Kch generated by triples (E,r,↵) where ↵

is a real form and r respects some hermitian metric on E. Bunke and Schick’s
smooth K-theory is motivated by quantum field theory considerations [19] and it
fits in the general framework of smooth extensions of generalized cohomology theories
[20] [21]. Among other examples, Bunke and Schick construct interesting smooth K-
theory canonical classes on homogeneous spaces and generalisations of parametrized
⇢-invariants [14] §5.

Allowing nonunitary connections (and nonreal forms) would justify the name “non
hermitian smooth K-theory”. Anyway, the hermitian restriction would prevent from
obtaining a natural morphism K

0
flat(M) �! “Kch(M) because of the existence of

nonunitary flat vector bundles.
The obstruction for a flat bundle (E,rE) to be unitary can be detected by charac-

teristic classes similar to N ch(E,rE , E,r⇤
E

, IdE) where r⇤
E

is the adjoint connection
of rE with respect to any hermitian metric on E (22). Such classes were first consid-
ered by Kamber and Tondeur [25], they correspond to the imaginary part of Chern-
Cheeger-Simons classes [15], (see [11] Proposition 1.14). Karoubi proved in [26] §6.31
that they could detect some Borel generators of algebraic K-theory of integer rings
in number fields [12]. See also [11] §I(g) for an interpretation as stable characteristic
classes arising from stable continuous cohomology of GL(C).

Here this Borel-Kamber-Tondeur class is extended to “Kch. It is not always a co-
homology class, but rather a purely imaginary di�erential form defined modulo exact
forms (see Definition 16).

Moreover, a direct image morphism for “Kch under proper submersions is con-
structed (Theorem 31), which is compatible with the usual (sheaf theoretic) direct
image of flat vector bundles (using fiberwise twisted de Rham cohomology, see Defi-
nition 22). This is performed from the families analytic index of the fiberwise twisted
Euler operator together with a suitable ⌘-form which is a non hermitian generalisation
of that of Bunke [13] (Theorem 28). Functoriality is established only for the “nonfree”
multiplicative subgroup of “Kch subject to the constraint (4), using some universal
characterisation of the ⌘-form.

Finally the symmetries induced by the fiberwise Hodge star operator are studied.
Reality (resp. vanishing) properties of the pushforwards are established in the even
(resp. odd) dimensional fibre case (Theorems 32 and 33).
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The paper is organized as follows: the definitions of K-theories and characteristic
classes, and their mutual relations are given in §2, the pushforward morphisms are
defined and all the theorems are stated in §3, the construction of the direct image
for relative K-theory is performed in §4, the construction of the ⌘-form and all its
consequences are detailed in §5, and §6 is devoted to results about symmetries induced
by the fiberwise Hodge star operator. Finally, double fibrations are studied in §7. This
paper is a reformulation of previously di�used preprints. I apologize for some changes
of title, names and notations between earlier versions and this one.

I am very grateful to Thomas Schick, Sebastian Goette, Kiyoshi Igusa, Xiaonan
Ma, Weiping Zhang and Xianzhe Dai for their kind invitations to Oberwolfach and
Tianjin conferences and to Ulrich Bunke for giving me the idea to free multiplicative
K-theory of the constraint (4).

2. Various K-theories

After recalling some facts about Chern-Simons transgression in §2.1, the definitions
of all the K-theory groups considered here are given in §2.2. §2.3 is devoted to the
counterpart of Johnson-Nadel’s classes defined in [4], §2.4 to the diagrams and exact
sequences in which these K-groups enter, §2.5 and §2.6 to hermitian metrics and the
extended Borel-Kamber-Tondeur class on “Kch.

2.1. Preliminaries

2.1.1. Connections and vector bundle morphisms. — Let M be a smooth manifold.
Let E and F be two vector bundles on M . Two vector bundles isomorphisms f and
g : E

⇠�! F are called isotopic if there exists a smooth family (ft)t2[0,1] of isomor-
phisms ft : E

⇠�! F such that f0 = f and f1 = g. Suppose that E and F are endowed
with connections rE and rF respectively (which need not be flat). A vector bundle
morphism (which does not need to be an isomorphism) f : E �! F is parallel if
rF � f = f � rE . For three vector bundles E

0, E and E
00 endowed with connections

rE0 , rE and rE00 , the short exact sequence

(5) 0 �! E
0 i�! E

p�! E
00 �! 0

is parallel if the morphisms i and p are parallel with respect to rE0 , rE and rE00 .
Parallel longer exact sequences or complexes of vector bundles are defined in a similar
obvious way. In such parallel long exact sequences (or complexes), the kernel or image
subbundles are respected by the connections of their ambient bundles (which are not
supposed to be flat), so that cokernel or coimage bundles inherit natural connections
(which need not be flat). Thus, longer parallel exact sequences (or complexes) can be
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decomposed, in the classical way, in several short exact sequences (see (56) and (57))
which turn out to be themselve parallel.

2.1.2. Chern-Simons transgression forms. — For any vector bundle G on M the
vector space of smooth di�erential forms on M with values in G will be denoted by
⌦
•
(M,G). A connection rE on the smooth vector bundle E on M gives rise to an

exterior di�erential operator d
rE on ⌦•

(M,E). Its square is the exterior product with
an element of ⌦2

(M,EndE) (in particular, it does not di�erentiate). This element of
⌦

2
(M,EndE) is the curvature of rE and will be denoted by r2

E
. Chern-Weil theory

associates to E and rE the following complex di�erential form on M

(6) ch(rE) = Tr exp

Å
� 1

2⇡i
r2

E

ã
= �Tr exp(�r2

E
)

where � is the operator on even degree di�erential forms which divides 2k-degree
forms by (2⇡i)

k. This form is closed, its de Rham cohomology class is independent of
rE and equals the image of the Chern character of E in H

even
(M, C).

Consider p1 : M ⇥ [0, 1] ! M (the projection on the first factor) and the bundle
‹E = p

⇤
1E on M ⇥ [0, 1], choose any connection ‹rE on ‹E, denote for all t 2 [0, 1]

by rE,t the restriction ‹rE |M⇥{t}. Extend � to odd forms by deciding that � divides
(2k � 1)-degree forms by (2⇡i)

k, and define

(7)

‹ch(rE,0,rE,1) =

Z

[0,1]
ch(‹rE) = �

Z 1

0
�Tr

Å
@rE,t

@t
exp

�
�r2

E,t

�ã
dt

= � 1

2⇡i

Z 1

0
Tr

Å
@rE,t

@t
exp

Å
� 1

2⇡i
r2

E,t

ãã
dt.

Modifying ‹rE (without changing rE,0 nor rE,1) changes ‹ch(rE,0,rE,1) by addition
of an exact form. This form is a “transgression” form in the sense that:

(8) d‹ch(rE,0,rE,1) = ch(rE,1)� ch(rE,0)

Its class in ⌦odd
(M, C)

�
d⌦

even
(M, C) is functorial by pull-backs, and locally gauge

invariant, which means that ‹ch(r, g
⇤r) is an exact form if g is a global smooth

automorphism of E isotopic to the identity.
If rE,2 is a third connection on E, Chern-Simons forms verify the following cocycle

equality (modulo exact forms):

(9) ‹ch(rE,0,rE,2) = ‹ch(rE,0,rE,1) + ‹ch(rE,1,rE,2).

In particular ‹ch(rE,0,rE,1) = �‹ch(rE,1,rE,0).
Let rE,i � rF,i be the canonical direct sum connections on E � F associated to

rE,i and rF,i, the additivity of the Chern character form (6) for such direct sum
connections yields the following equality (modulo exact forms):

(10) ‹ch(rE,0 �rF,0,rE,1 �rF,1) = ‹ch(rE,0,rE,1) + ‹ch(rF,0,rF,1).
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Consider a short exact sequence as in (5), and a bundle morphism s : E ! E
0 such

that s � i is the identity of E
0. Then s� p : E

⇠�! E
0 � E

00 is an isomorphism.

Lemma 1. — ‹ch�rE , (s � p)
⇤
(rE0 � rE00)

�
vanishes if the exact sequence is parallel

with respect to rE0 , rE and rE00 .

Proof. — The fact that i and p are parallel means that with respect to the decom-
position E ⇠= E

0 � E
00 (provided by the isomorphism s� p), the connections rE and

(s� p)
⇤
(rE0 �rE00) di�er from a one-form ! with values in Hom(E

00
, E
0
).

Consider the path of connections rt = rE � t!. Then, ! is upper triangular with
respect to the decomposition E ⇠= E

0 � E
00, and thus r2

t
too. But ! has vanishing

diagonal terms. Consequently, the trace vanishes in the Formula (7) applied to this
situation, and this proves the lemma.

2.2. Definitions of the considered K-groups

2.2.1. Topological K-theory
Definition 2. — The topological K

0-group K
0
top(M) is the free abelian group generated

by isomorphism classes of smooth complex vector bundles on M modulo direct sum.
Let p1 : M ⇥S

1 !M be the projection on the first factor, the topological K
1-group

K
1
top(M) is the quotient group K

0
top(M ⇥ S

1
)/p
⇤
1K

0
top(M).

K
1
top(M) is isomorphic to the kernel of the restriction map ◆

⇤
: K

0
top(M ⇥ S

1
) !

K
0
top(M ⇥ {pt}) where pt is some point in S

1 and ◆ : pt ! S
1 the inclusion map.

One can also describe K
1
top(M) as generated by global smooth automorphisms gE

of any vector bundle E on M ; the corresponding element of K
0
top(M ⇥ S

1
) is the

formal di�erence of the vector bundle obtained by gluing using gE the restrictions to
M ⇥ {1} and M ⇥ {0} of the pull-back of E on M ⇥ [0, 1], minus the pull-back of E

on M ⇥S
1. Any element of K

1
top(M) can be represented in this way with some trivial

vector bundle as E.

2.2.2. K
0-theory of the category of flat bundles. — The connection rE on the vector

bundle E on M is said to be flat if its curvature r2
E
2 ⌦2

(M,EndE) vanishes. The
couple (E,rE) is then called a flat vector bundle. Two flat vector bundles (E,rE) and
(F,rF ) are isomorphic if there exists some vector bundle isomorphism f : E

⇠�! F

which is parallel with respect to rE and rF .

Definition 3. — The group K
0
flat(M) is the quotient of the free abelian group generated

by isomorphism classes of flat vector bundles, by the following relation:

(11) (E,rE) = (E
0
,rE0) + (E

00
,rE00) if 0! E

0 i�! E
p�! E

00 ! 0

is a parallel exact sequence.
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If a flat vector bundle (E,rE) admits some subbundle which is respected by rE ,
then the subbundle and the quotient bundle inherit connections, which are both flat
(a similar result is proved in [11] Proposition 2.5). Following the comment of the end
of §2.1.1, longer parallel exact sequences (or complexes) of flat vector bundles can
be decomposed in short parallel exact sequences of flat vector bundles (see (56) and
(57)).

2.2.3. Relative K-theory. — Consider now on M quintuples (E,rE , F,rF , f) where
(E,rE) and (F,rF ) are flat vector bundles on M , and f : E

⇠�! F is a smooth
isomorphism. Two objects (E,rE , F,rF , f) and (G,rG, H,rH , h) are isomorphic if
there are parallel isomorphisms 'E : E

⇠�! G and 'F : F
⇠�! H which verify that

h = 'F � f � '�1
E

.

Definition 4. — K
0
rel(M) is the quotient of the free abelian group generated by such

isomorphism classes of quintuples modulo the following relations:

(i) (E,rE , F,rF , f) = 0 if f is isotopic to some parallel isomorphism.

(ii)
(E,rE , F,rF , f) + (G,rG, H,rH , h) =

= (E �G,rE �rG, F �H,rF �rH , f � h)

(iii) (E,rE , E
0�E

00
,rE0 �rE00 , s� p) vanishes in K

0
rel(M) if there is a short exact

sequence of flat bundles as in (11) above and if s : E ! E
0 is a smooth bundle

map such that s � i is the identity of E
0.

Remark 5. — Note that (E,rE , F,rF , f) = (E,rE , F,rF , g) if f and g are iso-
topic, that (E,rE , F,rF , f) + (F,rF , G,rG, g) = (E,rE , G,rG, g � f), and that
(E,rE , F,rF , f) = (E

0
,rE0 , F

0
,rF 0 , f

0
) + (E

00
,rE00 , F

00
,rF 00 , f

00
) if

(12)

0 ����! E
0 ����! E ����! E

00 ����! 0

f
0
??y

??yf

??yf
00

0 ����! F
0 ����! F ����! F

00 ����! 0

is a commutative diagram whose lines are short exact sequences in the category of
flat vector bundles (on M).

In fact the first one and the third one of these three relations are together equivalent
to (i), (ii) and (iii) so that they can be used to provide an alternative definition of
K

0
rel(M) (see [4] §2.1 for details).
Independently, relation (iii) above is equivalent to the following

(iii)0 (E
0 �E

00
,rE0 �rE00 , E,rE , i + j) vanishes in K

0
rel(M) if there is a short exact

sequence of flat bundles as in (11) above and if j : E
00 ! E is a smooth bundle

map such that p � j is the identity of E
00.

In fact, i + j is isotopic to (s� p)
�1.
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2.2.4. “Free multiplicative” or “non hermitian smooth” K-theory. — Consider some
triple (E,rE ,↵) where E is a smooth complex vector bundle on M , rE a connection
on E and ↵ an odd degree di�erential form defined modulo exact forms. Two such
objects (E1,rE1 ,↵1) and (E2,rE2 ,↵2) will be equivalent if there is some smooth
vector bundle isomorphism f : E1

⇠�! E2 such that

(13) ↵2 = ↵1 + ‹ch(rE1 , f
⇤rE2).

This is compatible with iterated changes of connections (see (9)).

Definition 6. — The group “Kch(M) is the quotient of the free abelian group generated
by such equivalence classes of triples modulo direct sum (of the vector bundles, with
direct sum connection and sum of the di�erential forms).

The Chern character on “Kch(M) is the map

(14)
...
ch: (E,rE ,↵) 2 “Kch(M) 7�! ch(rE)� d↵ 2 ⌦even

(M, C).

Equations (8) and (10) ensure that
...
ch is well defined.

The kernel of
...
ch will be denoted K

�1
C/Z(M) following [30] Definition 3. The preimage

MK
0
(M) of Z by

...
ch was considered by Karoubi in [26] §7.5 and [28] exemple 3.

Of course, MK
0
(M) ⇠= Z � K

�1
C/Z(M) is the subgroup of “Kch(M) generated by the

triples (E,rE ,↵) as above, but subjected to the extra condition:

(15) d↵ = ch(rE)� rkE.

This is why “Kch is considered as “unrestricted” with respect to MK
0
(M), and called

“free” multiplicative K-theory. The relation with the smooth K-theory considered by
Bunke and Schick in [14] will be explained in §2.6.

2.3. Chern-Simons class on relative K-theory

Definition 7. — The Chern-Simons class on K
0
rel(M) is defined as

(16) N ch(E,rE , F,rF , f) =

î‹ch(rE , f
⇤rF )

ó
2 H

odd
(M, C)

(of course ‹ch(rE , f
⇤rF ) is closed since ch(rE) and ch(f

⇤rF ) both equal rkE).

Arguments as in [4] Theorem 3.5 and its corollary allow to prove the

Proposition 8. — N ch induces a group morphism from K
rel
0 (M) to H

odd
(M, C).

Arguments as in [4] §5.1 and 5.2 or [35] allow to prove the following facts:

– Let � multiply 2k and (2k � 1)-degree forms by k!, then �ch is the Chern
character without denominators. The nonintegrality of �N ch(E,rE , F,rF , f)

detects the fact that (E,rE) 6= (F,rF ) 2 K
flat
0 (M).
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– The nonintegrality of the degree� 3 components of �N ch(E,rE , F,rF , f) de-
tects the fact that (F,rF ) cannot be obtained from (E,rE) through a deforma-
tion of flat bundles, where a deformation of flat bundles on M is a smooth vector
bundle ‹E on M ⇥ [0, 1] with a connection ‹r whose restriction to Et = ‹E|M⇥{t}

is flat for any point t 2 [0, 1] and such that (E0,
‹r|M⇥{0}) ⇠= (E,rE) and

(E1,
‹r|M⇥{1}) ⇠= (F,rF )

– The nonnullity of the degree� 3 components of N ch(E,rE , F,rF , f) detects
the fact that (F,rF ) cannot be obtained from (E,rE) through a deformation
of flat bundles, for which the parallel transport along [0, 1] would be isotopic to
f .

– If (F,rF ) can be obtained from (E,rE) by deformation of flat bundles, then the
degree 1 component of N ch modulo integral cohomology detects the variation
of the determinant line.

The third statement is known as the rigidity of higher classes of flat bundles.

Remark 9. — Let (E,rE , F,rF , f) 2 K
0
rel(M). Define ! = f

⇤rF�rE (then of course
! 2 ⌦1

(M,EndE)). It can be proved as in [4] Lemma 4.3 that in fact

(17) ‹ch(rE , f
⇤rF ) = �

[
dimM

2 ]X

r=1

Å
1

2⇡i

ãr
(r � 1)!

(2r � 1)!
Tr(!

2r�1
).

(This is of course a particular property of flat connections and cannot be generalised
to any connections). Thus N ch(E,rE , F,rF , f) can be computed in the same way as
the classes studied in [35] and [11].

2.4. Relations between the preceding K-groups. — The Chern character
ch: K

0
top(M) �! H

even
(M, C) is obtained by considering the de Rham cohomology

class of the form of (6).
Consider some element � of K

1
top(M). Represent it by some vector bundle over

M ⇥ S
1. Integrate along S

1 the Chern character of this bundle, the obtained class in
H

odd
(M, C) is the Chern character of �. If � is represented by some global automor-

phism gE of some vector bundle E on M as in the construction after Definition 2,
then it follows from (7) that for any connection r on E

(18) ch(�) = ‹ch(r, g
⇤
E
r).

If E = CN is trivial (then denote gE by gCN ), let dCN be its canonical trivial flat
connection, the formula

(19) � 2 K
1
top(M) 7�! (CN

, dCN , CN
, dCN , gCN )

defines a group morphism ' (see [4] Proposition 2.2 for a proof).
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K
0
rel(M), K

0
flat(M) and “Kch(M) are related by the following morphisms:

(20)
K

0
rel(M)

@�! K
0
flat(M)

(E,rE , F,rF , f) 7�! (F,rF )� (E,rE)

and
K

0
flat(M)

�! “Kch(M)

(E,rE) 7�! (E,rE , 0)

 is well defined thanks to Lemma 1, and takes its values in MK
0
(M).

Let � 2 ⌦odd
(M, C)

�
d⌦

even
(M, C). It is easily checked that the following ele-

ment a(�) = (E,rE ,↵ + �) � (E,rE ,↵) of “Kch(M) is independent on the choice of
(E,rE ,↵) of “Kch(M) used to compute it. a(�) 2MK

0
(M) if and only if � is closed.

Consider the obvious forgetful maps from K
0
flat or “Kch to K

0
top:

Proposition 10. — This diagram commutes. Its lines are exact sequences:

(21)

K
1
top(M)

'����! K
0
rel(M)

@����! K
0
flat(M) ����! K

0
top(M)

??yk
??y N ch

??y
??yk

K
1
top(M)

ch����! H
odd

(M, C)
a����! MK

0
(M) ����! K

0
top(M).

In this diagram, the part “Hodd
(M, C)

a�! MK
0
(M)” can be replaced by

“⌦odd
(M, C)

�
d⌦

even
(M, C)

a�! “Kch(M)” without losing the commutativity nor
the exactness of the second line.

Proof. — A proof of the exactness of the first line can be found (in the holomorphic
setting) in [4]. A proof of the exactness of the second line can be found in [27]
Théorème 5.3. This proof generalises easily to the proposed modified second line.
The commutativity of the right square is tautological. The commutativity of the left
square follows from (16), (18) and (19). The commutativity of the central square is
a consequence of the compatibility of (20) and (13) with the definitions of a and of
N ch. The proposed replacement in the middle of the second line has no influence on
the commutativity of the squares.

2.5. Symmetries associated to hermitian metrics. — For any complex vector
bundle E on M endowed with a hermitian metric h

E and a connection rE , the adjoint
connection r⇤

E
of rE is defined as follows:

(22) h
E

(r⇤
Ev�, ✓) = v.hE

(�, ✓)� h
E

(�,rEv✓)

where � and ✓ are local sections of E, v is a tangent vector, v.f is the derivative of the
function f along v, r⇤

Ev� is the derivative of � along v with respect to the connection
r⇤

E
and accordingly for rEv✓. Of course (r⇤

E
)
⇤

= rE , (and rE = r⇤
E

if and only if
rE respects the hermitian metric h

E).
Adjoint connections allow to define conjugation involutions on the above considered

K-groups (on the model of complex conjugation):
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Definition 11. — The conjugate elements of (E,rE) 2 K
0
flat(M), or

(E,rE , F,rF , f) 2 K
0
rel(M), or (E,rE ,↵) 2 “Kch(M) are defined by:

(23)

(E,rE)
c

= (E,r⇤
E

) 2 K
0
flat(M)

(E,rE , F,rF , f)
c

= (E,r⇤
E

, F,r⇤
F
, f) 2 K

0
rel(M)

(E,rE ,↵)
c

= (E,r⇤
E

,↵) 2 “Kch(M).

Lemma 12. — The above formulae define involutive group automorphisms. Moreover

(24)
N ch(E,r⇤

E
, F,r⇤

F
, f) = N ch(E,rE , F,rF , f)

...
ch(E,r⇤

E
,↵) =

...
ch(E,rE ,↵).

Proof. — The curvatures r2
E

and r⇤2
E

are mutually skew adjoint, so that r⇤
E

is flat if
and only if rE is. Thus (E,r⇤

E
) and (E,r⇤

E
, F,r⇤

F
, f) really define classes in K

0
flat(M)

and K
0
rel(M) respectively.

If h
E

1 and h
E

2 are two di�erent hermitian metrics on E, define the global auto-
morphism gE of E by the following formula, valid for any local sections � and ✓ of
E:

(25) h
E

2 (�, ✓) = h
E

1 (gE(�), ✓).

Call r⇤
E,1 and r⇤

E,2 the adjoint of rE relatively to h
E

1 and h
E

2 respectively, then r⇤
E,1

and r⇤
E,2 = g

�1
E
r⇤

E,1gE are gauge equivalent. This proves that in the first and third
cases, the K-theory classes of the proposed elements are independent of the hermitian
metrics used to define them.

Note that gE is isotopic to the identity of E. If one chooses two hermitian metrics
on F and compute in the same way the corresponding automorphism gF , then f and
gF � f � g

�1
E

are isotopic. This proves the independence on the hermitian metrics on
E and on F of the class of (E,r⇤

E
, F,r⇤

F
, f) in K

0
rel(M).

Consider a parallel exact sequence of the form (11) where E
0, E and E

00 are endowed
with hermitian metrics. Its transpose

(26) 0! E
00 p

⇤

�! E
i
⇤
�! E

0 ! 0

turns out to be a parallel exact sequence with respect to the adjoint connections on
E
00, E

0 and E. This proves the first statement (on K
0
flat) of the lemma. The second

formula of the lemma associates to any quintuple of the same form as in relation (iii)

in Definition 4 a quintuple of the form appearing in relation (iii)
0 in Remark 5. This

proves the second statement (on K
0
rel) of the lemma.

The fact that the curvatures of rE and r⇤
E

are mutually skew adjoint has the
following consequence (which proves the last statement (on

...
ch) of the lemma):

(27) ch(r⇤
E

) = ch(rE).
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Finally, considering the adjoint connection of ‹rE in Formula (7) yields (using (27))
the following relation modulo exact forms:

(28) ‹ch(r⇤
E,0,r⇤E,1) = ‹ch(rE,0,rE,1)

where r⇤
E,0 and r⇤

E,1 are adjoint of rE,0 and rE,1 with respect to possibly di�erent
hermitian metrics on E. The compatibility of the third line of (23) with relation (13)
follows. This proves the third statement (on “Kch) of the lemma. The statement on
N ch is a direct consequence of (28).

(27) and (28) imply that ch(rE,0) and ‹ch(rE,0,rE,1) are real forms if rE,0 and
rE,1 respect (possibly di�erent) hermitian metrics on E.

Elements of K
0
rel(M) of the form (E,rE , E,r⇤

E
, IdE) are purely imaginary with

respect to this conjugation; conversely, the subgroup of K
0
rel(M) generated by such

elements is equal to, or of index 2 in, the purely imaginary part of K
0
rel(M). This is

because (see the beginning of Remark 5)

(29)
(E,rE , F,rF , f)�(E,r⇤

E
, F,r⇤

F
, f) =

= (F,rF , F,r⇤
F
, IdF )� (E,rE , E,r⇤

E
, IdE).

2.6. Borel-Kamber-Tondeur class on “Kch. — In the notation of (25), the fact
that gE is isotopic to the identity proves that r⇤0

E
and r⇤1

E
are locally gauge invariant.

Thus

Lemma 13. — Let E be a vector bundle with connection rE. Let r⇤
E

be the ad-
joint of rE with respect to any hermitian metric on E. The class of ‹ch(r⇤

E
,rE)

in ⌦odd
(M, C)/d⌦

even
(M, C) is independent of the metric h

E.

Moreover, it is a purely imaginary form, since:

(30) ‹ch(r⇤
E

,rE) = �‹ch(rE ,r⇤
E

) = �‹ch(r⇤
E

,rE).

Consider the connection ru

E
=

1
2 (rE +r⇤

E
); it respects h

E , and

(31) ‹ch(r⇤
E

,rE) = ‹ch(r⇤
E

,ru

E
) + ‹ch(ru

E
,rE) = 2iIm

�‹ch(ru

E
,rE)

�
.

Finally, ifrE,0 andrE,1 are connections on E, then the cocycle condition (9) produces
the following relation modulo exact forms

(32)
‹ch(r⇤

E,1,rE,1)� ‹ch(r⇤
E,0,rE,0) = ‹ch(rE,0,rE,1)� ‹ch(r⇤

E,0,r⇤E,1)

= 2iIm ‹ch(rE,0,rE,1).
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Remark 14. — It is proved in [11], proof of Proposition 1.14, that ‹ch(rE ,ru

E
) is

purely imaginary if rE is flat. In this case, (31) holds without iIm. Moreover

(33) ‹ch(r⇤
E

,rE) =
1

⇡

1X

j=0

2
2j

j!

(2j + 1)!
c2j+1(E)

is the degree decomposition of ‹ch(r⇤
E

,rE), where the ck(E) are the classes consid-
ered by Bismut and Lott (see [11] formulae (0.2) and (1.34)). These are exactly the
imaginary part of the Chern-Cheeger-Simons classes of flat complex vector bundles
([15] and [11] Proposition 1.14).

Lemma 15. — If ER, is a real vector bundle on M with connections rER,0 and rER,1,
and if E is its complexification with associated connections r0 and r1, then, up to
exact forms, ‹ch(r0,r1) is real in degrees 4k + 3 and purely imaginary in degrees
4k + 1. In particular, ‹ch(r⇤0,r0) vanishes in degrees 4k + 3.

Proof. — Suppose that E is endowed with a hermitian form which is the complexifica-
tion of a real scalar product on ER, and use the path of connectionsrt = (1�t)r⇤+tr,
then the lemma follows from formulae (7) and (30) by counting the i, and from
Lemma 13.

Definition 16. — For any (E,rE ,↵) 2 “Kch(M), its Borel-Kamber-Tondeur class
B(E,rE ,↵) is the class in ⌦odd

(M, C)/d⌦
even

(M, C) of the di�erential form:

(34) B(E,rE ,↵) = ‹ch(r⇤
E

,rE)� ↵+ ↵

where r⇤
E

is the adjoint of rE for any hermitian metric on E.

Relations (28) and (13) imply that B is a morphism from “Kch(M) to the subgroup
of purely imaginary forms in ⌦odd

(M)/d⌦
even

(M). Moreover, from (32):

dB(E,rE ,↵) = 2iIm
�...
ch(E,rE ,↵)

�
.

It follows from Lemma 15 that if E is the complexification of a real bundle ER on
M with connection rE coming from a connection on ER, then B(E,r, 0) vanishes in
degrees 4k + 3 for any integer k.

Any vector bundle admits some hermitian metric and some connection which re-
spects it, so that using relation (13), one checks that B is twice the operation of
taking the imaginary part with respect to the conjugation defined in Lemma 12, i.e.
twice the projection on the second factor of

(35) “Kch(M) = KerB� i⌦
odd

(M, R)/d⌦
even

(M, R).

KerB coincides with the smooth K-theory “K0
(M) considered by Bunke and Schick

in [14]. In fact any vector bundle V on M endowed with some hermitian metric h
V

and unitary connection rV defines some geometric family with zero-dimensional fibre
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V = (V, h
V

,rV ) (see [14] §2.1.4), then (V,rV ,↵) 7�! ( V ,↵) defines a map from
KerB to “K(B) which can be proved to be an isomorphism by the five lemma.
B sends MK

0
(M) into iH

odd
(M, R). From Remark 14, one sees that the imaginary

part of Cheeger-Chern-Simons classes [15] studied by Bismut and Lott in [11] factor
through B and the second morphism defined in (20). This justifies the interest of
adding the part i⌦

odd
(M, R)/d⌦

even
(M, R) to Bunke and Schick’s smooth K

0-theory,
in order to take into account all flat connections.

Finally, the K-theory with coe�cients in R/Z considered by Lott in [30] Definition
7 is K

�1
R/Z(M) = KerB \K

�1
C/Z(M) = KerB \Ker

...
ch.

3. Direct images for K-groups

Let M and B be smooth real manifolds possibly with boundary and ⇡ : M ! B a
smooth proper submersion. The goal of this part is to define direct images morphisms
from K-theories on M to K-theories on B in each case precedingly reviewed, and to
state all the theorems proved in this paper.

The direct image ⇡! for K
0
flat is constructed from fiberwise twisted de Rham coho-

mology (see Definition 22). This is compatible with the forgetful map K
0
flat �! K

0
top

and the pushforward ⇡
Eu
⇤ on K

0
top associated to the fiberwise twisted Euler operator

(Definitions 17 and 20 and Lemma 23). The notion of “link”, which is a generalisation
of the concept of vector bundle isomorphism (see Definition 24) is used to solve the
problem of defining a pushforward ⇡⇤ : K

0
rel(M) �! K

0
rel(B). (As stated in the intro-

duction, it consists for any (E,rE , F,rF , f) 2 K
0
rel(M) in finding some link naturally

associated to f between ⇡!(E,rE) and ⇡!(F,rF ) on B). Finally for “Kch, the ingredi-
ent is the Chern-Simons analog for transgressing the families index theorem, known
as ⌘-form (see Theorem 28). As in the case of topological K-theory, the pushforward
⇡

Eu
! is here associated to the fiberwise Euler operator.
In some cases, some more preliminary is needed to be able to state the entire

definitions. The proofs are delayed to the subsequent sections.
The fibres of ⇡ are supposed to be compact without boundary, orientable, and

modelled on the closed manifold Z. For y 2 B, ⇡�1
(y) will be denoted Zy.

3.1. The case of topological K-theory

3.1.1. Preliminary: construction of family index bundles. — Let ⇠ be a smooth com-
plex vector bundle on M . Let TZ

⇤ be the dual of TZ. For any y 2 B, the infinite
dimensional spaces

(36) E±
y

= C1
Ä
Zy,^

even
odd T

⇤
Z ⌦ ⇠

ä
= ⌦

even
odd (Zy, ⇠)
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are fibres over y of infinite rank vector bundles E+ and E� on B such that

(37) C1(B, E±) ⇠= C1
Ä
M,^

even
odd T

⇤
Z ⌦ ⇠

ä

(see [11] (3.1) to (3.6)). Choose some connection r⇠ on ⇠, the vertical exterior dif-
ferential operator d

r⇠ : ⌦
•
(Zy, ⇠) �! ⌦

•+1
(Zy, ⇠) will be considered as an odd endo-

morphism of the Z2-graded vector bundle E = E+ � E� (dr⇠ depends only on the
restriction of r⇠ to the fibres of ⇡). Choose some smooth hermitian metric h

⇠ on ⇠

and euclidean metric g
Z on TZ, from which a volume form dVolZ along the fibres of

⇡, and an inner product ( | )Z on ^•T ⇤Z ⌦ ⇠ are deduced. One obtains on E the L
2

scalar product (where ↵ and � 2 E+
y
� E�

y
):

(38) h↵,�iL2 =

Z

Zy

(↵|�)ZdVolZ .

Let (d
r⇠)⇤ be the formal adjoint of d

r⇠ for this metric.
Let µ

+ and µ
� be complex vector bundles on B with hermitian metrics h

+ and
h
�. For any bundle map  : ( E+ � µ

+
) ! ( E� � µ

�
) of everywhere finite rank, call

 
⇤ the adjoint of  with respect to h

± and h , iL2 , and set

(39)
Dr⇠+
 

=
�
d
r⇠ + (d

r⇠)⇤
�

+  : E+ � µ
+ �! E� � µ

�
,

Dr⇠�
 

=
�
d
r⇠ + (d

r⇠)⇤
�

+  
⇤
: E� � µ

� �! E+ � µ
+
.

These are elliptic operators on Zy so that their kernels are finite dimensional.

Definition 17. — A triple (µ
+
, µ
�

, ) as above such that dim KerDr⇠±
 

are constant
(independent of y 2 B) will be called “suitable” in the sequel.

In that case, the kernels of Dr⇠±
 

are vector bundles H ± on B, they will be called
kernel bundles. The couple (H + � µ

�
, H � � µ

+
) is called a couple of family index

bundles for ⇠.
If ⇣ is another vector bundle on M with hermitian metric and connection r⇣ , and

if (⌫
+
, ⌫
�

,') is a suitable triple for ⇣, call K± the kernel bundles KerDr⇣±
'

then the
couple (H + � µ

� � K� � ⌫+
, H � � µ

+ � K+ � ⌫�) will be called a couple of family
index bundles for ⇠ � ⇣.

3.1.2. Definition of the direct image morphism for K
0
top and K

1
top

Proposition 18. — If B is compact, then for any ⇠ on M endowed with any connection
r⇠ and any hermitean metric h

⇠, there exists suitable data (µ
+
, µ
�

, ).

This is proved in [2] Proposition (2.2) (see also [3] Lemma 9.30). The following
classical result will be precised in Theorem 25 below.

Lemma 19. — If ( G+
1 , G�1 ) and ( G+

2 , G�2 ) are couples of family index bundles for the
same vector bundle ⇠ on M (for di�erent metrics or connections or suitable data),
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then

(40) [ G+
1 ]� [ G�1 ] = [ G+

2 ]� [ G�2 ] 2 K
0
top(B).

The same holds if ( G+
1 , G�1 ) and ( G+

2 , G�2 ) are couples of family index bundles for the
couples of vector bundle ⇠1 � ⇣1 and ⇠2 � ⇣2 such that

(41) [⇠1]� [⇣1] = [⇠2]� [⇣2] 2 K
0
top(M).

Definition 20. — If B is compact, then for any vector bundle ⇠ on M , take any couple
( G+

, G�) of family index bundles for ⇠ and put

(42) ⇡
Eu
⇤ ([⇠]) = [ G+

]� [ G�] 2 K
0
top(B).

If B is not compact, ⇡Eu
⇤ ([⇠]) is defined in the same way on compact subsets of B

and by inductive limit (or using the stability properties of vector bundles [22] §8
Theorems 1.2 and 1.5) on the whole B.

The above lemma proves that ⇡Eu
⇤ is a morphism from K

top
0 (M) to K

top
0 (B). It is

the one associated to the fiberwise Euler operator (see [2] Definition 2.3: if d
Z is the

as above constructed d
r⇠ in the case where ⇠ is the trivial rank one complex vector

bundle with canonical connection and metric, then the fiberwise Euler operator is
d

Z
+d

Z⇤ acting on vertical di�erential forms Z2-graded by the parity of their degree).
This is in contrast with the case of [8], [14], [30] and [7] §1, where the direct image is
associated to the fiberwise Spin or Spin

c Dirac operator, but compatible with [11],
[31], [32] and [7] §§2 and 3.

Fiberwise twisted Euler operators of the form Dr⇠ can be pulled back on fibered
products (here ‹B �! B is any di�erentiable map):

(43)

‹B ⇥B M ����! M

??y
??y

‹B ����! B

(the model of the fibre may not change). The additional data (µ
+
, µ
�

, ) used to
construct the direct image can also be pulled back in such situations, and this makes
the construction of families index bundles functorial. Thus ⇡Eu

⇤ is also functorial by
pullbacks on fibered products. This justifies the following

Definition 21. — The direct image morphism ⇡
Eu
⇤ : K

1
top(M) �! K

1
top(B) is the mor-

phism induced (on quotients) by ⇡Eu
⇤ : K

0
top(M ⇥ S

1
) �! K

0
top(B ⇥ S

1
).
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3.2. The case of the K
0
-theory of flat bundles. — Consider some flat vector

bundle (E,rE) on M . The de Rham cohomology H
•
(Z, E) of the fibres of ⇡ with

coe�cients in E provides (Z-graded) vector bundles on B, which are endowed with
flat connections in a canonical way, see [11] §III (f). Put ⇡+

! E = H
even

(Z, E) and
⇡
�
! E = H

odd
(Z, E) (they are smooth vector bundles on B, whose definition depends

on rE). and call r
⇡

+
!

E
and r

⇡
�
!

E
their canonical flat connections.

Definition 22. — (⇡
+
! E,r

⇡
+
!

E
) and (⇡

�
! E,r

⇡
�
!

E
) will be called the sheaf theoretic di-

rect images of (E,rE). The direct image morphism ⇡! : K
0
flat(M)! K

0
flat(B) is given

by:
(E,rE) 7�! (⇡

+
! E,r

⇡
+
!

E
)� (⇡

�
! E,r

⇡
�
!

E
).

The definition of ⇡! is justified by the following fact: for a parallel short exact
sequence of flat bundles as in (11)

(44) 0 �! (E
0
,rE0)

i�! (E,rE)
p�! (E

00
,rE00) �! 0

the long exact sequence in cohomology reads

(45)

⇡
+
! E
0 [i]����! ⇡

+
! E

[p]����! ⇡
+
! E
00

x??
??y

⇡
�
! E
00 [p] ���� ⇡

�
! E

[i] ���� ⇡
�
! E
0

and all the morphisms in (45) are parallel. This diagram decomposes in several short
parallel exact sequences of flat vector bundles as was remarked at the ends of §2.1.1
and §2.2.2. Thus ⇡!(E,rE) = ⇡!(E

0
,rE0) + ⇡!(E

00
,rE00) 2 K

0
flat(B). This proves that

the above definition of ⇡! fits with relation (11).
The following result is needed to define the direct image for K

0
rel:

Lemma 23. — The following diagram commutes:

(46)

K
0
flat(M) ����! K

0
top(M)

⇡!

??y
??y⇡Eu

⇤

K
0
flat(B) ����! K

0
top(B).

Proof. — Let (E,rE) be any flat vector bundle over M . By the Hodge theory of the
fibres of ⇡, the H

±
(Zy, E) are isomorphic to Ker

�
d
rE +(d

rE )
⇤�± on Zy. (They are of

constant dimension, whatever the riemannian metric on M and the hermitian metric
on E may be). Thus ({0}, {0}, 0) is a suitable triple in this situation. The couple
(⇡

+
! E,⇡

�
! E) is thus isomorphic to a couple of family index bundles for E, so that

[⇡
+
! E]� [⇡

�
! E] = ⇡

Eu
⇤ [E] 2 K

0
top(B).

ASTÉRISQUE 327



DIRECT IMAGE FOR SOME SECONDARY K-THEORIES 307

3.3. The case of relative K-theory

3.3.1. The notion of “link”. — For four smooth vector bundles E, F , G, and H on
M such that

[E]� [F ] = [G]� [H] 2 K
0
top(M)

there exists some vector bundle K on M and some C1 isomorphism

(47) ` : E �H �K
⇠�! F �G�K.

Definition 24. — These (K, `) will be called a “link between E � F and G�H”.
Two such links (K1, `1) and (K2, `2) are equivalent if there exists some vector

bundle L on M such that the two following isomorphisms are isotopic

(48) E �H �K1 �K2 � L
`1�IdK2�IdL���������!
`2�IdK1�IdL

F �G�K1 �K2 � L.

The equivalence class of a link (K, `) will be denoted by [`]. The set of equivalence
classes of links between E � F and G�H will be denoted by LG�H

E�F
.

Of course a link between E�F and G�H is also a link between E�G and F �H

or H �G and F �E or H � F and G�E. Any link is equivalent to some other one
with a trivial vector bundle as K. Moreover, if (K, `) is a link between E � F and
G�H, then (K, `

�1
) will be a link between G�H and E �F (or F �H and E �G

and so on). Its equivalence class will be denoted either by [`
�1

] or [`]
�1.

The identity of K �K is isotopic to the switch of the two copies of K, thus (K, `)

as in (47) is equivalent to itself. It is also obviously equivalent to (K�L, `� IdL) (for
any vector bundle L). It follows that any link is equivalent to a link of the form (47)
where K is a trivial vector bundle.

Links can be pulled back, and added (for direct sum of data). Moreover, two links
(L, `) between E � F and G � H, and (M, `

0
) between G � H and J � K can be

composed as (L �M � G � H, ` � `0) between E � F and J �K; this composition
is easily checked to be associative. The equivalence class of the composed link will be
denoted by [`

0 � `] or [`
0
] � [`].

K
1
top(M) acts freely transitively on LG�H

E�F
. The element � of K

1
top(M) represented

by the global smooth automorphism gN of the vector bundle N maps the equivalence
class ↵ of (K, `) to the equivalence class �↵ of (K �N, `� gN ).

3.3.2. Definition of the direct image for K
0
rel

Theorem 25. — Let ⇠ be any vector bundle on M , let ( F +
, F �) and ( G+

, G�) be two
couples of family index bundles for (the same) ⇠, then there exists a canonical element
[`

G
F ] 2 L G+� G�

F +� F� . It is canonical in the sense of the following global compatibility
property: if (H +

, H �) is another couple of family index bundles for ⇠, then one has
[`

H
F ] = [`

H
G ] � [`

G
F ].
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This extends trivially to couples of family index bundles for ⇠ � ⇣ (for any vector
bundles ⇠ and ⇣ on M).

Moreover, if [⇠1]� [⇣1] = [⇠2]� [⇣2] 2 K
0
top(M) and if ( F +

1 , F �1 ) and ( F +
2 , F �2 ) are

couples of family index bundles for ⇠1� ⇣1 and ⇠2� ⇣2 respectively, then there exists a
canonical map ⇡` : L⇠2�⇣2

⇠1�⇣1 �! L F +
2 � F�2

F +
1 � F�1

. It is canonical in the sense of the following

global compatibility property: if [⇠3]� [⇣3] = [⇠1]� [⇣1] 2 K
0
top(M) and if ( F +

3 , F �3 ) is
a couple of family index bundles for ⇠3� ⇣3, then for any ↵ 2 L⇠2�⇣2

⇠1�⇣1 and � 2 L⇠3�⇣3
⇠2�⇣2 ,

one has ⇡`(� � ↵) = ⇡`(�) � ⇡`(↵) 2 L F +
3 � F�3

F +
1 � F�1

.

If ⇠1 = ⇠2 and ⇣1 = ⇣2, then [`
F 2

F 1
] = ⇡`(Id⇠�⇣).

⇡` is compatible with the actions by K
1
top in the following sense: if ↵ 2 L⇠2�⇣2

⇠1�⇣1 and
� 2 K

1
top, then ⇡`(�↵) = ⇡

Eu
⇤ (�)⇡`(↵).

