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Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — We consider a Riemannian manifold, M , which can be compactified by
adjoining a smooth compact oriented Riemannian manifold such that a neighbour-
hood of the singular stratum B, of codimension at least two, is given by a family of
metric cones. Under the assumption that the middle cohomology of the cross-section
vanishes, we show that there is a natural self-adjoint extension for the Dirac operator
on forms with discrete spectrum, and we determine the condition of essential self-
adjointness. We describe the boundary conditions analytically and construct a good
parametrix which leads to the asymptotic expansion of a suitable resolvent trace as in
our previous work. We also give a new proof of the local formula for the L2-signature.

Résumé (Opérateur de signature sur les variétés avec une strate singulière conique)
Nous considèrons une variété riemannienne M , qui peut être compactifiée en lui

adjoignant une variété riemannienne C∞ compacte orientée, telle qu’un voisinage de
la strate singulière B, de codimension au moins deux, est donné par une famille de
cônes métriques. Sous une hypothèse d’annulation de la cohomologie de la section
du cône en dimension moitié, nous montrons qu’il existe une extension auto-adjointe
naturelle de l’opérateur de Dirac agissant sur les formes qui est de spectre discret, et
nous déterminons la condition sous laquelle l’opérateur de Dirac est essentiellement
auto-adjoint. Nous décrivons les conditions de bord, et nous construisons une para-
metrix qui donne le développement asymptotique de la trace de la résolvante, comme
dans un travail antérieur. Nous donnons aussi une preuve nouvelle de la formule locale
pour la signature L2.

Introduction

In this article, we analyze the signature operator on an oriented Riemannian mani-
fold (M, g), of dimension m = 4k, with one compact singular stratum B of dimension
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2 J. BRÜNING

h (the “horizontal dimension”), such that m−h ≥ 2. A neighbourhood of the singular
set is given by

(0.1) U := Uε0 := (0, ε0)×N, ε0 ∈ (0, 1/2),

with an oriented compact Riemannian manifold N of dimension 4k − 1 and metric
gTN , and M decomposes as

(0.2) M =: Uε0 ∪Mε0

into points of distance at most and at least ε0 of the singular set, respectively. For
ε ∈ (0, ε0], we use analogous notation and write Uε,Mε, with

M = Uε ∪Mε.

We assume that the orientation on M and N induce the boundary orientation on U ,
such that {− ∂

∂t , e1, . . . , em−1} is oriented on U if t ∈ (0, ε0) and {e1, . . . , em−1} is
oriented on N . We assume in addition that the singularity is of the following special
type. There is a fibration of oriented compact Riemannian manifolds,

(0.3) π : Y ↪→ N → B,

with fibers Yb = π−1(b), b ∈ B, of dimension v := 4k − 1 − h ≥ 1 (the “vertical
dimension”); in particular, B carries a metric gTB such that π becomes a Riemannian
submersion. Then the tangent bundle TN of N splits under gTN into the vertical and
the horizontal tangent bundle, consisting of the tangent vectors to the fibers and their
orthogonal complement,

TNp =: THNp ⊕ TVNp,(0.4)

with induced metrics gTHN and gTVN ; the corresponding orthogonal projections in
TN will be denoted by PH and PV , respectively. Next we assume that the metric
gTU := gTM |U takes the form

(0.5) gTU := dt2 ⊕ gTHN ⊕ t2gTVN ,

which we will call a metric of conic type. Thus,M∪B is a Riemannian pseudomanifold
with one singular stratum of conic type.

The boundary of U is the Riemannian manifold

Nε0 := (N, gTNε0 := gTHN ⊕ ε2
0g
TVN ).(0.6)

The splitting of TN induces a splitting of the cotangent bundle,

T ∗N =: T ∗HN ⊕ T ∗VN,

into cotangent vectors annihilating TVN and THN , respectively. This splitting induces
a bigrading of the exterior algebra ΛT ∗N which will be important for our analysis;
we write

ΛT ∗N = ΛT ∗HN ⊗ ΛT ∗VN

= ⊕j=p+qΛpT ∗HN ⊗ ΛqT ∗VN =: ⊕p,qΛp,qT ∗N.(0.7)
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SIGNATURE OPERATOR WITH CONICAL STRATUM 3

The smooth sections of ΛT ∗N and ΛT ∗H/VN will be denoted λ(N) and λH/V (N),
respectively, with degree or bidegree noted with superscripts.

Our main object will be the canonical Dirac operator associated with ΛT ∗M ,

DΛ := DΛ
M := dM + d†M ,(0.8)

with dM =: d the exterior derivative on M and d† its formal adjoint with respect to
the metric gTM .
D defined on forms with compact support, denoted by λc(M), is symmetric in

L2(M,ΛT ∗M) =: λ(2)(M) but may not be essentially self-adjoint; we refer to the
closure of this operator as DΛ

min =: Dmin, and dmin, d
†
min are defined analogously.

A specific self-adjoint extension of this operator can be defined via the Hilbert
complex given by the operator dmax which arises from d† as

(0.9) dmax := (d†min)∗,

cf. [11, §3]; with a slight abuse of notation we denote this extension again by D =

DΛ = DΛ
M , with domain D = domD. In general, there will be many more self-adjoint

extensions but D is of interest since its kernel gives the L2-cohomology of M . If D is
a Fredholm operator we have to break its symmetry to obtain a nontrivial index, e.
g. by an anticommuting supersymmetry i. e. a self-adjoint involution of ΛT ∗M . We
will use multiplication by the complex volume element, τM , which splits

ΛT ∗M =: Λ+T ∗M ⊕ Λ−T ∗M

into ±1-eigenbundles and analogously

λ(M) =: λ+(M)⊕ λ−(M),

with associated splitting σ = σ++σ− on the level of forms. If τM maps D to itself than
we can define the Signature Operator of M , with domain Dsign = D+ = 1

2 (I + τM ) D,
by

Dsign
M := Dsign := DΛ

M |D
+ : D+ → D−.(0.10)

We say that the case of uniqueness or the L2-Stokes Theorem holds on M if

(0.11) dmax = dmin.

In this case we have τ( D) ⊂ D, and if D is also Fredholm, then so is Dsign and its
index equals the L2-signature of M ,

(0.12) indDsign = sign(2)M.

The above metric data define the crucial object in the analysis of the signature oper-
ator: the splitting of T ∗N (induced by (0.4)) defines the “vertical de Rham operator”
dV (see (2.5)) and the metric gTVN1 defines the adjoint d†V , such that we can form the
operator (see (2.31))

AV := (dV + d†V )α+ ν.(0.13)
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4 J. BRÜNING

Here α is another supersymmetry on ΛT ∗N and ν is an endomorphism (which are
defined in (2.19) and (2.13)), and AV is a first order symmetric differential operator
on C1

c (N,ΛT ∗N) which is fiberwise elliptic. Now M is called a Witt space if

(0.14) Hv/2(Y ) = 0.

We will see below (cf. Theorem 3.1) that (0.14) is essentially equivalent to the analytic
condition

(0.15) AV is invertible,

in the sense that the invertibility of AV implies the Witt condition, whereas the Witt
condition does not exclude the existence of zero eigenvalues but only of such which
may be called inessential; indeed, they disappear under suitable rescalings of the fiber
metric. We will assume that M is a Witt space.

Our results can then be summarized in the following theorems. We describe the
Signature Operator on M by explicitly constructing its Green kernel which relates it
to the symmetric operator D̃ defined as the restriction of Dmax to the domain

(0.16) {σ ∈ domDmax : ||σ+||λ(2)(Nt) = O(t1/2−ε) for every ε > 0,

||σ−||λ(2)(Nt) = O(t−1/2+η) for some η > 0, t→ 0};

note that D̃ anticommutes with τM by construction.

Theorem 0.1. — Let the Riemannian manifold (M, gTM ), of dimension m = 4k, be
the top stratum of a Riemannian pseudomanifold, X, which is a Witt space with only
one singular stratum B of conic type.
1. The operator D̃ defined by (0.16) is self-adjoint and discrete and anticommutes
with τM .
2. If |AV | ≥ 1

2 , then D
Λ
M,min is essentially self-adjoint.

3. The case of uniqueness holds for M .
4. Dsign = D̃+.

This theorem is well known in the case h = 0, cf. [15], [12], and part 2 and part 3
could also be deduced from Cheeger’s work [15].

It is clear from part 4 of Theorem 0.1 that under the above conditions

(0.17) ind D̃+ = ind D̃sign = sign(2)M,

so it is natural to ask for a local formula analogous to Hirzebruch’s Signature Theorem
in the smooth case. Bismut and Cheeger [6, Thm. 5.7] have indicated the adiabatic
construction of the homology L-class on the compact singular space associated with
M , together with the corresponding L2-index formula. A crucial role is played by
the η-invariant, η(N, gTN ), of the Riemannian manifold (N, gTN ), as introduced by
Atiyah, Patodi, and Singer in [1, Thm. (4.14)], and its adiabatic limit,

η̃(N, gTN ) := lim
ε→0

η(N, gTNε ).
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SIGNATURE OPERATOR WITH CONICAL STRATUM 5

The adiabatic limit was first introduced and computed by Witten [25], as a gravita-
tional anomaly, in case of a one-dimensional base. Witten’s formula was proved rigor-
ously by Cheeger [16], and independently by Bismut and Freed [9], [10]. The compu-
tation of the adiabatic limit for arbitrary dimensions and invertible fiber operators was
given by Bismut and Cheeger [6, 7], who introduced the form η̃ = η̃(π, gTM ) ∈ λ(B)

generalizing the η-invariant; the case of the signature operator was treated by Dai
[18, Thm.0.3] who further introduced the τ -invariant associated to the Leray spectral
sequence of the fibration (0.3). There has been done considerable work recently on the
computation of L2-cohomology groups of spaces which can be compactified as pseudo-
manifolds of the type we consider here, cf. [19], [20], [21], and [17]. These calculations
lead to topological formulas for sign(2)M , see [17, Cor.1.2] for Witt spaces and its ex-
tension in [21]. Combining these topological formulas with Dai’s result quoted above
gives the following local signature formula which was stated for even dimensional base
spaces in [8, Thm.5.7]; in its formulation, we denote by DΛ⊗ H (Y )

B the Dirac operator
DΛ
B twisted by the bundle of fiber harmonic forms.

Theorem 0.2. — We have

indDsign = lim
ε→0

∫
M

L(∇TM )−
∫
B

L(TB,∇TB) ∧ η̃ − 1

2
η(D

Λ⊗ H (Y )
B ).

We give here an analytic proof of [17, Cor.1.2] in the general case which should
be applicable to more general situations; in combination with the results of Atiyah,
Patodi, and Singer and Dai’s computation, it yields the theorem. The parametrix
construction which we give in this paper should, in principle, also lead directly to
the local index formula but, so far, we have been unable to overcome the technical
difficulties involved.

We also have considered the resolvent trace expansion. We have a proof of the
following result, but its presentation would lengthen the paper unduly; we hope to
include it in a more general result at some future time.

Theorem 0.3. — 1. For µ ∈ R \ {0} and p > m, the resolvent
(D − iµ)−1 is in the Schatten-von Neumann class of order p in L2(M,ΛT ∗M).
2. For z ∈ R and l > m/2, we have the asymptotic expansion

tr[D2 + z2]−l ∼z→∞ zm−2l
∑
j≥0

ajz
−j +

∑
j≥2l−h

bjz
−j log z.

The plan of the article is as follows. In Section 1, we deal with general Dirac
operators and derive some decomposition theorems which are induced by a fibration
of the form (0.3) and are needed later on. These results are known for spin Dirac
operators, see [5, pp. 56, 59].

In Section 2, we represent the signature operator Dsign on U in the form

Dsign
M ' ∂

∂t
+AH(t) + t−1AV ,
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6 J. BRÜNING

acting on C1
c

(
(0, ε0), H1(N,ΛT ∗N)

)
(see (2.38)). Here AH(t) and AV are first order

differential operators which can be written as a Dirac operator plus a potential and
AH(t) is linear in t, with derivative a bounded endomorphism, while AV is given by
(0.13). We also show (in Theorem 2.5) that the anticommutator AHAV + AVAH is
a first order vertical differential operator, a crucial fact for our analysis. The guiding
principles here are the structure of Dirac systems, as developped in [3], and the
decomposition results from Sec. 1.

In Section 3, we obtain explicitly the spectral decomposition of the operators
AV (b) := AV |Yb (cf. Theorem 3.1). By ellipticity, the spectrum is discrete. It con-
sists of the harmonic eigenvalues µ = j − v/2, 0 ≤ j ≤ v, generated by the harmonic
forms on Yb, and two families µ± generated by the nonzero eigenvalues of the Lapla-
cian on Yb, with µ+ ⊂ (− 1

2 ,∞) and µ− ⊂ (−∞, 1
2 ). When the metric on Yb is scaled

down, these eigenvalues tend respectively to +∞ and −∞.
Section 4 introduces appropriate boundary conditions for Dsign, based on the spec-

tral analysis of Section 2. For the choice of boundary conditions and hence of a
self-adjoint extension, only the small eigenvalues of AV matter. We treat them by
explicitly constructing the resolvent kernel by means of matrix Bessel functions, as
introduced in [13], and then use this kernel in constructing a good pseudodifferen-
tial parametrix for Dsign with operator valued symbol, again following the strategy
developed in [13]. At the end of this section, we give the proof of Theorem 0.1.

In Section 5 we prove Theorem 0.2 by reducing the problem to an APS-type prob-
lem on Mε, for sufficciently small ε > 0. We also prove various related results: a Kato
type perturbation result for the APS projection (Theorem 5.9), a vanishing result
which is crucial for our approach (Theorem 5.2), and a new identity involving Dai’s
τ -invariant (Theorem 5.4).

This paper started as a joint project with Bob Seeley to whom it owes a lot.
The construction of the Signature Operator was essentially finished several years
ago using a less explicit parametrix construction. The publication of the results has
been delayed by an attempt to deduce the local signature formula directly from the
resolvent expansion in Theorem 0.3. However, this goal has proved elusive so far; we
hope that, nevertheless, the results presented here will be of independent value.

We wish to thank Bob Seeley for many years of fruitful exchange and cooperation.
We are indebted to Jean-Michel Bismut, Xiaonan Ma, and Henri Moscovici for useful
discussions. We are grateful for the support of Deutsche Forschungsgemeinschaft under
various grants, especially SFB 288 and SFB 647, and for the generous hospitality of the
Ohio State University, the Mittag-Leffler Institute, the University of Bergen, Kyoto
University, and MSRI Berkeley. Special thanks are due to an anonymous referee for
very helpful remarks based on an unduly preliminary version of this article.
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SIGNATURE OPERATOR WITH CONICAL STRATUM 7

1. Dirac operators on fibrations

In this section, we consider a Riemannian manifold (M, gTM ) which we assume to
be oriented. For X,Y ∈ TM we write

gTM (X,Y ) =: 〈X,Y 〉TM =: 〈X,Y 〉,

if no confusion may arise, and we use similar notation for vector bundles. Moreover, we
consider a second oriented Riemannian manifold (B, gTB) and a Riemannian fibration

(1.1) π = πMB : M → B

with generic fiber F ; we write

(1.2) Fb := π−1(b), b ∈ B.

We denote the bundle of tangent vectors to the fibers by TVM . Then the fibration
induces an orthogonal splitting

TM =: THM ⊕ TVM, g := gTM =: gTHM ⊕ gTVM =: gH ⊕ gV ,

with orthogonal projections PH/V : TM → TH/VM . Note that TVM and its annihi-
lator T ∗HM are defined independent of the metric.

The bundle (TM, gTM ) has a distinguished metric connection, the Levi-Civita
connection ∇TM ; all bundles associated to the principal bundle of orthonormal frames
in TM inherit a metric and a metric connection from (TM, gTM ). This holds in
particular for the exterior algebra of the cotangent bundle, ΛT ∗M , and for the bundle
of Clifford algebras, Cl(TM), and its complexification, Cl(TM) = Cl(TM)⊗R C.

We are interested in the class of Dirac bundles as defined in [23, p. 114], i.e. the
smooth hermitian bundles (E, hE) over M equipped with hermitian connections ∇E
such that the following conditions are satisfied: There is a smooth bundle map cl from
the tangent bundle, TM , to the skew-hermitian endomorphisms, EndasE, of E such
that

(1.3) cl(X) ◦ cl(X) = −g(X,X)IE , X ∈ TM,

which implies that cl extends to an algebra homomorphism

(1.4) cl : Cl(TM)→ EndE,

turning E into a left Clifford module. Moreover, ∇E is required to be compatible with
the Levi-Civita connection in the sense that

(1.5) ∇EXcl(Y )σ = cl(∇TMX Y )σ + cl(Y )∇EXσ,

for X,Y ∈ TM, σ ∈ C1(M,E). A prototypical Dirac bundle is, of course, Cl(TM)

itself with the metric structure induced from gTM . This bundle is canonically isomor-
phic to the exterior algebra bundle ΛT ∗M , with Clifford action

cl(X)ω = w(X[)ω − i(X)ω, X ∈ TM, ω ∈ ΛT ∗M,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



8 J. BRÜNING

where “w” and “i” refer to wedge and interior multiplication, respectively, while [ :

TM → T ∗M denotes the “musical” isomorphism induced by gTM with inverse ]. Note
that these definitions extend naturally to Hilbert bundles over M .

The notion of Dirac bundle was introduced to define the Dirac operator naturally
associated with it, i.e. the operator

(1.6) D := DE
M :=

m∑
i=1

cl(ei)∇Eei ,

which we will regard as an unbounded operator in L2(M,E) with domain C1
c (M,E)

if not stated otherwise. Then D is symmetric in L2(M,E) and essentially self-adjoint
e.g. if M is complete.

To obtain a nontrivial index, the symmetry of D must be broken. This is achieved
by a supersymmetry or grading, α, on E, i.e. by a self-adjoint involution α ∈ EndE

which is parallel with respect to ∇E and anticommutes with Clifford multiplication,
and hence with D. Then the bundle E splits as

E = E+ ⊕ E−, E± =
1

2
(I ± α)E.

Cl(TM) has a natural grading obtained by lifting the map X 7→ −X from TM to
Cl(TM), with the property that

Cl(TM)±E+ ⊂ E±, Cl(TM)±E− ⊂ E∓,

for any graded Dirac bundle E.
We are now interested in splitting the Dirac operator D = DE

M along the fibration
π : M → B into a “horizontal” and a “vertical” part. The notion of horizontality we
use will be introduced below, while we will call a differential operator Q on C1

c (M,E)

vertical if Q commutes with multiplication by functions pulled back from the base, i.e.
if Q differentiates only in fiber directions; if Q is of first order this is also equivalent
to saying that

Q̂(ξ) = 0, ξ ∈ T ∗HM,(1.7)

with Q̂ the principal symbol of Q. The desired splitting of D will reflect the geometry
of the fibration π, through the second fundamental form, which is defined for X,Y ∈
TVM and Z ∈ THM by

〈II(X,Y ), Z〉 = 〈∇ZX − PV [Z,X], Y 〉(1.8)

= 〈∇XZ, Y 〉
= −〈∇XY,Z〉;

and through the curvature of π, which is for Z1, Z2 ∈ THM defined as

RZ1,Z2 := −PV [Z1, Z2].

Before we state the results on the splitting of D we need to introduce some notation
concerning local orthonormal frames. We will always denote by (ei)

h
i=1 and (fj)

v
j=1an

oriented local orthonormal frame for THM and TVM , respectively, where h = dimB
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SIGNATURE OPERATOR WITH CONICAL STRATUM 9

and v := dimF denote the “horizontal” and “vertical” dimensions, with h+ v = m :=

dimM , and we assume that {e1, . . . , fv} is oriented in TM . More specifically, we may
assume that (ei)

h
i=1 consists of the horizontal lifts of an oriented local orthonormal

frame (ei)
h
i=1 for TB; if this frame is defined in some open set U then (ei)

h
i=1 is defined

in π−1(U).
There are two operators generated by D which naturally belong to the horizontal

and the vertical space, respectively, to wit

D̃H :=
h∑
i=1

cl(ei)∇Eei ,(1.9)

D̃V :=
v∑
j=1

cl(fj)∇Efj ,(1.10)

such that D = D̃H + D̃V . However, these operators are not easy to interpret and in
spite of having a symmetric principal symbol, they are not symmetric in general. This
defect is easily cured as follows. Since D is symmetric on C1

c (M,E), i. e. D = D†, its
formal adjoint, we obtain

D =
1

2
(D̃H + D̃†H) +

1

2
(D̃V + D̃†V )

=: DH +DV ,(1.11)

with DH/V symmetric. But since D̃V has symmetric principal symbol, we see that

(1.12) D̃†V = D̃V + β1,

with some endomorphism β1 ∈ C∞(M,EndE) such that

DH = D̃H −
1

2
β1,(1.13)

DV = D̃V +
1

2
β1;(1.14)

note that β1 is necessarily skew-symmetric.

Lemma 1.1. — 1. In (1.12), we have

β1 = −v cl(HF ),(1.15)

where

HF := −1

v

v∑
j=1

PH∇TMfj fj

is the mean curvature vector field of the fibers of π.
2. For any horizontal vector field Z on M we have

(1.16) cl(Z)DV +DV cl(Z) = 0.
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10 J. BRÜNING

Proof. — 1. We compute D̃†V by calculating for σk ∈ C1
c (M,E), k = 1, 2, the expres-

sion

(D̃V σ1, σ2)L2(M,E) − (σ1, D̃V σ2)L2(M,E)

=
v∑
j=1

∫
M

(
〈cl(fj)∇Efjσ1, σ2〉E − 〈σ1, cl(fj)∇Efjσ2〉E

)
=

v∑
j=1

∫
M

(
− fj〈σ1, cl(fj)σ2〉E + 〈σ1, cl(∇TMfj fj)σ2〉E

)
=

v∑
j=1

∫
M

(
− fj〈σ1, cl(fj)σ2〉E + 〈σ1, cl(∇TVMfj

fj)σ2〉E
)

(1.17)

− (σ1, v cl(HF )σ2)L2(M,E),

where we have used the properties (1.3) through (1.5). Now we introduce a vertical
vector field, X, by setting

〈X,Y 〉TVM := 〈σ1, cl(Y )σ2〉E , Y ∈ C(M,TVM).

Then it is easy to see that the integrand in (1.17) equals the divergence of X|Fb and
hence vanishes upon integration over Fb, for any b ∈ B. It follows that

D̃†V − D̃V = −v cl(HF ),

as claimed.
2. We compute, using again the basic relations (1.3) through (1.5),

cl(X)DV +DV cl(X) = cl(X)D̃V + D̃V cl(X) + v〈X,HF 〉TM

=
∑
j

(
cl(X) cl(fj)∇Efj + cl(fj)∇Efj cl(X)

)
+ v〈X,HF 〉TM

=
∑
j

cl(fj) cl(∇TMfj X) + v〈X,HF 〉TM

=
(∑

j,l

cl(fj) cl(fl)〈∇TMfj X, fl〉TM + v〈X,HF 〉TM
)

=
∑
j 6=l

cl(fj) cl(fl)〈X,∇TMfj fl〉TM

= 0.

We will use below a stronger property of this decomposition, namely that (in the
case of DΛ)

(1.18) D̃HV := DHDV +DVDH

is a first order vertical differential operator. Note that while D̃HV is always of first
order, it need not be vertical in general. But this can be achieved if we further modify
the decomposition (1.11) by bringing in the curvature of π.
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SIGNATURE OPERATOR WITH CONICAL STRATUM 11

Theorem 1.2. — Define a symmetric endomorphism field of E by

(1.19) β2 :=
1

4

∑
j;i,k

〈∇TMei ek, fj〉 cl(fj) cl(ek) cl(ei).

Then the operator

(1.20) D̃HV := (DH + β2)(DV − β2) + (DV − β2)(DH + β2)

is first order vertical.

Proof. — β2 is clearly well defined. We compute

D̃HV = (DHDV +DVDH)− (DHβ2 + β2DH) + (DV β2 + β2DV )(1.21)

=: I + II + III.(1.22)

Since III is first order vertical, we compute the coefficient, γm, of ∇Eem from I and II:

γm = −v
2

(
cl(HF ) cl(em) + cl(em) cl(HF )

)
+
∑
j

cl(fj) cl(∇TMfj em)

+
(
β2 cl(em) + cl(em)β2

)
= v〈HF , em〉+

∑
j,k

cl(fj) cl(fk)〈∇TMfj em, fk〉

+
∑
j;i

cl(fj) cl(ei)〈∇TMfj em, ei〉+
(
β2 cl(em) + cl(em)β2

)
=
∑
j;i

cl(fj) cl(ei)〈∇TMfj em, ei〉+
(
β2 cl(em) + cl(em)β2

)
= 0,

if we plug in the definition of β2 in the penultimate line.

Our next goal is to interpret the new operators DH and DV as Dirac operators in
a natural way. This is more obvious for DV since the fibers Fb, b ∈ B, inherit a lot
of structure from M and E. Indeed, denoting by jb : Fb → M the inclusion map, we
obtain a hermitian bundle with hermitian connection over Fb by defining

Eb := j∗bE, h
Eb := j∗bh

E , ∇Eb := j∗b∇E .

Clearly, the relations (1.3) and (1.4) remain valid, so what remains to be checked is
the compatibility condition (1.5) which now needs to involve ∇TFb . To achieve this
we are going to modify ∇Eb as follows. For X,Y ∈ TFb ⊂ TVM,Z ∈ TF⊥b ⊂ THM ,
we introduce the shape operator S = Sb of Fb by

SZX := −PV (∇TMX Z),

such that

〈SZX,Y 〉TFb := 〈∇TMX Y, Z〉TM
= −〈IIFb(X,Y ), Z〉.
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Then we define a new connection on TF by

(1.23) ∇E,bX := ∇EbX −
1

2

∑
i

cl(SeiX) cl(ei),

which is clearly invariantly defined.

Theorem 1.3. — The data (Eb, h
Eb ,∇E,b) define a Dirac bundle over Fb, for all b ∈ B,

with Dirac operator

(1.24) DV (b) := DV |Fb.

Proof. — We compute with the notation used above:

∇E,bX cl(Y )− cl(Y )∇E,bX

= cl(∇TMX Y )− 1

2

∑
i

(
cl(SeiX) cl(ei) cl(Y )− cl(Y ) cl(SeiX) cl(ei)

)
= cl(∇TMX Y ) +

1

2

∑
i

(
cl(SeiX) cl(Y ) + cl(Y ) cl(SeiX)

)
cl(ei)

= cl(∇TMX Y )−
∑
i

〈SeiX,Y 〉TM cl(ei)

= cl(∇TMX Y )−
∑
i

〈∇TMX Y, ei〉TM cl(ei)

= cl(∇TFbX Y ).

Next we compute the Dirac operator, D̄V , associated to (Eb, h
Eb ,∇E,b):

D̄V =
∑
j

cl(fj)∇E,bfj

=
∑
j

cl(fj)∇Efj −
1

2

∑
i,j,k

〈Seifj , fk〉TM cl(fj) cl(fk) cl(ei)

=
∑
j

cl(fj)∇Efj −
1

2

∑
i,j,k

〈∇TMfj fk, ei〉TM cl(fj) cl(fk) cl(ei)

=
∑
j

cl(fj)∇Efj +
1

2

∑
i,j

〈∇TMfj fj , ei〉TM cl(ei)

=
∑
j

cl(fj)∇Efj −
v

2
cl(HF )

= D̃V −
v

2
cl(HF )

= DV .
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To exhibit DH as a Dirac operator, too, we have to extend our setting to smooth
Dirac-Hilbert bundles. This does not require new definitions but only natural exten-
sions, as indicated above. If we introduce the family of Hilbert spaces over B,

(1.25) Eb := L2(Fb, Eb), b ∈ B,
and put E :=

⋃
b∈B Eb then the restriction map

(1.26) R : C1
c (M,E)→ Γ(B, E), Rσ(b) := Rbσ := σ|Fb, b ∈ B,

is an isometry by the Fubini Theorem,

(1.27) ||σ||2L2(M,E) =

∫
B

||Rσ(b)||2Eb volB(b).

We define a metric on E by setting

(1.28) h E(b)
(
Rσ1, Rσ2

)
:=

∫
Fb

hE(b)
(
σ1, σ2

)
volFb , σj ∈ Cc(M,E), j = 1, 2,

and the Clifford action by

(1.29) clB(X)Rσ := R cl(X)σ, σ ∈ Cc(M,E),

where X ∈ TB with horizontal lift X ∈ THM . The connection requires again some
modification: we put

(1.30) ∇ E
XRσ := R∇EXσ −

1

2

∑
j

R cl(∇TMfj X) cl(fj)σ,

where again X ∈ TB with horizontal lift X ∈ TM , and σ ∈ C1
c (M,E). Then we have

the following pleasant interpretation of DH .

Theorem 1.4. — The data ( E, h E,∇ E) define a (Hilbert-) Dirac bundle over B such
that its Dirac operator, D E, is given by

D ERσ := D E
BRσ := RDHσ,

for σ ∈ C1
c (M,E).

2. Representation of the signature operator near the singularity

We now restrict the general considerations of the previous section to a manageable
and important special case, namely the Dirac operator on differential forms on a
manifold with a conic singular stratum. Hence we will assume in the remainder of
this work that we deal with the geometric situation explained in the Introduction.
Thus, we consider a Riemannian manifold (M, gTM ), of dimension m = 4k, such that
for ε ∈ (0, ε0] we have decompositions

(2.1) M := Uε ∪Mε,

where (Mε0 , g
TMε0 ) is a compact Riemannian manifold with boundary ∂Mε0 = Nε0 .

We further assume that the singular part, Uε0 , is a bundle of metric cones over another
compact Riemannian manifold, (B, gTB), as explained above.
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14 J. BRÜNING

In order to construct a self-adjoint Fredholm extension of the operator

(2.2) DΛ
M,min := Dmin := (dM + d†M )min,

we need to construct a good representation of D on Uε0 . To obtain a nontrivial index,
we use the supersymmetry leading to the signature operator which is defined, on any
oriented Riemannian manifold (M, gTM ) and for any local orthonormal and oriented
frame (ẽi)

m
i=1 of tangent vectors, by

τM := τM,gTM :=
√
−1

[(m+1)/2]
cl(ẽ1) . . . cl(ẽm)

= (−1)k cl(ẽ1) . . . cl(ẽm);(2.3)

note that τ anticommutes with any Dirac operator on sections with compact support
if m is even. If the signature operator can be defined then it is derived from the
maximal de Rham complex. Thus, we state next the decomposition of dN under the
Riemannian fibration (0.3), as described somewhat more generally in [4, Prop. 10.1].
For this, a few further preparations are needed.

In the decomposition (0.7),

ΛT ∗N = ⊕p,qΛp,qT ∗N ,

we count the degree of forms by operators hd and vd of horizontal and vertical degree,
respectively, that is,

hd|Λp,qT ∗N = p, vd|Λp,qT ∗N = q.

Furthermore, we note the natural isometry of hermitian bundles

ψ : π∗ΛT ∗B ⊗ ΛT ∗VM → ΛT ∗HN ⊗ ΛT ∗VN,(2.4)

such that the smooth sections of ΛT ∗N are generated over C∞(N) by sections of the
form π∗ω1 ⊗ ω2, with ω1 ∈ λ(B) and ω2 ∈ λV (N). Thus we can define the first order
vertical operator dV figuring in (0.13) by

(2.5) dV (π∗ω1 ⊗ ω2) := π∗εHω1 ⊗ dFω2,

where

εH := (−1)hd.(2.6)

Finally, we note the following decomposition of the Levi-Civita connection on N ,

∇TN := (PH∇TNPH + PV∇TNPV ) + PH∇TNPV + PV∇TNPH
=: ∇TN,δ +∇HV +∇V H ,(2.7)

where ∇TN,δ is a connection while the other two terms are endomorphisms; observe
that all operators in (2.7) act as derivations on tensors.

The decomposition of dN for fibrations π : N → B then reads as follows.
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Lemma 2.1. — In local oriented orthonormal frames (ei)
h
i=1 and (fj)

v
j=1 for THN and

TVN , respectively, we have

dN =
( h∑

i

w(e[i)∇TN,δei −
∑
i;j,l

〈∇TNfj fl, ei〉TN w(e[i)⊗ w(f [j )i(fl)
)

(2.8)

+
1

2

∑
i,k;j

〈[ek, ei], fj〉TN w(e[i) w(e[k)⊗ i(fj)(2.9)

+ dV

=: d
(1,0)
H + d

(2,−1)
H + d

(0,1)
V(2.10)

=: d1
H + d2

H + dV .(2.11)

In (2.8) and (2.9), the indices i, k run from 1 to h and indices j, l from 1 to v, while
the upper indices in (2.10) indicate the change in bidegree effected by the respective
operators; and dV = d

(0,1)
V is defined in (2.5).

Proof. — The proof follows straightforwardly from the well known representation

dM =
∑
i

w(e[i)∇TMei +
∑
j

w(f [j )∇TMfj ,

and the decomposition (2.7).

We will use this result to determine the decomposition (1.11) for the fibration

π(0,∞) : U∞ → (0,∞),

where we now allow ε to be any number with 0 < ε ≤ ∞, by an obvious extension.
This gives the boundary representation needed in the approach of Atiyah, Patodi, and
Singer (APS) which will be applied here to reduce the index problem to an APS-
type problem, cf. [1]. The geometry is, however, not cylindrical near the boundary as
assumed in loc. cit. which will cause additional difficulties later.

We will base our analysis on the unitary transformation

Ψ1 : L2(R+,C2 ⊗ λ(N))→ λ(2)(U∞),

Ψ1(σ1, σ2)(t) := π∗N t
νσ1(t) + dt ∧ π∗N tνσ2(t),(2.12)

where πN denotes the canonical projection U∞ → N and

(2.13) ν := vd− v

2
.

Ψ1 generalizes the unitary transformation used in [12] for simple cones; note that
it arises as the parallel transport along normal geodesics with respect to the metric
connection defined by the fibration π(0,∞) : U∞ → (0,∞) according to Theorem 1.4.
Then a straightforward calculation gives
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16 J. BRÜNING

Lemma 2.2. — We have

Ψ−1
1 dU∞Ψ1 =

(
d1
H + td2

H + t−1dV 0
∂
∂t + t−1ν −d1

H − td2
H − t−1dV

)
.

Taking adjoints and adding we obtain the transformation of DΛ
U∞

.

Corollary 2.3. — With the notation

(2.14) ÃH(t) := (d1
H + td2

H) + (d1
H + td2

H)†,

Ã0V := dV + d†V ,(2.15)

Ã0(t) := ÃH(t) + t−1Ã0V ,(2.16)

and

(2.17) γ :=

(
0 −1

1 0

)
we have

(2.18) Ψ−1
1 DΛ

U∞Ψ1 =: D̃Λ
U∞ =

γ
( ∂
∂t

+

(
0 −ÃH(t)

−ÃH(t) 0

)
+ t−1

(
ν −Ã0V

−Ã0V −ν

))
To transform the signature operator we need to incorporate the self-adjoint invo-

lution τU∞ which defines it. From (2.3) it is easy to derive its transformation law:

Lemma 2.4. — We have

τ̃ := Ψ−1
1 τMΨ1 =

(
0 −1

−1 0

)
⊗ εvHτH ⊗ τV

=:

(
0 1

1 0

)
⊗ (−α),(2.19)

where with oriented frames {e1, . . . , eh}, {f1, . . . , fv} for THN and TVN , respectively,
we have

τH :=
√
−1

[(h+1)/2]
cl(e1) . . . cl(eh),(2.20)

τV :=
√
−1

[(v+1)/2]
cl(f1) . . . cl(fv);(2.21)

note that εvH and τH commute.

The signature operator transforms to the positive part of D̃U∞ with respect to τ̃ :

(2.22) D̃sign
U∞

:=
1

2
(I + τ̃)D̃U∞

1

2
(I + τ̃).
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To further transform D̃sign
U∞

, we observe that the orthogonal projection onto the
+1-eigenspace of τ̃ ,

(2.23) P+(τ̃) :=
1

2

(
I −α
−α I

)
,

is conjugate to the standard projection

P :=

(
I 0

0 0

)
(2.24)

under the unitary transformation

(2.25) U :=
1√
2

(
I α

−α I

)
,

i. e.

(2.26) P = U−1P+(τ̃)U,

or equivalently,

(2.27) U−1τ̃U =

(
I 0

0 −I

)
.

Now we obtain the final representation of Dsign
U∞

by transforming all terms in (2.18)
under U , observing the commutation relations

να = −αν,(2.28)

Ã(t)α = αÃ(t),(2.29)

and using the notation

AH(t) := ÃH(t)α, A0V (t) := Ã0V α,(2.30)

AV := A0V + ν,(2.31)

A(0)(t) := AH(t) + t−1A(0)V ,(2.32)

Ψ := Ψ1U,(2.33)

where all operators are acting on λ(N). We will call AV the cone coefficient and

DΛ
cone := γ

( ∂
∂t

+ t−1

(
I 0

0 −I

)
⊗AV

)
,(2.34)

the cone operator. Then the final result reads as follows.

Theorem 2.5. — 1. We have

Ψ−1DΛ
U∞Ψ = γ

( ∂
∂t

+

(
I 0

0 −I

)
⊗A(t)

)
,(2.35)
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and

Ψ−1τU∞Ψ =

(
I 0

0 −I

)
,(2.36)

Ψ−1DΛ
NtτNtΨ =

(
A0(t) 0

0 A0(t)

)
,(2.37)

such that

Ψ−1Dsign
U∞

Ψ =
∂

∂t
+A(t).(2.38)

2.

AH(0)AV +AVAH(0) =: AHV(2.39)

is a first order vertical operator.
3. If AV is invertible then for t sufficiently small we have the estimate

(2.40) A(t)2 ≥ Ct−2A2
V

with a positive constant C.

Proof. — 1. The transformation formulas are again verified by straightforward com-
putations.

2. To prove (2.39) we use Theorem 1.2 which, after the appropriate transformations,
shows that we can modify AH(t) and t−1AV by adding a bounded endomorphism
multiplied by t to each term, such that their anticommutator becomes first order
vertical. This, however, is an algebraic condition so that, after multiplication with t,
all operator coefficients in the resulting polynomial have to be first order vertical, in
particular the leading one which is AHV .

3. The estimate (2.40) is an easy consequence of (2.39).

3. Spectral decomposition of the cone coefficient

We want to deal with the existence of self-adjoint extensions of the cone operator,
DΛ

cone(b), defined in (2.34). According to [12, Thm. 3.1], this operator is essentially
self-adjoint in L2

(
R+,C2 ⊗H0

)
with domain C1

c

(
(0,∞),C2 ⊗H1

)
if and only if

(3.1) |AV (b)| ≥ 1

2
,

where b ∈ B. If the condition (3.1) is violated, then the self-adjoint extensions of
DΛ

cone are classified by the Lagrangian subspaces of

(3.2) V :=
∑
|λ|< 1

2

ker(A(b)− λ)⊕
∑
|λ|< 1

2

ker(A(b) + λ)
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with respect to the standard symplectic form

ωb

((
x1

x2

)
,

(
y1

y2

))
= x1y2 − x2y1.

It is therefore necessary to determine the small eigenvalues of AV (b); in fact, we will
describe the full spectral resolution in Theorem 3.1 below.

For its proof we recall some well known material from Hodge theory. In what
follows, we fix b ∈ B and write Y := Yb, with metric g := gTY = gTVN , the closed
submanifold of N which is the fiber over b under the fibration π : N → B; we will
also suppress the index “Y ” if no confusion is to be expected. Thus we consider the
Hodge Laplacian

∆ := ∆Y = dY (dY )† + (dY )†dY =: dd† + d†d,

which defines the harmonic forms,

H j := H j(Y ) = ker ∆j ⊂ λj(Y ) =: λj ,

and the Hodge decomposition

λj := H j ⊕ λjcl ⊕ λ
j
ccl,(3.3)

∆j
cl/ccl := ∆|λjcl/ccl.(3.4)

Here the subscripts “cl” and “ccl” refer to closed and coclosed forms, respectively; the
eigenspaces of ∆j

cl/ccl with eigenvalue κ > 0 will be denoted by Ejcl/ccl(κ).
We also recall the following definitions and relations, where ∗ := ∗Y denotes the

Hodge star operator on Y and v(2) the remainder of v mod 2:

εV |λj =: ε|λj = (−1)j ,(3.5)

αi|λj := (−1)[(j+i)/2],(3.6)

α0α1 = ε,(3.7)

d† = (−1)v+1 ∗ d ∗ εv,(3.8)

τV |Y =: τ =
√
−1

[(v+1)/2] ∗ (−1)[v/2]αv(2),(3.9)

dτ = (−1)v+1τd†.(3.10)

Then we have

AV (b) =: AV = −εv+1
H τH ⊗

(
dτ + (−1)v+1τd

)
.(3.11)
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Next we introduce some spaces which are invariant under AV
(
here and below, j ∈

N ∩ [1, (v + 1)/2) if not stated otherwise
)
:

λ̃jh := H j ⊕ H v−j ,(3.12)

λ̃jcl := λjcl ⊕ λ
v+1−j
cl ,(3.13)

λ̃jccl := λj−1
ccl ⊕ λ

v−1−j
ccl ,(3.14)

F jh := H j ⊕ H v−j ,(3.15)

F jcl(κ) := Ejcl(κ)⊕ Ev+1−j
cl (κ),(3.16)

F jccl(κ) := Ej−1
ccl (κ)⊕ Ev−1−j

ccl (κ).(3.17)

It is then convenient to put

AjV,h := AV |λ̃jh,(3.18)

AjV,cl −
1

2
:= (AV −

1

2
)|λ̃jcl

=

(
j − v+1

2 −εv+1
H τH ⊗ dτ

−εv+1
H τH ⊗ dτ −(j − v+1

2 )

)
,(3.19)

AjV,ccl +
1

2
:= (AV +

1

2
)|λ̃jccl

=

(
j − v+1

2 (−1)vε
v+1
H τH ⊗ τd

(−1)vε
v+1
H τH ⊗ τd −(j − v+1

2 )

)
.(3.20)

Then the spectral resolution of AV can be expressed as follows.

Theorem 3.1. — 1. AjV,h has the eigenspaces H j and H v−j with eigenvalues ±(j− v
2 ).

2. For κ ∈ spec ∆j
cl \ {0}, A

j
V,cl−

1
2 has two eigenspaces in F jcl(κ), with eigenvalues

µjcl,±(κ) := ±
…
κ+ (j − v + 1

2
)2,

and multiplicities mj
cl,±(κ).

3. For κ ∈ spec ∆j
ccl\{0}, A

j
V,ccl+

1
2 has two eigenspaces in F jccl(κ), with eigenvalues

µjccl,±(κ) := ±
…
κ+ (j − v + 1

2
)2,

and multiplicities mj
ccl,±(κ).

4. If v is odd, then, for κ > 0, there are two more eigenspaces of A(v+1)/2
V,cl ⊕A(v−1)/2)

V,ccl

in E(v+1)/2
cl (κ)⊕ E(v−1)/2

ccl (κ) with eigenvalues ±
√
κ.

5. For κ > 0, the four eigenvalues of AV in F jcl(κ) ⊕ F jccl(κ) have the common
multiplicity 2 dimEjcl(κ).
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Proof. — The first statement is obvious from Poincaré duality.
We compute next, using (3.18)

(Ajcl −
1

2
)2 =

(
∆j

cl + (j − v+1
2 )2 0

0 ∆v+1−j
cl + (j − v+1

2 )2

)
,(3.21)

(Ajccl +
1

2
)2 =

(
∆j−1

ccl + (j − v+1
2 )2 0

0 ∆
v−1−(j−1)
cl + (j − v+1

2 )2

)
.(3.22)

It follows that F jcl(κ)⊕ F jccl(κ) is invariant under AV , and that AV has the indicated
eigenvalues on F jcl(κ)⊕ F jccl(κ). Moreover, we have unitary equivalences

∆j
cl ' ∆v+1−j

cl ' ∆j−1
ccl ' ∆v−1−j

ccl ,

induced by the mappings dτ, τ , and τd, respectively. If we employ the bijective maps(
0 −dτ/− τd

dτ/τd 0

)
: λ̃jcl/ccl 7→ λ̃jcl/ccl,(3.23) (

0 (−1)vτ

τ 0

)
: λ̃jcl 7→ λ̃jccl,(3.24)

we see that the respective restrictions of AV are unitarily equivalent under these maps
up to the factor -1, which easily implies that the four eigenvalues on F jcl(κ)⊕ F jccl(κ)

have the same multiplicities, and this must be 2 dimEjcl(κ), as asserted. This proves
the assertions 2), 3), and 4), while 5) follows immediately from (3.18).

4. A self-adjoint extension

With D := DΛ
M we associate the operators Dmin, i. e. the closure in λ(2)(M) of

D|λc(M), and Dmax := D∗min. In this section, we construct a suitable self-adjoint
extension of the operator Dmin. For this, we introduce an operator family G(µ,D) for
sufficiently large real µ, with imG(µ,D) contained in the maximal domain of D, and

(4.1) (D − iµ)G(µ,D)τ = τ, τ ∈ L2(M, E).

Moreover, all the operators G(µ,D) map into a common domain on which D is
symmetric. Hence this domain defines a self-adjoint extension of D, with resolvent
G(µ,D). By a certain abuse of notation, we will denote this extension also by D.

We can naturally extend the conic fibers at hand to the infinite cones C(0,∞)Yb, so
we may and will assume that we are dealing with a fibration of infinite cones over B.
The results can then be applied to Uε by a standard cut-off procedure.

We obtain G(µ,D) as a pseudo-differential operator on B with operator valued
symbol. For given b0 ∈ B, choose Wb0 := Bδ(b0), a ball on which the Hilbert bun-
dle E is trivial. We identify forms τ ∈ Cc(Wb0 , E|Wb0) with their representation in
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Cc(B
Rh
δ (0), Eb0), and define a local parametrix G1(µ,D, b0) in the form

(4.2) G1(µ,D, b0)τ(b) :=

∫
Rh

exp(i〈b, β〉)G(µ, b, β)τ̂(β)d̄β.

Here (b, β) are coordinates for T ∗Wb0 , and d̄β := (2π)−hdβ. These local paramet-
rices are patched together in the usual way to make a global parametrix, G1(µ,D),
such that (D− iµ)G1(µ,D)− I decays in norm like |µ|−1, so that G1(µ,D) serves as
the leading term in a Neumann series for the resolvent G(µ,D).

We recall from Section 1 the decomposition D = DH + DV and construct our
operator G(µ, b, β) with the property that imG(µ, b, β) ⊂ DV,max(b), the domain of
DV,max(b), and

(4.3)
(
DV,max(b) + i cl(β])− iµ

)
G(µ, b, β)τ = τ, τ ∈ ΛT ∗b B ⊗ λ(2)(Yb).

Just as above, G(µ, b, β) will define a self-adjoint extension of DV (b), with domain
DV (b). Note that, in view of Lemma 1.1, part 2, we have for σ(b) ∈ DV (b)

(4.4) ||
(
(DV (b) + i cl(β]))− iµ

)
σ(b)||2DV (b)

= ||DV (b)σ(b)||2DV (b) + (|µ|2 + |β|2b)||σ(b)||2DV (b),

where |β|2b := gT
∗B(b)(β, β).

With (2.34) we now write DV (b) in the form

DV (b) := γ

Å
d

dt
+ t−1Ã(b)

ã
(4.5)

:= εH ⊗

(
0 −1

1 0

)(
d

dt
+

1

t

(
DYbαYb + ν 0

0 −(DYbαYb + ν)

))
.

The trivialization of E identifies the fibers Eb, b ∈Wb0 , with

L2
(
(0,∞),ΛT ∗b0B ⊗ C2 ⊗ λ(2)(Yb0)

)
=: L2((0,∞), H).

We will need the following description of the singularities of elements in the maximal
domain of DV,max(b) (see [12, Lem.3.2]).

Lemma 4.1. — 1. Any σ in DV,max(b) has a representation of the form

(4.6) σ(t) =
∑

λ∈specA,|λ|<1/2

t−λCλ(σ) +Oσ(t1/2| log t|), t→ 0,

with certain linear forms Cλ.
2. Each closed extension of DV,max(b) is determined by linear relations between the

coefficients Cλ for |λ| < 1
2 .

3. σ ∈ DV,min if and only if

(4.7) ||σ(t)||H = Oσ(t1/2| log t|), t→ 0.
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Now, to construct G(µ, b, β), we split the spectrum of the operator Ã(b) from (4.5),
and treat separately the high and low eigenvalues. Arguing as in [12, Lemma 1.1] and
making Ub0 smaller if necessary, we may then assume that, for some Λ ≥ 1 with the
property that Λ /∈ spec Ã(b) for all b ∈Wb0 , the spectral projection

(4.8) Q> := Q|λ|≥Λ(Ã(b))

does not depend on b ∈ Wb0 (here and below we denote, for any Borel subset I ⊂ R,
the corresponding spectral projection of a self-adjoint operator, A, by QI(A)).

In constructing G(µ, b, β), consider first the high eigenvalues of Ã(b). We reduce
DV,min(b) by the spectral projection Q>, which is independent of b ∈Wb0 , and denote
the resulting objects by a subscript ′′ >′′. Since |Ã(b)>| ≥ 1, Lemma 4.1 shows that

DV (b)> := DV,min(b)>

is essentially self-adjoint on compactly supported sections. Moreover, from [12,
Lem.3.1], by a proof as in Lemma 2.2 there, for σ ∈ DV (b)> we have

(1/t)Ã(b)>σ(t) ∈ L2
(
(0,∞), H

)
hence also σ′ ∈ L2

(
(0,∞), H

)
.

It follows from this and (4.4) that

G(µ, b, β)> :=
(
DV (b)> + i cl(β])− iµ

)−1

satisfies the estimates

(4.9) || ∂
j

∂µj
∂|κ|

∂bκ
∂|λ|

∂βλ
G(µ, b, β)>|| L( E) ≤ Cl,κ,λ|µ|−1−j ,

while from Lemma 4.1 we see that

(4.10) G(µ, b, β)>σ(t) = O(t1/2| log t|), t→ 0.

As usual, the low eigenvalue case needs more care. We note first that the reduction
with Q< := I −Q> leads to the matrix equation

(4.11) DV <(b) := γ
( d
dt

+ t−1Ã(b)<
)

in L2((0,∞), H<), H< = Q<(H). In view of Lemma 4.1 this operator is not essentially
self-adjoint with domain C1

c ((0,∞), H<) if there are “small” eigenvalues with modulus
less than 1/2. Hence we will construct an operator function satisfying the conditions(

DV,<(b) + i cl(β])− iµ
)
G(µ, b, β)< = I;(4.12)

DV,<(b)max is symmetric on imG(µ, b, β)<;(4.13)

|| ∂
j

∂µj
∂|κ|

∂bκ
∂|λ|

∂βλ
G(µ, b, β)<|| L( E) ≤ Cl,κ,λ|µ|−1−j .(4.14)

From (4.12) and (4.13), DV <(b), on imG(µ, b, β)<, is self-adjoint.
The estimates (4.14), together with the Calderón- Vaillancourt Theorem (cf.[14]),

will provide the necessary norm estimates on our pseudo-differential operator.
In order to carry out this construction, we now consider the following model case

to which we will reduce our situation. We are given a finite dimensional complex
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Hilbert space (H, 〈, 〉) and a Hermitian operator A ∈ L(H). Moreover, there are two
self-adjoint involutions α1, α2 with the following properties:

α1α2 + α2α1 = 0,(4.15)

α1A−Aα1 = 0,(4.16)

α2A+Aα2 = 0.(4.17)

We want to solve the equation

(4.18) L(A)σ(t) := (
d

dt
+ t−1A+ µα2)σ(t) = τ(t), t > 0,

in L2(R+, H), for µ ∈ R∗. We transform H by introducing the subspaces H± :=
1
2 (I ± α1)(H) and the isomorphism C2 ⊗H+ → H which is induced by

H+ ⊕H+ 3 (x+, x−) 7→ x+ + α2x− ∈ H.

Then our equation takes the form, with A+ := A|H+,

(4.19)
Å
d

dt
+ t−1

(
A+ 0

0 −A+

)
+ µ

(
0 I

I 0

)ã(
σ+

σ−

)
(t) =

(
τ+

τ−

)
(t).

If we multiply the operator occuring in (4.19) with its formal adjoint from the left,
then we obtain the Bessel type operator

(4.20) − d2

dt2
+ t−2

(
A2 +A 0

0 A2 −A

)
+ µ2I,

where we have now replaced A+ by A to ease the notation, which should not cause
confusion. Now we introduce the modified matrix Bessel functions in H+ as solutions
of the homogeneous equation associated with (4.20), following [12, Sec. 2]. Thus, if N
is hermitian in L(H+) with eigenvalues νj then we define the modified matrix Bessel
function with respect to an orthonormal eigenbasis of N by

IN (t)ij := δijIνj (t),

and require that for any unitary operator U in H+ we have

U−1IN (t)U =: IU−1NU (t), t > 0.

Likewise, we introduce

2

π
sin(πN)KN (t) := I−N (t)− IN (t).

We can then prove the following result.

ASTÉRISQUE 328



SIGNATURE OPERATOR WITH CONICAL STRATUM 25

Theorem 4.2. — For µ > 0, the equation (4.18) admits the solution

G(µ,A)

(
τ+

τ−

)
(t) =

=

∫ t

0

µ(ts)1/2

(
KA+1/2(µt)IA−1/2(µs) KA+1/2(µt)IA+1/2(µs)

KA−1/2(µt)IA−1/2(µs) KA−1/2(µt)IA+1/2(µs)

)(
τ+

τ−

)
(s)ds

−
∫ ∞
t

µ(ts)1/2

(
IA+1/2(µt)KA−1/2(µs) −IA+1/2(µt)KA+1/2(µs)

−IA−1/2(µt)KA−1/2(µs) IA−1/2(µt)KA+1/2(µs)

)(
τ+

τ−

)
(s)ds

=: G0(µ,A)τ(t) +G∞(µ,A)τ(t).

The operators G0/∞(µ,A) are bounded in L2(R+, H) and smooth functions of the
variables µ ∈ [1,∞) and A ∈ Ls(H), the space of Hermitian matrices on H, such
that for p, q ∈ Z+

(4.21) ||Dp
A(

∂

∂µ
)qG0/∞(µ,A)||L2(R+,H) ≤ Cp,q,A µ−1.

Moreover, for σ ∈ imG(µ,A) and t sufficiently small we have the estimates

||σ+(t)||H ≤ Cεt1/2−ε||τ ||L2(R+,H) for every ε > 0,(4.22)

||σ−(t)||H ≤ Ct−1/2+δ||τ ||L2(R+,H) for some δ > 0.(4.23)

If |A| ≥ 1
2 , then we have the better estimate

(4.24) ||σ(t)||H ≤ Ct1/2||τ ||L2(R+,H).

Proof. — We begin with verifying that G(µ,A)τ(t) is indeed a solution of (4.19). The
well known conic scaling

σ(t) =: t1/2ρ(µt)

transforms the homogeneous equation associated with (4.19) to

(4.25)
Å
d

dt
+ t−1

(
A+ 1/2 0

0 −A+ 1/2

)
+

(
0 I

I 0

)ã(
ρ+

ρ−

)
(t) = 0.