If (E,rE), (F,rF ), (G,rG) and (H,rH) are flat vector bundles on M , and if
` : E�H�K

⇠�! F �G�K is a link between E�F and G�H, it is possible to find
a link `0 : E �H � Cn ⇠�! F � G � Cn equivalent to ` (by adding IdK0 : K

0 ⇠�! K
0

for some K
0 such that K �K

0 ⇠= Cn). The obtained element

(E �H � Cn
,rE �rH � dCn , F �G� Cn

,rF �rG � dCn , `
0
) 2 K

0
rel(M)

does not depend on the choice of `0 and depends on ` only through its equivalence
class (this can be checked using (48) with L replaced in the same way by some trivial
bundle).

For some element (E,rE , F,rF , f) of K
rel
0 (M), Consider the sheaf theoretic direct

images (⇡
+
! E,r

⇡
+
!

E
) and (⇡

�
! E,r

⇡
�
!

E
) of (E,rE), and (⇡

+
! F,r

⇡
+
!

F
) and (⇡

�
! F,r

⇡
�
!

F
)

of (F,rF ). Following the proof of Lemma 23, (⇡
+
! E,⇡

�
! E) and (⇡

+
! F,⇡

�
! F ) are cou-

ples of family index bundles for E and F respectively. Using the above Theorem 25
(especially ⇡`), one obtains an equivalence class of links between ⇡

+
! E � ⇡�! E and

⇡
+
! F � ⇡�! F as image by ⇡` of the equivalence class of f : E ! F (which is a link

between E � {0} and F � {0}).

Definition 26. — We define

⇡⇤(E,rE , F,rF , f) =
�
⇡

+
! E�⇡�! F,r

⇡
+
!

E
�r

⇡
�
!

F
,⇡
�
! E�⇡+

! F,r
⇡
�
!

E
�r

⇡
+
!

F
,⇡`([f ])

�
.

Theorem 27. — This defines a morphism K
rel
0 (M)

⇡⇤�! K
rel
0 (B) which enters in the

following commutative diagram (with lines modeled on the first line of (21)):

(49)

K
1
top(M)

'����! K
0
rel(M)

@����! K
0
flat(M) ����! K

0
top(M)

⇡
Eu
⇤

??y ⇡⇤

??y ⇡!

??y
??y⇡Eu

⇤

K
1
top(B)

'����! K
0
rel(B)

@����! K
0
flat(B) ����! K

0
top(B).

ASTÉRISQUE 327



DIRECT IMAGE FOR SOME SECONDARY K-THEORIES 309

3.4. The case of multiplicative, or smooth, K
0
-theory

3.4.1. Transgression of the family index theorem. — Let FR be a real vector bundle
over M endowed with a euclidean metric and a unitary connection rFR . The curvature
r2

FR is a two-form with values in antisymmetric endomorphisms of FR. Define e(rFR)

to be zero if FR is of odd rank (as real vector bundle) and to be the Pfa�an of 1
2⇡r

2
FR

if FR is of even rank. One obtains a closed real di�erential form whose degree equals
the rank of FR, whose de Rham cohomology class e(FR) is independent on rFR (and
on the euclidean metric on FR) and coincides with the image of the Euler class of FR
in H

•
(M, C). (This is the Chern-Weil version of the Euler class).

The vertical tangent bundle TZ of the submersion ⇡, which is the subbundle of
TM consisting of vectors tangent to the fibres of ⇡, will be supposed to be globally
orientable along M . If ⇠ is a vector bundle on M and F

+ and F
� are vector bundles

on B such that [F
+
] � [F

�
] = ⇡

Eu
⇤ [⇠] 2 K

0
top(B), the cohomological counterpart of

the families index theorem asserts that

(50) ch(F
+
)� ch(F

�
) =

Z

Z

e(TZ)ch(⇠) 2 H
even

(B, C)

where
R

Z
stands for integration along the fibres of ⇡.

Choose any smooth complementary subbundle T
H
M of TZ in TM . Of course

T
H
M ⇠= ⇡

⇤
TB. Let P

TZ be the projection of TM onto TZ with kernel T
H
M . Endow

TZ with some riemannian metric g
Z . All riemannian metrics on M which coincide

with g
Z on TZ and make TZ and T

H
M orthogonal give rise to Levi-Civita connections

rLC on TM which all project to the same connection rTZ = P
TZrLC on TZ.

Let r⇠, rF+ and rF� be connections on ⇠, F
+ and F

� respectively. It follows from
(50) that ch(rF+) � ch(rF�) and

R
Z

e(rTZ) ^ ch(r⇠) are cohomologous di�erential
forms on B. The following theorem is a non hermitian analogue of results of Bunke
[13]:

Theorem 28. — Let [`] = ([`K ])K compact ⇢B be any collection of mutually compatible
equivalence classes of links between restrictions of F

+�F
� and couples of family index

bundles for ⇠ on compact subsets of B. There exists a way to associate to such data
(⇠, r⇠, g

Z , T
H
M , F

+, rF+ , F
�, rF� and [`]) an element ⌘(r⇠,rTZ ,rF+ ,rF� , [`])

of ⌦odd
(M, C)

�
d⌦

even
(M, C) with properties

(a) d⌘(r⇠,rTZ ,rF+ ,rF� , [`]) =
R

Z
e(rTZ)ch(r⇠)� ch(rF+) + ch(rF�)

(b) ⌘ is natural by pullbacks on fibered products as in (43).
(c) ⌘ is additive for direct sums of vector bundles ⇠ and F

± with direct sum con-
nections (and direct sum of links).

(d) ⌘(rE ,rTZ ,r
⇡

+
!

E
,r

⇡
�
!

E
, [Id]) = 0 if (E,rE) is a flat bundle on M with sheaf

theoretic direct images (⇡
+
! E,r

⇡
+
!

E
) and (⇡

�
! E,r

⇡
�
!

E
).
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Moreover ⌘ with these properties is unique for vector bundles ⇠ with vanishing rational
Chern classes on M .

In statement (d), [Id] stands for the trivial link between ⇡
+
! E � ⇡�! E and itself,

when using (⇡
+
! E,⇡

�
! E) as couple of family index bundles for E (see the proof of

Lemma 23). In statement (b), the vertical tangent bundle gTZ of ‹B⇥B M is naturally
isomorphic to the pullback of the vertical tangent bundle TZ of M , the connection
on gTZ is supposed to be the pullback connection of rTZ . The statement (a) is seen
as a Chern-Simons like transgression of the family index Theorem (50). As a first
consequence of this:

Theorem 29. — For any (E,rE , F,rF , f) 2 K
0
rel(M), one has

N ch

�
⇡⇤(E,rE , F,rF , f)

�
=

Z

Z

e(TZ)N ch(E,rE , F,rF , f).

This “Riemann-Roch-Grothendieck” theorem for K
0
rel is a cohomological formula,

it does not need the Chern-Weil version of the Euler class in its expression.

3.4.2. Direct image for multiplicative/smooth K
0-theory

Definition 30. — Let (⇠,r⇠,↵) 2 “Kch(M), take any vector bundles F
+ and F

� such
that [F

+
] � [F

�
] = ⇡

Eu
⇤ [⇠] 2 K

0
top(B), choose any connections rF+ on F

+ and rF�

on F
�, take any collection of equivalence classes of links [`] between F

+ � F
� and

any families index bundles for ⇠ on compact subsets of B, and define the direct image
of (⇠,r⇠,↵) by
(51)

⇡
Eu
! (⇠,r⇠,↵) =

Å
F

+
,rF+ ,

Z

Z

e(rTZ)↵

ã
�
�
F
�

,rF� , ⌘(r⇠,rTZ ,rF+ ,rF� , [`])
�
.

This definition is intended to obtain the following property:

(52)
...
ch
�
⇡!(⇠,r⇠,↵)

�
=

Z

Z

e(rTZ) ^
...
ch(⇠,r⇠,↵)

which implies that ⇡Eu
! sends MK0(M) to MK0(B), and K

�1
C/Z(M) to K

�1
C/Z(B).

Theorem 31. — ⇡
Eu
! (⇠,r⇠,↵) as defined above does not depend on the choices of F

+,
F
�, rF+ , rF� nor [`].
(51) defines a morphism ⇡

Eu
! : “Kch(M) �! “Kch(B). The following diagrams com-

mute (the lines of (54) are modeled on the modified second line of (21)):

(53)

K
0
flat(M) ����! “Kch(M)

⇡!

??y
??y⇡Eu

!

K
0
flat(B) ����! “Kch(B),
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(54)
K

1
top(M)

ch����! ⌦
odd

(M,C)
�
d⌦

even
(M,C)

a����! “Kch(M) ����! K
0
top(M)

⇡
Eu
⇤

??y
R

Z

e(rTZ)^•
??y

??y⇡Eu
!

??y⇡Eu
⇤

K
1
top(B)

ch����! ⌦
odd

(B,C)
�
d⌦

even
(B,C)

a����! “Kch(B) ����! K
0
top(B).

Moreover B
�
⇡!(⇠,r⇠,↵)

�
=
R

Z
e(rTZ) ^B(⇠,r⇠,↵) 2 ⌦odd

(B)/d⌦
even

(B).

Here the morphism denoted by
R

Z
e(rTZ) ^ • is integration along the fibre after

product with e(rTZ) (i.e. ↵ 7!
R

Z
e(rTZ) ^ ↵). It vanishes if dimZ is odd.

The relation concerning B implies that ⇡Eu
! sends “K0

(M) to “K0
(B) (Bunke and

Schick’s K-theory, see the end of §2.6 after (35)) and K
�1
R/Z(M) to K

�1
R/Z(B).

3.5. Hermitian symmetry and functoriality results

3.5.1. Direct images and symmetries. — The conjugations on K
0
flat, K

0
rel and “Kch

were defined in Definition 11.

Theorem 32. — If dimZ is even, then ⇡! on K
0
flat, ⇡⇤ on K

0
rel and ⇡Eu

! on “Kch are all
real in the sense that:

⇡!

�
(E,rE)

c
�

=
�
⇡!(E,rE)

�c 2 K
0
flat(B),

⇡⇤
�
(E,rE , F,rF , f)

c
�

=
�
⇡!(E,rE , F,rF , f)

�c 2 K
0
rel(B),

⇡
Eu
!

�
(⇠,r⇠,↵)

c
�

=
�
⇡

Eu
! (⇠,r⇠,↵)

�c 2 “Kch(B).

In fact the last statement of this theorem is a consequence of the last statement
(about B) of the preceding one, and of the facts stated just before (35).

Theorem 33. — If dimZ is odd, then ⇡
Eu
⇤ on Ktop and ⇡Eu

! on “Kch both vanish.
If dimZ is odd, then there exists a map ⇡ : K

0
flat(M) �! K

0
rel(B) such that

⇡! = @ � ⇡ (on K
0
flat) and ⇡⇤ = ⇡ � @ (on K

0
rel).

⇡ is purely imaginary in the sense that if (E,rE) 2 K
0
flat:

⇡ 
�
(E,rE)

c
�

= �
�
⇡ (E,rE)

�c 2 K
0
rel(B).

Moreover, N ch � ⇡ vanishes.

3.5.2. Double fibrations. — Consider two submersions ⇡1 : M �! B and ⇡2 : B �! S

and the composed submersion ⇡2 � ⇡1 : M �! S. The following classical results

(55)
(⇡2 � ⇡1)

Eu
⇤ = ⇡

Eu
2⇤ � ⇡Eu

1⇤ : K
•
top(M) �! K

•
top(S)

(⇡2 � ⇡1)! = ⇡2! � ⇡1! : K
0
flat(M) �! K

0
flat(S)

will be reproved or explained during the proof of the following

Theorem 34. — (⇡2 � ⇡1)⇤ = ⇡2⇤ � ⇡1⇤ : K
0
rel(M) �! K

0
rel(S).
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Only a partial result is obtained for multiplicative K-theory:

Theorem 35. — The restriction to MK
0
(M) of ⇡

Eu
2! � ⇡Eu

1! and (⇡2 � ⇡1)
Eu
! coincide.

4. Proof of Theorems 25 and 27

4.1. Proof of Theorem 25. — The link between any two couples of family index
bundles for the same vector bundle ⇠ is obtained by an intermediary link with some
special couple of (“positive kernel”) family index bundles (see Definition 37 in §4.1.2).
It is proved in §4.1.2 that any couple can be linked with some special one, and that
all these links are mutually compatible, the general link is then obtained in two steps
by a homotopy technique in §4.1.3 and §4.1.4. B is supposed to be compact in §4.1.2
and §4.1.3.

4.1.1. Links and exact sequences of vector bundles. — Consider a short exact se-
quence of complex vector bundles on M :

0 �! E
0 i�! E

p�! E
00 �! 0.

Take any morphisms s : E �! E
0 and j : E

00 �! E such that s � i = IdE0 and
p � j = IdE00 , then, as was remarked just after Remark 5, i + j and (s � p)

�1 are
isotopic isomorphisms from E

0 � E
00 to E. They thus provide the same equivalence

class of link between (E
0 � E

00
) � {0} and E � {0}, or any equivalent combination.

Take any hermitian metrics on E
0, E and E

00, and consider the adjoints i
⇤ and p

⇤

with respect to these metrics. Then s� p and i
⇤� p are isotopic, and so are i + j and

i + p
⇤. This is because autoadjoint automorphisms (here i

⇤ � i and p � p
⇤) are always

isotopic to the identity.
Consider now a longer complex of vector bundles on M :

(56) 0 �! E
0 v0�! E

1 v1�! · · · vk�1�! E
k �! 0.

It may not be an exact sequence, but the vi are supposed to be of everywhere constant
rank. Call H

k the cohomology of this complex in degree k. The H
k are vector bundles

on M . Choose some hermitian metrics h
i on the E

i, and consider the associated ad-
joints v

⇤
i

of the vi. By finite dimensional Hodge theory one has canonical isomorphisms
H

i ⇠= Ker(vi +v
⇤
i+1). Let ◆i : H

i
,! E

i be induced by the inclusion of Ker(vi +v
⇤
i
) and

pi : E
i �! H

i by the orthogonal projection on Ker(vi+v
⇤
i
). Denote by E

+ and E
� the

direct sums �ieven E
i and �iodd E

i respectively, and accordingly for H
+, H

�, v+, v�,
v
⇤
+, v

⇤
�, ◆+, ◆�, p+ and p�. The isomorphism v++v

⇤
�+p++◆� : E

+�H
� ⇠�! E

��H
+

is isotopic to
�
v�+ v

⇤
+ + p�+ ◆+

��1. This is because p± and ◆± are mutually adjoint.
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Definition 36. — The equivalence class of links between E
+ � E

� and H
+ �H

� (or
any equivalent combinations) associated to the complex (56) is the common class
defined by anyone of these two isomorphisms.

This definition is justified by the independence on the hermitian metrics. This
class of link is not modified by isotopy of the complex, i.e. smooth homotopy of the
morphisms such that any of them stays of same constant rank. This class of links can
be described in the same terms from the following exact sequence

0 �! H
+ ◆+�! E

+ v++v
⇤
��! E

� p��! H
� �! 0.

It is left as an exercise to check that it is the same class as the one obtained from the
composition of links associated to the following short exact sequences
(57)

0 �! Kervi �! E
i vi�! Imvi �! 0, 0 �! Imvi�1 �! Kervi �! H

i �! 0

which enter in the canonical decomposition of (56) in short exact sequences.

4.1.2. Link with “positive kernel” family index bundles. — Consider as in §3.1.1 some
vector bundle ⇠ on M with hermitian metric h

⇠ and connection r⇠. Take some vertical
riemannian metric g

Z on TZ and consider some triple (µ
+
, µ
�

, ) as in §3.1.1, with
which a vertical modified de Rham operator Dr⇠±

 
is computed. The triple (µ

+
, µ
�

, )

may be not suitable.
If B is compact, there exists some vector bundle � on B and some bundle morphism

' : �! E� � µ
� such that Dr⇠+

 +' is surjective, as can be proved in exactly the same
way as in [2] Proposition 2.2, or [3] Lemma 9.30 or [29] Lemma 8.4 of chapter III.
This proves the existence of suitable triples in general.

Definition 37. — A (suitable) triple which has the same surjectivity property as (µ
+�

�, µ
�

, + ') will hereafter be called a “positive kernel” triple; the obtained couple of
family index bundles ((KerDr⇠+

 +' � µ
�

, µ
+ � �) in the above example) will be called

“couple of positive kernel family index bundles”.

Suppose now that (µ
+
, µ
�

, ) were suitable and gave rise to kernel bundles H ±.
Choose � and ' as above. Let P

H� be the projector from E� � µ
� onto H � with

kernel ImDr⇠+
 

. The following sequence of vector bundles on B is exact:

(58) 0 �! H + �! KerDr⇠+
 +'�! �

P
H��'

�����! H � �! 0

(�, v, w) 7�! w

(KerDr⇠+
 +' is a subbundle of E+ � µ

+ � � on which its elements are decomposed).
This provides an equivalence class of links between H + � H � and KerDr⇠+

 +' � � as
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in Definition 36. An equivalence class of links between (H + � µ
�

)� (H � � µ
+
) and

(KerDr⇠+
 +' � µ

�
)� (�� µ

+
) is trivially deduced.

Lemma 38. — Classes of links obtained in this way are mutually compatible.

Proof. — Suppose that �0 and '0 satisfy the same surjectivity hypothesis as � and '
with respect to µ

± and  . Then � � �0 and ' � '0 also do. On the other hand, the
same construction can be performed starting from the triple (µ

+ � �, µ
�

, + ') and
using �0 and '

0, or starting from the triple (µ
+ � �0, µ�, + '

0
) and using � and '.

One obtains in each case some equivalence class of links between two of the couples
(H +�µ

�
)� (H ��µ

+
), (KerDr⇠+

 +'�µ
�

)� (��µ
+
), (KerDr⇠+

 +'0 �µ
�

)� (�
0�µ

+
)

or (KerDr⇠+
 +'+'0 � µ

�
)� (�� �0 � µ

+
).

These links are all compatible (in the sense of composition of links) as can be
checked by considering the exact sequence (58) associated either to ���0 and '+ t'

0

with t varying along [0, 1] or to �� �0 and s'+ '
0 with s 2 [0, 1].

4.1.3. Deformation of  , h
⇠ and r⇠. — Consider two triples (µ

+
, µ
�

, 0) and
(µ

+
, µ
�

, 1) with same µ
+ and µ

�. Take the product with the interval [0, 1] and
consider some everywhere finite rank e : E+ � µ

+ �! E� � µ
� over B ⇥ [0, 1] with

restrictions e |B⇥{0} =  0 and e |B⇥{1} =  1. The pullback of ⇠ on B ⇥ [0, 1] is
endowed with any (not necessarily pullback) hermitian metric and connection.

If B is compact, one can perform the above construction over B ⇥ [0, 1], find-
ing some positive kernel triple

�
µ

+ � �, µ
�

, e + e'
�

over B ⇥ [0, 1]. An isotopy class
of bundle isomorphism KerDr⇠+

 0+e'|B⇥{0}
⇠= KerDr⇠+

 1+e'|B⇥{1} is obtained by parallel
transport along [0, 1]. This produces an equivalence class of links between the couples�
KerDr⇠+

 0+e'|B⇥{0} � µ
��� (µ

+ � �) and
�
KerDr⇠+

 1+e'|B⇥{1} � µ
��� (µ

+ � �).

Suppose (µ
+
, µ
�

, 0) and (µ
+
, µ
�

, 1) are both suitable triples with associated
kernel bundles H ±

0 and H ±
1 (and with respect to not necessarily same metric and

connection on ⇠). On B ⇥ {0}, the construction of the preceding paragraph produces
an equivalence class of links between (H +

0 �µ
�

)�(H �0 �µ
+
) and KerDr⇠+

 0+e'|B⇥{0}��,
and similarly on B ⇥ {1}. This three links compose to produce an equivalence class
of links between (H +

0 � µ
�

)� (H �0 � µ
+
) and (H +

1 � µ
�

)� (H �1 � µ
+
).

Lemma 39. — This equivalence class of links does not depend on �, e' and e .

Proof. — The independence on � and e' follows from Lemma 38 (and the fonctoriality
of links by pullbacks). The independence on the choice of e can be proved by deforming
it to any other choice (with fixed boundary values), and make the above construction
on B ⇥ [0, 1]⇥ [0, 1].
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4.1.4. General construction (and proof of Theorem 25). — If two suitable triples
(µ

+
0 , µ

�
0 , 0) and (µ

+
1 , µ

�
1 , 1) give rise to couples of family index bundles ( F +

, F �)

and ( G+
, G�), one performs the preceding construction starting from the bundles

µ
+
0 � µ

+
1 and µ

�
0 � µ

�
1 and the two morphisms  0 extended by 0 on µ

+
1 and  1

extended by 0 on µ
�
1 . One obtains an equivalence class of links between the couples

( F + � µ
+
1 � µ

�
1 ) � ( F � � µ

�
1 � µ

+
1 ) and ( G+ � µ

+
0 � µ

�
0 ) � ( G� � µ

�
0 � µ

+
0 ). On

compact subsets of B, one defines [`
G
F ] as the composition of this class of link with the

trivial links between F + � F � and ( F + � µ
+
1 � µ

�
1 )� ( F � � µ

�
1 � µ

+
1 ) and between

( G+ � µ
+
0 � µ

�
0 ) � ( G� � µ

�
0 � µ

+
0 ) and G+ � G�. One obtains a projective family

of equivalence classes of links on compact subsets of B. Stability properties of vector
bundles [22] §8 Proposition 1.4 can be used to prove that these links can be described
with isomorphisms of the form F + � G� � CN ⇠�! F � � G+ � CN with some fixed
N , and such that two such isomorphisms are always isotopic. It is then possible to
obtain a global link by inductive limit on an exhaustion by compact subsets with an
iterative deformation procedure to fix the isomorphism at finite distance.

Definition 40. — [`
G
F ] is the equivalence class of links between F +� F � and G+� G�

obtained in this way.

The independence on the various choices follows from Lemma 39.
For three suitable triples, the construction (for compact B) can be adapted so that

the restriction to B⇥{ 1
2} corresponds to the third data, this proves the compatibility

of these links with respect to mutual composition. Now the equivalence of links on
compacts propagates in the inductive limit along an exhaustion by compact subsets.

If ⇠1, ⇣1, ⇠2 and ⇣2 are vector bundles on M such that [⇠1] � [⇣1] = [⇠2] � [⇣2] in
K

0
top(M), consider some vector bundle isomorphism ` : ⇠

+ � ⇣� �L
⇠�! ⇠

� � ⇣+ �L

as in (47). Let ( F +
i
, F �

i
), ( G+

i
, G�

i
) and ( L+

, L�) be couples of family index bundles
for ⇠i, ⇣i and L respectively for i = 1 and 2. (It is always possible to choose L

such that it admits family index bundles on the whole B: it su�ces to take L trivial
with canonical metric and connection). Thus ( F +

1 � G+
2 � L+

, F �1 � G�2 � L�) and
( F +

2 � G+
1 � L+

, F �2 � G�1 � L�) are couples of family index bundles for the same
vector bundle modulo the isomorphism `.

Definition 41. — ⇡`([`]) is the equivalence class of links obtained between these couples
using Definition 40, and interpreted as an equivalence class of links between ( F +

1 �
G�1 )� ( F �1 � G+

1 ) and ( F +
2 � G�2 )� ( F �2 � G+

2 ).

The fact that [`
G
F ] = ⇡`([Id]) is tautological.

But if one takes a di�erent link from the identity, and the same couples of family
index bundles at both boundaries, one obtains a realisation of the direct image ⇡Eu

⇤ on
K

1
top by gluing the ends and applying Definition 21. The last statement of the theorem
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is a consequence of this fact and the obvious compatibility of the whole construction
with direct sums.

The independence of ⇡`([`]) on the choice of L and ` (in some same equivalence
class of links see (48)) is due to the above facts and to the invariance of ⇡`([`]) under
isotopy of `. The canonicity of ⇡`([`]) is a direct consequence of the corresponding
property of ` G

F .

4.2. Proof of Theorem 27. — This result is a consequence of a compatibility
result (Proposition 43) of some canonical link obtained from Theorem 25 and another
one obtained from Definition 36 applied to some long exact sequence in cohomology.
This second link is computed in §4.2.2 as a composition of two pieces. The compati-
bility proof then uses a geometric deformation, in which the canonical link is proved
to decompose in two pieces too. The fit of each piece of one link with its counterpart
in the other one is proved in §4.2.3 and §4.2.4.

As remarked just before Definition 40, an equivalence of links on compact subsets
propagates in the inductive limit along an exhaustion by compacts. So, in this whole
section, B can be supposed to be compact without restriction.

4.2.1. Reduction of the problem
Lemma 42. — Suppose that (E

i
,rEi) are flat vector bundles on M entering in the

following parallel complex:

(59) 0 �! E
0 �! E

1 �! · · · �! E
k �! 0.

Take the same notations E
+, E

�, H
+ and H

� as in Definition 36 and define the
connections rE+ = �

i even
rEi and rE� = �

i odd
rEi and accordingly for rH+ and rH� .

Let [`] be the equivalence class of links between E
+�E

� and H
+�H

� associated to
(59) from Definition 36. Then

(E
+ �H

�
,rE+ �rH� , E

� �H
+
,rE� �rH+ , [`]) = 0 2 K

0
rel(M).

Proof. — The decomposition of the complex (59) in several short exact sequences as
in (57) gives rise to short exact sequences of flat vector bundles as was remarked at
the ends of §2.1.1 and §2.2.2. Through this decomposition, [`] is reduced to canonical
links associated to short exact sequences as in relation (iii) of Definition 4 (as was
remarked after Definition 36) and the lemma follows.

Consider now the exact sequence (44). Denote by ⇡
i

!E the i
th degree de Rham

cohomology of the fibres of ⇡ with coe�cients in the restriction of (E,rE) (to the
fibres) and similarly for E

0 and E
00. The associated long exact sequence in cohomology

(45) also reads:

(60) 0 �! ⇡
0
! E
0 [i]�! ⇡

0
! E

[p]�! ⇡
0
! E
00 �! ⇡

1
! E
0 [i]�! · · · [p]�! ⇡

dimZ

! E
00 �! 0.
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Let [i + j] be the equivalence class of links corresponding to (44) constructed at
the beginning of §4.1.1.

Proposition 43. — ⇡`([i + j]) coincides with the equivalence class of links between
(⇡

+
! E
0 � ⇡+

! E
00
)� (⇡

�
! E
0 � ⇡�! E

00
) and ⇡+

! E � ⇡�! E associated to (60).

The proof of this proposition is delayed in the following paragraphs.
We are now in position to prove Theorem 27 using Proposition 43.
The definition of ⇡⇤ on K

0
rel is clearly compatible with the isotopy of f . If f is

parallel, then ⇡`([f ]) is itself a parallel isomorphism between ⇡+
! E�⇡�! F and ⇡�! E�

⇡
+
! F . This proves the compatibility of ⇡⇤ with relation (i) of Definition 4. ⇡⇤ is

also obviously compatible with direct sums as in relation (ii) of Definition 4. The
compatibility of ⇡⇤ with relation (iii) is a direct consequence of the above proposition
and Lemma 42.

The commutativity of the right square of diagram (49) was proved in Lemma 23.
The commutativity of the central square of diagram (49) is tautological. The commu-
tativity of the left square of diagram (49) is a consequence of the last statement of
Theorem 25.

4.2.2. Sheaf theoretic direct images and short exact sequences. — Back to the model
exact sequence (44), consider E

0 as a subbundle of E. The vertical exterior di�erential
operator d

rE respects the subbundle (over B) ⌦•
(Z, E

0
) of the vertical de Rham

complex (⌦
•
(Z, E), d

rE ). This filtration 0 ⇢ ⌦(M,E
0
) ⇢ ⌦(M, E) gives rise to some

spectral sequence, and to some filtration 0 ⇢ FH
•
(Z, E) ⇢ H

•
(Z, E) of the fiberwise

cohomology of E. The (E0, d0)-term of this spectral sequence is the direct sum of the
fiberwise de Rham complexes of E

0 and of E
00; consequently, the E1-term is the direct

sum ⇡!E
0 � ⇡!E

00 of the fiberwise cohomology of E
0 and of E

00.
Let s : E ! E

0 be a smooth vector bundle morphism such that s � i is the identity
of E

0, then E
00 will be identified with the subbundle Kers of E so that E will be

identified with E
0 � E

00. Thus E inherits two flat connections rE and rE0 � rE00 ,
whose di�erence is (as was used in Lemma 1 in a nonflat context) a one form ! with
values in Hom(E

00
, E
0
). On any closed E

00-valued form, d
rE applies as !^ so that the

operator d1 of the spectral sequence is given by

(61) d1 = [!^] : H
•
(Z, E

00
) �! H

•+1
(Z, E

0
).

This is exactly the linking maps of the exact diagram (45), and the spectral sequence
converges at E2 which is the filtrated fiberwise cohomology of E.

Thus the exact diagram (45) decomposes in two exact sequences:

(62) 0 �! FH
±

(Z, E) �! ⇡
±
! E
0 [!]�! ⇡

⌥
! E
00 �! H

⌥
(Z, E)

�
FH

⌥
(Z, E) �! 0.
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The canonical link associated to (45)-(60) is the direct sum of the two canonical
links of these two exact sequences modulo the canonical isotopy class of isomorphism
between (graded) cohomology and (graded) filtrated cohomology.

(63) ⇡
•
! E = H

•
(Z, E) ⇠= FH

•
(Z, E)�

�
H

•
(Z, E)/FH

•
(Z, E)

�
.

4.2.3. “Adiabatic” limit of harmonic forms. — Put r✓ = (rE0�rE00)+✓! for any ✓ 2
[0, 1], thenrE = r1, andr✓ is flat for any ✓ 2 [0, 1]. Moreover, the flat bundles (E,r✓)
and (E,rE) are isomorphic for any ✓ > 0 through the automorphism IdE0 � ✓IdE00 of
E. For any ✓ > 0, d

r✓ (as d
rE ) also respects the subbundle ⌦(Z, E

0
) of ⌦(Z, E), and

the associated spectral sequence is isomorphic to the preceding one if ✓ is positive, so
that the considerations of the preceding paragraph apply verbatim for ✓ 2 (0, 1].

Put any riemanian metric on M , and endow E ⇠= E
0 � E

00 with a direct sum
hermitian metric. The Hodge theory of the fibres of ⇡ provides for any ✓ 2 (0, 1] an
isomorphism between the (graded) kernel H •

✓
of the fiberwise Euler-de Rham operator

D✓ = d
r✓ +(d

r✓ )⇤ and the cohomology of the de Rham complex associated with d
r✓ .

In particular, the dimension of H i

✓
is constant for any i when ✓ goes over (0, 1]. The

isomorphism class provided by parallel transport along (0, 1] of H ✓ is isotopic to the
twist of the de Rham cohomology by IdE0 � ✓IdE00 .

Let d
r

E0 and d
r

E00 be the fiberwise exterior di�erential operators on ⌦(Z, E
0
) and

⌦(Z, E
00
) respectively obtained fromrE0 andrE00 , and define D0 = d

r
E0+(d

r
E0 )
⇤ and

D00 = d
r

E00 + (d
r

E00 )
⇤. Then D✓ = D0 + D00 + ✓(!+ !

⇤
) so that one has a continuous

family of elliptic operators on B ⇥ [0, 1]. Suppose that B is compact, this ensures the
positivity of the minimum positive eigenvalue of D0 + D00 along all B, which will be
denoted by �min. There exists " > 0 such that ✓! is bounded by 1

5�min in L
2 norm for

all ✓  ". Then for any y 2 B and any ✓  ", D✓ has no eigenvalue equal to ±�min
2 .

Thus the (graded) direct sum F •
✓

of eigenspaces of D✓ corresponding to eigenvalues
belonging to [��min

2 ,
�min

2 ] is a finite rank vector bundle on B⇥ [0, "] whose restriction
F 0 to B ⇥ {0} equals KerD0 �KerD00.

As ✓ converges to 0, 1
✓
P

F ✓dr✓P F ✓ converges to P
F 0(!^)P

F 0 and this is the image
of [!^] through the Hodge isomorphism F 0

⇠= ⇡!E
0 � ⇡!E

00.
This proves that H ✓ converges to the kernel H 0 of P

F 0(!^)P
F 0 as ✓ converges

to 0, because the dilation factor 1
✓

does not modify the kernels. This limit subspace
H 0 is identified by Hodge isomorphism F 0

⇠= H(Z, E
0
)�H(Z, E

00
) with the filtrated

fiberwise cohomology of E as seen around Equation (61). Consequently, the parallel
transport along [0, 1] for H is, modulo the Hodge isomorphisms, in the same isotopy
class as the isomorphism (63) between fiberwise cohomology of E and its filtrated
counterpart.
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4.2.4. End of proof of Proposition 43. — Clearly

[H +
✓
]� [H +

✓
] = [ F +

0 ]� [ F �0 ] = ⇡
Eu
⇤ ([E]) 2 K

0
top(B)

for any positive ✓. Following the construction of canonical links, the equivalence class
of links ⇡`([i + j]) is isomorphic (modulo Hodge isomorphisms at the boundaries)
to the class of links between [ F +

0 ] � [ F �0 ] and [H +
1 ] � [H �1 ] obtained by parallel

transport along [0, 1] of some kernel bundle on B ⇥ [0, 1] associated to the above
model deformation of d

rE and canonical links at the boundaries.
However we will cut at some ✓ 2 (0, "] to perform the construction. In fact over

B⇥(0, 1], the triple ({0}, {0}, 0) is suitable (because of fiberwise Hodge theory). Over
B ⇥ [0, "], one has Z-graded vector subbundles F ✓ and H ✓ of ⌦(Z, E) which are all
respected by d

r✓ and D✓. Let P F ✓ be the orthogonal projection onto F ✓, the triple
({0}, {0},�P F ✓ D✓) is suitable, with associated kernel bundles F ±

✓
.

To describe the canonical link between F +
✓
� F �

✓
and H +

✓
� H �

✓
of Definition 40

over B ⇥ (0, "], one observes that we are in the special case studied in §4.1.3. On
B ⇥ (0, "] ⇥ [0, 1], one puts (following the notations of §4.1.3) e = �(1 � t)P F ✓ D✓ ,
� = F �

✓
and e' = Id F�

✓

. The obtained kernel bundle is the kernel of

tD✓ + Id F�
✓

: F +
✓
� F �

✓
�! F �

✓

i.e. K t =
�
(�,�tD✓�)

�
� 2 F +

✓

 
. For t = 0 the link between F +

✓
� F �

✓
and itself is

tautological. For t = 1 the link is associated to the exact sequence (58)

0 �! H +
✓
�! K 1 �! F �

✓
�! H �

✓
�! 0

(�,�D✓�) 7�! �D✓�

which is isotopic through the obvious isomorphism K+
t
⇠= F +

✓
(obtained for any t by

parallel transport along [0, t]) to the exact sequence

(64) 0 �! H +
✓
�! F +

✓

� D✓
���! F �

✓
�! H �

✓
�! 0.

It follows that ⇡`([i + j]) is the composition of the Hodge isomorphism ⇡!E
⇠= H 1,

the parallel transport H 1
⇠= H ✓, the canonical equivalence class of links between

H +
✓
� H �

✓
and F +

✓
� F �

✓
associated to (64) as in Definition 36, the parallel transport

again F ✓ ⇠= F 0 and the Hodge isomorphism again F 0
⇠= ⇡!E

0 � ⇡!E
00.

The convergence of 1
✓
P

F ✓dr✓P F ✓ to P
F 0(!^)P

F 0 as ✓ converges to 0 proves that
the equivalence class of links between H +

✓
� H �

✓
and F +

✓
� F �

✓
converges to the

equivalence class of links between H +
0 � H �0 and F +

0 � F �0 provided via the Hodge
isomorphisms F 0

⇠= ⇡!E
0 � ⇡!E

00 and H 0
⇠= FH(Z, E) � H(Z, E)/FH(Z, E) by

Definition 36 and (62).
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In the case of compact B, Proposition 43 follows from this convergence and the
compatibility of the adiabatic limit of harmonic forms with (63) checked in the pre-
ceding paragraph. In the case of noncompact B one concludes using the fact that
K

1
top is stable by inductive limit along an exhaustion of compact sets, so that two

equivalence classes of links whose restrictions to any compact subset agree are equal.

5. ⌘-forms

The goal of this section is to prove Theorems 28, 29 and 31. The construction of
⌘-forms occupies three paragraphs: preliminaries of algebraic nature are given in §5.1,
the adaptation to suitable triples of the construction of family index transgression
forms is performed in §5.2. In §5.3, the construction is completed, and the existence
part of Theorem 28 is proved. The anomaly formulae obtained in (91) and (92) allow
to complete the proof of Theorem 28 and to prove Theorems 29 and 31 in §5.4.

5.1. Z2-graded theory

5.1.1. Z2-graded bundles and superconnections. — Consider a complex vector space
V which decomposes as V = V

+�V
�, with a Z2-graduation operator ⌧ |V ± = ±Id|V ± .

The supertrace of a 2 EndV is defined by Trsa = Tr(⌧ � a), (this is the trace on V
+

minus the trace on V
�). EndV is also Z2-graded (even endomorphisms respect both

parts V
+ and V

� and odd ones exchange them). The supercommutator in EndV is
defined for pure degree objects as

[a, b] = ab� (�1)
dega degb

ba

and bilinearly extended to EndV . This is such that the supertrace vanishes on super-
commutators.

Suppose now that E is a Z2 graded vector bundle on M , that is E = E
+ � E

�

where E
+ and E

� are complex vector bundles themselve. The supertrace is defined as
above and extends naturally on EndE-valued di�erential forms, with values in ordi-
nary di�erential forms. EndE-valued di�erential forms inherit a global Z2-graduation,
ordinary di�erential forms being Z2-graduated by the parity of their degree. They act
on E-valued di�erential forms and multiply in the following way

(65) (↵“⌦ a)(� “⌦ b) = (�1)
dega deg�

(↵ ^ �)“⌦(ab)

where ↵“⌦a and �“⌦b are decomposed tensors in the graded tensor product of di�eren-
tial forms with either EndE or E. The supercommutator of EndE-valued di�erential
forms is defined in the same way as above but by considering the global graduation.
With this convention, the supertrace allways vanishes on supercommutators.

A superconnection A on E is the sum of a connection r which respects the decom-
position of E and of a globally odd EndE-valued di�erential form !. Its curvature is
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its square A
2

= (r+ !)
2

= r2
+ [r,!] + !

2, a global even EndE-valued di�erential
form (A2 is not a di�erential operator).

Following (6), denote by ch(A) = �Trs exp�A
2 the Chern-Weil form representing

the Chern character of any superconnection A. It is an even degree di�erential form
on M . The space of superconnections on E is convex (and of course contains ordinary
connections) so that the preceding Chern-Weil and Chern-Simons theory also works
for superconnections (especially Formula (7)). Thus ch(A) is closed and its cohomology
class is the same as the Chern character of E in complex cohomology (this means
ch(E

+
)� ch(E

�
) because of the Z2-graduation).

5.1.2. Special adjunction. — A hermitian metric on E = E
+ �E

� will be supposed
to make this decomposition orthogonal. Let � be a di�erential form and a 2 EndE,
the adjoint of a will be denoted by a

⇤. For EndE-valued di�erential forms, there are
two notions of adjunction: the ordinary adjoint of � “⌦ a is � “⌦ a

⇤, while its special
adjoint is

(66) (� “⌦ a)
S

= (�1)
deg�(deg��1)

2 +deg�dega
� “⌦ a

⇤

following the convention implicitely used in [11] §I(c) and (d). If !1 and !2 are
any (multidegree) EndE-valued di�erential forms, denote by !S

1 and !S

2 their special
adjoints, then for the product (65):

(67) (!1!2)
S

= !
S

2 !
S

1 .

Denote by !
⇤ the usual adjoint of !, the relations between usual and special ad-

junctions and the supertrace is as follows:

(68) Trs(!
⇤
) = Trs(!) and �Trs(!

S
) = �Trs(!)

in particular, �Trs(!) is real if ! is a special autoadjoint (multidegree) EndE-valued
di�erential form.

Let ! be some globally odd EndE-valued di�erential form, and A = r + ! a
superconnection on E. Then the adjoint of A is defined by

(69) A
S

= r⇤ + !
S
.

Thus 1
2 (A + A

S
) is the sum of ru

=
1
2 (r+r⇤) (which respects the hermitian metric

of E) and of some special autoadjoint EndE-valued di�erential form of globally odd
degree. The following adjunction and commutation rules

(70) [r⇤,!S
] = [r,!]

S and (r⇤)2 = �(r2
)
⇤

= (r2
)
S

have the following consequences

(71) (A
S
)
2

= (A
2
)
S and ch(A

S
) = ch(A).
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In particular, ch
�

1
2 (A+A

S
)
�

is a real form. Finally, Lemma 13 and formulae (28) and
(31) are also valid in the context of superconnections.

5.2. Adaptation of Bismut’s superconnection

5.2.1. Definition of Bismut and Lott’s Levi-Civita superconnection. — Remember the
definitions of P

TZ and T
H
M from §3.4.1. Let y 2 B. For any vector u 2 TyB, its

horizontal lift uH is a global section of the restriction of T
H
M to Zy = ⇡

�1
(y) such

that at any point of Zy one has ⇡⇤uH
= u.

Consider some vector bundle ⇠ on M with a connection r⇠ and hermitian metric
h
⇠. r⇠ is not supposed to be flat nor to respect h

⇠. Remember the definition of E from
(37). The flow associated to vector fields of the form uH send fibres of ⇡ to fibres of
⇡ di�eomorphically, so that there is some fiberwise Lie di�erentiation operator Lr⇠

uH

which acts on ⇠-valued vertical di�erential forms E (it is defined using the connection
r⇠). Put then for any local section � of E (see [11] Definition 3.2)

(72) ru� = Lr⇠
uH�.

r is a connection on E as can be proved following [11] (3.8) to (3.10).
If u and v are vector fields defined on a neighbourhood of y 2 B, then the vector

field P
TZ

[uH
, vH

] on Zy = ⇡
�1

(y) depends on the values of u and v at y only. Let
◆T : ^2

TB �! End
odd

( E) be the operator which to u and v 2 TyB associates the
interior product by �P

TZ
[uH

, vH
] in ^•T ⇤Z ⌦ ⇠. ◆T can be extended to a globally

odd End E-valued di�erential form (of di�erential form degree 2) on B.
r + d

r⇠ + ◆T is a superconnection on E in the sense of §5.1.1 and also of [37],
[3] Definitions 1.37 and 9.12 and [6]. It can be proved to coincide with the total
exterior di�erential operator d

M on ⇠-valued di�erential forms (defined using r⇠) on
M through the identification (37) as in [3] Proposition 10.1 (the proof of [11] §III (b)
cannot be adapted here because (d

M
)
2 6= 0 if r⇠ is not flat).

Remember the definition of metric data g
Z , h

⇠, ( | )Z and h , iL2 from §3.1.1 and
(38). Define the adjoint connection rS of r as in (22) by the following formula, valid
for any element u of the tangent bundle of B and any local sections � and ✓ of E:

(73) hrS

u �, ✓iL2 = u.h�, ✓iL2 � h�,ru✓iL2 .

Let T^ : ^2
TB �! End

odd
( E) be the operator which associates to u and v 2 TyB

the exterior product in Ey by the one form (�P
TZ

[uH
, vH

])
[ (the dual through g

Z

to the vector field �P
TZ

[uH
, vH

]) on ⇡
�1

(y). Before and after being extended to a
globally odd End E-valued di�erential form on B (of di�erential form degree 2), T^
is the adjoint of ◆T , so that ◆T � T^ is a special autoadjoint End E-valued di�erential
form in the sense of paragraph 5.1.
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d
r⇠ and its adjoint (d

r⇠)⇤ as defined in §3.1.1 are also mutually special adjoint as
End E-valued di�erential forms (with di�erential form degree 0). The superconnection
rS

+ (d
r⇠)⇤ � T^ is the adjoint of the superconnection r+ d

r⇠ + ◆T in the sense of
[11] §I(b) and Proposition 3.7, (and (69) above).

The relevant Bismut-Levi-Civita superconnection in this context is defined for any
t > 0 as in [11] (3.50) (and also (3.49), (3.30) and Proposition 3.4) by:

(74) Ct =
1

2

�
r+rS�

+

p
t

2

�
d
r⇠ + (d

r⇠)⇤
�

+
1

2
p

t
(◆T � T^).

In the case of a fibered product of the form (43), the construction of Ct is functorial
if the horizontal subspace T

H
(‹B ⇥B M) is taken to be the subspace of T (‹B ⇥B M)

consisting of vectors which are sent to T
H
M by the tangent map of ‹B ⇥B M �!M .

(It is not always isomorphic to the pullback of T
H
M).

5.2.2. Properties and asymptotics of the Chern character of Ct. — C
2
t

is a fiberwise
positive second order elliptic di�erential operator so that its heat kernel exp�C

2
t

is
trace class. The Chern character of Ct is defined to be

ch(Ct) = �Trs exp�C
2
t
.

Lemma 44. — ch(Ct) is a real form. It is a constant integer if r⇠ is flat.

Proof. — The superconnection Ct is for any t the half sum of r+
p

td
r⇠ +

1p
t
◆T and

its adjoint rS

+
p

t(d
r⇠)⇤ � 1p

t
T^. The reality of ch(Ct) follows from (71) and the

comment after it. The case of flat connection r⇠ is treated in [11] Theorem 3.15.

Remember the definition of the Euler form e and the connection rTZ from para-
graph 3.4.1, and put ru

⇠
=

1
2 (r⇠ +r⇤

⇠
) as in (31).

Proposition 45. — As t tends to 0, ch(Ct) has for any k � 1 an asymptotic of the
form (

ch(Ct) =
P

k�1
j=0 t

j+ 1
2 Aj + O(t

k+ 1
2 ) if dimZ is odd

ch(Ct) =
P

k�1
j=0 t

j
Bj + O(t

k
) if dimZ is even

in either case:

(75) lim
t!0

ch(Ct) =

Z

Z

e(rTZ) ^ ch(ru

⇠
).

Proof. — The asymptotics with
P

k�1
j=� 1

2dimZ
are classical results on heat kernels (see

[3] §§2.5 and 2.6 and appendix after §9.7).
The limit formula (and thus the vanishing of the terms Aj and/or Bj for negative j)

is a consequence of [11] (3.76). The connection r⇠ is supposed to be flat in [11], which
is not the case here: thus formula [11] (3.52) does not hold true here. However, consider
R defined as in [11] (3.56) without taking [11] (3.52) into account, then the z = 0
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case of the Lichnerowicz-type formula of [11] Theorem 3.11 holds true here. Thus the
rescaling formula [11] (3.75) and its consequence [11] (3.76) remain true here. (This
is only a matter of Cli�ord degrees which has nothing to do with the fact that r⇠ be
flat or not).

In particular, if dimZ is odd, then the same argument as in [11] (3.79) applies, and
both sides of the equality (75) vanish.

5.2.3. Calculating Ct for the product with the real line. — Consider now the product
manifold fM = R ⇥M and its obvious submersion e⇡ = IdR ⇥ ⇡ onto ‹B = R ⇥ B.
Extend ⇠ tautologically to fM with constant (with respect to s) hermitian metric and
connection dR + r⇠ (where dR = ds

@

@s
is the trivial canonical di�erential along R).

Consider any smooth real positive function f on R such that f(1) = 1 and endow the
vertical tangent bundle of e⇡ with the metric 1

f(s)g
Z . Choose T

HfM = TR � T
H
M as

horizontal bundle of e⇡. Let’s calculate the Bismut-Lott Levi-Civita superconnection
‹Ct in this context.

The equivalent here of the connection r defined in (72) is simply equal to dR +r.
The vertical exterior di�erential operator d

r⇠ is unchanged, and so is the operator ◆T
(defined at the beginning of §5.2).

The volume form of the fibres of e⇡ on {s} ⇥ B is equal to f(s)
� dimZ

2 times the
corresponding volume form of the fibres on {1} ⇥ B. The punctual scalar product
between vertical di�erential forms of degree k on {s} ⇥ B is equal to the one on
{1}⇥B multiplied by f(s)

k. Call eE the infinite rank vector bundle on ‹B of ⇠-valued
vertical di�erential forms, and define NV 2 End E or EndeE to be the operator which
multiplies vertical di�erential forms by their degree. The global L

2 scalar product on
the restriction of eE to {s} ⇥ B is thus equal to f(s)

NV � dimZ

2 h , iL2 (where h , iL2

defined in (38) is the one on {1}⇥B).
It follows that the adjoint of d

r⇠ is f(s)(d
r⇠)⇤ (if (d

r⇠)⇤ is its adjoint on {1}⇥B)
and the adjoint of ◆T is 1

f(s)T^ (if T^ is its adjoint on {1} ⇥ B). In the same way,

following (22), one has (dR +r)
S

= dR + ds
f
0(s)

f(s)

�
NV � dimZ

2

�
+rS .

Thus if Ct,s denotes the Bismut-Lott Levi-Civita superconnection on {s}⇥B:

Ct,s =
1
2

�
r+rS�

+

p
t

2

⇣
d
r⇠ + f(s)(d

r⇠)⇤
⌘

+
1

2
p

t

Ä
◆T � 1

f(s)T^
ä

,

‹Ct = Ct,s + dR +
1
2ds

f
0(s)

f(s)

�
NV � dimZ

2

�
.
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One then computes:

[dR, Ct,s] =

p
t

2
f
0
(s)ds(d

r⇠)⇤ +
f
0
(s)

2
p

tf(s)2
ds T^

[NV , Ct,s] =

p
t

2

�
d
r⇠ � f(s)(d

r⇠)⇤
�

+
1

2
p

t

Å
�◆T �

1

f(s)
T^

ã

ï
dR +

1

2
ds

f
0
(s)

f(s)
NV , Ct,s

ò
=

p
t

4
ds

f
0
(s)

f(s)

�
d
r⇠ + f(s)(d

r⇠)⇤
�
+

+ ds
f
0
(s)

4
p

tf(s)

Å
�◆T +

1

f(s)
T^

ã

= t ds
f
0
(s)

f(s)

@Ct,s

@t

‹C2
t

= C
2
t,s

+

ï
dR +

1

2
ds

f
0
(s)

f(s)

Å
NV �

dimZ

2

ã
, Ct,s

ò

= C
2
t,s

+ t ds
f
0
(s)

f(s)

@Ct,s

@t

Trs exp(�‹C2
t
) = Trs exp(�C

2
t,s

)� t ds
f
0
(s)

f(s)
Trs

Å
@Ct,s

@t
exp(�C

2
t,s

)

ã
.(76)

5.2.4. t �! 0 asymptotics of the infinitesimal transgression form. — The transgres-
sion Formula (7) yields here

d

dt
ch(Ct) = �d

ï
�Trs

Å
@Ct

@t
exp�C

2
t

ãò

so that for any 0 < S < T < +1

(77) ch(CS)� ch(CT ) = d

ñZ
T

S

�Trs

Å
@Ct

@t
exp�C

2
t

ã
dt

ô
.

Proposition 46. — One has the following estimate

(78) as t! 0 : �Trs

Å
@Ct

@t
exp�C

2
t

ã
=

(
O(1) if dimZ is even,

O(t
� 1

2 ) if dimZ is odd.

Proof. — This will be proved with the technique proposed in [3] Theorem 10.32:
apply Proposition 45 on fM , one obtains because of the factor t appearing in (76) an
asymptotic of the form

�Trs

Å
@Ct

@t
exp�C

2
t

ã
=

8
>>>>><

>>>>>:

k�1X

j=�1

Ejt
j
+ O(t

k
) if dimZ is even,

k�1X

j=0

Ejt
j� 1

2 + O(t
k� 1

2 ) if dimZ is odd.

This proves the assertion for odd dimensional fibres.
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Let ‹rTZ be the Levi-Civita connection on the vertical tangent bundle of the sub-
mersion e⇡ over fM (as defined at §3.4.1). If dimZ is even, let

R
Z

denote the integral
along the fibres of e⇡, then E�1 is the factor of ds in the decomposition of the formR

Z
e(‹rTZ)ch(ru

⇠
) with respect to ⌦(‹B, C) = C

1�R,⌦(B, C)
�
�ds^C

1�R,⌦(B, C)
�
.

This is because the Chern character is functorial by pullbacks. However, ‹rTZ is not
the pullback of rTZ . A direct calculation from the classical formula for Levi-Civita
connections (see [3] formula (1.18)) yields

‹rTZ = dR +rTZ +
f
0
(s)

2f(s)
ds

so that ‹r2
TZ

= r2
TZ

because dR and ds both commute with rTZ . Thus the curvature
of ‹rTZ is the pullback of the one of rTZ and neither e(‹rTZ) nor ch(ru

⇠
) have a ds

component. This proves the vanishing of E�1.

5.2.5. Adapting Ct to some suitable triple. — Let � be a smooth real increasing
function on R+ which vanishes on [0,

1
2 ] and equals 1 on [1,+1). Consider some

suitable triple (µ
+
, µ
�

, ) with respect to ⇠, h
⇠,r⇠ and g

Z in the sense of Definition 17.
Put some hermitian metrics h

± on µ
± and some connection rµ on µ

+ � µ
� which

respects the decomposition. Denote 1
2 (r + r⇤) by ru. Consider the following t-

depending superconnection on ( E+ � µ
+
)� ( E� � µ

�
):

(79) Bt = ru �rµ +

p
t

2
Dr⇠
�(t) +

1

2
p

t
(◆T � T^) = Ct �rµ +

p
t

2
�(t) ( +  

⇤
) .

B
2
t

is as C
2
t

a fiberwise positive second order elliptic operator, so that its heat kernel
is trace class. Its Chern character is defined as is ch(Ct), the supertrace being the
trace on End( E+ � µ

+
) minus the trace on End( E� � µ

�
).

Lemma 47. — ch(Bt) is real if rµ respects h
+ and h

�. For t  1
2 , one has

(80) ch(Bt) = ch(Ct) + ch(rµ).

Proof. — The equality is obvious.  is of di�erential form degree 0 so that  ⇤ is the
special adjoint of  . The reality follows from (71) (as does Lemma 44).

Call H ±
= KerDr⇠±

 
and P

H± the orthogonal projection E± � µ
± �! H ±, (and

P
H

= P
H + � P

H�). The associated connection on H = H + � H � is

(81) rH = P
H
Ä
ru �rµ

ä
P

H
.

This connection respects the decomposition H + � H �, and it also respects the
hermitian metric on H obtained by restriction of h , iL2 � h

± provided rµ respects
h
± (this can be proved by a direct elementary computation).
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It is proved in [3] Theorem 9.26 that:

(82) lim
t!+1

ch(Bt) = ch(rH )

in the sense of any C ` norm on any compact subset of B.
Both Bt and its Chern character are functorial by pullbacks on fibered products

as in (43) (if the horizontal subspace of the source manifold is taken as described at
the end of §5.2). Note also that the construction can be performed with any smooth
function � on B ⇥ R+ which vanishes on B ⇥ [0, "] and equals 1 on B ⇥ [A,+1) for
any 0 < " < A, and which is increasing with respect to the variable in R+. This is of
course not essential, but will be useful to prove some independence of the constructed
forms on the choice of the function �.

5.2.6. t �! +1 asymptotics of the infinitesimal transgression form. — For any
0 < S < T < +1, the counterpart of (77) for Bt is here

(83) ch(BS)� ch(BT ) = d

ñZ
T

S

�Trs

Å
@Bt

@t
exp�B

2
t

ã
dt

ô
.

Lemma 48. — �Trs

�
@Bt

@t
exp�B

2
t

�
is a real form if rµ respects h

± (the hermitian
metrics on µ

±). If not, this form is changed into its complex conjugate if rµ is changed
into its adjoint connection with respect to h

±.
If r⇠ is flat and if the suitable triple used in the construction of Bt is the trivial

one ({0}, {0}, 0), then:

�Trs

Å
@Bt

@t
exp�B

2
t

ã
= �Trs

Å
@Ct

@t
exp�C

2
t

ã
= 0.

Proof. — The second assertion is proved in [32]. It is reproved here as a direct con-
sequence of (76), of the last assertion of Lemma 44 (and the fact that if r⇠ is flat on
⇠ over M , then dR +r⇠ is also flat on the pullback of ⇠ over fM).

In general, exp�B
2
t

is a globally even End E-valued di�erential form, so that its su-
percommutator with @Bt

@t
is their usual commutator; and it is special autoadjoint if rµ

respects h
± on µ

± (if not, the two forms obtained from mutually adjoint connections
on µ are mutually special adjoint).

On the other hand, @Bt

@t
is for any t a special autoadjoint End E-valued di�erential

form, so that the product @Bt

@t
exp�B

2
t

is the special adjoint of (exp�B
2
t
)
@Bt

@t
(if rµ

respect h
±). Thus

�Trs

Å
@Bt

@t
exp�B

2
t

ã
= �Trs

Å
(exp�B

2
t
)
@Bt

@t

ã
= �Trs

Å
@Bt

@t
exp�B

2
t

ã

and the reality follows (the case when rµ does not respect h
± is similar).
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Proposition 49. — One has the following estimate:

as t! +1 : �Trs

Å
@Bt

@t
exp�B

2
t

ã
= O(t

� 3
2 ).

Proof. — The t ! +1 asymptotic is proved by the adaptation of [3] Theorem 9.23
which is proposed (though not detailed) at the end of §9.3 of [3]. (Here �(t) is constant
on a neighbourhood of +1, so that the arguments of the proof of Theorems 9.7 and
9.23 of [3] apply).

This estimate together with formulae (80) and (78) prove the convergence of the in-
tegral

R +1
0 �Trs

�
@Bt

@t
exp�B

2
t

�
dt. It follows from (82), (83), (80), and Proposition 45

that this integral is a transgression form in the following sense:

(84) d

ñZ +1

0
�Trs

Å
@Bt

@t
exp�B

2
t

ã
dt

ô
=

Z

Z

e(rTZ) ^ ch(ru

⇠
) + ch(rµ)� ch(rH )

(where ch(rµ) = ch(rµ+)�ch(rµ�) and accordingly for ch(rH )). The preceding con-
siderations about functoriality apply here, so that this transgression form is functorial
by pullbacks on fibered products as in (43) (if the horizontal subspace of the source
manifold is taken as described at the end of §5.2).

5.3. Proof of the first part of Theorem 28

5.3.1. Chern-Simons transgression and links. — Let E, F , G and H be vector bundles
on M with connections rE , rF , rG and rH . Suppose there exists some link (K, `)

between E � F and G �H as in (47). One associates to (K, `) the di�erential form
(defined modulo exact forms)

(85) ‹ch([`]) = ‹ch�rE �rH �rK , `
⇤
[rF �rG �rK ]

�

for some connection rK on K. It is easily checked from (9) and (10) that the class
of this form modulo exact forms does not depend on the choice of rK and is not
modified by changing (K, `) by an equivalent link. It is possible to choose a unitary
rK , so that ‹ch([`]) is a real form (modulo exact forms) if it happens that rE , rF ,
rG and rH are all unitary connections. And of course

(86) d‹ch([`]) = ch(rE) + ch(rH)� ch(rF )� ch(rG).

For the composition of two links ` and `
0, and any connections on the considered

bundles one obtains (modulo exact forms and always from (9) and (10)):

(87) ‹ch([`
0 � `]) = ‹ch([`]) + ‹ch([`

0
]).
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5.3.2. Definition of the ⌘-form and check of its properties. — Consider now some
vector bundle ⇠ with connection r⇠ and hermitian metric h

⇠ on M , some horizontal
tangent vector space T

H
M and vertical metric g

Z for the submersion ⇡ : M ! B, and
vector bundles F

+ and F
� on B such that

[F
+
]� [F

�
] = ⇡

Eu
⇤ [⇠] 2 K

0
top(B).

Put any connections rF+ on F
+ and rF� on F

� and choose some equivalence class
of links [`] between F

+�F
� and some family index bundles (H +�µ

�
)� (H ��µ

+
)

provided by any suitable triple (µ
+
, µ
�

, ) (with connections rH and rµ, H ± being
the kernel bundles).

Definition 50. — The families Chern-Simons transgression form is the (inductive
limit of the) class modulo exact forms of the following di�erential form on (compact
subsets of) B:

⌘(r⇠,rTZ ,rF+ ,rF� , [`]) =

Z +1

0
�Trs

Å
@Bt

@t
exp�B

2
t

ã
dt+

+

Z

Z

e(rTZ) ^ ‹ch(ru

⇠
,r⇠) + ‹ch([`])

where ‹ch([`]) is computed with the connections rµ, rH and rF± .

If B is noncompact, the above construction produces some projective collection of
elements of ⌦odd

(K, C)/d⌦
even

(K, C) on compact submanifolds (with boundary and of
the same dimension as B. In fact, this will be fully established in Proposition 51 below.
The properties checked just hereafter are local and will also be valid for a noncompact
B). This gives rise to an unambiguous object in ⌦odd

(B, C)/d⌦
even

(B, C) (which can
be constructed by an analogue procedure to the one which was sketched just before
Definition 40).

It follows from (84), (8) and (86) that the form ⌘(r⇠,rTZ ,rF+ ,rF� , [`]) verifies
the transgression formula stated as property (a) in Theorem 28.

The
R +1
0 �Trs

�
@Bt

@t
exp�B

2
t

�
dt part of ⌘ is functorial by pullback on fibered prod-

ucts as in (43) as was remarked at the end of subSection 5.2.6 just after the proof of
Proposition 49. The ‹ch are both functorial, as was remarked just before Equation (9),
and e(rTZ) too, under the assumption on horizontal subspaces of the end of §5.2.
This proves the naturality property (b) for ⌘.
⌘(r⇠,rTZ ,rF+ ,rF� , [`]) is additive in the following sense: let ⇠1 and ⇠2 be bun-

dles on M with connections r⇠1 and r⇠2 , let F
+
1 , F

�
1 , F

+
2 and F

�
2 be bundles with

connections on B such that [F
+
1 ] � [F

�
1 ] = ⇡

Eu
⇤ [⇠1] and [F

+
2 ] � [F

�
2 ] = ⇡

Eu
⇤ [⇠2] in

K
0
top(B). Let [`1] be some link between F

+
1 � F

�
1 and some (couple of) family index

bundles for ⇠1 on B, and correspondingly for [`2]. The additivity (for direct sums) of
the topological direct image construction ensures that `1� `2 provides an equivalence
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class of link between (F
+
1 �F

+
2 )� (F

�
1 �F

�
2 ) and bundles on B which form a couple

of family index bundles for ⇠1 � ⇠2. Then

⌘(r⇠1 �r⇠2 ,rTZ ,r
F

+
1
�r

F
+
2

,r
F
�
1
�r

F
�
2

, [`1 � `2]) =

= ⌘(r⇠1 ,rTZ ,r
F

+
1

,r
F
�
1

, [`1]) + ⌘(r⇠2 ,rTZ ,r
F

+
2

,r
F
�
2

, [`2]).

This additivity is a direct consequence of the fact that the Chern character and the
supertrace entering the construction of

R +1
0 �Trs

�
@Bt

@t
exp�B

2
t

�
dt are additive for

direct sums, and accordingly for Chern-Simons transgressions (10). Property (c) of
Theorem 28 is thus established for ⌘.

The vanishing of ⌘(r⇠,rTZ ,r
⇡

+
!
⇠
,r

⇡
�
!
⇠
, [Id]) for any flat bundle (⇠,r⇠) is a con-

sequence of the first statement of Lemma 48 and of [11] Proposition 3.14 and Theo-
rem 3.17: Lemma 48 proves that the integrand of the first term in the definition of ⌘
vanishes for all t > 0 (if it is computed using the trivial suitable triple ({0}, {0}, 0)).
In particular, the link [Id] in the third term ‹ch([Id]) is trivial as link, but it links
⇡

+
! ⇠�⇡

�
! ⇠ endowed with their sheaf theoretic direct image flat connections r

⇡
+
!
⇠

and
r
⇡
�
!
⇠
, with ⇡+

! ⇠�⇡
�
! ⇠ endowed with their metric connections rH + and rH� obtained

by the projection on the kernel of the fiberwise Dirac operator (82).
It is proved in [11] Proposition 3.14 that rH + = ru

⇡
+
!
⇠

and accordingly on F
�, and

in [11] Theorem 3.17 (see also Remark 14 above) that, up to exact forms

‹ch(r
⇡

+
!
⇠
,ru

⇡
+
!
⇠
)� ‹ch(r

⇡
�
!
⇠
,ru

⇡
+
!
⇠
) =

Z

Z

e(rTZ)‹ch(r⇠,ru

⇠
).

Thus the two last terms in the definition of ⌘(r⇠,rTZ ,r
⇡

+
!
⇠
,r

⇡
�
!
⇠
, [Id]) mutually

compensate, and the property (d) of Theorem 28 is established for ⌘.

5.3.3. Invariance properties of ⌘. — The proof of the first part of Theorem 28 is thus
reduced to the following

Proposition 51. — ⌘(r⇠,rTZ ,rF+ ,rF� , [`]) does not depend on h
⇠, nor on the func-

tion � nor on the construction of topological direct image and the choice of data
used in it, provided the class of link [`] is modified by composition with the canonical
link between the obtained representatives of the topological direct image when they are
changed.

⌘(r⇠,rTZ ,rF+ ,rF� , [`]) of course depends on the other data in a way which will
be precised later in §5.4.1.

Proof. — This will be proved in two steps.

First step: independence on h
⇠, �, and on deformation of  . — Consider the sub-

mersion ⇡ ⇥ Id[0,1] : M ⇥ [0, 1] �! B ⇥ [0, 1]. The vertical tangent space of ⇡ ⇥ Id[0,1]

is simply the pullback to M ⇥ [0, 1] of the one of ⇡, and it will be supposed to be
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endowed with a pullback metric. Choose some horizontal subspace T
H
M for ⇡ and

pull it back on M ⇥ [0, 1], where it is a suitable horizontal subspace with respect to
⇡ ⇥ Id[0,1]. These choices of horizontal subspaces verify the conditions of the end of
§5.2 with respect to the maps B ⇥ {0} ,! B ⇥ [0, 1] and B ⇥ {1} ,! B ⇥ [0, 1]. Call
‹rTZ the associated pullback connection on the vertical tangent bundle of ⇡ ⇥ Id[0,1].

Consider some vector bundle ⇠ on M , with connection r⇠, and any pair of bundles
F

+ and F
� on B with connections rF+ and rF� such that [F

+
]� [F

�
] = ⇡

Eu
⇤ [⇠] in

K
0
top(B), and some equivalence class of link [`] between F

+�F
� and some couple of

family index bundles for ⇠. Pull back ⇠ on M ⇥ [0, 1] and F
+ and F

� on B⇥ [0, 1] and
call e⇠, ‹F+ and ‹F� the pullbacks. Call ‹r⇠, ‹rF+ and ‹rF� the pullback connections on
them. Endow e⇠ with some not necessarily pullback hermitian metric eh⇠ and choose
any suitable data (eµ+

, eµ�, e ) with respect to ⇡ ⇥ Id[0,1] providing kernel bundles
‹H ±

= KerDr⇠±e on B ⇥ [0, 1]. Of course one has

[‹F+
]� [‹F�] = [‹H +

� eµ�]� [‹H � � eµ+
] = (⇡ ⇥ Id[0,1])

Eu
⇤ [e⇠] 2 K

0
top(B ⇥ [0, 1]).

[`] naturally provides an equivalence class of link between F
+�F

� and the restrictions
to B⇥ {0} of (‹H +

� eµ�)� (‹H �� eµ+
), which can be extended (by parallel transport

along [0, 1]) to an equivalence class of link [è] on the whole B⇥ [0, 1] between ‹F+�‹F�
and (‹H +

� eµ�)� (‹H � � eµ+
).

Construct the di�erential form e⌘ = ⌘(‹r⇠,‹rTZ ,‹rF+ ,‹rF� , [è]) in the same way as
in Definition 50 with respect to all these data on M ⇥ [0, 1]. This must be made using
a smooth function e� on B ⇥ [0, 1]⇥ R+ vanishing on B ⇥ [0, 1]⇥ [0, "], equal to 1 on
B⇥ [0, 1]⇥ [A,+1) and increasing with respect to the variable in R+ as was sketched
at the end of §5.2.5. The obtained form e⌘ verifies (a):

de⌘ =

Z

Z

e(‹rTZ)ch(‹r⇠)� ch(‹rF+) + ch(‹rF�)

where
R

Z
stands for integration along the fibres of ⇡ ⇥ Id[0,1]. Call ⌘0 and ⌘1 the

restrictions of e⌘ to B ⇥ {0} and B ⇥ {1} respectively. Integrating this formula along
[0, 1] provides that the following di�erential form on B is exact:

(88) d

ÅZ

[0,1]
e⌘
ã

= ⌘1 � ⌘0 +

Z

[0,1]

Z

Z

e(‹rTZ)ch(‹r⇠)�
Z

[0,1]
ch(‹rF+) +

Z

[0,1]
ch(‹rF�)

but ‹rTZ and ‹r⇠ are pullback connections on M ⇥ [0, 1] for the projection on the
second factor M ⇥ [0, 1] �! M and accordingly for ‹rF+ and ‹rF� on B ⇥ [0, 1], so
that their Chern characters or Euler form are pullback forms, and their integral along
[0, 1] vanish. It follows that ⌘0 and ⌘1 are equal modulo exact forms.

Now ⌘0 and ⌘1 are both regular definitions of ⌘(r⇠,rTZ ,rF+ ,rF� , [`]) as in Defi-
nition 50, because the class of link between F

+ � F
� and the restrictions to B ⇥ {1}
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of (‹H +
� eµ�)� (‹H �� eµ+

) is in the equivalence class of [`] (it can be deformed along
[0, 1] to the one between the restrictions on B⇥{0}) (and because of the functoriality
property of ⌘). This proves the independence of the class of ⌘ modulo exact forms on
h
⇠ and �, and also that a deformation of the suitable triple does not modify the class

of ⌘ modulo exact forms.

Second step: general independence on the suitable triple used. — First remark that
if (µ

+
, µ
�

, ) is a suitable triple, then (µ
+ � ⇣

+
, µ
� � ⇣

�
, ) is also suitable (⇣+

and ⇣
� are inert excess vector bundles) and gives rise to the same ⌘. The same is

true for (µ
+ � ⇣, µ� � ⇣, � Id⇣) because the extra term due to Id⇣ appearing in

�Trs

�
@Bt

@t
exp�B

2
t

�
is the supertrace on ⇣ � ⇣ of some End(⇣ � ⇣)-valued di�erential

form whose diagonal terms are equal.
For some suitable triple (µ

+
, µ
�

, ), giving rise to kernel bundles H ±, one as-
sociates to it some positive kernel triple (µ

+ � �, µ
�

, + ') as just before Def-
inition 37. One puts on B ⇥ [0, 1] the bundles eµ+

= µ
+ � � � H �, eµ� = µ

�

and e =  + cos(
⇡

2 t)' + sin(
⇡

2 t)◆ H� where ◆ H� is the obvious embedding of H �

into E� � µ
�. The obtained triple (eµ+

, eµ�, e ) is a positive kernel triple with re-
spect to ⇡ ⇥ Id[0,1]. Its kernel bundle restricts to (KerDr⇠+

 +')� H � on M ⇥ {0} and
(KerDr⇠+

 
)�� on M⇥{1}. Thus applying the above considerations to this case, proves

that ⌘1 constructed using (µ
+ � H �, µ

�
, + ◆

�
H ) (corresponding to M ⇥ {1} with

an inert copy of � added to µ
+ � H �) and ⌘0 constructed using (µ

+ � �, µ
�

, + ')

(corresponding to M ⇥ {0} with an inert copy of H � added to µ
+��) di�er from an

exact form; the parallel transport along [0, 1] from (KerDr⇠+
 +')� H � to (KerDr⇠+

 
)��

(following Ker(Dr⇠+e |M⇥{t})) is easily checked to lie in the equivalence class of the link

between (KerDr⇠+
 

)� H � and (KerDr⇠+
 +')�� obtained from (58) and Definition 36.

The lemma is thus proved in full generality.

5.4. Anomaly formulae and their consequences

5.4.1. Anomaly formulae. — The Chern-Simons theory (7) also applies for the Eu-
ler class: for any real vector bundle FR on M , consider p1 : M ⇥ [0, 1] ! M (the
projection on the first factor) and the bundle ‹FR = p

⇤
1FR on M ⇥ [0, 1], choose any

euclidean metric and unitary connection ‹rFR on ‹FR, denote by rFR,t = ‹rFR |M⇥{t}

the restrictions of ‹rFR to M ⇥ {t} for all t 2 [0, 1], and define

(89) ee(rFR,0,rFR,1) =

Z

[0,1]
e(‹rFR).
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The class of ee(rFR,0,rFR,1) in ⌦(M, C)/d⌦(M, C) only depends on the limiting con-
nections rFR,0 and rFR,1 and ee(rFR,0,rFR,1) verifies the following transgression for-
mula

dee(rFR,0,rFR,1) = e(rFR,1)� e(rFR,0).

It is also functorial by pull-backs, and locally gauge invariant, and verifies a similar
cocycle property (9) as does ‹ch. Moreover, making the product of e(‹rFR) and ch(‹rE)

yields the following equality modulo exact forms:
(90)Z

[0,1]
e(‹rFR) ^ ch(‹rE) = ee(rFR,0,rFR,1) ^ ch(rE,0) + e(rFR,1) ^ ‹ch(rE,0,rE,1)

= e(rFR,0) ^ ‹ch(rE,0,rE,1) + ee(rFR,0,rFR,1) ^ ch(rE,1).

Take now the same model as in the first step of the proof of Proposition 51, but
with not necessarily pullback connections ‹r⇠ nor fiberwise riemannian metric egZ nor
horizontal space flTHM . The obtained connection ‹rTZ is of course not a pullback
connection. Denote by r0

⇠
and r0

TZ
the connections on ⇠ and on TZ corresponding

to data on M ⇥ {0} and by r1
⇠

and r1
TZ

their counterpart on M ⇥ {1}. Consider
pullbacks on B ⇥ [0, 1] of some couple (F

+
, F
�

) of bundles on B with connections
rF+ and rF� such that [F

+
]� [F

�
] = ⇡

Eu
⇤ [⇠] 2 K

0
top(B) with pullback connections,

the counterpart of (88) in this setting is

(91)
⌘(r1

⇠
,r1

TZ
,rF+ ,rF� , [`])� ⌘(r0

⇠
,r0

TZ
,rF+ ,rF� , [`]) =

=

Z

Z

h
e(r0

TZ
) ^ ‹ch(r0

⇠
,r1

⇠
) + ee(r0

TZ
,r1

TZ
) ^ ch(r1

⇠
)

i

where the integrand can be modified as in (90).
Now one also can change the bundles on B in the following way: take suitable

(µ
+
, µ
�

, ) and call H ±
= KerDr⇠±

 
, endow H + � µ

� and H � � µ
+ with any

connections r" and r#. Consider vector bundles F
+, F

�, G
+ and G

� on B such
that [F

+
]� [F

�
] = [G

+
]� [G

�
] = ⇡

Eu
⇤ [⇠] 2 K

0
top(B), choose some connections rF+ ,

rF� , rG+ and rG� on them, and some links [`F ] and [`G] between F
+ � F

� or
G

+ �G
� respectively and (H + � µ

�
)� (H � � µ

+
). Then from the construction of

⌘ it follows that

(92)

⌘(r⇠,rTZ ,rF+ ,rF� , [`F ]) = ⌘(r⇠,rTZ ,r",r#, [Id]) + ‹ch([`F ])

= ⌘(r⇠,rTZ ,rG+ ,rG� , [`G])� ‹ch([`G]) + ‹ch([`F ])

= ⌘(r⇠,rTZ ,rG+ ,rG� , [`G]) + ‹ch([`F � `�1
G

])

where of course ‹ch([`F ]) and ‹ch([`G]) are computed with rF± or rG± respectively,
and r" and r#.

Formulae (91) and (92) give all the dependence of ⌘ on its data.
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5.4.2. End of proof of Theorem 28. — If ⇠ has vanishing rational Chern classes, then
some finite direct sum ⇠ � ⇠ � · · · � ⇠ is topologically trivial on X. The anomaly
formulae (which are consequences of properties (a) and (b)) then relate ⌘ for r⇠ �
r⇠ � · · · � r⇠ (and any direct sum of copies of direct image representatives) and ⌘

for the canonical flat connection on the trivial bundle with corresponding flat direct
image, which vanishes because of (d). Property (c) allows to simply divide by the
number of copies of ⇠ to obtain the desired ⌘, which is thus obtained using only (a),
(b), (c) and (d).

Remark. — One could generalise to bundles ⇠ whose restrictions to the fibers of ⇡
have vanishing rational Chern classes by adding some property linking ⌘ for ⇠ and ⌘
for ⇠ ⌦ ⇡⇤⇣ where ⇣ is any bundle on B. Some more axioms are needed to obtain a
general caracterisation.

One could hope to obtain a caracterisation of ⌘ modulo the image of K
1
top(B) by

the Chern character, with no care of links of bundles on B with someones obtained
by analytic families index construction. However, the fact that one must consider
a not controlled finite number of copies of ⇠ would prevent to obtain more than a
caracterisation modulo rational cohomology.

5.4.3. Proof of Theorem 29. — The anomaly formulae (91) and (92) yield in the
situation of Theorem 29 that

⌘(rE ,rTZ ,r
⇡

+
!

E
,r

⇡
�
!

E
, [Id])� ⌘(rF ,rTZ ,r

⇡
+
!

F
,r

⇡
�
!

F
, [Id]) =

=

Z

Z

e(rTZ)‹ch(rE , f
⇤rF )� ‹ch�⇡`([f ])

�
.

Both ⌘ vanish (this is property (d)), and that the right hand side vanishes is exactly
the desired result in view of Definitions 7 and 26.

5.4.4. Proof of Theorem 31. — Let (⇠,r⇠,↵) 2 “Kch(M). If F
+, F

�, G
+ and G

�

are vector bundles on B such that [G
+
] � [G

�
] = [F

+
] � [F

�
] = ⇡

Eu
⇤ [⇠] 2 K

top
0 (B).

Consider any connections rF+ , rF� , rG+ and rG� on them. It follows from (92)
that

⌘(r⇠,rTZ ,rF+ ,rF� , [`F ])� ⌘(r⇠,rTZ ,rG+ ,rG� , [`G]) = ‹ch([`F � `�1
G

]).

Formula (51) written with G
+ and G

� (with their connections) instead of F
+ and

F
� thus provides the same class in “Kch(B) (see (10), (13) and (85)). ⇡Eu

! (⇠,r⇠,↵) is
thus a well defined element in “Kch(B).

Suppose that (⇠,r⇠,↵) = (⇠
0
,r⇠0 ,↵0) 2 “Kch(M), and that f : ⇠ ! ⇠

0 is some
smooth vector bundle isomorphism, then

↵
0
= ↵+ ‹ch(r⇠, f⇤r⇠0) + �
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where � is a closed form lying in the image of K
1
top(M) by the Chern character. Thus

if [F
+
]� [F

�
] = ⇡

Eu
⇤ [⇠] 2 K

0
top(B) with connections rF+ on F

+ and rF� on F
�, one

has from (91) and (92) (for any suitable links [`⇠] and [`⇠0 ]):

⌘(r⇠,rTZ ,rF+ ,rF� , [`⇠])� ⌘(r⇠0 ,rTZ ,rF+ ,rF� , [`⇠0 ]) =

=

Z

Z

e(rTZ) ^ ‹ch(r⇠, f⇤r⇠0) + ‹ch(`⇠ � `�1
⇠0 ).

Remember the definition of a : ⌦
odd

(M, C)
�
d⌦

even
(M, C) �! “Kch(M) given just be-

fore Proposition 10. One obtains from the preceding equation:

⇡
Eu
! (⇠,r⇠,↵)� ⇡Eu

! (⇠
0
,r⇠0 ,↵0) =

= a

ÅZ

Z

e(rTZ) ^
⇣
‹ch(r⇠, f⇤r⇠0) + ↵� ↵0

⌘
+ ‹ch(`⇠ � `�1

⇠0 )

ã

= a

ÅZ

Z

e(rTZ) ^ �
ã

+ a

Ä‹ch(`⇠ � `�1
⇠0 )

ä

which vanishes in “Kch(B), because ‹ch(`⇠ � `�1
⇠0 ) 2 ch

�
K

1
top(B)

�
⇢ H

odd
(B, C) and so

does
R

Z
e(rTZ) ^ � by virtue of the cohomological version of Atiyah-Singer families

index theorem for K
1
top.

Moreover the additivity of ⌘ for direct sums (property (c)) yields

⇡
Eu
! (⇠1 � ⇠2,r⇠1 �r⇠2 ,↵1 + ↵2) = ⇡

Eu
! (⇠1,r⇠1 ,↵1) + ⇡

Eu
! (⇠2,r⇠2 ,↵2).

⇡
Eu
! is thus well defined as a morphism from “Kch(M) to “Kch(B).
The commutativity of diagram (53) is a consequence of property (d) of ⌘.
The commutativity of the right and the central squares of diagram (54) are tauto-

logical. The commutativity of the left square of (54) is a consequence of the cohomo-
logical version of Atiyah-Singer families index theorem for K

1
top.

In the same way one has the following equality modulo exact forms:

B
�
⇡

Eu
⇤ (⇠,r⇠,↵)

�
= ‹ch(r⇤

F+ ,rF+)� 2iIm

ÅZ

Z

e(rTZ) ^ ↵
ã

� ‹ch(r⇤
F� ,rF�) + 2iIm

�
⌘(r⇠,rTZ ,rF+ ,rF� , [`])

�
.

Of course the connections on F
+ and on F

� can be supposed to respect some hermi-
tian metrics on F

+ and F
� without changing the formula, and this makes and vanish

the terms ‹ch(r⇤
F+ ,rF+) and ‹ch(r⇤

F� ,rF�).
The reality considerations for ‹ch([`]) between (85) and (86) and the last statement

of Lemma 48 imply that ⌘(r⇠,rTZ ,rF+ ,rF� , [`]) is a real form (modulo exact forms)
if it happens that r⇠, rF+ and rF� respect some hermitian metrics on their bundles.
Consider any connection ru

⇠
which respects some hermitian metrics on ⇠. The reality
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of ⌘(ru

⇠
,rTZ ,rF+ ,rF� , [`]) and Formula (91) yield

⌘(r⇠,rTZ ,rF+ ,rF� , [`]) =

= ⌘(ru

⇠
,rTZ ,rF+ ,rF� , [`]) +

Z

Z

e(rTZ) ^ ‹ch(ru

⇠
,r⇠)

2iIm
�
⌘(r⇠,rTZ ,rF+ ,rF� , [`])

�
=

Z

Z

e(rTZ) ^ 2iIm
�‹ch(ru

⇠
,r⇠)

�
.

Now using (31)) one gets:

B
�
⇡

Eu
! (⇠,r⇠,↵)

�
=

Z

Z

e(rTZ) ^
�‹ch(r⇤

⇠
,r⇠)� 2iIm↵

�

=

Z

Z

e(rTZ) ^B(⇠,r⇠,↵)

and the last statement of Theorem 31 is proved.

5.4.5. Influence of the vertical metric and the horizontal distribution. — If geometric
data are changed on M , namely the vertical riemannian metric g

Z and/or the hor-
izontal subspace T

H
M , this changes the connection rTZ , and this also changes the

morphism ⇡
Eu
! .

Lemma 52. — Let rTZ and ⇡Eu
! be associated to data g

Z and T
H
M , let g

Z 0 and T
H 0

M

be other data and call r0
TZ

and ⇡Eu
!
0 the associated connection on TZ and morphism

from “Kch(M) to “Kch(B). Then, for any (⇠,r⇠,↵) one has

⇡
Eu
!
0
(⇠,r⇠,↵)� ⇡Eu

! (⇠,r⇠,↵) = �a

ÅZ

Z

ee(rTZ ,r0
TZ

)
...
ch(⇠,r⇠,↵)

ã
.

Proof. — If dimZ is odd, ⇡Eu
! and ⇡Eu

!
0 will be proved to vanish in §6.3. ee also vanishes.

If dimZ is even, it successively follows from (91) that

⌘(r⇠,r0TZ
,rF+ ,rF� , [`])� ⌘(r⇠,rTZ ,rF+ ,rF� , [`]) =

Z

Z

ee(rTZ ,r0
TZ

) ^ ch(r⇠)

⇡
Eu
!
0
(⇠,r⇠,↵)� ⇡Eu

! (⇠,r⇠,↵) =

= a

ÅZ

Z

�
e(r0

TZ
)� e(rTZ)

�
↵�

Z

Z

ee(rTZ ,r0
TZ

) ^ ch(r⇠)
ã

=

= a

ÅZ

Z

ee(rTZ ,r0
TZ

) ^
�
� ch(r⇠) + d↵

�ã

this last equality is valid modulo exact forms because

d
�
ee(rTZ ,r0

TZ
)↵
�

= e(r0
TZ

)↵� e(rTZ)↵+ (�1)
degee(rT Z ,r0

T Z
)ee(rTZ ,r0

TZ
)d↵

and ee(rTZ ,r0
TZ

) is of degree dimZ � 1, with dimZ even.
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If dimZ is even, and since ee(rTZ ,r0
TZ

) is of degree dimZ� 1, it follows that MK0

is the biggest subgroup of “Kch on which there is no variation of ⇡Eu
! when geometric

data g
Z and T

H
M are changed. This gives a topological significance to the direct

image morphism ⇡
Eu
! on MK0.

In the language of [14], the geometry of the fibration should be encoded into
some smooth refinement of the used K-orientation, (here it is the one associated
to the fiberwise Euler operator) and the restriction of ⇡Eu

! to MK0(M) would be
independent of the choice of this smooth K-orientation.

6. Fiberwise Hodge symmetry

The goal of this part is to prove Theorems 32 and 33. All these results are conse-
quences of symmetries induced by the fiberwise Hodge star operator. Paragraph §6.1
is essentially devoted to technical computations dealing with relations of this star
operator with various geometrical features of the theory.

6.1. Symmetries induced on family index bundles

6.1.1. The fiberwise Hodge ⇤ operator. — Here we will make constant use of the
notations introduced in §3.1.1, §3.4.1 and §5.2.1. For any vertical tangent vector w 2
TZ, consider its dual one-form w[ (through the fiberwise riemannian metric g

Z), and
its Cli�ord action on ^•T ⇤Z ⌦ ⇠

(93) c(w) = (w[^)� ◆w

(◆w denotes the interior product by w); c(w) is skewadjoint with respect to ( | )Z and
verifies c(w)2 = �g

Z
(w, w), it is an isometry if g

Z
(w, w) = 1.

Consider the vertical Hodge operator ⇤Z = c(e1)c(e2) · · · c(edimZ) for any orthonor-
mal direct base e1, e2, . . . , edimZ of TZ. It is an isometry of E (endowed with h , iL2),
and it has the same parity as dimZ (with respect to the Z2 grading of E). Its inverse
⇤�1

Z
= (�1)

1
2dimZ(dimZ+1)⇤Z is also its adjoint with respect to both ( | )Z and h , iL2 .