The Bessel recursion relations (cf. [12, (2.5a,b)]),

I ′N (t)± t−1NIN (t) = IN∓1(t),

K ′N (t)± t−1NKN (t) = −KN∓1(t),

show at once that two solutions are given by

ρc+(t) =

(
IA+1/2(t)c+

−IA−1/2(t)c+

)
, ρc−(t) =

(
KA+1/2(t)c−

KA−1/2(t)c−

)
, c± ∈ H+.

It remains to note that (cf. [24, p. 68])

INKN+1(t) + IN+1KN (t) = t−1,
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from which we deduce that(
IA+1/2(t) KA+1/2(t)

−IA−1/2(t) KA−1/2(t)

)(
KA−1/2(t) −KA+1/2(t)

IA−1/2(t) IA+1/2(t)

)
= t−1IH .

Thus, G(µ,A)τ is indeed a solution of (4.18).
To deduce the estimate (4.21), we perform some reductions of the operator L(A).

First, we select a number Λ ≤ 1
2 such that |A| ≤ Λ, and we choose a number Λ1 ∈

[−1/2, 0],Λ1 /∈ specA. Then we split, with obvious notation,

A = A>Λ1
⊕A<Λ1

.

This splits L(A) = L(A>Λ1
) ⊕ L(A<Λ1

), and conjugating with α2 in the second
summand allows us to assume that

(4.26) A > −1

2

in what follows. By the same token, we can select numbers Λj , j = 1, . . . , N , such
that

Λj /∈ specA, ΛN > Λ;(4.27)

Λj < Λj+1 < Λj + 1.(4.28)

Splitting L(A) accordingly as a direct sum, we may further assume that for some
Λ∗ ∈ [− 1

2 ,Λ) we have

(4.29) Λ∗ < A < Λ∗ + 1.

Under the assumption (4.29) we will next prove the estimates (4.21) using [12, Lemma
2.3], which is perfectly adapted to the situation at hand, at least for the operator
G∞(µ,A). However, it is easily seen that G0(µ,A) is essentially the adjoint operator
to G∞(µ,A), up to permutations and sign changes of the matrix elements. Since we
will base our estimate on estimates of the matrix elements, it is hence enough to
deal with G∞(µ,A). These estimates for the modified matrix Bessel functions and
their derivatives have been derived in [12, Lemmas 2.1, 2.2] and are combined in the
statement that follows. We recall from loc. cit. that l denotes a positive function,
defined for positive real numbers, which equals − log t for t ≤ 1/2 and 1 for t ≥ 1.

Lemma 4.3. — The modified matrix Bessel functions IN (t),KN (t) are smooth in
Ls(H)× (0,∞), and if N ∈ Ls(H) satisfies the inequality

−∞ < a ≤ N ≤ b <∞,

then the estimates

||Dp
N (

∂

∂t
)qIN (t)|| ≤ Ca,b,p,qta−q(1 + t)q−a−1/2et l(t)p,(4.30)

||Dp
N (

∂

∂t
)qKN (t)|| ≤ Ca,b,p,qt−b−q(1 + t)b+q−1/2e−t l(t)p,(4.31)

hold for p, q ∈ Z+ and t > 0.
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Now we use Lemma 4.3 in [12, Lemma 2.3] to derive the norm estimate (4.21) for
G∞(µ,A) where, by the above reduction, we may assume that

(4.32) − 1

2
< a ≤ A ≤ b < a+ 1.

The desired estimate follows from the following block matrix estimate for the kernel:

(4.33) ||Dp
A(

∂

∂µ
)q
(
µ(ts)1/2IA±1/2(µt)KA±1/2(µs)

)
|| L(H)

≤ Cpq(µt)a(µs)−b(1 + µt)−a(1 + µs)beµ(t−s).

As mentioned above, the same estimate gives the result for G0(µ,A).
For the statement on the domain, we use again the estimates (4.30), (4.31), this

time with p = q = 0. Moreover, since the operators A ± 1/2 can be simultaneously
diagonalized, we may assume that A = νIH+ where ν > −1/2. We write for σ ∈
imG(µ,A)

σ(t) = G(µ,A)τ(t) = G0(µ,A)τ(t) +G∞(µ,A)τ(t)

=: σ0(t) + σ∞(t).

Then we observe that for supp τ ⊂ (1,∞) Lemma 4.3 implies immediately that, with
ν := inf specA > −1/2,

||σ+(t)||H = O(tν+1) = O(t1/2), t→ 0,

||σ−(t)||H = O(tν), t→ 0,

such that we may assume that supp τ ⊂ (0, 1]. Next we have the estimate

||σ0(t)||H ≤ Cσ
∫ t

0

(s/t)ν ||τ(s)||Hds

≤ Cσ(1 + 2ν)−1/2t1/2||τ ||L2(R+,H),

which proves (4.22) and (4.23) for σ0.
For σ∞(t), we have again to distinguish the ±-components. Arguing as before, we

arrive at the estimates

||σ∞,+(t)||H+ ≤ Cσtν+1

∫ 1

t

s−ν ||τ(s)||Hds

≤ Cσt1/2,

||σ∞,−(t)||H+ ≤ Cσtν
∫ 1

t

s−ν ||τ(s)||Hds

≤ Cσtν .

The proof is complete.
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Now we apply Theorem 4.2 to construct the desired operator symbol, G(µ, b, β)<.
Recall that we want

G(µ, b, β)< =
(
γ(
d

dt
+ t−1Ã(b)<) + i cl(β])− iµ

)−1
,(4.34)

=
(
DV (b)< + i cl(β])− iµ)

)−1
,(4.35)

for a suitable self-adjoint extension, DV (b)<, of the conic operator. We will define
this extension by solving the matrix equation on the right hand side of (4.34) using
Theorem 4.2 appropriately. Let us recall from (4.5) that we now deal with the following
data:

H := ΛT ∗b0B ⊗ C2 ⊗Q<(λ(2)(Yb0)),(4.36)

γ = εH ⊗

(
0 −I
I 0

)
,(4.37)

Ã(b)< =

(
A(b)< 0

0 −A(b)<

)
,(4.38)

A(b)< = Q<(DYbαYb + ν),(4.39)

where Q< = I −Q> and Q> is given by (4.8). Now we put

(4.40) γ̃ := iγ, ζ = ζ(µ, β) := µγ̃ − γ̃ cl(β]),

and noting that for β ∈ T ∗B, γ̃ and cl(β]) anticommute while cl(β]) commutes with
α1 and A, one easily computes that

ζ† = ζ,(4.41)

ζ2 = (µ2 + |β|2b)I =: µ̃(b, β)2I,(4.42)

ζÃ(b)< + Ã(b)<ζ = 0(4.43)

This allows us to introduce two anticommuting self-adjoint involutions, α1, α2, by

α1 := I ⊗

(
I 0

0 −I

)
,(4.44)

µ̃α2 := ζ.(4.45)

Then we can state

Lemma 4.4. — With this notation we have in L2(R+, H)

(4.46) DV (b)< + i cl(β])− iµ = γ
( d
dt

+ t−1Ã(b)< + µ̃α2

)
,

and the following relations hold:

α1α2 + α2α1 = 0,(4.47)

α1Ã(b)< − Ã(b)<α1 = 0,(4.48)

α2Ã(b)< + Ã(b)<α2 = 0.(4.49)
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Thus we are in the position to prove Theorem 0.1.

Proof of Theorem 0.1. — 1. We construct an operator D̂ by the method of Theo-
rem 4.2. The proof of Theorem 4.2 has to be modified somewhat since we have to
verify the conditions (4.12) through (4.14) for the operator symbol

G(µ, β, b)< :=
(
γ(
d

dt
+ t−1Ã(b)< + µ̃α2)

)−1
,

where now µ̃ and α2 depend on µ, β, and b. First we use [12, Lemma 1.1] to the
effect that the spectral projections Q(Λj ,Λj+1)(Ã(b)<) are locally independent of b.
Observing next that µ̃ as well as its b- derivatives are homogeneous in (µ, β) of degree
one and using Lemma 4.3, we reduce the estimates (4.14) to (4.33) where µ is replaced
by µ̃.

(4.12) holds by construction, while for (4.13) we use the boundary conditions (4.22),
(4.23) to calculate with σ1, σ2 ∈ imG(µ, β, b)<

(4.50) (DV,max(b)<σ1, σ2)− (σ1, DV,max(b)<σ2)

= lim
t→0

(
〈σ−1 , σ

+
2 〉(t)− 〈σ

+
1 , σ

−
2 〉(t)

)
= 0.

That the operator D̂ anticommutes with τM is obviously built into our construction.
Finally, the discreteness is equivalent to the compactness of G(µ,D) which follows in
turn from the compactness of the parametrix G1(µ,D), by the form of the Neumann
series. Now we choose ψ ∈ Cc(M) with ψ = 1 on Mε. Then ψG1(µ,D) is compact by
interior regularity, while the estimate

||(1− ψ)G1(µ,D)|| ≤ Cε2δ

follows from (4.22) and (4.23) for the low eigenvalues; since the estimate (4.24) also
holds for the large eigenvalues, by (4.10), G1(µ,D) is a limit of compact operators
and hence compact.

Finally, since D̃ is a symmetric extension of D̂ the two operators coincide.
2. If |AV | ≥ 1

2 , then elements in the domain of DΛ
M satisfy the estimate (4.24).

Now the assertion follows as in [12, Lemma 5.1].
3. The assertion holds if |AV | ≥ 1

2 since then Dmin is essentially self-adjoint, by
part 2, and the case of uniqueness holds by [11, Lemma 3.3].

In the general case, we construct a smooth family of metrics, g(α)TM , such that

(4.51) g(α)TM :=

{
dt2 ⊕ gTHN ⊕ α2t2gTVN on Uε0/2,
gTM on Mε0 .

We denote by DΛ(α) = D(α) the corresponding self-adjoint operator defined by the
maximal de Rham complex and choose α0 > 0 such that D(α0) is essentially self-
adjoint. Since all metrics g(α)TM are mutually quasi-isometric, the case of uniqueness
holds for all of them since it is a quasi-isometry invariant.
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4. We use the notation of part 3 and note that Dsign(α) is well defined for all α.
To prove the asserted equality we show first that

(4.52) indDsign(α) = indD(α)+.

Since indDsign(α) is constant in [α0, 1], this identity will follow from [22, Thm.IV,5.17]
if we prove an estimate of the form

(4.53) δ̂
(
Dsign(α1), Dsign(α2)

)
≤ Cα0 |α1 − α2|, α1, α2 ∈ [α0, 1],

where δ̂ denotes the gap function defined in [22, p.197]. One checks that for µ ≥ 1

δ̂
(
Dsign(α1), Dsign(α2)

)
≤ ||G

(
µ,D(α1)

)
−G

(
µ,D(α2)

)
||λ(2)(M),

such that (4.53) will follow if we show e. g. that the function

[α0, 1] 3 α→ G(µ,D(α)) ∈ L
(
λ(2)(M)

)
is continuously differentiable. We fix a large µ > 1 and write with our parametrix
G1(α) := G1(µ,D)(α)

(D(α)− iµ)G1(α) =: I −R(α),

where
||R(α)|| ≤ C < 1, α ∈ [α0, 1].

Hence it is enough to prove the differentiability of G1(α) and R(α). This is clear for the
interior part, by interior regularity. For the boundary part involving high eigenvalues
this is also clear from the Calderón-Vaillancourt Theorem since the image of G1(α)>
does not depend on α. For the low eigenvalue part, however, we have to go back to
the proof of Theorem 4.2.

Since Ã(b, α)< depends smoothly on α and G(α)< depends smoothly on Ã(b, α)<,
we have to insure that the spectral splittings (Λj) can be made locally independent
of α. This can be done for the spectral projections in many ways but using the
spectral analysis of Sec. 3 we can take into account the special role of the eigenvalues
±1/2, as needed in the next step. The Hodge decomposition on Yb can also be made
locally independent of b and α, by conjugating the equation with a transformation
function (cf. [22, II,§4.2]). Then the operator function splits into the harmonic, the
closed, and the coclosed parts which have uniform spectral gaps around 0, 1/2, and
-1/2, respectively, independent of the parameter values. Conjugating appropriately
as before, we may reduce to the case Ã(b, α)< > −1/2 locally in b and α; since the
corresponding solution operator is smooth in α, this completes the proof (4.52).

Next we want to show that Dsign(α) extends D̃+(α) which will give the assertion
in view of (4.52).

We choose σ = σ+ ∈ dom D̃+ and may assume that suppσ ⊂ Uε0 . We decompose
σ into its harmonic, closed, and coclosed part which all satisfy the estimate (4.22).
By part 3 of Lemma 4.1 we see that all components of σ are in the minimal domain of
the corresponding conic operator. Moreover, by the spectral decomposition described
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in part 3 of this proof all cone coefficients will not have − 1
2 in their spectrum such

that we can apply Lemma 5.12 in Section 5; we find that

σ′ ∈ L2
(
(0, ε0), H0

)
, t−1σ ∈ L2

(
(0, ε0), H1

)
.

The pseudodifferential construction of the parametrix shows next that

dHσ, d
†
Hσ ∈ λ(2)(M),

and Lemma 2.2 finally shows that

dMσ ∈ λ(2)(M)

and completes the proof.

5. The index calculation

In this section, we want to compute the index of the signature operator, as con-
structed in Theorem 0.1. As noted there, the index is stable under scaling of the fiber
metric; this rules out, according to Theorem 3.1, that small eigenvalues occur on the
closed and coclosed subspaces, while we need an extra condition on the space H v/2(Y )

known as the Witt condition:

H v/2(Y ) = 0.(5.1)

Thus we may and will assume in what follows that

|AV | ≥
1

2
,(5.2)

which ensures, by Theorem 0.1 again, that we do not have to impose boundary condi-
tions near the singularity. However, the crucial vanishing results we need will require
in addition that

−1

2
/∈ specAV,cl ∪ specAV,ccl.(5.3)

In view of Theorem 3.1, this can also be achieved by scaling gTVN ; thus we will assume
in what follows (5.1) and

spec |AV,cl| ∪ spec |AV,ccl| ⊂ [1/2 + C,∞),(5.4)

for some positive constant C.
We will reduce the index calculation to a problem of APS-Type, by splitting the

operator as a sum at ∂Uε, for a sufficiently small ε ∈ (0, ε0), using [3, Thm. H]. At
∂Mε, we will introduce the boundary condition

(5.5) Q≥0(A(ε))σ(ε) = 0,

where A is the operator family from (2.32) and Q>0 denotes the spectral projec-
tion onto the positive eigenspaces. At ∂Uε, we impose the complementary boundary
condition (cf. [3, Thm. 4.17]),

(5.6) Q<0(A(ε))σ(ε) = 0;
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note that these boundary conditions are invariant under τM . These boundary condi-
tions generate the operators DΛ

Uε,Q<0(A(ε)) and D
Λ
Mε,Q≥0(A(ε)) by imposing the bound-

ary conditions on the maximal domain of Dsign
Uε

and Dsign
Mε

, respectively (note that no
boundary condition is necessary at 0 in view of (5.2)). The boundary conditions are
such that the following holds.

Theorem 5.1. — DΛ
Uε,Q<0(A(ε)) and DΛ

Mε,Q≥0(A(ε)) are Fredholm operators, and we
have the index identity

indDsign
M = indDΛ,+

Uε,Q<0(A(ε)) + indDΛ,+
Mε,Q≥0(A(ε)).(5.7)

Proof. — The proof of (5.7) follows immediately from [3, Thm.4.17] (cf. Remark 5.17)
with the following data for 0 < u < ε < ε0/2:

D+
1 := γ(

∂

∂u
+A(ε+ u)),(5.8)

D+
2 := −γ(

∂

∂u
−A(ε− u)),(5.9)

B1 := Q<0(A(ε))(dom |A(ε)|1/2),(5.10)

B2 := Q≥0(A(ε))
(

dom |A(ε)|1/2
)
.(5.11)

We show next that the index contribution from Uε vanishes.

Theorem 5.2. — Assume that (5.3) holds. Then for ε ∈ (0, ε0] and sufficiently small
we have

indDΛ,+
Uε,Q<0(A(ε)) = 0.(5.12)

This theorem will be proved in Subsection 5.2.
Thus it remains to compute the index of an APS-type problem on the smooth

compact manifold with boundary, Mε. However, to apply [1, Thm. 3.10] we need to
modify the metric on Uε0 , making it cylindrical near t = ε. To this end we choose
a smooth positive function ψ on (0,∞) such that ψ(t) = t if t ∈ (0, 1] ∪ [4,∞) and
ψ(t) = 1 if t ∈ [2, 3]. Then we put for ε < ε0/4

g
TUε0
ε := dt2 ⊕ gTHN ⊕ ε2ψ(t/ε)2gTVN ,(5.13)

gTMε |Mε0 := gTM |Mε0 ,(5.14)

gTMε |Uε0 := g
TUε0
ε .(5.15)

Moreover, we are not yet dealing with the correct boundary condition in order to
apply the APS-Theorem. In fact, we have from (2.32)

A(t) = AH(t) + t−1(A0,V + ν)(5.16)

= A0(t) + t−1ν,(5.17)

and it follows from (2.37) and Theorem 2.5 that A0(t) ' DΛ
Nt
τNt is the tangential

operator corresponding to Dsign
Uε0

, acting in H0 with domain H1. The correct boundary
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condition can be achieved by applying the Agranovich-Dynin Theorem respectively
its equivariant version, as stated e. g. in [3, Thm. 4.14]. Noting that A0(ε) = DNετNε
has even dimensional kernel, we obtain

Theorem 5.3. — The pair of subspaces
(
Q<0(A(ε))(H0), Q≥0(A0(ε))(H0)

)
is a Fred-

holm pair in H0. If we denote its Kato index by i(ε) then

indDsign
Mε,Q<0(A(ε))(H0) = indDsign

Mε,Q<0(A0(ε))(H0) + i(ε)

=: indDsign
(Mε,gTMε ),Q<0(A0(ε))(H0)

+
(
τ(ε) +

1

2
dim kerA0(ε)

)
.

This result will be proved in Subsection 5.1.
To obtain an explicit index formula, we need to identify the integer τ(ε). To do so,

we use the generalized Thom space associated with the fibration (0.3), as introduced
by Cheeger and Dai in [17] which we denote by Tπ. Then we show using [17, Thm.1.1]
(note our choice of orientation)

Theorem 5.4. — For ε sufficiently small, we have

τ(ε) = sign(2)Tπ =: τ,

where τ denotes the invariant introduced in [18, Thm.0.3].

This theorem will be proved in Subsection 5.3.
Now we obtain our final local index formula by combining Theorem 5.3 and The-

orem 5.4 with the APS-Theorem [1, Thm. 3.10] and the result of Dai [18, Thm. 0.3]
which evaluates the adiabatic limit of the eta-invariant for the signature operator, to
get

(5.18) sign(2)M = lim
ε→0

∫
Mε

L(TM, gTM )−
∫
B

L(TB, gTB) ∧ η̃ − 1

2
η(A0, H (0)),

where the operator A0, H , the Dirac operator on ΛT ∗M twisted by the harmonic forms
on the fibers, is defined in (5.53).

Remark 5.5. — 1. Using arguments as in [7, Sec.VI], it follows that the transgression
term of the L-class from gTMε to gTM goes to zero with ε.

2. It is desirable to give a direct proof of the equality τ(ε) = τ , without using [17,
Thm.1.1].

5.1. Perturbations of regular projections. — We use the terminology intro-
duced in [3, Sec. 2.1]. Thus we consider a self-adjoint operator A with domain HA in
the (complex) Hilbert space H which we assume to be discrete i. e. to have a com-
pact resolvent. For a Borel subset J ⊂ R we denote by QJ := QJ(A) the associated
spectral projection, and we write Q>0 := Q(0,∞) etc.

With A we associate its Sobolev chain (Hs := Hs(A))s∈R restricting attention to
{|s| ≤ 1}. Thus for s ∈ [0, 1], Hs is the closure of HA under the norm

(5.19) ||x||2s := ||(I +A2)s/2x||2H
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and H−s is its strong dual space under the norm (5.19).
An operator S ∈ L(H) will be called 1/2-smooth if it restricts toH1/2, with restric-

tion Ŝ, and extends to H−1/2, with extension S̃. S will be called (1/2-)smoothing if
im S̃ ⊂ H1/2. With these preparations we can define regular and elliptic projections for
A which are introduced to characterize elliptic boundary conditions for the evolution
operator associated with A (cf. [3, Secns. 1.4, 2.3]). If A comes with an anticommuting
skew-adjoint unitary operator γ ∈ L(H),

γA+Aγ = 0,(5.20)

then we can also define the Dirac operator associated with A, cf. [3, Sec.2.1]. The
following formulation derives from [3, Prop.1.99].

Definition 5.6. — A 1/2-smooth orthogonal projection P in H is called regular (with
respect to A) if and only if

x ∈ H−1/2, P̃ x = 0, Q≤0x ∈ H1/2

⇒ x ∈ H1/2.

A regular projection P is called elliptic (with respect to A) if (5.20) holds and

(5.21) Pγ := γ∗(I − P )γ

is also regular.

For example, the spectral projections Q>Λ(A) are regular with respect to A for
any Λ ∈ R since A is discrete, and since (Q>Λ(A))γ = Q≥Λ(A) they are also elliptic.

Now we want to study perturbations of A in the sense of Kato, i. e. operators of
the form Ã := A + B where B is a symmetric operator in H defined on HA with
estimate

||Bx||H ≤ a||x||H + b||Ax||H , x ∈ HA(5.22)

for some constants a, b ∈ R+ with b < 1. Then Ã is self-adjoint and discrete in H with
domain HA, by the Kato-Rellich Theorem, and the projection Q>0(Ã) is elliptic with
respect to Ã. We want to know under what conditions it is also elliptic with respect
to A. To answer this question we need two preliminary results; the first one parallels
[3, Prop.1.93].

Lemma 5.7. — Let P be a 1/2-smooth orthogonal projection in H such that

(5.23) P = Q>0(A) +R1 +R2,

where R1 is smoothing and

(5.24) max {||R̂2||, ||R̃2||} < 1.

Then P is elliptic with respect to A, and
(

im (I − P ), imQ>0(A)
)
is a Fredholm pair

in H.
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Proof. — Consider x ∈ H−1/2 with P̃ x = 0 and Q≤0(A)x ∈ H1/2. We write x =

Q>0(A)x+Q≤0(A)x =: x> + x≤ and obtain from (5.23)

(I + R̃2)x> =: y ∈ H1/2,

hence from (5.24)

x> = (I + R̂2)−1y ∈ H1/2,

such that P is regular. It follows from (5.20) that γ induces a unitary operator in
each Hs; since Q0(A) is smoothing, we infer that the representation (5.22) also holds
for Pγ such that P is elliptic.

We see next that

P : H> = imQ>0(A)→ H,x> 7→ (I +R2 +R1)x>,

is a left Fredholm operator, by [3, Lemma A.11] and the compactness of R1, hence,
from [3, Lemma A.12],

(
im(I − P ), H>

)
is a left Fredholm pair. By the same token,

we see that (imP,H≤) is a left Fredholm pair, too, which completes the proof of the
lemma.

The second lemma addresses smoothing perturbations.

Lemma 5.8. — Assume that A and A+B are both invertible. If B is smoothing then
so is

R := Q>0(A+B)−Q>0(A).

Proof. — For any invertible and discrete self-adjoint operator Ã in H we have from
[22, p.359] the strongly convergent integral representation

(5.25)
1

2

(
I − 2Q>0(Ã)

)
=

1

2πi

∫
Re z=0

(Ã− z)−1dz.

This implies that

(5.26) R =
1

2πi

∫
Re z=0

(A+B − z)−1B(A− z)−1dz.

By construction, R is 1/2-smooth; to show that R is smoothing, we need to show the
boundedness in H of the operator

R̃ := (I +A2)1/4R(I +A2)1/4

=
(
(I +A2)1/4|A+B|−1/2

)(
|A+B|1/2R|A|1/2

)(
|A|−1/2(I +A2)1/4

)
=: V

(
|A|1/2|A+B|−1/2

)(
|A+B|1/2R|A|1/2

)
V

=: VW
(
|A+B|1/2R|A|1/2

)
V.
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In view of (5.22), A and A + B generate the same Hilbert spaces, with equivalent
norms, in their respective Sobolev chains implying the boundedness in H of the op-
erators V and W . From (5.26) we obtain for the remaining part the representation

|A+B|1/2R|A|1/2(5.27)

=
1

2πi

∫
Re z=0

(A+B − z)−1|A+B|1/2B|A|1/2(A− z)−1dz

=:
1

2πi

∫
Re z=0

(A+B − z)−1B̃(A− z)−1dz.

Now if B is smoothing then B̃ = |A + B|1/2B|A|1/2 is bounded in H. Thus we may
apply [2, Lemma A.1] to complete the proof.

Now we can deduce the desired perturbation result.

Theorem 5.9. — Assume that A+B is a Kato perturbation of A with

(5.28) b <
2

3
.

Then Q>0(A + B) is elliptic with respect to A and the subspaces Q≤0(A)(H) and
Q>0(A+B)(H) form a Fredholm pair.

If B is bounded and |A| ≥ µ where

(5.29) µ >
√

2||B||H ,

then

(5.30) ind
(
Q≤0(A)(H), Q>0(A+B)(H)

)
= 0.

Proof. — We show first that we may assume that

|A| ≥ Λ(5.31)

for any Λ > 0. Indeed, if we put

(5.32) fΛ(t) :=


t if |t| ≥ Λ,

Λ if 0 < t < Λ,

−Λ if −Λ < t ≤ 0,

then for the operator
AΛ := fΛ(A)

the following properties are easily verified:

AΛ is discrete and commutes with A,(5.33)

A−AΛ is smoothing,(5.34)

|A| ≤ |AΛ|,(5.35)

|AΛ| ≥ Λ⇒ ||A−1
Λ || ≤ Λ−1,(5.36)

Q>0(AΛ) = Q>0(A).(5.37)
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We have
A+B = AΛ + (A−AΛ +B) =: Aλ +BΛ,

such that AΛ +BΛ is a Kato perturbation of AΛ with the same constant b in (5.21) as
for A and B. Hence, by (5.36) it is enough to prove the theorem under the assumption
(5.30).

Next we note that (5.21) implies that

(5.38) b′ := ||BA−1||

can be chosen arbitrarily close to b. Thus we may also assume that both A and A+B

are invertible.
Now we want to show that for Λ sufficiently large and b satisfying the condition

(5.28), the 1/2-smooth operator

R2 := Q>0(A+B)−Q>0(A)

satisfies the estimate (5.24). To do so, we proceed as in the proof of Lemma 5.8. We
observe first that from the symmetry of R2 in H and the obvious identity

S̃ = (Ŝ∗)′,

where S′ denotes the dual in H−1/2 and S∗ the adjoint operator in H, for any
1/2-smooth operator S, it is enough to estimate ||R2||1/2 or equivalently, the norm in
H of the operator

(I +A2)1/4R2(I +A2)−1/4 = VW |A+B|1/2R2|A|−1/2V −1,(5.39)

where V and W are the operators introduced in the proof of Lemma 5.8.
From the Spectral Theorem we see that for any δ > 0 we may choose Λ so large

that

(5.40) sup{||V ||H , ||V −1||H} ≤ 1 + δ.

Next we estimate the H-norm of W by the maximum principle applied to the holo-
morphic function

z 7→ e−z(1−z)〈|A|z|A+B|−zx, y〉H ∈ C, x, y ∈ HA,

in the strip {z ∈ C : 0 ≤ Re z ≤ 1} which reduces us to an estimate for Re z = 1.
Clearly, for b′ < 1 we have

|| |A| |A+B|−1||H ≤ (1− b′)−1,

hence also

(5.41) ||W ||H ≤ (1− b′)−1.

It remains to estimate the norm of |A+B|1/2R2|A|−1/2 for which we invoke again [2,
Lemma A.1]. There we choose A1 := A+ B,A2 := A,α1 := α2 := 1/2 and find with
B(z) = |A+B|1/2B|A|−1/2

(5.42) |||A+B|1/2R2|A|−1/2||H ≤
1

2
||B|A|−1||H ≤

1

2
b′.
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Combining (5.40), (5.41), and (5.42) we arrive at

||R2||H1/2 ≤
1

2
b′(1− b′)−1(1 + δ).(5.43)

This can be made smaller than 1 if b < 2
3 .

For the proof of (5.30) we observe that this will follow from the estimate

(5.44) ||Q>0(A)−Q>0(A+B)||H < 1,

which again is an easy consequence of [2, Lemma A.1], this time applied with α1 :=

α2 := 1
2 .

From the proof of the theorem we get

Corollary 5.10. — Lemma 5.8 holds without the assumption that A and A + B are
invertible.

Remark 5.11. — Theorem 5.9 is stronger than needed for our application but it is
useful in other situations and does not seem to be known.

Proof of Theorem 5.3. — From (2.31) we have

A(ε) = A0(ε) + ε−1ν,

and since ν is bounded it follows from Lemma 5.7 and Theorem 5.9 that Q<0(A(ε))

is elliptic with respect to A0(ε) and that
(
Q<0(A(ε)(H0), Q≥0(A0(ε))(H0)

)
is a Fred-

holm pair in H.
The index formula follows from [3, Thm.4.14].

5.2. A vanishing theorem. — The purpose of this subsection is the proof of
Theorem 5.2. We abbreviate

Dsign
ε := Dsign

Uε,Q<0(A(ε))

and note that, in view of (5.2) and Theorem 0.1, a core for Dsign
ε is given by

Dsign
ε := {σ ∈ C1

c ((0, ε], H1) : Q<0(A(ε))σ(ε) = 0}.

We prove the theorem first in a special case.

Lemma 5.12. — Assume that A satisfies the further condition

(5.45) − 1

2
/∈ specAV .

Then for sufficiently small ε and σ ∈ Dsign
ε we have the a priori estimate

||Dsign
ε σ||H0 ≥ (2ε)−1||(AV +

1

2
)σ||H0 .(5.46)
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Proof. — We write H := H0, AHV (t) := AH(t)AV + AVAH(t), and compute for
σ ∈ Dsign

ε

(5.47) ||Dsign
ε σ(t)||2H = ||σ′(t)||2H + ||AHσ(t)||2H + t−2||AV σ(t)||2H

+ t−1〈AHV σ(t), σ(t)〉H + 2 Re〈σ′(t), Aσ(t)〉.

Next we verify that

(5.48) 2 Re〈σ′(t), Aσ(t)〉 =

d

dt
〈σ(t), Aσ(t)〉H + t−2〈σ(t), AV σ(t)〉H − 〈σ(t), A′H(0)σ(t)〉H .

The assumption (5.45) implies that AV + 1
2 is invertible while (2.39) and (2.30) imply

that AV H(t) is a first order vertical operator on λ(N). Hence there is a constant
C1 > 0 such that

(5.49) ||AHV (t)(AV +
1

2
)−1||H ≤ C1, t ∈ (0, ε].

Combining (5.47), (5.48), and (5.49) and abbreviating B := AHV (t)(AV + 1
2 )−1 we

arrive at the inequality

(5.50) ||Dsign
ε σ(t)||2H =

(
||σ′(t)||2H −

1

4
t−2||σ(t)||2H

)
+
d

dt
〈σ(t), Aσ(t)〉H

+ t−2||(AV +
1

2
)σ(t)||2H

+ t−1〈(AV +
1

2
)σ(t), B∗σ(t)〉H − 〈σ(t), A′H(0)σ(t)〉H .

Hardy’s inequality and the boundary condition at ε imply that the first two terms
are nonnegative after integration over (0, ε]. Thus for sufficiently small ε we obtain

||Dsign
ε σ||2L2((0,ε],H) ≥ (4ε)−2||(AV +

1

2
)σ||2L2(0,ε],H).

Now we can give the

Proof of Theorem 5.2. — The condition of Lemma 5.12 is satisfied, in view if of as-
sumption (5.4), either v is even or

H (v−1)/2(Y ) = 0,

in which case we can actually assert that

kerDΛ
ε = 0.

In the general case, we have to work differently since this assertion will no longer be
true. If (5.12) does not hold then v must be odd hence h must be even. In this case,
AV is invertible and we can deform the operator Dsign

ε to an operator with vanishing
index as follows.
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As in Section 1, we view the Hilbert space H0 = λ(2)(N1) as a Hilbert bundle
E→ B where

E = ΛT ∗B ⊗ λ(2)(F ),

λ(2)(F )b = λ(2)(Yb).

In λ(2)(Yb), we define a smooth family of projections, P H (b), by

(5.51) P H :=
1

2πi

∫
|z|=δ

(∆b − z)−1dz, b ∈ B,

which splits

(5.52) λ(2)(F ) =: H F ⊕ H ⊥F .

Here H F is the finite dimensional vector bundle over B formed by the harmonic forms
on the fibers. We note next that the projection I ⊗ P H commutes with AV and with
the principal symbol of AH(t). Hence the operator

Aδ(t) := I ⊗ P HA(t)I ⊗ P H + I ⊗ (I − P H )A(t)I ⊗ (I − P H )(5.53)

=: A H (t) +A H⊥(t)(5.54)

differs from A(t) by an operator of uniformly bounded norm,

Aδ(t) =: A(t) + C(t), ||C(t)||H ≤ C, t ∈ (0, ε].

It follows that Aδ(t) satisfies the estimate (2.40), possibly with a different constant;
in particular, Aδ(t) is invertible and Q≤0(Aδ(t)) = Q<0(Aδ(t)). We now deform the
operator Dsign

ε to the operator Dsign
ε,δ which is given on the core

Dsign
ε,δ := {σ ∈ C1

c ((0, ε], H1) : Q<0(Aδ(ε))σ(ε) = 0}(5.55)

by

(5.56) Dsign
ε,δ σ(t) = (

∂

∂t
+Aδ(t))σ(t).

Since Dsign
ε and Dsign

ε,δ differ by a uniformly bounded operator we obtain from Theo-
rem 5.9 and [3, Thm.4.14] the identity

indDsign
ε = indDsign

ε,δ + ind
(
Q<0(A(ε))(H0), Q>0(Aδ(ε))(H0)

)
= indDsign

ε, H + indDsign

ε, H⊥
+ ind

(
Q<0(A(ε))(H0), Q>0(Aδ(ε))(H0)

)
.(5.57)

Here the operators Dsign
ε, H and Dsign

ε, H⊥
are formed as Dsign

ε above, by replacing Aδ in
(5.55) and (5.56) by A H and A H⊥ , respectively.

Now Dsign

ε, H⊥
satisfies the assumptions of Lemma 5.12 such that

(5.58) indDsign

ε, H⊥
= 0.
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Next we observe that A H (t) anticommutes with τB up to a uniformly bounded op-
erator since it has the same principal symbol as the canonical Dirac operator on B

with coefficients in H F , that is

(5.59) τBA H (t)τB =: −A H (t) + C̃(t),

where ||C̃(t)||H ≤ C̃, t ∈ (0, ε0]. Thus we find that τBD
sign
ε, H τB is given on the core

(5.60) Dsign

ε, H⊥ := {σ ∈ C1
c ((0, ε], H1) : Q<0(τBA H (ε)τB)σ(ε) = 0}

by the operator

(5.61) (
∂

∂t
+ τBA H (t)τB)σ(t).

We compare this with the adjoint operator (Dsign
ε, H )∗ which is given on its core

(5.62) ( Dsign
ε, H )∗ = {σ ∈ C1

c ((0, ε], H1) : Q>0(A H (ε))σ(ε) = 0}

by

(5.63) (Dsign
ε, H )∗σ(t) = (− ∂

∂t
+A H (t))σ(t).

Using (5.59) and the invertibility of A(t), and applying Theorem 5.9 once more, we
see that

(5.64) indDsign
ε, H = ind τBD

sign
ε, H τB = ind(Dsign

ε, H )∗ = − indDsign
ε, H = 0.

A final application of (2.40) in Theorem 5.9 shows that

ind
(
Q<0(A(ε))(H0), Q>0(Aδ(ε))(H0)

)
= 0

and completes the proof of Theorem 5.2.

5.3. Generalized Thom spaces. — In this subsection we compute the L2-
signature of a generalized Thom space, as introduced in [17], and identify it as
a normalized spectral flow associated with the family A(t) introduced in (2.32).
We describe the generalized Thom space associated with the fibration (0.3) as the
cylinder T := Tπ := (0, 2) × N with its product orientation and equipped with a
family of metrics depending on a parameter ε ∈ (0, 1/2) as follows. We write the
metric on Tπ in the form

(5.65) gTTπε = dt2 ⊕ gTNε (t),

where gTNε (t) is a smooth family of Riemannian metrics on N with the property

(5.66) gTNε (t) :=

{
gTHN ⊕ t2gTVN if 0 < t ≤ 1/2,

(2− t)2(ε−2gTHN ⊕ gTVN ) if 3/2 < t < 2.

Here gTN = gTHN ⊕ gTVN denotes again the metric introduced in (0.6) where we
assume that gTVN is approriately scaled, as detailed below. Note that gTNε (ε) =

gTNε (2 − ε) = gTHN ⊕ ε2gTVN ; note also that we use the opposite orientation as in
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[17]. Since any two metrics in the family (gTTπε )0<ε<1/2 are quasi-isometric, they all
compute the same L2-signature and we find

(5.67) sign(2)Tπ = indDsign

Tπ,g
TTπ
ε

.

The computation of sign(2)Tπ is now a special case of our general index computation
with two singular strata of dimension h and 0, respectively. We split the computation
at t = ε and t = 2 − ε and obtain three parts, the cone bundle Uε over B, the
metric cone CεN := C(2,2−ε)(N, ε

−2gTNε (ε)) over (N, ε−2gTNε (ε)), and the cylinder
Zε := (ε, 2− ε)×N equipped with a nonsingular metric. We are ready for the

Proof of Theorem 5.4. — Arguing as before we see that on Uε0∪C(2,2−ε0)(N, ε
−2gTNε ),

Dsign is unitarily equivalent to ∂
∂t +Aε(t) acting in L2

(
(0, ε0)∪ (2− ε0, 2), λ(2)(N1)

)
,

where

(5.68) Aε(t) =

{
A(t), t ∈ (0, ε0),

(2− t)−1ε
(
A0(ε) + ε−1(td− n

2 )
)
, t ∈ (2− ε0, 2).

To formulate our boundary conditions conveniently we introduce the spaces

(5.69) H(0),I(ε/2− ε) := QI
(
A(0)(ε/2− ε)

)
(H0).

Next we want to apply Theorem 5.2 to the operator Dsign
l/r,ε which is defined by ∂

∂t +

Aε(t) on its core

Dsign
l,ε := {σ ∈ C1

c ((0, ε], H1) : Q<0(A(ε))σ(ε) = 0},

and
Dsign
r,ε := {σ ∈ C1

c ([2− ε, 2), H1) : Q>0(A(2− ε))σ(2− ε) = 0},

respectively. Theorem 5.2 obviously applies to Dsign
l,ε if the condition (5.4) is satisfied.

For Dsign
r,ε , we note that the role of AV is now taken by the operator Ar,V := ε

(
A0(ε)+

ε−1(td − n/2)
)
, such that the analogue of (5.4) can be verified by a straightforward

estimate using (2.39), (2.19), (2.30), and (2.31), after the approriate scaling of gTVN .
Consequently, we obtain

(5.70) sign(2)Tπ = Dsign
ε,Zε

,

where Dsign
ε,Zε

denotes the signature operator on the cylinder (Zε, g
TTπ
ε ) with core

(5.71) {σ ∈ H1(Zε,ΛT
∗Zε) : σ|∂Uε ∈ H<0(ε), σ|∂CεN ∈ H>0(2− ε)}.

Clearly, if we replace the boundary conditions in (5.71) by H0,<0(ε) and H0,≥0(ε),
respectively, then the resulting operator on Zε will have index 0. Thus we obtain from
[3, Thm.4.14] again

(5.72) sign(2)Tπ = ind
(
H≤0(ε), H0,>0(ε)

)
− ind

(
H0,<0(ε), H0,>0(ε)

)
+ ind(H≥0(2− ε), H0,<0(ε)).
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Now we recall that

(5.73) ind(H>0(2− ε), H0,<0(ε))

= ind
(
Q>0

(
A0(ε) + ε−1(td + n/2)

)
(H0), Q<0(A0(ε))(H0)

)
.

We recall also that A0(ε) is unitarily equivalent to DΛ
Nε
τNε such that, by Theorem 3.1,

the eigenspaces of A0(ε) coincide with those of A0(ε)+ε−1(td+n/2). Hence the explicit
computations of loc.cit. give

(5.74) ind(H≥0(2− ε), H0,<0(ε)) = −1

2
dim kerA0(ε).

Finally, we use [3, Prop.A.13] to see that

ind
(
H≤0(ε), H0,>0(ε)

)
− ind

(
H0,<0(ε), H0,>0(ε)

)
= ind

(
H≤0(ε), H0,≥0(ε)

)
,

which gives finally

sign(2)Tπ = ind
(
H≤0(ε), H0,≥0(ε)

)
− 1

2
dim kerA0(ε)(5.75)

=: τ(ε).(5.76)

This completes the proof of Theorem 5.4.
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Abstract. — In this paper we consider smooth extensions of cohomology theories.
In particular we construct an analytic multiplicative model of smooth K-theory.
We further introduce the notion of a smooth K-orientation of a proper submersion
p : W → B and define the associated push-forward p̂! : K̂(W ) → K̂(B). We show
that the push-forward has the expected properties as functoriality, compatibility with
pull-back diagrams, projection formula and a bordism formula.

We construct a multiplicative lift of the Chern character ĉh : K̂(B) → Ĥ(B,Q),
where Ĥ(B,Q) denotes the smooth extension of rational cohomology, and we show
that ĉh induces a rational isomorphism.

If p : W → B is a proper submersion with a smooth K-orientation, then we define
a class A(p) ∈ Ĥev(W,Q) (see Lemma 6.17) and the modified push-forward p̂A

! :=

p̂!(A(p)∪ . . . ) : Ĥ(W,Q)→ Ĥ(B,Q). One of our main results lifts the cohomological
version of the Atiyah-Singer index theorem to smooth cohomology. It states that
p̂A
! ◦ ĉh = ĉh ◦ p̂!.

Résumé (K-théorie différentiable). — Dans cet article, nous considérons des extensions
différentielles des théories cohomologiques. En particulier, nous construisons un mo-
dèle analytique multiplicatif de la K-théorie différentielle. Nous introduisons les K-
orientations différentielles d’une submersion propre p : W → B. Nous contruisons
une application d’intégration associée: p̂! : K̂(W ) → K̂(B); et nous démontrons les
propriétés attendues, telles que la fonctorialité, la compatibilité aux pull-backs, des
formules de projection et de bordisme.

Nous construisons un relèvement multiplicatif du caractère de Chern ĉh : K̂(B)→
Ĥ(B,Q), où Ĥ(B,Q) est une extension différentielle de la cohomologie rationnelle,
et nous démontrons que ĉh induit un isomorphisme rationnel.

Si p : W → B est une submersion propre munie d’une K-orientation différentielle,
nous définissons une classe A(p) ∈ Ĥev(W,Q) (compare Lemma 6.17) et une appli-
cation d’intégration modifiée p̂A

! := p̂!(A(p) ∪ . . . ) : Ĥ(W,Q) → Ĥ(B,Q). L’un de
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Thomas Schick was supported by Courant Research Center “Higher order structures in mathematics”
via the German Initiative of Excellence.

© Astérisque 328, SMF 2009
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nos résultats principaux est une version en cohomologie différentielle du théorème
d’indice d’Atiyah-Singer, pour laquelle p̂A

! ◦ ĉh = ĉh ◦ p̂!.

1. Introduction

1.1. The main results

1.1.1. — In this paper we construct a model of a smooth extension of the gener-
alized cohomology theory K, complex K-theory. Historically, the concept of smooth
extensions of a cohomology theory started with smooth integral cohomology [24], also
called real Deligne cohomology, see [16]. A second, geometric model of smooth inte-
gral cohomology is given in [24], where the smooth integral cohomology classes were
called differential characters. One important motivation of its definition was that one
can associate natural differential characters to hermitean vector bundles with con-
nection which refine the Chern classes. The differential character in degree two even
classifies hermitean line bundles with connection up to isomorphism. The multiplica-
tive structure of smooth integral cohomology also encodes cohomology operations, see
[29].

The holomorphic counterpart of the theory became an important ingredient of
arithmetic geometry.

1.1.2. — Motivated by the problem of setting up lagrangians for quantum field theo-
ries with differential form field strength it was argued in [27], [26] that one may need
smooth extensions of other generalized cohomology theories. The choice of the gener-
alized cohomology theory is here dictated by a charge quantization condition, which
mathematically is reflected by a lattice in real cohomology. Let N be a graded real
vector space such that the field strength lives in Ωd=0(B)⊗N , the closed forms on the
manifold B with coefficients in N . Let L(B) ⊂ H(B,N) be the lattice given by the
charge quantization condition on B. Then one looks for a generalized cohomology the-
ory h and a natural transformation c : h(B) → H(B,N) such that c(h(B)) = L(B).
It was argued in [27], [26] that the fields of the theory should be considered as cycles
for a smooth extension ĥ of the pair (h, c). For example, if N = R and the charge
quantization leads to L(B) = im(H(B,Z) → H(B,R)), then the relevant smooth
extension could be the smooth integral cohomology theory of [24].

In Subsection 1.2 we will introduce the notion of a smooth extension in an axiomatic
way.

1.1.3. — [26] proposes in particular to consider smooth extensions of complex and
real versions ofK-theory. In that paper it was furthermore indicated how cycle models
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of such smooth extensions could look like. The goal of the present paper is to carry
through this program in the case of complex K-theory.

1.1.4. — In the remainder of the present subsection we describe, expanding the ab-
stract, our main results. The main ingredient is a construction of an analytic model
of smooth K-theory, also called differentiable K-theory by some authors, using cycles
and relations.

1.1.5. — Our philosophy for the construction of smooth K-theory is that a vector
bundle with connection or a family of Dirac operators with some additional geometry
should represent a smooth K-theory class tautologically. In this way we follow the
outline in [26]. Our class of cycles is quite big. This makes the construction of smooth
K-theory classes or transformations to smooth K-theory easy, but it complicates the
verification that certain cycle level constructions out of smooth K-theory are well-
defined. The great advantage of our choice is that the constructions of the product
and the push-forward on the level of cycles are of differential geometric nature.

More precisely we use the notion of a geometric family which was introduced in [19]
in order to subsume all geometric data needed to define a Bismut super-connection
in one notion. A cycle of the smooth K-theory K̂(B) of a compact manifold B is a
pair ( E, ρ) of a geometric family E and an element ρ ∈ Ω(B)/im(d), see Section 2.
Therefore, cycles are differential geometric objects. Secondary spectral invariants from
local index theory, namely η-forms, enter the definition of the relations (see Definition
2.10). The first main result is that our construction really yields a smooth extension
in the sense of Definition 1.1.

1.1.6. — Our smooth K-theory K̂(B) is a contravariant functor on the category of
compact smooth manifolds (possibly with boundary) with values in the category of
Z/2Z-graded rings. This multiplicative structure is expected since K-theory is a mul-
tiplicative generalized cohomology theory, and the Chern character is multiplicative,
too. As said above, the construction of the product on the level of cycles (Defini-
tion 4.1) is of differential-geometric nature. Analysis enters the verification of well-
definedness. The main result is here that our construction produces a multiplicative
smooth extension in the sense of Definition 1.2.

1.1.7. — Let us consider a proper submersion p : W → B with closed fibres which
has a topological K-orientation. Then we have a push-forward p! : K(W ) → K(B),
and it is an important part of the theory to extend this push-forward to the smooth
extension.

For this purpose one needs a smooth refinement of the notion of a K-orientation
which we introduce in 3.5. We then define the associated push-forward p̂! : K̂(W )→
K̂(B), again by a differential-geometric construction on the level of cycles (17). We
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show that the push-forward has the expected properties: functoriality, compatibility
with pull-back diagrams, projection formula, bordism formula.

1.1.8. — Let V = (V, hV ,∇V ) be a hermitean vector bundle with connection. In [24]
a smooth refinement ĉh(V) ∈ Ĥ(B,Q) of the Chern character was constructed. In
the present paper we construct a lift of the Chern character ch : K(B)→ H(B,Q) to
a multiplicative natural transformation of smooth cohomology theories (see (30))

ĉh : K̂(B)→ Ĥ(B,Q)

such that ĉh(V) = ĉh([ V , 0]), where V is the geometric family determined by V. We
prove in Proposition 6.12 that the Chern character induces a natural isomorphism of
Z/2Z-graded rings K̂(B)⊗Q ∼→ Ĥ(B,Q).

1.1.9. — If p : W → B is a proper submersion with a smooth K-orientation, then we
define a class (see Lemma 6.17) A(p) ∈ Ĥev(W,Q) and the modified push-forward

p̂A! := p̂!(A(p) ∪ · · · ) : Ĥ(W,Q)→ Ĥ(B,Q).

Our index theorem 6.19 lifts the characteristic class version of the Atiyah-Singer index
theorem to smooth cohomology. It states that the following diagram commutes:

K̂(W )

p̂!

��

ĉh // Ĥ(W,Q)

p̂A!
��

K̂(B)
ĉh // Ĥ(B,Q).

1.1.10. — In Subsection 1.2 we present a short introduction to the theory of smooth
extensions of generalized cohomology theories. In Subsection 1.3 we review in some
detail the literature about variants of smooth K-theory and associated index theo-
rems. In Section 2 we present the cycle model of smooth K-theory. The main result
is the verification that our construction satisfies the axioms given below. Section 3 is
devoted to the push-forward. We introduce the notion of a smooth K-orientation, and
we construct the push-forward on the cycle level. The main results are that the push-
forward descends to smooth K-theory, and the verification of its functorial properties.
In Section 4 we discuss the ring structure in smooth K-theory and its compatibility
with the push-forward. Section 5 presents a collection of natural constructions of
smooth K-theory classes. In Section 6 we construct the Chern character and prove
the smooth index theorem.

1.2. A short introduction to smooth cohomology theories

1.2.1. — The first example of a smooth cohomology theory appeared under the name
Cheeger-Simons differential characters in [24]. Given a discrete subring R ⊂ R we have
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a functor(1) B 7→ Ĥ(B, R) from smooth manifolds to Z-graded rings. It comes with
natural transformations

1. R : Ĥ(B, R)→ Ωd=0(B) (curvature)
2. I : Ĥ(B, R)→ H(B, R) (forget smooth data)
3. a : Ω(B)/im(d)→ Ĥ(B, R) (action of forms).

Here Ω(B) and Ωd=0(B) denote the space of smooth real differential forms and its
subspace of closed forms. The map a is of degree 1. Furthermore, one has the following
properties, all shown in [24].

1. The following diagram commutes

Ĥ(B, R)

R

��

I // H(B, R)

R→R
��

Ωd=0(B)
dR // H(B,R),

where dR is the de Rham homomorphism.
2. R and I are ring homomorphisms.
3. R ◦ a = d,
4. a(ω) ∪ x = a(ω ∧R(x)), ∀x ∈ Ĥ(B, R), ∀ω ∈ Ω(B)/im(d),
5. The following sequence is exact:

(1) H(B, R)→ Ω(B)/im(d)
a→ Ĥ(B, R)

I→ H(B, R)→ 0.

1.2.2. — Cheeger-Simons differential characters are the first example of a more gen-
eral structure which is described for instance in the first section of [26]. In view of
our constructions of examples for this structure in the case of bordism theories and
K-theory, and the presence of completely different pictures like [31] we think that an
axiomatic description of smooth cohomology theories is useful.

Let N be a Z-graded vector space over R. We consider a generalized cohomology
theory h with a natural transformation of cohomology theories c : h(B)→ H(B,N).
The natural universal example is given by N := h∗ ⊗ R, where c is the canonical
transformation. Let Ω(B,N) := Ω(B)⊗RN . To a pair (h, c) we associate the notion of
a smooth extension ĥ. Note that manifolds in the present paper may have boundaries.

Definition 1.1. — A smooth extension of the pair (h, c) is a functor B → ĥ(B) from
the category of compact smooth manifolds to Z-graded groups together with natural
transformations

1. R : ĥ(B)→ Ωd=0(B,N) (curvature)
2. I : ĥ(B)→ h(B) (forget smooth data)

(1) In the literature, this group is sometimes denoted by Ĥ(B,R/R), possibly with a degree-shift by
one.
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3. a : Ω(B,N)/im(d)→ ĥ(B) (action of forms).

These transformations are required to satisfy the following axioms:

1. The following diagram commutes

ĥ(B)

R

��

I // h(B)

c

��
Ωd=0(B,N)

dR // H(B,N).

2. We have

(2) R ◦ a = d.

3. a is of degree 1.
4. The following sequence is exact:

(3) h(B)
c→ Ω(B,N)/im(d)

a→ ĥ(B)
I→ h(B)→ 0.

The Cheeger-Simons smooth cohomology B 7→ Ĥ(B, R) considered in 1.2.1 is the
smooth extension of the pair (H(. . . , R), i), where i : H(B, R) → H(B,R) is induced
by the inclusion R → R. The main object of the present paper, smooth K-theory,
is a smooth extension of the pair (K, chR), and we actually work with the obvious
Z/2Z-graded version of these axioms.

1.2.3. — If h is a multiplicative cohomology theory, then one can consider a Z-graded
ring N over R and a multiplicative transformation c : h(B) → H(B,N). In this case
is makes sense to talk about a multiplicative smooth extension ĥ of (h, c).

Definition 1.2. — A smooth extension ĥ of (h, c) is called multiplicative, if ĥ together
with the transformations R, I, a is a smooth extension of (h, c), and in addition

1. ĥ is a functor to Z-graded rings,
2. R and I are multiplicative,
3. a(ω) ∪ x = a(ω ∧R(x)) for x ∈ ĥ(B) and ω ∈ Ω(B,N)/im(d).

The smooth extension Ĥ(. . . , R) of ordinary cohomology H(. . . , R) with coefficients
in a subring R ⊂ R considered in 1.2.1 is multiplicative. The smooth extension K̂ of
K-theory which we construct in the present paper is multiplicative, too.

1.2.4. — Consider two pairs (hi, ci), i = 0, 1 as in 1.2.2 and a transformation of
generalized cohomology theories u : h0 → h1 such that c1 ◦h = c0. Then we define the
notion of a natural transformation of smooth cohomology theories which refines u.
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Definition 1.3. — A natural transformation of smooth extensions û : ĥ0 → ĥ1 which
refines u is a natural transformation û : ĥ0(B) → ĥ1(B) such that the following dia-
gram commutes:

Ω(B,N)/im(d)
a // ĥ0(B)

R

##
I //

û
��

h0(B)

u

��

Ωd=0(B,N)

Ω(B,N)/im(d)
a // ĥ1(B)

I //

R

;;
h1(B) Ωd=0(B,N).

Our main example is the Chern character ĉh : K̂(B)→ Ĥ(B,Q) which refines the
ordinary Chern character ch : K(B)→ H(B,Q). The Chern character and its smooth
refinements are actually multiplicative.

1.2.5. — One can show that two smooth extensions of (H(. . . , R), i) are canonically
isomorphic (see [44] and [22, Section 4]). There is no uniqueness result for arbitrary
pairs (h, c). Appropriate examples in the case ofK-theory are presented in [22, Section
6]. In order to fix the uniqueness problem one has to require more conditions, which
are all quite natural.

The projection pr2 : S1 ×B → B has a canonical smooth K-orientation (see 4.3.2
for details). Hence we have a push-forward (p̂r2)! : K̂(S1×B)→ K̂(B) (see Definition
3.18). This map plays the role of the suspension for the smooth extension. It is natural
in B, and the following diagram commutes (see Proposition 3.19)

(4) Ω(S1 ×B)/im(d)∫
S1×B/B
��

a // K̂(S1 ×B)

R

$$

(p̂r2)!