Define the metrized exterior product of ⇠-valued vertical di�erential forms by the
following formula on decomposed tensors:

(↵“⌦ a) ^
h⇠

(� “⌦ b) = (↵ ^ �)h
⇠
(a, b)

(a sign (�1)
degadeg� should be put on the right side if ⇠ would be Z2-graded, but this

case will not be considered in the sequel, note also that this operation is independent
of the riemannian vertical metric g

Z). Then for any � 2 E whose di�erential form
degree is  deg↵:

(94) (↵“⌦ a) ^
h⇠

(⇤Z�) = (�1)
1
2deg↵(deg↵�1)+dimZdeg↵

�
(↵“⌦ a)

���
�
Z
dVolZ .
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6.1.2. Symmetry induced by ⇤Z on fiberwise twisted Euler operators. — For any vec-
tor w 2 TZ, c(w) commutes with ⇤Z if dimZ is odd and it anticommutes with ⇤Z if
dimZ is even. It follows from the two preceding formulae that if r⇤

⇠
is associated to

r⇠ and h
⇠ as in (22), then for any � and �0 in E:

(95)
d

Z
(� ^

h⇠
�
0
) = (d

r⇠�) ^
h⇠
�
0
+ (�1)

deg�
� ^

h⇠
(d
r⇤
⇠ �
0
)

so that (d
r⇠)⇤ = (�1)

1+ 1
2dimZ(dimZ�1) ⇤Z d

r⇤
⇠ ⇤Z

from which one deduces that

(96) d
r⇠ + (d

r⇠)⇤ = �(�1)
dimZ ⇤�1

Z

�
d
r⇤
⇠ + (d

r⇤
⇠ )
⇤� ⇤Z .

This formula can also be checked from [11] formulae (3.36), (1.30), (1.31) and the last
sentence at the end of the first alinea of §III(d).

Suppose that (µ
+
, µ
�

, ) is a suitable triple with respect to ⇠ endowed with h
⇠ and

r⇠, and produce kernel bundles H + and H �. If dimZ is even, ⇤Z respects the parity
of vertical forms while ⇤Z exchanges this parity if dimZ is odd. It then follows from
(96) that:

Proposition 53. — If dimZ is odd,
�
µ
�

, µ
+
, (⇤Z�Idµ+)� ⇤�(⇤�1

Z
�Idµ�)

�
is a suitable

triple for ⇠ endowed with h
⇠ and r⇤

⇠
. It produces kernel bundles (⇤Z � Idµ�)H � and

(⇤Z � Idµ+)H +.
If dimZ is even. The triple

�
µ

+
, µ
�

,�(⇤Z � Idµ�) �  � (⇤�1
Z
� Idµ+)

�
is suitable

with respect to ⇠ endowed with h
⇠ and r⇤

⇠
. It produces kernel bundles (⇤Z � Idµ+)H +

and (⇤Z � Idµ�)H �.

Indeed denote in both cases by  the third element of the proposed triples, then
the triple (µ

+
, µ
�

, ) or (µ
�

, µ
+
, ) for r⇤

⇠
is chosen so that (96) reads

(97)

8
<

:
Dr⇠±
 

= �(⇤Z � Idµ⌥)
�1 Dr

⇤
⇠
±

 (⇤Z � Idµ±) if dimZ is even,

Dr⇠±
 

= (⇤Z � Idµ⌥)
�1 Dr

⇤
⇠
⌥

 (⇤Z � Idµ±) if dimZ is odd.

6.1.3. Odd dimensional fibre case. — Suppose B is compact and the fibres of ⇡ are
odd dimensional. Consider some positive kernel triple (�, {0},') for ⇠, which is sup-
posed to be endowed with a connection r⇠ which respects the hermitian metric h

⇠.
(There exists some as was mentioned just before Definition 37). It is here needed that
' vanishes on E+ (which is in fact the case in the above cited references [2] Proposi-
tion 2.2, or [3] Lemma 9.30 or [29] Lemma 8.4 of chapter III). Call K+ the associated
kernel bundle. It follows from Proposition 53 that

�
{0},�, (⇤Z � Id�) � '⇤ � ⇤�1

Z

�
is

suitable and gives rise to kernel bundles {0} and (⇤Z � Id�)K+ ⇢ E� � �.

Lemma 54. — The triple
�
�,�,' + (⇤Z � Id�) � '⇤ � ⇤�1

Z
+ i

1+ 1
2dimZ(dimZ+1)

Id�

�
is

suitable with kernel bundles {0} and {0}.
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The point about the factor of Id� is that it should be nonvanishing and purely
imaginary if ⇤2

Z
= Id but real (and nonvanishing) if ⇤2

Z
= �Id.

The vanishing of ⇡Eu
⇤ on K

0
top in the case of odd dimensional fibres and compact B

follows. If B is noncompact, one concludes using the fact that any element of K
0
top(B)

whose restriction to any compact subset vanishes, is itself trivial. The vanishing of
⇡

Eu
⇤ on K

1
top is a consequence of its vanishing on K

0
top.

Proof. — Consider any element (v,�) 2 �� E+ belonging to the kernel bundle. The
corresponding condition reads

(�
d
r⇠ + (d

r⇠)⇤
�
� = �'v

�'⇤(⇤�1
Z
�) = i

1+ 1
2dimZ(dimZ+1)

v.

Writing � = ⇤Z�0, one obtains the following
�
d
r⇠ + (d

r⇠)⇤
�
⇤Z �0 = �i

�1� 1
2dimZ(dimZ+1)

''
⇤
�
0

⌦�
d
r⇠ + (d

r⇠)⇤
�
⇤Z �0,�0

↵
L2 = �i

�1� 1
2dimZ(dimZ+1)h'⇤�0,'⇤�0i�

where h , i� is the scalar product on �. It follows from (96), and the fact that r⇠
respects the hermitian metric, that

�
d
r⇠ + (d

r⇠)⇤
�
⇤Z is selfadjoint if ⇤2

Z
= Id and

antiselfadjoint if ⇤2
Z

= �Id. Thus the right hand side of this equality is real whenever
the left hand side is purely imaginary and conversely. In any case this proves that '⇤�0

vanishes. Thus v vanishes, thus
�
d
r⇠ + (d

r⇠)⇤
�
� vanishes. It follows that � belongs

to the (positive) kernel bundle associated to the triple
�
{0},�, (⇤Z � Id�) �'⇤ � ⇤�1

Z

�
.

But this kernel bundle vanishes, and so does �.
The proof of the vanishing of the cokernel is similar.

Let ( F +
, F �) be any couple of family index bundles for ⇠. It follows from the

preceding lemma and Theorem 25 that there exists a canonical link `
{0}
F between

F + � F � and {0}� {0}. These canonical links are all compatible, this means that if
( G+

, G�), and (K+
, K�) are couples of family index bundles for ⇠1 � ⇣1 and ⇠2 � ⇣2

which are linked through some link `, then

(98) ⇡`([`]) = [`
{0}
F ] � [`

{0}
G ]
�1

.

This is because the same construction as in the proof of Lemma 54 can be performed
on M ⇥ [0, 1] compatibly with a deformation as was used in §4.1.4.

That ⇡`([`]) is constant, (i.e. ⇡`([`]) does not depend on [`]) is compatible with the
action of K

1
top on links and the vanishing of ⇡Eu

⇤ on K
1
top.

6.1.4. Symmetry on canonical links. — B is no longer supposed compact. Let ⇠1,
⇠2, ⇣1 and ⇣2 be bundles on M with connections r⇠1 , r⇠2 , r⇣1 and r⇣2 such that
[⇠1] � [⇣1] = [⇠2] � [⇣2] 2 K

0
top(M). Let [`] be some equivalence class of link between
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⇠1 � ⇣1 and ⇠2 � ⇣2. One supposes that ⇠1 � ⇣1 and ⇠2 � ⇣2 admit respective couples
of family index bundles ( F +

, F �) and ( G+
, G�).

Call ( F ⇤+, F ⇤�) and ( G⇤+, G⇤�) the respectively associated family index bundles
for ⇠1�⇣1 endowed with r⇤

⇠1
and r⇤

⇣1
or for ⇠2�⇣2 endowed with r⇤

⇠2
and r⇤

⇣2
obtained

using the symmetric triples of Proposition 53. There are isomorphisms (of the form
(⇤Z � Idµ±))

F ± ⇠= F ⇤± and G± ⇠= G⇤± if dimZ is even,

F ± ⇠= F ⇤⌥ and G± ⇠= G⇤⌥ if dimZ is odd.

This provides a link `⇤F between F +� F � and F ⇤+� F ⇤� if dimZ is even or between
F + � F � and F ⇤� � F ⇤+ if dimZ is odd. And a link `⇤G accordingly.

Remember the definition of ⇡`([`]) as an equivalence class of links between F +� F �

and G+ � G� from Definition 41. Denote by ⇡`([`]̌ ) the corresponding equivalence
class of links between F ⇤+ � F ⇤� and G⇤+ � G⇤�.

Proposition 55. — These classes of links are compatible in the sense that
(
⇡`([`]̌ ) = [`

⇤
F ]
�1 � ⇡`([`]) � [`

⇤
G ] if dimZ is even,

[`
{0}
F ⇤ ] = [`

⇤
F ] � [`

{0}
F ]
�1 if dimZ is odd.

Proof. — The symmetry of family index bundles of Proposition 53 is valid on a
deformation on B⇥ [0, 1] as was performed in §4.1.3 and used in §4.1.4 for the general
construction of ` G

F . In the even dimensional fibre case, one obtains two constructions
of ` G

F and `
G⇤

F ⇤ in exactly the same terms as in §4.1.3 and §4.1.4 which are mutually
isomorphic through ⇤Z . Thus [`

G⇤

F ⇤ ] = [`
⇤
F ]
�1 � [`

G
F ] � [`

⇤
G ] and the first statement of

the proposition follows from the fact that ⇡`([`]) is constructed as a particular case
of some (inductive limit of) [`

G
F ].

In the odd dimensional fibre case, first remark that the links of type [`
{0}
F ], though

constructed under a compacity hypothesis, are globally valid for globally defined cou-
ple of family index bundles (if there exists some. This is because locally defined links
between global objects yield global links, as was sketched just before Definition 40).
One may then suppose that G+

= G� = {0} (see (98)). The point is now that ⇤Z
exchanges the parity, so that a link obtained through some couple of positive kernel
family index bundles (see Definition 37) is mapped by ⇤Z to a link obtained through
a couple of “negative kernel” family index bundles. The counterpart of (58) in this
situation reads

0 �! H + '
⇤

�! � �! KerDr⇠�
 �'⇤ �! H � �! 0

where the two last maps are orthogonal projections (after inclusion of � in �� E�).
The proposition is reduced to prove that the equivalence class of links associated to
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this exact sequence (from Definition 36) equals [`
��Ker D

r
⇠
�

 �'⇤

H +� H� ]. This is a consequence
of the fact that this link can be realised as a deformation, by an analogue construction
to what was made in the second step of the proof of Proposition 51.

6.1.5. Symmetry on connections on the infinite rank bundle E. — Remember the
definitions of the infinite rank bundle E from (36) and (37), and of the connections
r and rS on E from (72) and (73)

Consider the adjoint r⇤
⇠

of r⇠, and the connection rˇ on E which is associated
to r⇤

⇠
in the same way as r is associated to r⇠ through (72). Call rˇ

S the adjoint
connection of rˇ defined in the same way as was rS with respect to r in (73).
The reader is warned that the connection denoted here by rS corresponds to the
connection denoted by (rW

)
⇤ in [11] Proposition 3.7, and that rˇ and rˇ

S here have
no counterpart in [11].

Lemma 56. — For any vector u tangent to B, and any local section � of E

rǔ� = ⇤�1
Z

�
rS

u (⇤Z�)
�

and rǔ
S
� = ⇤�1

Z

�
ru(⇤Z�)

�
.

Proof. — Remember the definition of rTZ from §3.4.1. Denote allways by rTZ the
associated connection on ^•T ⇤Z, it is compatible with the Cli�ord action (93), so that
its associated covariant derivative commutes with ⇤Z . Let rTZ⌦⇠ be the connection
on ^•T ⇤Z ⌦ ⇠ associated to rTZ and r⇠, its adjoint r⇤

TZ⌦⇠ with respect to ( | )Z

is nothing but the connection on ^•T ⇤Z ⌦ ⇠ associated to rTZ and r⇤
⇠
. Then the

covariant derivatives associated to both rTZ⌦⇠ and r⇤
TZ⌦⇠ commute with ⇤Z .

Let u be some vector tangent to B, and uH its horizontal lift. For any vector y

tangent to the fibre, the vertical projection P
TZrLCyu

H of the covariant derivative
of uH along y for the connection rLC is independent of the global riemannian metric
defining rLC . Moreover, if v is another vertical tangent vector at the same point as
y, then the scalar product g

Z
(P

TZrLCyu
H

, v) is symmetric in y and v. As proved in
[11] (3.27) and (3.32), if (e1, e2, . . . , edimZ) is an orthonormal base of TZ, then for
any local section � of E, the connections r and rS express locally on M as:

(99)

ru� = rTZ⌦⇠uH� +

X

i and k

g
Z
(P

TZrLCei
uH

, ek)e[
i
^ (◆ek

�),

rS

u � = r⇤
TZ⌦⇠uH

� �
X

i and k

g
Z
(P

TZrLCei
uH

, ek)e[
i
^ (◆ek

�).

The lemma follows from the obvious corresponding formulae for rˇ and rˇ
S , the fact

that rTZ⌦⇠ and r⇤
TZ⌦⇠ commute with ⇤Z , the fact that

(e[
i
^)◆ek

⇤Z = � ⇤Z (e[
k
^)◆ei

for any i and k and the symmetry in ei and ek of g
Z
(P

TZrLCei
uH

, ek).
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6.2. Proof of results about K
0
flat and K

0
rel

6.2.1. End of proof of Theorem 32. — Suppose that E is a vector bundle on M with a
flat connection rE (and hermitian metric h

E), and construct the associated objects E,
r and rS as above. Let P : E �! Ker

�
d
rE + (d

rE )
⇤� be the orthogonal projection,

then it is proved in [11] Proposition 3.14 that r⇡!E
⇠= PrP and r⇤

⇡!E
⇠= PrS

P

through the fiberwise Hodge isomorphism ⇡!E
⇠= Ker

�
d
rE + (d

rE )
⇤�.

Consider on E the adjoint connection r⇤
E

(which is flat). The direct image of the
flat bundle (E,r⇤

E
) will be denoted by ⇡!ˇE and the flat connection on it by r⇡!̌ E so

that ⇡!(E,r⇤
E

) = (⇡!̌ E,r⇡!̌ E).
As precedingly, call rˇ and rˇ

S the connections on E constructed from r⇤
E

as in
(72) and (73), let Pˇ: E �! Ker

�
d
r⇤

E + (d
r⇤

E )
⇤� be the orthogonal projection, then

from [11] Proposition 3.14 again, r⇡!̌ E
⇠= PˇrˇPˇ and r⇤

⇡!̌ E
⇠= Pˇrˇ

S
Pˇ through the

fiberwise Hodge isomorphism ⇡!̌ E
⇠= Ker

�
d
r⇤

E + (d
r⇤

E )
⇤�.

It follows from (96) that Pˇ = ⇤ZP⇤�1
Z

so that ⇤Z directly provides a smooth
isomorphism ⇡!E

⇠= ⇡!̌ E. It then follows from the preceding Lemma 56 that through
this isomorphism r⇤

⇡!E
⇠= r⇡!̌ E and r⇡!E

⇠= r⇤⇡!̌ E
. Now ⇤Z respects the + and � parts

of E if dimZ is even, and exchanges them if dimZ is odd so that

(100) ⇡!(E,r⇤
E

) = (�1)
dimZ

(⇡!E,r⇤
⇡!E

).

In particular, the first equation of Theorem 32 is proved.
Suppose now that dimZ is even. Then if (E,rE , F,rF , f) 2 K

0
rel(M)

⇡⇤(E,r⇤
E

, F,r⇤
F
, f) =

=
�
⇡

+
! ˇE � ⇡�! ˇF,r

⇡
+
!

ˇE
�r

⇡
�
!

ˇF
,⇡
�
! ˇE � ⇡+

! ˇF,r
⇡
�
!

ˇE
�r

⇡
+
!

ˇF
,⇡`([f ])

�

=
�
⇡

+
! E � ⇡�! F,r⇤

⇡
+
!

E
�r⇤

⇡
�
!

F
,⇡
�
! E � ⇡+

! F,r⇤
⇡
�
!

E
�r⇤

⇡
+
!

F
,

[`
⇤
⇡!E
� (`

⇤
⇡!F

)
�1

] � ⇡`([f ]) � [(`
⇤
⇡!E

)
�1 � `⇤

⇡!F
]
�
.

The reality of ⇡⇤ in the case of even dimensional fibres (second statement of The-
orem 32) follows from this, the first statement of Proposition 55 and the obvious
compatibility of links of the form `

⇤
F with direct sums.

The last equation of Theorem 32 was proved just after its statement.
The proof of Theorem 32 is thus completed.

6.2.2. Results on ⇡ . — If dimZ is odd, consider some (E,rE) 2 K
0
flat(M), there is

a link [`
{0}
⇡!E

] between ⇡
+
! E � ⇡�! E and {0}� {0} as defined at the end of §6.1.2 (see

also the proof of Proposition 55),

Definition 57. — For (E,rE) 2 K
0
flat(M), one defines

(101) ⇡ (E,rE) =
�
⇡
�
! E,r

⇡
�
!

E
,⇡

+
! E,r

⇡
+
!

E
, [`

{0}
⇡!E

]
�1
�
2 K

0
rel(B).
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Proposition 58. — ⇡ defines a morphism from K
0
flat(M) to K

0
rel(B).

The relation ⇡! = @ � ⇡ is then tautological.
The last but one statement of Theorem 33 (that ⇡ is purely imaginary) is a direct

consequence of the second statement of Proposition 55, since through the isomorphism
induced by ⇤Z one has

⇡ (E,r⇤
E

) =
�
⇡
�
! ˇE,r

⇡
�
!

ˇE
,⇡

+
! ˇE,r

⇡
+
!

ˇE
, [`

{0}
⇡!̌ E

]
�1
�

=
�
⇡

+
! E,r⇤

⇡
+
!

E
,⇡
�
! E,r⇤

⇡
�
!

E
, [`
⇤
⇡!E

] � [`
{0}
⇡!E

]
�1
�

(and in general `⇤F = `
⇤
F ⇤ in the odd dimensional fibre case). In particular, if rE

respects some hermitian metric on E then

⇡ (E,rE) =
�
⇡

+
! E,r⇤

⇡
+
!

E
,⇡

+
! E,r

⇡
+
!

E
, [Id]

�

= �
�
⇡
�
! E,r⇤

⇡
�
!

E
,⇡
�
! E,r

⇡
�
!

E
, [Id]

�

from which one deduces using (33), (34), Remark 14, [11] Theorem 0.1 and the van-
ishing of the Euler class of odd rank real vector bundles that:

(102)
N ch � ⇡ (E,rE) =

1

2
(B(E,rE , 0)�B(E,r⇤

E
, 0))

=
1

2

Z

Z

e(TZ) ^B(E,rE , 0) = 0.

The relation ⇡⇤ = ⇡ � @ on K
0
rel is proved by the following computation, which

uses (98) and the compatibility of links of the form `
{0}
F with direct sums:

⇡⇤(E,rE , F,rF , f) =

=
�
⇡

+
! E � ⇡�! F,r

⇡
+
!

E
�r

⇡
�
!

F
,⇡
�
! E � ⇡+

! F,r
⇡
�
!

E
�r

⇡
+
!

F
,⇡`([f ])

�

=
�
⇡

+
! E,r

⇡
+
!

E
,⇡
�
! E,r

⇡
�
!

E
, [`

{0}
⇡!E

]
�

+
�
⇡
�
! F,r

⇡
�
!

F
,⇡

+
! F,r

⇡
+
!

F
, [`

{0}
⇡!F

]
�1
�
.

One deduces from this, Theorem 29 and the vanishing of the Euler class of odd
rank real vector bundles that N ch � ⇡ (E,rE) depends only on the topological K-
theory class of E. Its vanishing for general (E,rE) 2 K

0
flat(M) follows this, (102), the

additivity of ⇡ and of N ch and the fact that there is some integer k such that the
direct sum of k copies of E is topologically trivial on M .

The last statement remaining unproved in Theorem 33 is the vanishing of ⇡Eu
! on

“Kch. It is delayed to §6.3. Let us now prove the above proposition:

Proof. — The point to check is that ⇡ 
�
(E
0
,rE0) + (E

00
,rE00) � (E,rE)

�
vanishes

in K
0
rel(B) if E

0, E
00 and E come from a parallel exact sequence like (11).

(⇡
+
! E
0 � ⇡+

! E
00
,⇡
�
! E
0 � ⇡�! E

00
) and (⇡

+
! E,⇡

�
! E) are both couples of family index

bundles for E (as topological vector bundle). They are thus canonically linked by
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[`
⇡!E

⇡!E
0�⇡!E

00 ]. It follows from Lemma 42 that
(103)⇣

⇡
+
! E
0 � ⇡+

! E
00 � ⇡�! E,r

⇡
+
!

E0�r⇡+
!

E00�r⇡�
!

E
,

⇡
�
! E
0 � ⇡�! E

00 � ⇡+
! E,r

⇡
�
!

E0�r⇡�
!

E00�r⇡+
!

E
, [`

⇡!E

⇡!E
0�⇡!E

00 ]

⌘
= 0 2 K

0
rel(B).

But it follows from (98) (which is also valid on noncompact B for globally defined
couples of family index bundles as in the proof of Proposition 55) that

[`
⇡!E

⇡!E
0�⇡!E

00 ] =
�
[`
{0}
⇡!E

0 ]� [`
{0}
⇡!E

00 ]
�
� [`

{0}
⇡!E

]
�1

= [`
{0}
⇡!E

0 ]� [`
{0}
⇡!E

00 ]� [`
{0}
⇡!E

]
�1

so that the right hand side of (103) is easily recognized (using relation (ii) of Defini-
tion 4) to be equal to ⇡ 

�
(E
0
,rE0) + (E

00
,rE00)� (E,rE)

�
.

6.3. End of proof of Theorem 33. — The Formulas (99) and their obvious
counterpart for rˇ and rˇ

S prove that 1
2 (rˇ+rˇ

S
) =

1
2 (r+rS

) = ru. Denote by
Cť the superconnection on E constructed from r⇤

⇠
as Ct is from r⇠:

Cť = ru

+

p
t

2

�
d
r⇤
⇠ + (d

r⇤
⇠ )
⇤�

+
1

2
p

t
(◆T � T^).

Remember the definition of Bt from (79), and let Bť be the modified superconnection
constructed as in (79) from Cť (or r⇤

⇠
) and the suitable triple of Proposition 53 then

Lemma 59. — We have

�Trs

Å
@Bť

@t
exp�Bť

2

ã
= (�1)

dimZ
�Trs

Å
@Bt

@t
exp�B

2
t

ã
.

In particular, �Trs

�
@Ct

@t
exp�C

2
t

�
vanishes if r⇠ respects h

⇠ and dimZ is odd.

Proof. — For any w 2 TZ, c(w) commutes with ⇤Z if dimZ is odd and it anticommutes
with ⇤Z if dimZ is even. Thus ◆T � T^ = �c(T ) also does. Then it follows from (96)
that:

p
t

2

�
d
r⇠ + (d

r⇠)⇤
�

+
1

2
p

t
(◆T � T^) =

= �(�1)
dimZ⇤�1

Z

Çp
t

2

�
d
r⇤
⇠ + (d

r⇤
⇠ )
⇤�

+
1

2
p

t
(◆T � T^)

å
⇤Z .

Lemma 56 has the consequence that the covariant derivative with respect to ru

commutes with ⇤Z . For Z2-graduation reasons, this proves that the exterior derivative
associated with ru on EndE-valued di�erential forms on B supercommutes with ⇤Z .

Let NH be the graduation operator on ^T
⇤
B which multiplies k-degree di�erential

forms by k, the properties above give the following formula:

(104) Ct = �(�1)
dimZ

(�1)
NH ⇤�1

Z
Cť ⇤Z (�1)

NH .
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Put Idµ = Idµ+ � Idµ� . Then, using (97) instead of (96) one obtains

(105) Bt = �(�1)
dimZ

(�1)
NH (⇤Z � Idµ)

�1
Bť(⇤Z � Idµ)(�1)

NH .

Now it successively follows that

B
2
t

= (�1)
NH (⇤Z � Idµ)

�1
Bť

2
(⇤Z � Idµ)(�1)

NH

exp(�B
2
t
) = (�1)

NH (⇤Z � Idµ)
�1

exp(�Bť
2
)(⇤Z � Idµ)(�1)

NH

@Bt

@t
exp(�B

2
t
) =

= �(�1)
dimZ

(�1)
NH (⇤Z � Idµ)

�1 @Bť

@t
exp(�Bť

2
)(⇤Z � Idµ)(�1)

NH .

In this context of infinite rank vector bundles, it remains true that the supertrace
of the supercommutator of two L

2-bounded End E-valued di�erential forms, one of
which is trace class, vanishes. Using the fact that Idµ has the same parity as ⇤Z , one
can apply this to [(⇤Z � Idµ)

�1
,!(⇤Z � Idµ)] to obtain

Trs(!) = Trs

�
(⇤Z � Idµ)

�1
!(⇤Z � Idµ)

�

which is valid for any globally odd End( E� µ)-valued trace-class di�erential form !,
in particular for @Bť

@t
exp(�Bť

2
). Thus

Trs

Å
@Bt

@t
exp(�B

2
t
)

ã
= �(�1)

dimZ
(�1)

NH Trs

Å
@Bť

@t
exp(�Bť

2
)

ã
(�1)

NH .

The fact that this form and @Bt

@t
exp(�B

2
t
) and @Bť

@t
exp(�Bť

2
) are globally odd, im-

plies that only their odd di�erential form degree parts contribute to their supertrace.
The equation of the lemma follows.

Suppose now that dimZ is odd. Denote by 0 the connection on the null rank vector
bundle {0} on B. Consider any element (⇠,r⇠,↵) 2 “Kch(M). Choose any suitable
data (µ

+
, µ
�

, ) giving rise to family index bundles K+ and K�. Let [`
{0}
K ] be the

canonical class of links between K+ � K� and {0} � {0} obtained just before (98).
Then

(106) ⇡
Eu
! (⇠,r⇠,↵) =

Å
{0}, 0,

Z

Z

e(rTZ) ^ ↵
ã
�
�
{0}, 0, ⌘(r⇠,rTZ , 0, 0, [`

{0}
K ]
�1

)
�
.

e(rTZ) vanishes. Theorem 33 is then reduced to the following lemma. Note that all
arguments were local, but (106) and the following lemma have global meaning, so
that the arguments also work for noncompact B.

Lemma 60. — We have ⌘(r⇠,rTZ , 0, 0, [`
{0}
K ]
�1

) = 0.

Proof. — Compare ⌘(r⇠,rTZ , 0, 0, [`
{0}
K ]
�1

) with the form ⌘ computed from the “ad-
joint” triple

�
µ
�

, µ
+
, (⇤Z�Idµ+)� ⇤�(⇤�1

Z
�Idµ�)

�
. They are of course equal because

⇡
Eu
! (⇠,r⇠,↵) can be written with the same formula by simply replacing ⌘ by the other
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one. The terms of the form
R

Z
e(rTZ)‹ch(ru

⇠
,r⇠) vanish in both cases. The terms of the

form
R 1

0
@Bt

@t
exp(�B

2
t
) are mutually opposite from the preceding lemma. Denote by

K ⇤± the “adjoint” family index bundles, it follows from (87) and the second equation
of Proposition 55 that

‹ch([`
{0}
K ]
�1

) + ‹ch([`
{0}
K ]
�1

) = �‹ch([`
⇤
K ]).

But ‹ch([`
⇤
K ]) vanishes because the (⇤Z + Idµ) isomorphism respect the connections

(81) on kernel bundles. Thus both ⌘ forms are mutually opposite.

7. Double fibrations

Consider two proper submersions ⇡1 : M �! B and ⇡2 : B �! S and the composed
submersion ⇡2 �⇡1 : M �! S. The goal of this section is to compare direct image with
respect to ⇡2 � ⇡1 and the composition of the two direct images relative to ⇡1 and
⇡2 for topological, relative and multiplicative/smooth K-theories, and then to prove
Theorems 34 and 35. Unless otherwise stated, S is supposed to be compact.

7.1. Topological K-theory. — Consider some vector bundle ⇠ on M , some couples
of family index bundles (H +

, H �) and ( F +
, F �) for ⇠ relatively to ⇡1 and to ⇡2 �⇡1

respectively and some couple ( G+
, G�) of family index bundles for H + � H � (with

respect to ⇡2).

Theorem 61. — There exists some canonical equivalence class of links [`
F
G ] between

G+ � G� and F + � F �.

This implies the functoriality of ⇡Eu for double submersions of compact manifolds,
and hence in full generality (see Definition 20).

The canonicity is to understand in the same sense that in Theorem 25. The con-
struction of [`

F
G ] uses the convergence of Euler operators under adiabatic limits. The

point is to obtain some spectral convergence which allows to understand the behaviour
of the kernel and of eigenvalues converging to 0 in this limit. We closely follow the
analysis performed in [5] §5 with some analogue of [5] Theorem 5.28 and formula
(5.118) as goal. In fact we want to connect family index bundles on M for ⇠ and on
B for H ±. We will combine spectral convergence with the fact that if a > 0 is such
that the Euler operator along the fibres of ⇡2 � ⇡1 has no eigenvalue equal to a nor
�a along S, then the eigenspaces corresponding to eigenvalues lying in [�a,+a] form
vector bundles on S which are themselves family index bundles. (This was already
used in §4.2.3).
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7.1.1. Fiberwise exterior di�erentials:— We precise (in (108)) the decomposition of
the exterior di�erential along horizontal and vertical di�erential form degrees corre-
sponding to [5] Theorem 5.1.

The respective vertical tangent vector bundles associated with ⇡1, ⇡2 and ⇡2 � ⇡1

will be denoted by TM/B, TB/S and TM/S. Choose some connectionr⇠ on ⇠ along M .
Call E±

M/S
(resp. E±

M/B
) the infinite rank vector bundles on S (resp. B) of even/odd

degree di�erential forms along the fibres of ⇡2 �⇡1 (resp. ⇡1) with values in ⇠. Choose
any smooth supplementary subbundle T

H
M of TM/B in TM/S. Of course T

H
M ⇠=

⇡
⇤
1TB/S. On the fibre of ⇡2 � ⇡1 over any point s of S, one obtains for ⇠-valued

di�erential forms an isomorphism analogous to (37):

(107) EM/S
⇠= ⌦

�
⇡
�1
2 ({s}), EM/B

�
.

For any b 2 B and any tangent vector U 2 TbB/S, call U
H its horizontal lift as

a section of T
H
M over ⇡�1

1 (b). For any s 2 S, the construction of (72) produces a
connection on the restriction of EM/B over ⇡�1

({s}) which will be denoted r. We
will denote by d

H the exterior di�erential operator on ⌦
�
⇡
�1
2 ({s}), EM/B

� ⇠= EM/S

associated to r.
The “vertical” di�erential operator d

r⇠ will be denoted by d
M/B on EM/B and

d
M/S on EM/S . As was remarked at the beginning of §5.2,

(108) d
M/S

= d
M/B

+ d
H

+ ◆T (through the identification (107))

where ◆T here stands for the restrictions to the fibres of ⇡2 � ⇡1 of the operator
◆T 2 ^2

(TB/S)
⇤ ⌦ End

odd
( EM/B) of §5.2. We will consider this ◆T as an element of

End EM/S (through the identification (107)).

7.1.2. Fiberwise Euler operators. — Here we precise (in (109) and 110) the depen-
dence of the Euler operator on the parameter ✓ of the adiabatic limit. This corresponds
to [5] Definition 5.5.

Endow TM/B with some (riemannian) metric g
M/B and ⇠ with some hermitian

metric h
⇠. Take some riemannian metric g

B/S on TB/S. Put on TM/S the riemannian
metric for which the decomposition TM/S = TM/B � T

H
M is orthogonal and which

coincides with g
M/B and ⇡

⇤
1g

B/S on either parts. The adjoints in End EM/S will be
considered with respect to the L

2 scalar product on EM/S obtained from h
⇠ and this

riemannian metric (as in (38)). These are not the adjoints (neither usual nor special)
considered on ⌦

�
⇡
�1
2 ({s}), EM/B

�
in §5.1. For instance, the adjoint ◆⇤

T
of ◆T here is

not T^ as it was in §5.2.
Let d

M/B⇤ be the adjoint of d
M/B with respect to g

M/B and h
⇠ as endomorphisms

of EM/B , then d
M/B and d

M/B⇤ are also adjoint as endomorphisms of EM/S because
of the choice of a riemannian submersion metric on M . Call d

H⇤ the adjoint of d
H as
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endomorphism of EM/S and put:

(109)

d
✓

= d
H

+
1

✓
d

M/B
+ ✓◆T and d

✓⇤
= d

H⇤
+

1

✓
d

M/B⇤
+ ✓◆

⇤
T

DH
= d

H
+ d

H⇤ and DV
= d

M/B
+ d

M/B⇤

D✓ = d
✓

+ d
✓⇤

= DH
+

1

✓
DV

+ ✓(◆T + ◆
⇤
T
).

Let NV be the endomorphism of EM/B defined as in §5.2.3. NV multiplies k-degree
vertical forms by k, “vertical” meaning forms along the fibres of ⇡1. Using T

H
M ,

NV extends to an operator on EM/S through the identification (107). Let g✓ be the
riemannian metric on M such that TM/B and T

H
M are orthogonal and which restricts

to g
M/B and 1

✓2
⇡
⇤
1g

B on either part, the observation here is that

(110) D✓ = ✓
NV (d

M/S
+ d

M/S⇤
✓

)✓
�NV

where d
M/S⇤
✓

is the adjoint of d
M/S with respect to g✓ and h

⇠. The riemanian submer-
sion metric chosen here simplifies considerably the form of D✓ with respect to the case
of [5] where such a choice is not allowed and forces more complicated conjugations
than by ✓NV (see [5] §5(a)).

7.1.3. Introducing some intermediate suitable triple. — In the adiabatic limit, the
⇠-twisted Euler operator on M should converge to the Euler operator on B twisted
by the kernel bundles on B for ⇠ with respect to ⇡1. In the general setting considered
here, this forces to introduce some suitable triple with respect to ⇡1 in the global
Euler operator. This is performed here, the induced 2⇥2-matrix decomposition of the
modified D✓ is presented and the first estimates on the matrix elements are obtained
by analogy with [5] §5.

Consider some suitable triple (µ
+
, µ
�

, ) with respect to ⇡1 (and ⇠ with r⇠ and h
⇠

and g
M/B). µ

± are endowed with some hermitian metrics. Choose some connection
rµ on µ

± (which respects either part) and consider the associated Euler operator
Drµ

= d
rµ +(d

rµ)
⇤ on ⌦(B/S, µ

±
). Take some function � as in §5.2.5. For ✓ 2 (0, 1],

one puts

(111)
D✓
 

= D✓ + Dµ
+

1� �(✓)

✓
( +  

⇤
)

= DH
+ Dµ

+
1

✓
DV

(1��(✓)) + ✓(◆T + ◆
⇤
T
) 2 End

odd � EM/S � ⌦(B/S, µ)
�

where DV

(1��(✓)) is obtained from DV and (1 � �(✓)) as Dr⇠
 

is from Dr⇠ and  

in (39). Here  is extended to forms on B/S through the isomorphism (107). The
choice of a riemannian submersion metric on TM ensures the compatibility of the
adjunctions of  before and after extending it to forms on B/S. This result (111)
corresponds to [5] Proposition 5.9 with ✓ =

1
T

and with the extra term ✓(◆T + ◆
⇤
T
).
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There is a double decomposition associated to DV

 
.

(112) EM/B � µ
±

= KerDV

 
� (KerDV

 
)
?

which gives a double decomposition of infinite rank vector bundles on S:

EM/S � ⌦(B/S, µ
±

) = ⌦
�
B/S, KerDV

 

�
� ⌦

�
B/S, (KerDV

 
)
?�

.

The choice of a riemannian submersion metric induces that the second one is orthog-
onal: let p : EM/S �⌦(B/S, µ

±
) �! ⌦

�
B/S, KerDV

 

�
be the orthogonal projection, it

is the tensor product of the identity in ⌦(B/S) and the orthogonal projection on the
first factor of (112). Put p

?
= Id�p. For any positive ✓ one decomposes the operator

D✓
 

as a 2⇥ 2 matrix:

D✓
 

=

 
pD✓

 
p pD✓

 
p
?

p
? D✓

 
p p

? D✓
 
p
?

!
=:

 
A
✓

1 A
✓

2

A
✓

3 A
✓

4

!
.

As in §5.2.5, the vector bundle KerDV

 
is endowed with the restriction of the metric

on EM/B � µ
±, and with the connection rH obtained by projecting the connection

on EM/B � µ onto it (in fact p(r � rµ)p, see [5] Theorem 5.1 and formula (5.34)).
Because of the compatibility of orthogonal projections, the exterior di�erential oper-
ator on ⌦

�
B/S, KerDV

 

�
associated to this connection is d

rH = p(d
H �d

rµ)p. Clearly
(d
rH )
⇤

= p
�
d

H⇤ � (d
rµ)
⇤�

p. Define then DrH
= d

rH + (d
rH )
⇤. For any ✓  1

2 (to
ensure that �(✓) = 0), one has

(113) A
✓

1 = DrH
+ ✓p(◆T + ◆

⇤
T
)p.

Of course p(◆T + ◆
⇤
T
)p is a bounded operator in the L

2-topology, and this remark with
the above equation replaces here equation (5.35) of Theorem 5.1 in [5].

In the same way, for ✓ 2 [0,
1
2 ]

(114)
A
✓

2 = p
�
(d

H
+ d

H⇤
)� (d

rµ + (d
rµ)
⇤
)
�
p
?

+ ✓p(◆T + ◆
⇤
T
)p
?

and A
✓

3 = p
?�

(d
H

+ d
H⇤

)� (d
rµ + (d

rµ)
⇤
)
�
p + ✓p

?
(◆T + ◆

⇤
T
)p

are uniformly bounded operators in the L
2-topology. This is because of the choice of

the riemannian submersion metric and is a simplification with respect to the corre-
sponding result Proposition 5.18 of [5].

7.1.4. Estimates on the operator A
✓

4. — First one wants to obtain results analogous
to [5] Theorems 5.19 and 5.20. There are three di�erences between the situation here
and [5]. The absence of conjugation (by CT in [5] Definition 5.4 and (5.10)) due to
the choice of a riemannian submersion metric is a simplification and does not create
any obstacle; the presence here of the term ✓(◆T + ◆

⇤
T
) does not change these results

because of the fact that ◆T + ◆
⇤
T

is a bounded operator in the L
2-topology and because
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of its factor ✓; more seriously, the commutator [D
Z

1, D
H

1] in [5] which corresponds to
[DV

, DH
] in the notations here, is to be replaced by

[DV

 
, DH

+ Dµ
] = [DV

, DH
] + [ +  

⇤
, DH

+ Dµ
].

Of course the first term has the required majoration property [5] (5.67). The operator
 + 

⇤ is a fiberwise kernel operator (along the fibres of ⇡1), and its kernel is smooth
along the fibered double M ⇥B M . Thus, if v is a smooth vector field on B, the
commutator

⇥
 + 

⇤
,r^

•
T
⇤
M/B⌦⇠

vH �rµ

v

⇤
(where vH is the horizontal lift of v, a section

of T
H
M), is a fiberwise kernel operator with globally smooth kernel. In particular, it

is bounded in L
2-topology, and so is the (super)commutator [ + 

⇤
, DH

+ Dµ
]. The

estimate [5] (5.67) then follows from [5] (5.61) (whose equivalent here holds true).
The conclusions of Theorems 5.19 and 5.20 of [5] remain thus valid here, namely the

existence of some constant C such that for any ✓  1
2 and any section s of EM/S�µ

±

(115) kA✓

4(p
?

s)kL2 � C

Å
kp?skH1 +

1

✓
kp?skL2

ã
.

where k kH1 stands for the usual Sobolev H
1-norm.

Secondly, one needs some equivalent of [5] Proposition 5.22, particularly the esti-
mate (5.71) contained in it. But the proof here is in fact easier than in [5] because
Equation (114) provides a simplification of the corresponding Proposition 5.18 in [5],
the extra term ✓(◆T +◆

⇤
T
) is a uniformly bounded operator, ( + 

⇤
) too, and 1

✓
( + 

⇤
)

is part of A
✓

4, it does not disable the ellipticity of A
✓ and it is taken into account in

the obtained estimates: there exist constants c, C and ✓0 such that for any ✓  ✓0,
� 2 C such that |�|  c

2✓ and any s 2 EM/S � µ
±,

(116)
k(��A

✓

4)
�1

p
?

skL2  C✓kp?skL2

k(��A
✓

4)
�1

p
?

skH1  Ckp?skL2 .

7.1.5. Spectral convergence of Euler operators. — Our goal is to follow kernel bundles.
This makes us now introduce some suitable triple (⇣

+
, ⇣
�

,') for DrH . We extend p

and p
? to EM/S � ⇣

± in the following way: p induces the identity on ⇣
± and p

?

induces the null map on ⇣±. Consider then

D✓
 ,'

=

 
p
�
D✓
 

+ (1� �(✓))('+ '
⇤
)
�
p pD✓

 
p
?

p
? D✓

 
p p

? D✓
 
p
?

!

=

 
A
✓

1 + (1� �(✓))('+ '
⇤
) A

✓

2

A
✓

3 A
✓

4

!
.

(It is not essential that the same function � appears here and in (111)). Equation
(113) obviously leads to the following equality for ✓ 2 [0,

1
2 ]:

(117) A
✓

1 + (1��(✓))('+'
⇤
) = DrH

+'+'
⇤
+ ✓p(◆T + ◆

⇤
T
)p = DrH

'
+ ✓p(◆T + ◆

⇤
T
)p

ASTÉRISQUE 327



DIRECT IMAGE FOR SOME SECONDARY K-THEORIES 351

with the same remark (as after (113)) that p(◆T + ◆
⇤
T
)p is bounded.

Using this, the remark after (114) above and (116) instead of [5](5.35), (5.49) and
(5.71) respectively, the analysis performed in [5] §§5(d) and (g) applies here. The only
di�erence is that the following equivalent here of the first line of [5] (5.89) (for the
usual norm of bounded operators in L

2-topology) is not true

(118)
���
�
A
✓

1 + (1� �(✓))('+ '
⇤
)� DrH

'

�
(�� DrH

'
)
�1
���  C✓

2
(1 + |�|).

The set UT (or U 1
✓

) where � is supposed to lie, defined in [5] (5.76), is such that
|�|  c1T (or c1

✓
) and k(� � DrH

'
)
�1k  c2

4 for some constants c1 and c2. But only
the following consequence of (118)

���
�
A
✓

1 + (1� �(✓))('+ '
⇤
)� DrH

'

�
(�� DrH

'
)
�1
���  C✓

is needed for establishing the equivalent of [5] (5.90). This last estimate can be ob-
tained here directly from the remark after (117) and the properties of U 1

✓

.
One obtains firstly the convergence of the resolvent of D✓

 ,'
to any great enough

positive integral power (� � D✓
 ,'

)
�k to p(� � DrH

'
)
�k

p in the sense of the norm
||A||1 = tr(A

⇤
A)

1
2 ([5] Theorem 5.28), and secondly the convergence of the spectral

projector of D✓
 ,'

with respect to eigenvalues of absolute value bounded by some
suitable positive constant a to the orthogonal projector onto the kernel of DrH

'
([5]

equation (5.118)). Thus

Theorem 62. — There exists some "2 > 0 and a > 0, and a vector bundle K on
S ⇥ [0, "2] such that K |S⇥{0} ⇠= KerDrH

'
and K |S⇥{t} identifies with the direct sum

of eigenspaces of D✓
 ,'

corresponding to (all) eigenvalues lying in [�a,+a].