��

I // K(B)

(pr2)!

��

Ω(S1 ×B)∫
S1×B/B
��

Ω(B)/im(d)
a // K̂(B)

R

::
I // K(B) Ω(B).

Furthermore, it satisfies (see 4.6)

(5) (p̂r2)! ◦ pr∗2 = 0.

We have the following theorem, also discovered by Wiethaup.

Theorem 1.4 ([22, Section 3, Section 4]). — There is a unique (up to isomorphism)
smooth extension of the pair (K, chR) for which in addition the push-forward along
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pr2 : S1 × B → B is defined, is natural in B, satisfies (5), and is such that (4)
commutes. If we require the isomorphism to preserve (p̂r2)!, then it is also unique.

1.2.6. — The theory of [31] gives the following general existence result.

Theorem 1.5 ([31]). — For every pair (h, c) of a generalized cohomology theory and a
natural transformation h → HN there exists a smooth extension ĥ in the sense of
Definition 1.1.

A similar general result about multiplicative extensions is not known. Besides
smooth extensions of ordinary cohomology and K-theory we have a collection of
multiplicative extensions of bordism theories, again by an an explicit construction in
a cycle model. The details can be found in [23].

1.2.7. — Let us now assume that (h, c) is multiplicative, and that ĥ is a multiplicative
smooth extension of the pair (h, c). Let p : W → B be a proper submersion with closed
fibres. An h-orientation of p is given by a collection of compatible choices of h-Thom
classes on representatives of the stable normal bundle of p. Equivalently, we can fix
a Thom class on the vertical tangent bundle, and we will adopt this point of view in
the present paper. If p is h-oriented, then we have a push-forward p! : h(W )→ h(B).
It is an inportant question for applications and calculations how one can lift the
push-forward to the smooth extensions.

In the case of smooth ordinary cohomology with coefficients in R it turns out that
an ordinary orientation of p suffices in order to define p̂! : Ĥ(W,R)→ Ĥ(B,R). This
push-forward has been considered e.g. in [16], [25], [35]. We refer to 6.1.1 for more
details.

A push-forward for more general pairs (h, c) has been considered in [31] without a
discussion of functorial properties.

1.2.8. — The philosophy in the present paper is that the push-forward in K-theory
is realized analytically using families of fibre-wise Dirac operators. Therefore, in the
present paper a smooth K-orientation is given by a collection of geometric data which
allows to define the push-forward on the level of cycles, which are given by families of
Dirac type operators. We add a differential form to the data in order to capture the
behaviour under deformations.

1.2.9. — We have cycle models of multiplicative smooth extensions of bordism the-
ories ΩG, where G in particular can be SO, Spin, U, Spinc, see [23]. In these exam-
ples the natural transformation c is the genus associated to a formal power series
φ(x) = 1 + a1x + . . . with coefficients in some graded ring. These bordism theories
admit a theory of orientations and push-forward which is very similar to the case of
K-theory. Concerning the product and the integration bordism theories turn out to
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be much simpler than ordinary cohomology. Motivated by this fact, in a joint project
with M. Kreck we develop a bordism like version of the smooth extension of integral
cohomology based on the notion of orientifolds.

We also have an equivariant version of the theory of the present paper for finite
groups which will be presented in a future publication.

1.3. Related constructions

1.3.1. — Recall that [31] provides a topological construction of smooth K-theory. In
this subsection we review the literature about analytic variants of smooth K-theory
and related index theorems. Note that we will completely ignore the development of
holomorphic variants which are more related to arithmetic questions than to topology.
This subsection will use the language which is set up later in the paper. It should be
read in detail only after obtaining some familiarity with the main definitions (though
we tried to give sufficiently many forward references).

1.3.2. — Let p : W → B be a proper submersion with closed fibres. To give a K-
orientation of p is equivalent to give a Spinc-structure on its vertical bundle T vp.
The K-orientation of p yields, by a stable homotopy construction, a push-forward
p! : K(W ) → K(B). Let Â(T vp) denote the Â-class of the vertical bundle, and let
c1(L2) ∈ H2(W,Z) be the cohomology class determined by the Spinc-structure (see
3.1.6). The “index theorem for families" in the characteristic class version states that

ch(p!(x)) =

∫
W/B

Â(T vp) ∪ e 1
2 c1(L2) ∪ ch(x), ∀x ∈ K(W ).

If one realizes the push-forward in an analytic model, then this statement is indeed
an index theorem for families of Dirac operators.

1.3.3. — The cofibre of the map of spectra K → HR induced by the Chern character
represents a generalized cohomology theory KR/Z, called R/Z-K-theory. It is a mod-
ule theory over K-theory and therefore also admits a push-forward for K-oriented
proper submersions. This push-forward is again defined by constructions in stable ho-
motopy theory. An analytic/geometric model of R/Z-K-theory was proposed in [32],
[33]. This led to the natural question whether there is an analytic description of the
push-forward in R/Z-K-theory. This question was solved in [37]. The solution gives
a topological interpretation of ρ-invariants.

Furthermore, in [37] a Chern character from R/Z-K-theory to cohomology with
R/Q-coefficients has been constructed, and an index theorem has been proved.

Let us now explain the relation of these constructions and results with the present
paper. In the present paper we define the flat theory K̂flat(B) as the kernel of the
curvature R : K̂(B)→ Ωd=0(B). It turns out that K̂flat(B) is isomorphic to KR/Z(B)

up to a degree-shift by one (Proposition 2.25). One can actually represent all classes
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of K0
flat(B) by pairs ( E, ρ), where E is a geometric family with zero-dimensional fibre

(see 2.1.4). If one restricts to these special cycles, then our model of K0
flat(B) and the

model of KR/Z−1(B) of [37] coincide.
By an inspection of the constructions one can further check that the restriction of

our cycle level push-forward (17) to these particular flat cycles is the same as the one
in [37]. At a first glance our push-forward of flat classes seems to depend on a smooth
refinement of the topological K-orientation of the map p, but it is in fact independent
of these geometric choices as can be seen using the homotopy invariance of the flat
theory. The comparison with [37] shows that the restriction of our push-forward to
flat classes coincides with the homotopy theorists’ one.

The restriction of our smooth lift of the Chern character ĉh : K̂(B) → Ĥ(B,Q)

(see Theorem 6.2) to the flat theories exactly gives the Chern character of [37]

ĉh : K̂flat(B)→ Ĥflat(B,Q)

(using our notation and the isomorphism of Ĥ∗flat(B) ∼= H∗−1(B,R/Q)). If we restrict
our index theorem 6.19 to flat classes, then it specializes to

ĉh(p̂!(x)) =

∫
W/B

Â(T vp) ∪ e 1
2 c1(L2) ∪ ĉh(x), ∀x ∈ K̂(W ),

and this is exactly the index theorem of [37].
In this sense the present paper is a direct generalization of [37] from the flat to the

general case.

1.3.4. — The analytic model of R/Z-K-theory and the analytic construction of the
push-forward in [37] fits into a series of constructions of homotopy invariant functors
with a push-forward which encodes secondary spectral invariants. Let us mention the
two examples in [38] which are based on flat bundles or flat bundles with duality,
respectively. The spectral geometric invariants in these examples are the analytic
torsion forms of [15] and the η-forms introduced e.g. in [12]. The functoriality of the
push-fowards under compositions is discussed in [18] and [21]. But these construction
do not fit (at least at the moment) into the world of smooth cohomology theory, and
it is still an open problem to interpret the push-forward in topological terms.

Let us also mention the paper [43] devoted to smooth lifts of Chern classes.

1.3.5. — In [9], [8] several variants of functors derived from K-theory are considered.
In the following we recall the names of these groups used in that reference and explain,
if possible, their relation with the present paper.

1. relative K-theory Krel: the cycles are triples (V,∇V , f) of Z/2Z-graded flat
vector bundles and an odd selfadjoint bundle automorphism f (which need not
be parallel).
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2. free multiplicative K-theory Kch (also called transgressive in [8]): it is essen-
tially(2) a model of K̂0 based on cycles of the form ( E, ρ), where E is a geometric
family with zero-dimensional fibre coming from a geometric vector bundle (see
2.1.4).

3. multiplicative K-theory MK: it is the same model of K0
flat as in [37], see 1.3.3.

4. flat K-theory Kflat: it is the Grothendieck group of flat vector bundles.

Besides the definition of these groups and the investigation of their interrelation the
main topic of [9], [8] is the construction of push-forward operations. In the following
we will only discuss multiplicative and transgressive K-theory since they are related
to the present paper. The difference to the constructions of [37] and the present paper
is that Berthomiau’s analytic push-forward (which we denote here by pB! ) does not
use the Spinc-Dirac operator but the fibre-wise de Rham complex. From the point of
view of analysis the difference is essentially that the class Â(T vp) ∪ e 1

2 c1(L2) or the
corresponding differential form has to be replaced by the Euler class E(T vp) or the
Euler form of the vertical bundle.

The advantage of working with the de Rham complex is that in order to define the
push-forward pB! one does not need a Spinc-structure. If there is one, then one can
actually express pB! in terms of p̂! as

pB! (x) = p̂!(x ∪ s∗),

where s∗ ∈ K(W ) is the class of the dual of the spinor bundle Sc(T vp), or the K̂(W )-
class represented by the geometric version of this bundle in the case of transgressive
K-theory, respectively. The point here is that the Dirac operator induced by the de
Rham complex is the Spinc-Dirac operator twisted by Sc(T vp)∗.

As said above, the homotopy theorists’ p! is the push-forward associated to a K-
orientation of p. In contrast, the homotopy theorists’ version of pB! is the Gottlieb-
Becker transfer.

The motivation of [9] , [8] to define the push-forward with the de Rham complex
is that it is compatible with the push-forward for flat K-theory. The push-forward of
a flat vector bundle is expressed in terms of fibre-wise cohomology which forms again
a flat vector bundle on the base. This additional structure also plays a crucial role in
[38], [15], [18], and [21]. If one interprets the push-forward using the Spinc-calculus,
then the flat connection is lost. Let us mention that the first circulated version of the
present paper predates the papers [9] , [8] which actually adapt some of our ideas.

1.3.6. — The topics of [11] are two index theorems involving Ĥ(B,Q)-valued char-
acteristic classes. Here we only review the first one, since the second is related to flat

(2) The connections are not assumed to be hermitean and the corresponding differential forms have
complex coefficients.
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vector bundles. (Compare also [39] for a “flat version”). Let us formulate the result of
[11] in the language of the present paper.

Let p : W → B be a proper submersion with closed fibres with a fibre-wise spin-
structure over a compact base B. The spin structure induces a Spinc-structure, and
we choose a representative of a smooth K-orientation o := (gT

vp, Thp, ∇̃, 0), where
∇̃ is indced from the Levi-Civita connection on T vp (see 3.1.9 for details). Let V =

(V, hV ,∇V ) be a geometric vector bundle over W with associated geometric family V
(compare 2.1.4). Then we can form the geometric family E := p!V (see 3.7) over B.

The family of Dirac operators D( E) acts on sections of a bundle of Hilbert spaces
H( E)→ B. The geometric structures of the K-orientation o and V induce a connec-
tion ∇H( E) (it is the connection part of the Bismut superconnection [7, Prop. 10.15]
associated to this situation). We assume that the family of Dirac operators of D( E)

has a kernel bundle K := ker(D( E)). This bundle has an induced metric hK . The
projection of ∇H( E) to K gives a hermitean connection ∇K . We thus get a geometric
bundle K := (K,hK ,∇K), and an associated geometric family K (see 5.3.1). The
index theorem in [11] calculates the smooth Chern character ĉh(K) ∈ Ĥ(B,Q) of
[24] and states:

ĉh(K) = p̂!(
ˆ̂
A(Tvp) ∪ ĉh(V)) + a(ηBC( E)),

where we refer to (33) and 5.3.3 for notation.
Note that this theorem could also be derived from our index Theorem 6.19. By

Corollary 5.5, (17) , our special choice of o, and Theorem 6.19 (the marked step) we
have

ĉh(K)− a(ηBC( E)) = ĉh[ K , ηBC( E)] = ĉh[ E, 0] = ĉh([p! V , 0]) = ĉh(p!([ V , 0]))

!
= p̂K! (ĉh( V )) = p!(

ˆ̂
A(Tvp) ∪ ĉh(V)).

Acknowledgement. — We thank Moritz Wiethaup for explaining to us his insights
and result. We further thank Mike Hopkins and Dan Freed for their interest in this
work and many helpful remarks. We thank the referee for many helpful comments
which lead to considerable improvements of the exposition.

2. Definition of smooth K-theory via cycles and relations

2.1. Cycles

2.1.1. — One goal of the present paper is to construct a multiplicative smooth ex-
tension of the pair (K, chR) of the multiplicative generalized cohomology theory K,
complex K-theory, and the composition chR : K

ch→ HQ→ HR of the Chern charac-
ter with the natural map from ordinary cohomology with rational to real coefficients
induced by the inclusion Q → R. In this section we define the smooth K-theory
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group K̂(B) of a smooth compact manifold, possibly with boundary, and construct
the natural transformations R, I, a. The main result of the present section is that our
construction really yields a smooth extension in the sense of Definition 1.1. Wi discuss
the multiplicative structure in Section 4.

Our restriction to compact manifolds with boundary is due to the fact that we
work with absolute K-groups. One could in fact modify the constructions in order
to produce compactly supported smooth K-theory or relative smooth K-theory. But
in the present paper, for simplicity, we will not discuss relative smooth cohomology
theories.

2.1.2. — We define the smoothK-theory K̂(B) as the group completion of a quotient
of a semigroup of isomorphism classes of cycles by an equivalence relation. We start
with the description of the cycles.

Definition 2.1. — Let B be a compact manifold, possibly with boundary. A cycle for
a smooth K-theory class over B is a pair ( E, ρ), where E is a geometric family, and
ρ ∈ Ω(B)/im(d) is a class of differential forms.

2.1.3. — The notion of a geometric family has been introduced in [19] in order to
have a short name for the data needed to define a Bismut super-connection [7, Prop.
10.15]. For the convenience of the reader we are going to explain this notion in some
detail.

Definition 2.2. — A geometric family over B consists of the following data:

1. a proper submersion with closed fibres π : E → B,
2. a vertical Riemannian metric gT

vπ, i.e. a metric on the vertical bundle T vπ ⊂
TE, defined as T vπ := ker(dπ : TE → π∗TB).

3. a horizontal distribution Thπ, i.e. a bundle Thπ ⊆ TE such that Thπ ⊕ T vπ =

TE.
4. a family of Dirac bundles V → E,
5. an orientation of T vπ.

Here, a family of Dirac bundles consists of

1. a hermitean vector bundle with connection (V,∇V , hV ) on E,
2. a Clifford multiplication c : T vπ ⊗ V → V ,
3. on the components where dim(T vπ) has even dimension a Z/2Z-grading z.

We require that the restrictions of the family Dirac bundles to the fibres Eb := π−1(b),
b ∈ B, give Dirac bundles in the usual sense (see [19, Def. 3.1]):

1. The vertical metric induces the Riemannian structure on Eb,
2. The Clifford multiplication turns V|Eb into a Clifford module (see [7, Def.3.32])

which is graded if dim(Eb) is even.
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3. The restriction of the connection ∇V to Eb is a Clifford connection (see [7,
Def.3.39]).

A geometric family is called even or odd, if dim(T vπ) is even-dimensional or odd-
dimensional, respectively.

2.1.4. — Here is a simple example of a geometric family with zero-dimensional fibres.
Let V → B be a complex Z/2Z-graded vector bundle. Assume that V comes with a
hermitean metric hV and a hermitean connection ∇V which are compatible with the
Z/2Z-grading. The geometric bundle (V, hV ,∇V ) will usually be denoted by V.

We consider the submersion π := idB : B → B. In this case the vertical bundle
is the zero-dimensional bundle which has a canonical vertical Riemannian metric
gT

vπ := 0, and for the horizontal bundle we must take Thπ := TB. Furthermore, there
is a canonical orientation of p. The geometric bundle V can naturally be interpreted
as a family of Dirac bundles on B → B. In this way V gives rise to a geometric family
over B which we will usually denote by V .

2.1.5. — In order to define a representative of the negative of the smooth K-theory
class represented by a cycle ( E, ρ) we introduce the notion of the opposite geometric
family.

Definition 2.3. — The opposite Eop of a geometric family E is obtained by revers-
ing the signs of the Clifford multiplication and the grading (in the even case) of the
underlying family of Clifford bundles, and of the orientation of the vertical bundle.

2.1.6. — Our smooth K-theory groups will be Z/2Z-graded. On the level of cycles
the grading is reflected by the notions of even and odd cycles.

Definition 2.4. — A cycle ( E, ρ) is called even (or odd, resp.), if E is even (or odd,
resp.) and ρ ∈ Ωodd(B)/im(d) ( or ρ ∈ Ωev(B)/im(d), resp.).

2.1.7. — Let E and E′ be two geometric families over B. An isomorphism E ∼→ E′

consists of the following data:

V

��

F // V ′

��
E

π

��

f // E′

π′

~~
B

where

1. f is a diffeomorphism over B,
2. F is a bundle isomorphism over f ,
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3. f preserves the horizontal distribution, the vertical metric and the orientation.
4. F preserves the connection, Clifford multiplication and the grading.

Definition 2.5. — Two cycles ( E, ρ) and ( E′, ρ′) are called isomorphic if E and E′ are
isomorphic and ρ = ρ′. We let G∗(B) denote the set of isomorphism classes of cycles
over B of parity ∗ ∈ {ev, odd}.

2.1.8. — Given two geometric families E and E′ we can form their sum EtB E′ over B.
The underlying proper submersion with closed fibres of the sum is πtπ′ : EtE′ → B.
The remaining structures of E tB E′ are induced in the obvious way.

Definition 2.6. — The sum of two cycles ( E, ρ) and ( E′, ρ′) is defined by

( E, ρ) + ( E′, ρ′) := ( E tB E′, ρ+ ρ′).

The sum of cycles induces on G∗(B) the structure of a graded abelian semigroup.
The identity element of G∗(B) is the cycle 0 := (∅, 0), where ∅ is the empty geometric
family.

2.2. Relations

2.2.1. — In this subsection we introduce an equivalence relation ∼ on G∗(B). We
show that it is compatible with the semigroup structure so that we get a semigroup
G∗(B)/ ∼. We then define the smooth K-theory K̂∗(B) as the group completion of
this quotient.

In order to define ∼ we first introduce a simpler relation “paired" which has a
nice local index-theoretic meaning. The relation ∼ will be the equivalence relation
generated by “paired".

2.2.2. — The main ingredients of our definition of “paired" are the notions of a taming
of a geometric family E introduced in [19, Def. 4.4], and the η-form of a tamed family
[19, Def. 4.16].

In this paragraph we shortly review the notion of a taming. For the definition
of eta-forms we refer to [19, Sec. 4.4]. In the present paper we will use η-forms as a
black box with a few important properties which we explicitly state at the appropriate
places below.

If E is a geometric family over B, then we can form a family of Hilbert spaces
(Hb)b∈B , where Hb := L2(Eb, V|Eb). If E is even, then this family is in addition Z/2Z-
graded. The geometric family E gives rise to a family of Dirac operators (D( Eb))b∈B ,
where D( Eb) is an unbounded selfadjoint operator on Hb, which is odd in the even
case.

A pre-taming of E is a family (Qb)b∈B of selfadjoint operators Qb ∈ B(Hb) given
by a smooth fibrewise integral kernel Q ∈ C∞(E ×B E, V � V ∗). In the even case we

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



60 U. BUNKE & T. SCHICK

assume in addition that Qb is odd, i.e. that it anticommutes with the grading z. The
pre-taming is called a taming if D( Eb) +Qb is invertible for all b ∈ B.

The family of Dirac operators (D( Eb))b∈B has aK-theoretic index which we denote
by index( E) ∈ K(B). If the geometric family E admits a taming, then the associated
family of Dirac operators operators admits an invertible compact perturbation, and
hence index( E) = 0. Vice versa, if index( E) = 0 and the even part is empty or has a
component with dim(T vπ) > 0, then by [19, Lemma. 4.6] the geometric family admits
a taming.

If the even part of E has zero-dimensional fibres, then the existence of a taming
may require some stabilization. This means that we must add a geometric family
V tB V op (see 2.1.4 and Definition 2.3), where V is the bundle B × Cn → B for
sufficiently large n.

2.2.3.

Definition 2.7. — A geometric family E together with a taming will be denoted by Et
and called a tamed geometric family.

Let Et be a taming of the geometric family E by the family (Qb)b∈B .

Definition 2.8. — The opposite tamed family Eop
t is given by the taming (−Qb)b∈B of

Eop.

2.2.4. — The local index form Ω( E) ∈ Ω(B) is a differential form canonically as-
sociated to a geometric family. For a detailed definition we refer to [19, Def..4.8],
but we can briefly formulate its construction as follows. The vertical metric T vπ and
the horizontal distribution Thπ together induce a connection ∇Tvπ on T vπ (see 3.1.3
for more details). Locally on E we can assume that T vπ has a spin structure. We
let S(T vπ) be the associated spinor bundle. Then we can write the family of Dirac
bundles V as V = S⊗W for a twisting bundle (W,hW ,∇W , zW ) with metric, metric
connection, and Z/2Z-grading which is determined uniquely up to isomorphism. The
form Â(∇Tvπ)∧ ch(∇W ) ∈ Ω(E) is globally defined, and we get the local index form
by applying the integration over the fibre

∫
E/B

: Ω(E)→ Ω(B):

Ω( E) :=

∫
E/B

Â(∇T
vπ) ∧ ch(∇W ).

The local index form is closed and represents a cohomology class [Ω( E)] ∈ HdR(B).
We let chdR : K(B)→ HdR(B) be the composition

chdR : K(B)
ch→ H(B; Q)

can→ HdR(B).

The characteristic class version of the index theorem for families is

Theorem 2.9 ([3]). — chdR(index( E)) = [Ω( E)].
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A proof using methods of local index theory has been given by [10]. For a presen-
tation of the proof we refer to [7]. An alternative proof can be obtained from [19,
Thm.4.18] by specializing to the case of a family of closed manifolds.

2.2.5. — If a geometric family E admits a taming Et (see Definition 2.7), then we
have index( E) = 0. In particular, the local index form Ω( E) is exact. The important
feature of local index theory in this case is that it provides an explicit form whose
boundary is Ω( E) (see equation (6) below).

Let Et be a tamed geometric family over B. In [19, Def. 4.16] we have defined the
η-form η( Et) ∈ Ω(B). By [19, Theorem 4.13]) it satisfies

(6) dη( Et) = Ω( E).

The first construction of η-forms has been given in [12], [13], [14] under the assump-
tion that ker(D( Eb)) vanishes or has constant dimension. The variant which we use
here has also been considered in [37], [41], [40].

Since the analytic details of the definition of the η-form η( Et) are quite complicated
we will not repeat them here but refer to [19, Def. 4.16]. For most of the present paper
we can use the construction of the η-form as a black box refering to [19] for details
of the construction and the proofs of properties. Exceptions are arguments involving
adiabatic limits for which we use [21] as the reference.

2.2.6. — Now we can introduce the relations “paired" and ∼.

Definition 2.10. — We call two cycles ( E, ρ) and ( E′, ρ′) paired if there exists a taming
( E tB E′op)t such that

ρ− ρ′ = η(( E tB E′op)t).

We let ∼ denote the equivalence relation generated by the relation “paired".

Lemma 2.11. — The relation “paired" is symmetric and reflexive.

Proof. — In order to show that “paired" is reflexive and symmetric we are going to
employ the relation [19, Lemma 4.12]

η( Eop
t ) = −η( Et).(7)

Let E be a geometric family over B, and let Hb denote the Hilbert space of sections
of the Dirac bundle along the fibre over b ∈ B. The family EtB Eop has an involution
τ which flips the components, the signs of the Clifford multiplications, the grading
and the orientations. We use the same symbol τ in order to denote the action of τ
on the Hilbert space of sections of the Dirac bundle of Eb tB Eop

b . The latter can be
identified with Hb ⊕ Hop

b , and in this picture τ = ( 0 1
1 0 ). Note that τ anticommutes
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with

Db := D( Eb tB Eop
b ) =

(
D( Eb) 0

0 −D( Eb)

)
.

We choose an even, compactly supported smooth function χ : R → [0,∞) such that
χ(0) = 1 and form Qb := τχ(Db). This operator also anticommutes with Db, and
(Db + Qb)

2 = D2
b + χ2(Db) is positive and therefore invertible for all b ∈ B. The

family (Qb)b∈B thus defines a taming ( E tB Eop)t.
The involution σ :=

(
0 i
−i 0

)
on the Hilbert space Hb ⊕ Hop

b is induced by an iso-
morphism

( E tB Eop)t ∼= ( E tB Eop)op
t .

Because of the relation (7) we have η (( E tB Eop)t) = 0. It follows that ( E, ρ) is paired
with ( E, ρ).

Assume now that ( E, ρ) is paired with ( E′, ρ′) via the taming ( E tB E′op)t so
that ρ − ρ′ = η

(
( E tB E′op)t

)
. Then ( E tB E′op)op

t is a taming of E′ tB Eop such
that ρ′ − ρ = η

(
( E tB E′op)op

t

)
, again by (7). It follows that ( E′, ρ′) is paired with

( E, ρ).

Lemma 2.12. — The relations “paired" and ∼ are compatible with the semigroup
structure on G∗(B).

Proof. — In fact, if ( Ei, ρi) are paired with ( E′i, ρ′i) via tamings ( Ei tB E′op
i )t for

i = 0, 1, then ( E0, ρ0) + ( E′0, ρ′0) is paired with ( E1, ρ1) + ( E′1, ρ′1) via the taming(
E0 tB E1 tB ( E′0 tB E′1)op

)
t

:= ( E0 tB E′op0 )t tB ( E1 tB E′op
1 )t.

In this calculation we use the additivity of the η-form [19, Lemma 4.12]

η( Et tB F t) = η( Et) + η( F t).

The compatibilty of ∼ with the sum follows from the compatibility of “paired".

We get an induced semigroup structure on G∗(B)/ ∼.

Lemma 2.13. — If ( E0, ρ0) ∼ ( E2, ρ2), then there exists a cycle ( E′, ρ′) such that
( E0, ρ0) + ( E′, ρ′) is paired with ( E2, ρ2) + ( E′, ρ′).

Proof. — Let ( E0, ρ0) be paired with ( E1, ρ1) via a taming ( E0tB Eop
1 )t, and ( E1, ρ1)

be paired with ( E2, ρ2) via ( E1 tB Eop
2 )t. Then ( E0, ρ0) + ( E1, ρ1) is paired with

( E2, ρ2) + ( E1, ρ1) via the taming

(( E0 tB E1) tB ( E2 tB E1)op)t := ( E0 tB Eop
1 )t tB ( E1 tB Eop

2 )t .

If ( E0, ρ0) ∼ ( E2, ρ2), then there is a chain ( E1,α, ρ1,α), α = 1, . . . , r with ( E1,1, ρ1,1) =

( E0, ρ0), ( E1,r, ρ1,r) = ( E2, ρ2), such that ( E1,α, ρ1,α) is paired with ( E1,α+1, ρ1,α+1).
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The assertion of the lemma follows from an (r − 1)-fold application of the argument
above.

2.3. Smooth K-theory

2.3.1. — In this subsection we define the contravariant functor B → K̂(B) from
compact smooth manifolds to Z/2Z-graded abelian groups. Recall the definition 2.6
of the semigroup of isomorphism classes of cycles. By Lemma 2.12 we can form the
semigroup G∗(B)/ ∼.

Definition 2.14. — We define the smooth K-theory K̂∗(B) of B to be the group com-
pletion of the abelian semigroup G∗(B)/ ∼.

If ( E, ρ) is a cycle, then let [ E, ρ] ∈ K̂∗(B) denote the corresponding class in smooth
K-theory.

We now collect some simple facts which are helpful for computations in K̂(B) on
the level of cycles.

Lemma 2.15. — We have [ E, ρ] + [ Eop,−ρ] = 0.

Proof. — We show that ( E, ρ)+( Eop,−ρ) = ( EtB Eop, 0) is paired with 0 = (∅, 0). In
fact, this relation is given by the taming (( EtB Eop)tB∅op)t = ( Et Eop)t introduced
in the proof of Lemma 2.11 with η(( E tB Eop)t) = 0.

Lemma 2.16. — Every element of K̂∗(B) can be represented in the form [ E, ρ].

Proof. — An element of K̂∗(B) can be represented by a difference [ E0, ρ0]− [ E1, ρ1].
Using Lemma 2.15 we get [ E0, ρ0]− [ E1, ρ1] = [ E0, ρ0] + [ Eop

1 ,−ρ1] = [ E0 tB Eop
1 , ρ0−

ρ1].

Lemma 2.17. — If [ E0, ρ0] = [ E1, ρ1], then there exists a cycle ( E′, ρ′) such that
( E0, ρ0) + ( E′, ρ′) is paired with ( E1, ρ1) + ( E′, ρ′).

Proof. — The relation [ E0, ρ0] = [ E1, ρ1] implies that there exists a cycle ( Ẽ, ρ̃) such
that ( E0, ρ0) + ( Ẽ, ρ) ∼ ( E1, ρ1) + ( Ẽ, ρ̃). The assertion now follows from Lemma
2.13.

2.3.2. — In this paragraph we extend B 7→ K̂∗(B) to a contravariant functor from
smooth manifolds to Z/2Z-graded groups. Let f : B1 → B2 be a smooth map. Then
we have to define a map f∗ : K̂∗(B2)→ K̂(B1). We will first define a map of abelian
semigroups f∗ : G∗(B2)→ G∗(B1), and then we show that it passes to K̂.

If E is a geometric family over B2, then we can define an induced geometric family
f∗ E over B1. The underlying submersion and vector bundle of f∗ E are given by the
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Cartesian diagram

f∗V

��

// V

��
f∗E

f∗π

��

F // E

π

��
B1

f // B2.

The metric gT
vf∗π and the orientation of T vf∗π are defined such that dF : T vf∗π →

F ∗T vπ is an isometry and orientation preserving. The horizontal distribution Thf∗π is
given by the condition that dF (Thf∗π) ⊆ F ∗Thπ. Finally, the Dirac bundle structure
of f∗V is induced from the Dirac bundle structure on V in the usual way. For b2 ∈ B2

let Hb2 be the Hilbert space of sections of V along the fibre Eb2 . If b1 ∈ B1 satisfies
f(b1) = b2, then we can identify the Hilbert space of sections of f∗V along the fibre
f∗Eb1 canonically with Hb2 . If (Qb2)b2∈B2

defines a taming Et of E, then the family
(Qf(b1))b1∈B is a taming f∗ Et of f∗ E. We have the following relation of η-forms:

(8) η(f∗ Et) = f∗η( Et).

In order to see this note the following facts. The geometric family E gives rise to
a bundle of Hilbert spaces H( E) → B2 with fibres H( E)b2 = Hb2 , using the no-
tation introduced above. We have a natural isomorphism H(f∗ E) ∼= f∗H( E). The
geometry of E together with the taming induces a family of super-connections As( Et)
on H parametrized by s ∈ (0,∞) (see [19, 4.4.4] for explicit formulas). By con-
struction we have f∗As( Et) = As(f

∗ Et). The η-form η( Et) is defined as an integral
of the trace of a family of operators on H( E) (with differential form coefficients)
built from ∂sAs( Et) and As( E)2 [19, Definition 4.16]. Equation (8) now follows from
f∗∂sAs( Et) = ∂sAs(f

∗ Et) and f∗As( E)2 = As(f
∗ Et)2.

If ( E, ρ) ∈ G(B2) then we define f∗( E, ρ) := (f∗ E, f∗ρ) ∈ G(B2). The pull-back
preserves the disjoint union and opposites of geometric families. In particular, f∗ is
a semigroup homomorphism. Assume now that ( E, ρ) is paired with ( E′, ρ′) via the
taming ( E tB2

E′op)t. Then we can pull back the taming as well and get a taming
f∗( E tB2

E′op)t of f∗ E tB1
f∗ E′op. Equation (8) now implies that f∗( E, ρ) is paired

with f∗( E′, ρ′) via the taming f∗( E tB2 E′op)t.
Hence, the pull-back f∗ passes to G∗(B)/ ∼, and being a semigroup homomor-

phism, it induces a map of group completions

f∗ : K̂∗(B2)→ K̂∗(B1).

Evidently, (idB)∗ = îdK̂∗(B). Let f
′ : B0 → B1 be another smooth map. If E is a

geometric family over B2, then (f ◦ f ′)∗ E is isomorphic to f ′∗f∗ E. This observation
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implies that

f ′∗f∗ = (f ◦ f ′)∗ : K̂∗(B2)→ K̂(B0).

This finishes the construction of the contravariant functor K̂∗ on the level of mor-
phisms.

2.4. Natural transformations and exact sequences

2.4.1. — In this subsection we introduce the transformations R, I, a, and we show
that they turn the functor K̂ into a smooth extension of (K, chR) in the sense of
Definition 1.1.

2.4.2. — We first define the natural transformation

I : K̂(B)→ K(B); [ E, ρ] 7→ index( E).

We must show that I is well-defined. Consider Ĩ : G(B)→ K(B) defined by Ĩ( E, ρ) :=

index( E). If ( E, ρ) is paired with ( E′, ρ′), then the existence of a taming ( EtB E′op)t
implies that index( E) = index( E′). The relation

(9) index( E tB E′) = index( E) + index( E′)

together with Lemma 2.13 now implies that Ĩ descends to G(B)/ ∼. The additivity
(9) and the definition of K̂(B) as the group completion of G(B)/ ∼ implies that Ĩ
further descends to the homomorphism I : K̂(B)→ K(B).

The relation index(f∗ E) = f∗index( E) shows that I is a natural transformation
of functors from smooth manifolds to Z/2Z-graded abelian groups.

2.4.3.

Lemma 2.18. — For every compact manifold B, the transformation I : K̂(B)→ K(B)

is surjective.

Proof. — We discuss even and odd degrees seperately. In the even case, a K-theory
class ξ ∈ K(B) is represented by a Z/2Z-graded vector bundle V on B. Simply choose
a hermitean metric and a connection on V . We obtain a resulting geometric family V

on B, with underlying submersion id : B → B (i.e. 0-dimensional fibres) as in 2.1.4,
and clearly I(V) = index(V) = [V ] = ξ ∈ K0(B).

For odd degrees, the statement is proved in [19, 3.1.6.7].

2.4.4. — We consider the functor B 7→ Ω∗(B)/im(d), ∗ ∈ {ev, odd} as a functor from
manifolds to Z/2Z-graded abelian groups. We construct a parity-reversing natural
transformation

a : Ω∗(B)/im(d)→ K̂∗(B); ρ 7→ [∅,−ρ].
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2.4.5. — Let Ω∗d=0(B) be the group of closed forms of parity ∗ on B. Again we
consider B 7→ Ω∗d=0(B) as a functor from smooth manifolds to Z/2Z-graded abelian
groups. We define a natural transformation

R : K̂(B)→ Ωd=0(B); [ E, ρ] 7→ Ω( E)− dρ.

Again we must show that R is well-defined. We will use the relation (6) of the η-form
and the local index form, and the obvious properties of local index forms

Ω( E tB E′) = Ω( E) + Ω( E′), Ω( Eop) = −Ω( E).

We start with

R̃ : G(B)→ Ω(B); ( E, ρ) 7→ Ω( E)− dρ.

Since Ω( E) is closed, R̃( E, ρ) is closed. If ( E, ρ) is paired with ( E′, ρ′) via the taming
( E tB E′op)t, then ρ− ρ′ = η(( E tB E′op)t). It follows

R( E, ρ) = Ω( E)− dρ = Ω( E)− dρ′ − dη(( E tB E′op)t)

= Ω( E)− dρ′ − Ω( E)− Ω( E′op) = Ω( E′)− dρ′ = R( E′, ρ′).

Since R̃ is additive it descends to G(B)/ ∼ and finally to the map R : K̂(B) →
Ωd=0(B). It follows from Ω(f∗ E) = f∗Ω( E) that R is a natural transformation.

2.4.6. — The natural transformations satisfy the following relations:

Lemma 2.19. — R ◦ a = d, chdR ◦ I = [. . . ] ◦R.

Proof. — The first relation is an immediate consequence of the definition of R and
a. The second relation is the local index theorem 2.9.

2.4.7. — Via the embedding HdR(B) ⊆ Ω(B)/im(d), the Chern character
chdR : K(B)→ HdR(B) can be considered as a natural transformation

chdR : K(B)→ Ω(B)/im(d).

Proposition 2.20. — The following sequence is exact:

K(B)
chdR→ Ω(B)/im(d)

a→ K̂(B)
I→ K(B)→ 0.

We give the proof in the following couple of subsection.

2.4.8. — We start with the surjectivity of I : K̂(B) → K(B). The main point is
the fact that every element x ∈ K(B) can be realized as the index of a family of
Dirac operators by Lemma 2.18. So let x ∈ K(B) and E be a geometric family with
index( E) = x. Then we have I([ E, 0]) = x.
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2.4.9. — Next we show exactness at K̂(B). For ρ ∈ Ω(B)/im(d) we have I ◦ a(ρ) =

I([∅,−ρ]) = index(∅) = 0, hence I ◦ a = 0. Consider a class [ E, ρ] ∈ K̂(B) which
satisfies I([ E, ρ]) = 0. We can assume that the fibres of the underlying submersion are
not zero-dimensional. Indeed, if necessary, we can replace E by EtB( ẼtB Ẽ

op
) for some

even family with nonzero-dimensional fibres without changing the smooth K-theory
class by Lemma 2.15. Since index( E) = 0 this family admits a taming Et (2.2.2).
Therefore, ( E, ρ) is paired with (∅, ρ− η( Et)). It follows that [ E, ρ] = a(η( Et)− ρ).

2.4.10. — In order to prepare the proof of exactness at Ω(B)/im(d) in 2.4.11 we need
some facts about the classification of tamings of a geometric family E. The main idea
is to measure the difference between tamings of E using a local index theorem for
E× [0, 1] (compare [19, Cor. 2.2.19]). Let us assume that the underlying submersion
π : E → B decomposes as E = Eev tB Eodd such that the restriction of π to the even
and odd parts is surjective with nonzero- and even-dimensional and odd-dimensional
fibres, and which is such that the Clifford bundle is nowhere zero-dimensional. If
index( E) = 0, then there exists a taming Et (see 2.2.2). Assume that Et′ is a second
taming. Both tamings together induce a boundary taming of the family with boundary
( E × [0, 1])bt. In [19] we have discussed in detail geometric families with boundaries
and the operation of taking a boundary of a geometric family with boundary. In the
present case E× [0, 1] has two boundary faces labeled by the endpoints {0, 1} of the
interval. We have ∂0( E × [0, 1]) ∼= E and ∂1( E × [0, 1]) ∼= Eop. A boundary taming
( E × [0, 1])bt is given by tamings of ∂i( E × [0, 1]) for i = 0, 1 (see [19, Def. 2.1.48]).
We use Et at E× {0} and Eop

t′ at E× {1}.
The boundary tamed family has an index index(( E × [0, 1])bt) ∈ K(B) which is

the obstruction against extending the boundary taming to a taming [19, Lemma
2.2.6]. The construction of the local index form extends to geometric families with
boundaries. Because of the geometric product structure of E × [0, 1] we have Ω( E ×
[0, 1]) = 0. The index theorem for boundary tamed families [19, Theorem 2.2.18] gives

chdR ◦ index(( E× [0, 1])bt) = [η( Et)− η( Et′)].

On the other hand, given x ∈ K(B) and Et, since we have chosen our family E
sufficiently big, there exists a taming Et′ such that index(( E× [0, 1])bt) = x.

To prove this, we argue as follows. Given tamings Et and Et′ we obtain a family
D( Et, Et′) of perturbed Dirac operators over B×R which restricts toD( Et) on B×{β}
for β < 0, and to D( Et′) for β ≥ 1, and which interpolates these families for β ∈ [0, 1].
Since the restriction of D( Et, Et′) is invertible outside of a compact subset of B × R
(note that B is compact) it gives rise to a class [ Et, Et′ ] ∈ KK(C, C(B)⊗C0(R)). The
Dirac operator on R provides a class [∂] ∈ KK(C0(R),C), and one checks —using the
method of connections as in [17, proof of Proposition 2.11] or directly working with
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the unbounded picture [4]— that D( E× [0, 1])bt represents the Kasparov product

[ Et, Et′ ]⊗C0(R) [∂] ∈ KK(C, C(B)).

The map

Kc(B × R)
∼→ KK(C, C(B)⊗ C0(R))

·⊗C0(R)[∂]
→ KK(C, C(B))

∼→ K(B)

is by [34, Paragraph 5, Theorem 7] the inverse of the suspension isomorphism, so in
particular surjective. It remains to see that one can exhaust KK(C, C(B) ⊗ C0(R))

with classes of the form [ Et, Et′ ] by varying the taming Et′ .
We sketch an argument in the even-dimensional case. The odd-dimensional case is

similar. For a separable infinite-dimensional Hilbert space H let GL1(H) ⊂ GL(H)

be the group of invertible operators of the form 1 + K with K ∈ K(H) compact.
The space GL1(H) has the homotopy type of the classifying space for K1. The bun-
dle of Hilbert spaces H( E)+ → B gives rise to a (canonically trivial, up to homo-
topy) bundle of groups GL1(H( E)+) → B by taking GL1(. . . ) fibrewise (it is here
where we use that the family is sufficiently big so that H( E)+ is infinite-dimensional).
Let Γ(GL1(H( E)+)) be the topological group of sections. Then we have an isomor-
phism π0Γ(GL1(H( E)+)) ∼= K1(B). Let x ∈ K1(B) be represented by a section
s ∈ Γ(GL1(H( E)+)). We can approximate s − 1 by a smooth family of smoothing
operators. Therefore we can assume that s− 1 is given by a smooth fibrewise integral
kernel (a pretaming in the language of [19])(3).

There is a bijection between tamings Et′ and sections s ∈ Γ(GL1(H( E)+)) of this
type which maps Et′ to s := D+( Et)−1D+( Et′). The map which associates the KK-
class [ Et, Et′ ] to the section s is just one realization of the suspension isomorphism
K1(B)→ K0

c (B × R) (using the Kasparov picture of the latter group). In particular
we see that all classes in K0

c (B × R) arise as [ Et, Et′ ] for various tamings Et′ .

2.4.11. — We now show exactness at Ω(B)/im(d). Let x ∈ K(B). Then we have
a ◦ chdR(x) = [∅,−chdR(x)]. We choose a geometric family E as in 2.4.10 and set
Ẽ := E tB Eop. In the proof of Lemma 2.11 we have constructed a taming Ẽt such
that η( Ẽt) = 0. Using the discussion 2.4.10 we choose a second taming Ẽt′ such that
index(( Ẽ × [0, 1])bt) = −x, hence η( Ẽt′) = chdR(x). By the taming Ẽt′ we see that
the cycle ( Ẽ, 0) pairs with (∅,−chdR(x)). On the other hand, via Ẽt the cycle ( Ẽ, 0)

pairs with 0. It follows that (∅,−chdR(x)) ∼ 0 and hence a ◦ chdR = 0.
Let now ρ ∈ Ω(B)/im(d) be such that a(ρ) = [∅,−ρ] = 0. Then by Lemma 2.17

there exists a cycle ( Ê, ρ̂) such that ( Ê, ρ̂− ρ) pairs with ( Ê, ρ̂). Therefore there exists
a taming Et′ of E := Ê tB Ê

op
such that η( Et′) = −ρ.

(3) Alternatively one can directly produce such a section using the setup described in [42].
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Let Et be the taming with vanishing η-form constructed in the proof of
Lemma 2.11. The two tamings induce a boundary taming ( E × [0, 1])bt such that
chdR◦index(( E×[0, 1])bt) = −η( Et′) = ρ. This shows that ρ is in the image of chdR. �

2.4.12. — We now improve Lemma 2.13. This result will be very helpful in verifying
well-definedness of maps out of smooth K-theory, e.g. the smooth Chern character.

Lemma 2.21. — If [ E0, ρ0] = [ E1, ρ1] and at least one of these families has a higher-
dimensional component, then ( E0, ρ0) is paired with ( E1, ρ1).

Proof. — By Lemma 2.13 there exists [ E′, ρ′] such that ( E0, ρ0) + ( E′, ρ′) is paired
with ( E1, ρ1) + ( E′, ρ′) by a taming

(
E0 tB E′ tB ( E1 tB E′)op

)
t
. We have

ρ1 − ρ0 = η
(
( E0 tB E′ tB ( E1 tB E′)op)t

)
.

Since index( E0) = index( E1) there exists a taming ( E0 tB Eop
1 )t. Furthermore, there

exists a taming ( E′tB E′op)t with vanishing η-invariant (see the proof of Lemma 2.11).
These two tamings combine to a taming

(
E0 tB E′ tB ( E1 tB E′)op

)
t′
. There exists

ξ ∈ K(B) such that

chdR(ξ) = η
(
( E0 tB E′ tB ( E1 tB E′)op)t

)
− η

(
( E0 tB E′ tB ( E1 tB E′)op)t′

)
= η

(
( E0 tB E′ tB ( E1 tB E′)op)t

)
− η (( E0 tB Eop

1 )t) .

We can now adjust (using 2.4.10) the taming ( E0 tB Eop
1 )t such that we can choose

ξ = 0. It follows that ρ1 − ρ0 = η (( E0 tB Eop
1 )t).

2.5. Comparison with the Hopkins-Singer theory and the flat theory

2.5.1. — An important consequence of the axioms 1.1 for a smooth generalized coho-
mology theory is the homotopy formula. Let ĥ be a smooth extension of a pair (h, c).
Let x ∈ ĥ([0, 1]×B), and let ik : B → {k}×B ⊂ [0, 1]×B, k = 0, 1, be the inclusions.

Lemma 2.22. — We have

i∗1(x)− i∗0(x) = a

Ç∫
[0,1]×B/B

R(x)

å
.

Proof. — Let p : [0, 1] × B → B denote the projection. If x = p∗y, then on the one
hand the left-hand side of the equation is zero. On the other hand, R(x) = p∗R(y) so
that

∫
[0,1]×B/B R(x) = 0, too.

Since p is a homotopy equivalence there exists ȳ ∈ h(B) such that I(x) = p∗(ȳ).
Because of the surjectivity of I we can choose y ∈ ĥ(B) such that I(y) = ȳ. It follows
that I(x− p∗y) = 0. By the exactness of (3) there exists a form ω ∈ Ω(I ×B)/im(d)
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such that x − p∗y = a(ω). By Stokes’ theorem we have the equality i∗1ω − i∗0ω =∫
[0,1]×B/B dω in Ω(B)/im(d). By (2) we have dω = R(a(ω)). It follows that∫

[0,1]×B/B
dω =

∫
[0,1]×B/B

R(a(ω)) =

∫
[0,1]×B/B

R(x− p∗y) =

∫
[0,1]×B/B

R(x).

This implies

i∗1x− i∗0x = i∗1a(ω)− i∗0a(ω) = a

Ç
i∗1ω − i∗0ω) = a(

∫
[0,1]×B/B

R(x)

å
.

2.5.2. — Let ĥ be a smooth extension of a pair (h, c). We use the notation introduced
in 1.2.2.

Definition 2.23. — The associated flat functor is defined by

B 7→ ĥflat(B) := ker{R : ĥ(B)→ Ωd=0(B,N)}.

Recall that a functor F from smooth manifolds is homotopy invariant, if for the
two embeddings ik : B → {k} × B → [0, 1] × B, k = 0, 1, we have F (i0) = F (i1). As
a consequence of the homotopy formula Lemma 2.22 the functor ĥflat is homotopy
invariant.

In interesting cases it is part of a generalized cohomology theory. The map c : h→
HN gives rise to a cofibre sequence in the stable homotopy category h

c→ HN →
hN,R/Z which defines a spectrum hN,R/Z.

Proposition 2.24. — If ĥ is the Hopkins-Singer extension of (h, c), then we have a
natural isomorphism

ĥflat(B) ∼= hN,R/Z(B)[−1].

In the special case that N = h∗ ⊗Z R this is [31, (4.57)].

2.5.3. — In the case of K-theory and the Chern character chR : K → H(K∗ ⊗Z R)

one usually writes KR/Z := hK∗⊗ZR,R/Z. The functor B 7→ KR/Z(B) is called R/Z-
K-theory. Since R/Z is an injective abelian group we have a universal coefficient
formula

(10) KR/Z∗(B) ∼= Hom(K∗(B),R/Z),

where K∗(B) denotes the K-homology of B. A geometric interpretation of R/Z-K-
theory was first proposed in [32], [33]. In these references it was called multiplicative
K-theory. The analytic construction of the push-forward has been given in [37].
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2.5.4.

Proposition 2.25. — There is a natural isomorphism of functors

K̂flat(B) ∼= KR/Z(B)[−1].

Proof. — In the following (the paragraphs 2.5.5, 2.5.6) we sketch two conceptually
very different arguments. For details we refer to [22, Section 5, Section 7].

2.5.5. — In the first step one extends K̂flat to a reduced cohomology theory on
smooth manifolds. The reduced group of a pointed manifold is defined as the kernel
of the restriction to the point. The missing structure is a suspension isomorphism.
It is induced by the map K̂(B) → K̂(S1 × B) given by x 7→ pr∗1xS1 ∪ pr∗2x, where
xS1 ∈ K̂1(S1) is defined in Definition 5.6, and the ∪-product is defined below in
4.1. The inverse is induced by the push-forward (p̂r2)! : K̂(S1 × B) → K̂(B) along
pr2 : S1 × B → B introduced below in 3.18. Finally one verifies the exactness of
mapping cone sequences.

In order to identify the resulting reduced cohomology theory with R/Z-K-theory
one constructs a pairing between K̂flat and K-homology, using an analytic model as in
[37]. This pairing, in view of the universal coefficient formula (10) gives a map of co-
homology theories K̂flat(B)→ KR/Z(B)[−1] which is an isomorphism by comparison
of coefficients.

2.5.6. — The second argument is based on the comparison with the Hopkins-Singer
theory. We let B 7→ K̂HS(B) denote the version of the smooth K-theory functor
defined by Hopkins-Singer [31]. In [22, Section 5] we show that there is a unique
natural isomorphism K̂ev ∼→ K̂ev

HS . In view of 2.24 we get the isomorphism

K̂ev
flat(B)

∼→ K̂ev
HS,flat(B)

∼→ KR/Zev[−1](B).

In [22] we furthermore show that using the integration for K̂ and the suspension
isomorphism for KR/Z this isomorphism extends to the odd parts.

2.5.7. — Many of the interesting examples given in Section 5 can be understood (at
least to a large extend) already at this stage. We recommend to look them up now,
if one is less interested in structural questions. This should also serve as a motivation
for the constructions in Sections 3 and 4.
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3. Push-forward

3.1. K-orientation

3.1.1. — The groups Spin(n) and Spinc(n) fit into exact sequences

1 −−−−→ Z/2Z −−−−→ Spin(n) −−−−→ SO(n) −−−−→ 1y y yid

1 −−−−→ U(1)
i−−−−→ Spinc(n)

π−−−−→ SO(n) −−−−→ 1

1→ Z/2Z→ Spinc(n)
(λ,π)→ U(1)× SO(n)→ 1

such that λ ◦ i : U(1)→ U(1) is a double covering. Let P → B be an SO(n)-principal
bundle. We let Spinc(n) act on P via the projection π.

Definition 3.1. — A Spinc-reduction of P is a diagram

Q

��

f // P

��
B

,

where Q→ B is a Spinc(n)-principal bundle and f is Spinc(n)-equivariant.

3.1.2. — Let p : W → B be a proper submersion with vertical bundle T vp. We
assume that T vp is oriented. A choice of a vertical metric gT

vp gives an SO-reduction
SO(T vp) of the frame bundle Fr(T vp), the bundle of oriented orthonormal frames.

Usually one calls a map between manifolds K-oriented if its stable normal bundle is
equipped with aK-theory Thom class. It is a well-known fact [1] that this is equivalent
to the choice of a Spinc-structure on the stable normal bundle. Finally, isomorphism
classes of choices of Spinc-structures on T vp and the stable normal bundle of p are
in bijective correspondence. So for the purpose of the present paper we adopt the
following definition.

Definition 3.2. — A topological K-orientation of p is a Spinc-reduction of SO(T vp).

In the present paper we prefer to work with Spinc-structures on the vertical bundle
since it directly gives rise to a family of Dirac operators along the fibres. The goal of
this section is to introduce the notion of smooth K-orientation which refines a given
topological K-orientation.
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3.1.3. — In order to define such a family of Dirac operators we must choose additional
geometric data. If we choose a horizontal distribution Thp, then we get a connection
∇Tvp which restricts to the Levi-Civita connection along the fibres. Its construction
goes as follows. First one chooses a metric gTB on B. It induces a horizontal metric
gT

hp via the isomorphism dp|Thp : Thp
∼→ p∗TB. We get a metric gT

vp ⊕ gT
hp on

TW ∼= T vp⊕ Thp which gives rise to a Levi-Civita connection. Its projection to T vp
is ∇Tvp. Finally one checks that this connection is independent of the choice of gTB .

3.1.4. — The connection ∇Tvp can be considered as an SO(n)-principal bundle con-
nection on the frame bundle SO(T vp). In order to define a family of Dirac operators,
or better, the Bismut super-connection we must choose a Spinc-reduction ∇̃ of ∇Tvp,
i.e. a connection on the Spinc-principal bundle Q which reduces to ∇Tvp. If we think
of the connections ∇Tvp and ∇̃ in terms of horizontal distributions ThSO(T vp) and
ThQ, then we say that ∇̃ reduces to ∇Tvp if dπ(ThQ) = π∗(ThSO(T vp)).

3.1.5. — The Spinc-reduction of Fr(T vp) determines a spinor bundle Sc(T vp), and
the choice of ∇̃ turns Sc(T vp) into a family of Dirac bundles.

In this way the choices of the Spinc-structure and (gT
vp, Thp, ∇̃) turn p : W → B

into a geometric family W .

3.1.6. — Locally onW we can choose a Spin-structure on T vp with associated spinor
bundle S(T vp). Then we can write Sc(T vp) = S(T vp)⊗L for a hermitean line bundle
L with connection. The spin structure is given by a Spin-reduction q : R→ SO(T vp)

(similar to 3.1) which can actually be considered as a subbundle of Q. Since q is
a double covering and thus has discrete fibres, the connection ∇Tvp (in contrast to
the Spinc-case) has a unique lift to a Spin(n)-connection on R. The spinor bundle
S(T vp) is associated to R and has an induced connection. In view of the relations
of the groups 3.1.1 the square of the locally defined line bundle L is the globally
defined bundle L2 → W associated to the Spinc-bundle Q via the representation
λ : Spinc(n)→ U(1). The connection ∇̃ thus induces a connection on ∇L2

, and hence
a connection on the locally defined square root L. Note that vice versa, ∇L2

and ∇Tvp

determine ∇̃ uniquely.

3.1.7. — We introduce the form

(11) c1(∇̃) :=
1

4πi
RL

2

which would be the Chern form of the bundle L in case of a global Spin-structure.
Let R∇

Tvp ∈ Ω2(W, End(T vp)) denote the curvature of ∇Tvp. The closed form

Â(∇T
vp) := det1/2

Ñ
R∇

Tvp

4π

sinh
(
R∇

Tvp

4π

)
é
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represents the Â-class of T vp.

Definition 3.3. — The relevant differential form for local index theory in the Spinc-
case is

Âc(∇̃) := Â(∇T
vp) ∧ ec1(∇̃).

If we consider p : W → B with the geometry (gT
vp, Thp, ∇̃) and the Dirac bundle

Sc(T vp) as a geometric family W over B, then by comparison with the description
2.2.4 of the local index form Ω( W ) we see that∫

W/B

Âc(∇̃) = Ω( W ).

3.1.8. — The dependence of the form Âc(∇̃) on the data is described in terms of the
transgression form. Let (gT

vp
i , Thi p, ∇̃i), i = 0, 1, be two choices of geometric data.

Then we can choose geometric data (gT
vp, T

h
p, ∇̃) on p = id[0,1] × p : [0, 1] ×W →

[0, 1]×B (with the induced Spinc-structure on T vp) which restricts to (gT
vp

i , Thi p, ∇̃i)
on {i} ×B. The class

˜̂
Ac(∇̃1, ∇̃0) :=

∫
[0,1]×W/W

Âc(∇̃) ∈ Ω(W )/im(d)

is independent of the extension and satisfies

(12) d
˜̂
Ac(∇̃1, ∇̃0) = Âc(∇̃1)− Âc(∇̃0).

Definition 3.4. — The form ˜̂
Ac(∇̃1, ∇̃0) is called the transgression form.

Note that we have the identity

(13) ˜̂
Ac(∇̃2, ∇̃1) +

˜̂
Ac(∇̃1, ∇̃0) =

˜̂
Ac(∇̃2, ∇̃0).

As a consequence we get the identities

(14) ˜̂
Ac(∇̃, ∇̃) = 0,

˜̂
Ac(∇̃1, ∇̃0) = −Âc(∇̃0, ∇̃1).

3.1.9. — We can now introduce the notion of a smooth K-orientation of a proper
submersion p : W → B. We fix an underlying topological K-orientation of p (see
Definition 3.2) which is given by a Spinc-reduction of SO(T vp). In order to make this
precise we must choose an orientation and a metric on T vp.

We consider the set O of tuples (gT
vp, Thp, ∇̃, σ) where the first three entries have

the same meaning as above (see 3.1.3), and σ ∈ Ωodd(W )/im(d). We introduce a
relation o0 ∼ o1 on O: Two tuples (gT

vp
i , Thi p, ∇̃i, σi), i = 0, 1 are related if and only if

σ1 − σ0 =
˜̂
A(∇̃1, ∇̃0). We claim that ∼ is an equivalence relation. In fact, symmetry

and reflexivity follow from (14), while transitivity is a consequence of (13).
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Definition 3.5. — The set of smooth K-orientations which refine a fixed underlying
topological K-orientation of p : W → B is the set of equivalence classes O/ ∼.

3.1.10. — Note that Ωodd(W )/im(d) acts on the set of smooth K-orientations. If
α ∈ Ωodd(W )/im(d) and (gT

vp, Thp, ∇̃, σ) represents a smooth K-orientation, then
the translate of this orientation by α is represented by (gT

vp, Thp, ∇̃, σ + α). As a
consequence of (13) we get:

Corollary 3.6. — The set of smooth K-orientations refining a fixed underlying topo-
logical K-orientation is a torsor over Ωodd(W )/im(d).

3.1.11. — If o = (gT
vp, Thp, ∇̃, σ) ∈ O represents a smooth K-orientation, then we

will write
Âc(o) := Âc(∇̃), σ(o) := σ.

3.2. Definition of the Push-forward

3.2.1. — We consider a proper submersion p : W → B with a choice of a topological
K-orientation. Assume that p has closed fibres. Let o = (gT

vp, Thp, ∇̃, σ) represent
a smooth K-orientation which refines the given topological one. To every geometric
family E over W we want to associate a geometric family p! E over B.

Let π : E → W denote the underlying proper submersion with closed fibres of E
which comes with the geometric data gT

vπ, Thπ and the family of Dirac bundles
(V, hV ,∇V ).

The underlying proper submersion with closed fibres of p! E is

q := p ◦ π : E → B.

The horizontal bundle of π admits a decomposition Thπ ∼= π∗T vp⊕π∗Thp, where the
isomorphism is induced by dπ. We define Thq ⊆ Thπ such that dπ : Thq ∼= π∗Thp.
Furthermore we have an identification T vq = T vπ⊕π∗T vp. Using this decomposition
we define the vertical metric gT

vq := gT
vπ⊕π∗gTvp. The orientations of T vπ and T vp

induce an orientation of T vq. Finally we must construct the Dirac bundle p! V → E.
Locally onW we choose a Spin-structure on T vp and let S(T vp) be the spinor bundle.
Then we can write Sc(T vp) = S(T vp)⊗L for a hermitean line bundle with connection.
Locally on E we can choose a Spin-structure on T vπ with spinor bundle S(T vπ). Then
we can write V = S(T vπ)⊗Z, where Z is the twisting bundle of V , a hermitean vector
bundle with connection (Z/2Z-graded in the even case). The local spin structures on
T vπ and π∗T vp induce a local Spin-structure on T vq = T vπ⊕π∗T vp. Therefore locally
we can define the family of Dirac bundles p!V := S(T vq)⊗ π∗L⊗ Z. It is easy to see
that this bundle is well-defined independent of the choices of local Spin-structures
and therefore is a globally defined family of Dirac bundles.
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Definition 3.7. — Let p! E denote the geometric family given by q : E → B and p!V →
E with the geometric structures defined above.

It immediately follows from the definitions, that p!( Eop) ∼= (p! E)op.

3.2.2. — Let p : W → B be a proper submersion with a smooth K-orientation rep-
resented by o. In 3.2.1 we have constructed for each geometric family E over W a
push-forward p! E. Now we introduce a parameter λ ∈ (0,∞) into this construction.

Definition 3.8. — For λ ∈ (0,∞) we define the geometric family pλ! E as in 3.2.1 with
the only difference that the metric on T vq = T vπ⊕π∗T vp is given by gT

vq
λ = λ2gT

vπ⊕
π∗gT

vp.

More specifically, we use scaling invariance of the spinor bundle to canonically
identify the Dirac bundle for the metric gλ locally with p!V := S(T vq)⊗π∗L⊗Z (for
g1). This uses the description of S(T vp) in terms of tensor products of S(T vπ) and
π∗S(T vp) (compare [19, Section 2.1.2]) and the scaling invariance of S(T vπ). However,
with this identification the Clifford multiplication by vectors in T vq = T vπ ⊕ π∗T vp
is rescaled on the summand T vπ by λ. The connection is slightly more complicated,
but converges for λ→ 0 to some kind of sum connection.

The family of geometric families pλ! E is called the adiabatic deformation of p! E.
There is a natural way to define a geometric family F on (0,∞) × B such that its
restriction to {λ} × B is pλ! E. In fact, we define F := (id(0,∞) × p)!((0,∞) × E)

with the exception that we take the appropriate vertical metric. Note again that the
underlying bundle can be canonically identified with (0,∞) × p!V . In the following,
we work with this identifications throughout.

Although the vertical metrics of F and pλ! E collapse as λ→ 0 the induced connec-
tions and the curvature tensors on the vertical bundle T vq converge and simplify in
this limit. This fact is heavily used in local index theory, and we refer to [7, Sec 10.2]
for details. In particular, the integral

(15) Ω̃(λ, E) :=

∫
(0,λ)×B/B

Ω( F )

converges, and we have
(16)

lim λ→0Ω(pλ! E) =

∫
W/B

Âc(o) ∧ Ω( E), Ω(pλ! E)−
∫
W/B

Âc(o) ∧ Ω( E) = dΩ̃(λ, E).

3.2.3. — Let p : W → B be a proper submersion with closed fibres with a smooth K-
orientation represented by o. We now start with the construction of the push-forward
p! : K̂(W )→ K̂(B). For λ ∈ (0,∞) and a cycle ( E, ρ) we define

(17) p̂λ! ( E, ρ) := [pλ! E,
∫
W/B

Âc(o) ∧ ρ+ Ω̃(λ, E) +

∫
W/B

σ(o) ∧R([ E, ρ])] ∈ K̂(B).
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Since Âc(o) and R([ E, ρ]) are closed, the maps

Ω(W )/im(d) 3 ρ 7→
∫
W/B

Âc(o) ∧ ρ ∈ Ω(B)/im(d),

Ω(W )/im(d) 3 σ(o) 7→
∫
W/B

σ(o) ∧R([ E, ρ]) ∈ Ω(B)/im(d)

are well-defined. It immediately follows from the definition that p̂λ! : G(W ) → K̂(B)

is a homomorphism of semigroups.

3.2.4. — The homomorphism p̂λ! : G(W ) → K̂(B) commutes with pull-back. More
precisely, let f : B′ → B be a smooth map. Then we define the submersion p′ : W ′ →
B′ by the Cartesian diagram

W ′

p′

��

F // W

p

��
B′

f // B.

The differential dF : TW ′ → F ∗TW induces an isomorphism dF : T vW ′
∼→ F ∗T vW .

Therefore the metric, the orientation, and the Spinc-structure of T vp induce by pull-
back corresponding structures on T vp′. We define the horizontal distribution Thp′

such that dF (Thp′) ⊆ F ∗Thp. Finally we set σ′ := F ∗σ. The representative of a
smooth K-orientation given by these structures will be denoted by o′ := f∗o. An
inspection of the definitions shows:

Lemma 3.9. — The pull-back of representatives of smooth K-orientations preserves
equivalence and hence induces a pull-back of smooth K-orientations.

Recall from 3.1.5 that the representatives o and o′ of the smooth K-orientations
enhance p and p′ to geometric families W and W ′. We have f∗W ∼= W ′.

Note that we have F ∗Âc(o) = Âc(o′). If E is a geometric family over W , then an
inspection of the definitions shows that f∗p!( E) ∼= p′!(F

∗ E). The following lemma now
follows immediately from the definitions

Lemma 3.10. — We have f∗ ◦ p̂λ! = p̂′
λ

! ◦ F ∗ : G(W )→ K̂(B′).

3.2.5.

Lemma 3.11. — The class p̂λ! ( E, ρ) does not depend on λ ∈ (0,∞).

Proof. — Consider λ0 < λ1. Note that

p̂λ1

! ( E, ρ)− p̂λ0

! ( E, ρ) = [pλ1

! E, Ω̃(λ1, E)]− [pλ0

! E, Ω̃(λ0, E)].
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Consider the inclusion iλ : B → {λ} ×B ⊂ [λ0, λ1]×B and let F be the family over
[λ0, λ1]×B as in 3.2.2 such that pλ! E = i∗λ F . We apply the homotopy formula Lemma
2.22 to x = [ F , 0]:

i∗λ1
(x)− i∗λ0

(x) = a

Ç∫
[λ0,λ1]×B/B

R(x)

å
= a

Ç∫
[λ0,λ1]×B/B

Ω( F )

å
= a

Ä
Ω̃(λ1, E)− Ω̃(λ0, E)

ä
,

where the last equality follows directly from the definition of Ω̃. This equality is
equivalent to

[pλ1

! E, Ω̃(λ1, E)] = [pλ0

! E, Ω̃(λ0, E)].

In view of this Lemma we can omit the superscript λ and write p̂!( E, ρ) for p̂λ! ( E, ρ).

3.2.6. — Let E be a geometric family over W which admits a taming Et. Recall that
the taming is given by a family of smoothing operators (Qw)w∈W .

We have identified the Dirac bundle of pλ! E with the Dirac bundle of p1
! E in a

natural way in 3.2.2. The λ-dependence of the Dirac operator takes the form

D(pλ! E) = λ−1D( E) + (DH +R(λ)),

where DH is the horizontal Dirac operator, and R(λ) is of zero order and remains
bounded as λ→ 0. We now replace D( E) by the invertible operator D( E) +Q. Then
for small λ > 0 the operator

λ−1(D( E) +Q) + (DH +R(λ))

is invertible. To see this, we consider its square which has the structure

λ−2(D( E) +Q)2 + λ−1{D( E) +Q, (DH +R(λ))}+ (DH +R(λ))2.

The anticommutator {D( E), DH+R(λ)} is a first-order vertical operator which is thus
dominated by a multiple of the positive second order (D( E) + Q)2. The remaining
parts of the anticommutator are zero-order and therefore also dominated by multiples
of (D( E) + Q)2. The last summand is a square of a selfadjoint operator and hence
non-negative.

The family of operators along the fibres of p! E induced by Q is not a taming since
it is not given by a family of integral operators along the fibres of p!E → B. In
order to understand its structure note the following. For b ∈ B the fibre of (p! E)b
is the total space of the bundle E|Wb

→ Wb. The integral kernel Q induces a family
of smoothing operators on the bundle of Hilbert spaces H( E|Wb

) → Wb. Using the
natural identification

H(p! E)b ∼= L2(W,S(T vp)⊗H( E|Wb
))
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we get the induced operator on H(p! E)b. We will call a family of operators with this
structure a generalized taming.

Now recall that the η-form η( F t) of a tamed or generalized tamed family F t is
built from a family of superconnections As( F t) parametrized by s ∈ (0,∞) (see
[19, 2.2.4.3]). For 0 < s < 1 the family coincides with the usual rescaled Bismut
superconnection and is independent of the taming. Therefore the taming does not
affect the analysis of ∂sAs( F t)e−As( F t)2

for s → 0. In the interval s ∈ [1, 2] the
family As( F t) smoothly connects with the family of superconnections given by

As( F t) = sD( F t) + terms with higher form degree

for s ≥ 2. In order to define the η-form η( F t) the main points are:

1. For small s the family As( F t) behaves like the Bismut superconnection. The
formula (6) dη( F t) = Ω( F ) only depends on the behavior of As( F t) for small
s. Therefore this formula continues to hold for generalized tamings.

2. ∂sAs( F t)e−As( F t)2

is given by a family of integral operators with smooth in-
tegral kernel. This holds true for tamed families as well as for familes which
are tamed in the generalized sense explained above. A proof can be based on
Duhamel’s principle.

3. The integral kernel of ∂sAs( F t)e−As( F t)2

together with all derivatives vanishes
exponentially as s→∞. This follows by spectral estimates from the invertibility
and selfadjointness of D( F t). Now the invertibility of D( F t) is exactly the
desired effect of a taming or generalized taming.

Coming back to our iterated fibre bundle we see that we can use the generalized
taming for sufficiently small λ > 0 like a taming in order to define an η-form which
we will denote by η(pλ! Et). To be precise, this eta form is associated to the family of
operators

As(p
λ
! E) + χ(sλ−1)sλ−1Q, s ∈ (0,∞),

where χ vanishes near zero and is equal to 1 on [1,∞). This means that we switch on
the taming at time s ∼ λ, and we rescale it in the same way as the vertical part of
the Dirac operator.

We can control the behaviour of η(pλ! Et) in the adiabatic limit λ→ 0.

Theorem 3.12. — We have

lim λ→0η(pλ! Et) =

∫
W/B

Âc(o) ∧ η( Et).

Proof. — To write out a formal proof of this theorem seems too long for the present
paper, without giving fundamental new insights. Instead we point out the following
references. Adiabatic limits of η-forms of twisted signature operators were studied
in [21, Section 5]. The same methods apply in the present case. The L-form in [21,
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Section 5] is the local index form of the signature operator. In the present case it must
be replaced by the form Âc(o), the local index form of the Spinc-Dirac operator. The
absence of small eigenvalues simplifies matters considerably.

Since the geometric family pλ! E admits a generalized taming it follows that
index(pλ! E) = 0. Hence we can also choose a taming (pλ! E)t. The latter choice
together with the generalized taming induce a generalized boundary taming of the
family pλ! E× [0, 1] over B. The index theorem [19, Theorem 2.2.18] can be extended
to generalized boundary tamed families (by copying the proof) and gives:

Lemma 3.13. — The difference of η-forms η((pλ! E)t)−η(pλ! Et) is closed. Its de Rham
cohomology class satisfies

[η((pλ! E)t)− η(pλ! Et)] ∈ chdR(K(B)).

3.2.7. — We now show that p̂! : G(W )→ K̂(B) passes through the equivalence rela-
tion ∼. Since p̂! is additive it suffices by Lemma 2.13 to show the following assertion.

Lemma 3.14. — If ( E, ρ) is paired with ( Ẽ, ρ̃), then p̂!( E, ρ) = p̂!( Ẽ, ρ̃).

Proof. — Let ( EtW Ẽ
op

)t be the taming which induces the relation between the two
cycles, i.e. ρ− ρ̃ = η

Ä
( E tW Ẽ

op
)t
ä
. In view of the discussion in 3.2.6 we can choose

a taming pλ! ( E t Ẽ
op

)t.

[pλ! E, 0]− [pλ! Ẽ, 0] = [pλ! ( E tW Ẽ
op

), 0] = a
Ä
η
Ä
pλ! ( E tW Ẽ

op
)t
ää
.

By Proposition 2.20 and Lemma 3.13 we can replace the taming by the generalized
taming and still get

[pλ! E, 0]− [pλ! Ẽ, 0] = a
Ä
η
Ä
pλ! ( E tW Ẽ

op
)t
ää
.

For sufficiently small λ > 0 we thus get

p̂!( E, ρ)− p̂!( Ẽ, ρ̃) = a
Ä
η
Ä
pλ! ( E tW Ẽ

op
)t
ää
−
∫
W/B

Âc(o) ∧ (ρ− ρ̃)

+Ω̃(λ, E)− Ω̃(λ, Ẽ)).

We now go to the limit λ→ 0 and use Theorem 3.12 in order to get

p̂!( E, ρ)− p̂!( Ẽ, ρ̃) = a

Ç∫
W/B

Âc(o) ∧ η
Ä
( E tW Ẽ

op
)t
äå

= −
∫
W/B

Âc(o) ∧ (ρ− ρ̃) = 0.
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We let p̂! : K̂(W ) → K̂(B) denote the map induced by the construction (17).
Though not indicated in the notation until now this map may depend on the choice
of the representative of the smooth K-orientation o (later in Lemma 3.17 we will see
that it only depends on the smooth K-orientation).

3.2.8. — Let p : W → B be a proper submersion with closed fibres with a smooth
K-orientation represented by o. We now have constructed a homomorphism

p̂! : K̂(W )→ K̂(B).

In the present paragraph we study the compatibilty of this construction with the
curvature map R : K̂ → Ωd=0.

Definition 3.15. — We define the integration of forms po! : Ω(W )→ Ω(B) by

po! (ω) =

∫
W/B

(Âc(o)− dσ(o)) ∧ ω.

Since Âc(o)− dσ(o) is closed we also have a factorization

po! : Ω(W )/im(d)→ Ω(B)/im(d).

Lemma 3.16. — For x ∈ K̂(W ) we have R(p̂!(x)) = po! (R(x)).

Proof. — Let x = ( E, ρ). We insert the definitions, R(x) = Ω( E) − dρ, and (16) in
the marked step.

R(p̂!(x)) = Ω(pλ! E)− d(

∫
W/B

Âc(o) ∧ ρ+ Ω̃(λ, E) +

∫
W/B

σ(o) ∧R(x))

!
= Ω(pλ! E)−

∫
W/B

Âc(o) ∧ dρ+

∫
W/B

Âc(o) ∧ Ω( E)− Ω(pλ! E)−
∫
W/B

dσ(o) ∧R(x)

=

∫
W/B

(Âc(o)− dσ(o)) ∧R(x) = po! (R(x)).

3.2.9. — Our constructions of the homomorphisms

p̂! : K̂(W )→ K̂(B), po! : Ω(W )→ Ω(B)

involve an explicit choice of a representative o = (gT
vp, Thp, ∇̃, σ) of the smooth

K-orientation lifting the given topological K-orientation of p. In this paragraph we
show:

Lemma 3.17. — The homomorphisms p̂! : K̂(W ) → K̂(B) and po! : Ω(W ) → Ω(B)

only depend on the smooth K-orientation represented by o.
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Proof. — Let ok := (gT
vp

k , Thk p, ∇̃k, σk), k = 0, 1 be two representatives of a smooth

K-orientation. Then we have σ1 − σ0 =
˜̂
Ac(∇̃1, ∇̃0). For the moment we indicate

by a superscript p̂k! which representative of the smooth K-orientation is used in the
definition. Let ω ∈ Ω(W ). Then using (12) we get

po1

! (ω)− po0

! (ω) =

∫
W/B

(Âc(o1)− Âc(o0)− d(σ1 − σ0)) ∧ ω

=

∫
W/B

(Âc(∇̃1)− Âc(∇̃0)− d ˜̂
Ac(∇̃1, ∇̃0)) ∧ ω = 0.

We now consider the projection p : [0, 1]×W → [0, 1]×B with the induced topological
K-orientation. It can be refined to a smooth K-orientation o which restricts to ok at
{k} × B. Let q : [0, 1] ×W → W be the projection and x ∈ K̂(W ). Furthermore let
ik : B → {k} × B → [0, 1] × B be the embeddings. The following chain of equalities
follows from the homotopy formula Lemma 2.22, the curvature formula Lemma 3.16,
Stokes’ theorem and the definition of ˜̂

Ac(∇̃1, ∇̃0), and finally from the fact that
o0 ∼ o1.

p̂1
! (x)− p̂0

! (x) = i∗1p̂!q
∗(x)− i∗0p̂!q

∗(x) = a

Ç∫
[0,1]×B/B

R(p̂!q
∗x)

å
= a

Ç∫
[0,1]×B/B

po!R(q∗(x))

å
= a

Ç∫
[0,1]×B/B

po! q
∗(R(x))

å
= a

Ç∫
[0,1]×B/B

∫
[0,1]×W/[0,1]×B

(Âc(o)− dσ(o)) ∧ q∗R(x)

å
= a

Ç∫
W/B

[

∫
[0,1]×W/W

(Âc(o)− dσ(o))] ∧R(x)

å
= a

Ç∫
W/B

[
˜̂
Ac(∇̃1, ∇̃0)− (σ(o1)− σ(o0))] ∧R(x)

å
= 0.

3.2.10. — Let p : W → B be a proper submersion with closed fibres with a topological
K-orientation. We choose a smooth K-orientation which refines the topological K-
orientation. In this case we say that p is smoothly K-oriented.

Definition 3.18. — We define the push-forward p̂! : K̂(W ) → K̂(B) to be the map
induced by (17) for some choice of a representative of the smooth K-orientation

We also have well-defined maps

po! : Ω(W )→ Ω(B), po! : Ω(W )/im(d)→ Ω(B)/im(d)

given by integration of forms along the fibres. Let us state the result about the com-
patibility of p̂! with the structure maps of smooth K-theory as follows.
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Proposition 3.19. — The following diagrams commute:

(18)

K(W )
chdR−−−−→ Ω(W )/im(d)

a−−−−→ K̂(W )
I−−−−→ K(W )yp!

ypo! yp̂!

yp!

K(B)
chdR−−−−→ Ω(B)/im(d)

a−−−−→ K̂(B)
I−−−−→ K(B)

(19)

K̂(W )
R−−−−→ Ωd=0(W )yp̂!

ypo!
K̂(B)

R−−−−→ Ωd=0(B).

Proof. — The maps between the topological K-groups are the usual push-forward
maps defined by the K-orientation of p. The other two are defined above. The square
(19) commutes by Lemma 3.16. The right square of (18) commutes because we have
the well-known fact from index theory

index(p!( E)) = p!(index( E)).

Let ω ∈ Ω(W )/im(d). Then we have

p̂!(a(ω)) = [∅,
∫
W/B

σ(o) ∧ dω −
∫
W/B

Âc(o) ∧ ω]

= [∅,−
∫
W/B

(Âc(o)− dσ(o)) ∧ ω] = a (p!(ω)) .

This shows that the middle square in (18) commutes. Finally, the commutativity of
the left square in (18) is a consequence of the Chern character version of the family
index theorem

chdR(p!(x)) =

∫
W/B

Âc(T vp) ∧ chdR(x), x ∈ K(W ).

If f : B′ → B is a smooth map then we consider the Cartesian diagram

W ′
F−−−−→ Wyp′ yp

B′
f−−−−→ B.

We equip p′ with the induced smooth K-orientation (see 3.2.4).

Lemma 3.20. — The following diagram commutes:

K̂(W )
F∗−−−−→ K̂(W ′)yp!

yp′!
K̂(B)

f∗−−−−→ K̂(B′).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



84 U. BUNKE & T. SCHICK

Proof. — This follows from Lemma 3.10.

3.3. Functoriality

3.3.1. — We now discuss the functoriality of the push-forward with respect to iter-
ated fibre bundles. Let p : W → B be as before together with a representative of a
smooth K-orientation op = (gT

vp, Thp, ∇̃p, σ(op)). Let r : B → A be another proper
submersion with closed fibres with a topological K-orientation which is refined by a
smooth K-orientation represented by or := (gT

vr, Thr, ∇̃r, σ(or)).
We can consider the geometric family W := (W → B, gT

vp, Thp, Sc(T vp)) and
apply the construction 3.2.2 in order to define the geometric family rλ! ( W ) over A.
The underlying submersion of the family is q := r ◦p : W → A. Its vertical bundle has
a metric gT

vq
λ and a horizontal distribution Thq. The topological Spinc-structures of

T vp and T vr induce a topological Spinc-structure on T vq = T vp⊕p∗T vr. The family
of Clifford bundles of p! W is the spinor bundle associated to this Spinc-structure.

In order to understand how the connection ∇̃λq behaves as λ → 0 we choose local
spin structures on T vp and T vr. Then we write Sc(T vp) ∼= S(T vp)⊗Lp and Sc(T vr) ∼=
S(T vr) ⊗ Lr for one-dimensional twisting bundles with connection Lp, Lr. The two
local spin structures induce a local spin structure on T vq ∼= T vp ⊕ p∗T vr. We get
Sc(T vq) ∼= S(T vq) ⊗ Lq with Lq := Lp ⊗ p∗Lr. The connection ∇λ,Tvqq converges
as λ → 0. Moreover, the twisting connection on Lq does not depend on λ at all.
Since ∇λ,Tvqq and ∇Lq determine ∇̃λq (see 3.1.5) we conclude that the connection ∇̃λq
converges as λ→ 0. We introduce the following notation for this adiabatic limit:

∇̃adia := lim λ→0∇̃λq .

3.3.2. — We keep the situation described in 3.3.1.

Definition 3.21. — We define the composite oλq := or ◦λ op of the representatives of
smooth K-orientations of p and r by

oλq := (gT
vq

λ , Thq, ∇̃λq , σ(oλq )),

where

σ(oλq ) := σ(op) ∧ p∗Âc(or) + Âc(op) ∧ p∗σ(or)− ˜̂
Ac(∇̃adia, ∇̃λq )− dσ(op) ∧ p∗σ(or).

Lemma 3.22. — This composition of representatives of smooth K̂-orientations pre-
serves equivalence and induces a well-defined composition of smooth K-orientations
which is independent of λ.

Proof. — We first show that oλq is independent of λ. In view of 3.1.9 for λ0 < λ1 we

must show that σ(oλ1
q )−σ(oλ0

q ) =
˜̂
Ac(∇̃λ1

q , ∇̃λ0
q ). In fact, inserting the definitions and
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using (13) and (14) we have

σ(oλ1
q )− σ(oλ0

q ) = − ˜̂
Ac(∇̃adia, ∇̃λ1

q ) +
˜̂
Ac(∇̃adia, ∇̃λ0

q ) =
˜̂
Ac(∇̃λ1

q , ∇̃λ0
q ).

Let us now take another representative o′p. The following equalities hold in the
limit λ→ 0.

σ(oq)− σ(o′q) = (σ(op)− σ(o′p)) ∧ p∗Âc(or)

+ (Âc(op)− Âc(o′p)) ∧ p∗σ(or)− d(σ(op)− σ(o′p)) ∧ p∗σ(or)

=
˜̂
Ac(∇̃p, ∇̃′p) ∧ p∗Âc(or)

+ (Âc(∇̃p)− Âc(∇̃′p)− d
˜̂
Ac(∇̃p, ∇̃′p)) ∧ p∗σ(or)

=
˜̂
Ac(∇̃adia

q , ∇̃′adia
q ).

The last equality uses (12) and that in the adiabatic limit

(20) Âc(∇̃adia
q ) = Âc(∇̃p) ∧ p∗Âc(∇r),

which implies a corresponding formula for the adiabatic limit of transgressions,
˜̂
Ac(∇̃adia

q , ∇̃′adia
q ) =

˜̂
Ac(∇̃p, ∇̃′p) ∧ p∗Âc(∇r).

Next we consider the effect of changing the representative or to the equivalent one
o′r. We compute in the adiabatic limit

σ(oq)− σ(o′q)

= σ(op) ∧ (p∗Âc(or)− p∗Âc(o′r)) + (Âc(op)− dσ(op)) ∧ p∗(σ(or)− σ(o′r))

= σ(op) ∧ dp∗ ˜̂
Ac(∇̃r, ∇̃′r) + (Âc(op)− dσ(op)) ∧ p∗ ˜̂

Ac(∇̃r, ∇̃′r)

= Âc(op) ∧ p∗ ˜̂
Ac(∇̃r, ∇̃′r) =

˜̂
Ac(∇̃adia

q , ∇̃′adia
q ).

In the last equality we have used again (20) and the corresponding equality
˜̂
Ac(∇̃adia

q , ∇̃′adia
q ) = Âc(op) ∧ p∗ ˜̂

Ac(∇̃r, ∇̃′r).

3.3.3. — We consider the composition of proper K-oriented submersions

W

q

99
p // B

r // A

with representatives of smooth K-orientations op of p and or of r. We let oq := or ◦op
be the composition. These choices define push-forwards p̂!, r̂! and q̂! in smooth K-
theory.

Theorem 3.23. — We have the equality of homomorphisms K̂(W )→ K̂(A)

q̂! = r̂! ◦ p̂!.
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Proof. — We calculate the push-forwards and the composition of the K-orientations
using the parameter λ = 1 (though we do not indicate this in the notation). We take
a class [ E, ρ] ∈ K̂(W ). The following equality holds since λ = 1:

q! E = r!(p! E).

So we must show that∫
W/A

Âc(oq) ∧ ρ+ Ω̃(q, 1, E) +

∫
W/A

σ(oq) ∧R([ E, ρ])(21)

≡
∫
B/A

Âc(or) ∧
ñ∫

W/B

Âc(op) ∧ ρ+ Ω̃(p, 1, E) +

∫
W/B

σ(op) ∧R([ E, ρ])

ô
+Ω̃(r, 1, p! E) +

∫
B/A

σ(or) ∧R(p![ E, ρ]),

where ≡ means equality modulo im(d) +chdR(K(A)). The form Ω(q, 1, E) is given by
(15). Since in the present paragraph we consider these transgression forms for various
bundles we have included the projection q as an argument.

By Proposition 3.19 we have

R(p̂![ E, ρ]) =

∫
W/B

(Âc(op)− dσ(op)) ∧R([ E, ρ]).

Next we observe that

(22) Ω̃(q, 1, E) ≡ Ω̃(r, 1, p! E)+

∫
W/A

˜̂
Ac(∇̃adia, ∇̃q)∧Ω( E)+

∫
B/A

Âc(or)∧Ω̃(p, 1, E),

(where ≡ means equality up to im(d)). To see this we consider the two-parameter
family rλ! ◦ p

µ
! ( E), λ, µ > 0, of geometric families. There is a natural geometric fam-

ily F over (0, 1]2 × A which restricts to rλ! ◦ p
µ
! ( E) on {(λ, µ)} × A (see 3.2.2 for

the one-parameter case). Note that the local index form Ω( F ) extends by continu-
ity to [0, 1]2 × A. If P : [0, 1] ↪→ [0, 1]2 is a path, then one can form the integral∫
P×A/A Ω( F |P×A), the transgression of the local index form of rλ! ◦ p

µ
! ( E) along the

path P . The following square indicates four paths in the (λ, µ)-plane. The arrows are
labeled by the evaluations of Ω( F ) (which follow from the adiabatic limit formula
16), and their integrals, the corresponding transgression forms:

(0, 1)
Ω̃(r,1,p! E)

Ω(rλ! ◦p!( E))

// (1, 1)

(0, 0)

∫
B/A

Âc(or)∧Ω(pµ
!

E)
∫
B/A

Âc(or)∧Ω̃(p,1, E)

OO

∫
W/A

Âc(or◦λop)∧Ω( E)∫
W/A

˜̂
Ac(∇̃q,∇̃adia)∧Ω( E)

// (1, 0).

Ω̃(q,1, E)Ω(r!◦pµ! ( E))

OO
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Note the equality r! ◦pµ! ( E) = qµ! ( E) which is relevant for the right vertical path. Also
note that for the lower horizontal path that , as µ → 0, the fibres of E are scaled to
zero, whereas the fibres of p are scaled by λ. The latter is exactly the effect of the
scaled composition or ◦λ op of orientations defined in 3.3.1, explaining its appearence
in the above formula. The equation (22) follows since the transgression is additive
under composition of paths, and since the transgression along a closed contractible
path gives an exact form.

We now insert Definition 3.21 of σ(oq) in order to get∫
W/A

σ(oq) ∧R([ E, ρ])

=

∫
W/A

î
σ(op) ∧ p∗Âc(or) + Âc(op) ∧ p∗σ(or)

−dσ(op) ∧ p∗σ(or)− ˜̂
Ac(∇̃adia, ∇̃q)

]
∧R([ E, ρ])

=

∫
W/A

î
σ(op) ∧ p∗Âc(or) + Âc(op) ∧ p∗σ(or)− dσ(or) ∧ p∗σ(or)

ó
∧R([ E, ρ])

−
∫
W/A

˜̂
Ac(∇̃adia, ∇̃q) ∧ Ω( E) +

∫
W/A

˜̂
Ac(∇̃adia, ∇̃q) ∧ dρ

=

∫
W/A

î
σ(op) ∧ p∗Âc(or) + Âc(op) ∧ p∗σ(or)− dσ(op) ∧ p∗σ(or)

ó
∧R([ E, ρ])

−
∫
W/A

˜̂
Ac(∇̃adia, ∇̃q) ∧ Ω( E) +

∫
W/A

Ä
Âc(op) ∧ p∗Âc(or)− Âc(oq)

ä
∧ ρ.(23)

We insert (23) and (22) into the left-hand side of (21).∫
W/A

Âc(oq) ∧ ρ+ Ω̃(q, 1, E) +

∫
W/A

σ(oq) ∧R([ E, ρ])

≡
∫
W/A

Âc(oq) ∧ ρ

+ Ω̃(r, 1, p! E) +

∫
W/A

˜̂
Ac(∇̃adia, ∇̃q) ∧ Ω( E) +

∫
B/A

Âc(or) ∧ Ω̃(p, 1, E)

+

∫
W/A

î
σ(op) ∧ p∗Âc(or) + Âc(op) ∧ p∗σ(or)− dσ(op) ∧ p∗σ(or)

ó
∧R([ E, ρ])

−
∫
W/A

˜̂
Ac(∇̃adia, ∇̃q) ∧ Ω( E) +

∫
W/A

Ä
Âc(op) ∧ p∗Âc(or)− Âc(oq)

ä
∧ ρ

= Ω̃(r, 1, p! E) +

∫
B/A

Âc(or) ∧ Ω̃(p, 1, E)

+

∫
W/A

î
σ(op) ∧ p∗Âc(or) + Âc(op) ∧ p∗σ(or)− dσ(op) ∧ p∗σ(or)

ó
∧R([ E, ρ])
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+

∫
W/A

Âc(op) ∧ p∗Âc(or) ∧ ρ.

An inspection shows that this is exactly the right-hand side of (21).

4. The cup product

4.1. Definition of the product

4.1.1. — In this section we define and study the cup product

∪ : K̂(B)⊗ K̂(B)→ K̂(B).

It turns smoothK-theory into a functor on manifolds with values in Z/2Z-graded rings
and into a multiplicative extension of the pair (K, chR) in the sense of Definition 1.2.

4.1.2. — Let E and F be geometric families over B. The formula for the product
involves the product E ×B F of geometric families over B. The detailed description
of the product is easy to guess, but let us employ the following trick in order to give
an alternative definition.

Let p : F → B be the proper submersion with closed fibres underlying F . Let
us for the moment assume that the vertical metric, the horizontal distribution, and
the orientation of p are complemented by a topological Spinc-structure together with
a Spinc-connection ∇̃ as in 3.2.1. The Dirac bundle V of F has the form V ∼=
W⊗Sc(T vp) for a twisting bundleW with a hermitean metric and unitary connection
(and Z/2Z-grading in the even case), which is uniquely determined up to isomorphism.
Let p∗ E ⊗W denote the geometric family which is obtained from p∗ E by twisting
its Dirac bundle with δ∗W , where δ : E ×B F → F denotes the underlying proper
submersion with closed fibres of p∗ E. Then we have

E×B F ∼= p!(p
∗ E⊗W ).

This description may help to understand the meaning of the adiabatic deformation
which blows up F , which in this notation is given by pλ! (p∗ E⊗W ).

In the description of the product of geometric families we could interchange the
roles of E and F .

If the vertical bundle of E does not have a global Spinc-structure, then it has at
least a local one. In this case the description above again gives a complete description
of the local geometry of E×B F .

4.1.3. — We now proceed to the definition of the product in terms of cycles. In
order to write down the formula we assume that the cycles ( E, ρ) and ( F , θ) are
homogeneous of degree e and f , respectively.
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Definition 4.1. — We define

( E, ρ) ∪ ( F , θ) := [ E×B F , (−1)eΩ( E) ∧ θ + ρ ∧ Ω( F )− (−1)edρ ∧ θ].

Proposition 4.2. — The product is well-defined. It turns B 7→ K̂(B) into a functor
from smooth manifolds to unital graded-commutative rings.

Proof. — We first show that this product is bilinear and compatible with the equiva-
lence relation ∼ (2.10). The product is obviously biadditive and natural with respect
to pull-backs along maps B′ → B. We now show that the product preserves the equiv-
alence relation in the first argument. Assume that E admits a taming Et. Then we
have ( E, ρ) ∼ (∅, ρ− η( Et)). Using the latter representative we get

(∅, ρ− η( Et)) ∪ ( F , θ) = [∅, (ρ− η( Et)) ∧ Ω( F )− (−1)edρ ∧ θ + (−1)edη( Et) ∧ θ]
= [∅, ρ ∧ Ω( F ) + (−1)eΩ( E) ∧ θ − (−1)edρ ∧ θ − η( Et) ∧ Ω( F )].

On the other hand, similar to in 3.2.6, the taming Et induces a generalized taming
( E×B F )t. Using Lemma 3.13 and argueing as in the proof of Lemma 3.14 we get

[ E×B F , (−1)eΩ( E) ∧ θ + ρ ∧ Ω( F )− (−1)edρ ∧ σ]

= [∅, (−1)eΩ( E) ∧ θ + ρ ∧ Ω( F )− (−1)edρ ∧ σ − η(( E×B F )t)].

It suffices to show that

(24) η( Et) ∧ Ω( F )− η(( E×B F )t) ∈ im(chdR).

We will actually show that this difference is exact.
We first consider the adiabatic limit in which we blow up the metric of F . We get

from Theorem 3.12

(25) lim adiaη(( E×B F )t) = η( Et) ∧ Ω( F ).

In order to see this we use that E×B F ∼= p!(p
∗ E⊗W ) (see 4.1.2), where p : F → B

and W → F is the twisting bundle of this family. The taming Et induces a taming
p∗ Et, and hence a taming (p∗ E ⊗ W )t. It follows from standard properties of the
induced superconnection on a tensor product bundle (alternatively one can use the
special case of Theorem 3.12 where the second fibration has zero-dimensional fibres)
that η(p∗ E⊗W )t = p∗η( Et) ∧ ch(∇W ). From Theorem 3.12 we get (∇̃ is associated
to p)

lim adiaη(( E×B F )t) = lim λ→0η(pλ! (p∗ E⊗W )t)

= η( Et) ∧
Ç∫

F/B

Âc(∇̃) ∧ ch(∇W )

å
= η( Et) ∧ Ω( F ).

As in 3.2.2 we now let Gt be the tamed family over (0,∞) × B with underlying
projection r : (0,∞) × E ×B F → (0,∞) × B which restricts to pλ! (p∗ E ⊗ W )t on
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{λ} × B. Then we have dη( Gt) = Ω( G). Using the formulas for ∇Tvr given in [7,
Prop. 10.2] we observe that i∂H

λ
R∇

Tvr

= 0, where ∂Hλ is a horizontal lift of ∂λ. This
implies that i∂λdη( Gt) = i∂λΩ( G) = 0. We get

η(pλ! (p∗ E⊗W )t)− η(p1
! (p∗ E⊗W )t) = d

∫
[λ,1]×B/B

η( Gt).

The exactness of the difference (24) now follows by taking the limit λ → 0 and the
fact that the range of d is closed since lim λ→0η(pλ! (p∗ E ⊗W )t) = η( Et) ∧ Ω( F ) by
(25) and η(p1

! (p∗ E⊗W )t) = η(( E×B F )t) by construction.
In order to avoid repeating this argument for the second argument we show that

the product is graded commutative. Note that E ×B F ∼= F ×B E except if both
families are odd, in which case E×B F ∼= ( F ×B E)op

[ E, ρ] ∪ [ F , θ] = [ E×B F , (−1)eΩ( E) ∧ θ + ρ ∧ Ω( F )− (−1)edρ ∧ θ]

= [(−1)ef F ×B E, (−1)e+e(f−1)θ ∧ Ω( E) + (−1)f(e−1)Ω( F ) ∧ ρ− ρ ∧ dθ]

= [(−1)ef F ×B E, (−1)efθ ∧ Ω( E) + (−1)ef (−1)fΩ( F ) ∧ ρ− (−1)ef (−1)fdθ ∧ ρ]

= (−1)ef [ F , θ] ∪ [ E, ρ].

4.1.4. — We now have a well-defined Z/2Z-graded commutative product

∪ : K̂(B)⊗ K̂(B)→ K̂(B).

We show next that it is associative. First of all observe that the fibre product of
geometric families is associative. Let e, f, g be the parities of the homogeneous classes
[ E, ρ], [ F , θ], and [ G, κ].

([ E, ρ] ∪ [ F , θ]) ∪ [ G, κ]

= [ E×B F , (−1)eΩ( E) ∧ θ + ρ ∧ Ω( F )− (−1)edρ ∧ θ] ∪ [ G, κ]

= [ E×B F ×B G, ((−1)eΩ( E) ∧ θ + ρ ∧ Ω( F )− (−1)edρ ∧ θ) ∧ Ω( G)

+(−1)e+fΩ( E×B F ) ∧ κ
−(−1)e+fd((−1)eΩ( E) ∧ θ + ρ ∧ Ω( F )− (−1)edρ ∧ θ) ∧ κ]

= [ E×B F ×B G, (−1)eΩ( E) ∧ θ ∧ Ω( G) + ρ ∧ Ω( F ) ∧ Ω( G)

−(−1)edρ ∧ θ ∧ Ω( G) + (−1)e+fΩ( E) ∧ Ω( F ) ∧ κ− (−1)e+fΩ( E) ∧ dθ ∧ κ
−(−1)e+fdρ ∧ Ω( F ) ∧ κ+ (−1)e+fdρ ∧ dθ ∧ κ]
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On the other hand

[ E, ρ]× ([ F , θ]× [ G, κ])

= [ E, ρ]× [ F ×B G, (−1)fΩ( F ) ∧ κ+ θ ∧ Ω( G)− (−1)fdθ ∧ κ]

= [ E×B ∧ F ×B G, (−1)eΩ( E) ∧ ((−1)fΩ( F ) ∧ κ+ θ ∧ Ω( G)− (−1)fdθ ∧ κ)

+ρ ∧ Ω( F ×B G)− (−1)edρ ∧ ((−1)fΩ( F ) ∧ κ+ θ ∧ Ω( G)− (−1)fdθ ∧ κ)]

= [ E×B F ×B G, (−1)e+fΩ( E) ∧ Ω( F ) ∧ κ+ (−1)eΩ( E) ∧ θ ∧ Ω( G)

−(−1)e+fΩ( E) ∧ dθ ∧ κ+ ρ ∧ Ω( F ) ∧ Ω( G)− (−1)e+fdρ ∧ Ω( F ) ∧ κ
−(−1)edρ ∧ θ ∧ Ω( G) + (−1)e+fdρ ∧ dθ ∧ κ]

By an inspection we see that the two right-hand sides agree.

4.1.5. — Let us observe that the unit 1 ∈ K̂(B) is simply given by (B×C, 0), i.e. the
trivial 0-dimensional family with fibre the graded vector space C concentrated in even
degree, and with curvature form 1. The definition shows that this is actually a unit
on the level of cycles. This finishes the proof of Proposition 4.2.

4.1.6. — In this paragraph we study the compatibility of the cup product in smooth
K-theory with the cup product in topological K-theory and the wedge product of
differential forms.

Lemma 4.3. — For x, y ∈ K̂(B) we have

R(x ∪ y) = R(x) ∧R(y), I(x ∪ y) = I(x) ∪ I(y).

Furthermore, for α ∈ Ω(B)/im(d) we have

a(α) ∪ x = a(α ∧R(x)).

Proof. — Straightforward calculation using the definitions.

Corollary 4.4. — With the ∪-product smooth K-theory K̂ is a multiplicative extension
of the pair (K, chR).

4.2. Projection formula

4.2.1. — Let p : W → B be a proper submersion with closed fibres with a smooth
K-orientation represented by o. In this case we have a well-defined push-forward
p̂! : K̂(W ) → K̂(B). The explicit formula in terms of cycles is (17). The projection
formula states the compatibility of the push-forward with the ∪-product.

Proposition 4.5. — Let x ∈ K̂(W ) and y ∈ K̂(B). Then

p̂!(p
∗y ∪ x) = y ∪ p̂!(x).
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Proof. — Let x = [ F , σ] and y = [ E, ρ]. By an inspection of the constructions we
observe that the projection formula holds true on the level of geometric families

p!(p
∗ E×W F ) ∼= E×B p! F .

This implies
Ω(pλ! (p∗ E×W F )) = Ω( E) ∧ Ω(pλ! ( F )).

Consequently we have Ω̃(λ, p∗ E×W F ) = (−1)eΩ( E) ∧ Ω̃(λ, F ). Inserting the defini-
tions of the product and the push-forward we get up to exact forms

p̂!(p
∗y ∪ x)

= p̂!([p
∗ E×W F , (−1)ep∗Ω( E) ∧ σ + p∗ρ ∧ Ω( F )− (−1)ep∗dρ ∧ σ])

= [p!(p
∗ E×W F ),

∫
W/B

Âc(o) ∧ [(−1)ep∗Ω( E) ∧ σ + p∗ρ ∧ Ω( F )− (−1)ep∗dρ ∧ σ]

+

∫
W/B

σ(o) ∧R(p∗y ∪ x) + Ω̃(1, p∗ E×W F )]

= [ E×B p! F , ρ ∧
∫
W/B

Âc(o) ∧ Ω( F ) + (−1)eΩ( E) ∧
∫
W/B

Âc(o) ∧ σ

+(−1)eΩ( E) ∧ Ω̃(1, F )

−ρ ∧
∫
W/B

Âc(o) ∧ dσ + (−1)eR(y) ∧
∫
W/B

σ(o) ∧R(x)].(26)

Up to exact forms we have

ρ ∧
∫
W/B

Âc(o) ∧ Ω( F ) + (−1)eΩ( E) ∧
∫
W/B

Âc(o) ∧ σ

+(−1)eΩ( E) ∧ Ω̃(1, F )

−ρ ∧
∫
W/B

Âc(o) ∧ dσ + (−1)eR(y) ∧
∫
W/B

σ(o) ∧R(x)

= (−1)eΩ( E) ∧
Ç∫

W/B

Âc(o) ∧ σ + Ω̃(1, F ) +

∫
W/B

σ(o) ∧R(x)

å
+ρ ∧

∫
W/B

Âc(o) ∧ (Ω( F )− dσ))− (−1)edρ ∧
∫
W/B

σ(o) ∧R(x)

= (−1)eΩ( E) ∧
Ç∫

W/B

Âc(o) ∧ σ + Ω̃(1, F ) +

∫
W/B

σ(o) ∧R(x)

å
+ρ ∧

∫
W/B

(Âc(o)− dσ(o)) ∧R(x)

= (−1)eΩ( E) ∧
Ç∫

W/B

Âc(o) ∧ σ + Ω̃(1, F ) +

∫
W/B

σ(o) ∧R(x)

å
+ρ ∧R(p̂!x).
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Thus the form component of (26) is exactly the one needed for the product y ∪
p!(x).

4.3. Suspension

4.3.1. — We consider the projection pr2 : S1 × B → B. The goal of this subsection
is to verify the relation

(p̂r2)! ◦ pr∗2 = 0

which is an important ingredient in the uniqueness result Theorem 1.4.

4.3.2. — The projection pr2 fits into the Cartesian diagram

S1 ×B
pr1 //

pr2

��

S1

p

��
B

r // ∗.

We choose the metric gTS
1

of unit volume and the bounding spin structure on TS1.
This spin structure induces a Spinc structure on TS1 together with the connection
∇̃. In this way we get a representative o of a smooth K-orientation of p. By pull-back
we get the representative r∗o of a smooth K-orientation of pr2 which is used to define
(p̂r2)!.

4.3.3. — Using the projection formula Proposition 4.5 we get for x ∈ K̂(B)

(p̂r2)!(pr
∗
2(x)) = (p̂r2)!(pr

∗
2(x) ∪ 1) = x ∪ (p̂r2)!1.

Using the compatibility of the push-forward with Cartesian diagrams Lemma 3.20 we
get

(p̂r2)!1 = (p̂r2)!(pr
∗
1(1)) = r∗p̂!(1).

We let S1 denote the geometric family over ∗ given by p : S1 → ∗ with the geometry
described above. Since S1 has the bounding Spin-structure the Dirac operator is
invertible and has a symmetric spectrum. The family S1 therefore has a canonical
taming S1

t by the zero smoothing operator, and we have η( S1
t ) = 0. This implies

p̂!(1) = [ S1, 0] = [∅, η( S1
t )] = [∅, 0] = 0.

Corollary 4.6. — We have (p̂r2)! ◦ pr∗2 = 0.
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5. Constructions of natural smooth K-theory classes

5.1. Calculations

5.1.1.

Lemma 5.1. — We have

K̂∗(∗) ∼=

{
Z ∗ = 0

R/Z ∗ = 1.

Proof. — We use the exact sequence given by Proposition 2.20. The assertion follows
from the obvious identities

K̂0(∗) ∼= K0(∗) ∼= Z, K̂1(∗) ∼= Ωev(∗)/chdR(K0(∗)) ∼= R/Z.

5.1.2.

Lemma 5.2. — There are exact sequences

0→ R/Z→ K̂0(S1) → Z→ 0

0→ C∞(S1)/Z→ K̂1(S1) → Z→ 0.

Proof. — These assertions again follow from Proposition 2.20 and the identifications

K0(S1) ∼= Z, K1(S1) ∼= Z, Ωev(S1)/chdR(K0(S1)) ∼= C∞(S1)/Z.

5.1.3. — Let V := (V, hV ,∇V , z) be a geometric Z/2Z-graded bundle over S1 such
that dim(V +) = dim(V −). Let V denote the corresponding geometric family. By
Lemma 5.2 the class [ V , 0] ∈ K̂0(S1) satisfies I([ V , 0]) = 0 and hence corresponds
to an element of R/Z. This element is calculated in the following lemma. Let φ± ∈
U(n)/conj denote the holonomies of V ± (well defined modulo conjugation in the
group U(n)).

Lemma 5.3. — We have

[ V , 0] = a

Å
1

2πi
log

det(φ+)

det(φ−)

ã
.

Proof. — We consider the map q : S1 → ∗ with the canonical K-orientation 4.3.2. By
Proposition 3.19 we have a commutative diagram

R/Z ∼−−−−→ Ω1(S1)/(im(d) + im(chdR))
a−−−−→ K̂1(S1)y=

yqo! yq̂!
R/Z ∼−−−−→ Ω0(∗)/im(chdR)

a−−−−→ K̂0(∗).
In order to determine [ V , 0] it therefore suffices to calculate q̂!([ V , 0]). Now observe
that q : S1 → ∗ is the boundary of p : D2 → ∗. Since the underlying topological
K-orientation of q is given by the bounding Spin-structure we can choose a smooth
K-orientation of p with product structure which restricts to the smooth K-orientation
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of q. The bundle V is topologically trivial. Therefore we can find a geometric bundle
W = (W,hW ,∇W , z), again with product structure, on D2 which restricts to V on
the boundary. Let W denote the corresponding geometric family over D2. Later we
prove the bordism formula Proposition 5.18. It gives

q̂!([ V , 0]) = [∅, p!R([ W , 0])] = −a
Ç∫

D2/∗
Ω2( W )

å
.

Note that

Ω2( W ) = ch2(∇W ) = ch2(∇det(W+))−ch2(∇det(W−)) =
−1

2πi

[
R∇

detW+

−Rdet∇W
− ]

.

The holonomy det(φ±) ∈ U(1) of det(V±) is equal to the integral of the curvature
of detW±:

log det(φ±) =

∫
D2

R∇
det(W±)

.

It follows that

q̂!([ V , 0]) = a

Å
1

2πi
log

det(φ+)

det(φ−)

ã
.

5.2. The smooth K-theory class of a mapping torus

5.2.1. — Let E be a geometric family over a point and consider an automorphism φ

of E. Then we can form the mapping torus T ( E, φ) := (R × E)/Z, where n ∈ Z acts
on R by x 7→ x+ n, and by φn on E. The product R× E is a Z-equivariant geometric
family over R (the pull-back of E by the projection R→ ∗). The geometric structures
descend to the quotient and turn the mapping torus T ( E, φ) into a geometric family
over S1 = R/Z. In the present subsection we study the class

[T ( E, φ), 0] ∈ K̂(S1).

In the following we will assume that the parity of E is even, and that index( E) = 0.

5.2.2. — Let dim: K0(S1) → Z be the dimension homomorphism, which in this
case is an isomorphism. Since dim I([T ( E, φ), 0]) = dim(index( E)) = 0 we have in
fact [T ( E, φ), 0] ∈ R/Z ⊂ K̂0(S1), where we consider R/Z as a subgroup of K̂0(S1)

according to Lemma 5.2.
Let V := ker(D( E)). This graded vector space is preserved by the action of φ. We

use the same symbol in order to denote the induced action on V .
We form the zero-dimensional family V := (R × V )/Z over S1. This bundle is

isomorphic to the kernel bundle of T ( E, φ). The bundle of Hilbert spaces of the family
T ( E, φ)tS1 V op has a canonical subbundle of the form V ⊕ V op. We choose the taming
(T ( E, φ) tS1 V op

)t which is induced by the isomorphism(
0 1

1 0

)
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on this subbundle. Note that [T ( E, φ), 0] = [ V , η((T ( E, φ)tS1 V op
)t)]. Since the pull-

back of (T ( E, φ) tS1 V op
)t under R → R/Z is isomorphic to a tamed family pulled

back under R→ ∗ we see that the one-form η((T ( E, φ) tS1 V op
)t) = 0.

5.2.3. — Thus it remains to evaluate [T ( E, φ), 0] = [ V , 0] ∈ R/Z. By Lemma 5.3
this number can be expressed in terms of the holonomy of the determinant bundle
det( V ). Let φ± ∈ Aut(V ±) be the induced transformations.