This is because all the used estimates are uniform along S, which is compact.

7.1.6. Construction of the canonical link (proof of Theorem 61). — The above
eigenspaces are also eigenspaces for the squared operator

�
D✓
 ,'

�2, they are thus
naturally Z2-graded, and for any nonzero eigenvalue, D✓

 ,'
exchanges bijectively the

positive and negative degree parts. (In particular, there is no nonzero eigenvalue in
[�a, a] if (⇣

+
, ⇣
�

,') is a positive kernel triple).
In any case, on S ⇥ {0}, (K+

, K�) are kernel bundles so that in K
0
top(S):

[K+|S⇥{0} � ⇣�]� [K�|S⇥{0} � ⇣+
] = ⇡

Eu
2⇤
�
[KerDV +

 
]� [KerDV�

 
]
�

= ⇡
Eu
2⇤
�
⇡

Eu
1⇤ ([⇠]) + [µ

+
]� [µ

�
]
�
.

The constructions of §4.1.2, §4.1.3 and §4.1.4 can be applied to D✓
 

on any compact
subset of S ⇥ (0, 1]. This is because D✓

 
is the sum of the fiberwise elliptic operator

D✓ � Dµ and an order 0 pseudo-di�erential operator, which does not destroy the
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ellipticity. (Only ellitpic regularity is needed to construct suitable triples). This does
not work on [0, 1] because of the explosion of A

✓

4 (115).
Choose "1 2 (0, "2) and some suitable triple (�

+
,�
�

,�) for D✓
 

with respect to
the submersion (⇡2 � ⇡1)⇥ Id["1,1]. One then obtains kernel bundles L± on S ⇥ ["1, 1]

which verify the following equality in K
0
top(S) for any ✓ 2 ["1, 1]

[( L+ � ��)|S⇥{✓}]� [( L� � �+
)|S⇥{✓}] = (⇡2 � ⇡1)

Eu
⇤ [⇠] + ⇡

Eu
2⇤ ([µ

+
]� [µ

�
]).

This is clear on S ⇥ {1} and spreads by parallel transport along ["1, 1].
One obtains a class of links between

�
K+|S⇥{0} � ⇣

�� �
�
K�|S⇥{0} � ⇣

+
�

and�
( L+ � ��)|S⇥{1}

�
�
�
( L� � �+

)|S⇥{1}
�

by composing the parallel transport along
[0, "2] for K , the canonical link between

�
K+|S⇥{t} � ⇣�

�
�
�
K�|S⇥{t} � ⇣+

�
and�

( L+���)|S⇥{t}
�
�
�
( L���+

)|S⇥{t}
�

of Theorem 25 (which may be applied to D✓
 
)

for any t 2 ["1, "2] and parallel transport again along ["1, 1] for L.
Choose any couple of family index bundles (⌫

+
, ⌫
�

) for µ
+ � µ

�.

Definition 63. — The canonical equivalence class of links [`
F
G ] of Theorem 61 is ob-

tained by composing the above link with the canonical links of Theorem 25 between
( G+ � ⌫+

)� ( G� � ⌫�) and
�
K+|S⇥{0} � ⇣�

�
�
�
K�|S⇥{0} � ⇣+

�
on one hand, and�

( L+ � ��)|S⇥{1}
�
�
�
( L� � �+

)|S⇥{1}
�

and ( F + � ⌫+
) � ( F � � ⌫�) on the other

hand.

This class of links is clearly independent of the choice of ⌫+ or ⌫�, or of the triples
(�

+
,�
�

,�) or (⇣
+
, ⇣
�

,') because of the global compatibility of links obtained from
Theorem 25.

Now take two systems of suitable data (µ
+
1 , µ

�
1 , 1) and (µ

+
2 , µ

�
2 , 2) with respect to

⇡1 (and ⇠ withr⇠ and h
⇠ and g

M/B). There is a link (as constructed in §4.1.3) between�
KerD 1+

M/B
�µ
�
1

�
�
�
µ

+
1 �KerD 1�

M/B

�
and

�
KerD 2+

M/B
�µ
�
2

�
�
�
µ

+
2 �KerD 2�

M/B

�
. This

link is obtained by constructing a families index map for a submersion of the form
⇡1⇥Id[0,1] : M⇥[0, 1] �! B⇥[0, 1]. This construction can be extended to the case of a

double submersion in the following form M⇥[0, 1]
⇡1⇥Id[0,1]�! B⇥[0, 1]

⇡2⇥Id[0,1]�! S⇥[0, 1],
and the compatibility of canonical links either for linked data or for one and for two
submersions follows.

7.2. Flat and relative K-theory. — The first goal of this section is to explain
why (⇡2 � ⇡1)! = ⇡2! � ⇡1! on K

0
flat: this is a by-product of the Leray spectral sequence

(see §7.2.1). It is well known that the Leray spectral sequence fits with the adiabatic
limit of the preceding section, the goal of §7.2.2 is to explain how this traduces in the
language of links. This is needed in to prove Theorem 34 in §7.2.3.
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7.2.1. Leray spectral sequence. — Consider some flat vector bundle (F,rF ) on M , let
G
•

= ⇡
•
1!F with flat connectionsrG• , and H

•
= (⇡2�⇡1)

•
! F with flat connectionsrH• .

Note that here the full Z-graduation is needed and not only the parity Z2-graduation.
The vertical F -valued de Rham complex ⌦•

(M/S,F ) along M/S is filtrated by the
horizontal degree: for any p, F

p
⌦
•
(M/S,F ) consists of F -valued di�erential forms

whose interior product with more than p elements of TM/B vanishes. Thus H
• is

also filtrated from this filtration: F
p
H

• consists of classes which can be represented by
some element in F

p
⌦
•
(M/S,F ). This filtration is compatible with the flat connections

of H
•, so that for any p and k,

(119) 0 �! F
p+1

H
k �! F

p
H

k �! F
p
H

k
/F

p+1
H

k �! 0

is a parallel exact sequence of flat bundles. The corresponding flat connections will
be respectively denoted by rF p+1Hk , rF pHk and rp/k.

It is proved in [31] Proposition 3.1 that the associated spectral sequence gives rise to
flat vector bundles (E

p,q

r
,rp,q

r
) on S with flat (parallel) spectral sequence morphisms

dr : E
p,q

r
�! E

p�r,q+r+1
r

(and E
p,q

r+1 = Kerdr|Ep,q

r

�
(Imdr \ E

p,q

r
)).

It is a classical fact (see [31] Theorem 2.1) that this spectral sequence is isomorphic
to the Leray spectral sequence, and thus E

p,q

2
⇠= H

p
(B/S, G

q
) while for all su�ciently

great r one has E
p,q

r
⇠= F

p
H

p+q
�
F

p+1
H

p+q.
Put E

+
r

= �
p+q even

E
p,q

r
and E

�
r

= �
p+q odd

E
p,q

r
, and denote their direct sum (flat)

connections by r+
r

and r�
r

. Applying Lemma 42 to the complexes

(120) · · · dr�! E
p+r,q�r�1
r

dr�! E
p,q

r

dr�! E
p�r,q+r+1
r

dr�! · · ·

proves in particular that [E
+
r

,r+
r

]� [E
�
r

,r�
r

] 2 K
0
flat(S) is independent of r.

For r = 2, this is nothing but ⇡2!([G
+
,rG+ ]� [G

�
,rG� ]) = ⇡2!

�
⇡1![F,rF ]

�
.

On the other hand, it follows from (119) that the element

[F
p
H

•
,rF pH• ] +

p�1X

i=0

[F
i
H

•
/F

i+1
H

•
,ri/•] 2 K

0
flat(S)

is independent of p. For p = 0, it equals [H
•
,rH ] = (⇡2 � ⇡1)![F,rF ], while for

su�cienly great p and r, it equals [E
+
r

,r+
r

]� [E
�
r

,r�
r

]. Thus

Proposition. — We have ⇡2! � ⇡1! = (⇡2 � ⇡1)! : K
0
flat(M) �! K

0
flat(S).

7.2.2. Compatibility of topological and sheaf theoretic links
One has now two classes of links between E

+
2 � E

�
2
⇠= ⇡2!

�
⇡1![F,rF ]

�
and H

+ �
H
� ⇠= (⇡2 � ⇡1)![F,rF ]: the link [`top] constructed in subSection 7.1.6 and the sheaf

theoretic one [`flat] obtained by combining links obtained using Definition 36 from
(120) and (119). The geometric setting of adiabatic limit is here the same as in §7.1.
The three triples (µ

+
, µ
�

, ), (⇣
+
, ⇣
�

,') and (�
+
,�
�

,�) are taken trivial.
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Proposition 64. — We have [`top] = [`flat].

Proof. — First step: Hodge theoretic version of the Leray spectral sequence. — Such
a theory was studied by various authors in various contexts [33] [16] [5] [31], the
version corresponding to the situation here in explained in [31] §2 and §3. It can be
summarized as follows: E0 is nothing but EM/S (see (107)) as global infinite rank
vector bundle over S. Then there exists a nested sequence of vector subbundles ‹Er

of E0 = ‹E0 which are for all r � 2 of finite rank and endowed with canonical flat
connections ‹rr. This sequence stabilizes for su�ciently great r. For any r, there is
some canonical isomorphism Er

⇠= ‹Er with the corresponding term of the Leray
spectral sequence, for r � 2 it makes rr and ‹rr correspond to each other. All the ‹Er

are naturally endowed with the restriction of the L
2 hermitian inner product on EM/S

(which needs here to be obtained from some riemannian submersion metric). Finally
for any r, let ed⇤

r
be the adjoint of the bundle endomorphism edr corresponding to the

operator dr of the spectral sequence, and define ‹Dr = edr + ed⇤
r
, then ‹Er+1 := Ker‹Dr.

For r = 0, d0
⇠= d

M/B , so that E1 identifies through the Hodge theory of the
fibres of ⇡1 with ‹E1 = ⌦(B/S, KerDV

) ⇠= ⌦(B/S,G
•
) in the notations of the preceding

paragraph. Thus ‹E1 identifies with vertical di�erential forms with values in ⇡1!F ,
where “vertical” is to understand with respect to the fibration ⇡2. Let ep1 be the
orthogonal projection of E0 onto ‹E1, then ed1 = ep1d

H acting on ‹E1. It follows that
‹E2 = Ker(p1 DH |eE1

) identifies with vertical harmonic G
•-valued di�erential forms,

hence with ⇡2!(⇡1!F ).
For any r � 2, ‹Er can be described as follows ([31] Proposition 2.1):

(121)

‹Er =
�
s0 2 EM/S such that there exists s1, s2, . . . , sr�1 2 EM/S verifying

DV
s0 = 0, DH

s0 + DV
s1 = 0 and

(◆T + ◆
⇤
T
)si�2 + DH

si�1 + DV
si = 0 for any 2  i  r � 1

 
.

Then in this description ‹Drs0 = epr((◆T + ◆
⇤
T
)sr�2 + DH

sr�1), where epr is the orthog-
onal projection of EM/S onto ‹Er. One can then prove along the same lines as in [5]
§VI (a) (especially formulae (6.13) and (6.15)) that

d
M/B

s0 = 0, d
H

s0 + d
M/B

s1 = 0,

◆T si�2 + d
H

si�1 + d
M/B

si = 0 for any 2  i  r � 1

and edrs0 = epr(◆T sr�2 + d
H

sr�1).

Second step: convergence of harmonic forms. — Use now the convergence of the resol-
vent

�
�� (

1
✓

�r�1 D✓
��1 (here both µ and  vanish) to epr(��‹Dr)

�1epr ([31] Theorem
2.2) for su�ciently large r. One can deduce that the orthogonal projection p✓ of
EM/S onto KerD✓ converges at ✓ = 0 to epr. In other words KerD✓ is the restriction
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to S ⇥ (0, 1] of some vector bundle on S ⇥ [0, 1] whose restriction to S ⇥ {0} is ‹E1.
There is a bigrading on EM/S , from (107) according to horizontal (i.e. corresponding
to ⌦•) and vertical (corresponding to the grading of EM/B) degrees. ‹E1 decomposes
with respect to this bigrading [5] Theorem 6.1. Consider some s0 2 ‹Ep,q

1 and call
s

p+i,q�i

i
for any i the corresponding component of the si introduced in (121). The

above description of edr proves that for any su�ciently large r the di�erential form
s0 + s

p+1,q�1
1 + . . . s

p+r,q�r

r
is closed. According to the scaling appearing in (109) the

section p✓(s0 + ✓s
p+1,q�1
1 + ✓

2
s

p+2,q�2
2 . . . ✓

r
s

p+r,q�r

r
) is the rescaled harmonic form

corresponding to some fixed cohomology class. Its convergence to s0 at ✓ = 0 proves
that the isomorphism between KerD1 ad ‹E1 provided by the parallel transport along
[0, 1] exactly corresponds to the isomorphism [H

•
,rH ] ⇠= [E

•
r
,rr] obtained at the end

of §7.2.1 from (119).

Third step: eigenvalues converging to 0. — The convergence of the resolvent
�
� �

(
1
✓

�r�1 D✓
��1 to epr(� � ‹Dr)

�1epr ([31] Theorem 2.2) for any r gives the following
description of the vector bundle K of Theorem 62 over S ⇥ [0, "2]: its restriction
to S ⇥ {✓} is the direct sum of eigenspaces of D✓ corresponding to “little” modulus
eigenvalues while its restriction to S ⇥ {0} is the direct sum of the ‹Er, each ‹Er

corresponding to eigenspaces associated to eigenvalues of order less than or equal
to ✓

r�1. For any positive ✓, (K , d
✓
) form a complex whose cohomology is L. The

convergence of the resolvents also prove that the operator (
1
✓
)
r�1 D✓ on the suitable

eigensubspace converges to ‹Dr, and accordingly for (
1
✓
)
r�1

d
✓ and edr.

By proceeding exactly as in §4.2.4, one obtains that the canonical class of links
between K± and L± equals the canonical class of links associated by Definition 36
to the Leray spectral sequence ((120) for all r).

One may use the limit t ! 0 or "1 ! 0 in the construction of `top. The two
remaining components of the construction of `top (parallel transport along [0, 1] and
`

L
K ) were shown to be equal to the two components of [`flat] (the links coming from

filtration of cohomology and from the spectral sequence respectively).

7.2.3. Proof of Theorem 34. — Consider some (E,rE , F,rF , f) 2 K
0
rel(M), then

⇡2⇤ �⇡1⇤(E,rE , F,rF , f) equals
�
⇡2! �⇡1!(E,rE),⇡2! �⇡1!(F,rF ),⇡2`(⇡1`([f ]))

�
while

(⇡2 �⇡1)⇤(E,rE , F,rF , f) equals
�
(⇡2 �⇡1)!(E,rE), (⇡2 �⇡1)!(F,rF ), (⇡2 �⇡1)`([f ])

�
.

Consider the pull-back ‹E of E to M ⇥ [0, 1] with some connection ‹r whose restric-
tions on M ⇥ {0} and M ⇥ {1} respectively equal rE and f

⇤rF . There is a canonical
(topological) class of link [è] between one-step and two-step direct images of ‹E whose
restrictions to M ⇥ {0} and M ⇥ {1} coincide with [`

E

top] and [`
F

top] (with obvious
notations from the preceding subsection, this is because of the naturality of [`top]).
Now ⇡2`(⇡1`([f ])) and (⇡2 � ⇡1)`([f ]) both correspond to the parallel transport along

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



356 A. BERTHOMIEU

[0, 1]. Thus

(122)

⇡2⇤ � ⇡1⇤(E,rE , F,rF , f)� (⇡2 � ⇡1)⇤(E,rE , F,rF , f) =

=
�
⇡2! � ⇡1!(E,rE), (⇡2 � ⇡1)!(E,rE), [`

E

top]
�

�
�
⇡2! � ⇡1!(F,rF ), (⇡2 � ⇡1)!(F,rF ), [`

F

top]
�
.

But in both cases [`top] = [`flat] and `flat is only obtained from parallel complexes of
flat vector bundles (from either (120) or (119)). It follows from Lemma 42 that both
terms in the right hand side of (122) vanish and this proves the theorem. The case of
noncompact S follows directly from the fact that links of the form [`flat] are globally
defined.

7.3. Multiplicative and smooth K-theory

7.3.1. Calculation of ⇡Eu
2! � ⇡Eu

1! � (⇡2 � ⇡1)
Eu
! . — Consider the vector bundles ⇠ on

M , F
+ and F

� on B and G
+ and G

� on S (with connections r⇠, rF+ , rF� , rG+

and rG�) such that

[F
+
]� [F

�
] = ⇡

Eu
1⇤ [⇠] 2 K

0
top(B) and [G

+
]� [G

�
] = (⇡2 � ⇡1)

Eu
⇤ [⇠] 2 K

0
top(S).

Choose some smooth supplementary subbundle T
H
M/S of TM/S in TM , such that

T
H
M/S \ TM/B = T

H
M ; then ⇡1⇤T

H
M/S is a smooth supplementary subbundle

of TB/S in TB. One can define connections rTM/B , rTM/S and rTB/S on TM/B,
TM/S and TB/S as at the beginning of the proof Lemma 56 from the choices of
horizontal subspaces T

H
M , T

H
M/S and ⇡1⇤T

H
M/S respectively. Let [`F ] and [`G] be

equivalence classes of links between either F
+�F

� or G
+�G

� and couples of family
index bundles (as in Definition 50), and denote ⌘1 = ⌘(r⇠,rTM/B ,rF+ ,rF� , [`F ])

and ⌘12 = ⌘(r⇠,rTM/S ,rG+ ,rG� , [`G]):

⇡
Eu
1! (⇠,r⇠,↵) =

Ç
F

+
,rF+ ,

Z

M/B

e(rTM/B)↵

å
� (F

�
,rF� , ⌘1) 2 “Kch(B)

and (⇡2 � ⇡1)
Eu
! (⇠,r⇠,↵) =

=

Ç
G

+
,rG+ ,

Z

M/S

e(rTM/S)↵

å
� (G

�
,rG� , ⌘12) 2 “Kch(S).

Take vector bundles H
++, H

+�, H
�+ and H

�� on S (with connections r++, r+�,
r�+ andr��) such that ⇡Eu

2⇤ [F
±

] = [H
±+

]�[H
±�

] 2 K
0
top(S). Consider some classes

of links [`+] and [`�] between H
±+�H

±� and couples of families index bundles and
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denote by ⌘± the forms ⌘(rF± ,rTB/S ,r±+,r±�, [`±]):

⇡
Eu
2!

�
⇡

Eu
1! (⇠,r⇠,↵)

�
=

Ç
H

++
,r++,

Z

B/S

e(rTB/S)

Z

M/B

e(rTM/B)↵

å

�(H
+�

,r+�, ⌘+)�
Ç

H
�+

,r�+,

Z

B/S

e(rTB/S)⌘1

å
+ (H

��
,r��, ⌘�).

Now G
+ � G

� and (H
++ � H

��
) � (H

+� � H
�+

) are linked through [`G], [`+],
[`�] and the construction of §7.1.6. Call [`top] the resulting link and ‹ch([`top]) the
associated Chern-Simons form as in §5.3.1, then

⇡
Eu
2!

�
⇡

Eu
1! (⇠,r⇠,↵)

�
=

Ç
G

+
,rG+ ,

Z

M/S

⇡
⇤
1

�
e(rTB/S)

�
e(rTM/B)↵

å

�
Ç

G
�

,rG� , ⌘+ � ⌘� � ‹ch([`top]) +

Z

B/S

e(rTB/S)⌘1

å
.

Choose any supplementary subbundle of T
H
M in T

H
M/S, it then identifies with

⇡
⇤
1TB/S and is endowed with the connection ⇡

⇤
1rTB/S . Denote by eeM/B/S the form

ee(rTM/S ,rTM/B � ⇡⇤1r!TB/S) defined in §89, then the following form

eeM/B/Sd↵+
�
e(rTM/S)� ⇡⇤1

�
e(rTB/S)

�
e(rTM/B)

�
↵

is exact so that in “Kch(S):

⇡
Eu
2!

�
⇡

Eu
1! (⇠,r⇠,↵)

�
=

Ç
G

+
,rG+ ,

Z

M/S

e(rTM/S)↵

å
� (G

�
,rG� , e⌘12)

with e⌘12 = ⌘+ � ⌘� � ‹ch([`top]) +

Z

B/S

e(rTB/S)⌘1 �
Z

M/S

eeM/B/Sd↵.

For any (⇠,r⇠,↵) 2 MK0(M), one has d↵ = ch(r⇠) � rk⇠ but for degree reasonsR
M/S

eeM/B/S vanishes (the degree of this form equals dimM � dimS � 1). Thus

Proposition 65. —
�
⇡

Eu
2! � ⇡Eu

1! � (⇡2 � ⇡1)
Eu
!

�
(⇠,r⇠,↵) = a(⌘12 �

⇡
⌘12) where

⇡
⌘12 = ⌘+ � ⌘� � ‹ch([`top]) +

Z

B/S

e(rTB/S)⌘1 +

Z

M/S

eeM/B/Sch(r⇠).

An argument similar to just before Lemma 60 yields that this equality also holds
true in the case of noncompact S.

7.3.2. Proof of Theorem 35. — It is easily verified that ⇡⌘12 is additive in the sense
of property (c) of Theorem 28, is functorial by pullbacks over fibered products (with
double fibration structure!); a direct calculation proves that it verifies the same trans-
gression formula (property (a) of Theorem 28) as ⌘12. In the case of a flat bundle
(⇠,r⇠), F

± here correspond to G
± in §7.2.1, G

± here correspond to H
± of §7.2.1,

and H
±± here correspond to E

±±
2 of §7.2.1: in any case, the suitable data are taken
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trivial because all bundles are flat, and thus all the forms ⌘+, ⌘� and ⌘1 vanish (prop-
erty (d) of Theorem 28). Finally ch(r⇠) = rk⇠ so that the integral involving eeM/B/S

vanishes, and ‹ch([`top]) also vanishes, because of Proposition 64 and Lemma 1 ([`flat]

of Proposition 64 is obtained by using Definition 36 from parallel exact sequences of
flat bundles).

The coincidence of ⌘12 and ⇡⌘12 for elements of MK0(M) is then obtained from the
second statement of Theorem 28.

Remark. — It is likely that ⇡⌘12 = ⌘12 in any case, so that one would have

(⇡2 � ⇡1)
Eu
! (⇠,r⇠,↵)� ⇡Eu

2!

�
⇡

Eu
1! (⇠,r⇠,↵)

�
= a

ÇZ

M/S

eeM/B/S

...
ch(⇠,r⇠,↵)

å

for any (⇠,r⇠,↵) 2 “Kch(M). This formula would be compatible with Theorem 28
and with anomaly formulae (91) and (92). A corresponding result is proved in [14],
where the above discrepancy is compensated by a suitable composition of smooth
K-orientations in the double fibration.
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HERMITIAN VECTOR BUNDLES AND EXTENSION
GROUPS ON ARITHMETIC SCHEMES II.
THE ARITHMETIC ATIYAH EXTENSION

by

Jean-Benoît Bost & Klaus Künnemann

Pour Jean-Michel Bismut

Abstract. — In a previous paper, we have defined arithmetic extension groups in
the context of Arakelov geometry. In the present one, we introduce an arithmetic
analogue of the Atiyah extension that defines an element — the arithmetic Atiyah
class — in a suitable arithmetic extension group. Namely, if E is a hermitian vector
bundle on an arithmetic scheme X, its arithmetic Atiyah class batX/Z(E) lies in the

group ”Ext
1

X(E, E ⌦ ⌦1
X/Z), and is an obstruction to the algebraicity over X of the

unitary connection on the vector bundle EC over the complex manifold X(C) that is
compatible with its holomorphic structure.

In the first sections of this article, we develop the basic properties of the arithmetic
Atiyah class which can be used to define characteristic classes in arithmetic Hodge
cohomology.

Then we study the vanishing of the first Chern class ĉ
H

1 (L) of a hermitian line

bundle L in the arithmetic Hodge cohomology group ”Ext
1

X( OX , ⌦1
X/Z). This may

be translated into a concrete problem of diophantine geometry, concerning rational
points of the universal vector extension of the Picard variety of X. We investigate
this problem, which was already considered and solved in some cases by Bertrand, by
using a classical transcendence result of Schneider-Lang, and we derive a finiteness
result for the kernel of ĉ

H

1 .
In the final section, we consider a geometric analog of our arithmetic situation,

namely a smooth, projective variety X which is fibered on a curve C defined over
some field k of characteristic zero. To any line bundle L over X is attached its relative
Atiyah class atX/CL in H

1(X, ⌦1
X/C

). We describe precisely when atX/CL vanishes.
In particular, when the fixed part of the relative Picard variety of X over C is trivial,
this holds i� some positive power of L descends to a line bundle over C.
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Key words and phrases. — Arakelov geometry, hermitian vector bundles, extension groups, Atiyah class,
transcendence and algebraic groups.
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Résumé (Fibrés vectoriels hermitiens et groupes d’extensions sur les schémas arithmétiques II.
La classe d’Atiyah arithmétique)

Dans un précédent article, nous avons défini des groupes d’extensions arithméti-
ques dans le contexte de la géométrie d’Arakelov. Dans le présent travail, nous intro-
duisons un analogue arithmétique de l’extension d’Atiyah; sa classe dans un groupe
d’extensions arithmétiques convenable définit la classe d’Atiyah arithmétique. Plus
précisément, pour tout fibré vectoriel hermitien E sur un schéma arithmétique X, sa
classe d’Atiyah arithmétique batX/Z(E) appartient au groupe ”Ext

1

X(E, E ⌦ ⌦1
X/Z) et

constitue une obstruction à l’algébricité sur X de l’unique connection unitaire sur la
fibré vectoriel EC sur la variété complexe X(C) qui soit compatible avec sa structure
holomorphe.

Dans les premières sections de cet article, nous présentons la construction et les
propriétés de base de la classe d’Atiyah, qui permettent notamment de définir des
classes caractéristiques en cohomologie de Hodge arithmétique.

Nous étudions ensuite l’annulation de la première classe de Chern ĉ
H

1 (L) d’un
fibré en droites hermitien L dans le groupe de cohomologie de Hodge arithmétique
”Ext

1

X( OX , ⌦1
X/Z). La détermination de tels fibrés en droites hermitiens se traduit en

une question de géométrie diophantienne, concernant les points rationnels de l’exten-
sion vectorielle universelle de la variété de Picard de X. Nous étudions ce problème —
qui a déjà été considéré, et résolu dans certains cas, par Bertrand — au moyen d’un
classique résultat de transcendance dû à Schneider et Lang, et nous en déduisons un
théorème de finitude sur le noyau de ĉ

H

1 .
Dans la dernière section, nous étudions un analogue géométrique de la situation

arithmétique précédente. A savoir, nous considérons une variété projective lisse X

fibrée sur une courbe C, au dessus d’un corps de base k de caractéristique nulle et
nous attachons à tout fibré en droites L sur X sa classe d’Atiyah relative atX/CL dans
H

1(X, ⌦1
X/C

). Nous déterminons quand cette classe atX/CL s’annule. Notamment,
lorsque la variété de Picard relative de X sur C n’a pas de partie fixe, cela se produit
précisément lorsque une puissance non-nulle de L descend en un fibré en droites sur C.

0. Introduction

0.1. — This paper is a sequel to [7], where we have defined and investigated arith-
metic extensions on arithmetic schemes, and the groups they define.

Recall that if X is a scheme over Spec Z, separated of finite type, whose generic
fiber XQ is smooth, then an arithmetic extension of vector bundles over X is the data
( E, s) of a short exact sequence of vector bundles (that is, of locally free coherent
sheaves of OX -modules) on the scheme X,

(0.1) E : 0 �! G
i�! E

p�! F �! 0,

and of a C1-splitting
s : FC �! EC,

invariant under complex conjugation, of the extension of C1-complex vector bundles
on the complex manifold X(C)

EC : 0 �! GC
iC�! EC

pC�! FC �! 0
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that is deduced from E by the base change from Z to C and analytification.
For any two given vector bundles F and G over X, the isomorphism classes of the

so-defined arithmetic extensions of F by G constitute a set dExt
1

X
(F,G) that becomes

an abelian group when equipped with the addition law defined by a variant of the
classical construction of the Baer sum of 1-extensions of (sheaves of) modules(1).

Recall that a hermitian vector bundle E over X is a pair (E, k.k) consisting of
a vector bundle E over X and of a C1-hermitian metric, invariant under complex
conjugation, on the holomorphic vector bundle EC over X(C). Examples of arithmetic
extensions in the above sense are provided by admissible extensions

(0.2) E : 0 �! G
i�! E

p�! F �! 0

of hermitian vector bundles over X, namely from the data of an extension

E : 0 �! G
i�! E

p�! F �! 0

of the underlying OX -modules such that the hermitian metrics k.k
G

and k.k
F

on GC
and FC are induced (by restriction and quotients) by the metric k.k

E
on EC (by means

of the morphisms iC and pC). Indeed, to any such admissible extension is naturally
attached its orthogonal splitting, namely the C1-splitting

s E : FC �! EC

that maps FC isomorphically onto the orthogonal complement iC(GC)
? of the image

of iC in EC. This splitting is invariant under complex conjugation, and ( E, s E) is an
arithmetic extension of F by G. For any two hermitian vector bundles F and G over
X, this construction establishes a bijection from the set of isomorphism classes of
admissible extension of the form (0.2) to the set dExt

1

X
(F,G).

In [7] we studied basic properties of the so-defined arithmetic extension groups. In
particular, we introduced the following natural morphisms of abelian groups:

– the “forgetful" morphism

⌫ : dExt
1

X
(F,G) �! Ext1OX

(F,G),

which maps the class of an arithmetic extension ( E, s) to the one of the under-
lying extension E of OX -modules;

(1) Consider indeed two arithmetic extensions of F by G, say E↵ := ( E↵, s↵), ↵ = 1, 2, defined by
extensions of vector bundles E↵ : 0 ! G

i↵! E↵

p↵! F ! 0 and C1-splittings s↵ : FC ! E↵,C. We
may define a vector bundle E := Ker(p1�p2:E1�E2!F )

Im ((i1,�i2):G!E1�E2) over X. The Baer sum of E1 and E2 is the

arithmetic extension E defined by the usual Baer sum of E1 and E2 — namely E : 0 ! G
i! E

p! F !
0 where the morphisms i : G ! E and p : E ! F are defined by p([(g1, g2)]) := p1(f1) = p2(f2)
and i(g) := [(i1(g), 0)] = [(0, i2(g))] — equipped with the C1-splitting s : FC ! EC defined by
s(e) := [(s1(e), s2(e))].
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– the morphism

b : Hom C1
X(C)

(FC, GC)
F1 �! dExt

1

X
(F,G),

defined on the real vector space Hom C1
X(C)

(FC, GC)
F1 of C1-morphisms of vec-

tor bundles over X(C) from FC to GC, invariant under complex conjugation; it
sends an element T in this space to the class of the arithmetic extension ( E, s)
where E is the trivial algebraic extension, defined by (0.1) with E := G�F and
i and p the obvious injection and projection morphisms, and where s is given
by s(f) = (T (f), f);

– the morphism

◆ : Hom OX
(F,G) �! Hom C1

X(C)
(FC, GC)

F1

which sends a morphism ' : F ! G of vector bundles over X to the morphism
of C1-complex vector bundles 'C : FC ! GC deduced from ' by base change
from Z to C and analytification;

– the morphism

 : dExt
1

X
(F,G) �! Z

0,1

@
(XR, F

_ ⌦G),

that takes values in the real vector space

Z
0,1

@
(XR, F

_ ⌦G) := Z
0,1

@
(X(C), F

_
C ⌦GC)

F1

of @-closed forms of type (0, 1) on X(C) with coe�cients in F
_
C ⌦GC, invariant

under complex conjugation. It maps the class of an arithmetic extension ( E, s)
to its “second fundamental form"  ( E, s) defined by

iC � ( E, s) = @F
_
C ⌦GC(s).

We also established the following basic exact sequence:

(0.3) Hom OX
(F,G)

◆! Hom C1
X(C)

(FC, GC)
F1 b! dExt

1

X
(F,G)

⌫! Ext
1
OX

(F,G)! 0,

which displays the arithmetic extension group dExt
1

X
(F,G) as an extension of the

“classical" extension group Ext
1
OX

(F,G) by a group of analytic type.

The sequel of [7] was devoted to the study of the groups dExt
1

X
(F,G) when the base

scheme is an arithmetic curve, that is, the spectrum Spec OK of the ring of integers of
some number field K. In this special case, these extension groups appear as natural
tools in geometry of numbers and reduction theory in their modern guise, namely
the study of hermitian vector bundles over arithmetic curves and their admissible
extensions.

In the present paper, we focus on a natural construction of arithmetic extensions
attached to hermitian vector bundles over an arithmetic scheme X as above, their
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arithmetic Atiyah extensions. In contrast with the arithmetic extensions over arith-
metic curves investigated in [7], for which the interpretation as admissible extensions
was crucial, the arithmetic Atiyah extensions are genuine examples of arithmetic ex-
tensions constructed as pairs ( E, s) — where s is a C1-splitting of an extension E of
vector bundles over X — and not derived from an admissible extension.

0.2. — Atiyah extensions of vector bundles were initially introduced by Atiyah [2]
in the context of complex analytic geometry.

Namely, for any holomorphic vector bundle E over a complex manifold X, Atiyah
introduces the holomorphic vector bundle P

1
X

(E) of jets of order one of sections of E,
whose fiber P

1
X

(E)x at a point x of X is by definition the space of sections of E over
the first order thickening x1 := Spec OX,x/m2

x
of x in X. Here, as usual, OX denotes

the sheaf of holomorphic functions over X, and mx the maximal ideal of its stalk OX,x

at x.
The vector bundle P

1
X

(E) fits into a short exact sequence of holomorphic vector
bundles

(0.4) AtXE : 0 �! E ⌦ ⌦1
X

i�! P
1
X

(E)
p�! E �! 0,

where the morphisms i and p are defined as follows: for any point x in X, the map
ix : Ex⌦⌦1

X,x
! P

1
X

(E)x maps an element v in Ex⌦⌦1
X,x
' HomC(TX,x, Ex) to the

section of E over x1 that vanishes at x and admits v as di�erential, while the map
px : P

1
X

(E)x ! Ex is simply the evaluation at x.
The Atiyah extension of E is precisely the extension AtXE of E by E ⌦ ⌦1

X
so-

defined. According to its very definition, its class atXE in the group Ext
1
OX

(E,E⌦⌦1
X

)

which classifies extensions of holomorphic vector bundles of E by E ⌦ ⌦1
X

is the
obstruction to the existence of a holomorphic connection

r : E �! E ⌦ ⌦1
X

on the vector bundle E.
The point of Atiyah’s article [2] is that the class atXE also leads to a straight-

forward construction of characteristic classes of E with values in the so-called Hodge
cohomology groups of X

(0.5) H
p,p

(X) := H
p
(X,⌦

p

X
).

For instance, Atiyah defines a first Chern class c
H

1 (E) in H
1,1

(X) = H
1
(X,⌦

1
X

) as
the image of atXE by the morphism

Ext
1
OX

(E,E ⌦ ⌦1
X

) ' Ext
1
OX

( OX , End E ⌦ ⌦1
X

)

# (TrE⌦id⌦1
X

)�_

Ext
1
OX

( OX ,⌦
1
X

) ' H
1
(X,⌦

1
X

)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



366 J.-B. BOST & K. KÜNNEMANN

deduced from the canonical trace morphism

TrE : End E ' E
_ ⌦ E �! OX ,

�⌦ v 7! �(v).

Higher degree characteristic classes are constructed by means of the successive powers
(atXE)

p in Ext
p

OX

( OX , ( End E)
⌦p ⌦ ⌦p

X
), where p denotes a positive integer. For

instance, the p-th Segre class, associated to the p-th Newton polynomial X
p

1 + · · · +
X

p

rk E
, may be constructed in the Hodge cohomology group H

p
(X,⌦

p

X
) as

s
H

p
(E) := (Tr

p

E
⌦ id⌦p

X

) � (atXE)
p
,

where
Tr

p

E
: ( End E)

⌦p �! OX ,

T1 ⌦ · · ·⌦ Tp 7! TrE(T1 . . . Tp).

When the manifold X is compact and Kähler (e.g., projective), the Hodge coho-
mology group H

p
(X,⌦

p

X
) may be identified with a subspace of the complex de Rham

cohomology group H
2p

dR(X, C) of X, and Atiyah’s construction of characteristic classes
is compatible (up to normalization) to classical topological constructions.

The definition of the Atiyah class and the construction of the associated character-
istic classes obviously make sense in a purely algebraic context, say over a base field k

of characteristic zero. If X is a smooth algebraic scheme over k, for any vector bundle
E over X, its Atiyah class atX/kE is constructed as above, mutatis mutandis, as an
element of the k-vector space Ext

1
OX

(E,E ⌦⌦1
X/k

), and the associated characteristic
classes are elements of the Hodge cohomology groups of X defined similarly to (0.5),
but now using the Zariski topology of X instead of the analytic one, and the sheaf of
Kähler di�erentials ⌦p

X/k
instead of the holomorphic di�erential forms ⌦p

X
.

These constructions are especially suited to smooth algebraic schemes X that are
proper over k. In this case, the “Hodge to de Rham" spectral sequence degenerates,
and the Hodge group H

p,p
(X) gets identified to a subquotient of the Hodge filtration

of the algebraic de Rham cohomology group H
2p

dR(X/k) := H
2p

(X,⌦
·
X/k

). Moreover,
when X is proper over k = C, this algebraic construction is compatible with the
previous analytic one, as a consequence of the GAGA principle.

This algebraic version of Atiyah’s constructions has been considerably extended
by Illusie [25]. Instead of a smooth algebraic scheme over a field k, he considers a
suitable morphism of ringed topoi f : X ! S, and associates Atiyah classes and
characteristic classes to perfect complexes of sheaves of OX -modules; his definitions
involve the cotangent complex L·

X/S
of X over S, which in this general setting plays

the role of the sheaf ⌦1
X/k

attached to a smooth scheme X over the field k. Let us also
mention the presentation of this “algebraic" theory and of some of its developments in
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the monograph of Angéniol and Lejeune-Jalabert [1], and the analytic construction
of Buchweitz and Flenner [8], [9](2).

0.3. — Let us briefly describe our construction of arithmetic Atiyah classes.
Let E := (E, k.kE) be a hermitian vector bundle over a scheme X which is separated

and of finite type over Z, and which for simplicity will be assumed smooth over Z in
this introduction. The relative version of the exact sequence (0.4) defines the Atiyah
extension of E over Z:

(0.6) AtX/ZE : 0 �! E ⌦ ⌦1
X/Z

i�! P
1
X/Z(E)

p�! E �! 0.

Besides, according to a classical result of Chern and Nakano ([10, 36]), the holo-
morphic vector bundle E

hol
C over the complex manifold X(C), seen as C1-vector

bundle, admits a unique connection r
E

that is unitary with respect to the hermi-
tian metric k.kE , and moreover is compatible with its holomorphic structure in the
sense that its component r0,1

E
of type (0, 1) coincides with the @-operator @EC with

coe�cients in the holomorphic vector bundle E
hol
C . The component r1,0

E
of type (1, 0)

of r
E

defines a C1-splitting s
E

of the Atiyah extension of the holomorphic vector
bundle E

hol
C :

AtX(C)EC : 0 �! ⌦
1
X(C) ⌦ EC

iC�! P
1
X(C)(EC)

pC�! EC �! 0.

Namely, for any point x in X(C) and any e in Ex, s
E

(e) is the section of E over x1

that takes the value e at x and is killed by r1,0

E
.

Since the above analytic Atiyah extension AtX(C)EC is precisely the extension
deduced from AtX/ZE by the base change from Z to C and analytification, the
pair (AtX/ZE, s

E
) defines an arithmetic extension, the arithmetic Atiyah extension

cAtX/ZE of the hermitian vector bundle E. Its class “atX/ZE in dExt
1

X
(E,E ⌦ ⌦1

X/Z)

— the arithmetic Atiyah class of E — is mapped by the forgetful morphism ⌫ to the
“algebraic" Atiyah class atX/ZE of E in Ext

1
OX

(E,E⌦⌦1
X/Z) (defined by the extension

AtX/ZE) and by the “second fundamental form" morphism  to the curvature form
of the Chern-Nakano connection r

E
(up to a sign).

0.4. — In the first section of this article, we begin by reviewing the constructions
of the Atiyah extension in the classical C-analytic and algebraic frameworks. For the
sake of simplicity, we deal with locally free coherent sheaves only, and follow a naive
approach — we work with relative di�erentials, and not with their “correct" derived
version defined by the cotangent complex. This naive approach is su�cient when one
considers — as we shall in the sequel — relative situations f : X ! S where X is

(2) These authors work in an analytic context as the original article [2], but extend the construction
of Atiyah classes to complex of coherent analytic sheaves over possibly singular complex spaces. Like
Illusie’s construction, this requires to deal with the cotangent complex, now in an analytic context.
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integral, and f is l.c.i. and generically smooth, in which case L·
X/S

is quasi-isomorphic
to ⌦1

X/S
.

Then, in Section 2, we construct the arithmetic Atiyah class in the following relative
situation, which extends the one considered in the previous paragraphs. Consider
arithmetic schemes X and S, flat over an arithmetic ring (R,⌃, F1) (in the sense of
[17, 3.1.1]; see also [7, 1.1]), and a morphism of R-schemes ⇡ : X ! S, smooth over
the fraction field K of R. Then, to any hermitian vector bundle E over X, we attach
a class “atX/SE in dExt

1

X
(E,E ⌦ ⌦1

X/S
). Applying a trace morphism to this class, we

define the first Chern class ĉ
H

1 (E) of E in arithmetic Hodge cohomology, that lies in
the group

“H1,1
(X/S) := dExt

1

X
( OX ,⌦

1
X/S

).

The class “atX/SE and its trace ĉ
H

1 (E) satisfy compatibility properties with pull-back
and tensor operations on hermitian vector bundles that extend well-known properties
of the classical Atiyah and first Chern classes. In particular we construct a functorial
homomorphism

ĉ
H

1 : ”Pic(X) �! “H1,1
(X/S)

from the group of isomorphism classes of hermitian line bundles over X to the arith-
metic Hodge cohomology group.

In the last sections of this article, we investigate the kernel of this morphism. It
trivially vanishes on the image of

⇡
⇤

: ”Pic(S) �! ”Pic(X),

and we may wonder “how large" this image ⇡⇤(”Pic(S)) is in ker ĉ
H

1 .

This question becomes a concrete problem of Diophantine geometry when the base
arithmetic ring is a number field K equipped with a non-empty set ⌃ of embeddings � :

K ,! C stable under complex conjugation, and when S is Spec K and X is projective
over K. Indeed, in this case, the class of a hermitian line bundle L = (L, k.kL)

over X lies in the kernel of ĉ
H

1 precisely when L admits an algebraic connection
r : L ! L ⌦ ⌦1

X/K
, defined over K, such that the induced holomorphic connection

rC : LC ! LC ⌦ ⌦1
X⌃(C) on the holomorphic line bundle LC over

X⌃(C) :=

a

�2⌃
X�(C)

is unitary with respect to the hermitian metric k.kL.

One easily checks that, if L has a torsion class in Pic(X) and if the metric k.kL
has vanishing curvature on X⌃(C), then their exists such a connection. Moreover the
converse implication, namely
I1X,⌃: if a hermitian line bundle L = (L, k.kL) over X admits an algebraic connection

r defined over K such that the connection rC on LC over X⌃(C) is unitary with
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respect to k.kL, then L has a torsion class in Pic(X) and the metric k.kL has vanishing

curvature,

turns out to be equivalent with the following condition, where ⇡ denotes the structural
morphism from X to Spec K:
I2X,⌃: the image of ⇡

⇤
: ”Pic(Spec K)! ”Pic(X) has finite index in the kernel of

ĉ
H

1 : ”Pic(X) �! “H1,1
(X/K).

The equivalent assertions I1X,⌃ and I2X,⌃ may be translated in terms of K-rational
points of the universal vector extension of the Picard variety of X. In this formulation,
their validity has been established by Bertrand [4, 5] when ⌃ has a unique element
(necessarily a real embedding of K) and when this Picard variety admits “real multi-
plication"(3) as a consequence of the analytic subgroup theorem of Wüstholz ([44]).

Inspired by [4, 5] — which we tried to understand in more geometric terms, avoid-
ing the explicit use of di�erential forms and their periods, but working with algebraic
groups and their exponential maps— we establish in Section 3 the validity of I1X,⌃

and I2X,⌃ when ⌃ is arbitrary without any assumption on the Picard variety of X.
The proof proceeds by reducing to the case where X is an abelian variety, and ⌃ has
a unique or two conjugate elements. To handle this case, we use a classical transcen-
dence theorem of Schneider-Lang characterizing Lie algebras of algebraic subgroups
of commutative algebraic groups over number fields. Our argument is presented in
the first part of Section 3, and may be read independently of the rest of the article.

The validity of I1X,⌃ and I2X,⌃ demonstrates that the first Chern class ĉ
H

1 (L) in
the group “H1,1

(X/K) encodes quite non-trivial Diophantine informations. In a later
part of this work, we plan to study characteristic classes of higher degree, with values
in the arithmetic Hodge cohomology groups

“Hp,p
(X/S) := dExt

p

X
( OX ,⌦

p

X/S
)

defined as special instances of the higher arithmetic extension groups introduced in
[7, 0.1], that are deduced from the powers of the arithmetic Atiyah class “atX/SE using
suitably defined products on the higher arithmetic extension groups.

Let us also indicate that, starting from the results in Section 3, one may derive
finiteness results on ker ĉ

H

1 /⇡
⇤
(”Pic(S)) for more general smooth projective morphisms

⇡ : X ! S of arithmetic schemes over arithmetic rings, by considering the restriction
of ⇡ over points of S rational over some number field. We leave this to the interested
reader.

(3) Namely, if this Picard variety A has dimension g, the Q-algebra End(A/K)⌦Z Q is assumed to be
a totally real field of degree g over Q. Actually, Bertrand establishes a more precise result, concerning
g independent extensions of A by the additive group Ga; see [5, Theorem 3, pages 13-14].
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In the final section of the article, we establish a geometric analogue of condition
I1X,⌃. We consider a smooth, projective, geometrically connected curve C over some
field k of characteristic zero, its function field K := k(C), and a smooth projective va-
riety X over k equipped with a dominant k morphism f : X ! C, with geometrically
connected fibers. To any line bundle L over X is attached its relative Atiyah class
atX/CL in H

1
(X,⌦

1
X/C

). We show that, when the fixed part of the abelian variety
Pic

0
XK/K

is trivial, the class atX/CL vanishes i� some positive power of L is isomor-
phic to a line bundle of the form f

⇤
M , where M is a line bundle over C. The proof

relies on the Hodge Index Theorem expressed in the Hodge cohomology groups of X.
Considering the classical analogy between number fields and function fields, it may

be interesting to observe that, when investigating the kernel of the relative Atiyah
class of line bundles, a transcendence result — in the guise of a criterion for a subspace
of the Lie algebra of a commutative algebraic group to define an algebraic subgroup
— plays a key role in the “number field case", while our main tool in the “function
field case" is intersection theory in Hodge cohomology.

In Appendix A, we describe arithmetic extension groups in terms of �ech cocycles.
Based on this description, in the main part of the paper we calculate explicit �ech
cocycles which represent the arithmetic Atiyah class and the first Chern class in
arithmetic Hodge cohomology. Finally Appendix B summarizes basic facts concerning
universal vector extensions of Picard varieties that are used in Sections 3 and 4.

It is a pleasure to thank A. Chambert-Loir and D. Bertrand for helpful discussions,
and S. Kudla, M. Rapoport and J. Schwermer for invitations to the ESI in Vienna
where part of the work on this paper was done. We are grateful to the TMR net-
work ‘Arithmetic geometry’ and the DFG-Forschergruppe ‘Algebraische Zykel und
L-Funktionen’ for their support and to the universities of Regensburg and Paris-Sud
(Orsay) for their hospitality. Finally we wish to thank the referee for his careful read-
ing and his helpful suggestions for improving the exposition.

1. Atiyah extensions in algebraic and analytic geometry

1.1. Definition and basic properties. — We consider simultaneously the alge-
braic and the analytic situation where ⇡ : X ! S is a morphism of locally ringed
spaces which is either

a) a separated morphism of finite presentation between schemes, or
b) an analytic morphism between complex analytic spaces.

We denote in both cases by OX the structure sheaf of regular resp. holomorphic
functions on X. Let I denote the ideal sheaf and

�
(1)

: X
(1) �! X ⇥S X
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the first infinitesimal neighborhood of the diagonal � : X ! X⇥S X. For i = 1, 2, let
qi : X

(1) ! X denote the composition of �(1) with the i-th projection. We identify
(⌦

1
X/S

, d) with the OX -module I/I
2 and the universal derivation

(1.1) d : OX �! I/I
2
, d(�) = q

⇤
2(�)� q

⇤
1(�).

The OX -modules q1⇤ OX(1) and q2⇤ OX(1) are canonically isomorphic as sheaves of OS-
modules. We denote this OS-module by P

1
X/S

and observe that P
1
X/S

carries two nat-
ural OX -module structures via the left and right projection q1 and q2. The canonical
extension

0 �! I/I
2 �! OX⇥SX/I

2 �! OX⇥SX/I �! 0

yields an exact sequence of OX -modules

(1.2) 0 �! ⌦
1
X/S
�! P

1
X/S
�! OX �! 0

for both OX -module structures. The left and right OX -module structures yield canon-
ical but di�erent OX -linear splittings of (1.2) which map 1 mod I to 1 mod I

2.

1.1.1. — Let F denote a vector bundle (that is, a locally free coherent sheaf) on X.
We obtain from (1.2) an exact sequence of OX -modules

Jet1
X/S

(F ) : 0 �! F ⌦ ⌦1
X/S

iF�! P
1
X/S

(F )
pF�! F �! 0

where

(1.3) P
1
X/S

(F ) = q1⇤q
⇤
2F.

Indeed we have
P

1
X/S

(F ) = P
1
X/S
⌦ F

where the tensor product is taken using the right OX -module structure on P
1
X/S

,
and then the sequence is viewed as sequence of OX -modules via the left OX -module
structure. The canonical splitting of (1.2) for the right OX -module structure induces
a canonical OS-linear splitting of Jet1

X/S
(F ). We obtain a canonical direct sum de-

composition

(1.4) P
1
X/S

(F ) = F � (F ⌦ ⌦1
X/S

)

of OS-modules. We use squared brackets [ , ] when we refer to this decomposition.
A straightforward calculation shows that, in terms of this decomposition, the left
OX -module structure of P

1
X/S

(F ) is given by

(1.5) � · [f,!] = [� · f,� · ! � f ⌦ d�]

for local sections � of OX , f of F , and ! of F ⌦ ⌦1
X/S

. It follows that there is a
one-to-one correspondence®

OX -linear splittings
s : F ! P

1
X/S

(F ) of Jet1
X/S

(F )

´
 !

®
algebraic resp. holomorphic

connections r : F ! F ⌦ ⌦1
X/S

´
.
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Under this correspondence, a connection r corresponds to the splitting sr of
Jet1

X/S
(F ) given by the formula

(1.6) sr : F �! P
1
X/S

(F ) = F � (F ⌦ ⌦1
X/S

) , f 7�!
⇥
f,�r(f)

⇤
.

For instance, the “trivial" connection r := d on E = OX is associated to the canonical
left OX -linear splitting of (1.2).

1.1.2. — The extension Jet1
X/S

(F ) is called the extension given by the 1-jets or
principal parts of first order associated with F . We denote the class of Jet1

X/S
(F ) in

Ext
1
OX

(F, F ⌦⌦1
X/S

) by jet
1
X/S

(F ) and abbreviate jet(F ) = jet
1
X/S

(F ) if X/S is clear
from the context. We have followed in (1.1), (1.3), and (1.6) the conventions fixed in
[23, 16.7], [25, III. (1.2.6.2)], and [13, (2.3.4)].

1.1.3. — We recall from [2, Propositions 6, 7 and 8] that the assignment

{vector bundles on X} �! {short exact sequences of OX -modules}
F 7�! Jet1

X/S
(F )

defines an additive, exact functor. Furthermore Jet1
X/S

(F ) is a short exact sequence
of vector bundles if ⇡ is smooth.

The following Lemma is a slight refinement of [2, Proposition 10].

Lemma 1.1.4. — Let E and F denote vector bundles on X.

i) Let

B =

Ker
�
pE ⌦ idF � idE ⌦ pF : P

1
X/S

(E)⌦ F � E ⌦ P
1
X/S

(F )! E ⌦ F
�

Im
�
(iE ⌦ idF ,�idE ⌦ iF ) : E ⌦ F ⌦ ⌦1

X/S
! P

1
X/S

(E)⌦ F � E ⌦ P
1
X/S

(F )
� .

denote the Baer sum of the extensions Jet1
X/S

(E) ⌦ F and E ⌦ Jet1
X/S

(F ). There

exists a canonical isomorphism

(1.7) ' : P
1
X/S

(E ⌦ F ) �! B

which fits into a commutative diagram

0 �! E ⌦ F ⌦ ⌦1
X/S

�! P
1
X/S

(E ⌦ F ) �! E ⌦ F �! 0

|| # ' ||
0 �! E ⌦ F ⌦ ⌦1

X/S
�! B �! E ⌦ F �! 0.

Consequently we have

jet
1
X/S

(E ⌦ F ) = jet
1
X/S

(E)⌦ F + E ⌦ jet
1
X/S

(F )

in Ext
1
OX

(E ⌦ F,E ⌦ F ⌦ ⌦1
X/S

).
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ii) Let rE and rF denote connections on E and F . We equip the tensor product

E ⌦ F with the product connection

(1.8) rE⌦F = rE ⌦ idF + idE ⌦rF .

The connections rE, rF , and rE⌦F induce sections sE,sF , and sE⌦F of Jet1
X/S

(E),

Jet1
X/S

(F ), and Jet1
X/S

(E ⌦ F ) respectively. We have

' � sE⌦F = (sE ⌦ idF , idE ⌦ sF )

where the notation on the right hand side refers to the description of the Baer sum

given above.

Proof. — i) Let IM = Im(iE ⌦ idF ,�idE ⌦ iF ). Recall that

P
1
X/S

(E ⌦ F ) = (E ⌦ F )� (E ⌦ F ⌦ ⌦1
X/S

).

There exists a unique OS-linear map (1.7) which satisfies

'
�
[e0 ⌦ f0, e1 ⌦ f1 ⌦ ↵]

�
=

�
[e0, 0]⌦ f0 + [0, e1 ⌦ ↵]⌦ f1

�
�

�
e0 ⌦ [f0, 0]

�
mod IM

=
�
[e0, 0]⌦ f0

�
�

�
e0 ⌦ [f0, 0] + e1 ⌦ [0, f1 ⌦ ↵]

�
mod IM

for local sections e0, e1 of E, f0, f1 of F and ↵ of ⌦1
X/S

. It is straightforward to check
that ' is well defined and makes our diagram commutative. It remains to show that
' is also OX -linear. This follows from

'
�
� · [e0 ⌦ f0, 0]

�
= '

�
[� · e0 ⌦ f0,�e0 ⌦ f0 ⌦ d�]

�

=
�
[� · e0, 0]⌦ f0 � [0, e0 ⌦ d�]⌦ f0

�
�

�
� · e0 ⌦ [f0, 0]

�
mod IM

= � · '
�
[e0 ⌦ f0, 0]

�

as ' induces the identity on ⌦1
X/S
⌦ E ⌦ F .

ii) For local sections e of E and f of F , we get

' � sE⌦F (e⌦ f) =
�
[e,�re]⌦ f

�
�

�
e⌦ [f,�rf ]

�
mod IM

= (sE ⌦ idF , idE ⌦ sF )(e⌦ f)

which proves ii).

Corollary 1.1.5. — Let E be a vector bundle on X and denote

jE : OX ! E ⌦ E
_ ' End(E)

the canonical morphism of vector bundles which maps 1 to idE. The Baer sum of

Jet1
X/S

(E)⌦E
_

and E ⌦ Jet1
X/S

(E
_
) is canonically isomorphic to Jet1

X/S
(E ⌦E

_
).
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The pullback Jet1
X/S

(E⌦E
_
)�jE of Jet1

X/S
(E⌦E

_
) along jE — defined as the upper

extension in the commutative diagram

(1.9)
0 ! E ⌦ E

_ ⌦ ⌦1
X/S

! Q ! OX ! 0

k # # jE

0 ! E ⌦ E
_ ⌦ ⌦1

X/S
! P

1
X/S

(E ⌦ E
_
) ! E ⌦ E

_ ! 0

whose righthand square is cartesian (compare [7, App. A.4.2]) — admits a canonical

splitting.

Proof. — The first statement follows from Lemma 1.1.4. The map jE induces by
functoriality a morphism from Jet1

X/S
( OX) to Jet1

X/S
(E ⌦ E

_
). Since the righthand

side in (1.9) is cartesian, we obtain a commutative diagram

(1.10)

0 �! ⌦
1
X/S

�! P
1
X/S

( OX) �! OX �! 0

# jE⌦id⌦1
X/S

# ' k

0 �! E ⌦ E
_ ⌦ ⌦1

X/S
�! Q �! OX �! 0.

The canonical splitting sd of Jet1
X/S

( OX) (that correspond to the connection d on OX)
induces via (1.10) the requested canonical splitting '�sd of Jet1

X/S
(E⌦E

_
)� jE .

Lemma 1.1.6. — Consider a commutative diagram

X̃
f�! X

# ⇡̃ # ⇡
S̃

g�! S

in the category of locally ringed spaces where ⇡̃ and ⇡ are morphisms as in situation

1.1, a) or b). Let E be a vector bundle on X and denote by f
⇤

the canonical map

f
⇤
⌦

1
X/S
! ⌦

1
X̃/S̃

.

i) There exists a canonical O
X̃

-linear map

� : f
⇤
P

1
X/S

(E) �! P
1
X̃/S̃

(f
⇤
E)

which makes the diagram

(1.11)
0 �! f

⇤
E ⌦ O

X̃

f
⇤
⌦

1
X/S

�! f
⇤
P

1
X/S

(E) �! f
⇤
E �! 0

# idf⇤E⌦f
⇤ # � ||

0 �! f
⇤
E ⌦ O

X̃

⌦
1
X̃/S̃

�! P
1
X̃/S̃

(f
⇤
E) �! f

⇤
E �! 0.

commutative. Consequently we have

(idf⇤E ⌦ f
⇤
) � jet

1
X/S

(E) = jet
1
X̃/S̃

(f
⇤
E)

in Ext
1
O

X̃

(f
⇤
E, f

⇤
E ⌦ O

X̃

⌦
1
X̃/S̃

).
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ii) A connection rE on E induces a splitting sE of Jet1
X/S

(E). The splitting

sf⇤E := � � f
⇤
(sE)

induces a connection f
⇤rE on f

⇤
E which is uniquely determined by

(1.12) (f
⇤rE)(f

⇤
s) = f

⇤
(rE s) := (idf⇤E ⌦ f

⇤
)(f

�1
(rEs))

for local sections s of E.

Notice that the case where ⇡̃ is as in situation 1.1, b) and ⇡ as in situation 1.1, a)
is allowed.

Proof. — i) Observe that the upper sequence in (1.11) is exact as E is locally free.
Recall that

(1.13) f
⇤
P

1
X/S

(E) =
⇥
f
�1

E � f
�1

(E ⌦ OX
⌦

1
X/S

)
⇤
⌦f�1 OX

O
X̃

and

(1.14) P
1
X̃/S̃

(f
⇤
E) = f

⇤
E � f

⇤
E ⌦ O

X̃

⌦
1
X̃/S̃

.

By the very definitions of f
⇤
E and f

⇤
(E⌦ OX

⌦
1
X/S

), we have f
�1 OX -linear canonical

maps
f
�1

E �! f
⇤
E

and

f
�1

(E⌦ OX
⌦

1
X/S

)! f
⇤
(E⌦ OX

⌦
1
X/S

)
⇠! f

⇤
E⌦ O

X̃

f
⇤
⌦

1
X/S

idf⇤E⌦f
⇤

�! f
⇤
E⌦ O

X̃

⌦
1
X̃/S̃

.

The direct sum of these maps induces a g
�1 OS-linear morphism

⇥
f
�1

E � f
�1

(E ⌦ OX
⌦

1
X/S

)
⇤
�! f

⇤
E � f

⇤
E ⌦ O

X̃

⌦
1
X̃/S̃

.

It is straightforward to check that this morphism is f
�1 OX -linear for the module

structure given by formula (1.5). Via (1.13) and (1.14), we obtain the desired mor-
phism � which fits by construction in the diagram (1.11).

ii) is a straightforward consequence of the construction of � in the proof of i).

1.2. Cotangent complex and Atiyah class. — In situation 1.1, a) resp. b), the
cotangent complex L·

X/S
is constructed in [25, II.1.2] resp. [9, 2.38] as an object in the

derived category D( OX�mod) of OX -modules. Consider ⌦1
X/S

as a complex concen-
trated in degree zero. The cotangent complex L·

X/S
comes with a natural morphism

(1.15) L·
X/S
�! ⌦

1
X/S

in D( OX�mod) which is a quasi-isomorphism if X is smooth over S. Given a vector
bundle E over X, the Atiyah class of E is defined in [25, IV.2.3] resp. [9, §3] as an
element

atX/S(E) 2 Ext
1
OX

(E,E ⌦L L·
X/S

) = HomD( OX�mod)(E,E ⌦L L·
X/S

[1]).
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If X
⇡! S is a morphism of schemes, the Atiyah class of Illusie maps under the

morphism induced by (1.15) to the class (compare [25, Cor. IV.2.3.7.4])

jet
1
X/S

(E) 2 Ext
1
OX

(E,E ⌦ ⌦1
X/S

).

Furthermore, according to [25, Prop. II.1.2.4.2], (1.15) induces an isomorphism

(1.16) H0(L·
X/S

)
⇠�! ⌦

1
X/S

.

If X
⇡! S is a smooth morphism of complex analytic spaces, the Atiyah class of

Buchweitz and Flenner maps under the morphism induced by (1.15) to the opposite

class of jet
1
X/S

(E) ([9, 3.27]).
If the canonical morphism (1.15) is a quasi-isomorphism, we call Jet1

X/S
(E) the

Atiyah extension associated with E and denote it by AtX/S(E).
The associated extension class atX/S(F ) equals the opposite of the Atiyah classes

At(F ) in [9] and b(F ) in [2, Section 4]. It coincides with the Atiyah class defined in
[1]. Compare also [9, 2.4 and Rem. 3.17] for a discussion of signs related to the Atiyah
class.

The following Lemma implies in particular that (1.15) is a quasi-isomorphism in
the situations considered in the next sections.

Lemma 1.2.1. — Let ⇡ : X ! S be a locally complete intersection (l.c.i.) morphism

of schemes such that X is integral and ⇡ is generically smooth, in the sense that the

smooth locus of ⇡ is dense in X. Then the morphism (1.15) is a quasi-isomorphism.

Proof. — It is su�cient to show our claim locally on X as the formation of (1.15) is
compatible with restrictions to open subsets. Hence we may assume that ⇡ admits a
factorization

X
j�! Q

q�! S

where j is a regular immersion defined by some regular ideal sheaf J and q is smooth.
We obtain an exact sequence

(1.17) 0 �! J/J
2 ��! j

⇤
⌦

1
Q/S

 �! ⌦
1
X/S
�! 0.

This is well known up to the injectivity of � which holds as � is a morphism of locally
free sheaves which is injective over the smooth locus of ⇡. The complex

J/J
2 ��! j

⇤
⌦

1
Q/S

concentrated in degrees minus one and zero is a cotangent complex for f by [25,
Cor. III.3.2.7]. Therefore it follows from the exactness of (1.17) on the left and the
isomorphism (1.16) that (1.15) is in fact a quasi-isomorphism.
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1.3. C1-connections compatible with the holomorphic structure. — Let E

denote a holomorphic vector bundle on a complex manifold X. Recall that a C1-
connection

r : A
0
(X, E) �! A

1
(X,E)

on E is called compatible with the holomorphic structure if its (0, 1)-part coincides with
the Dolbeault operator, i.e. r0,1

= @E . Consider the Atiyah extension associated with
E

AtX(E) : 0 �! E ⌦ ⌦1
X

iE�! P
1
X/C(E)

pE�! E �! 0.

In the same way as before, we obtain a one-to-one correspondence

r  ! sr1,0

between C1-connections on the vector bundle E which are compatible with the holo-
morphic structure and C1-splittings

(1.18) sr1,0 : E �! P
1
X/C(E) , f 7�! [f,�r1,0

(f)]

of the extension AtX(E).
It is straightforward to check that this correspondence satisfies compatibility prop-

erties with tensor operations and pull back similar to the ones established in Lemma
1.1.4, Corollary 1.1.5, and Lemma 1.1.6 above.

The one-to-one correspondence described above extends in a straightforward way
to the relative situation where X/S is a holomorphic family of complex manifolds.
We leave the details of this construction to the interested reader.

Assume that E carries a hermitian metric h. A C1-connection r on E = (E, h)

is called unitary if and only if it satisfies

dh(s, t) = h(5s, t) + h(s,5t) for all s, t 2 A
0
(X,E).

Recall that a hermitian holomorphic vector bundle E = (E, h) carries a unique unitary
connection r

E
which is compatible with the holomorphic structure ([10], [36]; see

also [20, Ch. 0.5] or [43, Sect. II.2]; this connection is sometimes called the Chern

connection of (E, h)). Moreover the assignement E 7! r
E

is compatible with direct
sums, tensor products, duals and pull-backs.

Lemma 1.3.1. — Let E = (E, h) be a hermitian holomorphic vector bundle on X.

Let r = r
E

denote the unitary C1-connection on E which is compatible with the

complex structure. The curvature form

r2 2 A
1,1

�
X, End(E)

�

and the second fundamental form

↵ 2 A
0,1

�
X, End(E)⌦ ⌦1

X

�
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associated with AtX(E) and its C1-splitting sr1,0 as in [7, A.5.2] satisfy

(1.19) ↵ = �r2

where we read the canonical isomorphism

A
1,1

�
X, End(E)

� ⇠! A
0,1

�
X, End(E)⌦ ⌦1

X

�
, f ⌦ (↵ ^ �) 7! (f ⌦ ↵) ^ �.

(compare [7, 1.1.5]) as an identification.

Proof. — Recall from [7, A.5.2] that ↵ is determined by

@P
1
X/C(E)⌦E_

�
sr1,0

�
= (iE ⌦ id

A
0,1
X

)(↵).

It is su�cient to verify (1.19) locally on X. Hence we may assume that E admits a
holomorphic frame. We describe r and r2 with respect to this frame by the connec-
tion matrix ✓ and the curvature matrix ⇥. Following the conventions in [43, Ch. III],
we have

⇥ik = d✓ik +

X

j

✓ij ^ ✓jk.

The connection matrix ✓ has type (1, 0) and the curvature matrix ⇥ has type (1, 1)

by loc. cit. Hence the equality above becomes

(1.20) ⇥ = @✓.

Let r̃ denote the connection on E whose connection matrix is zero. The associated
splitting sr̃1,0 of AtX(E) is holomorphic. Hence (1.6) and (1.20) give

@P
1
X/C(E)⌦E_

�
sr1,0

�
= @P

1
X/C(E)⌦E_

�
sr1,0 � sr̃1,0

�
= �@(✓) = �⇥ = �r2

.

2. The arithmetic Atiyah class of a vector bundle with connection

In this section we fix an arithmetic ring R = (R,⌃, F1) in the sense of [17, 3.1.1].
We denote K the fraction field of R, and we let S := Spec R.

2.1. Definition and basic properties. — Let X be an integral arithmetic scheme
over R (in the sense of [17], or [7, 1.1]) with a flat, l.c.i. structural morphism ⇡ :

X ! S. Recall that the generic fiber XK of X is smooth (by the very definition of an
arithmetic scheme in loc. cit.), and observe that ⇡ satisfies the assumptions in Lemma
1.2.1.

Let E be a vector bundle on X. We consider the commutative square

(X⌃(C), Ohol
X⌃

)
j�! (X, OX)

# ⇡C # ⇡
(S⌃(C), Ohol

S⌃
)

j0�! (S, OS).
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Lemma 1.1.6 implies that the formation of the Atiyah extension of E is compatible
with base change with respect to this diagram. More precisely, we have a canonical
analytification isomorphism

P
1
X/S

(E)
hol
C

⇠�! P
1
X⌃(C)/S⌃(C)(E

hol
C )

where we put F
hol
C = j

⇤
F for every OX -module F .

2.1.1. — We have seen in 1.3 that there is a one-to-one correspondence between
C1-connections

r : A
0
�
X⌃(C), EC

�
! A

1
�
X⌃(C), EC

�

which are compatible with the holomorphic structure and commute with the action
of F1, and sections

sr : EC ! P
1
X/S

(E)C

such that (AtX/SE, sr) is an arithmetic extension. This correspondence allows us
to associate its arithmetic Atiyah extension (AtX/SE, sr) and its arithmetic Atiyah

class

“atX/S(E,r) 2 dExt
1

X
(E,E ⌦ ⌦1

X/S
)

to any vector bundle E on X equipped with an F1-invariant C1-connection r on
EC that is compatible with the holomorphic structure.

If E is a hermitian vector bundle over X, we obtain the arithmetic Atiyah extension

(AtX/SE, sr
E

) of E and its arithmetic Atiyah class

“atX/S(E) := “atX/S(E,r
E

) 2 dExt
1

X
(E,E ⌦ ⌦1

X/S
),

where r
E

denotes the unitary connection on E
hol
C over X⌃(C) that is compatible with

the complex structure. As a direct consequence of this definition and Lemma 1.3.1,
we get a formula for the “second fundamental form" (compare the introduction and
[7, 2.3.1])

 
�“atX/S(E)

�
2 A

0,1
�
XR, End(E)⌦ ⌦1

X/S

�
.

Namely

(2.1)  
�“atX/S(E)

�
= �R

E
,

under the canonical identification

A
1,1

�
XR, End(E)

�
= A

0,1
�
XR, End(E)⌦ ⌦1

X/S

�
,

where R
E

:= r2
E

denotes the curvature of E.
In particular, when E is a hermitian line bundle over X,

(2.2)
1

2⇡i
 

�“atX/S(E)
�

= � 1

2⇡i
R

E
=: c1(E)

is the first Chern form of E.
We collect basic properties of the arithmetic Atiyah class.
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Proposition 2.1.2. — i) Let (E,rE) and (F,rF ) be vector bundles on X equipped with

F1-invariant C1-connections compatible with the holomorphic structure. We equip

the tensor product E ⌦ F with the product connection. Then the equality

“atX/S(E ⌦ F,rE⌦F ) = “atX/S(E,rE)⌦ F + E ⌦ “atX/S(F,rF )

holds in dExt
1

X
(E ⌦ F,E ⌦ F ⌦ ⌦1

X/S
).

ii) Let E and F be hermitian vector bundles on X, and E⌦F their tensor product

equipped with the product hermitian metric. Then the equality

“atX/S(E ⌦ F ) = “atX/S(E)⌦ F + E ⌦ “atX/S(F )

holds in dExt
1

X
(E ⌦ F,E ⌦ F ⌦ ⌦1

X/S
).

iii) Let E be a hermitian vector bundle on X, and E
_

the dual hermitian vector

bundle. Then the equality

(2.3) “atX/S(E) = �“atX/S(E
_
)

holds in

(2.4) dExt
1

X
(E,E ⌦ ⌦1

X/S
) ' dExt

1

X
( OX , E

_ ⌦ E ⌦ ⌦1
X/S

)

' dExt
1

X
( OX , (E

_
)
_ ⌦ E

_ ⌦ ⌦1
X/S

) ' dExt
1

X
(E

_
, E

_ ⌦ ⌦1
X/S

),

where the first and last isomorphisms in (2.4) are the canonical isomorphisms in

[7, 2.4.6], and the second one is deduced from the isomorphism E
_ ⌦ E ' E ⌦ E

_

exchanging the two factors and the canonical biduality isomorphism E ' (E
_
)
_
.

iv) Let f : X ! Y be a morphism of integral arithmetic schemes which are gener-

ically smooth l.c.i. over S. Let (E,rE) be a vector bundle on Y with F1-invariant

C1-connection which is compatible with the holomorphic structure. The canonical

map f
⇤

: f
⇤
⌦

1
Y/S
! ⌦

1
X/S

induces a homomorphism

dExt
1

X
(f
⇤
E, f

⇤
E ⌦ f

⇤
⌦

1
Y/S

) �! dExt
1

X
(f
⇤
E, f

⇤
E ⌦ ⌦1

X/S
)

by pushout along idf⇤E ⌦ f
⇤
. We still denote the image of f

⇤“atY/S(E,rE) under

this map by f
⇤“atY/S(E,rE) and equip f

⇤
E

hol
C with the connection f

⇤rE described in

(1.12). Then we have the equality

f
⇤“atY/S(E,rE) = “atX/S(f

⇤
E, f

⇤rE).

in dExt
1

X
(f
⇤
E, f

⇤
E ⌦ ⌦1

X/S
).

v) Let f : X ! Y be a morphism of integral arithmetic schemes which are

generically smooth l.c.i. over S. Let E denote a hermitian vector bundle on Y ,
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and f
⇤
E its pull-back on X. Then the inverse image f

⇤“atY/S(E) may be defined in

dExt
1

X
(f
⇤
E, f

⇤
E ⌦ ⌦1

X/S
) as in iv) and satisfies

f
⇤“atY/S(E) = “atX/S(f

⇤
E).

Proof. — Assertion i) follows from Lemma 1.1.4 and its variant for C1-connections
compatible with the holomorphic structure, and assertion ii) is a direct consequence
of i) and of the fact that the Chern connection of a tensor product of hermitian vector
bundles coincides with the tensor product of their Chern connections. To establish
iii), observe that Corollary 1.1.5 and the compatibility of the canonical splitting given
there with holomorphic and hermitian structures leads to the equality

(E
_ ⌦ “atX/S(E)) � jE = �(“atX/S(E

_
)⌦ E) � jE

in dExt
1

X
( OX , End(E) ⌦ ⌦1

X/S
) where . � jE denotes the pushout along jE . Equality

(2.3) then follows from the very definitions of the isomorphisms in (2.4) in [7, Prop.
2.4.6]. Assertions iv) and v) follow from 1.1.6.

Let E be a hermitian line bundle on X. We give a cocycle description of “at(E)

based on the description of arithmetic extension groups by �ech cocycles given in
Appendix A.

Proposition 2.1.3. — Let E = (E, h) be a hermitian vector bundle of rank n on X.

Choose an a�ne, open cover U = (Ui)i2I of X such that E admits a frame

fi : On

Ui

⇠�! E|Ui

over each Ui. For i 2 I, we define

hi := h(fi,C, fi,C) =
�
h(fi,C(el), fi,C(ek))

�
1k,ln

2 Matn

�
C1(Ui,⌃(C), C)

F1
�
,

where el := (�↵l)1↵n, and

@ log hi := fi � h
�1
i
� (@hi) � f

�1
i
2 A

0
�
Ui,R,End(E)⌦ ⌦1

X/S

�
.

For i, j 2 I, we define

fij := f
�1
j
� fi 2 Matn

�
OX(Uij)

�

dlog fij := fj � (dfij) � f
�1
i

2 �
�
Uij ,End(E)⌦ ⌦1

X/S

�
.

Then the isomorphism

⇢̂ U,E,E⌦⌦1
X/S

: dExt
1

X
(E,E ⌦ ⌦1

X/S
)! Ȟ

0
�
U, C(adEnd(E)⌦⌦1

X/S

)
�

constructed in Lemma A.0.1 maps “atX/S(E) to the class of

�
(�dlog fij)i,j2I , (�@log hi)i2I

�
.
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Proof. — Let r denote the unitary connection on EC which is compatible with the
holomorphic structure. We compute a cocycle

�
(↵ij)i,j , (�i)i

�
which represents the

image of the arithmetic extension (At(E), sr) under ⇢̂ U,E,E⌦⌦1
X/S

. We follow the
construction of ⇢̂ U,E,E⌦⌦1

X/S

given in Appendix A. Consider the diagram

0 �! End(E)⌦ ⌦1
X/S

�! W �! OX �! 0

|| # # jE

0 �! E ⌦ ⌦1
X/S
⌦ E

_ �! P
1
X/S

(E)⌦ E
_ �! E ⌦ E

_ �! 0.

where the lower exact sequence is the extension At(E) ⌦ E
_ and the upper exact

sequence is the pullback (At(E)⌦E
_
) � jE of the lower exact sequence by jE . There

is a unique connection ri : E|Ui
! E|Ui

⌦ ⌦1
Ui/S

such that ri(fi) = 0. It satisfies

rj(fi) = rj(fj · fij) = fj · dfij ,

where the frames fi and fj are seen as “line vectors" with entries sections of E. The
connection ri determines an OUi

-linear splitting sri
of At(E) over Ui as in (1.6). We

write jE(1X) = fi⌦ f
_
i

, where f
_
i

denotes the dual frame of E
_ — which we may see

as a “column vector" with entries sections of E
_ — and get

↵ij = (srj
⌦ idE_ � sri

⌦ idE_) � jE(1X)

= (�rj +ri)fi ⌦ f
_
i

=
�
�fj · (dfij)

�
⌦ f

_
i

= �dlog fij .

We observe that we have
r1,0

(fi) = fi · h�1
i

· (@hi)

by [43, III.2, eq. (2.1)]. Hence

�i = (sr1,0 ⌦ idE_ � sri
⌦ idE_) � jE(1X)

= �fi � h
�1
i
� (@hi) � f

�1
i

= �@ log hi.

Our claim follows.
The properties of the arithmetic Atiyah class in Proposition 2.1.2 may be recovered

by straightforward cocycle computations using Proposition 2.1.3.

2.1.4. — Let us indicate that there is a straightforward generalization of the construc-
tion of the arithmetic extension class atX/S(E,r) in dExt

1

X
(E,E⌦⌦1

X/S
) given above

when S is a flat arithmetic scheme over Spec R, X an integral arithmetic scheme
equipped with a l.c.i. morphism ⇡ : X ! S, smooth over K, and r is a relative
C1-connection for X⌃(C)/S⌃(C).
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If the relative connection r is induced by an absolute connection rX via the
canonical map

(2.5) ⌦
1
X/Spec R

! ⌦
1
X/S

,

the relative and the absolute Atiyah class are related as follows. The commutative
square

X
idX�! X

# ⇡ #
S �! Spec R

induces by Lemma 1.1.6 a commutative diagram

(2.6)
0 �! E ⌦ ⌦1

X/Spec R
�! P

1
X/Spec R

(E) �! E �! 0

# # � ||
0 �! E ⌦ ⌦1

X/S
�! P

1
X/S

(E) �! E �! 0.

which identifies AtX/S(E) with the pushout of Jet1
X/Spec R

(E) along the canonical
map (2.5). We have sr = �C � srX

. Hence the pushout of the arithmetic extension
( Jet1

X/Spec R
E, sr) along the canonical map (2.5) is by its very definition in [7, 2.4.1]

the arithmetic extension (AtX/S(E), sr).

2.2. The first Chern class in arithmetic Hodge cohomology

2.2.1. — For a hermitian vector bundle E on an arithmetic scheme X, flat and l.c.i.
over S = Spec R, we put

ĉ
H

1 (E) := ĉ
H

1 (X/S, E) := trE � (“atX/S(E)⌦ E
_
) � jE 2 dExt

1
( OX ,⌦

1
X/S

)

where trE : E ⌦ E
_! OX and jE : OX!End(E) ' E ⌦ E

_ denote the canonical
morphisms. We call ĉ

H

1 (E) the first Chern class of E in arithmetic Hodge cohomology.
When E is a hermitian line bundle, trE and jE are the “obvious" isomorphisms,

and ĉ
H

1 (E) is nothing else than “atX/S(E) in

dExt
1

X
(E,E ⌦ ⌦1

X/S
) ' dExt

1

X
( OX , E

_ ⌦ E ⌦ ⌦1
X/S

) ' dExt
1

X
( OX ,⌦

1
X/S

).

Using the the description of the arithmetic Atiyah class in terms of �ech cocycles
in Proposition 2.1.3, and the expression of the di�erential of the determinant in terms
of the trace, we obtain, after a straightforward computation:

(2.7) ĉ
H

1 (E) = ĉ
H

1 (detE).

Proposition 2.1.3 also leads immediately to the following description of the first
Chern class in arithmetic Hodge cohomology for hermitian line bundles:
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Lemma 2.2.2. — Let L be a hermitian line bundle on an arithmetic scheme X. Choose

an a�ne, open cover U = (Ui)i2I of X such that L admits a trivialization li 2 �(Ui, L)

over Ui. Put

fij := l
�1
j

· li 2 �(Uij , O⇤).
Then

⇢̂ U,⌦1
X/S

�
ĉ
H

1 (L)
�

=
⇥
(�dlog fij)i,j2I , (�@log klik2)i2I

⇤
.

2.2.3. — Let ”Pic(X) denote the group of isometry classes of hermitian line bundles
on X. It follows immediately from Proposition 2.1.2 that the map

ĉ
H

1 : ”Pic(X) �! dExt
1

X
( OX ,⌦

1
X/S

)

is a group homomorphism which satisfies

ĉ
H

1 (X/S, . ) � f
⇤

= f
⇤ � ĉ

H

1 (Y/S, . )

for every morphism f : X ! Y of integral, flat, l.c.i, arithmetic S-schemes.

2.2.4. — We consider the diagrams
(2.8)

O(X)
⇤ log |.|2! A

0,0
(XR)

a! ”Pic(X) ! Pic(X)

# �dlog # �@ # ĉ
H

1 # c
H

1

�(X,⌦
1
X/S

) ! A
0
(XR,⌦

1
X/S

)
b! dExt

1

X
( OX ,⌦

1
X/S

)
⌫! Ext

1
OX

( OX ,⌦
1
X/S

).

and

(2.9)

”Pic(X)
c1�! A

1,1
(XR)

# ĉ
H

1 # ◆
dExt

1

X
( OX ,⌦

1
X/S

)
 �! A

0,1
(XR,⌦

1
X/S

).

Here A
p,p

(XR) is by definition the space of real (p, p)-forms ↵ on the complex manifold
X⌃(C) which satisfy F1(↵) = (�1)

p
↵ (compare [17, 3.2.1]). The monomorphism ◆ is

defined by
A

p,p
(XR) ,! A

0,p
(XR,⌦

p

X/S
) , ↵ 7! (2⇡i)

p
↵

(compare [7, 1.1.5]). Furthermore we have used the following morphisms:

log |.|2 : O(X)
⇤ �! A

0,0
(XR) , f 7�! log |f |2,

dlog : O(X)
⇤ �! �(X,⌦

1
X/S

) , f 7�! f
�1

df,

�(X,⌦
1
X/S

) �! A
0
(XR,⌦

1
X/S

) , ↵ 7�! ↵C,

@ : A
0,0

(XR) �! A
0
(XR,⌦

1
X/S

) , f 7�! @f,

a : A
0,0

(XR) �! ”Pic(X) , f 7�! [( OX , k.kf )] with k1Xk2f = exp f,

b : A
0
(XR,⌦

1
X/S

) �! dExt
1

X
( OX ,⌦

1
X/S

), T 7�!
h
0! ⌦

1
X/S

(
id
0 )! ⌦

1
X/S
� OX
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(0,id)! OX ! 0, s :=
�

T

id

�i

(compare the introduction and [7, 2.2]),

”Pic(X) �! Pic(X) , [(L, k . k)] 7�! [L],

⌫ : dExt
1

X
( OX ,⌦

1
X/S

) �! Ext
1
OX

( OX ,⌦
1
X/S

) , [( E, s)] 7�! [ E],

c
H

1 : Pic(X) �! Ext
1
OX

( OX ,⌦
1
X/S

) , [L] 7�! [trL � atX/S(L) � iL],

c1 : ”Pic(X) �! A
1,1

(XR) , [L = (L, k . k)] 7�! �(2⇡i)
�1r2

L
,

 : dExt
1

X
( OX ,⌦

1
X/S

) �! A
0,1

(XR,⌦
1
X/S

), defined in [7, 2.3.1].

The horizontal lines in (2.8) are exact by [18, (2.5.2)] and [7, 2.2.1]. Observe the
analogy between (2.8) and [18, (2.5.2)].

Proposition 2.2.5. — The diagrams (2.8) and (2.9) are commutative.

Proof. — For f in O(X)
⇤, we have

(2.10) @ log |f |2 =
@(ff)

ff
=
@f

f
=

df

f
= dlog f

which shows the commutativity of the left square in (2.8). The unitary connection rf

on ( OX , k.kf ) that is compatible with the holomorphic structure is given according
to [43, III.2 formula (2.1)] by the formula

r1,0
f

(1) = @f 2 A
0
(XR,⌦

1
X/S

).

Taking into account the correspondence between connections and splittings in 1.3
above (and notably the sign in (1.18)), it follows that the middle square commutes.
The commutativity of the right square holds by definition. The square (2.9) is com-
mutative by formula (2.2).

3. Hermitian line bundles with vanishing arithmetic Atiyah class

This section is devoted to the proof of assertions I1X,⌃ and I2X,⌃ in the Introduc-
tion (see 0.4 supra).

In the first part of the section, we establish the special case of I1X,⌃ where X is
an abelian variety and ⌃ has a unique or two conjugate elements. As mentioned in
the Introduction, the validity of I1X,⌃ in this case has been established by Bertrand
([4, 5]) under suitable hypotheses of “real multiplication".

In the second part of the section, we use some classical properties of Picard varieties
to extend I1X,⌃ to arbitrary smooth projective varieties X over number fields. Finally
we establish I2X,⌃, which describes the kernel of the first class Chern in arithmetic
Hodge cohomology ĉ

H

1 “up to a finite group".
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3.1. Transcendence and line bundles with connections on abelian varieties.

— The next paragraphs are devoted to the proof of the following theorem:

Theorem 3.1.1. — Let A be an abelian variety over a number field K, and (L,r) a

line bundle over A equipped with a connection (defined over K).

If there exists a field embedding � : K ,! C and a hermitian metric k.k on the com-

plex line bundle L� on A�(C) such that the connection r� is unitary with respect to

k.k, then L has a torsion class in Pic(A), and the metric k.k has vanishing curvature.

Actually this implies that the connection r is the unique one on L such that (L,r)

has a torsion class in the group of isomorphism classes of line bundles with connections
over A (see 3.2 infra).

Let us indicate that this result admits an alternative formulation in terms of uni-
versal vector extensions of abelian varieties and their maximal compact subgroups, in
the spirit of Bertrand’s articles [4, 5]:

Theorem 3.1.2. — Let B be an abelian variety over a number field K, B
#

the universal

vector extension of B, and P a point in B
#

(K).

If there exists a field embedding � : K ,! C such that the point P� belongs to the

maximal compact subgroup of B
#
�

(C), then P is a torsion point in B
#

(K).