Proposition 5.4. — We have [T ( E, φ), 0] = [ 1
2πi log( detφ

+

detφ− )]R/Z. In particular, if D( E)

is invertible, then [T ( E, φ), 0] = 0.

5.3. The smooth K-theory class of a geometric family with kernel bundle

5.3.1. — Let E be an even-dimensional geometric family over the base B. By (Db)b∈B
we denote the associated family of Dirac operators on the family of Hilbert spaces
(Hb)b∈B . The geometry of E induces a connection ∇H on this family (the connection
part of the Bismut superconnection [7, Prop. 10.15]). We assume that dim(ker(Db))

is constant. In this case we can form a vector bundle K := ker(D). The projection of
∇H to K gives a connection ∇K . Hence we get a geometric bundle K := (K,hK ,∇K)

and an associated geometric family K (see 2.1.4).

5.3.2. — The sum E tB K op has a natural taming ( E tB K op)t which is given by(
0 u

u∗ 0

)
∈ End(Hb ⊕Kop

b ),

where u : Kb → Hb is the embedding. We thus have the following equality in K̂(B):

[ E, 0] = [ K , η(( E tB K op)t)].

5.3.3. — Under the standing assumption that dim(ker(Db)) is constant we also have
the η-form of Bismut-Cheeger ηBC( E) ∈ Ω(B) (see [14], [13], [12]). Since other
authors use ηBC( E), in the following two paragraphs we shall analyse the relation
between this and η(( E tB K op)t).

We form the geometric family [0, 1]× ( EtB K op) over B. The taming ( EtB K op)t
induces a boundary taming at {0}×( EtB K op). In index theory the boundary taming
is used to construct a perturbation of the Dirac operator which is invertible at −∞
of (−∞, 1]× ( EtB K op) (see [19] for details). On the other side {1}× ( EtB K op) we
consider APS-boundary conditions. We thus get a family of perturbed Dirac operators
on (−∞, 1]× ( EtB K op). The L2-boundary condition at {−∞}× ( EtB K op) and the
APS-boundary condition at {1}× ( EtB K op) together imply the Fredholm property
(which can be checked locally for the various boundary components or ends). In this
way the family of Dirac operators on [0, 1] × ( E tB K op) gives rise to a family of
Fredholm operators. We will denote this structure by ([0, 1]× ( E tB K op))bt,APS .
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The Chern character of its index index(([0, 1] × ( E tB K op))bt,APS) ∈ K(B) can
be calculated using the methods of local index theory.

5.3.4. — Using 2.4.10 we can choose a possibly different taming ( E tB K op)t′ such
that the corresponding index index(([0, 1] × ( E tB K op))bt′,APS) ∈ K(B) vanishes.
In this case we can extend the boundary taming to a taming index(([0, 1] × ( E tB
K op))t′,APS).

We set up the method of local index theory as usual by forming the family of
rescaled Bismut superconnections As := As(([0, 1] × ( E tB K op))t′,APS) which take
the tamings and boundary tamings into account as explained in [19, 2.2.4.3], see also
3.2.6. Invertibility of D(([0, 1]× ( E tB K op))t′,APS) ensures exponential vanishing of
the integral kernel of e−A

2
s for s→∞. The usual transgression integral expresses the

local index form Ω([0, 1] × ( E tB K op)) as a sum of contributions of the boundary
components or ends (see [19, proof of Lemma 2.2.15 ]). These contributions can be
calculated separately for each part.

Because of the product structure we have Ω([0, 1] × ( E tB K op)) = 0. The con-
tribution of the boundary {1} × ( E tB K op) is given by the proof of the APS-index
theorem of [14], [13], [12], and it is equal to ηBC( E tB K op) = ηBC( E). The second
equality holds true, since the Dirac operator for K op is trivial. The contribution of
the boundary {0} × ( E tB K op) is calculated in the proof of [19, Lemma 2.2.15] and
equal to −η(( E tB K op)t′). Therefore we have ηBC( E) = η(( E tB K op)t′) (note that
we calculate modulo exact forms). We now use 2.4.10 and a relative index theorem
(compare (28)) in order to see that

η(( E tB K op)t′)− η(( E tB K op)t) = chdR(index(([0, 1]× ( E tB K op))bt,APS)) ∈ chdR(K(B)).

Using Proposition 2.20 we get:

Corollary 5.5. — We have [ E, 0] = [ K , ηBC( E)].

5.3.5. — Let p : W → B be a proper submersion with closed fibres with a smooth
K-orientation represented by o. Let V be a geometric vector bundle over W , and let
V denote the associated geometric family. Then we can form the geometric family
E := p! V (see Definition 3.7). Assume that the kernel of the family of Dirac operators
(D( Eb))b∈B has constant dimension, forming thus the kernel bundle K . Since V has
zero-dimensional fibres we have Ω̃(1, V ) = 0. From (17) we get

p̂![ V , ρ] = [p! V ,
∫
W/B

Âc(o) ∧ ρ+

∫
W/B

σ(o) ∧ (Ω( V )− dρ)]

= [ E,
∫
W/B

Âc(o) ∧ ρ+

∫
W/B

σ(o) ∧ (Ω( V )− dρ)]
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= [ K , ηBC( E) +

∫
W/B

Âc(o) ∧ ρ+

∫
W/B

σ(o) ∧ (Ω( V )− dρ)].

5.4. A canonical K̂1-class on S1

5.4.1. — We construct in a natural way an element xS1 ∈ K̂1(S1) coming from the
Poincaré bundle over S1 × S1. Let us identify S1 ∼= R/Z. We consider the complex
line bundle L := (R × R/Z × C)/Z over R/Z × R/Z, where the Z-action is given
by n(s, t, z) = (s + n, t, exp(−2πint)z). On R × R/Z × C → R × R/Z we have the
Z-equivariant connection ∇ := d + 2πisdt with curvature R∇ = 2πids ∧ dt. This
connection descends to a connection∇L on L. The unitary line bundle with connection
L := (L, hL,∇L) gives a geometric family L over R/Z × R/Z. It represents v :=

[ L, 0] ∈ K̂0(R/Z×R/Z). Note that R(v) = 1+ds∧dt. We now consider the projection
p : R/Z×R/Z → R/Z on the second factor. This fibre bundle has a natural smooth K̂-
orientation (gT

vp, Thp, ∇̃, 0). The vertical metric and the horizontal distribution come
from the metric of S1 and the product structure. Moreover, T vp is trivialized by the
S1-action. Hence it has a preferred orientation. We take the bounding Spin-structure
on the fibres which induces the Spinc-structure and the connection ∇̃.

Definition 5.6. — We define xS1 := p̂!v ∈ K̂1(S1).

5.4.2. — We have R(xS1) = dt. Let t ∈ S1. Then we compute t∗xS1 ∈ K̂1(∗) ∼= R/Z
(identification again as in Lemma 5.2). Note that 0∗xS1 is represented by the trivial
line bundle over S1. Since we choose the bounding spin structure, the corresponding
Dirac operator is invertible. Its spectrum is symmetric and its η-invariant vanishes
(compare 4.3.3). Therefore we have 0∗xS1 = 0. It now follows by the homotopy formula
(or by an explicit computation of η-invariants), that

(27) t∗xS1 = −t.

5.4.3. — Let f : B → S1 be given. Then we define

Definition 5.7. — <f> := f∗xS1 ∈ K̂1(B).

Assume now that we have two such maps f, g : B → S1. As an interesting illustra-
tion we characterize

<f> ∪<g> ∈ K̂0(B).

It suffices to consider the universal example B = T 2 = S1 × S1. We consider the
projections pri : S

1 × S1 → S1, i = 1, 2. Let x := p̂r∗1xS1 and y := p̂r∗2xS1 . Then we
must compute x ∪ y ∈ K̂0(T 2). We identify T 2 = R/Z × R/Z with coordinates s, t.
First note that R(x∪ y) = R(x)∪R(y) = ds∧ dt. Thus the class x∪ y− v+ 1 is flat,
i.e.

x ∪ y − v + 1 ∈ K0
flat(T

2).
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In fact, since K0(T 2) is torsion-free, we have

K0
flat(T

2) ∼= Hodd(T 2)/im(chdR) = R2/Z2.

In order to determine this element we must compute its holonomies along the circles
S1× 0 and 0×S1. The holonomy of v along these circles is trivial. Since 0∗x = 0 and
0∗y = 0 we see that x × y also has trivial holonomies along these circles. Therefore
we conclude

Proposition 5.8. — We have x ∪ y = v − 1.

Now we solve our original problem. The two maps f, g induce a map f×g : B → T 2.

Corollary 5.9. — We have <f> ∪<g> = (f × g)∗v − 1.

5.5. The product of S1-valued maps and line-bundles

5.5.1. — Let f : B → S1 be a smooth map and L := (L,∇L, hL) be a hermitean
line bundle with connection over B. It gives rise to a geometric family L (see 2.1.4).
We consider the smooth K-theory classes <f> and <L> := [ L, 0] − 1. It is again
interesting to determine the class

<f> ∪<L> ∈ K̂1(B).

An explicit answer is only known in special cases.
First we compute the curvature:

R(<f> ∪<L>) = R(<f>) ∧R(<L>) = df ∧ (ec1(∇L) − 1),

where df := f∗dt and c1(∇L) := − 1
2πiR

∇L .

5.5.2. — Note that the degree-one component of the odd form R(<f>∪<L>) van-
ishes. Let now q : Σ → B be a smooth map from an oriented closed surface. Then
R(q∗(<f> ∪<L>)) = q∗R((<f> ∪<L>)) = 0. Therefore

q∗(<f> ∪<L>) ∈ K̂1
flat(Σ) ∼= Hev(Σ,R)/im(ch) ∼= R/Z⊕ R/Z,

where the first component corresponds to H0(Σ,R) and the second to H2(Σ,R). In
order to evaluate the first component we restrict to a point. Since the restriction of
<L> to a point vanishes, the first component of q∗(<f>∪<L>) vanishes. Therefore
it remains to determine the second component.

5.5.3. — Let us assume that q∗L is trivial. We choose a trivialization. Then
we can define the transgression Chern form c̃1(∇q∗L,∇triv) ∈ Ω1(Σ) such that
dc̃1(∇q∗L,∇triv) = q∗c1(∇L). By the homotopy formula we have

q∗<L> = [∅,−c̃1(∇q
∗L,∇triv)].
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In this special case we can compute

q∗(<f> ∪<L>) = q∗<f> ∪ q∗<L>

= <q∗f> ∪ q∗<L> = [∅, q∗df ∧ c̃1(∇q
∗L,∇triv)].

We see that the second component isï∫
Σ

q∗df ∧ c̃1(∇q
∗L,∇triv)

ò
R/Z

.

We do not know a good answer in the general case where q∗L is non-trivial.

5.6. A bi-invariant K̂1- class on SU(2)

5.6.1. — Let G be a group acting on the manifold M .

Definition 5.10. — A class x ∈ K̂(M) is called invariant, if g∗x = x for all x ∈ G.

5.6.2. — For example, the class xS1 ∈ K̂1(S1) defined in 5.6 is not invariant under
the action Lt, t ∈ S1, of S1 on itself. Note that R(xS1) = dt is invariant. Therefore
L∗txS1 − xS1 ∈ R/Z. In fact by (27) we have

L∗txS1 − xS1 = −t.

Since dt is the only invariant form with integral one we see that the only way to
produce an invariant smooth refinement of the generator of H1(S1,Z) ∼= Z would be
to perturb xS1 by a class b ∈ H0(S1,R/Z). But b is of course homotopy invariant,
hence L∗t b = b. We conclude that the generator of H1(S1,Z) (and also every non-
trivial multiple) does not admit any invariant lift.

5.6.3. — The situation is different for simply-connected groups. Let us consider the
following example. The group G := SU(2) × SU(2) acts on SU(2) by (g1, g2)h :=

g1hg
−1
2 . Let volSU(2) ∈ Ω3(SU(2)) denote the normalized volume form. Furthermore

we let i : ∗ → SU(2) denote the embedding of the identity.

Proposition 5.11. — For k ∈ Z there exists a unique class xSU(2)(k) ∈ K̂1(SU(2))

such that R(xSU(2)) = kvolSU(2) and i∗x = 0. This element is SU(2) × SU(2)-
invariant

Proof. — Assume, that x, y ∈ K̂1(SU(2)) satisfy R(x) = R(y). Then we have x−y ∈
K̂1

flat(SU(2)) ∼= K1
flat(S

3) ∼= R/Z. Since i∗x = i∗y = 0 we have in fact that x = y.
Therefore, if the class xSU(2)(k) exists, then it is unique.

We show the existence of an invariant class in an abstract manner. Note that
kvolSU(2) represents a class ch(Y ) for some Y ∈ K1(S3). In terms of classifying
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maps, Y for k = 1 is given by the embedding SU(2) → U(2) → U(∞) ∼= K1. We
have the exact sequence

0→ Ωev(SU(2))/im(chdR)
a→ K̂1(SU(2))

I→ K1(SU(2))→ 0.

Therefore we can choose any class y ∈ K̂1(SU(2)) such that I(y) = Y . Then the
continuous group cocycle G 3 t → c(t) = t∗y − y ∈ Ωev(SU(2))/im(chdR) represents
an element [c] ∈ H1

c (G,Ωev(SU(2))/im(chdR)).
We claim that this cohomology group is trivial. Note that Ωev(SU(2))/im(chdR) ∼=

Ω0(SU(2))/Z⊕Ω2(SU(2))/im(d). Since Ω2(SU(2))/im(d) is a real topological vector
space with a continuous action of the compact group G we immediately conclude that
H1
c (G,Ω2(SU(2))/im(d)) = 0 by the usual averaging argument. We consider the exact

sequence of G-spaces

0→ Z→ Ω0(SU(2))→ Ω0(SU(2))/Z→ 0.

Since G is simply-connected we see that taking continuous functions from G×· · ·×G
with values in these spaces, we obtain again exact sequences of Z-modules. It follows
that we have a long exact sequence in continuous cohomology. The relevant part reads

H1
c (G,Z)→ H1

c (G,Ω0(SU(2)))→ H1
c (G,Ω0(SU(2))/Z)→ H2

c (G,Z).

Since Z is discrete and G is connected we see that Hi
c(G,Z) = 0 for i ≥ 1. Therefore,

H1
c (G,Ω0(SU(2))) ∼= H1

c (G,Ω0(SU(2))/Z).

But Ω0(SU(2)) is again a continuous representation of G on a real vector space so
that H1

c (G,Ω0(SU(2))) = 0. The claim follows.
We now can choose w ∈ Ωev(SU(2))/im(chdR) such that t∗w − w = t∗y − y for

all t ∈ G. We can further assume that i∗w = i∗y by adding a constant. Then we set
xSU(2)(k) = y − w ∈ K̂1(SU(2)). This element has the required properties.

It is an interesting problem to write down an invariant cycle which represents the
class xSU(2).

5.6.4. — Note that xSU(2)(k) = kxSU(2)(1). Let Σ ⊂ SU(2) be an embedded oriented
hypersurface. Then R(xSU(2)(1))|Σ = 0 so that (xSU(2))|Σ ∈ K̂1

flat(Σ). Since xSU(2)(1)

evaluates trivially on points we have in fact

(xSU(2)(1))|Σ ∈ ker
Ä
K̂1

flat(Σ)→ K̂1
flat(∗)

ä
∼= R/Z.

This number can be determined by integration over Σ. Formally, let p : Σ → {∗}
be the projection. If we choose some smooth K-orientation, then we can ask for
p̂!(xSU(2)(1))|Σ ∈ K̂1

flat(∗) ∼= R/Z. The hypersurface Σ decomposes SU(2) in two parts
SU(2)±Σ . Let SU(2)+

Σ be the part such that ∂SU(2)+
Σ has the orientation given by Σ.

We choose a K-orientation o of the projection q : SU(2)+
Σ → ∗ which has a product

structure such that σ(o) = 0 and Âc(o) = 1. In order to get the latter equality we
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choose a Spinc-structure coming from a spin structure. The smooth K-orientation of
q induces a smooth K-orientation of p. Then q : SU(2)+

Σ → ∗ provides a zero-bordism
of Σ, and of (xSU(2)(1))|Σ. Therefore, we have by Proposition 5.18

p̂!(xSU(2)(1))|Σ =

ñ
∅,
∫
SU(2)+

Σ

R(xSU(2)(1))

ô
= −[vol(SU(2)+

Σ)]R/Z,

where [λ]R/Z denotes the class of λ ∈ R. Note that the identification K̂1
flat(∗) ∼= R/Z

is induced by a : R ∼= Ωodd(∗)/im(d) → K1
flat(∗) given by λ 7→ [∅,−λ]. This explains

the minus sign in the second equality above.

5.7. Invariant classes on homogeneous spaces

5.7.1. — Some of the arguments from the SU(2)-case generalize. Let G be a compact
connected and simply-connected Lie group and G/H be a homogenous space.

Given Y ∈ K(G/H) we can find a lift y ∈ K̂(G/H). We form the cocycle G 3 g 7→
c(g) := g∗y − y ∈ Ω(G/H)/im(chdR). Since Ω(G/H)/im(chdR) is the quotient of a
vector space by a lattice and G is connected and simply-connected we can use the
arguments as in the SU(2)-case in order to conclude thatH1

c (G,Ω(G/H)/im(chdR)) =

0. Therefore we can choose the lift y such that g∗y = y for all g ∈ G. In particular,
R(y) ∈ Ω(G/H) is now an invariant form representing ch(Y ). Note that an invariant
form is in general not determined by this condition.

5.7.2. — If we specialize to the case that G/H is symmetric, then invariant forms
exactly represent the cohomology. In this case we see that two choices of invariant
lifts y0, y1 of Y have the same curvature so that y1 − y0 ∈ K̂flat(G/H). Since the yi
also have the same index, we indeed have y1 − y0 ∈ H(G/H,R)/im(chdR). We have
thus shown the following lemma.

Lemma 5.12. — Assume that G/H is a symmetric space with G connected and simply
connected. Then every Y ∈ K(G/H) has an invariant lift y ∈ K̂(G/H) which is
uniquely determined up to H(G/H,R)/im(chdR).

5.7.3. — We can apply this in certain cases. First we write S2n+1 ∼= Spin(2n +

2)/Spin(2n+ 1), n ≥ 1. Note that K1(S2n+1) ∼= Z. Since Hev(S2n+1,R)/im(chdR) =

R/Z is concentrated in degree zero we have the following result.

Corollary 5.13. — Let n ≥ 1. For each k ∈ Z there is a unique xS2n+1(k) ∈ K̂1(S2n+1)

which is invariant, has index k ∈ Z ∼= K1(S2n+1), and evaluates trivially on points.

5.7.4. — In the even-dimensional case we write S2n ∼= Spin(2n+1)/Spin(2n), n ≥ 1.
Note that K0(S2n) ∼= Z⊕ Z and Hodd(S2n,R)/im(chdR) = 0.
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Corollary 5.14. — For each k ∈ Z there is a unique xS2n(k) ∈ K̂0(S2n) which is
invariant and has index k ∈ Z ∼= K̃0(S2n), and evaluates trivially on points

5.7.5. — We write CPn := SU(n+ 1)/S(U(1)× U(n)). Then
Hodd(CPn,R)/im(chdR) = 0. Therefore we conclude:

Lemma 5.15. — For each Y ∈ K0(CPn) there is a unique SU(n+ 1)-invariant class
yCPn(Y ) ∈ K̂0(CPn) such that I(yCPn(Y )) = Y .

5.7.6. — Let G be a connected and simply-connected Lie group. Let T ⊂ G be a
maximal torus. Then we have a G-map P : G/T ×T → G, P ([g], t) := gtg−1, where G
acts on the left-hand side by g([h], t) := ([gh], t), and by conjugation on the right-hand
side. Let x ∈ K̂∗(G) be an invariant element. It is an interesting question how P ∗x

looks like.
Let us consider the special case G = SU(2) and xSU(2) = xSU(2)(1) ∈ K̂1(SU(2)).

In this case we have T = S1 and G/T ∼= CP1. First we compute the curvature of
P ∗xSU(2). For this we must compute P ∗volSU(2) which is given by Weyl’s integration
formula. We have

P ∗volSU(2) = volCP1 ∧ 4 sin2(2πt)dt.

There is a unique class z ∈ K̂1(S1) with curvature 4 sin2(2πt)dt such that 0∗z = 0.
Furthermore, there is a unique class <L> ∈ K̂0(CP1) with curvature volCP1 which
is in fact the class <L> considered in 5.5.1 associated to the canonical line bundle L

on CP1.
The product <L>∪ z has now the same curvature as P ∗xSU(2). We conclude that

P ∗xSU(2) −<L> ∪ z ∈ Hev(CP1 × S1,R)/im(chdR).

Now note that

Hev(CP1 × S1,R)/im(chdR)

∼=
(
H0(CP1,R)⊗H0(S1,R)⊕H2(CP1,R)⊗H0(S1,R)

)
/im(chdR)

∼= R/Z⊕ R/Z.

The first component can be determined by evaluating the difference P ∗xSU(2)−<L>∪
z at a point. Since xSU(2) is trivial on points, this first component vanishes. The second
component can be determined by evaluating P ∗xSU(2)−<L>∪ z at CP1×{0}. Note
that P ∗CP1×{0}xSU(2) = 0, since P|CP1×{0} is constant. Furthermore, 0∗z = 0 implies
that <L> ∪ z|CP1×{0} = 0. Thus we have shown (using S2 ∼= CP1):

Lemma 5.16. — We have P ∗xSU(2) = xS2(1) ∪ z.
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5.8. Bordism

5.8.1. — A zero bordism of a geometric family E over B is a geometric family W
over B with boundary such that E = ∂W . The notion of a geometric family with
boundary is explained in [19]. It is important to note that in our set-up a geometric
family with boundary always has a product structure.

Proposition 5.17. — If E admits a zero bordism W , then in K̂∗(B) we have the identity

[ E, 0] = [∅,Ω( W )].

Proof. — Since E admits a zero bordism we have index( E) = 0 so that E admits
a taming Et. This taming induces a boundary taming W bt. The obstruction against
extending the boundary taming to a taming of W is index( W bt) ∈ K(B) [19, Lemma
2.2.6].

Let us assume for simplicity that E is not zero-dimensional. Otherwise we may
have to stabilize in the following assertion. Using 2.4.10 we can adjust the taming Et
such that index( W bt) = 0. At this point we employ a version of the relative index
theorem [17]

(28) index( W bt′) = index( W bt) + index(( E× [0, 1])bt),

where Et and Et′ define the boundary taming ( E× [0, 1])bt.
If index( W bt) = 0, then we can extend the boundary taming W bt to a taming

W t. We now apply the identity [19, Thm. 2.2.13]: Ω( W ) = dη( W t) − η( Et). Note
that this equality is more precise than needed since it holds on the level of forms
without factoring by im(d). We see that ( E, 0) is paired with (∅,Ω( W )). This implies
the assertion.

5.8.2. — Let p : W → B be a proper submersion from a manifold with boundary
W which restricts to a submersion q := p|∂W : V := ∂W → B. We assume that p
has a topological K-orientation and a smooth K-orientation represented by op which
refines the topological K-orientation. We assume that the geometric data of op has a
product structure near V (see [19, Section 2.1] for a detailed discussion of such product
structures). Recall op = (gT

vp, Thp, ∇̃p, σp). By the assumption of a product structure
we have a quadruple (gT

vq, Thq, ∇̃q, σq) and an isomorphism of a neighbourhood of
p|∂W : ∂W → B with the bundle E × [0, 1)

pr E→ E p→ B such that the geometric data
are related as follows.

1. T vp| E×[0,1)
∼= pr∗ET

vq⊕pr∗[0,1)T [0, 1) and gT
vp
| E×[0,1) = pr∗Eg

Tvq+pr∗[0,1)dr
2, where

r ∈ [0, 1) is the coordinate.
2. Thp| E×[0,1) = pr∗ET

hq.
3. (σp)| E×[0,1) = pr∗Eσq.
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4. The Spinc-structure on T vq and the canonical Spinc-structure on T [0, 1) induce
a Spinc-structure on the vertical bundle T v ∼= pr ET

v E⊕pr∗[0,1)T [0, 1) of E×[0, 1)

in a canonical way so that the associated spinor bundle is S(T v) = pr∗ES
c(T vq)

or pr∗ES
c(T vq) ⊗ C2 depending on the dimension of T vq. In particular, the

connection ∇̃q gives rise to a connection ∇̃prod. The product structure identifies
the restricted Spinc-structure of T vp| E×[0,1) with this product Spinc-structure
such that ∇̃| E×[0,1) becomes ∇̃prod.

From this description we deduce that

Âc(∇̃)| E×[0,1) = pr∗EÂ
c(∇̃q), Âc(op)| E×[0,1) = pr∗EÂ

c(oq).

It is now easy to see that the restriction of representatives (with product structure)
preserves equivalence and gives a well-defined restriction of smooth K-orientations.
We have the following version of bordism invariance of the push-forward in smooth
K-theory.

Proposition 5.18. — For y ∈ K̂(W ) we set x := y|V ∈ K̂(V ). Then we have

q̂!(x) = [∅, po!R(y)].

Proof. — Let y = [ E, ρ]. We compute using (17), Proposition 5.17, Stokes’ theorem,
Definition 3.15, and the adiabatic limit λ→ 0 at the marked equality

q̂!(x) = [qλ! E|V ,
∫
V/B

Âc(oq) ∧ ρ+ Ω̃(λ, E|V ) +

∫
V/B

σ(oq) ∧R(x)]

= [∅,Ω(pλ! E) +

∫
V/B

Âc(oq) ∧ ρ+ Ω̃(λ, E|V ) +

∫
V/B

σ(oq) ∧R(x)]

!
= [∅,

∫
W/B

Ä
Âc(op) ∧ Ω( E)− Âc(op) ∧ dρ− dσ(op) ∧R(y)

ä
]

= [∅,
∫
W/B

(Âc(op)− dσ(op)) ∧R(y)] = [∅, po!R(y)].

5.9. Z/kZ-invariants

5.9.1. — Here we associate to a family of Z/kZ-manifolds over B a class in K̂flat(B).

Definition 5.19. — A geometric family of Z/kZ-manifolds is a triple ( W , E, φ), where
W is a geometric family with boundary, E is a geometric family without boundary,
and φ : ∂W ∼→ k E is an isomorphism of the boundary of W with k copies of E.

We define u( W , E, φ) := [ E,− 1
kΩ( W )] ∈ K̂(B).

Lemma 5.20. — We have u( W , E, φ) ∈ K̂flat(B). This class is a k-torsion class. It
only depends on the underlying differential-topological data.
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Proof. — We first compute by 5.17

ku( W , E, φ) = k[ E,−1

k
Ω( W )] = [k E,−Ω( W )] = [∅, 0] = 0.

This implies that R(u( W , E, φ)) = 0 so that u( W , E, φ) ∈ K̂flat(B). Independence of
the geometric data is now shown by a homotopy argument.

5.9.2. — We now explain the relation of this construction to the Z/kZ-index of
Freed-Melrose [28].

Lemma 5.21. — Let B = ∗ and dim( W ) be even. Then u( W , E, φ) ∈ K̂1
flat(∗) ∼= R/Z.

Let ik : Z/kZ→ R/Z the embedding which sends 1 + kZ to 1
k . Then

ik(indexa(W̄ )) = u( W , E, φ),

where ik(indexa(W̄ )) ∈ Z/kZ is the index of the Z/kZ-manifold W̄ (the notation of
[28]).

Proof. — We recall the definition of indexa(W̄ ). In our language is can be stated as
follows. Since index( E) = 0 we can choose a taming Et. We let k copies of Et induce
the boundary taming W bt. We have

indexa(W̄ ) = index( W bt) + kZ.

In fact it is easy to see that a change of the taming Et leads to change of the index
index( W bt) by a multiple of k. We can now prove the Lemma using [19, Thm. 2.2.18].

u( W , E, φ) = [ E,−1

k
Ω( W )]=[∅,−η( Et)−

1

k
Ω( W )]

= [∅,−1

k
index( W bt)] = a

Å
1

k
index( W bt)

ã
= ik(indexa(W̄ )) ∈ R/Z.

5.10. Spinc-bordism invariants

5.10.1. — Let π be a finite group. We construct a transformation

φ : ΩSpin
c

(BU(n)×Bπ)→ K̂flat(∗).

Let f : M → BU(n)× Bπ represent [M,f ] ∈ ΩSpin
c

(BU(n)× Bπ). This map deter-
mines a covering p : M̃ → M and an n-dimensional complex vector bundle V → M .
We choose a Riemannian metric gTM and a Spinc-extension ∇̃ of the Levi-Civita
connection ∇TM . These structures determine a smooth K-orientation of t : M → ∗.
We further fix a metric hV and a connection ∇V in order to define a geometric bundle
V := (V, hV ,∇V ) and the associated geometric family V (see 2.1.4). The pull-back of
gTM and ∇̃ via M̃ →M fixes a smooth K-orientation of t̃ : M̃ → ∗.

We define the geometric families M := t! V and M̃ := t̃!(p
∗ V ) over ∗. Then we set

φ([M,f ]) := [ M̃ t∗ |π|Mop, 0] ∈ K̂flat(∗).
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By a homotopy argument we see that this class is independent of the choice of geom-
etry. We now argue that it only depends on the bordism class of [M,f ].

The construction is additive. Let now [M,f ] be zero-bordant by [W,F ]. Then we
have a zero bordism W̃ of M̃ over W . Note that the bundles also extend over the
bordism. The local index form of W̃ tB |π|W vanishes. We conclude by 5.17, that
[ M̃ tB |π| · Mop, 0] = 0.

In this construction we can replace Eπ → Bπ by any finite covering.

5.10.2. — This construction allows the following modification. Let ρ ∈ Rep(π)0 be a
virtual zero-dimensional representation of π. It defines a flat vector bundle Fρ → Bπ.
To [M,f ] we associate the geometric family Mρ := t!( L), where L is the geometric
family associated to the geometric bundle V ⊗ (pr2 ◦ f)∗Fρ. We define

φρ : ΩSpin
c

∗ (BU(n)×Bπ)→ K̂flat(∗)

such that φρ[M,f ] := [ Mρ, 0]. Here we need not to assume that π is finite. This is the
construction of ρ-invariants in the smooth K-theory picture.

The first construction is a special case of the second with the representation ρ =

C(π)⊕ (C|π|)op.

5.10.3. — We now discuss a parametrized version. Let B be some compact manifold
and X be some topological space. Then we can define the parametrized bordism group
ΩSpin

c

∗ (X/B). Its cycles are pairs (p : W → B, f : W → X) of a proper topologically
K-oriented submersion p and a continuous map f . The bordism relation is defined
correspondingly.

There is a natural transformation

φ : ΩSpin
c

∗ ((BU(n)×Bπ)/B)→ K̂∗flat(B).

It associates to x = (p : W → B, f : W → BU(n)×Bπ) the class [ W̃ tB |π| · W
op
, 0].

In this formula p : W̃ →W is again the π-covering classified by pr2 ◦ f . We define the
geometric family W using some choice of geometric structures and the twisting bundle
V , where V is classified by the first component of f . The family W̃ is obtained from
W̃ and p∗V using the lifted geometric structures. Again, the class φ(x) is flat and
independent of the choices of geometry. Using 5.17 one checks that φ passes through
the bordism relation.

Again there is the following modification. For ρ ∈ Rep(π)0 we can define

φρ : ΩSpin
c

∗ ((BU(n)×Bπ)/B)→ K̂∗flat(B).

It associates to x = (p : W → B, f : W → BU(n)×Bπ) the class [ W ρ] of the geometric
manifold W with twisting bundle V ⊗(pr2◦f)∗Fρ. These classes areK-theoretic higher
ρ-invariants. It seems promising to use this picture to draw geometric consequences
using these invariants.
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5.11. The e-invariant

5.11.1. — A framed n-manifoldM is a manifold with a trivialization TM ∼= M×Rn.
More general, a bundle of framed n-manifolds over B is a fibre bundle π : E → B with
a trivialization T vπ ∼= E × Rn.

Proposition 5.22. — A bundle of framed n-manifolds π : E → B has a canonical
smooth K-orientation which only depends on the homotopy class of the framing.

Proof. — The framing T vπ ∼= E×Rn induces a vertical Riemannian metric gT
vπ and

an isomorphism SO(T vπ) ∼= E×SO(n). Hence we get an induced vertical orientation
and a Spin-structure which determines a Spinc-structure, and thus a K-orientation
of π. We choose a horizontal distribution Thπ which gives rise to a connection ∇Tvπ.
Since our Spinc-structure comes from a Spin-structure, this connection extends nat-
urally to a Spinc-connection ∇̃ of trivial central curvature.

The trivial connection ∇triv on T vπ induced by the framing also lifts naturally to
the trivial Spinc-connection ∇̃triv. The quadruple

o := (gT
vπ, Thπ, ∇̃, ˜̂

Ac(∇̃, ∇̃triv))

defines a smooth K-orientation of π which refines the given underlying topological
K-orientation.

We claim that this orientation is independent of the choice of the vertical dis-
tribution Thπ. Indeed, if Thπ is a second horizontal distribution with associated
Spinc-connection ∇̃′, then we set

o′ := (gT
vπ, Thπ′, ∇̃′, Âc(∇̃′, ∇̃triv)).

Since
˜̂
Ac(∇̃′, ∇̃triv)− ˜̂

Ac(∇̃, ∇̃triv) =
˜̂
Ac(∇̃′, ∇̃)

we have o ∼ o′ in view of the Definition 3.1.9.
Let us now consider a second framing of T vπ which is homotopic to the first.

In induces a second trivial connection ∇̃′triv and a metric g′T
vπ. We therefore

get a connection ∇̃′ and and a second representative of a smooth K-orientation
o′ := (g′T

vπ, Thπ, ∇̃′, ˜̂
Ac(∇̃′, ∇̃′triv)). In fact, the homotopy between the framings

provides a connection ∇̃h,triv on I × E. Since this connection is flat we see that
˜̂
Ac(∇̃′triv, ∇̃triv) = 0. From

˜̂
Ac(∇̃′, ∇̃′triv) =

˜̂
Ac(∇̃′, ∇̃) +

˜̂
Ac(∇̃, ∇̃triv) +

˜̂
Ac(∇̃triv, ∇̃′triv)

we get
˜̂
Ac(∇̃′, ∇̃′triv)− ˜̂

Ac(∇̃, ∇̃triv) =
˜̂
Ac(∇̃′, ∇̃)

and thus o ∼ o′.
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Since ∇̃triv is flat we have

Âc(o)− dσ(o) = Â(∇̃)− d ˜̂
A(∇̃, ∇̃triv) = 1.

Assume that the fibre dimension n satisfies n ≥ 1. According to Lemma 3.16 the
curvature of π̂!(1) is given by

R(π̂!(1)) =

∫
E/B

(Âc(o)− dσ(o)) ∧ 1 =

∫
E/B

1 ∧ 1 = 0

Definition 5.23. — If π : E → B is a bundle of framed manifolds of fibre dimension
n ≥ 1, then we define a differential topological invariant

e(E → B) := −π̂!(1) ∈ K̂−nflat(B).

In the following we will explain in some detail that this is a higher generalization
of the Adams e-invariant. The stable homotopy groups of the sphere πn := πsn(S0)

have a decreasing filtration

· · · ⊆ π2
n ⊆ π1

n ⊆ π0
n = πn

related to the MSpin-based Adams-Novikov spectral sequence. The e-invariant is a
homomorphism

e : π1
4n−1/π

2
4n−1 → R/Z.

A closed framed 4n−1-dimensional manifoldM represents a class [M ] ∈ π4n−1 under
the Pontrjagin-Thom identification of framed bordism with stable homotopy. In the
indicated dimension π4n−1 = π1

4n−1 so that [M ] is actually a boundary of a compact
4n-dimensional Spin-manifold N . As explained in [2] (see also [36]) the e-invariant
e[M ] can be calculated as follows. One chooses a connection ∇TN on TN which
restricts to the trivial connection ∇triv on TM given by the framing. Then

e([M ]) =

ï∫
N

Â(∇)

ò
R/Z

.

We now consider q : M → ∗ as a bundle of framed manifolds over the point and
identify R/Z ∼→ K̂−4n+1

flat (∗) by [u] 7→ a(u) = [∅,−u], u ∈ R.

Lemma 5.24. — Under these identifications we have e(M → ∗) = e([M ]).

Proof. — We choose a metric gTM on M which induces the representative

o := (gTM , 0, ∇̃, ˜̂
Ac(∇̃,∇triv))

of the smooth K-orientation on q. The Spin-structure of N induces a Spinc-
structure. We choose a Riemannian metric gTN on N with a product struc-
ture near the boundary which extends gTM and induces the Spin- and Spinc-
connections ∇N and ∇̃N . Note that ˜̂

Ac(∇̃N , ∇̃TN ) extends ˜̂
Ac(∇̃, ∇̃triv). Therefore

oN := (gTN , 0, ∇̃N , ˜̂
Ac(∇̃N , ∇̃TN )) represents a smooth K-orientation of p : N → ∗
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which extends the orientation o of q : M → ∗. We can now apply the bordism formula
Proposition 5.18 in the marked step and get

e(M → ∗) = −q̂!(1)
!
= a(p!(R(1))) =

ñ∫
N/∗

(Âc(oN )− dσ(oN )) ∧ 1

ô
R/Z

=

ñ∫
N/∗

Âc(∇̃N )− d ˜̂
A(∇̃N , ∇̃TN )

ô
R/Z

=

ñ∫
N/∗

Âc(∇̃TN )

ô
R/Z

=

ñ∫
N/∗

Â(∇TN )

ô
R/Z

= e([M ]).

Using the method of Subsection 5.3 or the APS index theorem it is now easy to
reproduce the result of [2]

e([M ]) =

ï
η0(M)−

∫
M

Â(∇̃, ∇̃triv)

ò
R/Z

.

6. The Chern character and a smooth
Grothendieck-Riemann-Roch theorem

6.1. Smooth rational cohomology

6.1.1. — Let Zk−1(B) be the group of smooth singular cycles on B. The picture of
Ĥ(B,Q) as Cheeger-Simons differential characters

Ĥk(B,Q) ⊂ Hom(Zk−1(B),R/Q)

is most appropriate to define the integration map. By definition (see [24]) a homo-
morphism φ ∈ Hom(Zk−1(B),R/Q) is a differential character if and only if there exists
a form R(φ) ∈ Ωkd=0(B) such that

(29) φ(∂c) =

ï∫
c

R(φ)

ò
R/Q

for all smooth k-chains c ∈ Ck(B). It is shown in [24] that R(φ) is uniquely determined
by φ. In fact, the map R : Ĥk(B,Q) → Ωkd=0(B) is the curvature transformation in
the sense of Definition 1.1.

Assume that T is a closed oriented manifold of dimension n with a triangulation.
Then we have a map τ : Zk−1(B) → Zk−1+n(T × B). If σ : ∆k−1 → B is a smooth
singular simplex, then the triangulation of T ×∆k−1 gives rise to a k − 1 + n chain
τ(σ) : = id× σ : T ×∆→ T ×B. The integration

(p̂r2)! : Ĥ(T ×B,Q)→ Ĥ(B,Q)

is now induced by τ∗ : Hom(Zk−1+n(T ×B),R/Q)→ Hom(Zk−1(B),R/Q). Alternative
definitions of the integration (for proper oriented submersions) are given in [31], [30].
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Another construction of the integration has been given in [25], where also a projection
formula (the analog of 4.5 for smooth cohomology) is proved. This picture is used in
[35] in particular to establish functoriality.

We will also need the following bordism formula which we prove using yet an-
other characterization of the push-forward. We consider a proper oriented submersion
q : W → B such that dim(T vq) = n. Let x ∈ Ĥr(W,Q) and f : Σ → B be a smooth
map from a closed oriented manifold of dimension r − n − 1. We get a pull-back
diagram

U
F−−−−→ Wy yq

Σ
f−−−−→ B

.

The orientations of Σ and T vq induce an orientation of U . Note that f∗q̂!(x) and F ∗x
are flat classes for dimension reasons. Therefore F ∗x ∈ Hr−1(U,R/Q) and f∗q̂!(x) ∈
Hr−n−1(Σ,R/Q). The compatibility of the push-forward with Cartesian diagrams
implies the following relation in R/Q:

<f∗q̂!(x), [Σ]> = <F ∗x, [U ]>.

If we let f : Σ→ B vary, then these numbers completely characterize the push-forward
p̂!(x) ∈ Ĥr−n(B,Q). We will use this fact in the argument below.

6.1.2. — Let now p : V → B be a proper oriented submersion from a manifold with
boundary such that ∂V ∼= W and p|W = q. Assume that x ∈ Ĥ(V,Q).

Lemma 6.1. — In Ĥ(B,Q) we have the equality

q̂!(x|W ) = −a
Ç∫

V/B

R(x)

å
.

Proof. — Assume that x ∈ Ĥr(V,Q). Let f : Σ → B be as above and form the
Cartesian diagram

Z
z−−−−→ Vy yp

Σ
f−−−−→ B.

The oriented manifold Z has the boundary ∂Z ∼= U . Using (29) at the marked equality
we calculate

<f∗q̂!(x|W ), [Σ]> = <F ∗x|W , [U ]> = <(z∗x)|U , [U ]>
!
=

ï∫
Z

R(z∗x)

ò
R/Q

=

ñ∫
Σ

∫
Z/Σ

R(z∗x)

ô
R/Q

=

ñ∫
Σ

f∗
∫
V/B

R(x)

ô
R/Q

= −<f∗a
Ç∫

V/B

R(x)

å
, [Σ]>.
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This implies the assertion.

6.2. Construction of the Chern character

6.2.1. — We start by recalling the classical smooth characteristic classes of Cheeger-
Simons. A complex vector bundle V → B has Chern classes ci ∈ H2i(B,Z), i ≥ 1.
If we add the geometric data of a hermitean metric and a metric connection, then
we get the geometric bundle V = (V, hV ,∇V ). In [24] the Chern classes have been
refined to smooth integral cohomology-valued Chern classes

ĉi(V) ∈ Ĥ2i(B,Z)

(see 1.2.1 for an introduction to smooth ordinary cohomology). In particular, the
class ĉ1(V) ∈ Ĥ2(B,Z) classifies isomorphism classes of hermitean line bundles with
connection.

The embedding Z ↪→ Q induces a natural map Ĥ(B,Z) → Ĥ(B,Q), and we let
ĉQ(V) ∈ Ĥ2(B,Q) denote the image of ĉ1(V) ∈ Ĥ2(B,Z) under this map.

6.2.2. — The smooth Chern character ĉh which we will construct is a natural trans-
formation

ĉh : K̂(B)→ Ĥ(B,Q)

of smooth cohomology theories. In particular, this means that the following diagrams
commute (compare Definition 1.3)

(30) Ω(B)/im(d)
a // K̂(B)

I //

ĉh
��

K(B)

ch

��
Ω(B)/im(d)

a // Ĥ(B,Q)
I // H(B,Q)

, K̂(B)
R //

ĉh
��

Ωd=0(B)

Ĥ(B,Q)
R // Ωd=0(B)

.

In addition we require that the even and odd Chern characters are related by
suspension, which in the smooth case amounts to the commutativity of the following
diagram

(31) K̂0(S1 ×B)

(p̂r2)!

��

ĉh // Ĥev(S1 ×B,Q)

(p̂r2)!

��
K̂1(B)

ĉh // Ĥodd(B,Q)

.

The smooth K-orientation of pr2 : S1 ×B → B is as in 4.3.2.

Theorem 6.2. — There exists a unique natural transformation ĉh : K̂(B)→ Ĥ(B,Q)

such that (30) and (31) commute.

Note that naturality means that ĉh◦f∗ = f∗◦ĉh for every smooth map f : B′ → B.
The proof of this theorem occupies the remainder of the present subsection.
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6.2.3.

Proposition 6.3. — If the smooth Chern character ĉh exists, then it is unique.

Proof. — Assume that ĉh and ĉh
′
are two smooth Chern characters. Consider the

difference ∆ := ĉh− ĉh
′
. It follows from the diagrams above that ∆ factors through

an odd natural transformation

∆̄ : K(B)→ H(B,R/Q).

Indeed, the left diagram of (30) gives a factorization

K(B)→ (im : Ω(B)/im(d)→ Ĥ(B,Q)),

and the right square in (30) refines it to ∆̄.

6.2.4. — We now use the following topological fact. Let P be a space of the homotopy
type of a countable CW -complex. It represents a contravariant set-valued functor
W 7→ P (W ) := [W,P ] on the category of compact manifolds. We further consider
some abelian group V .

Lemma 6.4. — A natural transformation of functors N : P (B) → Hj(B, V ) on the
category of compact manifolds is necessarily induced by a class N ∈ Hj(P, V ).

Proof. — There exists a countable directed diagram M of compact manifolds such
that hocolim M ∼= P in the homotopy category. Hence we have a short exact sequence

0→ lim 1H( M, V )→ H(P, V )→ limH( M, V )→ 0.

If x ∈ P (P ) is the tautological class, then the pull-back of N(x) to the system M
gives an element in limH( M, V ). A preimage in H(P, V ) induces the natural trans-
formation.

In our application, P = Z×BU , and the relevant cohomology Hodd(Z×BU,R/Q)

is trivial. Therefore ∆̄ : K0(B)→ Hodd(B,R/Q) vanishes

6.2.5. — Next we observe that (p̂r2)! : K̂(S1 ×B)→ K̂(B) is surjective. In fact, we
have

(32) (p̂r2)!(pr
∗
1xS1 ∪ pr∗2(x)) = x

by the projection formula 4.5 and p̂!(xS1) = 1 for p : S1 → ∗, where x1
S ∈ K̂(S1) was

defined in 5.6. Hence (31) implies that ∆̄ : K1(B)→ Hev(B,R/Q) vanishes, too.
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6.2.6. — In view of Proposition 6.3 it remains to show the existence of the smooth
Chern character. We first construct the even part

ĉh : K̂0(B)→ Ĥev(B,Q)

using the splitting principle. We will define ĉh as a natural transformation of functors
such that the following conditions hold.

1. ĉh[ L, 0] = eĉQ(L) ∈ Ĥev(B,Q), where L is the geometric family given by a
hermitean line bundle with connection L, and ĉQ(L) ∈ Ĥ2(B,Q) is derived
from the Cheeger-Simons Chern class which classifies the isomorphism class of
L (6.2.1).

2. R ◦ ĉh = R

3. ĉh ◦ a = a

Once this is done, the resulting ĉh automatically satisfies (30). For this it suffices
to show that ch ◦ I = I ◦ ĉh. We consider the following diagram

K̂(B)

R

))
ĉh //

I

��

Ĥ(B,Q)

I

��

R // Ωd=0(B)

��
K(B)

ch // H(B,Q)
i // H(B,R)

The outer square and the right square commute. It follows from 2. that the upper
triange commutes. Since i is injective we conclude that the left square commutes, too.

6.2.7. — In the construction of the Chern character ĉh we will use the splitting
principle. If x ∈ K̂0(B), then there exists a Z/2Z-graded hermitean vector bundle
with connection V = (V, hV ,∇V ) such that x = [ V , ρ] for some ρ ∈ Ωodd(B)/im(d),
where V is the zero-dimensional geometric family with underlying Dirac bundle V.
We will call V the splitting bundle for x. Let F (V ±) → B be the bundle of full
flags on V ± and p : F (V ) := F (V +)×B F (V −)→ B. Then we have a decomposition
p∗V ± ∼= ⊕L∈I±L for some ordered finite sets I± of line bundles over F (V ). For
L ∈ I± let L denote the bundle with the induced metric and connection, and let
L be the corresponding zero-dimensional geometric family. Then we have p∗x =∑
L∈I+ [ L, 0] −

∑
L∈I− [ L, 0] + a(σ) for some σ ∈ Ωodd(F (V ))/im(d). The properties

above thus uniquely determine p∗ĉh(x).

Lemma 6.5. — The following pull-back operations are injective:

1. p∗ : H∗(B,Q)→ H∗(F (V ),Q),
2. p∗ : H∗(B,R)→ H∗(F (V ),R)

3. p∗ : H∗(B,R/Q)→ H∗(F (V ),R/Q)

4. p∗ : Ĥ∗(B,Q)→ Ĥ∗(F (V ),Q)
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5. p∗ : Ω(B)→ Ω(F (V )).

Proof. — The assertion is a classical consequence of the Leray-Hirsch theorem in
the cases 1., 2., and 3. In case 5., it follows from the fact that p is surjective and
a submersion. It remains to discuss the case 4. Let x ∈ Ĥ∗(B,Q). Assume that
p∗x = 0. Then in particular p∗R(x) = R(p∗x) = 0 so that from 5. also R(x) = 0.
Thus x ∈ H(B,R/Q). We now apply 3. and see that p∗x = 0 implies x = 0.

In view of Proposition 6.3 we see that a natural transformation ĉh : K̂0(B) →
Ĥev(B,Q) is uniquely determined by the conditions 1., 2., and 3. formulated in 6.2.6.

6.2.8.

Proposition 6.6. — There exists a natural transformation ĉh : K̂0(B) → Ĥev(B,Q)

which satisfies the conditions 1. to 3. formulated in 6.2.6.

We give the proof of this Proposition in the next couple of subsections. Let x :=

[ E, ρ] ∈ K̂0(B), and V → B be a splitting bundle for x with bundle of flags p : F (V )→
B. We choose a geometry V := (V, hV ,∇V ) and let V denote the associated geometric
family(4). In order to avoid stabilizations we can and will always assume that E has a
non-zero dimensional component. Then we have

p∗I(x) =
∑

ε∈{±1},L∈Iε
εI([ L, 0]).

We define F :=
⊔
B,ε∈{±1},L∈Iε Lε. Then we can find a taming (p∗ EtF (V ) F op)t, and

p∗x =
∑

ε∈{±1},L∈Iε
ε([ L, 0])− a(p∗ρ− η((p∗ E tF (V ) F op)t)).

We now set

p∗ĉh(x) = ĉh(p∗x) :=
∑

ε∈{±1},L∈Iε
ε exp(ĉQ(L)) + a(η((p∗ E tF (V ) F op)t))− a(p∗ρ).

This construction a priori depends on the choices of the representative of x, the
splitting bundle V → B, and the taming ( E tF (V ) F op)t.

(4) It was suggested by the referee that one should use the Chern character ĉh(V ) ∈ Ĥev(B,Q)

constructed in [24]. The Ansatz would be

ĉh(x) := ĉh(V) + η(( E tB V op)t).

In order to show that this is independent of the choice of V one would need to show an equation like

ĉh(V)− ĉh(V′) = a(η(( V op t V ′)t)).

Since after all we know that the Chern character exists this equation is true, but we do not know a
simple direct proof. Therefore we opted for the variant to give a complete and independent proof.
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6.2.9. — In this paragraph we show that this construction is independent of the
choices.

Proposition 6.7. — Assume that there exists a class z ∈ Ĥev(B,Q) such that

p∗z =
∑

ε∈{±1},L∈Iε
ε exp(ĉQ(L)) + a(η((p∗ E tF (V ) F op)t))− a(p∗ρ)

for one set of choices. Then z is determined by x ∈ K̂0(B).

Proof. — If ( E′, ρ′) is another representative of x, then we have index( E) =

index( E′). Therefore we can take the same splitting bundle for E′. The following
Lemma (together with Lemma 6.5) shows that z does not depend on the choice of
the representative of x.

Lemma 6.8. — We have

a(η((p∗ E tF (V ) F op)t)− p∗ρ) = a(η((p∗ E′ tF (V ) F op)t)− p∗ρ′)

Proof. — In fact, by Lemma 2.21 there is a taming ( E′ ∪ Eop)t such that ρ′ − ρ =

η
(
( E′ ∪ Eop)t

)
. Therefore the assertion is equivalent to

a
[
η
(
(p∗ E tF (V ) F op)t

)
− η

(
(p∗ E′ tF (V ) F op)t

)
+ p∗η

(
( E′ tF (V ) Eop)t

)]
= 0.

But this is true since this sum of η-forms represents a rational cohomology class of
the form chdR(ξ). This follows from 2.4.10 and the fact

p∗ E tF (V ) F op tF (V ) p
∗ E′op tF (V ) F tF (V ) p

∗ E′ tF (V ) p
∗ Eop

admits another taming with vanishing η-form (as in the proof of Lemma 2.11).

6.2.10. — Next we discuss what happens if we vary the splitting bundle. Thus let
V ′ → B be another Z/2Z-graded bundle which represents index( E). Let p′ : F (V ′)→
B be the associated splitting bundle.

Lemma 6.9. — Assume that we have classes c, c′ ∈ Ĥ(B,Q) such that

p∗c =
∑

ε∈{±1},L∈Iε
ε exp(ĉQ(L)) + a

(
η
(
(p∗ E tF (V ) F op)t

)
− p∗ρ

)
and

p′∗c′ =
∑

ε∈{±1},L∈I′ε
ε exp(ĉQ(L′)) + a

(
η
(
(p′∗ E tF (V ′) F ′op)t

)
− p′∗ρ

)
.

Then we have c = c′.
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Proof. — Note that the right-hand sides depend on the geometric bundles V,V′

since they depend on the induced connections on the line bundle summands. We first
discuss a special case, namely that V′ is obtained from V by stabilization, i.e. V′ =

V⊕B× (Cm⊕ (Cm)op). In this case there is a natural embedding i : F (V) ↪→ F (V′)

which is induced by extension of the flags in V by the standard flag in Cm. We can
factor p = p′ ◦ i. Furthermore, there exists subsets Sε ⊂ I ′ε of line bundles (the last
m line bundles in the natural order) and a natural bijection I ′ε ∼= Iε t Sε. If L ∈ Sε,
then i∗L is trivial with the trivial connection. We thus have

p∗(c′ − c) = a
[
i∗η
(
(p′∗ E ∪ F ′op)t

)
− η ((p∗ E ∪ F op)t)

]
It is again easy to see that this difference of η-forms represents a rational cohomology
class in the image of chdR. Therefore, p∗(c′ − c) = 0 and hence c = c′ by Lemma 6.5.

Since the bundle V represents the index of E, two choices are always stably iso-
morphic as hermitean bundles. Using the special case above we can reduce to the case
where V and V′ only differ by the connection.

We argue as follows. We have p∗R(c′ − c) = R(p∗(c′ − c)) = 0 by an explicit
computation. Therefore c′ − c ∈ Hodd(B,R/Q). Since any two connections on V can
be connected by a family we conclude that p∗(c′ − c) = 0 by a homotopy argument.
The assertion now follows.

This finishes the proof of Proposition 6.7.

6.2.11. — In order to finish the construction of the Chern character in the even case
it remains to verify the existence clause in Proposition 6.7. Let x := [ E, ρ] ∈ K̂(B) be
such that E has a non-zero dimensional component. Let V → B be a splitting bundle
and p : F (V )→ B be as above.

Lemma 6.10. — We have

z :=
∑

ε∈{±1},L∈Iε
ε exp(ĉQ(L)) + a [η ((p∗ E ∪ F op)t)− p∗ρ] ∈ im(p∗).

Proof. — We use a Mayer-Vietoris sequence argument. Let us first recall the Mayer-
Vietoris sequence for smooth rational cohomology. Let B = U∪V be an open covering
of B. Then we have the exact sequence

· · · → H(U ∩ V,R/Q)→ Ĥ(B,Q)→ Ĥ(U,Q)⊕ Ĥ(V,Q)→ Ĥ(U ∩ V,Q)→ H(B,Q)→ · · ·

which continues to the left and right by the Mayer-Vietoris sequences of H(. . . ,R/Q)

and H(. . . ,Q).
We choose a finite covering of B by contractible subsets. Let U be one of these. Note

that index( E)|U ∈ Z. Thus x|U = [U ×W, θ] for some form θ and Z/2Z-graded vector
space W . Then we have by 1. and 3. that cU : = ĉh(x|U ) = dim(W )− a(θ). This can
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be seen using the splitting bundle F (B×Cn). Moreover, p∗cU = p∗[dim(W )−a(θ)] =

z|p−1U by Proposition 6.7.
Assume now that we have already constructed cV ∈ Ĥ(V,Q) such that p∗cV =

z|p−1V , where V is a union V of these subsets. Let U be the next one in the list.
We show that we can extend cV to cV ∪U . We have (cU )|U∩V = (cV )|U∩V by the

injectivity of the pull-back p∗ : Ĥ(U ∩ V,Q) → Ĥ(p−1(U ∩ V ),Q), Lemma 6.5. The
Mayer-Vietoris sequence implies that we can extend cV by cU to U ∪ V .

6.2.12. — We now construct the odd part of the Chern character. In fact, by (31)
and (32) we are forced to define

ĉh : K̂1(B)→ Ĥodd(B,Q)

by

ĉh(x) := (p̂r2)!(ĉh(xS1 ∪ x)).

Lemma 6.11. — The diagrams (30) and (31) commute.

Proof. — The even case of (30) has been checked already. The diagram (31) commutes
by construction. The odd case of (30) follows from the Projection formula 4.5 and
the even case.

This finishes the proof of Theorem 6.2

6.3. The Chern character is a rational isomorphism and multiplicative

6.3.1. — Note that Ĥ(B,Q) is a Q-vector space, and that the sequence (1) is an
exact sequence of Q-vector spaces. The Chern character extends to a rational version

ĉhQ : K̂Q(B)→ Ĥ(B,Q),

where K̂Q(B) := K̂(B)⊗Z Q.

Proposition 6.12. — ĉhQ : K̂Q(B)→ Ĥ(B,Q) is an isomorphism.

Proof. — By (30) we have the commutative diagram

KQ(B)

chQ

��

chdR// Ω(B)/im(d)
a // K̂Q(B)

ĉhQ
��

I // KQ(B)

chQ

��

// 0

H(B,Q) // Ω(B)/im(d) // Ĥ(B,Q)
I // H(B,Q) // 0

,

whose horizontal sequences are exact. Since chQ : KQ(B) → H(B,Q) is an isomor-
phism we conclude that ĉhQ is an isomorphism by the Five Lemma.
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6.3.2. — We can extend K̂Q to a smooth cohomology theory if we define the structure
maps as follows:

1. R : K̂Q(B)→ Ωd=0(B) is the rational extension of R : K̂(B)→ Ωd=0(B).

2. I : K̂Q(B)
I⊗idQ→ K(B)Q

chQ→ H(B,Q),
3. a : Ω(B)/im(d)

a→ K̂(B)
···⊗1→ K̂Q(B).

The commutative diagrams (30) now imply:

Corollary 6.13. — The rational Chern character induces an isomorphism of smooth
cohomology theories refining the isomorphism chQ : KQ → HQ (in the sense of Defi-
nition 1.3).

6.3.3.

Proposition 6.14. — The smooth Chern character

ĉh : K̂(B)→ Ĥ(B,Q)

is a ring homomorphism.

Proof. — Since the target of ĉh is a Q-vector space it suffices to show that
ĉhQ : K̂Q(B)→ Ĥ(B,Q) is a ring homomorphism. Using that ĉhQ is an isomorphism
of smooth extensions of rational cohomology we can use the rational Chern character
in order to transport the product on K̂Q(B) to a second product ∪K on Ĥ(B,Q). It
remains to show that ∪ and ∪K coincide. Hence the following Lemma finishes the
proof of Proposition 6.14.

6.3.4.

Lemma 6.15. — There is a unique product on smooth rational cohomology.

Proof. — Assume that we have two products ∪k, k = 0, 1. We consider the bilinear
transformation B : Ĥ(B,Q)× Ĥ(B,Q)→ Ĥ(B,Q) given by

(x, y) 7→ B(x, y) := x ∪1 y − x ∪0 y.

We first consider the curvature. Since a product is compatible with the curvature (1.2,
2.) we get

R(B(x, y)) = R(x ∪1 y)−R(x ∪0 y) = R(x) ∧R(y)−R(x) ∧R(y) = 0.

Therefore, by (1) the bilinear form factors over an odd transformation

B : Ĥ(B,Q)× Ĥ(B,Q)→ H(B,R/Q).

Furthermore, for ω ∈ Ω(B)/im(d) we have by 1.2, 2.

B(a(ω), y) = a(ω) ∪1 y − a(ω) ∪0 y = a(ω ∧R(y))− a(ω ∧R(y)) = 0.
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Similarly, B(x, a(ω)) = 0. Again by (1) B has a factorization over a natural bilinear
transformation

B̄ : H(B,Q)×H(B,Q)→ H(B,R/Q).

We consider the restriction B̄p,q of B̄ to Hp(B,Q)×Hq(B,Q).
The functor from finite CW -complexes to sets

W → Hp(W,Q)×Hq(W,Q)

is represented by a product of Eilenberg MacLane spaces

P p,q := HQp ×HQq.

The spaces HQp, and hence P has the homotopy type of countable CW -complexes.
Therefore we can apply Lemma 6.4 and conclude that B̄p,q is induced by a cohomology
class b ∈ H(P p,q,R/Q). We finish the proof of Lemma 6.15 by showing that b = 0. To
this end we analyse the candidates for b and show that they vanish either for degree
reasons, or using the fact that B̄p,q is bilinear.

Consider a homomorphism of Q-vector spaces w : R/Q→ Q. It induces a transfor-
mation w∗ : H(B,R/Q)→ H(B,Q). In particular we can consider w∗b ∈ H(P p,q,Q).

1. First of all if p, q are both even, then w∗b ∈ Hodd(P p,q,,Q) vanishes since P p,q

does not have odd-degree rational cohomology at all.
2. Assume now that p, q are both odd. The odd rational cohomology of P p,q is

additively generated by the classes 1× xq and xp × 1, where xp ∈ Hp(HQp,Q)

and xq ∈ Hq(HQq,Q). It follows that

w∗b = c · xp × 1 + d · 1× xq

for some rational constants c, d. Consider odd classes up ∈ Hp(B,Q) and vq ∈
Hq(B,Q). The form of b implies that

w∗ ◦ B̄p,q(up, vq) = c · up × 1 + d · 1× vq.

This can only be bilinear if all c and d vanish. Hence b = 0.
3. Finally we consider the case that p is even and q is odd (or vice versa, q is even

and p is odd). In this case b is an even class. The even cohomology of P p,q is
additively generated by the classes xnp×1, n ≥ 0. Therefore w∗b =

∑
n≥0 cnx

n
p×1

for some rational constants cn, n ≥ 0. Let up ∈ Hp(B,Q) and vq ∈ Hq(B,Q).
Then we have

w∗ ◦ B̄p,q(up, vq) =
∑
n≥0

cn u
n
p .

This is only bilinear if cn = 0 for all n ≥ 0, hence w∗b = 0.

Since we can choose w∗ : R/Q→ Q arbitrary we conclude that b = 0.

This also finishes the proof of the Proposition 6.14.
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6.4. Riemann Roch theorem

6.4.1. — Let p : W → B be a proper submersion with a smooth K-orientation o. The
Riemann Roch theorem asserts the commutativity of a diagram

K̂(W )
ĉh−−−−→ Ĥ(W,Q)yp!

yp̂A!
K̂(B)

ĉh−−−−→ Ĥ(B,Q).

Here p̂A! is the composition of the cup product with a smooth rational cohomology

class ˆ̂
Ac(o) and the push-forward in smooth rational cohomology. The Riemann Roch

theorem refines the characteristic class version of the ordinary index theorem for
families.

We will first give the details of the definition of the push-forward p̂A! . In order to
show the Riemann Roch theorem we then show that the difference

∆ := ĉh ◦ p̂! − p̂A! ◦ ĉh

vanishes.
This is proved in several steps. First we use the compatibilites of the push-forward

with the transformations a, I, R in order to show that ∆ factors over a map

∆̄ : K(W )→ H(B,R/Q).

In the next step we show that ∆ is natural with respect to the pull-back of fibre
bundles, and that it does neither depend on the smooth nor on the topological K-
orientations of p.

We then show that ∆ vanishes in the special case that B = ∗. The argument is
based on the bordism invariance Proposition 5.18 and some calculation of rational
Spinc-bordism groups.

Finally we use the functoriality of the push-forward Proposition 3.23 in order to
reduce the case of a general B to the special case of a point.

6.4.2. — We consider a proper submersion p : W → B with closed fibres with a
smooth K-orientation represented by o = (gT

vp, Thp, ∇̃, σ). In the following we define
a refinement ˆ̂

A(o) ∈ Ĥev(W,Q) of the form Âc(o) ∈ Ωev(W ). The geometric data
of o determines a connection ∇Tvp (see 2.2.4, 3.1.3) and hence a geometric bundle
Tvp := (T vp, gT

vp,∇Tvp). According to [24] we can define Pontrjagin classes

p̂i(T
vp) ∈ Ĥ4i(W,Z), i ≥ 1.

The Spinc-structure gives rise to a hermitean line bundle L2 → W with connection
∇L2

(see 3.1.6). A choice of a local spin structure amounts to a choice of a local
square root L of L2 (this bundle was considered already in 3.1.3) such that Sc(T vp) ∼=
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S(T vp) ⊗ L as hermitean bundles with connections. We set L2 := (L2, hL
2

,∇L2

). In
particular, we have

1

2πi
R∇̃

L2

= 2c1(∇̃).

Again using [24] we get a class

ĉ1(L2) ∈ Ĥ2(W,Z)

with curvature R(ĉ1(L2)) = 2c1(∇̃).

6.4.3. — Inserting the classes p̂i(Tvp) into that Â-series Â(p1, p2, . . . ) ∈ Q[[p1, p2, . . . ]]

we can define

(33) ˆ̂
A(Tvp) := Â(p̂1(Tvp), p̂2(Tvp), . . . ) ∈ Ĥev(W,Q).

Let ĉQ(L2) ∈ Ĥ2(W,Q) denote the image of ĉ1(L2) under the natural map
Ĥ2(W,Z)→ Ĥ2(W,Q).

Definition 6.16. — We define

ˆ̂
Ac(o) :=

ˆ̂
A(Tvp) ∧ e 1

2 ĉQ(L2) ∈ Ĥev(W,Q).

Note that R(
ˆ̂
Ac(o)) = Âc(o).

Lemma 6.17. — The class(5)

ˆ̂
Ac(o)− a(σ(o)) ∈ Ĥev(W,Q)

only depends on the smooth K-orientation represented by o.

Proof. — This is a consequence of the homotopy formula Lemma 2.22. Given two
representatives o0, o1 of a smooth K-orientation we can choose a representative õ of a
smooth K-orientation on idR × p : R×W → R×B which restricts to ok on {k}×B,
k = 0, 1. The construction of the class ˆ̂

Ac(o) is compatible with pull-back. Therefore
by the definition of the transgression form 3.4 we have

ˆ̂
Ac(o1)− ˆ̂

Ac(o0) = i∗1
ˆ̂
Ac(õ)− i∗0

ˆ̂
Ac(õ) = a

ñ∫
[0,1]×W/W

R(
ˆ̂
Ac(õ))

ô
= a

[
˜̂
Ac(∇̃1, ∇̃0)

]
.

By the definition of equivalence of representatives of smooth K-orientations we have

σ(o1)− σ(o0) =
˜̂
Ac(∇̃1, ∇̃0).

Therefore
ˆ̂
Ac(o1)− a(σ(o1)) =

ˆ̂
Ac(o0)− a(σ(o0)).

(5) This class is denoted by A(p) in the abstract and in 1.1.9.
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6.4.4. — We use the class ˆ̂
Ac(o) ∈ Ĥev(W,Q) in order to define the push-forward

(34) p̂A! := p̂!([
ˆ̂
Ac(o)− a(σ(o))] ∪ . . . ) : Ĥ(W,Q)→ Ĥ(B,Q),

where p̂! : Ĥ(W,Q) → Ĥ(B,Q) is the push-forward in smooth rational cohomology
(see 6.1.1) fixed by the underlying ordinary orientation of p. By Lemma 6.17 also
p̂A! only depends to the smooth K-orientation of p and not on the choice of the
representative.

If f : B′ → B is a smooth map then we consider the pull-back diagram

W ′

p′

��

F // W

p

��
B′

f // B.

The smooth K-orientation o of p induces (see 3.2.4) a smooth K-orientation o′ of p′.
We have ˆ̂

A(o′) = F ∗
ˆ̂
A(o) and p̂′A! ◦ F ∗ = f∗ ◦ p̂A! .

6.4.5. — As in 3.3.3 we consider the composition of proper smoothly K-oriented
submersions

W

q

99
p // B

r // A .

The composition q := r ◦ p has an induced smooth K-orientation (Definition 3.21
and Lemma 3.22). In this situation we have push-forwards p̂A! , r̂

A
! and q̂A! in smooth

rational cohomology given by (34).

Lemma 6.18. — We have the equality

r̂A! ◦ p̂A! = q̂A!

of maps Ĥ(W,Q)→ Ĥ(B,Q).

Proof. — We choose representatives of smooth K-orientations op of p and or of r,
and we let oλq := op ◦λ or be the composition. We consider the class (see Definition
3.21)

ˆ̂
Ac(oλq )− a(σ(oλq )) =

ˆ̂
Ac(oλq )

− a
(
σ(op) ∧ p∗Âc(or) + Âc(op) ∧ p∗σ(or)− ˜̂

Ac(∇̃adia, ∇̃λq )− dσ(op) ∧ p∗σ(or)
)
.

By Lemma 6.17 and Lemma 3.22 this class is independent of λ. If we let λ→ 0, then
the connection ∇Tvq tends to the direct sum connection ∇Tvp⊕p∗∇Tvr. Furthermore,
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the transgression ˜̂
Ac(∇̃adia, ∇̃λq ) tends to zero. Therefore

lim λ→0[
ˆ̂
Ac(oλq )− a(σ(oλq ))]

=
ˆ̂
Ac(op) ∪ p∗ ˆ̂

Ac(or)− a
Ä
σ(op) ∧ p∗Âc(or) + Âc(op) ∧ p∗σ(or)− dσ(op) ∧ p∗σ(or)

ä
= (

ˆ̂
Ac(op)− a(σ(op))) ∪ p∗( ˆ̂

Ac(or)− a(σ(or))).

For x ∈ Ĥ(W,Q) we get, using the projection formula and the functorialty q̂! = r̂! ◦ p̂!,
for the push-forward in smooth rational cohomology

r̂A! ◦ p̂A! (x) = r̂!

([
ˆ̂
Ac(or)− a(σ(or))

]
∪ p̂!

([
ˆ̂
Ac(op)− a(σ(op))

]
∪ x
))

= q̂!

(
p∗
[

ˆ̂
Ac(or)− a(σ(or))

]
∪
[

ˆ̂
Ac(op)− a(σ(op))

]
∪ x
)

= q̂!

(
(

ˆ̂
Ac(oaq )− a(σ(oaq ))) ∪ x

)
= q̂A! (x).

6.4.6. — Recall Definition 3.18 that the smooth K-orientation determines a push-
down

p̂! : K̂(W )→ K̂(B).

We can now formulate the index theorem.

Theorem 6.19. — The following square commutes

K̂(W )
ĉh−−−−→ Ĥ(W,Q)yp̂!

yp̂A!
K̂(B)

ĉh−−−−→ Ĥ(B,Q).

Proof. — We consider the difference

∆ := ĉh ◦ p̂! − p̂A! ◦ ĉh.

It suffices to show that ∆ = 0.

6.4.7. — Let x ∈ K̂(W ).

Lemma 6.20. — We have R(∆(x)) = 0.

Proof. — This Lemma is essentially equivalent to the local index theorem. We have
by Definition 3.15 and Lemma 3.16

R(ĉh ◦ p̂!(x)) = R(p̂!(x)) = p!(R(x)) =

∫
W/B

Ä
Âc(o)− dσ(o)

ä
∧R(x).

On the other hand, since R
(

ˆ̂
Ac(o)− a(σ(o))

)
= Âc(o)− dσ(o) we get

R
Ä
p̂A! ◦ ĉh(x)

ä
=

∫
W/B

Ä
Âc(o)− dσ(o)

ä
∧R(ĉh(x)) =

∫
W/B

Ä
Âc(o)− dσ(o)

ä
∧R(x).
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Therefore R(∆(x)) = 0.

6.4.8.

Lemma 6.21. — We have I(∆(x)) = 0

Proof. — This is the usual index theorem. Indeed,

I(ĉh ◦ p̂!(x)) = ch ◦ I(p̂!(x)) =

∫
W/B

Âc(T vp) ∪ ch(I(x))

and

I
Ä
p̂A! ◦ ĉh(x)

ä
=

∫
W/B

Âc(T vp) ∪ I(ĉh(x)) =

∫
W/B

Âc(T vp) ∪ ch(I(x)).

The equality of the right-hand sides proves the Lemma. Alternatively one could ob-
serve that the Lemma is a consequence of Lemma 6.20.

6.4.9. — Let ω ∈ Ω(W )/im(d).

Lemma 6.22. — We have ∆(a(ω)) = 0.

Proof. — We have by Proposition 3.19

ĉh ◦ p̂!(a(ω)) = ĉh ◦ a(p!(ω)) = a

Ç∫
W/B

Ä
Âc(o)− dσ(o)

ä
∧ ω

å
.

On the other hand, by (30) and[
ˆ̂
Ac(o)− a(σ(o))

]
∪ a(ω) = a

(
R
(

ˆ̂
A(o)− a(σ(o))

)
∧ ω
)

= a
ÄÄ

Âc(o)− dσ(o)
ä
∧ ω

ä
,

we have p̂A! ◦ ĉh(a(ω)) = p̂A! (a(ω)) = a

Ç∫
W/B

Ä
Âc(o)− dσ(o)

ä
∧ ω

å
.

6.4.10. — Let o0, o1 represents two smooth refinements of the same topological K-
orientation of p. Assume that ∆k is defined with the choice ok, k = 0, 1.

Lemma 6.23. — We have ∆0 = ∆1.

Proof. — We can assume that ok = (gT
vp, Thp, ∇̃, σk) for σk ∈ Ωodd(W )/im(d).

Then we have for x ∈ K̂(W )

∆1(x)−∆0(x) = −a
Ç∫

W/B

(σ1 − σ0) ∧R(x)

å
+

∫
W/B

a(σ1 − σ0) ∪ ĉh(x)

= −a
Ç∫

W/B

(σ1 − σ0) ∧R(x)

å
+

∫
W/B

a
î
(σ1 − σ0) ∧R ◦ ĉh(x)

ó
= 0

since R ◦ ĉh(x) = R(x) and a ◦
∫
W/B

=
∫
W/B

◦a.
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6.4.11. — It follows from Lemma 6.20 and (1) that ∆ factorizes through a transfor-
mation

∆: K̂(W )→ H(B,R/Q).

By Lemma 6.22 and 2.20 the map ∆ factors over a map

∆̄ : K(W )→ H(B,R/Q).

This map only depends on the topological K-orientation of p. It is our goal to show
that ∆̄ = 0.

6.4.12. — Next we want to show that the transformation ∆̄ is natural. For the
moment we write ∆p := ∆̄. Let f : B′ → B be a smooth map and form the Cartesian
diagram

W ′

p′

��

F // W

p

��
B′

f // B.

The map p′ is a proper submersion with closed fibres which has an induced topological
K-orientation.

Lemma 6.24. — We have the equality of maps K(W )→ H(B′,R/Q)

∆p′ ◦ F ∗ = f∗ ◦∆p.

Proof. — This follows from the naturality of ĉh, p̂!, and p̂A! with respect to the
base B.

6.4.13.

Lemma 6.25. — If pr2 : S1 × B → B is the trivial bundle with the topological
K-orientation given by the bounding spin structure, then ∆pr2

: K0(S1 × B) →
Hodd(B,R/Q) vanishes.

Proof. — The odd Chern character is defined such that for x ∈ K0(S1 ×B) we have
ĉh1((p̂r2)!x) = (p̂r2)!ĉh0(x) (see (31)). With the choice of the smooth K-orientation

of pr2 given in 4.3.2 we have ˆ̂
A(o) − a(σ(o)) = 1 so that p̂A! = p̂!. This implies the

lemma.

6.4.14. — The groupH2(W,Z) acts simply transitive on the set of Spinc-structures of
T vp. Let Q→W be a unitary line bundle classified by c1(Q) ∈ H2(W,Z). We choose
a hermitean connection ∇Q and form the geometric line bundle Q := (Q, hQ,∇Q).
Let o := (T vp, Thp, ∇̃, ρ) represent a smooth K-orientation refining the given topo-
logical K-orientation of p. Note that ∇̃ is completely determined by the Clifford
connection on the Spinor bundle Sc(T vp). The spinor bundle of the shift of the topo-
logical K-orientation by c1(Q) is given by Sc(T vp)′ = Sc(T vp) ⊗ Q. We construct
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a corresponding smooth K-orientation o′ = (T vp, Thp, ∇̃ ⊗ ∇Q, ρ). We let p̂! and p̂′!
denote the corresponding push-forwards in smooth K-theory. Let Q be the geometric
family over W with zero-dimensional fibre given by the bundle Q (see 2.1.4). The
push-forwards p̂! and p̂′! are now related as follows:

Lemma 6.26. — We have

p̂′!(x) = p̂!([ Q, 0] ∪ x), ∀x ∈ K̂(W ).

Proof. — Let x = [ E, ρ]. By an inspection of the constructions leading to Definition
3.7 we see that

p′λ! E = pλ! ( Q ×W E).

Furthermore we have c1(∇̃ ⊗ ∇Q) = c1(∇̃) + c1(∇Q) so that

Âc(o′) = Âc(o) ∧ ec1(∇Q).

On the other hand, since Ω( Q) = ec1(∇Q) we have

[ Q, 0] ∪ [ E, ρ] = [ Q ×W E, ec1(∇Q) ∧ ρ]

Using the explicit formula (17) we get

p̂′!([ E, ρ])− p̂!([ Q, 0] ∪ [ E, ρ]) = [∅, Ω̃′(λ, E)− Ω̃(λ, E)]

for all small λ > 0. Since both transgression forms vanish in the limit λ = 0 we get
the desired result.

In the notation of 6.4.2 we have L′ = L⊗Q. Therefore

ĉQ(L′2) = ĉQ(L2) + 2ĉQ(Q)

and hence we can express p̂′,A! according to (34) as

p̂′A! (x) = p̂!

[(
ˆ̂
Ac(o) ∪ eĉQ(Q) − a(σ(o))

)
∪ x
]
.

6.4.15. — As before, let p : W → B be a proper oriented submersion which admits
topological K-orientations.

Lemma 6.27. — If ∆p = 0 for some topological K-orientation of p, then it vanishes
for every topological K-orientation of p.

Proof. — We fix the K-orientation of p such that ∆p = 0 and let p′ denote the same
map with the topological K-orientation shifted by c1(Q) ∈ H2(W,Z). We continue to
use the notation of 6.4.14. We choose a representative o of a smoothK-orientation of p
refining the topological K-orientation. For simplicity we take σ(o) = 0. Furthermore,
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we take o′ as above. Using ĉh([ Q, 0]) = eĉQ(Q) and the multiplicativity of the Chern
character we get

p̂′A! ◦ ĉh(x)− ĉh ◦ p̂′!(x) = p̂!

[
ˆ̂
Ac(o) ∪ eĉQ(Q) ∪ ĉh(x)

]
− ĉh ◦ p̂! ([ Q, 0] ∪ x)

= p̂!

[
ˆ̂
Ac(o) ∪ ĉh([ Q, 0]) ∪ ĉh(x)

]
− p̂A! ◦ ĉh ([ Q, 0] ∪ x)

= p̂A! ◦ ĉh([ Q, 0] ∪ x)− p̂A! ◦ ĉh([ Q, 0] ∪ x) = 0.

6.4.16. — We now consider the special case that B = ∗ andW is an odd-dimensional
Spinc-manifold. Since H(∗,R/Q) ∼= R/Q we get a homomorphism

∆p : K(W )→ R/Q.

Proposition 6.28. — If B ∼= ∗, then ∆p = 0.

Proof. — First note that ∆p is trivial on K1(W ) for degree reasons. It therefore
suffices to study ∆p : K0(W ) → R/Q. Let x ∈ K0(W ) be classified by ξ : W →
Z × BU . It gives rise to an element [ξ] ∈ ΩSpin

c

dim(W )(Z × BU) of the Spinc-bordism
group of Z×BU .

Lemma 6.29. — If [ξ] = 0, then ∆p = 0.

Proof. — Assume that [ξ] = 0. In this case there exists a compact Spinc-manifold V
with boundary ∂V ∼= W (as Spinc-manifolds), and a map ν : V → Z×BU such that
ν|∂V = ξ.

We can choose a Z/2Z-graded vector bundle E → V which represents the class
of ν in K0(V ). We refine E to a geometric bundle E := (E, hE ,∇E) and form the
associated geometric family E with zero-dimensional fibre.

We choose a representative õ of a smooth K-orientation of the map q : V → ∗
which refines the topological K-orientation given by the Spinc-structure and which
has a product structure near the boundary. For simplicity we assume that σ(õ) = 0.
The restriction of õ to the boundary ∂V defines a smooth K-orientation of p.

We let ŷ := [ E, 0] ∈ K̂(V ), and we define x̂ := ŷ|∂V such that I(x̂) = x. By
Proposition 5.18 we have

ĉh ◦ p̂!(x̂) = ĉh ◦ p̂!(ŷ|W ) = ĉh([∅, q!(R(ŷ))]) = −a
Å∫

V

Âc(õ) ∧R(ŷ)

ã
.

On the other hand, the bordism formula for the push-forward in smooth rational
cohomology, Lemma 6.1, gives

p̂A! ◦ĉh(x̂) = p̂!

(
ˆ̂
Ac(o) ∪ ĉh(x̂)

)
= p̂!

(
ˆ̂
Ac(õ)|W ∪ ĉh(ŷ)|W

)
= −a

Å∫
V

Âc(õ) ∧R(ŷ)

ã
.

These two formulas imply that ∆p = 0.
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6.4.17. — We now finish the proof of Proposition 6.28. We claim that there exists
c ∈ N such that c[ξ] = 0. In view of Lemma 6.29 we then have

0 = ∆cp = c∆p,

and this implies the Proposition since the target R/Q of ∆p is a Q-vector space.
Note that the graded ring ΩSpin

c

∗ ⊗Q is concentrated in even degrees. Using that
ΩSO∗ ⊗Q is concentrated in even degrees, one can see this as follows. In [45, p. 352] it
is shown that the homomorphism Spinc → U(1)×SO induces an injection ΩSpin

c

∗ →
ΩSO∗ (BU(1)). Since H∗(BU(1),Z) ∼= Z[z] with deg(z) = 2 lives in even degrees, we
see using the Atiyah-Hirzebruch spectral sequence that ΩSO(BU(1))⊗Q lives in even
degrees, too. This implies that ΩSpin

c

∗ ⊗Q is concentrated in even degrees.
Since H∗(Z×BU,Z) is also concentrated in even degrees it follows again from the

Atiyah-Hirzebruch spectral sequence that ΩSpin
c

∗ (Z×BU)⊗Q is concentrated in even
degrees.

Since [ξ] is of odd degree we conclude the claim that c[ξ] = 0 for an appropriate
c ∈ N.

This finishes the proof of Proposition 6.28.

6.4.18. — We now consider the general case. Let p : W → B be a proper submersion
with closed fibres with a topological K-orientation.

Proposition 6.30. — We have ∆p = 0.

We give the proof in the next couple of subsections.

6.4.19. — For a closed oriented manifold Z let PD : H∗(Z,Q)
∼→ H∗(Z,Q) denote the

Poincaré duality isomorphism.

Lemma 6.31. — The group H∗(B,Q) is generated by classes of the form
f∗

Ä
PD(Âc(TZ))

ä
, where Z is a closed Spinc-manifold and f : Z → B.

Proof. — We consider the sequence of transformations of homology theories

ΩSpin
c

∗ (B)
α→ K∗(B)

β→ H∗(B,Q).

The transformation α is theK-orientation of the Spinc-cobordism theory, and β is the
homological Chern character. We consider all groups as Z/2Z-graded. The homological
Chern character is a rational isomorphism. Furthermore one knows by [5], [6] that
ΩSpin

c

∗ (B)
α→ K∗(B) is surjective. It follows that the composition

β ◦ α : ΩSpin
c

(B)⊗Q→ H∗(B,Q)

is surjective. An explicit description of β ◦ α is given as follows. Let x ∈ ΩSpin
c

(B)

be represented by a map f : Z → B from a closed Spinc-manifold Z to B. Let
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PD : H∗(Z,Q)
∼→ H∗(Z,Q) denote the Poincaré duality isomorphism. Then we have

β ◦ α(x) = f∗
Ä
PD(Âc(TZ))

ä
.

6.4.20. — For the proof of Proposition 6.30 we first consider the case that p has
even-dimensional fibres, and that x ∈ K0(W ). By Lemma 6.31, in order to show that
∆p(x) = 0, it suffices to show that all evaluations ∆p(x)

Ä
f∗(PD(Âc(TZ)))

ä
vanish. In

the following, if x denotes a K-theory class, then x̂ denotes a smooth K-theory class
such that I(x̂) = x.

We choose a representative oq of a smooth K-orientation which refines the topo-
logical K-orientation of the map q : Z → ∗ induced by the Spinc-structure on TZ.
Furthermore, we consider the diagram with a Cartesian square

V

s

##

r

��

F // W

p

��
Z

q

��

f // B.

∗

In the present case ∆p(x) ∈ Hodd(B,R/Q), and we can assume that Z is odd-
dimensional. We calculate

∆p(x)
Ä
f∗(PD(Âc(TZ)))

ä
= f∗∆p(x)

Ä
PD(Âc(TZ))

ä
Lemma 6.24

= ∆r(F
∗x)

Ä
PD(Âc(TZ))

ä
= (Âc(∇TZ) ∪∆r(F

∗x))[Z]

=

∫
Z

Âc(o) ∧∆r(F
∗x)

= q̂!

(
ˆ̂
Ac(oq) ∪∆r(F

∗x)
)

= q̂A! (∆r(F
∗x̂))

= q̂A!
î
ĉh ◦ r̂!(F

∗x̂)− r̂A! ◦ ĉh(F ∗x̂)
ó

= q̂A! ◦ ĉh ◦ r̂!(F
∗x̂)− ŝA! ◦ ĉh(F ∗x̂)

Proposition 6.28
= ĉh ◦ q̂! ◦ r̂!(F

∗x̂)− ŝA! ◦ ĉh(F ∗x̂)

= ĉh ◦ ŝ!(F
∗x̂)− ŝA! ◦ ĉh(F ∗x̂)

= ∆s(F
∗x)

Proposition 6.28
= 0.

We thus have shown that

0 = ∆p : K0(W )→ Hodd(B,R/Q)
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if p has even-dimensional fibres.

6.4.21. — If p has odd-dimensional fibres and x ∈ K1(W ), then we can choose
y ∈ K0(S1 ×W ) such that (p̂r2)!(y) = x. Since p ◦ pr2 has even-dimensional fibres
we get using the Lemmas 6.18 and 3.23

∆p(x) = ĉh ◦ p̂! ◦ (p̂r2)!(ŷ)− p̂A! ◦ ĉh ◦ (p̂r2)!(ŷ)

Lemma 6.25
= ĉh ◦ ( ÷p ◦ pr2)!(ŷ)− p̂A! ◦ (p̂r2)A! ◦ ĉh(ŷ)

= ĉh ◦ ( ÷p ◦ pr2)!(ŷ)− ( ÷p ◦ pr2)A! ◦ ĉh(ŷ) = ∆p◦pr2
(y) = 0.

Therefore, if p has odd-dimensional fibres,

0 = ∆p : K1(W )→ Hodd(B,R/Q).

6.4.22. — Let us now consider the case that p has even-dimensional fibres, and that
x ∈ K1(W ). In this case we consider the diagram

S1 ×W Pr2−−−−→ Wyt:=idS1×p
yp

S1 ×B
pr2−−−−→ B.

We choose a class y ∈ K0(S1 ×W ) such that (Pr2)!(y) = x. We further choose a
smooth refinement ŷ ∈ K̂0(S1 ×W ) of y and set x̂ := (P̂r2)!(ŷ). Then we calculate
using the Lemmas 6.18 and 3.23

∆p(x) = ĉh ◦ p̂!(x̂)− p̂A! ◦ ĉh(x̂)

= ĉh ◦ p̂! ◦ (P̂r2)!(ŷ)− p̂A! ◦ ĉh ◦ (P̂r2)!(ŷ)
Lemma 6.25

= ĉh ◦ p̂! ◦ (P̂r2)!(ŷ)− p̂A! ◦ (P̂r2)A! ◦ ĉh ◦ (ŷ)

= ĉh ◦ ( ÷p ◦ Pr2)!(ŷ)− ( ÷p ◦ Pr2)A! ◦ ĉh(ŷ)

= ĉh ◦ (÷pr2 ◦ t)!(ŷ)− (÷pr2 ◦ t)
A
! ◦ ĉh(ŷ)

= ĉh ◦ p̂r2! ◦ t̂!(ŷ)− p̂rA2! ◦ t̂
A
! ◦ ĉh(ŷ)

Lemma 6.25
= (p̂r2)A!

î
ĉh ◦ t̂!(ŷ)− t̂A! ◦ ĉh(ŷ)

ó
= (p̂r2)A! ◦∆t(y) = 0.

Therefore, if p has even-dimensional fibres,

0 = ∆p : K1(W )→ Hev(B,R/Q).

6.4.23. — In the final case p has odd-dimensional fibres and x ∈ K0(W ). In this case
we consider the sequence of projections

S1 × S1 ×W
pr23→ S1 ×W

pr2→ W.
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We choose a class y ∈ K0(S1 × S1 ×W ) such that (pr2 ◦ pr23)!(y) = x. We further
choose a smooth refinement ŷ ∈ K̂0(S1 × S1 ×W ) of y and set x̂ := (⁄�pr2 ◦ pr23)!(ŷ).
Then we calculate using the already known cases and the Lemmas 6.18 and 3.23,

∆p(x) = ĉh ◦ p̂!(x̂)− p̂A! ◦ ĉh(x̂)

= ĉh ◦ p̂! ◦ (p̂r2)! ◦ (p̂r23)!(ŷ)− p̂A! ◦ ĉh ◦ (p̂r2)! ◦ (p̂r23)!(ŷ)

= ĉh ◦ ( ÷p ◦ pr2)! ◦ (p̂r23)!(ŷ)− p̂A! ◦ ĉh ◦ (⁄�pr2 ◦ pr23)!(ŷ)

= ( ÷p ◦ pr2)A! ◦ ĉh ◦ (p̂r23)!(ŷ)− p̂A! ◦ (⁄�pr2 ◦ pr23)A! ◦ ĉh(ŷ)

= ( ÷p ◦ pr2)A! ◦∆pr23
(ŷ)

Lemma 6.25
= 0.

This finishes the proof of Theorem 6.19. �

7. Conclusion

We have now constructed a geometric model for smooth K-theory, built out of
geometric families of Dirac-type operators. We equipped it with a compatible multi-
plicative structure, and we have given an explicit construction of a push-down map for
fibre bundles with all the expected properties. For the verification of these properties
we heavily used local index theory.

We presented a collection of natural examples of smooth K-theory classes and
showed in particular that several known secondary analytic-geometric invariants can
be understood in this framework very naturally. This involved also the consideration
of bordisms in this framework.

Finally, we constructed a smooth lift of the Chern character and proved a smooth
version of the Grothendieck-Riemann-Roch theorem. This also involved certain con-
siderations from homotopy theory which are special to K-theory.

Important open questions concern the construction of equivariant versions of this
theory, or even better versions which work for orbifolds or similar singular spaces.

In a different direction, we have addressed the construction of geometric models of
smooth bordism theories along similar lines in [23]; using singular bordism this has
also been achieved for smooth ordinary cohomology in [20].
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Abstract. — In this paper we construct an explicit representative for the Grothendieck
fundamental class [Z] ∈ Extr( OZ , Ωr

X) of a complex submanifold Z of a complex
manifold X when Z is the zero locus of a real analytic section of a holomorphic
vector bundle E of rank r on X. To this data we associate a super-connection A
on

∧∗
E∨, which gives a “twisted resolution” T ∗ of OZ such that the “generalized

super-trace” of 1
r!

A2r, which is a map of complexes from T ∗ to the Dolbeault complex
Ar,∗

X , represents [Z]. One may then read off the Gauss-Bonnet formula from this map
of complexes.

Résumé (Une démonstration explicite de la formule de Gauss-Bonnet généralisée)
Dans cet article nous construisons un représentant explicite de la classe fonda-

mentale de Grothendieck [Z] ∈ Extr( OZ , Ωr
X) d’une sous-variété Z dans une variété

lisse complexe X quand Z est le lieu des zéros d’une section réelle analytique d’un
fibré vectoriel holomorphe E de rang r sur X. Nous associons à cette donnée une
super-connection A sur

∧∗
E∨, qui fournit une « résolution tordue » T ∗ de OZ telle

que la « super-trace généralisée » de 1
r!

A2r, qui est un morphisme de complexes de
T ∗ vers le complexe de Dolbeault Ar,∗

X , représente [Z]. On peut alors lire la formule
de Gauss-Bonnet à partir de cette application entre complexes.

Introduction

If X is a complex manifold, and τ is a holomorphic section, transverse to the zero
section, of the dual E∨ of a rank r holomorphic vector bundle, it is well known that
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the fundamental class of the locus Z of zeros of τ is equal to the top Chern class of
the bundle E∨:

[Z] = cr(E
∨) = (−1)rcr(E)

For Hodge cohomology, this is the fact that the image of the Grothendieck fundamen-
tal class

[Z] ∈ Extr( OZ ,ΩrX)

under the map
Extr( OZ ,ΩrX)→ Extr( OX ,ΩrX) = Hr(X,ΩrX)

coincides with the top Chern class of E∨. Proofs of this result tend to be indirect, i.e.
they depend on the axioms for cycle classes and Chern classes, and comparison with
“standard” cases.

However, one may observe that the section τ gives rise to an explicit global Koszul
resolution

K∗(τ) = (
∧
∗E∨, ιτ )→ OZ ,

and so the theorem can be rephrased as saying that image of [Z] under the map:

Extr(K∗(τ),ΩrX)→ Extr( OX ,ΩrX)

induced by the isomorphism OX ' K0(τ), is the top Chern class of E∨. Our first
result is to show that a choice of connection ‹∇ on E, determines, via Chern-Weil
theory applied to superconnections, an explicit map of complexes from the Koszul
complex K∗(τ) to the Dolbeault complex of ΩrX , which represents the Grothendieck
fundamental class and the restriction of which to the degree zero component OX of
the Koszul complex is precisely multiplication by the r-th Chern form of E∨.

One motivation for the current paper was to obtain a better understanding of the
proof by Toledo and Tong of the Hirzebruch-Riemann-Roch theorem in [12]. In that
paper the authors used local Koszul resolutions of the structure sheaf of the diagonal
∆X ⊂ X×X to construct the Grothendieck fundamental class [∆X ], and then to com-
pute χ(X, OX) as the degree of the restriction of the appropriate Kunneth-component
of [∆X ] to the diagonal. For such a computation one needs only the existence of a
“nice” representative of the Grothendieck fundamental class in some neighborhood of
the diagonal. However the diagonal ∆X is not in general the zero set of a holomorphic
section of a vector bundle. Instead one can use the “holomorphic exponential map”
(see the article [10] for an exposition) to construct, in a neighborhood of the diago-
nal, a real analytic section of p∗(TX), which vanishes exactly on the diagonal. (Here
p : X ×X → X is the projection onto the first factor.) Thus we are led to consider
what happens if we ask only that τ be real analytic rather than holomorphic. In our
second main result, we use the theory of superconnections and twisted complexes in
the style of Brown [5], and of Toledo and Tong (op. cit.) to construct a map from the
Dolbeault resolution of K∗(τ) to that of ΩrX representing the Grothendieck funda-
mental class and which restricts to the r-th Chern form of E∨. An important tool in
this construction is a non-commutative version of the supertrace for endomorphisms
of Grassman algebras.
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We should also remark that instead of working in the real analytic category, one
can make a very similar argument in the algebraic category, using formal schemes.

Let us now give a more detailed outline of the paper. Recall that the section τ gives
rise to a natural Koszul resolution K(τ)∗ → OZ , in which K(τ)−j =

∧j E. Here E is
the sheaf of holomorphic sections of E. Choose a connection ∇ : AX ⊗ E→ A1,0

X ⊗ E
of type (1, 0) (A1,0

X being the sheaf of real analytic (1, 0)-forms on X) on E, such that
∇2 = 0. Let ‹∇ = ∇+ ∂ be the associated connection. We view ∇ as acting not only
on E, but on all tensor constructions on E. Then our first result is:

Theorem (A). — The connection ∇ and the section τ determine a map of complexes,
from the Koszul resolution K(τ)∗ of OZ , to the Dolbeault resolution Ar,∗X [r] of ΩrX [r]

ψ : K(τ)∗ → Ar,∗X [r]

the degree −r component of which is 1
r! (ı∇(τ))

r, and the degree 0 component K(τ)0 =

OX → Ar,∗X [r]0 = Ar,rX of which is represented by the r-th Chern form of (E∨,‹∇).
In general ψ is given by a linear algebra construction involving ∇ and the curvature
R = [∇, ∂]s of ‹∇, and we have:

– The class in ExtrOX ( OZ ,ΩrX) represented by ψ is the Grothendieck fundamental
class [Z].

– The image of [Z] in ExtrOX ( OX ,ΩrX) ' Hr,r(X,C), is represented by the degree
zero component of ψ, which is equal to the r-th Chern form cr(E

∨,‹∇)

It follows immediately that the image of [Z] in Hr,r(X,C) is equal to cr(E∨).

The proof of Theorem A is contained in Section 5. (cf. Theorem 5.5 and Corol-
lary 5.6).

In the second half of the paper, we extend Theorem A to the case where Z is the
zero locus of a real analytic section of E∨. It is no longer the case that τ determines a
Koszul resolution of OZ , but instead we get a resolution of A0,∗

X ⊗ OZ . In order to get
a complex that is quasi-isomorphic to OZ , we construct a resolution of the Dolbeault
resolution A0,∗

X ⊗ OZ of OZ , by constructing a twisted differential, δ, in the sense of
Toledo and Tong [13], on A0,∗

X ⊗
∧∗ E.

A key tool in extending Theorem A to this situation is the notion of the “gener-
alized supertrace” of an endomorphism of the exterior algebra of a finitely generated
projective module. Suppose that V is a (locally) free module of finite rank r over a
commutative ring k. Then the generalized supertrace is a map

TrΛ : Endk(
∧∗V )→

∧∗V ∨
(c.f. Definition 6.1). If A is a graded-commutative algebra over k, we can extend this
to a map

TrΛ : EndA(A“⊗∧∗V )→ A“⊗∧∗V ∨
Here “⊗ denotes the “super” or graded tensor product. If ϕ ∈ EndA(

∧∗ V ), then the
degree 0 component of TrΛ(ϕ) is the usual super-trace of ϕ. The key property of TrΛ

(which is proved in Section 3.) is:
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Proposition. — Assume that ϕ ∈ EndA(
∧∗ V ), and let δ ∈ EndA(

∧∗ V ) be an A-
linear superderivation. Then

TrΛ[δ, ϕ]s = [δ,TrΛ(ϕ)]s

Theorem (B). — Let Z be a complex submanifold of X such that there exists a holo-
morphic vector bundle π : E → X and τ ∈ Γ(X, AX ⊗ E∨) such that ıτ : AX ⊗ E →
AX ⊗ IZ is surjective. Then

– There is a superconnection δ of type (0,1), on the super-bundle
∧∗E, such that:

1. δ2 = 0, so δ defines a differential on A0,∗
X ⊗

∧∗ E,
2. the component of δ of degree −1 with respect to the grading on

∧∗E is
the Koszul differential ıτ ,

3. If we write δ for the induced differential on A0,∗
X ⊗

∧∗ E, then the map∧0 E = OX → OZ induces a quasi-isomorphism of complexes:

( A0,∗
X ⊗

∧∗ E, δ) ∼→ ( A0,∗
X ⊗ OZ , ∂)

∼← OZ

– Let RA be the curvature of the superconnection A = ∇ + δ on
∧∗E. Then the

generalized supertrace of 1
r!R

r
A defines a map of complexes

A0,∗
X ⊗

∧∗ E→ Ar,∗X [r],

which, via the quasi-isomorphisms in part 1), represents the Grothendieck fun-
damental class [Z],

– The image of [Z] in Hr,r(X,C) is represented by the degree 0 component of the
generalized supertrace of 1

r!R
r
A, i.e., by the super-trace of 1

r!R
r
A, which by Quillen

[11] is an (r, r)-form representing the Chern character chr(
∧∗E).

The proof of Theorem B is contained in Proposition 8.4, Theorem 10.3, and Corol-
lary 10.5. We would like to thank the referee for comments which let to a substantial
improvement in the organization of the paper.

1. Superobjects

Throughout this paper we will use the language of super -objects. We include here
basic definitions and properties for the convenience of the reader and to fix notation.
We omit the details and proofs, which may be found in [11] and [4].

Let k be a commutative ring with unity .

Definition 1.1. — A k-module V with a Z/2Z-grading is called a k-supermodule.

Remark 1.2. — In the same spirit, a Z/2Z-graded object in an additive category is
called a superobject . As realizations of this general definition, we will be dealing with
super algebras, super vector bundles on a smooth manifold, and sheaves of superal-
gebras on a topological space, etc.
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We will write V + and V − for the degree 0 (mod 2) and degree 1 (mod 2) parts of
V and we will call them the even and the odd parts of V respectively. Let ν ∈ V be
a homogeneous element. We say |ν| = 0 if ν ∈ V + and |ν| = 1 if ν ∈ V −.

Endk(V ) is also a k-supermodule with the grading

Endk(V )+ = Homk(V +, V +)⊕Homk(V −, V −)

Endk(V )− = Homk(V +, V −)⊕Homk(V −, V +)

Moreover, the algebra of endomorphisms Endk(V ) is a k-superalgebra with this grad-
ing. If no confusion is likely to arise, we will suppress the mention of the ring k from
now on.

Definition 1.3. — Let A be a superalgebra. The supercommutator of two elements of
A is

[a, b]s = ab− (−1)|a||b|ba

where a and b are homogeneous. The supercommutator is extended bilinearly to non-
homogeneous a and b.

If the supercommutator [ , ]s : A⊗A→ A is the zero map, then A is called a commu-
tative superalgebra. The exterior algebra of a free module M with the Z/2Z-grading∧+M =

⊕
p even

∧pM and
∧−M =

⊕
p odd

∧pM is a commutative superalgebra.
Let V be finitely generated and projective. Assume that 1

2 ∈ k. Giving a Z/2Z-
grading on V is equivalent to giving an involution ε ∈ Endk(V ), that is ε2 = I. The
even and the odd parts are the eigenspaces corresponding to the eigenvalues +1 and
−1 respectively. In the same fashion, the Z/2Z-grading on Endk(V ) can be given by
the involution

ρ(ϕ) = ε ◦ ϕ ◦ ε
where ϕ ∈ Endk(V ).

Definition 1.4. — Let ϕ ∈ Endk(V ). The supertrace of ϕ, denoted by trs(ϕ), is defined
to be

trs(ϕ) = tr(ε ◦ ϕ)

where ‘ tr’ is the usual trace map.

Lemma 1.5. — The supertrace vanishes on supercommutators.

Proof. — Cf. [11].

Let A and B be superalgebras. We define the super tensor product of A and B,
denoted by A“⊗B, to be the k-module A⊗B with the Z/2Z-grading

(A“⊗B)+ = (A+ ⊗B+)⊕ (A− ⊗B−)

(A“⊗B)− = (A+ ⊗B−)⊕ (A− ⊗B+)

and the algebra structure

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)|b1||a2|a1a2 ⊗ b1b2
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for homogeneous elements a1, a2 ∈ A and b1, b2 ∈ B. As usual the product is extended
bilinearly.

Definition 1.6. — Let A be a superalgebra and δ ∈ Endk(A) be homogeneous. We will
call δ a superderivation if it satisfies the super-Leibniz formula

δ(a1a2) = δ(a1)a2 + (−1)|δ||a1|a1δ(a2)

for homogeneous a1, a2 ∈ A. We will call a non-homogeneous element of Endk(A) a
superderivation, if its even and odd components are superderivations.

2. Sheaves on Real Analytic Manifolds

While we could use the C∞ Dolbeault complex in the proof of the first main
theorem, for consistency we will work with real-analytic forms throughout this paper.
In this section, we shall recall the results that we need.

Theorem 2.1. — Let M be a real analytic manifold which is countable at infinity and
let F be a coherent analytic sheaf on M . Then

Hp(M, F ) = 0 for p > 0

Proof. — Cf. Proposition 2.3 of [3].

We denote the sheaf of real analytic functions onM by AM , while if X is a complex
manifold, we shall write Ap,qX for the sheaf of (p, q)-forms with real analytic coefficients.
It is a classical result (see [6]) that the real-analytic Dolbeault complex is a resolution
of the sheaf ΩpX of holomorphic p-forms. It follows from the theorem, therefore, that if
E is a locally free sheaf of OX -modules, then the cohomology groups Hq(X, E) may be
computed as the cohomology of the real analytic Dolbeault complex A0,∗

X ⊗ OX E(X).

Corollary 2.2. — Let F be a locally free sheaf of AM -modules of finite rank. Then F
is a projective object in the category of coherent sheaves of AM -modules.

Proof. — Cf. Lemma 2.7 of [3].

It follows immediately that any vector bundle on a complex manifold admits a real
analytic connection, since to give such a connection is the same as splitting the Atiyah
sequence.

Proposition 2.3. — Let X1 and X2 be complex spaces. The canonical projection

π1 : X1 ×X2 → X1

is flat.

Proof. — Cf. [7] (Proposition 3.17 on page 155).

Corollary 2.4. — Let X be a complex manifold. The sheaf AX is a flat sheaf of OX-
algebras.
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Proof. — Let X denote the complex manifold with the opposite complex structure
and 4 : X → X × X be the diagonal embedding. Let π1 : X × X → X be the
projection onto the first component. Let x ∈ X be any point. The stalks AX,x and
OX×X,4(x) are canonically isomorphic. Hence the result follows from the proposition
applied to the map π1 : X ×X → X.

It follows immediately that if F is a coherent sheaf of OX -modules, then the co-
homology groups Hq(X, F ) may be computed as the cohomology of the real analytic
Dolbeault complex A0,∗

X ⊗ OX F (X).

3. Superconnections and the Chern Character

Let us recall the definition and basic properties of superconnections from [11].
We assume that X is a real analytic manifold of dimension n. However, everything

in this section applies verbatim to the smooth case. We denote the exterior algebra
of the sheaf of real analytic differential forms on X, which is a sheaf of commutative
superalgebras, by A∗X . Let E = E+⊕E− be a real analytic super vector bundle on X.
We will write E for the sheaf of real analytic sections of E, and A∗X( E) for A∗X“⊗ AX E.

Definition 3.1. — A C-linear endomorphism A of A∗X( E) of odd degree is called a
superconnection on E if it satisfies the super-Leibniz rule

A(ω ⊗ s) = dω ⊗ s+ (−1)|ω|ω ∧A(s)

for local sections ω, s of A∗X and E respectively.

If X is an almost complex manifold and if A satisfies the following version of the
super-Leibniz rule

A(ω ⊗ s) = ∂ω ⊗ s+ (−1)|ω|ω ∧A(s)

then, it is called a superconnection of type (0, 1) (or simply a (0, 1)-superconnection).
A2 is called the curvature of the superconnection and is denoted by RA. The

curvature of A satisfies the identity

RA(ω ⊗ s) = ω ∧RA(s)

for local sections ω and s of A∗X and E respectively. Thus RA can be thought as a
section of the sheaf of superalgebras A∗X“⊗ End AX (E) where End AX (E) denotes the
sheaf of endomorphisms of the bundle E.

We extend the supertrace to a map trs : A∗X“⊗ End AX (E)→ A∗X by the formula

trs(ω ⊗ ϕ) = ω trs(ϕ)

for local sections ω and ϕ of A∗X and End AX (E).

Proposition 3.2. — Let n be a non-negative integer. The differential form trs(R
n
A) is

closed and its cohomology class does not depend on the choice of the superconnec-
tion A.

Proof. — Cf. [11].
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Theorem 3.3. — The differential form

trs(exp(RA))(3.1)

represents the class ch(E+)− ch(E−) in cohomology.

Proof. — Cf. [11].

Remark 3.4. — The reader is warned that we omit the usual factor of ( i
2π ) from (3.1),

following the convention in algebraic geometry.

4. The Grothendieck Fundamental Class

General references for this section are [9] and [1].
Let X be a compact complex manifold of dimension n. We denote the sheaf

of holomorphic functions and the sheaf of holomorphic k-forms on X by OX and
ΩkX respectively. Suppose that F and G are sheaves of OX−modules. We write
H om OX (F , G) for the sheaf of OX -morphisms from F to G and Hom OX ( F , G) for
Γ(X, H om OX (F , G)). The derived functors of H om OX (F , G) (resp. Hom OX ( F , G))
will be denoted by Ext iOX ( F , G) (resp. ExtiOX ( F , G) ). We simply write F ∨ for the
dual of F .

The abelian groups ExtiOX ( F , G) and sheaves Ext iOX ( F , G) are related by the fol-
lowing spectral sequence

Ei,j2 = Hi(X, ExtjOX ( F , G))⇒ Exti+jOX
( F , G))

Let Y be a complex submanifold of X of codimension p. We denote the sheaf of ideals
defining Y by I . In this situation, one has that

Ext iOX ( OY ,Ω
p
X) = 0 for i < p and

ExtpOX ( OY ,Ω
p
X) =

∧p( I / I 2
)∨ ⊗ OY ⊗ ΩpX

= H om OX (
∧p( I / I 2

), OY ⊗ ΩpX).

All tensor products are taken over OX unless stated otherwise. It follows that the
edge homomorphism

ExtpOX ( OY ,Ω
p
X)→ H0( ExtpOX ( OY ,Ω

p
X))

is an isomophism, and so

ExtpOX ( OY ,Ω
p
X) = Hom OX (

∧p( I / I 2
), OY ⊗ ΩpX).

Therefore there is a class [Y ] in ExtpOX ( OY ,Ω
p
X) which corresponds to the homomor-

phism of sheaves ∧p( I / I 2
)→ OY ⊗ ΩpX

f1 ∧ · · · ∧ fp 7→ df1 ∧ · · · ∧ dfp.

The class [Y ] is called the Grothendieck fundamental class of Y in X.
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5. Koszul Factorizations

In this section, we prove Theorem A of the Introduction. The proof is contained in
Proposition 5.4 and Theorem 5.5.