Actually, for any given K and �, the implications in the statement of Theorems
3.1.1 and 3.1.2 are equivalent when the abelian varieties A and B are dual to each
other. This follows from the description of the universal vector extension B

# and of
the maximal compact subgroup of B

#
�

(C) recalled in Appendix B (see notably B.6
applied to k = K and X = A, in which case EX/k = B

#, and B.7 applied to X = A�,
in which case EX/C(C) = B

#
�

(C)).
The formulation in Theorem 3.1.1 turns out to be more convenient for the proof,

which will proceed along the following lines.
Firstly, the data (L,r) in Theorem 3.1.1 may be “translated" in terms of algebraic

groups: the total space of the Gm-torsor associated to L defines a commutative alge-
braic group L

⇥ , and the connection r an hyperplane in its Lie algebra Lie L
⇥

. Then
an application of the theorem of Schneider-Lang to this situation will show that, if

there exists a family (�1, . . . , �g) of points in the lattice of periods �A�
of A� which

constitutes a C-basis of Lie A� such that the monodromy of the complex line bundle

with connection (L�,r�) along each �i lies in Q⇤, then L is torsion.(4)

(4) Added in proof. After the acceptation of this article, we realized that related results had been
obtained by Simpson, [40], Section 3. Namely Theorem 1 of loc. cit. establishes the validity of the
previous criterion under the stronger assumption that the monodromy of (L� ,r�) along any � in
� belongs to Q⇤. Simpson’s proof relies on transcendence results of Waldschmidt [42] concerning
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This criterion easily leads to a derivation of Theorem 3.1.1 when the image of
the embedding � lies in R. Indeed a simple “reality" argument then shows that the
monodromy of (L�,r�) along the “real periods" of A� lies in {1,�1}.

When the image of � does not lie in R, we may assume that K is Galois over Q,
and consider the involution ⌧ of K such that � � ⌧ = �. It will turn out that we may
apply the above criterion to the line bundle with connection on A ⇥K A⌧ defined as
the external tensor product of (L,r) and (L⌧ ,r⌧ ) to establish that L⇥L⌧ , hence L,
is torsion.

3.1.3. Line bundles with connections on abelian varieties. — Let A be an abelian
variety over a field k of characteristic zero, and L a line bundle over A. We may
choose a rigidification of L, namely a trivialization � : k ' Le of its fiber at the zero
element e of A(k), or equivalently the vector ` := �(1) in Le \ {0}.

In the sequel, we shall assume that the following equivalent(5) conditions are satis-
fied:

(i) the line bundle L is algebraically equivalent to the trivial line bundle;

(ii) the Atiyah class atA/kL(= jet
1
A/k

L) of L vanishes;

(iii) the line bundle L may be equipped with an algebraic connection r.

Observe that the connection r is necessarily flat(6) and that the set of connections
on A is a torsor under the k-vector space �(A,⌦

1
A/k

) ' (Lie A)
_ of regular 1-forms

on A, which acts additively on this set.
Beside, the Gm-torsor L

⇥ defined by deleting the zero section from the total space(7)

V(L
_
) of L admits a unique structure of commutative algebraic group over k such

that the diagram

(3.1) 0 �! Gm,k

��! L
⇥ ⇡�! A �! 0,

— where � denotes the composite morphism Gm,k

�

' L
⇥
e
,! L

⇥ and ⇡ the restriction
of the “structural morphism" from V(L

_
) to A — becomes a short exact sequence of

exponentials of abelian integrals, which themselves are deduced from the Theorem of Schneider-
Lang. The derivation of the previous criterion in 3.1.5 infra may be seen as a refined geometric
variant of the arguments of Waldschmidt and Simpson.
(5) Indeed (ii) and (iii) are equivalent by the very definition of atA/kL, (ii) is equivalent to the
rational vanishing of the first Chern class of L (hence (i) implies (ii)), and if the first Chern class of
L vanishes rationally, one gets (i) from [28, II.2 Cor. 1 to Th. 2], as Pic0

A/k
= Pic⌧

A/k
by [35, Cor.

6.8].
(6) To establish this, we may reduce to the case k = C and use transcendental arguments. We may also
assume that k is algebraically closed, and observe that the curvature r2 of an algebraic connection
on L depends only on the isomorphism class of L and defines a morphism of algebraic groups over k

from the dual abelian variety A
_ to the additive group �(A, ⌦2

A/k
)(' ^2(Lie A)_). Since A is proper

and connected, any such morphism is zero.
(7) Namely, the spectrum of the quasi-coherent OA-algebra

L
n2N L

_⌦n
.
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commutative algebraic groups. Its zero element is the k-point ✏ 2 L
⇥

(k) defined by
`. (See for instance [39], VII.3.16.)

From (3.1), we derive a short exact sequence of k-vector spaces:

(3.2) 0 �! Lie Gm,k

Lie��! Lie L
⇥ Lie⇡�! Lie A �! 0.

Recall that a connection over a vector bundle on a smooth algebraic variety may
be described à la Ehresmann as an equivariant splitting of the di�erential of the
structural morphism of its frame bundle (see for instance [30], Chapter II, or [41],
Chapter 8; the constructions of loc. cit. in a di�erentiable setting can be immediately
transposed in the algebraic framework of smooth algebraic varieties). In the present
situation, a connection r on L may thus be seen as a Gm,k-equivariant splitting of
the surjective morphism of vector bundles over L

⇥ defined by the di�erential of ⇡:

D⇡ : TL⇥ �! ⇡
⇤
TA.

In particular, its value at the unit element ✏ of L
⇥ defines a k-linear splitting

⌃ : Lie A �! Lie L
⇥

of (3.2).
Conversely, from any k-linear right inverse ⌃ of Lie⇡, we deduce a Gm-equivariant

splitting of D⇡ by constructing its L
⇥-equivariant extension to L

⇥
.

Through these constructions, connections on L and k-linear splittings of (3.2) cor-
respond bijectively. Indeed, by means of the identification

Lie Gm,k

⇠�! k

� · X @

@X
7�! �,

the set of k-linear splittings of (3.2) becomes naturally a torsor under (Lie A)
_, and

the above constructions are compatible with the (additive) actions of (Lie A)
_ on the

set of these splittings and on the set of connections on L.
This correspondence may also be described as follows. A linear splitting ⌃ as above

may also be seen as a morphism ˜̀ : Ae,1 ! L
⇥
✏,1 from the first infinitesimal neigh-

bourhood Ae,1 of e in A to the first infinitesimal neighbourhood L
⇥
✏,1 of ✏ in L

⇥ which
is a right inverse of the map ⇡✏,1 : L

⇥
✏,1 ! Ae,1 deduced from ⇡. In other words, ˜̀ is

a section of L over Ae,1 such that ˜̀(e) = l. The connection r associated to ⌃ is the
unique one such that r˜̀(e) = 0.

3.1.4. The complex case. — If G is a commutative algebraic group over C, its ex-
ponential map will be denoted exp

G
. It is the unique morphism of C-analytic Lie

groups

exp
G

: Lie G �! G(C)
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whose di�erential at 0 2 Lie G is IdLie G. Its kernel

�G := ker exp
G

is a discrete additive subgroup of Lie G. When G is connected, exp
G

is a universal
covering of G(C), and �G may be identified with the fundamental group ⇡1(G(C), 0G),
or with the homology group H1(G(C), Z).

Let us go back to the situation considered in paragraph 3.1.3, in the case where
the base field k is C, and fix the algebraic connection r on L.

Then the diagram
Lie L

⇥ D⇡�! Lie A

# exp
L⇥ # exp

A

L
⇥

(C)
⇡�! A(C).

is commutative. Consequently the morphism of groups

exp
L⇥ �⌃ : �A �! L

⇥
(C)

takes its value in ker⇡ ' C⇤. It coincides with the monodromy representation

⇢ : �A = H1(A(C), Z) �! C⇤

of the line bundle with flat connection (L,r) — or more properly of the corresponding
objects in the analytic category — over A(C). Indeed, the horizontal Gm,C-equivariant
foliation on L

⇥
(C) defined by r is translation invariant, and its leaves are precisely

the translates in L
⇥

(C) of the image of exp
L⇥ �⌃.

3.1.5. An application of the Theorem of Schneider-Lang. — To establish Theorem
3.1.1, we shall use the following classical transcendence result on commutative alge-
braic groups:

Theorem 3.1.6. — Let K be a number field and � : K ,! C a field embedding, and let

G be a commutative algebraic group over K, and V a K-vector subspace of Lie G.

If there exists a basis (�1, . . . , �v) of the complex vector space V� such that, for

every i 2 {1, . . . , v}, exp
G�

(�i) belongs to G(Q), then V is the Lie algebra of some

algebraic subgroup H of G.

We have denoted Q the algebraic closure of Q in C. By means of the embedding �,
it may be seen as an algebraic closure of K, and the group G(Q) of Q-rational points
of G becomes a subgroup of the group G�(C) of its complex points.

Observe also that the subgroup H whose existence is asserted in Theorem 3.1.6
may clearly be chosen connected, and then H is clearly unique, defined over K, and
the group H�(C) of its complex points coincides with exp

G�
(V�).

Theorem 3.1.6 has been established by Lang ([31], IV.4, Theorem 2), who elabo-
rated on some earlier work of Schneider on abelian functions and the transcendence
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of their values [38]. We refer the reader to [42] (where it appears as Théorème 5.2.1)
for more details on Theorem 3.1.6 and its classical applications.

Let us point out that Theorem 3.1.6 is now subsumed by various renowned more
recent results — namely, the transcendence criterion of Bombieri and the analytic
subgroup theorem of Wüstholz. The reader may find a recent survey of these and
related transcendence results on commutative algebraic groups in the monograph [3].

We now return to the situation considered in paragraph 3.1.3, where we assume
that the base field k is a number field K.

Taking into account the relation in the complex case between the monodromy
of connections on L and the exponential map of the algebraic group L

⇥ described
in 3.1.4, we may derive from the theorem of Schneider-Lang (Theorem 3.1.6 above)
applied to the algebraic group G = L

⇥:

Corollary 3.1.7. — Let A be an abelian variety of dimension g over a number field K,

and (L,r) a line bundle over L equipped with a flat connection (defined over K).

Let � : K ,! C be a field embedding, and let ⇢� : �A�
�! C⇤ denote the monodromy

representation attached to the flat complex line bundle (L�,r�) over A�(C).

If there exists �1, . . . , �g in �A�
such that (�1, . . . , �g) is a basis of the C-vector

space Lie A� and such that, for every i 2 {1, . . . , g}, ⇢�(�i) belongs to Q⇤, then L has

a torsion class in Pic(A).

Observe that conversely, if n is a positive integer such that L
⌦n ' OA, the unique

connection rtor
L

on L such the n-th tensor power of the line bundle with connection
(L,rtor

L
) is isomorphic to ( OA, d) is such that, for any � : K ,! C, the image of

the monodromy ⇢� of (L�,rtor
L,�

) lies in the n-th roots of unity, hence in Q⇤. By
elaborating slightly on the proof below, one may show that, with the notation of
Corollary 3.1.7, the connection r necessarily coincides with the connection rtor

L
so

defined. We leave this to the interested reader.

Proof. — We consider the K-linear map ⌃ : Lie A �! Lie L
⇥ associated to the

connection r as in 3.1.3, and its image V := ⌃(Lie A). The vectors �̃i := ⌃�(�i),

1  i  g, constitute a basis of the C-vector space V�. Moreover the image exp
L
⇥
�

(�̃i)

of �̃i by the exponential map of L
⇥
�

is the point of L
⇥
�,e
' C⇤ defined by the monodromy

⇢�(�i) of �i. According to our assumption, these images belong to L
⇥

(Q).
The theorem of Schneider-Lang now shows that V is the Lie algebra of a connected

algebraic subgroup H of L
⇥, defined over K. Since Lie⇡|H : Lie H = V ! Lie A is

an isomorphism of K-vector spaces, the morphism of algebraic groups ⇡|H : H ! A

is étale, and consequently H is an abelian variety over K and ⇡|H an isogeny.
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By the very construction of H as a subscheme of L
⇥, the inverse image ⇡⇤|HL of

L on H is trivial. If N denotes the degree of ⇡|H , it follows that L
⌦N — which is

isomorphic to the norm, relative to ⇡|H , of ⇡⇤|HL — is a trivial line bundle.

3.1.8. Reality I. — Let us keep the framework of paragraph 3.1.3, and suppose now
that the base field k is R.

The line bundle with connection (L,r) defines a real analytic line bundle with flat
connection (L

R
,rR

) over the compact real analytic Lie group A(R). Its monodromy
defines a representation ⇢R of the fundamental group ⇡1(A(R), 0A), or equivalently of
the homology group H1(A(R)

�
, Z) of the connected component of 0A, with values in

R⇤.
Actually the inclusion ◆ : A(R)

�
,! A(C) defines an injective map of free abelian

groups, of respective ranks g and 2g,

◆⇤ : H1(A(R)
�
, Z) �! H1(A(C), Z),

and the monodromy representation ⇢R coincides with the restriction ⇢C � ◆⇤ of the
monodromy representation

⇢C : H1(A(C), Z) �! C⇤

defined by the C-analytic line bundle with flat connection (LC,rC) over the compact
C-analytic Lie group A(C). Moreover any Z-basis of ◆⇤(H1(A(R)

�
, Z)) is a C-basis of

H1(A(C), C) ' Lie AC.

Lemma 3.1.9. — The following conditions are equivalent:

(i) There exists a hermitian metric k.k on the complex line bundle LC on A(C)

such that the connection rC is unitary with respect to k.k(8).
(ii) The monodromy representation ⇢R takes its values in {1,�1}.

Clearly Condition (i) is equivalent to:
(i0) The monodromy representation ⇢C takes its values in U(1) := {z 2 C | |z| = 1}.
In the sequel, we shall only use the implications (i) ) (i

0
) ) (ii), which are

straightforward. To show (ii) ) (i
0
), let �+

:= ◆⇤(H1(A(R)
�
, Z)), and observe that

the elements of �AC which are “purely imaginary" in Lie AC ' (Lie A)⌦RC constitute
a subgroup �� of rank g such that �+ \ �� = {0}, that �/�

+ � �� is a 2-torsion
group, and that the image ⇢C(�

�
) of �� by the monodromy representation lies in

U(1). We leave the details to the reader.

(8) Or, equivalently, such that rC is the Chern connection associated to k.k.
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3.1.10. Reality II. — In this paragraph, we still keep the framework of the paragraph
3.1.3, and we now assume that the base field k is C. We may apply the considerations
of the last paragraph to the abelian variety over R deduced from A by Weil restriction
of scalar from C to R. This leads to the following results, that we formulate without
explicit reference to Weil restriction.

Let A�, L�, r� be respectively the complex abelian variety, the line bundle over
A�, and the connection over L� deduced from A, L, and r by the base change
Spec C! Spec C defined by complex conjugation.

Let us consider the complex abelian variety

B := A⇥A�,

the two projections
pr : B �! A and pr� : B �! A�,

and (L̃, r̃) the line bundle with connection over B defined as the tensor product of
pr
⇤
(L,r) and pr

⇤
�(L�,r�).

Let j : Lie A ! Lie A� denote the canonical C-antilinear isomorphism. It maps
bijectively �A onto �A� , and we may introduce the diagonal embedding

� : �A �! �A � �A� ' �B

� 7�! (�, j(�)).

Observe that any Z-basis (�1, . . . , �2g) of �A is a R-basis of Lie A, and consequently
its image (�(�1), . . . ,�(�2g)) by � is a C-basis of Lie B.

Let ⇢ (resp. ⇢�, ⇢̃) be the monodromy representation of �A (resp. �A� , �B) defined
by the line bundle with connection (L,r) (resp. (L�,r�), (L̃, r̃)).

It is straightforward that, for any � in �A, the following relations hold:

⇢�(j(�)) = ⇢(�),

and
⇢̃(�(�)) = ⇢(�).⇢�(j(�)) = |⇢(�)|2.

These observations establish:

Lemma 3.1.11. — If there exists a hermitian metric k.k on the complex line bundle

L on A(C) such that the connection r is unitary with respect to k.k, then the image

�(�) of the diagonal embedding � contains a C-basis of Lie B, and is included in the

kernel of the monodromy representation ⇢̃ of (L̃, r̃).

3.1.12. Conclusion of the proof of Theorem 3.1.1. — The following statement is a
straightforward consequence of Corollary 3.1.7 to the Theorem of Schneider-Lang,
combined with Lemma 3.1.9 above:
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Corollary 3.1.13. — Let A be an abelian variety over a number field K, and (L,r) a

line bundle over A equipped with a flat connection defined over K, and let � : K ,! C
be a field embedding that is real, namely such that its image �(K) lies in R.

If there exists a hermitian metric k.k on the complex line bundle L� on A�(C) such

that the connection r� is unitary with respect to k.k, then L has a torsion class in

Pic(A).

If we use Lemma 3.1.11 instead of Lemma 3.1.9, we may prove:

Corollary 3.1.14. — Let A be an abelian variety over a number field K, and (L,r) a

line bundle over A equipped with a flat connection defined over K.

Let � : K ,! C be a field embedding, and let ⌧ be a (necessarily involutive) auto-

morphism of the field K such that � � ⌧ = �.

If there exists a hermitian metric k.k on the complex line bundle L� on A�(C) such

that the connection r� is unitary with respect to k.k, then L has a torsion class in

Pic(A).

Observe that when ⌧ = IdK Corollary 3.1.14 reduces to Corollary 3.1.13 above.
We have however chosen to present explicitly the statement of Corollary 3.1.13 and
its proof above, since the basic idea behind the proofs of Corollaries 3.1.13 and 3.1.14
appears more clearly in the first one, which indeed has been inspired by Bertrand’s
proof in [4] and [5].
Proof of Corollary 3.1.14. As usual we denote A⌧ , L⌧ , and r⌧ respectively the abelian
variety over K, the line bundle over A⌧ , and the connection over L⌧ deduced from A,

L, and r by the base change Spec K ! Spec K defined by ⌧ . We may also introduce
the abelian variety over K

B := A⇥A⌧ ,

the two projections
pr : B �! A and pr

⌧
: B �! A⌧ ,

and (L̃, r̃) the line bundle with connection over B defined as the tensor product of
pr
⇤
(L,r) and pr

⇤
⌧
(L⌧ ,r⌧ ).

Lemma 3.1.11 applied to (A�, L�,r�) shows that the hypotheses of Corollary 3.1.7
are satisfied by the abelian variety B over K, and the line bundle with connection
(L̃, r̃) over B. Consequently L̃ has a torsion class in Pic(B), and so L itself — which is
isomorphic to the restriction of L̃ to A⇥{e} ' A — has a torsion class in Pic(A).

Finally consider K, A, (L,r), � and k.k as in the statement of Theorem 3.1.1.
Let us first show that L has a torsion class in K. To achieve this, let us choose

a finite field extension K
0 of K admitting an automorphism ⌧ and an embedding �0

in C that extends � and satisfies �0 � ⌧ = �0 — for instance the subfield K
0 of C

generated by �(K) and its image by complex conjugation. We may apply Corollary
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3.1.14 to the number field K
0 equipped with the complex embedding �0, and to the

abelian variety AK0 and the line bundle with connection (LK0 ,rK0) deduced from A

and (L,r) by the base change Spec K
0 ! Spec K. Therefore LK0 has a torsion class

in Pic(AK0). Since the base change morphism

Pic(A) �! Pic(AK0)

is injective, this indeed implies that L has a torsion class in Pic(A).
To complete the proof of Theorem 3.1.1, it is su�cient to observe that the curvature

of k.k — or equivalently, of the C1-connection r C1 = r� + @L�
on L� — vanishes

for reason of type(9): it is a 2-form on A�(C) of type (2, 0), since r� is holomorphic,
and purely imaginary, since r C1 is unitary.

3.2. Hermitian line bundles with vanishing arithmetic Atiyah class on

smooth projective varieties over number fields. — Let K be a number field,
and ⌃ a non-empty set of field embeddings of K in C, stable under complex conjuga-
tion.

To these data is naturally attached the arithmetic ring in the sense of Gillet-Soulé
([17], 3.1.1) defined as the triple (K,⌃, F1) where F1 denotes the conjugate linear
involution of C⌃ defined by F1(a�)�2⌃ := (a�)�2⌃.

3.2.1. — Recall that, for any line bundle M over a smooth projective connected
variety V over C, the following conditions are equivalent, as a consequence of the
GAGA principle and Hodge theory:
(a1) the Atiyah class atV/CM of M vanishes in H

1,1
(V/C) := Ext1OV

( OV ,⌦
1
V/C);

(a2) the first Chern class c1(M
hol

) of the holomorphic line bundle M
hol

over V (C)

deduced from M vanishes rationally (that is, in H
2
(V (C), Q), or equivalently in

H
2
(V (C), C));

(a3) there exists a C1-hermitian metric k.k with vanishing curvature on M
hol

.

Moreover, when they are satisfied, the metric k.k is unique up to a constant factor in
R⇤+, and the (1, 0)-part r1,0 of the C1-connection r on M

hol that is unitary (for k.k)
and compatible with the holomorphic structure is the unique integrable holomorphic
connection ru

M
whose monodromy lies in U(1) := {z 2 C | |z| = 1}. Observe also

that ru
M

algebraizes, and may be seen as as an “algebraic" connection on the line
bundle M on the algebraic variety V over C.

3.2.2. — Let X be a smooth, projective, geometrically connected scheme over K,
and EX/K the universal vector extension of Pic

0
X/K

(see Appendix B for basic facts
on Picard varieties and their universal vector extensions).

(9) One could also argue that this curvature coincides with the one of the holomorphic connection
r� , which vanishes, as recalled above.
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In the sequel, we shall consider X and Spec K as arithmetic schemes over the
arithmetic ring (K,⌃, F1).

In particular, a hermitian line bundle L over X is the data of a line bundle L over
X and of a C1-hermitian metric k.k

L
, invariant under complex conjugation, on the

holomorphic line bundle L
hol
C over X⌃(C) =

`
�2⌃X�(C).

According to the observations in 3.2.1, for any line bundle L over X, the following
conditions are equivalent:
(b1) the Atiyah class atX/KL of L in H

1,1
(X/K) := Ext1OX

( OX ,⌦
1
X/K

) vanishes;

(b2) there exists a C1-hermitian metric k.k with vanishing curvature, invariant un-

der complex conjugation, on the holomorphic line bundle L
hol
C over X⌃(C).

When (b1) and (b2) are realized, the metric k.k is unique, up to some multiplicative
constant, on every component X�(C) of X⌃(C).

Observe also that these conditions hold precisely when some positive power of the
line bundle L is algebraically equivalent to zero(10) (see for instance [28, II.2 Cor. 1
to Th. 2]).

3.2.3. — Consider now a line bundle L on X satisfying Conditions (b1) and (b2)
above, and let us choose a C1 hermitian metric k.k on LC, as in Condition (b1)
above.

We shall denote L the hermitian line bundle (L, k.k) over X, and r
L

the unitary
connection on LC which is compatible with the holomorphic structure. It does not
depend on the actual choice of k.k. Indeed, for any � in ⌃, the (1, 0)-part r1,0

L
of r

L

coincides with ru
L�

over X�(C).
It is a straightforward consequence of our definitions that the following conditions

are equivalent:
(1) the line bundle L admits a connection r : L! L⌦⌦1

X/K
(over K) such that the

induced holomorphic connection rC on LC over X⌃(C) equals r1,0

L
, or equiva-

lently such that for any � in ⌃ the induced holomorphic connection r� on L�

over X� equals ru
L�

;

(2) the class ĉ
H

1 (L) := ĉ
H

1 (X/Spec K,L), or in other words the arithmetic Atiyah

class “atX/K(L), vanishes in Ĥ
1,1

(X/K) := dExt
1

X
( OX ,⌦

1
X/K

);

Observe also that, when L is algebraically equivalent to zero, the pair (LC,r1,0

L
)

— or equivalently the family (L�,ru
L�

)�2⌃ — determines a point P = P
L

in the
maximal compact subgroup of

EX/K(R) :=
⇥a

�2⌃
EX/K(C)

⇤F1
.

(10) By definition a line bundle on X is algebraically equivalent to zero if and only if its restriction
to the geometric fiber X

K
is algebraically equivalent to zero.
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(details of this construction may be found in the Appendix in B.7 and B.8), and
Conditions (1) and (2) are also equivalent to:

(3) the point P
L

in the maximal compact subgroup of EX/K(R) is the image of a

K-rational point of EX/K .

We claim that, if a line bundle L over X defines a torsion point in Pic(X), then

Conditions (1) and (2) are satisfied.

Indeed, if n is a positive integer and ↵ : OX ! L
⌦n is an isomorphism of line bun-

dles over X, we may introduce the connectionrtor
L

on L, defined over K, such that the
connection rtor

L⌦n on L
⌦n deduced from rtor

L
by taking its n-th tensor power makes

↵ an isomorphism of line bundles with connections from ( OX , d) to (L
⌦n

,rL⌦n)(11).
For any � in ⌃, the two connections rtor

L,�
and ru

L�
on L� coincide, since the mon-

odromy of rtor
L,�

lies in the n-th roots of unity. Consequently Condition (1) is satisfied

by r := rtor
L

.

3.2.4. — It turns out that, conversely, if Conditions (1) and (2) hold, then L has

a torsion class in Pic(X) and the connection r, uniquely defined by (1), necessarily

coincides with rtor
L

. This is basically the content of Theorems 3.1.1 and 3.1.2 when X

is an abelian variety and ⌃ has one or two conjugate elements. It holds more generally
for any X as above:

Theorem 3.2.5. — Let X be a smooth, projective, geometrically connected variety over

K, and let ⇡ : X ! Spec K its structural morphism, that we consider as a morphism

of arithmetic schemes over the arithmetic ring (K,⌃, F1).

(i) Let L = (L, k.kL) be a hermitian line bundle over X. If L admits an algebraic

connection r : L! L⌦⌦1
X/K

such that rC is unitary with respect to k.kL, then L has

a torsion class in Pic(X), the metric k.kL has vanishing curvature, and r coincides

with rtor
L

.

(ii) For any hermitian line bundle L on X, if the first Chern class ĉ
H

1 (L) in

Ĥ
1,1

(X/K) := dExt
1

X
( OX ,⌦

1
X/K

) vanishes, then there exists a positive integer n such

that L
⌦n

is isometric to the trivial bundle OX equipped with a metric constant on

every component X�(C) of X⌃(C) — or equivalently, such that the class of L
⌦n

in

”Pic(X) belongs to the image of ⇡
⇤

: ”Pic(Spec K)! ”Pic(X).

(11) More generally, for any two line bundles L and M over X, any connection rM on M and any
isomorphism ↵ : M ! L

⌦n, there exists a unique connection rL on L such that the connection
r

L⌦n on L
⌦n deduced from rL by taking its n-th tensor power makes ↵ an isomorphism of line

bundles with connections from (M,rM ) to (L⌦n
,r

L⌦n ). It may be defined by the following identity,
valid for any local regular section l of L: n.l

⌦n�1 ⌦rLl = (↵⌦ Id⌦1
X/K

)rM (↵�1(l⌦n)).
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(iii) Let P 2 EX/K(K) be a K-rational point of the universal vector extension

EX/K that belongs to the maximal compact subgroup of EX/K(R). Then P is a torsion

point in EX/K(K).

Proof. — We prove below that the assertions (i)–(iii) are equivalent for any given
variety X as above. The isomorphism (B.9) will then show that it is su�cient to show
(iii), hence any of the assertions (i)–(iii), for abelian varieties. In order to prove (i),
we may choose � in ⌃ and replace the set of embeddings ⌃ by {�} (resp. {�,�}) if �
is a real (resp. complex) embedding. In this situation, (i) has been proved for abelian
varieties as Theorem 3.1.1 in Section 3.1 supra.

For any given hermitian line bundle L, the equivalence of the implications in (i) and
(ii) is a straightforward consequence of the observations in 3.2.3 and of the implication

ĉ
H

1 (L) = 0) c1(L) = 0,

which follows from the commutativity of (2.9).
To establish the implication (ii)) (iii), consider P in EX/K(K) a K-rational point

of the universal vector extension that belongs to the maximal compact subgroup of
EX/K(R). Replacing K by a finite extension, we may assume that P is represented
by a line bundle L algebraically equivalent to zero with an integrable connection r.
If P belongs to the maximal compact subgroup of EX/K(R), we have rC = r1,0

L

where L carries a hermitian metric with curvature zero. As observed in 3.2.3 above,
this implies that ĉ

H

1 (L) = 0. According to (ii), there exists some integer m > 0 such
that L

⌦m is isometric to the trivial bundle OX with a constant metric. It follows
that (L,r)

⌦m is isomorphic to the trivial bundle OX with the trivial connection, and
consequently that P belongs to the m-torsion of EX/K(K).

Finally, we show the implication (iii) ) (ii). Let L = (L, k.kL) be a hermitian
line bundle over X such that the class ĉ

H

1 (L) := “atX/K(L) vanishes. Then atX/K(L)

vanishes too, and there exists a positive integer m such that L
⌦m is algebraically

equivalent to zero. By replacing L by L
⌦m

, we may therefore assume that L is alge-
braically equivalent to zero. As observed in 3.2.3, the point P

L
associated to (LC, k.kL)

lies in the maximal compact group of EX/K(R), and is the image of a K-rational point
of EX/K . According to (iii), it is a torsion point. This implies that L has a torsion
class in Pic(X), and that r

L
coincides with the connection rtor

L,C. This establishes
that L satisfies the conclusion of (i), and consequently, as observed above, of (ii).

3.3. Finiteness results on the kernel of ĉ
H

1 . — We may use Theorem 3.2.5 to
investigate the kernel of the first Chern class in arithmetic Hodge cohomology. Indeed
this Theorem easily leads to a derivation of the assertion I2X,⌃ in the Introduction
(which conversely contains Part (ii) of Theorem 3.2.5):
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Corollary 3.3.1. — The image of

⇡
⇤

: ”Pic(Spec K) �! ”Pic(X)

has finite index in the kernel of

ĉ
H

1 : ”Pic(X) �! “H1,1
(X/K).

Proof. — A hermitian metric with curvature zero on the trivial line bundle on X

is constant on every component X�(C) of X⌃(C). Therefore, if we introduce the
canonical map

w : ”Pic(X)! Pic(X) ,! PicX/K(K),

then we have:
Ker(ĉ

H

1 ) \Ker(w) = Im
�
⇡
⇤
: ”Pic(S)!”Pic(X)

�
.

Hence the map w induces an injection of

(3.3)
Ker

�
ĉ
H

1 : ”Pic(X)�!dExt
1

X
( OX ,⌦

1
X/K

)
�

Im
�
⇡⇤ : ”Pic(Spec K)�!”Pic(X)

�

into PicX/K(K). Theorem 3.2.5 (iii) implies that the image of (3.3) is contained in the
torsion subgroup of PicX/K(K)(12). This is a finite group as the Néron-Severi group

NSX/K(K) = PicX/K(K)/Pic
0
X/K

(K)

and Pic
0
X/K

(K) are finitely generated abelian groups by [29, Th. 5.1] and the theorem
of Mordell-Weil.

We may also establish a similar finiteness result where the base scheme Spec K is
replaced by an “arithmetic curve":

Corollary 3.3.2. — Let OK denote the ring of integers in a number field K, and let

us work over the arithmetic ring ( OK ,⌃, F1). Let S denote a non-empty open subset

of Spec OK , and let X be a smooth projective S-scheme with geometrically connected

fibers. Then

(3.4)
Ker

�
ĉ
H

1 : ”Pic(X)�!dExt
1

X
( OX ,⌦

1
X/S

)
�

Im
�
⇡⇤ : ”Pic(S)�!”Pic(X)

�

is a finite group.

Proof. — Let XK denote the fiber of X over Spec K. We consider XK as an arithmetic
scheme over the arithmetic field K = (K,⌃, F1). There is a canonical restriction map

⌫ : ”Pic(X) �! ”Pic(XK).

(12) Actually this morphism factorizes through the torsion subgroup Pic(X)tor of Pic(X), and one
may easily show that the so defined injection Ker(ĉH

1 )/ Im (⇡⇤) ! Pic(X)tor is an isomorphism.
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Any element in Ker ⌫ \ Ker ĉ
H

1 (X/S, . ) is generically trivial and carries a constant
metric. The sequence

Pic(S) �! Pic(X) �! Pic(XK)

is exact as the fibers of X/S are integral. Hence

Ker (⌫) \Ker ĉ
H

1 (X/S, . ) ✓ Im
�
⇡
⇤
: ”Pic(S)�!”Pic(X)

�
.

Moreover ⌫ maps Im
�
⇡
⇤
: ”Pic(S)�!”Pic(X)

�
onto Im

�
⇡
⇤
: ”Pic(Spec K)�!”Pic(XK)

�
.

Consequently it induces an embedding of (3.4) into (3.3). The latter group is finite
by Theorem 3.2.5. Our claim follows.

4. A geometric analogue

4.1. Line bundles with vanishing relative Atiyah class on fibered projective

varieties

4.1.1. Notation. — In this section, we consider a smooth projective geometrically
connected curve C over a field k of characteristic 0, and a smooth projective variety
V over k equipped with a dominant k-morphism ⇡ : V ! C, with geometrically
connected fibers.

Observe that the morphism ⇡ is flat, and smooth over an open dense subscheme of
C, namely over the complement of the finite set � of closed points P in C such that
the (scheme theoretic) fiber ⇡⇤(P ) is not smooth over k.

Let K := k(C) denote the function field of C. The generic fiber VK of ⇡ is a
smooth projective geometrically connected variety over K. Conversely, according to
Hironaka’s resolution of singularities, any such variety over K may be constructed
from the data of a k-variety V and of a k-morphism ⇡ : V ! C as above.

Recall also that a divisor E in V is called vertical if it belongs to the group of
divisors generated by components of closed fibers of ⇡, or equivalently, if its restriction
EK to the generic fiber VK of V vanishes.

In the sequel, we assume that the dimension n of V is at least 2. Moreover we
choose an ample line bundle O(1) over V , we denote H its first Chern class in the
Chow group CH

1
(X), and for any integral subscheme D of positive dimension in V

and any line bundle L over V , we let:

deg
H,D

L := deg
k
(c1(L).H

dim D�1
.[D]).

Actually, we shall use this definition only when D is a vertical divisor in V . Con-
sequently, we could require O(1) to be ample relatively to ⇡ only. Besides, when
dim D = 1 the choice of O(1) is immaterial.

Observe that, if O(1) is very ample and defines a projective embedding ◆ : V ,!
PN

k
, then, for any general enough (dim D � 1)-tuple (H1, . . . ,Hdim D�1) of projective
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hyperplanes in PN

k
, the subscheme

C := D \ ◆�1
(H1) \ · · · \ ◆�1

(Hdim D�1)

in PN

k
is integral, one-dimensional, and projective over k, and its class [C] in CH1(X)

coincides with H
dim D�1

.[D]. Consequently deg
H,D

L is nothing but the degree
deg

k
c1(L).[C] of the restriction of L to the “general linear section" C of D.

Let us recall that, if M is a smooth projective geometrically connected scheme over
some field k0 of characteristic zero, then the Picard functor PicM/k0

is representable
by a separated group scheme over k0, and that its identity component Pic

0
M/k0

is an
abelian variety over k0. A line bundle L over M is algebraically equivalent to zero(13)

when the point in PicM/k0
(k0) it defines belongs to Pic

0
M/k0

(k0), or equivalently, if its
class in the Néron-Severi group of M over k0 — defined as PicM/k0

(k0)/Pic
0
M/k0

(k0)

— vanishes.
In particular, we may consider the identity component Pic

0
VK/K

of the Picard
variety of the generic fiber VK of ⇡; it is an abelian variety over K, and we shall
denote (B, ⌧) its K/k-trace. By definition, B is an abelian variety over k, and ⌧ is a
morphism of abelian varieties over K:

⌧ : BK �! Pic
0
VK/K

.

Since the base field k is assumed to be of characteristic zero, this morphism is actually
a closed immersion. We refer the reader to Section 4.6 infra for a discussion and
references concerning the definition of Pic

0
VK/K

and (B, ⌧).

4.1.2. — The following theorem may be seen as a geometric counterpart, valid over
the function field K := k(C), of the characterization of hermitian line bundles with
vanishing arithmetic Atiyah class in Theorem 3.2.5 ii).

Theorem 4.1.3. — With the above notation, for any line bundle L over V , the follow-

ing three conditions are equivalent:

VA1 The relative Atiyah class atV/C(L) vanishes in

Ext1OX
(L, L⌦ ⌦1

V/C
) ' H

1
(V,⌦

1
V/C

).

VA2 There exist a positive integer N and a line bundle M over C such that the

line bundle L
⌦N ⌦ ⇡⇤M is algebraically equivalent to zero.

(13) The reader should beware that, here as in the previous section, we use a “geometric" definition of
“algebraically equivalent to zero", related as follows to the one occuring in [16], 10.3: for any divisor
D in M and any algebraic closure k0 of k0, the line bundle O(D) is algebraically equivalent to zero
in our “geometric" sense i� the divisor D

k0
on M

k0
is algebraically equivalent to zero in Fulton’s

sense. Also observe that (the first Chern class of) a line bundle on M algebraically equivalent to zero
in the above sense is numerically equivalent to zero in the sense of Fulton [16], 19.1. In particular,
with the notation of the previous paragraphs, for any line bundle L algebraically equivalent to zero
over V , deg

H,D
L vanishes.
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VA3 There exists a positive integer N such that the line bundle L
⌦N

K
on VK is

algebraically equivalent to zero, and the attached K-rational point of the Picard variety

Pic
0
VK/K

is defined by a k-rational point of the K/k-trace of Pic
0
VK/K

. Moreover, for

any component D of a closed fiber of ⇡, the degree deg
H,D

L vanishes.

Observe that, for any closed point P of C \�, its fiber D := ⇡
⇤
(P ) is a divisor in V ,

smooth and geometrically connected over k(P ), and that, according to the projection
formula,

deg
H,D

L = deg
k
(c1(L).H

n�2
.[⇡

⇤
(P )])

= deg
k
(⇡⇤(c1(L).H

n�2
).[P ])

= [k(P ) : k].deg
K

(c1(LK).c1( O(1)K)
dim VK�1

.[VK ]).

In particular, if some positive power L
⌦N

K
of LK is algebraically equivalent to zero,

then deg
H,D

L vanishes. Consequently, in condition VA3, we may require the vanish-
ing of deg

H,D
L only for components D of the supports of the singular fibers ⇡⇤(P ),

where P varies in �.

The proof of the equivalence of conditions VA1 and VA2, which uses the Hodge
index theorem and basic properties of Hodge cohomology groups, will be presented in
Sections 4.4 and 4.5 below. Then in Section 4.6 and 4.7 we shall recall some classical
facts concerning the Picard variety Pic

0
VK/K

and its K/k-trace, and establish the
equivalence of conditions VA2 and VA3.

4.2. Variants and complements. — Before we enter into the proof of Theorem
4.1.3, we discuss some variants and related statements. Observe that the variants in
4.2.1 make Theorem 4.1.3 more similar to its "arithmetic counterpart" in Theorem
3.2.5 ii), whereas Proposition 4.2.4 would rather make less convincing the analogy
between the arithmetic framework in Section 3 and the geometric framework of the
present section.

4.2.1. — Recall that the following conditions are equivalent — when they hold, the
Picard variety Pic

0
VK/K

will be said to have no fixed part :
NFP1 The K/k-trace of Pic

0
VK/K

vanishes, or in other terms, for any abelian

variety A over k, there is no non-zero morphism of abelian varieties over K from AK

to Pic
0
VK/K

.

NFP2 The morphism of k-abelian varieties naturally deduced from ⇡ : V �! C

⇡
⇤

: Pic
0
C/k
�! Pic

0
V/k

— which has a finite kernel — is an isogeny.

NFP3 The injective morphism of k-vector spaces

⇡
⇤

: H
1
(C, OC) �! H

1
(V, OV )
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is an isomorphism.

NFP4 The injective morphism of k-vector spaces

⇡
⇤

: H
0
(C,⌦

1
C/k

) �! H
0
(V,⌦

1
V/k

)

is an isomorphism.

A few comments on these conditions may be appropriate.
The finiteness of the kernel of ⇡⇤ in NFP2 may be derived by considering a smooth

projective geometrically connected curve C
0 in V such that the morphism ⇡|C0 :

C
0 ! C is finite. Let i : C

0
,! V denote the inclusion morphism. The norm with

respect to ⇡|C0 defines a morphism ⇡|C0⇤ : Pic
0
C0/k

! Pic
0
C/k

of abelian varieties over
k, and the morphisms of abelian varieties ⇡⇤, ⇡|C0⇤, ⇡⇤|C0 : Pic

0
C/k
! Pic

0
C0/k

, and
i
⇤

: Pic
0
V/k
! Pic

0
C/k

satisfy the relations

⇡
⇤
|C0 = i

⇤ � ⇡⇤

and
⇡|C0⇤ � ⇡⇤|C0 = [�],

where [�] denotes the morphism of multiplication by the degree � of ⇡|C0 in Pic
0
C/k

.

This immediately implies that the kernel of ⇡⇤ is a subgroup of the �-torsion in Pic
0
C/k

.

The injectivity of ⇡⇤ in NFP4 is a consequence of the generic smoothness of the
dominant morphism ⇡ (recall that the base field k is assumed to have characteristic
zero). The injectivity of ⇡⇤ in NFP3 and the equivalence of NFP3 and NFP4 follows
from Hodge theory when k = C, and therefore, by a standard base change argument,
for any base field k of characteristic zero.

The equivalence of NFP1 and NFP2 follows from the description of the K/k-trace
of Pic

0
VK/K

recalled in Proposition 4.6.1 below. Finally, the equivalence of NFP2 and
NFP3 follows from the identification of H

1
(C, OC) (resp. H

1
(V, OV )) with Lie Pic

0
C/k

(resp. Lie Pic
0
V/k

).
As demonstrated by the theorem of Mordell-Weil-Lang-Néron, it is natural to re-

quire a no fixed part condition when searching for statements valid over function fields
that are as close as possible to their arithmetic counterparts. This is indeed the case
with Theorem 4.1.3. Namely, when Pic

0
VK/K

has no fixed part, Conditions VA1-3

are also equivalent to the following ones, which look more closely like the conditions
appearing in i) and ii) of the “arithmetic" Theorem 3.2.5:

VA2’ There exists a positive integer N and a line bundle M over C such that the

line bundle L
⌦N

is isomorphic to ⇡
⇤
M.

VA3’ The class of LK in the abelian group PicVK/K(K) is torsion. Moreover, for

any component D of a closed fiber of ⇡, the degree deg
H,D

L vanishes.

Indeed, the equivalence of VA3 and VA3’ when NFP1 holds is straightforward,
and the equivalence of VA2 and VA2’ easily follows from NFP2.
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4.2.2. — Generalizations of Theorem 4.1.3 concerning a smooth projective variety V

over k fibered over a projective variety C of dimension > 1 may be deduced from its
original version with C a curve by means of standard techniques, as in the proof of the
Mordell-Weil-Lang-Néron theorem (cf. [32]). We leave this to the interested reader.

4.2.3. — Finally observe that when the base C is assumed to be a�ne instead of
projective, the determination of line bundles with vanishing relative Atiyah class
becomes a rather straightforward issue. For instance, we have:

Proposition 4.2.4. — Let C be an a�ne integral scheme of finite type over a field k of

characteristic zero, and let K := k(C) denote its function field. Let ⇡ : V ! C be a

smooth projective morphism, L a line bundle over V , and LK the restriction of L to

the generic fibre VK of ⇡. The following conditions are equivalent:

(i) the relative Atiyah class atV/C(L) vanishes in

Ext1OV
(L, L⌦ ⌦1

V/C
) ' H

1
(V,⌦

1
V/C

);

(ii) the Atiyah class atVK/K(LK) vanishes in H
1
(VK ,⌦VK/K);

(iii) some positive power of LK is algebraically equivalent to zero over VK .