Let π : E → X be a holomorphic vector bundle of rank r and let ∇ be a flat real
analytic connection of type (1, 0) on E. For instance, ∇ can be taken as the (1, 0)

part of the canonical connection associated to a real analytic hermitian structure on
E. We write ‹∇ for ∂ + ∇. We will denote the induced connection, and the (1, 0)-
connection on the dual bundle E∨ using the same symbols. However R will be used
exclusively to denote the curvature of the induced connection on E∨. Throughout
this section we assume that τ ∈ Γ(X, E∨). Let ıτ : AX ⊗

∧p E → AX ⊗
∧p−1 E

be contraction by τ as usual. We extend ıτ to an odd superderivation of the sheaf of
commutative superalgebras A∗X“⊗∧

E. Note that∇(τ) = ıτ ◦∇+∂◦ıτ : AX⊗ E→ A1,0
X

and therefore ∇(τ) can be considered as an element of Γ(X, A1,0
X ⊗ E∨). We write

ı∇(τ) : AX ⊗
∧p E→ A1,0

X ⊗
∧p−1 E and ıR(τ) : AX ⊗

∧p E→ A1,1
X ⊗

∧p−1 E for the
contractions with ∇(τ) ∈ Γ(X, A1,0

X ⊗ E∨) and R(τ) ∈ Γ(X, A1,1
X ⊗ E∨) respectively.

We extend ı∇(τ) (resp. ıR(τ)) to an even (resp. odd) superderivation of A∗X“⊗∧
E.

We state two facts without proof

[∂, ı∇(τ)]s = ıR(τ)

[ı∇(τ), ıR(τ)]s = 0.

Lemma 5.1. — For 1 6 p 6 r the following diagram is commutative

Zr−p,r−pX ⊗
∧p E

1
p! (ı∇(τ))

p

−−−−−−−→ Ar,r−pX

ıR(τ)

y ∂

y
Zr−p+1,r−p+1
X ⊗

∧p−1 E
1

(p−1)!
(ı∇(τ))

p−1

−−−−−−−−−−−→ Ar,r−p+1
X

where Zp,pX denote the sheaf of ∂-closed (not necessarily ∂-closed) forms of type (p, p).
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Proof. — We have

∂ ◦ 1

p!
(ı∇(τ))

p =
1

p!
[∂, (ı∇(τ))

p]s

=
1

p!

p−1∑
j=0

(ı∇(τ))
j ◦ [∂, ı∇(τ)]s ◦ (ı∇(τ))

p−j−1

=
1

p!

p−1∑
j=0

(ı∇(τ))
j ◦ ıR(τ) ◦ (ı∇(τ))

p−j−1

=
1

p!

p−1∑
j=0

(ı∇(τ))
p−1 ◦ ıR(τ)

=
1

p!
p (ı∇(τ))

p−1 ◦ ıR(τ) =
1

(p− 1)!
(ı∇(τ))

p−1
.

Let φp :
∧p E→ H om OX (

∧r−p E,
∧r E) be the isomorphism given by

φp : α 7→ (β 7→ β ∧ α) for α ∈
∧p E, β ∈

∧r−p E, and 0 6 p 6 r

We will identify the sheaves H om OX (
∧r−p E,

∧r E) and
∧r−p E∨ ⊗

∧r E via the
canonical isomorphism between them.

Lemma 5.2. — The following diagram is commutative for 1 6 p 6 r

∧p E
(φ−1
p ⊗1)◦(

∧r−p
R⊗1)◦φp−−−−−−−−−−−−−−−−→

∧p E⊗ Zr−p,r−pX

ıτ

y ıR(τ)

y∧p−1 E
(φ−1
p−1
⊗1)◦(

∧r−p+1
R⊗1)◦φp−1

−−−−−−−−−−−−−−−−−−−−→
∧p−1 E⊗ Zr−p+1,r−p+1

X

where
∧pR :

∧p E∨ →
∧p E∨⊗ Zp,pX is defined by

∧pR (e1 ∧ · · · ∧ ep) = R(e1)∧ · · · ∧
R(ep) for local sections e1, . . . , ep of E∨.

Proof. — The lemma is an immediate consequence of the following commutative di-
agrams. (Note that ∧τ and ∧R(τ) denote right multiplication by τ and R(τ) respec-
tively).

∧p E
φp−−−−→

∧r−p E∨ ⊗
∧r E

∧r−p
R⊗1

−−−−−−−→
∧r−p E∨ ⊗

∧r E⊗ Zr−p,r−pX

ıτ

y ∧τ
y ∧R(τ)

y∧p−1 E
φp−1−−−−→

∧r−p+1 E∨ ⊗
∧r E

∧r−p+1
R⊗1

−−−−−−−−−→
∧r−p+1 E∨ ⊗

∧r E⊗ Zr−p+1,r−p+1
X
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and ∧r−p E∨ ⊗
∧r E⊗ Zr−p,r−pX

φ−1
p ⊗1
−−−−→

∧p E⊗ Zr−p,r−pX

∧R(τ)

y ıR(τ)

y∧r−p+1 E∨ ⊗
∧r E⊗ Zr−p+1,r−p+1

X

φ−1
p−1
⊗1

−−−−−→
∧p−1 E⊗ Zr−p+1,r−p+1

X .

It is worth mentioning that R can be written as a matrix of ∂-closed forms of type
(1, 1) with respect to any given local holomorphic framing. Consequently the image
of the mapping

∧pR :
∧p E∨ →

∧p E∨ ⊗ Ap,pX lies in
∧p E∨ ⊗ Zp,pX . Since τ is a

holomorphic section, a similar remark applies to the mappings ıR(τ) and ∧R(τ).

Proposition 5.3. — The following diagram is commutative∧r E ıτ−−−−→
∧r−1 E ıτ−−−−→ · · · ıτ−−−−→ E ıτ−−−−→ OX

ψr= 1
r! (ı∇(τ))

r

y ψr−1

y ψ1

y ψ0=det(R)

y
Ar,0X

∂−−−−→ Ar,1X
∂−−−−→ · · · ∂−−−−→ Ar,r−1

X
∂−−−−→ Ar,rX .

where ψp = 1
p! (ı∇(τ))

p ◦ (φ−1
p ⊗ 1) ◦ (

∧r−pR⊗ 1) ◦ φp.

Proof. — This is an immediate result of the previous two lemmas.

The symbol f : C∗
∼→ D∗ is used to denote that f is a quasi-isomorphism.

Proposition 5.4. — The morphism ψ ∈ H om OX (
∧∗ E, Ar,∗X [r]) represents the Gro-

thendieck fundamental class of Z in ExtrOX ( OZ ,ΩrX).

Proof. — The morphism (which is a map of complexes) ψ ∈ H om OX (K(τ)∗, Ar,∗X [r])

gives us an r-cocycle, denoted by [ψ], in the double complex H om∗OX (K(τ)., Ar,.X ).
We have the quasi-isomorphisms

H om∗OX (K(τ)., Ar,.X )
∼→ K(τ)∗ ⊗ det( E∨)⊗ Ar,∗X

∼→ OZ ⊗ det( E∨)⊗ Ar,∗X .

Under these maps, [ψ] is mapped to ψr :
∧r E→ Ar,0X (mod I ).

We have τ =
∑
i αie

i with respect to some local holomorphic framing {e1, . . . , er}
of E∨. Then

ψr(e1 ∧ · · · ∧ er) =
1

r!
(ı∇(τ))

r(e1 ∧ · · · ∧ er)

= ı∇(τ)(e1) ∧ · · · ∧ ı∇(τ)(er)

= ∂α1 ∧ · · · ∧ ∂αr (mod I )

= dα1 ∧ · · · ∧ dαr (mod I ).

Then the result follows from the fact that the morphism defining Grothendieck fun-
damental class of Z in Hom OX (

∧r( I / I 2
), OZ ⊗ ΩrX) is mapped to ψr :

∧r E→ Ar,0X
(mod I ) under the following sequence of quasi-isomorphisms∧r( I / I 2

)∨ ⊗ ΩrX
∼→ OZ ⊗ det( E∨)⊗ ΩrX

∼→ OZ ⊗ det( E∨)⊗ Ar,∗X .
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Theorem 5.5. — The map of complexes ψ ∈ Hom OX (
∧∗ E, Ar,∗X [r]) represents the Gro-

thendieck fundamental class of Z in ExtrOX ( OZ ,ΩrX). Moreover the image of ψ in
Hr(X,ΩrX) is the r-th Chern form cr(E

∨,‹∇).

Proof. — Since ψ represents the Grothendieck fundamental class locally, it does so
globally. The second result follows from the fact that ψ0 = det(R) by Proposition 5.3
and that det(R) is the r-th Chern form of the pair (E∨,‹∇).

We obtain immediately

Corollary 5.6. — Let π : E → X be a holomorphic vector bundle of rank r and τ :

X → E∨ be a holomorphic section which is transverse to the zero section. If Z is the
complex submanifold where τ vanishes, then the fundamental class of Z in Dolbeault
cohomology is represented by the r-th Chern form cr(E

∨,‹∇).

Notice that the standard proofs of this result (for example in [8]) implicitly use
the axioms defining Chern classes.

6. Generalized Supertraces

The heart of this section is Proposition 6.4 which will be used in Section 9 to
construct a map of complexes that represents the Grothendieck fundamental class.

Let V be a finitely generated projective module over a commutative ring with unity
k, and let V ∨ be its dual. Let 〈 , 〉 : V ∨⊗kV → k be the pairing defined by 〈s, t〉 = s(t)

for s ∈ V ∨ and t ∈ V . We extend 〈 , 〉 to a pairing between
∧m V ∨ and

∧m V by

〈u, v〉 = det〈ui, vj〉

where u = u1 ∧ · · · ∧ um ∈
∧m V ∨ and v = v1 ∧ · · · ∧ vm ∈

∧m V . It is easy to check
that

〈u, v〉 = (ıum ◦ · · · ◦ ıu1)(v1 ∧ · · · ∧ vm)

where ıuj denotes contraction by uj . We denote the exterior algebra of V by
∧
V with

the usual grading for which
∧n V has degree n. Then

Homk(
∧
V,

∧
V )

is naturally graded with Homk(
∧mV,

∧nV ) having degree (n−m).

Definition 6.1. — Let ϕ ∈ Homk(
∧
V,

∧
V ). If ϕ has degree (−n) with n > 0, we

define the generalized supertrace of ϕ, denoted by TrΛ(ϕ) ∈
∧n V ∨ (as opposed to the

supertrace trs), as follows:

(TrΛ(ϕ)) (η) = (−1)|η|trs(lη ◦ ϕ)

where lη ∈ Endk(
∧
V ) is left multiplication by η for some η ∈

∧n V . If ϕ has positive
degree, then TrΛ(ϕ) is defined to be 0.
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Clearly when n = 0, we have TrΛ = trs.
Let i :

∧
V ∨ → Endk(

∧
V ) be the inclusion defined by i(α)(β) = 〈α, β〉 for α ∈∧m V ∨ and β ∈

∧m V , and i(α)(β) = 0 if β /∈
∧m V . We will often identify

∧
V ∨

with its image under i, and think of TrΛ(ϕ) as belonging to Endk(
∧
V ).

Remark 6.2. — We have the identity

TrΛ ◦ i = id∧
V ∨ .

Remark 6.3. — Let τ ∈ V ∨ and let ıτ denote contraction by τ , which is a superderiva-
tion of

∧
V of degree −1. It is straightforward to check that

TrΛ(ıτ ) =

{
0 if rankV > 2

τ if rankV = 1.

An important feature of the supertrace is that it vanishes on supercommutators.
However, this is not true of the generalized trace TrΛ. Instead we have:

Proposition 6.4. — Assume that ϕ ∈ Endk(
∧
V ), and let δ ∈ Endk(

∧
V ) be a k-linear

superderivation. Then
TrΛ[δ, ϕ]s = [δ,TrΛ(ϕ)]s.

In order to prove the proposition we need a lemma.

Lemma 6.5. — Assume that ϕ ∈ Homk(
∧
V,

∧
V ) is of degree −n 6 0, and let δ be a

k-linear superderivation of degree j with −n+ j 6 0. Then

TrΛ[δ, ϕ]s = [δ,TrΛ(ϕ)]s.

Proof. — Let η ∈
∧n−j V be any element. Then

TrΛ[δ, ϕ]s(η) = TrΛ(δ ◦ ϕ− (−1)−njϕ ◦ δ)(η)

= (−1)|η|trs(lη ◦ δ ◦ ϕ)− (−1)|η|−njtrs(lη ◦ ϕ ◦ δ)
by definition of TrΛ

= (−1)|η|trs(lη ◦ δ ◦ ϕ)− (−1)n−njtrs(δ ◦ lη ◦ ϕ)

since trs([δ, lη ◦ ϕ]s) = 0

= (−1)n−nj+1trs ([δ, lη]s ◦ ϕ)

= (−1)n−nj+1trs(lδ(η) ◦ ϕ)

= −(−1)−njTrΛ(ϕ)(δ(η)) by definition of TrΛ

= [δ,TrΛ(ϕ)]s(η) since δ ◦ TrΛ(ϕ) = 0.

Proof of Proposition 6.4. — We can write ϕ =
∑
n ϕn and δ =

∑
j δj where ϕn is

the degree n component of ϕ, and δj is the degree j component of δ. Note that a

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



150 HENRI GILLET & FATIH M. ÜNLÜ

superderivation of
∧
V is necessarily of degree greater than or equal to −1. Moreover,

TrΛ[δj , ϕn]s = 0 unless n+ j 6 0. Then

TrΛ[δ, ϕ]s =
∑
j>−1

TrΛ[δj , ϕ]s

=
∑
j>−1

∑
n6−j

TrΛ[δj , ϕn]s

=
∑
j>−1

∑
n6−j

[δj ,TrΛ(ϕn)]s by Lemma 6.5

= [δ,TrΛ(ϕ)]s.

7. Twisted Complexes

In this section, we give a brief exposition of twisted complexes, which were in-
troduced by E. Brown in [5]. These shall be used in Section 8 to construct “global
resolutions" of OZ by locally free AX -modules. (cf. Proposition 8.4). The reader is
referred to [14] for an extensive study of the use of twisted complexes in the duality
theory of complex manifolds.

Let A be an abelian category.

Definition 7.1. — Let M = {Mp,q}p,q∈Z be a bigraded object in A, and let δ be a
differential of total degree +1 on the associated graded object T (M)i =

⊕
p+q=iM

p,q.
The pair (M, δ) is called a twisted complex if δ preserves the filtration with respect to
the grading by the first degree on M . In this case, δ is called the twisting differential
of the pair (M, δ).

We can write δ =
∑
k>0 ak where ak ∈

∏
p,q∈Z Hom A(Mp,q,Mp+k,q−k+1). The fact

that δ2 = 0 entails the following, which is called the twisting cocycle condition,
n∑
i=0

aian−i = 0 for n > 0.(7.1)

Consider the cases where n=0, 1, 2

a2
0 = 0(7.2)

a0a1 + a1a0 = 0(7.3)
a0a2 + a2

1 + a2a0 = 0(7.4)

(Mp,∗, a0) is a cochain complex for each p ∈ Z by (7.2). The totality of maps
(−1)qap,q1 : Mp,q → Mp+1,q gives us a map of complexes from (Mp,∗, a0) to
(Mp+1,∗, a0) by (7.3). Equation (7.4) entails that −a2

1 : (Mp,∗, a0) → (Mp+2,∗, a0)

is chain homotopic to the zero map, and the chain homotopy is given by
a2 ∈

∏
p,q∈Z Hom A(Mp,q,Mp+2,q−1).
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By definition (T (M)∗, δ) is a filtered differential object with the filtration given by
F k =

⊕
i>kM

i,j . Hence there exists a spectral sequence with

Ep,q1 = Hq(Mp,∗, a0)⇒ Hp+q(T (M)∗, δ).

We note that (H∗(Mp,∗, a0), a1) is a cochain complex because of (7.4). As a result
the E2 terms of the spectral sequence are

Ep,q2 = Hp(Hq(M∗∗, a0), a1).

Remark 7.2. — The reader may observe that there is a formal similarity between
twisting cocyles and flat superconnections.

Example 7.3. — Every double complex (with anticommuting differentials) is a twisted
complex with ak = 0 for k > 2.

Example 7.4. — Let (C∗, d) be a bounded cochain complex in A, and for simplicity as-
sume that Ck 6= 0 only for 0 6 k 6 n for some n ∈ N. Suppose we are given projective
resolutions (P p,∗, αp) of Cp for each p with augmentation maps εp : (P p,∗, αp)→ Cp.
Then one has cochain maps βp : (P p,∗, αp)→ (P p+1,∗, αp+1) lifting d : Cp → Cp+1.

...
...

...

α0

y α1

y αn

y
0 −−−−→ P 0,−1 β−1−−−−→ P 1,−1 β−1−−−−→ · · · β−1−−−−→ Pn,−1 −−−−→ 0

α0

y α1

y αn

y
0 −−−−→ P 0,0 β0−−−−→ P 1,0 β0−−−−→ · · · β0−−−−→ Pn,0 −−−−→ 0

ε0

y ε1

y εn

y
0 −−−−→ C0 d−−−−→ C1 d−−−−→ · · · d−−−−→ Cn −−−−→ 0y y y

0 0 0

Now we will construct maps ak for k > 0 in order to make (P ∗∗, δ =
∑
k>0 ak) a

twisted complex. (Note that ak = 0 for k > n+ 1).
We set a0 = {(−1)pαp}p∈Z and a1 = {βq}q∈Z. Then the twisting cocycle condition

is satisfied for n = 0 and n = 1. Now assume that ak is constructed. It is easy to
check that −

∑k
i=1 aiak−i+1 : (P p,∗, a0)→ (P p+k+1,∗[−k+ 1], a0) is a cochain map. If

we consider −
∑k
i=1 aiak−i+1 as a map from the complex (P p,∗, a0) to the augmented

complex (P p+k+1,∗[−k+ 1]→ Cp+k+1[−k+ 1]→ 0), then it is homotopic to the zero
map being a chain map from a complex of projectives to an acyclic complex. Let ak+1
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be a chain homotopy between −
∑k
i=1 a1ak−i+1 and the zero map, then one has

ak+1a0 + a0ak+1 +
k∑
i=1

aiak−i+1 = 0

which is equivalent to the twisting cocycle condition for n = k + 1. This completes
the induction.

Moreover, if we endow C∗ with the filtration bête, i.e. the filtration defined by

σ>p(C)i =

{
0 if i < p

Ci if i > p

then, the augmentation map ε : T (P ∗∗) → C∗ respects the filtrations and is a
quasi-isomorphism of the associated graded objects. Therefore, the cochain complex
(T (P ∗∗), δ) is quasi-isomorphic to (C∗, d).

Definition 7.5. — Let C be an object in A. A twisted complex (M, δ) is called a twisted
resolution of C if

Hi(T (M)∗, δ) =

{
C if i = 0

0 if i 6= 0.

8. Koszul-Dolbeault twisted resolutions

The main result of this section is Proposition 8.4 wherein we use twisted complexes
to construct a global resolution of OZ by locally free AX -modules.

Let X be a compact complex manifold of dimension n. We write AX and Ap,qX for
the sheaf of real analytic complex valued functions and for the sheaf of real analytic
differential forms of type (p, q) respectively. Let π : E → X be a holomorphic vector
bundle of rank r. We will denote the sheaf of holomorphic sections of E by E. The
dual bundle and its sheaf of sections will be denoted by E∨ and E∨ respectively.

Definition 8.1. — A connection of type (0,1) (or simply a (0,1)-connection) on E is
a C-linear map

D : AX ⊗ E→ A0,1
X ⊗ E

satisfying the Leibniz rule

D(fs) = ∂f ⊗ s+ fD(s)

for local sections f of AX and s of E.

Let D be a (0, 1)-connection on E, and let 〈 , 〉 denote the pairing between E and
E∨. One defines a (0,1)-connection on E∨ (which will also be denoted by D) by the
formula

∂〈s, t〉 = 〈Ds, t〉+ 〈s,Dt〉
for local sections s and t of AX⊗ E and AX⊗ E∨ respectively. Finally we extend D to
a C-linear superderivation of odd degree of the sheaf of superalgebras A∗X“⊗ ∧

E. As
a result, D is a (0, 1)-superconnection on the bundle

∧
E. Let τ be a global section
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of AX ⊗ E∨. We extend ıτ , the contraction by τ , to an odd degree superderivation of
A∗X“⊗∧

E which acts trivially on A(X).

Lemma 8.2. — Let τ ∈ Γ(X, AX⊗ E∨) be any section and let D be a (0, 1)-connection
on E such that D(τ) = 0. The following diagram is anti-commutative for p, q > 0

A0,q
X ⊗

∧p E D−−−−→ A0,q+1
X ⊗

∧p E

ıτ

y ıτ

y
A0,q
X ⊗

∧p−1 E D−−−−→ A0,q+1
X ⊗

∧p−1 E.

Proof. — We have D ◦ ıτ + ıτ ◦D = [D, ıτ ]s = ıD(τ).

Lemma 8.3. — Let Z be a complex submanifold of X such that there exists a holo-
morphic vector bundle π : E → X and a sectionτ ∈ Γ(X, AX ⊗ E∨), vanishing along
Z, such that the induced map ıτ : AX ⊗ E→ AX ⊗ IZ is surjective. Then there exists
a (0, 1)-connection D on the bundle E such that D(τ) = 0.

Proof. — We have the following diagram

AX ⊗ E

ı
∂(τ)

y
A0,1
X ⊗ E ıτ−−−−→ A0,1

X

p−−−−→ A0,1
X ⊗ OZ −−−−→ 0.

There exists an AX -linear map θ : AX ⊗ E→ A0,1
X ⊗ E such that ıτ ◦ θ = ı∂(τ) since

p ◦ ı∂(τ) = 0 and AX ⊗ E is projective by Corollary 2.2. Then D = ∂− θ is the desired
(0, 1)-connection since

[D, ıτ ]s = [∂, ıτ ]s − [θ, ıτ ]s = 0.

Proposition 8.4. — Let Z be a complex submanifold of X such that there exists a
holomorphic vector bundle π : E → X and τ ∈ Γ(X, AX⊗ E∨) such that ıτ : AX⊗ E→
AX ⊗ IZ is surjective. There is a twisted resolution (cf. Definition 7.5) (M l,m, δ =∑
k>0 ak) of OZ with M l,m = A0,l

X ⊗
∧m E, a0 = ıτ , a1 = D, and where the ak

are A∗X-linear superderivations for k > 2.

The quasi-isomorphisms are the augmentation map ε : (T (M)∗, δ)→ ( A0,∗
X ⊗ OZ , ∂)

and the inclusion OZ → ( A0,∗
X ⊗ OZ , ∂).

Proof. — The fact that (ıτ )2 = 0 and that D and ıτ anticommute implies that the
twisting cocycle condition (defined in Section 7) is satisfied for n = 0 and n = 1. We
will construct superderivations ak, k > 2 satisfying the twisting cocycle condition
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by induction.

AX
∂−−−−→ A0,1

X
∂−−−−→ · · · ∂−−−−→ A0,n

X

ıτ

x ıτ

x ıτ

x
AX ⊗ E D−−−−→ A0,1

X ⊗ E D−−−−→ · · · D−−−−→ A0,n
X ⊗ E

ıτ

x ıτ

x ıτ

x
...

...
...

ıτ

x ıτ

x ıτ

x
AX ⊗

∧r−1 E D−−−−→ A0,1
X ⊗

∧r−1 E D−−−−→ · · · D−−−−→ A0,n
X ⊗

∧r−1 E

ıτ

x ıτ

x ıτ

x
AX ⊗

∧r E D−−−−→ A0,1
X ⊗

∧r E D−−−−→ · · · D−−−−→ A0,n
X ⊗

∧r E.
We have the diagram

AX ⊗ E ıτ−−−−→ AX

−a2
1

y 0

y
A0,2
X ⊗

∧2 E ıτ−−−−→ A0,2
X ⊗ E ıτ−−−−→ A0,2

X .

There exists an AX -linear map a2 : AX ⊗ E → A0,2
X ⊗

∧2 E such that −a2
1 = ıτ ◦ a2

since A0,q
X ⊗ E is projective by Lemma 2.2. We extend a2 to an odd superderivation

of A∗X“⊗∧
E which acts trivially on A∗X . The twisting cocycle condition for n = 2 is

satisfied since both −a2
1 and a2 ◦ ıτ + ıτ ◦ a2 are superderivations that act trivially on

A∗X and agree on AX ⊗ E.
Now assume that ak is constructed. Thus we have the diagram

AX ⊗ E ıτ−−−−→ AX

µ

y 0

y
A0,k+1
X ⊗

∧k+1 E ıτ−−−−→ A0,k+1
X ⊗

∧k E ıτ−−−−→ A0,k+1
X ⊗

∧k−1 E

where µ = −
∑k
i=1 aiak−i+1. It is straightforward to check that µ is AX -linear. Hence

there exists a map ak+1 : AX ⊗ E → A0,k+1
X ⊗

∧k+1 E such that µ = ıτ ◦ ak+1. The
extension of ak+1 to an odd superderivation of A∗X“⊗∧

E which acts trivially on A∗X
satisfies the twisting cocycle condition by applying the argument used in the previous
paragraph. Note that ak = 0 for k > n+1, so the induction ends after a finite number
of steps.

Let ε denote the augmentation map from the twisted complex (T ∗ = T (M)∗, δ) to
the complex ( A0,∗

X ⊗ OZ , ∂). If we endow the latter complex with filtration bête, then
ε becomes a map of filtered complexes which is a quasi-isomorphism of the associated
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graded objects. Hence, (T ∗, δ) is quasi-isomorphic to ( A0,∗
X ⊗ OZ , ∂), which in turn is

quasi-isomorphic to OZ .

Note that δ is a flat superconnection of type (0, 1) on the superbundle
∧
E.

9. Koszul Factorizations II

In this section, we will construct a map from the twisted complex T ∗ = T (M)∗ of
Proposition 8.4 to the Dolbeault complex Ar,∗X [r] by using the generalized supertraces
of Section 6. The precise argument is contained in Corollary 9.3. In the next section,
we will prove that this map represents the Grothendieck fundamental class of Z in
X.

We extend the generalized trace (cf. Definition 6.1) to a map

TrΛ : A∗X“⊗ End OX (
∧
E)→ A∗X“⊗∧

E∨

by the formula
TrΛ(ω ⊗ ϕ) = ωTrΛ(ϕ)

for local sections ω and ϕ of A∗X and End OX (
∧
E) respectively.

Proposition 9.1. — Let ϕ be a section of the sheaf of superalgebras A∗X“⊗ End OX (
∧
E)

and δ be the twisting differential of Proposition 8.4. Then

TrΛ[δ, ϕ]s = [δ,TrΛ(ϕ)]s

Proof. — We observe that, for local sections ω1 ⊗ ϕ1, ω2 ⊗ ϕ2 of A∗X“⊗ End OX (
∧
E),

one has that

[ω1 ⊗ ϕ1, ω2 ⊗ ϕ2]s = (−1)|ϕ1||ω1|ω1 ∧ ω2 ⊗ [ϕ1, ϕ2]s.

This follows from a straightforward computation and the fact that A∗X is supercom-
mutative. Therefore

TrΛ[ω1 ⊗ ϕ1, ω2 ⊗ ϕ2]s = (−1)|ϕ1||ω1|ω1 ∧ ω2 ⊗ TrΛ[ϕ1, ϕ2]s.

Assume that δ̃ is a section of A∗X“⊗ End OX (
∧
E) which is a superderivation. Since

the supercommutator and TrΛ are additive, we may assume (without any loss of
generality) that δ̃ = ω1 ⊗ ϕ1 and ϕ = ω2 ⊗ ϕ2. Then

TrΛ[δ̃, ϕ]s = (−1)|ϕ1||ω1|ω1 ∧ ω2 ⊗ TrΛ[ϕ1, ϕ2]s

= (−1)|ϕ1||ω1|ω1 ∧ ω2 ⊗ [ϕ1,TrΛ(ϕ2)]s by Proposition 6.4
= [ω1 ⊗ ϕ1, ω2 ⊗ TrΛ(ϕ2)]s

= [δ̃,TrΛ(ϕ)]s.

We further observe that δ − ∂ is a section of A∗X“⊗ End OX (
∧
E) which is a sum of

superderivations. As a result we have

TrΛ[δ − ∂, ϕ]s = [δ − ∂,TrΛ(ϕ)]s.
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We finally observe that

[∂, ϕ]s = [∂, ω2 ⊗ ϕ2]s = ∂ω2 ⊗ ϕ2

and

[∂,TrΛ(ϕ)]s = [∂,TrΛ(ω2 ⊗ ϕ2)]s = [∂, ω2 ⊗ TrΛ(ϕ2)]s = ∂ω2 ⊗ TrΛ(ϕ2).

Then the assertion follows from the equation

TrΛ[∂, ϕ]s = [∂,TrΛ(ϕ)]s.

Recall that the differential δ is a flat superconnection of type (0, 1) on the super
vector bundle

∧
E. If we let A = ∇ + δ (recall that ∇ is a flat (1, 0)-connection on

E), then A is a superconnection on
∧
E. The curvature of A, denoted by RA, is given

by the formula

RA = A2 = (∇+ δ)2 = ∇2 +∇ ◦ δ + δ ◦ ∇+ δ2 = [∇, δ]s
since ∇2 = δ2 = 0.

Corollary 9.2. — Let ψ = 1
r!R

r
A. Then

[δ,TrΛ(ψ)]s = 0.

Proof. — This follows from the fact that [δ,RA]s = 0 and the proposition.

Corollary 9.3. — Let ψ = 1
r!R

r
A. Then

∂ ◦ TrΛ(ψ) = TrΛ(ψ) ◦ δ.

In other words, TrΛ(ψ) is a cochain map from the twisted complex (T ∗ = T (M)∗, δ) of
Proposition 8.4 (which is quasi-isomorphic to OZ) to the Dolbeault complex ( Ar,∗X [r], ∂)

(which is quasi-isomorphic to ΩrX [r]).

Proof. — We have

[δ,TrΛ(ψ)]s =
∑
j>0

∑
m−n>j−1

[aj ,TrΛ(ψm,n)]s

=
∑
j>0

∑
m−n>j−1

(aj ◦ TrΛ(ψm,n)− TrΛ(ψm,n) ◦ aj)

since TrΛ(ψm,n) are of even degree

= ∂ ◦ TrΛ(ψ)−
∑
j>0

∑
m−n>j−1

TrΛ(ψm,n) ◦ aj

= ∂ ◦ TrΛ(ψ)− TrΛ(ψ) ◦ δ.

Then the assertion follows from Corollary 9.2.

Corollary 9.3 (combined with the Lemmas 10.1 and 10.4) can be seen as a gener-
alization of Proposition 5.3 to the real-analytic case.

ASTÉRISQUE 328



AN EXPLICIT PROOF OF THE GENERALIZED GAUSS-BONNET FORMULA 157

10. Comparison with the Grothendieck Class

As a result of Corollary 9.3, TrΛ(ψ) gives us an element in Hom OX (T ∗, Ar,∗X [r]), and
therefore a class in ExtrOX (T ∗, Ar,∗X ). We can identify ExtrOX (T ∗, Ar,∗X ) with the group
ExtrOX ( OZ ,ΩrX) since T ∗ and Ar,∗X are quasi-isomorphic to OZ and ΩrX respectively.
Now we shall prove that the class of TrΛ(ψ) in ExtrOX ( OZ ,ΩrX), denoted by [TrΛ(ψ)],
is the Grothendieck fundamental class. But we need two preliminary lemmas first.

Lemma 10.1. — Let ψ = 1
r!R

r
A. We write ψ =

∑
ψm,n where ψm,n ∈ A(X) ⊗

Hom AX (
∧m E,

∧n E). Then

ψr,0 =
1

r!
(ı∇(τ))

r.

Proof. — We have RA = [∇, δ]s = ı∇(τ) +
∑
k>1∇(ak). In this sum, the only sum-

mand that lowers the Koszul degree is the term ı∇(τ). Therefore, the only term that
lowers the Koszul degree by r in 1

r!R
r
A is 1

r! (ı∇(τ))
r.

Therefore, we have the following equality for the restriction of TrΛ(ψ) to AX ⊗
∧r E

TrΛ(ψ)| AX⊗
∧r

E =
1

r!
(ı∇(τ))

r.

Lemma 10.2. — Let A∗, B∗, and C∗ be cochain complexes; and f : A∗ → B∗ and
g : B∗ → C∗ be maps of complexes such that the composition g ◦ f is homotopic to
the zero map. There exists a map l(f) : A∗ → Cone(g)∗[−1] such that the following
triangle is commutative

A∗
l(f)//

f
&&

Cone(g)∗[−1]

Pr

��
B∗

where Pr : Cone(g)∗[−1]→ B∗ is the projection map.

Proof. — Exercise.

Theorem 10.3. — [TrΛ(ψ)] ∈ ExtrOX ( OZ ,ΩrX) is the Grothendieck fundamental class.

Proof. — Since ExtrOX ( OZ ,ΩrX) ∼= H0(X, ExtrOX ( OZ ,ΩrX)), we need only prove that
the classes agree locally.

Let x ∈ X be a point and U be a neighborhood of x such that the restriction
of E to U is trivial, with {f1, . . . , fr} a local holomorphic framing of E over U and
{f1, . . . , fr} the dual framing for E∨; we identify E and E∨ with the trivial bundle
via these framings. Assume that Z has holomorphic equations {z1, . . . , zr} in U , and is
hence the zero set of the ν = z1f

1 + · · ·+zrf
r of E∨. Then the Koszul complex K(ν)∗

over U is quasi-isomorphic to OZ |U where K(ν)−i =
∧i OrU and the differentials are

contractions by ν .
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We will construct a quasi-isomorphism ũ : K(ν)∗ → T ∗|U such that the class of
the composition TrΛ(ψ)|U ◦ ũ in

ExtrOX (K(ν)∗, Ar,∗U [r]) ∼= ExtrOX ( OZ |U ,ΩrU )

is the restriction of the Grothendieck fundamental class of Z.
Step 1 : We first define a map u from K(ν)∗ to K(τ)∗|U . By the assumptions on Z

and τ , there exist uji ∈ Γ(U, AX) such that zi =
∑
j ujiαj where τ = α1e

1+· · ·+αrer.
We let u0 : OU → AU be the inclusion and u−1 : OrU → AU ⊗ E|U be the map which
sends fi to

∑
j ujiej . Then we extend u−1 to a map of Koszul complexes by setting

u−k =
∧k u−1. Therefore u−r is given by multiplication by det(uij).

Step 2 : Next, we shall extend u : K(ν)∗ → K(τ)∗|U to a map ũ : K(ν)∗ → T ∗|U .
The twisted complex T ∗ is a filtered complex with respect to Dolbeault degree. Let us
denote this (decreasing) filtration by F i, i.e. F i = F i(T ∗) =

⊕
j>i A0,j

X ⊗
∧

E. Then
one has GriF = A0,i

X ⊗K(τ)∗.
The map (−δ + ıτ ) : K(τ)∗ → F 1[1] is a map of complexes, since (−δ + ıτ ) ◦ ıτ =

−δ ◦ (−δ + ıτ ). Hence

(−δ + ıτ ) ◦ u : K(ν)∗ → F 1[1]|U

is a cochain map. Moreover, (−δ+ıτ )◦u is homotopic to the zero map since K(ν)∗ is a
complex of free OX -modules; F 1[1] is acyclic in negative degrees; and ((−δ + ıτ ) ◦ u) :

OU → F 1[1]0|U is the zero map. (Note that u0 is the inclusion of OU into AU , and
(−δ + ıτ )0 = ∂). Consequently, there exists an extension

ũ = l(u) : K(ν)∗ → Cone(−δ + ıτ )∗[−1]

by Lemma 10.2. This is the desired extension since T ∗ = Cone(−δ + ıτ )∗[−1].
Step 3 : We now prove that ũ : K(ν)∗ → T ∗|U is a quasi-isomorphism. Let i :

OZ |U → A0,∗
U ⊗ OZ |U be the inclusion and p : K(ν)∗ → OZ |U be the augmentation

map. Then we have a commutative diagram

K(ν)∗
ũ−−−−→ T ∗|U

p

y ε

y
OZ |U

i−−−−→ A0,∗
U ⊗ OZ |U

in which the vertical arrows and the bottom horizontal arrow are quasi-isomorphisms.
As a result, ũ is a quasi-isomorphism.
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Step 4 : Let η = TrΛ(ψ) ◦ ũ. Thus the degree (−r) component of η is given by the
composition 1

r! (ı∇(τ))
r ◦ det(uij). Hence

η−r(f1 ∧ · · · ∧ fr) =
1

r!
(ı∇(τ))

r(det(uij)e1 ∧ · · · ∧ er)

= det(uij)
1

r!
(ı∇(τ))

r(e1 ∧ · · · ∧ er)

= det(uij)∂α1 ∧ · · · ∧ ∂αr (mod I )

= ∂z1 ∧ · · · ∧ ∂zr (mod I )

= dz1 ∧ · · · ∧ dzr (mod I ).

By Proposition 5.4 η represents the Grothendieck fundamental class of Z ∩ U in U .
Since ũ is a quasi-isomorphism, so is TrΛ(ψ)|U . Since TrΛ(ψ) represents the Grothen-
dieck fundamental class locally, it does so globally.

Lemma 10.4. — Let ψ = 1
r!R

r
A. We have

TrΛ(ψ)| AX =
1

r!
trs(ψ).

Proof. — Omitted.

Corollary 10.5. — The image of the Grothendieck fundamental class in Hr(X,ΩrX) is
represented by the (r, r) degree part of the Chern character form of the superbundle∧
E equipped with the superconnection A = ∇+ δ.

Proof. — This follows from the theorem, Lemma 10.4, and Theorem 3.3.

This completes the proof of Theorem B.
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TORSION INVARIANTS FOR FAMILIES

by

Sebastian Goette

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — We give an overview over the higher torsion invariants of Bismut-Lott,
Igusa-Klein and Dwyer-Weiss-Williams, including some more or less recent develop-
ments.

Résumé (Invariants de torsion en familles). — On expose la théorie des invariants de tor-
sion supérieures de Bismut-Lott, Igusa-Klein et Dwyer-Weiss-Williams, ainsi que ses
développements récents.

The classical Franz-Reidemeister torsion τFR is an invariant of manifolds with
acyclic unitarily flat vector bundles [62], [33]. In contrast to most other algebraic-
topological invariants known at that time, it is invariant under homeomorphisms
and simple-homotopy equivalences, but not under general homotopy equivalences.
In particular, it can distinguish homeomorphism types of homotopy-equivalent lens
spaces. Hatcher and Wagoner suggested in [39] to extend τFR to families of mani-
folds p : E → B using pseudoisotopies and Morse theory. A construction of such a
higher Franz-Reidemeister torsion τ was first proposed by John Klein in [48] using a
variation of Waldhausen’s A-theory. Other descriptions of τ were later given by Igusa
and Klein in [45], [46].

In this overview, we will refer to the construction in [42]. Let p : E → B be
a family of smooth manifolds, and let F → E be a unitarily flat complex vector
bundle of rank r such that the fibrewise cohomology with coefficients in F forms
a unipotent bundle over B. Using a function h : E → R that has only Morse and
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Key words and phrases. — Bismut-Lott torsion, Igusa-Klein torsion, Dwyer-Weiss-Williams torsion,
higher analytic torsion, higher Franz-Reidemeister torsion.
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birth-death singularities along each fibre of p, and with trivialised fibrewise unsta-
ble tangent bundle, one constructs a homotopy class of maps ξh(M/B;F ) from B

to a classifying space Whh(Mr(C), U(r)). Now, the higher torsion τ(E/B;F ) ∈
H4•(B; R) is defined as the pull-back of a certain universal cohomology class τ ∈
H4•(Whh(Mr(C), U(r)); R

)
.

On the other hand, Ray and Singer defined an analytic torsion T RS of unitarily flat
complex vector bundles on compact manifolds in [61] and conjectured that T RS =

τFR. This conjecture was established independently by Cheeger [26] and Müller [59].
The most general comparison result was given by Bismut and Zhang in [17] and [18].
In [64], Wagoner predicted the existence of a “higher analytic torsion” that detects
homotopy classes in the diffeomorphism groups of smooth closed manifolds. Such an
invariant was defined later by Bismut and Lott in [16].

Kamber and Tondeur constructed characteristic classes cho(F ) ∈ Hodd(M ; R) of
flat vector bundles F →M in [47] that provide obstructions towards finding a parallel
metric. If p : E → B is a smooth bundle of compact manifolds and F → E is flat,
Bismut and Lott proved a Grothendieck-Riemann-Roch theorem relating the charac-
teristic classes of F to those of the fibrewise cohomology H(E/B;F )→ B. The higher
analytic torsion form T (THE, gTX , gF ) appears in a refinement of this theorem to the
level of differential forms. Its component in degree 0 equals the Ray-Singer analytic
torsion of the fibres, and the refined Grothendieck-Riemann-Roch theorem implies a
variation formula for the Ray-Singer torsion that was already discovered in [17].

In [30], Dwyer, Weiss and Williams gave yet another approach to higher torsion.
They defined three generalised Euler characteristics for bundles p : E → B of homo-
topy finitely dominated spaces, topological manifolds, and smooth manifolds, respec-
tively, with values in certain bundles over B. A flat complex vector bundle F → E

defines a homotopy class of maps from E to the algebraic K-theory space K(C).
The Euler characteristics above give analogous maps B → K(C) for the fibrewise
cohomology H(E/B;F )→ B. If F is fibrewise acyclic, these maps lift to three differ-
ent generalisations of Reidemeister torsion, given again as sections in certain bundles
over B. By comparing the three characteristics for smooth manifold bundles, Dwyer,
Weiss andWilliams also showed that the Grothendieck-Riemann-Roch theorem in [16]
holds already on the level of classifying maps to K(C).

Bismut-Lott torsion T (E/B;F ) and Igusa-Klein torsion τ(E/B;F ) are very closely
related. For particularly nice bundles, this was proved by Bismut and the author
in [12] and [36], [37]. We will establish the general case in [38]. Igusa also gave a set
of axioms in [44] that characterise τ(E/B;F ) and hopefully also T (E/B;F ) when F
is trivial. Badzioch, Dorabiała and Williams recently gave a cohomological version of
the smooth Dwyer-Weiss-Williams torsion in [3]. Together with Klein, they proved
in [2] that it satisfies Igusa’s axioms as well. On the other hand, the other two torsions
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in [30] are definitely coarser than Bismut-Lott and Igusa-Klein torsion, because they
do not depend on the differentiable structure. They might however be related to the
Bismut-Lott or Igusa-Klein torsion of a virtual flat vector bundle F of rank zero, see
Remark 7.5 below.

Let us now recall one of the most import applications of higher torsion invari-
ants. It is possible to construct two smooth manifold bundles pi : Ei → B for i = 0,
1 with diffeomorphic fibres, such that there exists a homeomorphism ϕ : E0 → E1

with p0 = p1 ◦ϕ and with a lift to an isomorphism of vertical tangent bundles, but no
such diffeomorphism. The first example of such bundles pi was constructed by Hatcher,
and it was later proved by Bökstedt that p0 and p1 are not diffeomorphic in the
sense above [19]. Igusa showed in [42] that the higher torsion invariants τ(Ei/B; C)

differ, and by [36], the Bismut-Lott torsions T (Ei/B; C) differ as well. Hatcher’s
example can be generalised to construct many different smooth structures on bun-
dles p : E → B. We expect that higher torsion invariants distinguish many of these
different structures, but not all of them.

One may wonder why one wants to consider so many different higher torsion invari-
ants, in particular, if some of them are conjectured to provide the same information.
We will see that different constructions of these invariants give rise to different appli-
cations. Since Hatcher’s example and its generalisations come with natural fibrewise
Morse functions, the difference of the Igusa-Klein torsions of different smooth struc-
tures is sometimes easy to compute. Due to Igusa’s axiomatic approach, one can also
understand the topological meaning of Igusa-Klein torsion. On the other hand, one
can classify smooth structures on a topological manifold bundle p : E → B in a more
abstract way as classes of sections in a certain bundle of classifying spaces over B.
These section spaces fit well into the framework of generalised Euler characteristics
and Dwyer-Weiss-Williams torsion. But some extra work is necessary to recover co-
homological information from this approach.

Finally, Bismut-Lott torsion is defined using the language of local index theory.
The proofs of some interesting properties of Bismut-Lott torsion were inspired by
parallel results in the setting of the classical Atiyah-Singer family index theorem or
the Grothendieck-Riemann-Roch theorem in Arakelov geometry. Bismut-Lott torsion
is defined for any flat vector bundle F → E, whereas Igusa-Klein torsion and Dwyer-
Weiss-Williams torsion can only be defined if the fibrewise cohomology is of a special
type. This makes Bismut-Lott torsion useful for other applications, for example in
the definition of a secondary K-theory by Lott [52]. Heitsch and Lazarov generalised
Bismut-Lott torsion to foliations [40], so one may try to use it to detect different
smooth structures on a given foliation, which induce the same structures on the space
of leaves. Finally, Bismut and Lebeau recently defined higher torsion invariants using
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a hypoelliptic Laplacian on the cotangent bundle [8], [15]. Conjecturally, this torsion
can give some information about the fibrewise geodesic flow.

This overview is organised as follows. We start by discussing the index theorem for
flat vector bundles by Bismut and Lott in Section 1. In Sections 2 and 3, we introduce
Bismut-Lott torsion and state some properties and applications that are inspired by
local index theory. In Section 4 and 5, we introduce Igusa-Klein torsion and relate
it to Bismut-Lott torsion using two different approaches. Section 6 is devoted to
generalised Euler characteristics and Dwyer-Weiss-Williams torsion. In Section 7, we
discuss smooth structures on fibre bundles and a possible generalisation to foliations.
Finally, we sketch the hypoelliptic operator on the cotangent bundle and its torsion
due to Bismut and Lebeau in Section 8.

We have tried to keep the notation and the normalisation of the invariants consis-
tent throughout this paper; as a result, both will disagree with most of the references.
In particular, we use the Chern normalisation of [12], which is the only normalisation
for which Theorem 3.7 and a few other results hold. To keep this paper reasonably
short, only the most basic versions of some of the theorems on higher torsion will be
explained. Thus we will not discuss some non-trivial generalisations of the theorems
below to fibre bundles with group actions. We will also only give hints towards the
relation with the classical Atiyah-Singer family index theorem or the Grothendieck-
Riemann-Roch theorem in algebraic geometry. Finally, we will not discuss the in-
teresting refinements and generalisations of classical Franz-Reidemeister torsion and
Ray-Singer torsion for single manifolds that have been invented in the last few years.

Acknowledgements. — This paper is a somewhat extended version of a series of lec-
tures at the Chern Institute at Tianjin in 2007, whose support and hospitality we
highly appreciated. The author was supported in part by the DFG special programme
“Global Differential Geometry”.

We are grateful to J.-M. Bismut for introducing us to higher torsion, and also to U.
Bunke, W. Dorabiała, K. Igusa, K. Köhler, X. Ma, B. Williams and W. Zhang, from
whom we learned many different aspects of this intriguing subject. We also thank the
anonymous referee for her or his helpful comments.

1. An Index Theorem for Flat Vector Bundles

There exists a theory of characteristic classes of flat vector bundles that is parallel
to the theory of Chern classes and Chern-Weil differential forms. These classes have
been constructed by Kamber and Tondeur [47], and are closely related to the classes
used by Borel [20] to study the algebraic K-theory of number fields.
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Analytic torsion forms made their first appearance in a local index theorem for
these Kamber-Tondeur classes by Bismut and Lott [16]. Refinements of this theorem
have later been given by Dwyer, Weiss and Williams [30] and by Bismut [7] and Ma
and Zhang [56].

1.1. Characteristic classes for flat vector bundles. — Before we introduce
Kamber-Tondeur forms, let us first recall classical Chern-Weil theory. Let V →M be
a complex vector bundle, and let ∇V be a connection on V with curvature (∇V )2 ∈
Ω2(M ; EndV ). Then one defines the Chern character form

(1.1) ch
(
V,∇V

)
= trV

Å
e−

(∇V )2

2πi

ã
∈ Ωeven(M ; C) .

This form is closed because the covariant derivative [∇V , (∇V )2] of the curvature
vanishes by the Bianchi identity, so

(1.2) d ch
(
V,∇V

)
= trV

Åï
∇V , e−

(∇V )2

2πi

òã
= 0 .

If ∇V,0 and ∇V,1 are two connections on V , one can choose a connection ∇Ṽ on
the natural extension Ṽ of V to M × [0, 1] with ∇Ṽ |M×{i}= ∇V,i for i = 0, 1. Stokes’
theorem then implies

(1.3)
ch
(
V,∇V,1

)
− ch

(
V,∇V,0

)
= d ‹ch(V,∇V,0,∇V,1),

with ‹ch(V,∇V,0,∇V,1) =

∫ 1

0

ι ∂
∂t

ch
(
Ṽ ,∇Ṽ

)
dt.

Thus, the class ch(V ) of ch(V,∇V ) in de Rham cohomology is independent of ∇V .
Moreover, ‹ch(V,∇V,0,∇V,1) is independent of the choice of ∇Ṽ up to an exact form.

Now let F → M be a flat vector bundle, so F comes with a fixed connection ∇F

such that (∇F )2 = 0. We choose a metric gF on F and define the adjoint connec-
tion ∇F,∗ with respect to gF such that

(1.4) dg(v, w) = g
(
∇F v, w

)
+ g
(
v,∇F,∗w

)
for all sections v, w of F . Then the form

(1.5) cho
(
F, gF

)
= πi ‹ch(F,∇F ,∇F,∗) ∈ Ωodd(M ; R)

is real, odd and also closed, because

(1.6) d cho
(
F, gF

)
= πi ch

(
F,∇F,∗

)
− πi ch

(
F,∇F

)
= 0 .

Clearly, if gF is parallel with respect to ∇F , then cho(F, gF ) = 0.
Let gF,0, gF,1 be two metrics on F . Proceeding as in (1.3), one constructs a

form ‹cho(F, gF,0, gF,1) ∈ Ωeven(M) such that

(1.7) cho
(
F, gF,1

)
− cho

(
F, gF,0

)
= d ‹cho

(
F, gF,0, gF,1

)
.
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So again, the de Rham cohomology class cho(F ) of cho(F, gF ) does not depend on
the choice of metric gF — but of course, it depends on the flat connection ∇F . Note
that the form ‹cho(F, gF,0, gF,1) is again naturally well-defined up to an exact form.

1.1. Definition. — The forms cho
k(F, gF ) = cho(F, gF ) ∈ Ω2k−1(M) are called

Kamber-Tondeur forms, and their classes cho
k(F ) ∈ H2k−1(M ; R) are called Kamber-

Tondeur classes or Borel classes.

Note that in the literature, there are at least three different normalisations of
these classes. There are however good reasons to stick to the normalisation here, see
Section 3.4.

For later reference, we give a more explicit construction of the Kamber-Tondeur
forms. If we define a connection ∇F̃ over p : M × [0, 1] → M that interpolates be-
tween ∇F and ∇F,∗ by

(1.8) ∇F̃ = (1− t) p∗∇F + tp∗∇F,∗ ,

then by flatness of ∇F and ∇F,∗,

(1.9)
(
∇F̃
)2

= −t(1− t) p∗
(
∇F,∗ −∇F

)2 − p∗(∇F,∗ −∇F ) dt .
From this formula and (1.3), (1.5) one deduces that there exist rational multiples ck
of (2πi)k such that

(1.10)
cho
(
F, gF

)
=
∞∑
k=0

ck trF
(
ω(F, gF )2k+1

)
,

with ω
(
F, gF

)
= ∇F,∗ −∇F = (gF )−1 [∇F , gF ] ∈ Ω1(M ; EndV ) .

Bismut and Lott use the real, odd and closed differential forms

(1.11) trF

Å
ω
(
F, gF

)
e
ω(F,gF )2

2πi

ã
and their cohomology classes instead of cho, which is more convenient for some of the
following constructions. It is not hard to see that these forms are given by a similar
formula as (1.10), but with different constants ck ∈ (2πi)kQ. We prefer the Chern
normalisation given by (1.5) for reasons explained in Remark 3.8.

The Chern-Weil classes like ch(V ) vanish whenever V admits a flat connection.
Similarly, the classes cho(F ) vanish whenever F admits a ∇F -parallel metric. We will
see that there are more analogies between these constructions. A good overview can
be found in the introduction to [52].
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1.2. The cohomological index theorem. — The central theme in [16] is a family
index theorem for flat vector bundles in terms of their Kamber-Tondeur classes. The
analytic index in question is given by fibrewise cohomology. More precisely, let p : E →
B be a smooth proper submersion, in other words, a smooth fibre bundle with n-
dimensional compact fibres, to be denoted M . Let (F,∇F ) be a flat vector bundle
then we consider the vector bundles Hk(E/B;F ) → B, whose fibres over x ∈ B are
given as the twisted de Rham cohomology

(1.12) Hk(E/B;F )x = Hk
(
Ω•(Ex;F |Ex

),∇F
)
.

The bundles Hk(E/B;F ) naturally carry the Gauß-Manin connection ∇H , which is
again flat. The analytic index is thus given by the virtual flat vector bundle

(1.13) H(E/B;F ) =
dimM⊕
k=0

(−1)kHk(E/B;F ) .

The topological index is given by the Becker-Gottlieb transfer of [4]. Recall that the
Becker-Gottlieb transfer is given as a stable homotopy class of maps trE/B : S•B+ →
S•E+. It acts on de Rham cohomology by

(1.14) tr∗E/B α =

∫
E/B

e(TM)α ∈ Hk(B; R)

for all α ∈ Hk(E; R), where e(TM) ∈ Hn(E; o(TM) ⊗ R) denotes the Chern-Weil
theoretic Euler class of the vertical tangent bundle TM = ker dp ⊂ TE, and

∫
E/B

denotes integration over the fibre. Here is a cohomological version of the family index
theorem.

1.2. Theorem (Bismut and Lott [16]). — For all smooth proper submersions p : E → B

and all flat vector bundles F → E,

(1.15) cho(H(E/B;F )) = tr∗E/B cho(F ) ∈ Hodd(B,R) .

One notes that tr∗E/B preserves the degree of differential forms and cohomology
classes. For this reason, an analogous result holds for the classes constructed in (1.11),
and in fact for all classes of the form (1.10), independent of the choice of the con-
stants ck.

The cohomological index theorem can be refined as follows, see also Section 3.5.
Following [27], to a vector bundle V → M with connection ∇V , one associates a
Cheeger-Simons differential character “ch(V,∇V ), from which both the rational Chern
character ch(V ) ∈ Heven(M ; Q) and the Chern-Weil form ch(V,∇V ) ∈ Ωeven(M) can
be read off. If ∇V is a flat connection, then “ch(V,∇V ) becomes a cohomology class
in Hodd(M ; C/Q). It has already been observed in [16] that its imaginary part is
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given by

(1.16) Im “ch(V,∇V ) = cho(V ) ∈ Hodd(M ; R) .

1.3. Theorem (Bismut [7], Ma and Zhang [56]). — For all smooth proper submersions
and all flat vector bundles F → E,

(1.17) “ch(H(E/B;F ),∇H
)

= tr∗E/B
“ch(F,∇F ) ∈ Hodd(B; C/Q) .

It is natural to ask if the same theorem holds on the level of flat vector bundles
on B. A flat vector bundle F → E, or more generally, a bundle of finitely generated
projective R-modules for some ring R, is classified by a map from E to the classifying
space BGL(R)×K0(R). Following Quillen, there is a natural map from BGL(R) to
the algebraic K-theory space K(R). Thus, we may associate to F the corresponding
homotopy class [F ] of maps from E to K(R), which is slightly coarser than the class
of F in the K-theory of finitely generated projective R-module bundles on E.