Proof. — The equivalence (i), (ii) follows from the identification

H
1
(V,⌦

1
V/C

) ' H
0
(C, R

1
⇡⇤⌦

1
V/C

)

and from the fact that, since the base field has characteristic zero, by Hodge theory
the coherent sheaf R

1
⇡⇤⌦

1
V/C

is a locally free sheaf over C, the formation of which is
actually compatible with any base change.

The equivalence (ii), (iii) holds since the base field K has characteristic zero (see
for instance 4.3.2 below).

4.3. Hodge cohomology and first Chern class. — In this section, we review
some basic properties of the Hodge cohomology of smooth projective varieties over
fields of characteristic zero. These properties are consequence of the duality theory
for coherent sheaves on projective varieties, as explained in [21], exposé 149.

4.3.1. Hodge cohomology groups. — Let k be a field of characteristic zero, and SmPrk

the full subcategory of the category of k-schemes whose objects are smooth projective
schemes V over k.

To any object V in SmPrk are attached his Hodge cohomology groups:

H
p,q

(V/k) := H
q
(V,⌦

p

V/k
).
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These are finite dimensional k-vector spaces, and vanish if max(p, q) > d := dim V.

Moreover, the cup products

H
p,q

(V/k)⇥H
p
0
,q
0
(V/k) �! H

p+p
0
,q+q

0
(V/k)

(↵,↵
0
) 7�! ↵.↵

0
,

— defined as the compositions of the products

H
q
(V,⌦

p

V/k
)⇥H

q
0
(V,⌦

p
0

V/k
) �! H

q+q
0
(V,⌦

p

V/k
⌦ ⌦p

0

V/k
)

and of the mappings

H
q+q

0
(V,⌦

p

V/k
⌦ ⌦p

0

V/k
) �! H

q+q
0
(V,⌦

p+p
0

V/k
)

deduced from the exterior product ^ : ⌦
p

V/k
⌦ ⌦p

0

V/k
�! ⌦

p+p
0

V/k
— make the direct

sum H
⇤,⇤

(V/k) :=
L

(p,q)2N2 H
p,q

(V/k) a bigraded commutative(14) k-algebra.
Moreover, the “top-dimensional" Hodge cohomology group H

d,d
(V/k) is equipped

with a canonical k-linear form:Z

V/k

. : H
d,d

(V/k) �! k,

and the attached k-bilinear map

<. , .> : H
⇤,⇤

(V/k)⇥H
⇤,⇤

(V/k) �! k

(↵,�) 7�!
R

V/k
↵.�

is a perfect pairing.
In particular, when V is a geometrically connected k-scheme, or equivalently when

the linear map
k �! �(V, OV ) = H

0,0
(V/k)

� 7�! �.1V

is an isomorphism, then the “residue map" also is:
Z

V/k

. : H
d,d

(V/k)
⇠�! k.

Then we denote µV the unique element in H
d,d

(V/k) such that
Z

V/k

µV = 1.

These constructions are compatible in an obvious sense with extensions of the base
field k. Let us also indicate that, when k = C, the trace map

Z

V/C
. : H

d,d
(V/C) �! C

(14) Namely, for any ↵ (resp. ↵
0) in H

q(V, ⌦p

V/k
) (resp. in H

q
0
(V, ⌦p

0

V/k
)), we have ↵.↵

0 =

(�1)pp
0+qq

0
↵
0
.↵.
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satisfies the following compatibility relation with the Dolbeault isomorphism

Dolb⌦d

V/C
: H

d
(V,⌦

d

V/C) �! H
d

Dolb(V,⌦
d

V/C)

(we follow the notation of [7], A.5.1) and the integration of top degree forms:
Z

V (C)
. : A

d,d
(V (C)) �! C.

For any ↵ in A
d,d

(V (C)), of class [↵] in H
d

Dolb(V,⌦
d

V/C), we have:
Z

V/C
Dolb

�1
⌦d

V/C
([↵]) = "d

1

(2⇡i)d

Z

V (C)
↵,

where "d denotes a sign, function of d only, depending on the sign conventions followed
in duality theory (we refer the reader to [15], Appendice, and [37] for discussions of
this delicate issue).

4.3.2. The first Chern class in Hodge cohomology. — Any line bundle L over some
V in SmPrk admits a first Chern class c1(L) in H

1,1
(V/k). It may be defined as the

class
atX/kL = jet

1
X/k

L

in

Ext1OV
(L,⌦

1
V/k
⌦ L) ' Ext1OV

( OV ,⌦
1
V/k

)(4.1)

' H
1
(V,⌦

1
V/k

).(4.2)

of the extension given by the principal parts of first order associated with L

Jet1
X/k

L : 0 �! ⌦
1
X/k
⌦ L �! P

1
X/k

(L) �! L �! 0

(see Section 1.2 above). The isomorphism (4.1) is the (inverse of the) one defined by
applying the functor .⌦L to complexes of OV -modules, without intervention of signs.
The isomorphism (4.2) is the one discussed in [7], A.2 and A.4.

The so-defined first Chern class defines a morphism of abelian groups:

Pic(V ) �! H
1
(V,⌦

1
V/k

) =: H
1,1

(V/k)

[L] 7�! c1(L).

Moreover, this morphism factorizes through the Néron-Severi group

NSV/k(k) = PicV/k(k)
�
Pic

0
V/k

(k);

the induced morphism on NSV/k(k) vanishes precisely on its torsion subgroup
NSV/k(k)tor (compare for example [28, II.2 Cor. 1 to Th. 2]), and consequently
defines an injective morphism of groups

c1 : NSV/k(k)/NSV/k(k)tor �! H
1,1

(V/k).

In other words, for any line bundle L on V , the following two conditions are equivalent:
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(i) the first Chern class c1(L) in H
1,1

(V/k) vanishes;
(ii) for some positive integer N , the line bundle L

⌦N over V is algebraically equiv-
alent to zero.

Let us also recall that the construction of the first Chern class in Hodge cohomology
is compatible with pull-back by k-morphisms. It is also compatible with intersection
theory. In particular, we have:

Proposition 4.3.3. — For any d-tuple D1, . . . ,Dd of divisors in some d-dimensional

variety V in SmPrk, the following formula holds:

(4.3)
Z

V/k

c1( O(D1)). · · · .c1( O(Dd)) = deg
k
([D1]. · · · .[Dd]),

where [Di] denotes the class of Di in the Chow group CH
1
(V ), [D1]. · · · .[Dd] their

product in CH
d
(V ) = CH0(V ) and

deg
k

: CH0(V )
⇡⇤�! CH0(Spec k) ' Z

the degree map, attached to the structural morphism ⇡ : V ! Spec k of V.

In particular, if d = 1 and V is geometrically irreducible, then

c1( O(D)) = deg
k
D.µV .

To establish the equality (4.3), one easily reduces to the case where k is alge-
braically closed and V is connected. Then it follows from [21], exposé 149 (Théorème
1, Théorème 2, and its proof) when moreover the divisors D1, . . . ,Dn and their succes-
sive intersections D1\D2, D1\D2\D3,. . . , D1\D2\ · · ·\Dn are smooth. Together
with the invariance of both sides of (4.3) by linear equivalence of D1, . . . ,Dn and
Bertini theorem, this shows that (4.3) holds when D1, . . . ,Dn are very ample. The
general case of (4.3) follows by multilinearity.

4.4. An application of the Hodge Index Theorem. — Our proof of Theorem
4.1.3 will rely on an application of Hodge Index Theorem to projective varieties fibered
over curves that we discuss in the present Section.

4.4.1. The Hodge Index Theorem in Hodge cohomology. — Let V be a smooth, pro-
jective, geometrically connected scheme over k, and let h be the first Chern class
c1( O(1)) in H

1,1
(V/k) of some ample line bundle O(1) on V.

We shall use the following straightforward consequence of the Hodge Index The-
orem (as formulated in [29], Appendix 7) and of the compatibility of intersection
theory and products in Hodge cohomology stated in Proposition 4.3.3:

Proposition 4.4.2. — When d := dim V � 2, for any class ↵ of H
1,1

(V/k) in the image

of c1 : Pic(V )! H
1,1

(V/k), the following conditions are equivalent:

(i) ↵ = 0;
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(ii) ↵2
.h

d�2
= ↵.h

d�1
= 0 in H

d,d
(V/k) ' k.

4.4.3. An application to projective varieties fibered over curves. — We keep the no-
tation of the previous paragraph, and assume that d := dim V is at least 2. Moreover,
we consider a smooth geometrically connected projective curve C over k, and a dom-
inant k-morphism ⇡ : V ! C. We shall denote K the function field k(C) of C,

VK := V ⇥C Spec K the generic fiber of ⇡, and O(1)K the pull-back of O(1) to VK .
Let us introduce the following class in H

1,1
(V/k):

F := ⇡
⇤
µC .

Observe that µ
2
C

= 0 for dimension reasons, and that consequently F
2

= 0. Moreover
Proposition 4.3.3 and the naturality of c1 show that, for any divisor E on C,

c1( O(E)) = deg
k
E · µC

and

(4.4) c1( O(⇡
⇤
(E))) = deg

k
E · F.

Lemma 4.4.4. — 1) For any divisor D on V ,
R

V/k
c1( O(D)).h

d�1
coincides with the

intersection number deg
k
([D].[H]

d�1
), where H denotes the divisor of some non-zero

rational section of O(1). In particular, it is an integer.

2) We have: Z

V/k

F.h
d�1

= deg O(1)K
VK .

In particular, the class F is not zero, and the image of ⇡
⇤

: H
1,1

(C/k)! H
1,1

(V/k)

is precisely the k-line k.F.

Proof. — Assertion 1) is a special case of Proposition 4.3.3.
To establish 2), let us choose a divisor E with positive degree on C. We have

(4.5) deg
k
([⇡

⇤
(E)].[H]

d�1
) = deg

k
([E].⇡⇤([H]

d�1
)) = deg

k
E.deg O(1)K

VK ,

by basic intersection theory. Besides, according to Proposition 4.3.3 and (4.4), the
left-hand side of (4.5) is also equal to

Z

V/k

c1( O(⇡
⇤
(E))).c1( O(1))

d�1
= deg

k
E.

Z

V/k

F.h
d�1

.

Together with (4.5), this establishes the announced relation.

Proposition 4.4.5. — With the above notation, for any class � of H
1,1

(V/k) in the

image of c1, the following conditions are equivalent:

(i) � belongs to Q.F ;

(ii) � belongs to k.F ;

(iii) �.� = �.F = 0 in H
2,2

(V/k);
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(iv) �2
.h

d�2
= �.F.h

d�2
= 0 in H

d,d
(V/k) ' k.

Proof. — The implications (i))(ii))(iii))(iv) are straightforward. To establish the
converse implications, observe that

R
V/k

�.h
d�1

/
R

V/k
F.h

d�1 is a well defined rational
number by Lemma 4.4.4, and consider the class

↵ := � �

R
V/k

�.h
d�1

R
V/k

F.hd�1
.F

in H
1,1

(V/k). It satisfies ↵.h
d�1

= 0 by its very definition (recall that
R

V/k
maps

isomorphically H
d,d

(V/k) onto k). Moreover (4.4) shows that some positive multiple
of ↵ lies in the image of c1. Finally, when condition (iv) holds, then ↵ also satisfies
↵

2
.h

d�2
= 0. Then, according to Proposition 4.4, ↵ vanishes, or equivalently:

� =

R
V/k

�.h
d�1

R
V/k

F.hd�1
.F.

This establishes (i).

4.5. The equivalence of VA1 and VA2. — We keep the notation of the previ-
ous paragraph 4.4.3. In other words, the same hypotheses as in Theorem 4.1.3 are
supposed to hold, except the connectedness of the geometric fibers of ⇡.

The following result contains the equivalence of Conditions VA1 and VA2 in
Theorem 4.1.3:

Theorem 4.5.1. — For any line bundle L over V, the following conditions are equiva-

lent:

(i) The relative Atiyah class atV/CL vanishes in H
1,1

(V,⌦
1
V/C

).

(ii)0 c1(L) belongs to Q.F .

(ii)00 There exists a positive integer N and a line bundle M over C such that

c1(L
⌦N ⌦ ⇡⇤M) vanishes.

Proof. — The equivalence (ii)0 , (ii)00 is straightforward.
To establish the implication (ii)0 ) (i), consider the canonical exact sequence of

sheaves of Kähler di�erentials on V ,

0 �! ⇡
⇤
⌦

1
C/k

i�! ⌦
1
V/k

p�! ⌦
1
V/C
�! 0,

and the associated exact sequence of cohomology groups

H
1
(V,⇡

⇤
⌦

1
C/k

)
H

1(i)�! H
1
(V,⌦

1
V/k

)
H

1(p)�! H
1
(V,⌦

1
V/C

).

As a special case of Lemma 1.1.6, i), we have

(4.6) atV/CL = H
1
(p)(atV/kL).
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Since F belongs to the image of H
1
(i), hence to the kernel of H

1
(p), this establishes

the implication (ii)0 ) (i).
The implication (i))(ii)0 will follow from the implication (iii))(i) in Proposition

4.4.5 (applied to � := c1(L)) combined with the following:

Lemma 4.5.2. — For any line bundle L over V , if the relative Atiyah class atV/CL

vanishes in H
1
(V,⌦

1
V/C

), then c1(L).F and c1(L)
2

vanish in H
2
(V,⌦

2
V/k

).

To establish this lemma, observe that the cup product

(4.7) H
1,1

(V/k)⌦H
1,1

(V/k) �! H
2,2

(V/k)

vanishes on im H
1
(i) ⌦ im H

1
(i). Indeed the map of sheaves of OV -modules defined

as the composition

⇡
⇤
⌦

1
C/k
⌦ ⇡⇤⌦1

C/k

i⌦i�! ⌦
1
V/k
⌦ ⌦1

V/k

.^.�! ⌦
2
V/k

vanishes by functoriality of the exterior product, since ⌦2
C/k

= 0. This entails the
vanishing of the cup product (4.7) on kerH

1
(p) ⌦ kerH

1
(p) and on kerH

1
(p) ⌦

im⇡
⇤
, where ⇡⇤ denotes the pull-back map in Hodge cohomology ⇡⇤ : H

1,1
(C/k) !

H
1,1

(V/k).

According to (4.6), atV/CL vanishes precisely when c1(L) = atV/kL belongs to
kerH

1
(p), in which case c1(L)

2 and c1(L).F vanish in H
2
(V,⌦

2
V/k

) by the observation
above. This completes the proof of Lemma 4.5.2, hence of Theorem 4.5.1.

4.6. The Picard variety of a variety over a function field. — In this para-
graph, we recall some classical facts concerning the relations between the Picard
varieties of C and V , and the K/k-trace of the Picard variety of the generic fiber
VK of V . (For modern presentations of Chow’s classical theory of the K/k-trace of
abelian varieties over K, we refer to [11] and Hindry’s Appendix A in [26].)

Let (B, ⌧) be the K/k-trace of Pic
0
VK/K

. By construction, B is an abelian variety
over k, and ⌧ is a morphism of abelian varieties over K

⌧ : BK �! Pic
0
VK/K

.

The pair (B, ⌧) is characterized by the following universal property: for any abelian
variety B̃ over k and any morphism of abelian varieties over K

 : B̃K �! Pic
0
VK/K

,

there exists a unique morphism
� : B̃ �! B

such that
 = ⌧ � �K .

Actually, since our base field k has characteristic zero, ⌧ is an embedding.
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The inclusion VK ,! V induces a morphism of abelian varieties over K

� : Pic
0
V/k,K

�! Pic
0
VK/K

.

According to the universal property above, there exists a unique morphism of abelian
varieties over k

↵ : Pic
0
V/k
�! B

such that
� = ⌧ � ↵K .

Besides, we may consider the morphism

⇡
⇤

: Pic
0
C/k
�! Pic

0
V/k

defined by functoriality from ⇡ : V ! C.

The following Proposition is established as Proposition 3.3 in [24], where references
are made to similar earlier results due to Tate, Shioda, and Raynaud.

Proposition 4.6.1. — The morphism ↵ is surjective, and the morphism ⇡
⇤

is an

isogeny from Pic
0
C/k

onto the abelian variety (ker↵)
�

defined as the identity compo-

nent of the k-group scheme ker↵.

In brief, the following diagram of abelian varieties over k

0 �! Pic
0
C/k

⇡
⇤
�! Pic

0
V/k

↵�! B �! 0

is “exact up to some finite group schemes". Together with Poincaré’s reducibility
theorem, this implies that the diagram of abelian groups

(4.8) 0 �! Pic
0
C/k

(k)
⇡
⇤
�! Pic

0
V/k

(k)
↵�! B(k) �! 0

is “exact up to some finite groups."

Corollary 4.6.2. — For any line bundle L over V , the following conditions are equiv-

alent:

(i) There exists a positive integer N such that the class of L
⌦N

K
in PicVK/K(K)

belongs to ⌧(B(k)).

(ii) There exist a positive integer N and a line bundle L
0

over V , algebraically

equivalent to zero, such that, over VK ,

L
⌦N

K
' L

0
K

.

(iii) There exist a positive integer N , a line bundle L
0
over V , algebraically equiv-

alent to zero, and a vertical divisor E over V such that, over V ,

L
⌦N ' L

0 ⌦ O(E).
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Proof. — The equivalence of (ii) and (iii) is straightforward. The one of (i) and (ii)
follows from the “almost exactness" of (4.8) and the fact that any element of the
group Pic

0
V/k

(k) has a positive multiple that may be represented by an actual line
bundle(15) over V , algebraically equivalent to zero.

4.7. The equivalence of VA2 and VA3. — In this section, we complete the
proof of Theorem 4.1.3 by establishing the equivalence of conditions VA2 and VA3.

The implication VA2)VA3 follows from the implication (ii))(i) in Corollary
4.6.2 and from the invariance of deg

H,D
L under algebraic equivalence of line bundles.

Conversely let us consider a line bundle L over V that satisfies VA3.
According to the implication (i))(iii) in Corollary 4.6.2, we may find a positive

integer N , a line bundle L
0 over V , algebraically equivalent to zero, and a vertical

divisor E in V such that L
⌦N ' L

0 ⌦ O(E).

Moreover, for every vertical integral divisor D in V , we have

deg
H,D

L
⌦N

= N. deg
H,D

L = 0

by VA3, and
deg

H,D
L
0
= 0

since L
0 is algebraically equivalent to zero. Therefore,

deg
H,D

O(E) = 0.

Lemma 4.7.1 below shows that, after possibly replacing L and L
0 by some positive

power, the divisor E is of the form ⇡
⇤
(E

0
) for some divisor E

0 on C. Consequently,

L
⌦N ⌦ ⇡⇤ O(�E

0
) ' L

0

is algebraically equivalent to zero, and L satisfies VA2.

Lemma 4.7.1. — For any vertical divisor E on V , the following conditions are equiv-

alent:

(i) For every vertical divisor D on V,

deg
H,D

O(E) = 0.

(ii) There exist a divisor E
0
on C and a positive integer N such that

N · E = ⇡
⇤
E
0
.

(15) Indeed the functor Pic0
V/k

may be introduced via sheafification for the étale topology, hence
given any ↵ in Pic0

V/k
(k), we can find a finite (separable) extension k

0 of k and a line bundle M
0 on

V
0 := V ⌦k k

0 that represents the image of ↵ in Pic0
V/k

(k0). Then [k0 : k].↵ is represented by the line
bundle M := NV 0/V (M 0) on V defined as the norm of M

0.
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This is well known, at least when n = 2 and k is algebraically closed, in which case
it is traditionally attributed to Zariski. We refer to [14] for a discussion of related
results concerning intersection theory on surfaces, and to [24], Lemme 2.1 for a similar
result. We sketch a proof below for the sake of completeness.

Proof. — To establish the implication (ii))(i), observe that, for any integral vertical
divisor D on V , the following equality holds in the Chow group CH

0
(C)

(4.9) ⇡⇤(H
n�2

.D) = 0.

(Indeed the class in CH1(V ) of H
n�2

.D may be represented by a cycle in Z1(D),
and consequently the left-hand side of (4.9) may be represented by a cycle in Z1(C)

supported by ⇡(D). Since the latter is zero-dimensional, any such cycle vanishes.)
Consequently, by the projection formula, for any divisor E

0 in C, we have

deg
H,D

O(⇡
⇤
E
0
) = deg

k
(H

n�2
.D.⇡

⇤
E
0
)

= deg
k
(⇡⇤(H

n�2
.D).E

0
)

= 0.

To establish the implication (i))(ii), we may assume that E is supported by the
fiber ⇡⇤(P ) of some closed point P of C. Let D1, . . . ,Dr be the components of |⇡⇤(P )|,
and let n1, . . . , nr be the positive integers defined by the equality of divisors in V :

⇡
⇤
P =

rX

i=1

ni.Di.

We want to prove that if some divisor supported by ⇡⇤(P ), E :=
P

r

i=1 mi.Di, satisfies

deg
H,Dj

O(E) = 0,

for every j 2 {1, . . . , r}, then E is a rational multiple of ⇡⇤(P ), that is, there exists
m in Q such that

(m1, . . . ,mr) = m(n1, . . . , nr).

In other words, we want to establish that the kernel of the symmetric quadratic form
attached to the matrix (qij)1i,jr defined by

qij := deg
k
(H

n�2
.Di.Dj)

is included in the line Q.(n1, . . . , nr).

To establish this inclusion, observe that the converse implication (ii))(i), applied
to D = Di and E = ⇡

⇤
P , shows that

rX

j=1

qijnj = 0
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for every i 2 {1, . . . , r}. This yields the following expression for the quadratic form
defined by the qij ’s:

rX

i,j=1

qijmimj = �
X

1i<jr

qijninj

Å
mi

ni

� mj

nj

ã2

.

The required property now follows from the following two observations:
1) For any two distinct elements i and j in {1, . . . , r}, the cycle theoretic intersection

Di.Dj of the Cartier divisors Di and Dj is the cycle attached to the intersection
scheme Di\Dj , which is either empty or purely (n�2)-dimensional, and consequently,
by the ampleness of H, the degree qij := deg

k
(H

n�2
.[Di \Dj ]) is non-negative, and

positive if Di \Dj is not empty.

2) The scheme ⇡
⇤
(P ) is connected, and consequently there is no partition of

{1, . . . , r} in two non-empty subsets I and J such that (i, j) 2 I ⇥ J ) qij = 0.

Appendix A

Arithmetic extensions and �ech cohomology

Let X be an arithmetic scheme over an arithmetic ring R = (R,⌃, F1), E a quasi-
coherent OX -module on X, and U = (Ui)i2I an a�ne, open covering of X. We fix a
well ordering on I and consider the (alternating) �ech complex

�
C ·

(U, E), �
�

where

Cp
(U, E) :=

Y

i0<···<ip

E(Ui0...ip
),

with the usual notation
Ui0...ip

= Ui0 \ · · · \ Uip
,

and where the di�erential � : Cp
(U, E)! Cp+1

(U, E) is given by the formula

(�↵)i0,...,ip+1 :=

p+1X

k=0

(�1)
k
↵

i0,...,bik,...,ip+1

��
Ui0\···\Uip+1

.

Recall from [7, 2.5] that we have a natural morphism of locally ringed spaces

⇢ : (X⌃(C), C1
X⌃

) �! (X⌃(C), Ohol
X⌃

) �! (X, OX),

and that, if
EC := ⇢

⇤
E

denotes the C1-module over X⌃(C) deduced from E(16), there is a natural morphism
of OX -modules, given by adjunction,

adE : E �! (⇢⇤EC)
F1 .

(16) Namely, when E is coherent and locally free, the sheaf of C1-sections over X⌃(C) of the holo-
morphic vector bundle E

hol
C deduced from E.
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It induces a morphism of �ech complexes

C ·
(U, adE) : C ·

(U, E) �! C ·
(U, (⇢⇤EC)

F1).

Concerning cone constructions, in the sequel we use the sign conventions discussed
in [7, A.1].

We consider the �ech hypercohomology Ȟ
0
�
U, C(adE))

�
of the cone C(adE) of

adE with respect to the covering U, namely the cohomology in degree zero of the
cone C

�
C ·

(U, adE)
�
. This cone is a complex of R-modules which starts as

0 �! C0
(U, E)

(
��

adE
)

�! C1
(U, E)� C0

(U, (⇢⇤EC)
F1)

(
�� 0
adE �)�! C2

(U, E)� C1
(U, (⇢⇤EC)

F1)

where C0
(U, E) sits in degree �1. Hence Ȟ

0
�
U, C(adE)

�
is the quotient

(A.1)

n
(↵,�) 2 C1

(U, E)� C0�U, (⇢⇤EC)
F1

� �� �↵ = 0 ^ adE(↵) = ��(�)

o

n�
��(�), adE(�)

� �� � 2 C0
(U, E)

o .

According to the standard properties of the cone construction (in the category of
R-modules) and the very definition of �ech cohomology as cohomology of the �ech
complex, this group fits into a natural exact sequence:

(A.2) Ȟ
0
�
U, E)

�
�! Ȟ

0
�
U, (⇢⇤EC)

F1
�
�! Ȟ

0
�
U, C(adE)

�

�! Ȟ
1
�
U, E)

�
�! Ȟ

1
�
U, (⇢⇤EC)

F1)
�
.

Lemma A.0.1. — Let E be quasi-coherent OX-module. There exists a canonical com-

mutative diagram

�(X,E) ! A
0
(XR, E) ! dExt

1

X
( OX , E) ! Ext

1
( OX , E) ! 0

# # # ⇢̂ U,E # ⇢ U,E

Ȟ
0
(U, E)) ! Ȟ

0
(U, (⇢⇤EC)

F1) ! Ȟ
0
(U, C(adE)) ! Ȟ

1
(U, E)) ! 0

with exact horizontal lines where all vertical maps are isomorphisms.

Proof. — The upper exact sequence is established in [7, 2.2].
We have

Ȟ
1
�
U, (⇢⇤EC)

F1)
�

= Ȟ
1
�
⇢
�1 U, (EC)

F1)
�
,

and the latter group is zero as �ech cohomology of a fine sheaf with respect to an
open covering vanishes (see for instance [19, II.3.7 and II.5.2.3 (b)]). Consequently
we obtain the lower exact sequence from (A.2).

The two left vertical maps are given by the natural isomorphisms induced by the
restriction maps of the sheaves E and (⇢⇤EC)

F1 .
We now define ⇢ U,E . Let

E : 0 �! E �! F
⇡�! OX �! 0
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be an extension of OX -modules. The map ⇡ admits a section 'i over each a�ne
scheme Ui. The di�erence ↵ij = 'j |Uij

� 'i|Uij
determines an element in �(Uij , E).

The family (↵ij)ij defines a 1-cocycle in C1
(U, E) whose class in Ȟ

1
(U, E) does not

depend on the choices of the 'i. One obtains a canonical isomorphism (compare for
example [2, Prop. 2])

⇢ U,E : Ext
1
OX

( OX , E) �! Ȟ
1
(U, E) , [ E] 7�!

⇥
(↵ij)ij

⇤
.

Finally we define ⇢̂ U,E . Let ( E, s) be an arithmetic extension with E as above.
Choose the 'i as before and define

�i = s|Ui
� adE('i) 2 A

0,0
(Ui,R, E).

We have adE(↵ij) = �i|Uij
� �j |Uij

. Hence the pair
�
(↵ij)ij , (�i)i

�
determines an

element ⇢̂ U,E( E, s) in (A.1), i.e. in Ȟ
0
�
U, C(adE)

�
. This class does not depend on the

choices of the 'i. Given di�erent sections '̃i which lead to cocycles
�
(↵̃ij)ij , (�̃i)i

�
as

above, we consider

� 2 C0
(U, E) , �i = 'i � '̃i

and get Ç
��
adE

å
(�) = (↵̃, �̃)� (↵,�).

It is straightforward to check that

⇢̂ U,E : dExt
1

X
( OX , E) �! Ȟ

0
�
U, C(adE)

�
,

⇥
( E, s)

⇤
7�!

⇥
(↵ij), (�i)

⇤

is a group homomorphism which fits into the above commutative diagram. The five
lemma implies that the map ⇢̂ U,E is an isomorphism.

Corollary A.0.2. — Let F , G be quasi-coherent OX-modules such that F is a vector

bundle on X. There exists a canonical isomorphism

⇢̂ U,F,G : dExt
1

X
(F,G) �! Ȟ

0
�
U, C(ad H om(F,G))

�

which identifies dExt
1
(F,G) with the quotient (A.1) for E = H om(F,G).

Proof. — It is proved in [7, 2.4.6] that there is a canonical isomorphism

(A.3) dExt
1

X
(F,G)

⇠! dExt
1

X
( OX , H om(F,G))

which maps the class of an arithmetic extension ( E, s) to the pushout of ( E, s)⌦ F
_

along the canonical map jF : OX ! F ⌦ F
_. Let E = H om(F,G). We define ⇢̂ U,F,G

as the composition of the isomorphisms (A.3) and ⇢̂ U,E in Lemma A.0.1.
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Appendix B

The universal vector extension of a Picard variety

In this Appendix, we recall some basic facts concerning universal vector extensions
of Picard varieties, which are essentially due to Messing and Mazur ([34], [33]). We
show in particular that the universal vector extension of the Picard variety Pic

0
X/k

of a
smooth projective variety X over a field k of characteristic zero classifies line bundles
with integrable connections (see (B.12) infra; this is certainly well-known but, to our
knowledge, only the case where X is an abelian variety is treated in the literature).
We also describe the maximal compact subgroups of the Lie groups defined by real
and complex points of universal vector extensions.

B.1. Let S be a locally noetherian scheme. In the sequel, we consider a morphism
f : X ! S of schemes which satisfies the following assumptions:

i) The morphism f is projective, smooth with geometrically connected fibers.
ii) The Hodge to de Rham spectral sequence

E
p,q

1 = R
q
f⇤⌦

p

X/S
) R

p+q
f⇤⌦

·
X/S

degenerates at E1 and the sheaves R
q
f⇤⌦

p

X/S
are locally free.

iii) The identity component Pic
0
X/S

of the Picard scheme PicX/S is an abelian
scheme.

We observe that i) implies that PicX/S is representable by a S-group scheme [21,
n.232, Thm. 3.1] and that f⇤ OX = OS holds universally [22, 7.8.6]. Furthermore
i) implies ii) if S is of characteristic zero [12, Th. 5.5] and i) implies iii) if S is
the spectrum of a field of characteristic zero [6, 8.4]. It is shown in [27, 8.3] that the
formation of the coherent sheaves R

q
f⇤⌦

p

X/S
and R

n
f⇤⌦

·
X/S

commutes with arbitrary
base change if they are locally free for all p, q � 0 and all n � 0.

B.2. We consider the complex

⌦
⇥
X/S

: 0 �! O⇤
X

dlog�! ⌦
1
X/S

d�! ⌦
2
X/S

d�! · · ·

where O⇤
X

sits in degree zero. The group

Pic
#

(X/S) := H
1
(Xfppf ,⌦

⇥
X/S

)

classifies isomorphism classes of pairs (L,r) where L is a line bundle on X and r is
an integrable connection

r : L �! L⌦ ⌦1
X/S

relative to S [34, (2.5.3)]. We denote by

Pic
#
X/S

:= R
1
ffppf⇤⌦

⇥
X/S
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the fppf-sheaf on the category of S-schemes associated to the presheaf

T 7! Pic
#

(X ⇥S T/T )

(see for instance [6, 8.1]). If XT = X ⇥S T admits a section over T , we have [34,
(2.6.4)]

(B.1) Pic
#
X/S

(T ) = Coker
�
Pic(T ) = Pic

#
(T/T )

f
⇤

�! Pic
#

(X ⇥S T/T )
�
.

B.3. If T/S is a fpqc-morphism, we have

(B.2) Pic
#
X/S
⇥S T = Pic

#
XT /T

.

Indeed, this is obvious if T/S is fppf. Hence we may assume without loss of generality
that X/S admits a section ". This allows us to describe elements in Pic

#
X/S

(T ) as
isomorphism classes of triples (L,r, r) where L is a line bundle on XT , r is an
integrable connection relative to T , and

r : "
⇤
L

⇠�! OT

is a rigidification. It follows from fpqc-descent that Pic
#
X/S

is in fact an fpqc-sheaf on
S, which implies (B.2).

We will apply (B.2) in the situation where S is the spectrum of an arithmetic ring
and T is the spectrum of R or C.

B.4. The exact sequence of complexes

(B.3) 0 �! ⌧�1⌦
·
X/S
�! ⌦

⇥
X/S
�! O⇤

X
! 0

induces an exact sequence
(B.4)

H
1
(Xfppf , ⌧�1⌦

·
X/S

) �! Pic
#

(X/S) �! H
1
(Xfppf , O⇤

X
) �! H

2
(Xfppf , ⌧�1⌦

·
X/S

).

Observe also that the first map in (B.4) is injective: this follows from the long exact
sequence of H

0 ’s and H
1’s associated with (B.3), from the vanishing of the map

dlog : �(X, O⇤
X

) �! �(X,⌦
1
X/S

)

(implied by Assumption B.1 i)), and the fppf-descent isomorphisms �(X, O⇤
X

) '
�(Xfppf , O⇤

X
) and �(X,⌦

1
X/S

) ' �(Xfppf ,⌦
1
X/S

).

Using fppf-descent and Assumption B.1 ii), one also gets:

H
1
(Xfppf , O⇤

X
) = Pic(X),

H
2
(Xfppf , ⌧�1⌦

·
X/S

) = H
2
(XZar, ⌧�1⌦

·
X/S

),

and

H
1
(Xfppf , ⌧�1⌦

·
X/S

) = ker
�
H

0
(Xfppf ,⌦

1
X/S

) �! H
0
(Xfppf ,⌦

2
X/S

)
�

= �(S, f⇤⌦
1
X/S

).
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Sheafification of the exact sequence (B.4) and the injectivity of its first map yields an
exact sequence of fppf-sheaves of abelian groups over S:

0 �! f⇤⌦
1
X/S
�! Pic

#
X/S
�! PicX/S

c�! R
2
f⇤⌧�1⌦

·
X/S

.

As there are no non-trivial homomorphisms from the abelian scheme Pic
0
X/S

to the
coherent sheaf R

2
f⇤⌧�1⌦

·
X/S

by [33, Lemma p.9], we have Pic
0
X/S
✓ ker(c). Finally

we obtain an extension of fppf-sheaves of abelian groups over S

(B.5) 0 �! f⇤⌦
1
X/S
�! Pic

#,0
X/S
�! Pic

0
X/S
�! 0

where
Pic

#,0
X/S

:= Pic
#
X/S
⇥PicX/S

Pic
0
X/S

.

B.5. The universal vector extension of the abelian scheme Pic
0
X/S

is a group scheme
EX/S which fits into an exact sequence of fppf-sheaves

(B.6) 0 �! EA/S �! EX/S �! Pic
0
X/S
�! 0

where EA/S denotes the Hodge bundle of the dual abelian scheme

A := (Pic
0
X/S

)
_ ⇡A�! S,

namely
EA/S := ⇡A⇤⌦

1
A/S

.

The universal vector extension may be characterized by its universal property: given
an abelian fppf-sheaf E

0 and a vector group scheme M which fit into an extension of
fppf-sheaves of abelian groups

(B.7) 0 �!M �! E
0 �! Pic

0
X/S
�! 0,

there exists a unique OS-linear morphism � : EA/S !M such that (B.7) is isomorphic
to the pushout of (B.6) along �.

By the universal property there exist unique morphisms ↵ and � (of OS-modules
and S-group schemes respectively) such that

(B.8)
0 ! EA/S ! EX/S ! Pic

0
X/S

! 0

# ↵ # � k
0 ! f⇤⌦

1
X/S

! Pic
#,0
X/S

! Pic
0
X/S

! 0

is a pushout diagram. The biduality of abelian schemes

Pic
0
X/S
'

Ä
Pic

0
X/S

ä__
= A

_
:= Pic

0
A/S

(see for instance [6, 8.1, Theorem 5]) yields a canonical isomorphism

(B.9) EX/S

⇠�! EA/S .

ASTÉRISQUE 327



THE ARITHMETIC ATIYAH EXTENSION 419

It is furthermore shown in [33] and [34] that (B.8) with X replaced by A induces a
canonical isomorphism

EA/S

⇠�! Pic
#,0
A/S

.

Assume that X/S admits a section ✏. There exists a canonical morphism of S-
schemes, the Albanese morphism of X over S relative to the “base point" ✏,

' : X �! A,

that is characterized by the fact that the pullback of a Poincaré bundle for A over S

(rigidified along 0) is isomorphic to a Poincaré bundle for X (rigidified along ✏). The
pullback along ' induces morphisms

'
⇤

: EA/S �! f⇤⌦
1
X/S

, � 7�! '
⇤
�

and (using description (B.1))

'
⇤

: Pic
#,0
A/S
�! Pic

#,0
X/S

, [L,r] 7�! ['
⇤
L,'

⇤r]

such that the diagram

(B.10)
0 �! EA/S �! Pic

#,0
A/S

�! Pic
0
X/S

�! 0

# '⇤ # '⇤ k
0 �! f⇤⌦

1
X/S

�! Pic
#,0
X/S

�! Pic
0
X/S

�! 0

is commutative. The uniqueness assertion in the universal property implies that the
maps ↵ and � in (B.8) are given under the canonical identifications

EX/S

⇠�! EA/S

⇠�! Pic
#,0
A/S

by pullback along '.

B.6. Let S be the spectrum of a field k of characteristic zero. For a projective, smooth,
geometrically connected S-scheme X, our assumptions i)-iii) are satisfied, as explained
in B.1.

Furthermore the morphism ↵ becomes an isomorphism

(B.11) ↵ : EA/k := �(A,⌦
1
A/k

)
⇠�! �(X,⌦

1
X/k

)

of k-vector spaces. Indeed, to establish that ↵ is an isomorphism, we may replace k

by a finite field extension, and therefore assume that X(k) is not empty. If ' : X ! A

denotes the Albanese morphism associated to some base point ✏ in X(k), ↵ is given
by pull back along ', and is injective as X generates A as an abelian variety, and
bijective for dimension reasons (compare for example [6, 8.4 Th. 1 b)]).

It follows that � is an isomorphism of k-group schemes

(B.12) � : EX/k

⇠�! Pic
#,0
X/k

.
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In other words, Pic
#,0
X/k

becomes canonically isomorphic to the universal vector exten-
sion EX/k of Pic

0
X/k

.
When X(k) is not empty, this isomorphism may be described as above, by means

of the pull back along the Albanese map ' associated to any base point ✏ in X(k),
and using (B.1) we get a canonical isomorphism of abelian groups:
(B.13)

EX/k(k) '
ß

(L,r)

����
L line bundle algebraically equivalent to zero on X

r integrable connection on L

™¡
⇠ ,

where ⇠ denotes the obvious isomorphism relation between pairs (L,r).

In general, when X(k) is possibly empty, we may choose a Galois extension k
0
/k

with Galois group � such that X(k
0
) 6= ? and use the obvious identification

(B.14) EX/k(k) = EX
k0/k0(k

0
)
�

to reduce to the previous case.

B.7. If k = C, the extension of commutative complex Lie groups

(B.15) 0! �(X,⌦
1
X/C) �! EX/C(C) �! Pic

0
X/C(C) �! 0,

deduced from (B.6) by considering the complex points, admits the following descrip-
tion in the complex analytic category (compare [34, ex.(1.4)]).

The Lie algebra of Pic
0
X/C, hence of the complex Lie group Pic

0
X/C(C), may be be

identified with H
1
(X, OX), that is, by GAGA, with H

1
(X(C), Ohol

X(C)). By considering
the exact sequence of sheaves over X(C)

0 �! 2⇡iZ �! Ohol
X(C)

exp�! Ohol,⇤
X(C) �! 0

and using GAGA, one obtains that the exponential map of Pic
0
X/C defines an isomor-

phism of commutative complex Lie groups:

(B.16)
H

1
(X(C), Ohol

X
)

H1(X(C), 2⇡iZ)
' Pic

0
X/C(C).

The group of isomorphism classes of pairs (L,r) where L is an algebraic line
bundle over X and r an integrable algebraic connection on L — or equivalently by
GAGA, of pairs (L

hol
,rhol

) where L
hol is a holomorphic line bundle on the complex

manifold X(C) and rhol an integrable, complex analytic connection on L
hol — may

be identified with H
1
(X(C), C⇤), by sending [(L

hol
,rhol

)] to the class of the rank one
local system Ker(rhol

). By considering the exponential sequence

0 �! 2⇡iZ �! C exp�! C⇤ �! 0,

one sees that the group of classes of such pairs (L,r) with L algebraically equivalent
to zero may be identified with the subgroup of H

1
(X(C), C⇤) that is the isomorphic
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image under the exponential map of
H

1
(X(C), C)

H1(X(C), 2⇡iZ)
.

Using the identification (B.13), we finally obtain an isomorphism

(B.17)
H

1
(X(C), C)

H1(X(C), 2⇡iZ)
' EX/C(C).

The analytic de Rham isomorphism

H
1
(X(C), C) ' H

1
(X(C),⌦

· hol
X/C)

and the Hodge filtration give rise to a short exact sequence of finite dimensional
C-vector spaces

0 �! �(X(C),⌦
1 hol
X/C) �! H

1
(X(C), C) �! H

1
(X(C), Ohol

X(C)) �! 0,

and then, by quotienting its second and third terms by H
1
(X(C), 2⇡iZ), to a short

exact sequence of commutative complex Lie groups:

(B.18) 0 �! �(X(C),⌦
1 hol
X/C) �! H

1
(X(C), C)

H1(X(C), 2⇡iZ)
�!

H
1
(X(C), Ohol

X(C))

H1(X(C), 2⇡iZ)
�! 0,

It turns out that it coincides with the short exact sequence (B.15) when we take
the GAGA isomorphism �(X,⌦

1
X/C) ' �(X(C),⌦

1 hol
X/C) and the “exponential" isomor-

phisms (B.16) and (B.17) into account.
Observe that the maximal compact subgroup of the Lie group EX/C(C) is precisely

(B.19)
H

1
(X(C), 2⇡iR)

H1(X(C), 2⇡iZ)
,! H

1
(X(C), C)

H1(X(C), 2⇡iZ)
' EX/C(C).

It is a “real torus", of dimension the first Betti number of X(C). Moreover, as a
consequence of Hodge theory, the canonical morphism EX/C(C) ! Pic

0
X/C(C) in

(B.15) maps this subgroup isomorphically (in the category of real Lie groups) onto
Pic

0
X/C(C).
In this way, we define a canonical splitting

(B.20) & : Pic
0
X/C(C) �! EX/C(C).

of (B.15) in the category of commutative real Lie groups, characterized by the fact
that its image lies in — or equivalently, is — the maximal compact subgroup of
EX/C(C).

The injection U(1) ,! C⇤ determines an injective morphism H
1
(X(C), U(1)) ,!

H
1
(X(C), C⇤), and the maximal compact group (B.19) coincides with the preimage

of H
1
(X(C), U(1)) under the exponential map. Consequently this group classifies

the pairs (L,r) as above, with L algebraically equivalent to zero, such that the
monodromy of rhol lies in U(1). This shows that the real analytic splitting & may also
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be described as follows: for any line bundle L over X that is algebraically equivalent
to zero, we may equip L

hol
C with its unique integrable, holomorphic connection ru

L

with unitary monodromy (cf. 3.2.1 supra); it algebraizes uniquely by GAGA, and the
assignment

[L] 7�!
⇥
(L,ru

L
)
⇤

defines the group homomorphism (B.20).
B.8. If k = R, the extension

(B.21) 0 �! �(X,⌦
1
X/R) �! EX/R(R) �! Pic

0
X/R(R) �! 0

is obtained from the extension (B.15) by taking invariants under complex conjugation.
We obtain again a canonical splitting

&R : Pic
0
X/R(R) �! EX/R(R)

since the splitting (B.20) is invariant under complex conjugation. The image of &R is
the unique maximal compact subgroup of EX/R(R).
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