1.4. Theorem (Dwyer, Weiss and Williams [30]). — If p : E → B is a bundle of smooth
closed manifolds, then

(1.18) [H(E/B;F )] = tr∗E/B [F ]

in the homotopy classes of maps B → K(R).

Although both sides of (1.18) exist in a much more general situation, the smooth
bundle structure is needed in the proof of the theorem, see Section 6.1 below, in
particular Theorem 6.3. Theorem 1.2 can be deduced from Theorem 1.4 because the
class cho can already be defined on K(R).

1.3. A refined index theorem. — There is another possible refinement of The-
orem 1.2, where one replaces de Rham cohomology classes by differential forms. For
this, one first chooses metrics gTM and gF on the bundles TM → E and F → E, and
a horizontal complement THE of TM ⊂ TE. These data give rise to a natural con-
nection ∇TM on TM by [6]. Thus, one can consider the Chern-Weil theoretic Euler
form e(TM,∇TM ).

We also have a natural decomposition

(1.19) Ω•(E;F ) = Ω•(B; Ω•(E/B;F ))

using TE = THE ⊕ TM , and an L2-metric on the infinite dimensional bun-
dle Ω•(E/B;F ) → B of vertical forms twisted by F . Regarding H•(E/B;F ) as the
subbundle of fibrewise harmonic forms, we get a metric gHL2 on H•(E/B;F ). Bismut
and Lott now construct a form T (THE, gTM , gF ) on B that depends natural on the
data, the analytic torsion form, see Section 2.2 below.
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1.5. Theorem (Bismut and Lott [16]). — In the situation above,

(1.20) d T
(
THE, gTM , gF

)
=

∫
E/B

e
(
TM,∇TM

)
cho
(
F, gF

)
− cho

(
H, gHL2

)
.

In the theory of flat vector bundles, this result plays the same role as the η-forms in
the heat kernel proof of the classical family index theorem [6], [5], see also [9] and [28].
The holomorphic torsion forms similarly arise in a double transgression formula [14]
in the Riemann-Roch-Grothendieck theorem for proper holomorphic submersions in
Kähler geometry. This analogy with η-forms and holomorphic torsion forms has in-
spired most of the constructions and results of the following two sections.

2. Construction of the Bismut-Lott torsion

In this section, we recall the construction of the torsion forms occurring in The-
orem 1.5. As in [16], we start with a finite-dimensional toy model that will be of
independent interest. We then present the original construction of T (THM, gTM , gF )

by Bismut and Lott, and also a construction using η-forms by Ma and Zhang.

2.1. A finite-dimensional model. — Consider flat vector bundles V k →M and
parallel vector bundle homomorphisms ak : V k → V k+1, such that

(2.1) 0 −−−−→ V 0 a0−−−−→ V 1 a1−−−−→ · · · an−1−−−−→ V n −−−−→ 0

forms a cochain complex over each point in M . Then

(2.2) A′ = ∇V + a

is a superconnection, which is flat because

(2.3) (A′)2 = a2 +
[
∇V , a

]
+
(
∇V
)2
,

and each term on the right hand side vanishes by assumption. We will call the
pair (V,∇V + a) a parallel family of (finite-dimensional) cochain complexes.

If we fix a metric gV
k

on each V k, we can consider the adjoint connection ∇V,∗ as
in (1.4), and let a∗k : V k+1 → V k be the adjoint of ak with respect to gV

k

and gV
k+1

.
Then we obtain another flat superconnection

(2.4) A′′ = ∇V,∗ + a∗.

As in Hodge theory, the fibrewise cohomology of (V, a) is represented by H = ker(a+

a∗) ⊂ V . Projection of∇V ontoH defines a connection∇H onH. One checks that∇H

is independent of gV , and in fact, ∇H is the natural Gauß-Manin connection. Let gHV
denote the restriction of gV to H.

Bismut and Lott then define a differential form T (∇V + a, gV ) ∈ Ωeven(M) and
obtain a finite-dimensional analogue of Theorem 1.5.
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2.1. Theorem (Bismut and Lott, [16]). — In the situation above,

(2.5) dT
(
∇V + a, gV

)
= cho

(
V, gV

)
− cho

(
H, gHV

)
.

The core of the proof is the construction of T (∇V + a, gV ) that we now describe.
On the pullback Ṽ of V to M̃ = M × (0,∞), we introduce two flat superconnections

(2.6)
Ã′ = ∇V +

√
ta− NV

2t
dt ,

Ã′′ = ∇V,∗ +
√
ta∗ +

NV

2t
dt ,

where NV ∈ EndV acts on V k as multiplication by k. The difference of the two
superconnections above is an endomorphism

(2.7) X̃ = Ã′′ − Ã′ = ω
(
V, gV

)
+
√
t(a∗ − a) +

NV

t
dt ∈ Ω•

(
M̃,End Ṽ

)
.

We also define the supertrace by

(2.8) strV = trV ◦(−1)N
V

: Ω•( · ,EndV )→ Ω•( · ) .

For convenience, we stick to the conventions of [16]. In analogy with (1.11), the form

(2.9) (2πi)
1−NM

2 strV
(
X̃eX̃

2
)
∈ Ωodd(M̃)

is real, odd and closed. By (2.7), we have

(2.10) lim
t→0

strV
Ä
X̃eX̃

2
ä ∣∣∣
M×{t}

= strV
Ä
ω
(
V, gV

)
eω(V,gV )2

ä
.

To understand the limit for t → ∞, note that a∗ − a is a skew-adjoint operator. In
particular, the “finite dimensional Laplacian” −(a∗−a)2 has nonnegative eigenvalues,
and its kernel is given by the “harmonic elements” H. In particular, the “heat oper-
ator” et(a

∗−a)2 converges to the orthogonal projection onto H as t tends to infinity.
More generally, it is proved in [16] that

(2.11) lim
t→∞

strV
Ä
X̃eX̃

2
ä ∣∣∣
M×{t}

= strH
Ä
ω
(
H, gHV

)
eω(H,gH

V )2
ä
.

Because the form in (2.9) is closed, the forms in (2.10) and (2.11) belong to the
same cohomology class. Thus we have already proved a finite-dimensional version
of Theorem1.2. To define the torsion form, we have to integrate the form in (2.9)
over (0,∞). We note that

(2.12) ι ∂
∂t

strV

(
X̃eX̃

2
)∣∣∣
M×{t}

= strV

Å
NV

t
(1 + 2X̃2) eX̃

2

ã∣∣∣∣
M×{t}

.

Unfortunately, the integral over (2.12) diverges both for t→ 0 and for t→∞. How-
ever, the divergence can be compensated easily. For any Z-graded vector bundle V ,
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we define

(2.13) χ(V ) =
∑
k

(−1)k rkV k and χ′(V ) =
∑
k

(−1)kk rkV k.

Then it is proved in [16] that the integral

(2.14)
∫ ∞

0

Å
(2πi)−

NM

2 strV
Ä
NV (1 + 2X̃2)eX̃

2
ä
− χ′(H)

− (χ′(V )− χ′(H))(1− 2t)e−t
ã
dt

t
∈ Ωeven(M)

converges and gives a torsion form for the characteristic classes considered in (1.11).
Adjusting the coefficients ck in (1.10), we obtain the form T (∇V + a, gV ) needed for
Theorem 2.1.

2.2. Definition. — The Bismut-Lott torsion of the parallel family of cochain com-
plexes (V,∇V + a) is defined as

(2.15) T
(
∇V + a, gV

)
= −

∫ 1

0

Å
s(1− s)

2πi

ãNM

2
∫ ∞

0

Å
strV

Ä
NV (1 + 2X̃2)eX̃

2
ä

− χ′H − (χ′(V )− χ′(H))(1− 2t2)e−t
2

ã
dt

2t
ds ∈ Ωeven(M).

Proof of Theorem 2.1. — Let NM act on Ωk(M) as multiplication by k. Because the
form (2.9) is closed, it follows from (2.10) and (2.11) that

(2.16)

dT
(
∇V + a, gV

)
=

1

2

∫ 1

0

Å
s(1− s)

2πi

ãNM−1
2

Å
lim
t→0

strV
Ä
X̃eX̃

2
ä∣∣∣
M×{t}

− lim
t→∞

strV
Ä
X̃eX̃

2
ä∣∣∣
M×{t}

ã
= cho

(
V, gV

)
− cho

(
H, gHV

)
.

2.3. Remark. — The correction terms in Definition 2.2 are constant and only affect
the Bismut-Lott torsion in degree 0. They are chosen such that

(2.17)

T
(
∇V + a, gV

)[0]

x
=

1

2

∑
k

(−1)kk log det
(
−(a∗ − a)2

∣∣
V k∩Hk⊥

)
=

1

2

∑
k

(−1)k log det
(
aa∗
∣∣
V k∩im a

)
.

But this is just one way to represent the Franz-Reidemeister torsion of the cochain
complex (Vx, a) with metric gV for x ∈ M . Hence T (∇V + a, gV ) is called a “higher
torsion form”.
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2.2. The Bismut-Lott torsion form. — As in [16], Section 3, we now translate
the construction of T (∇V + a, gV ) to the infinite-dimensional family of fibrewise de
Rham complexes.

Let p : E → B be a smooth proper submersion with typical fibreM , and let TM =

ker dp ⊂ TE. As in Section 1.3, we fix THE ⊂ TE such that TE = TM ⊕ THE.
Because THE ∼= p∗TB, we can identify vector fields on B with their pullback to E,
which we call basic vector fields.

Let F → E be a flat vector bundle, then we may regard the flat connection ∇F as
a differential on the total complex Ω•(E;F ). Using the splitting (1.19), we may also
regard ∇F as a superconnection on the infinite-dimensional bundle Ω•(E/B;F )→ B

with

(2.18) A′ = ∇F = dM +∇Ω•(E/B;F ) + ιΩ

by [5]. Here, dM denotes the fibrewise differential on Ω•(E/B;F ), ∇Ω•(E/B;F ) is the
connection induced by the Lie derivative by basic vector fields, and Ω is the vertical
component of the Lie bracket of two basic vector fields on E.

In analogy with (2.4), we also define an adjoint superconnection

(2.19) A′′ = dM,∗ +∇Ω•(E/B;F ),∗ + εΩ

with respect to the fibrewise L2-metric gL2 on Ω•(E/B;F ). Let B̃ = B × (0,∞),
Ẽ = E × (0,∞) and F̃ = F × (0,∞), and let t be the coordinate of (0,∞). Then we
define superconnections

(2.20)
Ã′ =

√
t dM +∇Ω•(Ẽ/B̃;F̃ ) +

1√
t
ιΩ −

N Ẽ/B̃

2t
dt ,

Ã′′ =
√
t dM,∗ +∇Ω•(Ẽ/B̃;F̃ ),∗ +

1√
t
εΩ +

N Ẽ/B̃

2t
dt ,

where now N Ẽ/B̃ acts on Ωk(Ẽ/B̃; F̃ ) as multiplication by k. Then

(2.21) X̃ = Ã′′ − Ã′ =
√
t
(
dM,∗ − dM

)
+ ω

(
Ω•(Ẽ/B̃; F̃ ), gL2

)
+

1√
t
(εΩ − ιΩ) +

N Ẽ/B̃

t
dt ∈ Ω•

(
B̃; End Ω•(Ẽ/B̃; F̃ )

)
.

Note that dM,∗− dM is a skew-adjoint fibrewise elliptic differential operator, whereas
the other terms on the right hand side involve no differentiation at all. The opera-
tor −X̃2 can be regarded as a generalised Laplacian along the fibres of p. If the met-
ric gF is parallel along the fibres, then −X̃2 is precisely the curvature of the Bismut
superconnection, which already appeared in the heat equation proof of the Atiyah-
Singer families index theorem [6]. In particular, the fibrewise odd heat operator X̃eX̃2
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is well-defined and of trace class. Using Getzler rescaling, one proves

(2.22) lim
t→0

strΩ•(Ẽ/B̃;F̃ )

(
X̃eX̃2

)∣∣∣
B×{t}

=

∫
E/B

e
(
TM,∇TM

)
str

Ä
ω
(
F, gF

)
eω(F,gF )2

ä
in analogy with (2.10). Similarly, if we identify H = H•(E/B;F ) with the fibre-
wise harmonic differential forms, equipped with the restriction gHL2 of the L2-metric
on Ω•(E/B;F ), then

(2.23) lim
t→∞

strΩ•(Ẽ/B̃;F̃ )

Ä
X̃eX̃2

ä ∣∣
B×{t} = strH

Ä
ω
(
H, gHL2

)
eω(H,gH

L2 )2
ä

as in (2.11). To obtain the torsion form, we have to take care of some divergent terms
and of the coefficients in (1.10) as before.

2.4. Definition. — The Bismut-Lott torsion is defined as

(2.24) T
(
THE, gTM , gF

)
= −

∫ 1

0

Å
s(1− s)

2πi

ãNB

2
∫ ∞

0

Å
strΩ•(Ẽ/B̃;F̃ )

Ä
N Ẽ/B̃

(
1 + 2X̃2

)
eX̃2

ä
− χ′(H)

−
(χ(M) dimM rkF

2
− χ′(H)

)
(1− 2t)e−t

ã
dt

2t
ds ∈ Ωeven(B) .

Proof of Theorem 1.5. — As in the proof of Theorem 2.1, this follows from (2.22)
and (2.23), because the form

(2.25) strΩ•(Ẽ/B̃;F̃ )

Ä
X̃eX̃2

ä
∈ Ω•(B × (0,∞); C)

is closed.

2.5. Remark. — Again, the correction terms in (2.24) are constant scalars. They are
chosen such that

(2.26) T
(
THE, gTM , gF

)[0]

x

=
1

2

dimM∑
k=0

(−1)kk log Det
Ä
−
(
dM,∗ − dM

)2∣∣
Ωk(Mx;F )∩Hk⊥

ä
,

where “Det” denotes a zeta-regularised determinant. The right hand side is precisely
the Ray-Singer analytic torsion of the fibre Mx. Hence T (THE, gTM , gF ) is called a
Bismut-Lott torsion form.
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2.3. Elementary Properties. — From Theorem 1.5, one can derive a varia-
tion formula for Bismut-Lott torsion. If we choose THj E, gTMj , gFj for j = 0, 1,
let ∇TM,j denote the corresponding connections on TM , and let gH,jL2 denote the
corresponding L2-metrics on H. As in (1.3), there exists a Chern-Simons Euler
class ẽ(TM,∇TM,0,∇TM,1) such that

(2.27) dẽ
(
TM,∇TM,0,∇TM,1

)
= e
(
TM,∇TM,1

)
− e
(
TM,∇TM,0

)
.

2.6. Theorem (Bismut and Lott [16]). — Modulo exact forms on B,

(2.28) T
(
TH1 E, gTM1 , gF1

)
− T

(
TH0 E, gTM0 , gF0

)
=

∫
E/B

(
ẽ
(
TM,∇TM,0,∇TM,1

)
cho
(
F, gF0

)
+e
(
TM,∇TM,1

) ‹cho
(
F, gF0 , g

F
1

))
− ‹cho

Ä
H•(E/B;F ), gH,0L2 , g

H,1
L2

ä
.

A variation formula like this has already been proved for the Ray-Singer torsion
in [17]. Theorem 2.6 is a direct consequence of Theorem 1.5. Similar variation formulas
exist for η-forms [10] and holomorphic torsion forms [14].

2.7. Corollary (Bismut and Lott [16]). — If the fibres of p : E → B are odd-dimensional
and F → E is fibrewise acyclic, then T (THE, gTM , gF ) defines an even cohomology
class on B that is independent of the choices of THE, gTM and gF .

There is another situation where T (THE, gTM , gF ) defines a cohomology class, at
least its higher degree components. Assume that gF0 and gF1 are both parallel with
respect to ∇F . Then

(2.29) gFt = (1− t)gF0 + tgF1

is a parallel metric on F for all t ∈ [0, 1]. Put the metric gF̃ |F×{t} = gFt on the
pullback F̃ to Ẽ = E × [0, 1], then

(2.30) ω
(
F̃ , gF̃

)
= (gFt )−1 ∂

∂t
gFt dt ∈ Ω1(E × [0, 1]; End F̃ )

because ω(F̃ , gF̃ )|E×{t} = 0 by (1.10). In particular

(2.31) ‹cho
(
F, gF0 , g

F
1

)
= c0

∫ 1

0

trF

Å
(gFt )−1 ∂

∂t
gFt

ã
dt ∈ Ω0(E)

is in fact just a constant function on E.

2.8. Definition. — If the bundles F → E and H(E/B;F ) → B admit parallel met-
rics gF and gH , one defines the higher analytic torsion or Bismut-Lott torsion as

(2.32) T (E/B;F ) = T
(
THE, gTM , gF

)[≥2]
+ ‹cho

(
H, gH , gHL2

)[≥2] ∈ Ω≥2(B) .
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It follows from Theorems 1.5 and 2.6 that T (E/B;F ) defines a cohomology class
in H≥2(B; R) that is independent of THE, gTM , gF and gH , as long as gF and gH

are parallel metrics.

3. Properties of Bismut-Lott torsion

Since η-forms, analytic torsion forms and holomorphic torsion forms are parallel
objects in three somewhat similar theories, one can try to translate any result con-
cerning one of those three objects into theorems on the other two. In this section,
we present a few results on higher torsion that where at least partially motivated by
results on η-forms or on holomorphic torsion forms. In particular, we recall results by
Ma and Bunke on torsion forms of iterated fibrations, and of Bunke, Bismut and the
author about the relation with equivariant Ray-Singer torsion. Most of these theorems
have not yet been proved for Igusa-Klein or Dwyer-Weiss-Williams torsion. We also
discuss Ma and Zhang’s construction using η-invariants of subsignature operators.

One should mention at this point that in the theory of flat vector bundles, we
are only considering proper submersions. The reason is that the direct image of a flat
vector bundle under other maps like open or closed embeddings is in general not given
by a flat vector bundle. Another reason is that there is no suitable analogue of the
Becker-Gottlieb transfer for general maps. For this reason, many beautiful results for
η-invariants and holomorphic torsion have no counterpart for Bismut-Lott torsion.

3.1. A transfer formula. — Consider a smooth proper submersion p1 : E → B

with typical fibreM as before, and assume that p2 : D → E is another smooth proper
submersion with fibre N . Then p3 = p1 ◦ p2 is again a smooth proper submersion,
and its fibre L maps to M with fibre N . Let F → D be a flat vector bundle, then we
have higher direct images

(3.1)

K =
dimN⊕
k=0

(−1)kH•(D/E;F )→ E

and H =
dimL⊕
k=0

(−1)kH•(D/B;F )→ B.

Note that H is not the higher direct image of K under p1. Instead, there is a fibrewise
Leray-Serre spectral sequence over B with E2-term H•(E/B;K) that converges to H.
Beginning with E2, the higher terms in this spectral sequence are given by parallel
families of finite-dimensional cochain complexes

(
Ek,∇Ek + dk

)
over B. Of course,

En = E∞ and dn = 0 for all sufficiently large n.
We now choose compatible complements of the vertical tangent bundles for all three

fibrations, fibrewise Riemannian metrics, and a metric on the bundle F . Again, these
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data induce connections on the three vertical tangent bundles TM , TN and TL ∼=
TN ⊕ p∗2TM . They also induce L2-metrics on the flat vector bundles H and Ek
over B for k ≥ 2 and on K → E. We need the Chern-Simons Euler form ẽ, which is
constructed in analogy with ‹ch in (1.3), and we also need another finite-dimensional
torsion form T (H,E∞, g

H , gE∞) relating the filtered flat vector bundleH to its graded
version E∞ = En for n sufficiently large.

3.1. Theorem (Transfer formula, Ma [55]). — Modulo exact forms on B, we have

(3.2) T
(
THD, gTL, gF

)
=

∫
E/B

e
(
TM,∇TM

)
T
(
HHD ⊕ THL, gTN , gF

)
+ T

(
THE, gTM , gK

)
+
∞∑
k=2

T
(
∇Ek + dk, g

Ek
)

+ T
(
H,E∞, g

H , gE∞
)

+

∫
D/B

ẽ
(
TL,∇TL,∇TN ⊕ p∗2∇TM

)
cho
(
F, gF

)
.

The first two terms on the right hand side should be regarded as torsion forms of the
terms E0 and E1 of the Leray-Serre spectral sequence. The sum of the torsions of the
remaining terms is of course finite. The theorem says in other words that the analytic
torsion form of the total fibration is the sum of the torsion forms of all terms in the
Leray-Serre spectral sequence and two natural correction terms. A similar formula
for holomorphic torsion forms has been proved by Ma [53], [54]. For η-invariants of
signature operators, an analogous result is due to Bunke and Ma [25].

3.2. Lott’s Secondary K-theory of flat bundles. — In Arakelov geometry, one
studies arithmetic Chow groups, which constitute a simultaneous refinement of clas-
sical Chow groups and of de Rham forms, see [63] for an introduction. The central
objects in this theory are algebraic vector bundles over arithmetic schemes, together
with Hermitian metrics on the corresponding holomorphic vector bundles over the
complex points of those schemes, which form classical complex algebraic varieties. To
construct the “complex algebraic” part of the direct image of such vector bundles,
one needs the holomorphic torsion forms of Bismut and Köhler [14]. To establish
elementary properties of this direct image construction, one needs deep results on
holomorphic torsion forms. Thus, Arakelov geometry has been one of the main moti-
vations for the many results on holomorphic torsion by Bismut and others. For this
reason, it is tempting to have a similar theory for flat vector bundles over smooth
manifolds, where Bismut-Lott torsion plays the role of holomorphic torsion forms.

Lott’s K-theory of flat vector bundles with vanishing Kamber-Tondeur classes is
a first step in this direction. But note that there are no objects corresponding to
Chow cycles, and that we can take direct images only for submersions, for reasons
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explained at the beginning of this section. Thus we cannot expect a theory that is
as rich as arithmetic Chow theory. Nevertheless, some nice results are motivated by
Lott’s construction.

We consider triples (F, gF , α), where F →M is a flat vector bundle, equipped with
a metric gF , and α ∈ Ωeven(M)/dΩodd(M) satisfies

(3.3) cho
(
F, gF

)
− dα = 0 ∈ Ωodd(M).

A short exact sequence

(3.4) 0 −−−−→ F1
a1−−−−→ F2

a2−−−−→ F3 −−−−→ 0

of flat vector bundles and parallel linear maps can be interpreted as a parallel family
of acyclic chain complexes (F,∇F +a). Let gF1 , gF2 , gF3 be metrics on these bundles.
By Theorem 2.1, the higher torsion form of this family satisfies

(3.5) dT
(
∇F + a, gF

)
= cho

(
F2, g

F2
)
− cho

(
F1, g

F1
)
− cho

(
F3, g

F3
)
.

3.2. Definition. — Lott’s secondary K-group K0(M) is the abelian group generated
by triples (F, gF , α) subject to

1. the condition (3.3), and
2. the relation

T
(
∇F + a, gF

)
= α2 − α1 − α3 ∈ Ωeven(M)/dΩodd(M)

for each short exact sequence (3.4).

In fact, Lott considers groups K0
R(M) in [52]. Here, R is a ring satisfying a few

technical assumptions with a representation ρ : R→ End Cn, and all flat vector bun-
dles arise from local systems of R-modules by tensoring with Cn. Similarly, relations
come from short exact sequences of such local systems.

Let now p : E → B be a proper submersion with fibreM . We choose THE and gTM

as before.

3.3. Definition. — Let (F, gF , α) be a generator of K0
R(M) and let gHL2 denote the

L2-metric on the virtual vector bundle

H =
dimM⊕
k=0

(−1)kH•(E/B;F )→ B.

Then the push-forward of (F, gF , α) is defined as

p!(F, g
F , α) =

Å
H, gHL2 ,

∫
E/B

e
(
TM,∇TM

)
α− T

(
THE, gTM , gF

)ã
.
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Lott then verifies that p! defines a push-forward map

(3.6) p! : K
0
R(E)→ K0

R(B).

Moreover, on the level of K-theory, the push-forward is independent of the choices
of THE and gTM .

3.4. Theorem (Bunke [24]). — Lott’s secondary K-groups together with the pushfor-
ward define a functor from the category of smooth proper submersions to the category
of abelian groups.

The proof is based on Ma’s Theorem 3.1. Bunke shows that if p1 : E → B

and p2 : D → E are smooth proper submersions, then

(3.7) (p1 ◦ p2)! = p1! ◦ p2! : K
0
R(D)→ K0

R(B).

A similar push-forward in secondary L-theory has been defined by Bunke and Ma [25],
correcting an older definition by Lott [52].

3.3. Rigidity of Kamber-Tondeur classes. — In this section, we discuss the
dependence of the Kamber-Tondeur forms and the torsion forms on the flat structure
on the bundle F . Let V → M be a vector bundle and assume that (∇V,t)t∈[0,1] is a
family of flat connections on V . If we define a connection ∇Ṽ on the pull-back Ṽ of V
to M × [0, 1] such that ∇Ṽ |M×{t} = ∇V,t, then the connection ∇Ṽ will in general
not be flat. In particular, the arguments in (1.3) and (1.7) are not applicable here.
If we fix a family of metrics (gVt ) on V , we have a family (∇V,t,∗)t∈[0,1] of adjoint
connections that are again flat. Let now Ṽ denote the pullback of V to M × [0, 1]2

and construct ∇Ṽ such that

(3.8) ∇Ṽ
∣∣
M×{s}×[0,1]

= (1− s)∇V,t + s∇V,t,∗.

We define forms L
(
(∇V,t, gVt )t

)
∈ Ωeven(M) by

(3.9) L
(
(∇V,t, gVt )t

)
= πi

∫ 1

0

∫ 1

0

ι ∂
∂s

ι ∂
∂t

ch
(
Ṽ ,∇Ṽ

)
dt ds.

Because ∇V,t and ∇V,t,∗ are flat, for s ∈ {0, 1}, we have

(3.10) ch
(
Ṽ ,∇Ṽ

)∣∣
M×{0,1}×[0,1]

=


1
2 trV

(
∂
∂t∇

V,t
)
dt s = 0,

1
2 trV

(
∂
∂t∇

V,t,∗) dt s = 1.

Hence it follows from Stokes’ theorem that

(3.11) dL
(
(∇V,t)t, gV

)[≥2]
= cho

(
V1, g

V
1

)[≥3] − cho
(
V0, g

V
0

)[≥3]
,

where Vt denotes the flat vector bundle (V,∇V,t).
One can show that L((∇V,t, gVt )t) changes by exact forms if one replaces (∇V,t)t

by a homotopic path of flat connections. On the other hand, if ∇V,1 = ∇V,0, then the
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cohomology class of L((∇V,t, gVt )t) depends on the homotopy class of the loop (∇V,t)t
in the space of flat connections.

Now assume that V is Z-graded and that (V •,∇V,t + at) is a parallel family of
cochain complexes on M such that the fibrewise cohomology H•(V, at) has the same
rank for all t. Then we obtain a family of flat Gauß-Manin connections (∇H,t)t and a
family of metrics gHV,t on a fixed vector bundle H →M .

3.5. Theorem (Rigidity, Bismut and G. [12]). — Under these assumptions,

(3.12) T
(
∇V,1 + a1, g

V
)[≥2] − T

(
∇V,0 + a0, g

V
)[≥2]

= L
(
(∇V,t, gVt )t

)[≥2] − L
(
(∇H,t, gHV,t)t

)[≥2]
.

Similarly, let (∇F,t)t be a family of flat connections on F → E such that the
fibrewise cohomology H•(E/B;Ft) has the same rank for all t. Then we again have
a family (Ht, g

H
L2,t) of flat vector bundles over B.

3.6. Theorem (Rigidity, Bismut and G. [12]). — Under these assumptions,

(3.13) T
(
THE, gTM , gF1

)[≥2] − T
(
THE, gTM , gF0

)[≥2]

=

∫
M/B

e
(
TM,∇TM

)
L
(
(∇F,t, gFt )t

)[≥2] − L
(
(∇H,t, gHL2,t)t

)[≥2]
.

Because T (THE, gTM , gF )[0] equals the Ray-Singer analytic torsion, we cannot
expect Theorems 3.5 and 3.6 to hold for the scalar part of the Bismut-Lott torsion,
too. In fact these theorems as well as the construction of T (E/B;F ) indicate that the
“higher” Bismut-Lott torsion has a different topological meaning than the Ray-Singer
torsion.

3.4. Equivariant analytic torsions. — Let us assume that p : E → B is asso-
ciated to a G-principal bundle P → B for some compact, connected Lie group G.
In particular, G acts by isometries on the fibre (M, gTM ). Let F → M be a G-
equivariant flat vector bundle such that elements X of the Lie algebra g of G act
by ∇FXM , where XM is the corresponding Killing field onM . Then the induced vector
bundle

(3.14) P ×G F −→ E = P ×GM,

which we will again call F , is also flat. A G-equivariant fibre bundle connection THP
defines THE, and we also fix a G-invariant metric on F . Let Ω ∈ Ω2(B; g) denote the
curvature of THP .

It was already observed in [16] and [50] that in this situation, the Bismut-Lott
torsion is given by an Ad-invariant formal power series T g(gTM , gF ) ∈ C[[g∗]] on g,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



180 S. GOETTE

such that

(3.15) T
(
THE, gTM , gF

)
= T Ω

2πi

(
gTM , gF

)
∈ Ωeven(B).

On the other hand, there is a G-equivariant generalisation of the Ray-Singer ana-
lytic torsion. If g ∈ G acts by isometries on M and preserves ∇F , put

(3.16)
ϑg
(
gTM , gF

)
(s) = − str

(
NMg(dM + d∗M )−2s

)
and T g

(
gTM , gF

)
=

∂

∂s
ϑg
(
gTM , gF

)
(s).

Inspired by results of Bismut, Berline and Vergne about the equality of two no-
tions of the equivariant index [5], one can ask if the infinitesimal equivariant Bismut-
Lott torsion T g(gTM , gF ) is related to the equivariant torsion T G(gTM , gF ). Bunke
proved in [22] and [23] that both equivariant torsions can be computed from the
G-equivariant Euler characteristic of M up to a constant when G is connected and F
satisfies some technical assumptions. From Bunke’s results, one can deduce a relation
between both equivariant torsions in some interesting special cases.

To state a more general relation between both equivariant torsions, we need the in-
finitesimal Euler form eg(TM,∇TM ) ∈ Ω•(M)[[g∗]] and an equivariant Mathai-Quillen
current ψX(TM,∇TM ) on M such that

(3.17) dψX
(
TM,∇TM

)
= eX

(
TM,∇TM

)
− e
(
TMX ,∇TMX

)
δMX

,

where δMX
is the Dirac current of integration over the fixpoint set MX of the Killing

field XM , for X ∈ g. Finally, for a proper submersion p : E → B with typical fibre M
and a fibrewise G-action, there exists an even closed form VX(E/S, THE, gTM ) that
is locally computable on E, vanishes for even-dimensional fibres, and satisfies

(3.18) VrX
(
E/S, THE, gTM

)
=

1

|r|
r−

NB

2 VX
(
E/S, THE, gTM

)
for all r ∈ R\{0}. In particular, the class VX(E/S) ∈ Heven(B; R) is independent
of THE and gTM . Let VX(M) = VX(E/S)[0] denote the scalar part.

3.7. Theorem (Bismut and G. [13]). — For X ∈ g, the equivariant torsions are related
by

(3.19) T X
(
gTM , gF

)
− T eX

(
gTM , gF

)
=

∫
M

ψX
(
TM,∇TM

)
cho
(
F, gF

)
+ VX(M) rkF .

Similar results for equivariant η-invariants have been proved in [35], and for equiv-
ariant holomorphic torsion by Bismut and the author in [11].
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3.8. Remark. — In T eX (gTM , gF ), all powers of X occur simultaneously. Thus, The-
orem 3.7 can only hold for one choice of constants ck in (1.10), and this is precisely the
so-called Chern normalisation introduced in [12] and also used in this overview. The
Chern normalisation is also needed for Lott’s noncommutative higher torsion classes
in [51], see Remark 7.6 below.

The theorem above is of course compatible with Bunke’s computations. As a simple
application, we can use Köhler’s computation of the equivariant analytic torsion on
compact symmetric spaces [49] to compute the Bismut-Lott torsion of bundles with
compact symmetric fibres and compact structure groups. The case of sphere bundles
will be important later. Let ζ denote the Riemann ζ-function. We define an additive
characteristic class 0J(W ) for a vector bundle W →M by

(3.20) 0J(W ) =
1

2

∞∑
k=0

ζ ′(−2k) ch(W )[4k] ∈ H•(M ; R).

3.9. Corollary (Sphere bundles, Bunke [23], Bismut and G. [12])
Let E → B be the unit n-sphere bundle of an oriented real vector bundle W → B.

Then
T (E/B; C) = χ(Sn) 0J(W ).

The meaning of the class VX(M) is not quite clear from Theorem 3.7. As Bismut
explains in [8], the Bismut-Lott torsion of a smooth proper submersion p : E → B

is formally given by evaluating V on the generator of the natural S1 action on the
fibrewise free loop space LBE, viewed as a bundle over B. Although the flat vec-
tor bundle F and its cohomology are not visible in this approach, many properties
of VX(E/S) proved in [13] mirror well-known properties of Bismut-Lott torsion, in-
cluding the behaviour under iterated fibrations in Section 3.1 and under Witten de-
formation in Section 5.1.

3.5. The Ma-Zhang subsignature operator. — In Section 1.1, we have con-
structed Kamber-Tondeur forms by lifting the Chern character to flat vector bundles.
In Section 2.2, we have constructed the torsion form as a correction term in a fam-
ily index theorem. Thus, Bismut-Lott torsion is a double transgression of the Chern
character. Ma and Zhang first produce an η-invariant, which can be regarded as a
transgression of the Chern character. Then they derive Bismut-Lott torsion from a
transgression of η-forms in [56]. In other words, they get torsion forms by a different
double transgression. On the way, they give a new analytic proof of Theorems 1.2
and 1.3. Dai and Zhang have recently given a related construction in [29], where
Bismut-Lott torsion appears in the adiabatic limit of a Bismut-Freed connection form
that is related to Ma and Zhang’s η-invariant.
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Let p : E → B be a proper submersion of closed manifolds, where B is oriented,
and let F → E be a flat vector bundle, then F is rationally trivial in the topological
K-theory of E. Thus there exists an isomorphism qF ∼= E ×Cq rkF for some positive
integer q. Let ∇0 denote the trivial flat connection on E × Cq rkF , then

(3.21) “ch(F,∇F ) =
1

q
‹ch(∇0,∇qF

)
∈ H•(E; C/Q).

Choose THE, gTM , gF as before. We also choose a metric gTB on B and put gTE =

gTM ⊕ p∗gTB using the splitting TE = TM ⊕ THE. Let W → B be a Hermitian
vector bundle with metric gW and connection ∇W . Ma and Zhang consider two opera-
tors DW,F

sig and D̂W,F
sig on Ω•(E; p∗W ⊕F ). Whereas DW,F

sig is an honest Dirac-operator
if gF is parallel, the operator D̂W,F

sig differentiates only in the directions of the fibres.
These operators should be viewed as “quantisations” in the sense of [5], applied to the
Bismut type superconnection Ã = 1

2 (Ã′ + Ã′′) and the operator X̃ of (2.21).
If B is odd-dimensional, then

(3.22) DW,F
sig (r) = DW,F

sig + irD̂W,F
sig

is a selfadjoint operator on Ωeven(B; Ω•(E/B; p∗W ⊕ F )) for all r ∈ R. The reduced
η-invariant of DW,F

sig (r) is as usual defined as

(3.23) η
Ä
DW,F

sig (r)
ä

=
1

2

Ä
η
(
DW,F

sig (r)
)

+ dim ker
(
DW,F

sig (r)
)ä
∈ R/Z.

For the virtual bundle H(E/B;F )→ B, one defines similarly

(3.24) η
Ä
DW,H

sig (r)
ä

=
∑
k

(−1)k η
(
D
W,Hk(E/B;F )
sig (r)

)
∈ R/Z.

For ε > 0, let DW,F
sig,ε(r) denote the analogous operator, where the metric gTB

has been replaced by 1
εg
TB . The reduced η-invariants are related in the adiabatic

limit ε→ 0.

3.10. Theorem (Ma and Zhang [67], [56]). — One has

(3.25) lim
ε→0

η
Ä
DW,F

sig,ε(r)
ä

= η
Ä
DW,H

sig (r)
ä
∈ R/Z .

Proof of Theorem 1.3. — The proof for the imaginary part of “ch uses the identities

(3.26)

∂

∂r

∣∣∣∣
r=0

η
Ä
DW,F

sig,ε(r)
ä

=

∫
B

L(TB) ch(W ) tr∗E/B

∞∑
k=0

c′k Im “ch(F )[2k+1]

and
∂

∂r

∣∣∣∣
r=0

η
Ä
DW,H

sig (r)
ä

=

∫
B

L(TB) ch(W )
∞∑
k=0

c′k Im “ch(H)[2k+1]

for some constants c′k 6= 0, where L(TB) denotes the Hirzebruch L-class. Be-
cause Heven(B; R) is spanned by the values of L(TB) ch(W ) for all complex vector
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bundles W , one gets the imaginary part of (1.17) in Theorem 1.3 from Theorem 3.10
by comparison of coefficients in (3.26).

The real part also follows from Theorem 3.10 because

(3.27) η
(
DW,F

sig,ε

)
− rkF η

(
DW

sig,ε

)
=

∫
B

L(TB) ch(W ) tr∗E/B Re “ch(F ) ∈ R/Q

and a similar equation holds for the two virtual bundles H(E/B;F )→ B and rkF ·
H(E/B; C)→ B. To complete the proof, one needs that

(3.28) “ch(H(E/B; C)) = 0 ∈ H•(B; C/Q) ,

which was already proved for evendimensional M by Bismut in [7].

To recover Bismut-Lott torsion and Theorem 1.5 from this approach, one considers
a generalised η-form

(3.29) η̂r = (2πi)−
NB+1

2

∫ ∞
0

(
trs

ÅÅ
∂

∂t

(
Ãt +

ir

2
X̃t
)ã

e−(Ãt+ ir
2 X̃t)

2
ã

− ir · a√
1 + r2

t−
3
2

)
dt

for some locally computable function a : B → R.

3.11. Theorem (Ma and Zhang [56]). — For certain constants c′′k 6= 0, one has

(3.30)
∂η̂r
∂r

∣∣∣
r=0

=
∞∑
k=0

c′′k d T (THE, gTM , gF )[2k+1].

Dai and Zhang will give a more explicit construction in [29]. These last results seem
to indicate a strong relation between Bismut-Lott torsion and η-forms that still has
to be explored. A similar relation has been established by Braverman and Kappeler
in a definition of complex-valued Ray-Singer torsion in [21] for single manifolds.

4. Igusa-Klein torsion

We have seen in Sections 1–3 how to establish an index theorem for flat vector
bundles using methods from local index theory for families, and how to discover
Bismut-Lott torsion in a natural refinement of this index theorem. It is somewhat
surprising that homotopy theoretical methods from differential topology lead to an
invariant that is very closely related to Bismut-Lott torsion. There are several slightly
different approaches to this topological higher torsion by Igusa and Klein [48], [42],
[45], [46]. In this section, we focus on Igusa-Klein torsion as described in [42]. In
Section 6, we discuss the approach by Dwyer, Weiss and Williams [30].
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4.1. Generalised Morse functions and filtered complexes. — It is well-known
that smooth manifolds admit Morse functions. If p : E → B is a smooth proper
submersion, then in general, there is no function h : E → R that is a Morse function on
every fibre of p. However, by results of Igusa [41] and Eliashberg and Mishachev [31],
there always exist generalised Morse functions.

By a birth-death singularity of h : E → R, we mean a fibrewise critical point of
type A2 that is unfolded over B. In other words, there exist k, a function h0 on B

and coordinates u1, . . . on B and x1, . . . , xn along the fibres such that locally,

h(x, u) = h0(u) +
x3
n

3
− u1xn −

x2
1 + · · ·+ x2

k

2
+
x2
k+1 + · · ·+ x2

n−1

2
.

Birth-death singularities occur over a two-sided immersed submanifold B0 ⊂ B given
by u1 = 0 in the coordinates above. Two fibrewise Morse critical points of adjacent
indices over the “positive” side of B come together in a fibrewise cubical singularity.
In a neighbourhood over the “negative” side, the function is regular.

Let C = CM ∪ Cbd ⊂ E denote the submanifold of fibrewise critical points of h.
Note that the submanifold CM of Morse fibrewise critical points of h locally covers B,
and that the submanifold Cbd of birth-death critical points locally bounds two com-
ponents of CM. After fixing a fibrewise metric gTM , the negative eigenspaces of the
Hessian of h form a vector bundle TuM ⊂ TM |CM

over CM, whose rank is given
by the Morse index indh. At the birth-death singularities Cbd, the natural extension
of TuM of the two adjacent components of CM differ by an oriented trivial line bundle,
the “cubical direction”.

4.1. Definition. — A generalised fibrewise Morse function on p : E → B is a func-
tion h : E → R that has only Morse and birth-death type fibrewise singularities. A
framed function is a generalised fibrewise Morse function together with trivialisations
of TuM over each connected component of CM that extend up to the boundary, such
that the two frames at each point of Cbd differ only by the preferred generator of the
cubical direction.

4.2. Theorem (Igusa [41]). — Let p : E → B be a smooth fibre bundle with typical fi-
bre M . If dimM ≥ dimB, there exists a framed function, and if dimM > dimB, it
is unique up to homotopy.

Here, uniqueness up to homotopy means that if h0, h1 : E → R are two framed
functions, then there exists a framed function h : E × [0, 1] → R that restricts to hj
at E × {j} for j = 0, 1.

If the dimension of the fibres is too small to apply Theorem 4.2, one can take cross
products with manifolds of Euler number 1, for example RP 2n. One can check that
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this will not alter the torsion classes of Igusa and Klein that we are going to introduce,
so that the following constructions are valid for fibre bundles of arbitrary dimensions.

4.2. Filtered chain complexes and the Whitehead space. — We assume that
we are given a smooth fibre bundle p : E → B and a proper framed function h : E → R
with finitely many fibrewise critical points over small subsets of B. Let F → E be a
flat vector bundle.

Over a small open subset U ⊂ B, one can use h to filter the singular chain complexes
of the fibres over U . The filtered chain complexes are quasiisomorphic to a filtered
chain complex on the vector space

(4.1) V ′x =
⊕

C∈C′
M
|x

Fc.

Here C ′M |x is a subset of CM|x, where some pairs of components of CM near birth-
death singularities are omitted. Both the filtration and the quasiisomorphism are
natural and unique up to contractible choice.

Moreover, the two leaves of CM near a birth-death singularity generate a direct
summand isomorphic to

(4.2) 0 −−−−→ F
id−−−−→ F −−−−→ 0

after applying another quasiisomorphism that is again unique up to contractible
choice. Adding or deleting a subcomplex of the form (4.2) is called an elementary
expansion or elementary collapse.

Suppose now that the flat bundle F is fibrewise acyclic and comes with an R-
structure for a suitable ring R as in Section 3.2 above. Also assume that the holonomy
of F if contained in some group G ⊂ GLr(R), with r = rkF . A typical choice would
be R = Mr(C) and G = U(r) with r ∈ N. In [42], Igusa constructs a classifying space
for acyclic locally filtered finite dimensional chain complexes over R with holonomy G,
up to filtered quasiisomorphisms and elementary expansions and collapses. This space
is called the acyclic Whitehead space Whh(R,G). We give a slightly more explicit
description in Section 5.2.

4.3. Theorem (Igusa [42]). — Each generalised fibrewise Morse function h : E → R
gives rise to a classifying map

(4.3) ξh(E/B;F ) : B −→Whh(R,G)

that is unique up to homotopy.

Together with Theorem 4.2, one can associate to a smooth fibre bundle p : E → B

as above and a flat, fibrewise acyclic vector bundle F → E with R-structure and
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holonomy group G a unique homotopy class of maps

(4.4) ξ(E/B;F ) = ξh(E/B;F ) : B −→Whh(R,G),

by choosing h to be a framed function.
Assume that G preserves a Hermitian metric, in other words, that F carries a

parallel metric. Then Igusa constructs cohomology classes

(4.5) τ =
∞∑
k=1

τ2k with τ2k ∈ H4k(Whh(R,G); R)

that are related to the Kamber-Tondeur classes of Section 1.1. These classes are
natural under pairs of compatible ring and group homomorphisms (R,G) → (S,H).
In particular, it is enough to construct them for R = Mr(C) and G = U(n).

4.4. Definition. — The Igusa-Klein torsion of a smooth fibre bundle p : E → B as
above and a flat fibrewise acyclic vector bundle F → E with a parallel Hermitian
metric is defined as

(4.6) τ(E/B;F ) = ξ(E/B;F )∗ τ ∈ H4•(B; R) .

Igusa also explains how to define ξ(E/B;F ) and τ(E/B;F ) if H•(E/B;F ) → B

is a trivial bundle, or more generally, a globally filtered flat vector bundle such that
the associated graded vector bundle is trivial. In other words, the flat cohomology
bundle H•(E/B;F )→ B is then given by a unipotent representation of π1B.

4.5. Remark. — The map ξ(E/B;F ) of (4.4) is a higher torsion invariant in its own
right. In fact, most of the properties of τ(E/B;F ) in the next subsection already
hold at the level of ξ(E/B;F ). Moreover, ξ(E/B;F ) is well-defined even if F carries
no parallel metric. However, the cohomology class τ(E/B;F ) makes it possible to
compare Igusa-Klein torsion with Bismut-Lott torsion.

4.3. Properties of the Igusa-Klein torsion. — Assume that the fibre bun-
dle p : E → B arises by gluing two families pi : Ei → B for i = 1, 2 along their
fibrewise boundary ∂BE1 = ∂BE2. Then there exist a framed function h : E → R
such that h|E1

≥ 0 and h|E2
≤ 0. Igusa proves in [42] that the corresponding classi-

fying map ξ(E/B;F ) : B →Whh(R,G) “splits” in an appropriate sense, at least if R
is a field and the cohomology bundles H•(Ei/B;F |Ei

)→ B are unipotent as above.
Let DEi := Ei ∪ Ei → B denote the fibrewise double of Ei, and let Fi → DEi

denote the flat vector bundle induced by F |Ei
. Then the splitting above has the

following consequence, in a wording suggested by Bunke.
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4.6. Theorem (Additivity, Igusa [44]). — If E = E1 ∪ E2 → B is as above and the
bundles H•(Ei/B;F |Ei)→ B are unipotent, then

(4.7) 2τ(E/B;F ) = τ(DE1/B;F1) + τ(DE2/B;F2).

Suppose that p : E → B is a (2n− 1)-sphere bundle with structure group U(1)n ⊂
O(2n). Then E is the fibrewise join of n circle bundles over B. The Igusa-Klein torsion
of circle bundles has been computed explicitly in [42], and Theorem 4.6 gives the
Igusa-Klein torsion of p. By the splitting principle for vector bundles and naturality
of the Igusa-Klein torsion, one can now compute the higher torsion of all unit sphere
bundles in Euclidean vector bundles. We use the same normalisation as for Bismut-
Lott torsion. Let 0J denote the characteristic class defined in Equation (3.20).

4.7. Theorem (Sphere bundles, Igusa [42]). — Let V → B be an oriented Euclidean vec-
tor bundle with unit sphere bundle p : E → B. Then

(4.8) τ(E/B;F ) = 2 0J(V ) .

Note that this agrees with the computations of the Bismut-Lott torsion in Corol-
lary 3.9 if the fibres are odd-dimensional.

Assume that h : E → R is a generalised fibrewise Morse function for p : E → B that
is not framed. Because at the birth-death singularities Cbd, the natural extensions
of TuM at the two adjacent components of CM are stably isomorphic, we have a
class 0J(TuM) ∈ H•(C; R). Let p̂ = p|C and let CjM denote the fibrewise Morse
critical points of Morse index j, then there exists a well-defined push-down map

(4.9) p̂∗α =
dimM∑
j=0

(−1)j(p|Cj
M

)∗ (α|Cj
M

) ∈ H•(B)

for all α ∈ H•(C). One can compute the Igusa-Klein torsion of p : E → B using the
classifying map ξh(E/B;F ) even though h is not framed.

4.8. Theorem (Framing principle, Igusa [42], [43]). — In the situation above,

(4.10) τ(E/B;F ) = ξh(E/B;F )∗τ − 2 p̂∗
0J(TuM) rkF.

As an example, suppose that p : E → B is the fibrewise suspension of the unit
sphere bundle in a vector bundle V → B. Then there exists a fibrewise Morse function
with only two fibrewise critical points, and the unstable tangent bundle at the fibrewise
maximums is isomorphic to the pullback of V . In this case, Theorems 4.7 and 4.8 give
the same Igusa-Klein torsion for E → B.
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5. Bismut-Lott = Igusa-Klein

The higher analytic torsion of Bismut and Lott and the higher Franz-Reidemeister
torsion of Igusa and Klein are defined using rather different methods. Nevertheless, it
was noticed that both torsions assign special values of the Bloch-Wigner dilogarithm
to acyclic flat line bundles over circle bundles over S2 [45], [16]. In this section, we
describe two approaches to prove that both torsions agree. The first, due to Bismut
and the author, is inspired both by the proof of a general Cheeger-Müller theorem
in [17], [18] and by the constructions of Igusa-Klein torsion using Morse theory [42],
[48]. The second approach classifies all invariants of smooth fibre bundles satisfying
two simple axioms [44]. It is also suitable to compare Igusa-Klein torsion with the
Dwyer-Weiss-Williams construction in [30], see [2] and Theorem 6.5 below. We also
give some consequences of the equality of both torsions.

5.1. The Witten deformation. — Let p : E → B be a smooth proper submersion,
and let F → E be a flat vector bundle. We assume that there exists a fibrewise Morse
function h : E → R such that the fibrewise gradient field ∇h satisfies the Thom-
Smale transversality condition on every fibre of p. A nontrivial example is given by
the fibrewise suspension of a unit sphere bundle at the end of Section 4.3.

Let o(TuM) → C denote the orientation bundle of TuM → CM, which extends
naturally to the birth-death singularities. Recall that CM =

⋃
j C

j
M, where CjM is

the set of fibrewise critical points of Morse index j. We define a finite-dimensional
Z-graded vector bundle

V =
⊕
j

V j −→ B,

with

(5.1) V j =
(
p|Cj

M

)
∗(F ⊗ o(T

uM)).

This bundle carries a flat connection ∇V induced by ∇F , and a fibrewise Thom-Smale
differential a. Then a is parallel, so by [16], there exists a torsion form

(5.2) T
(
∇V + a, gV

)
∈ H•(B; R)

as in Theorem 2.1 for all metrics gV induced by metrics gF on F .
We choose a horizontal subbundle THE and a fibrewise Riemannian metric gTM

as in Sections 1.3 and 2.2. Then there exists a Mathai-Quillen current ψ(∇TM , gTM )

on the total space of TM , such that

(5.3) d
(
(∇h)∗ψ(∇TM , gTM )

)
= e
(
TM,∇TM

)
− δC ,

where δC denotes the alternating sum of the currents of integration over CjM.
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Recall that we have defined two metrics gHV and gHL2 on the flat vector bundle

(5.4) H = H•(M/B;F ) ∼= H•(V, a)→ B.

5.1. Theorem (Bismut and G. [12]). — Modulo exact forms on B,

(5.5) T
(
THM, gTM , gF

)
= T

(
∇V + a, gV

)
+ ‹cho

(
H, gHL2 , gHV

)
+

∫
M/B

(∇h)∗ψ
(
∇TM , gTM

)
· cho

(
F, gF

)
+ p̂∗

0J(T sM − TuM) rkF.

This theorem is proved using the Witten deformation of the fibrewise de Rham
complex by h as in [17], [18]. By Theorems 1.5 and 2.1 and (1.7) and (5.3), taking
the exterior derivative in Theorem 5.1 gives a trivial identity. The first three terms
on the right hand side can be guessed that way. On the other hand, the last term
contains topological information related to Igusa’s framing principle.

In fact, if F carries a parallel metric, then T (∇V + a, gV )[≥2] = 0 by the axiomatic
description of T in [16], and the metric gHV is parallel, too. Recall the Becker-Gottlieb
transfer tr∗E/B : H•(E)→ H•(B) of (1.14). In this case, Theorem 5.1 reduces to

(5.6)

T (E/B;F ) = p̂∗
0J(T sM − TuM) rkF

= p̂∗
0J(TM |C) rkF − 2p̂∗

0J(TuM) rkF

= τ(E/B;F ) + tr∗E/B
0J(TM) rkF,

where we have used a families version of the Poincaré-Hopf theorem, the framing
principle of Theorem 4.8, and the triviality of the classifying map ξh(E/B;F ) : B →
Whh(R,G). This already explains the similarity of Corollary 3.9 and Theorem 4.7 for
suspended unit sphere bundles.

5.2. Analytic Igusa-Klein torsion. — Let us assume again that h : E → R is a
fibrewise Morse function. We still consider the Z-graded flat vector bundle V → B

of 5.1 with connection ∇V and metric gV induced from F . The function h acts by
multiplication on F |C , giving rise to a selfadjoint endomorphism h of V . An endo-
morphism of V is called h-upper triangular if it maps each λ-eigenvector of h to the
sum of the µ-eigenspaces with µ > λ.

For a generic fibrewise Riemannian metric gTM , the fibrewise gradient ∇h will
satisfy the Smale transversality condition over an open dense subset of B. Over this
subset, the Thom-Smale cochain differential is a parallel, h-upper triangular endo-
morphism a of V . The various differentials a over different points along a path in B
are conjugated by endomorphisms of V of the type id + b, where b is again h-upper
triangular. As one moves around in a small circle on B, these endomorphisms compose
to an automorphism of (V, a) that is homotopic to the identity by an h-upper trian-
gular homotopy. These various homotopies are again related by h-upper triangular
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higher homotopies, and so on. If the cohomology bundle H is unipotent, then all these
structures are encoded in Igusa’s map ξh(E/B;F ) : B →Whh(R,G) of Theorem 4.3.

One may also consider these algebraic structures as a singular superconnection
on V . If R = Mr(R) or R = Mr(C), there exists a smooth flat superconnection

(5.7) A′ = ∇V + a0 + a1 + · · ·

of total degree one with h-upper triangular

(5.8) aj ∈ Ωj
(
B; End1−j(V )

)
= Ωj

(
B;
⊕
k

Hom
(
V k, V k+1−j))

and an Ω•(B)-linear quasiisomorphism

(5.9) I :
(
Ω•(E;F ),∇F

)
→ (Ω•(B;V ), A′)

by [36]. The map I arises as a modification of the classical “integration over the unsta-
ble cells”, and it maps forms supported on h−1(λ,∞) to the sum of the µ-eigenspaces
of h ∈ EndV with µ ≥ λ. Moreover, the pair (A′, I) is uniquely determined up to
contractible choice by h and gTM . It is shown in [37] that for acyclic F , Igusa’s
map ξh(E/B;F ) : B → Whh(R,G) also classifies (A′, I) up to a natural notion of
homotopy.

The finite-dimensional torsion form of Definition 2.2 is only well-defined for flat
superconnections of the form ∇V + a0. In [36], [37] a torsion form T (A′,∇V , gV ) is
constructed using the fact that A′ − ∇V is a form on B with values in a nilpotent
subalgebra of End V , which may vary over B. We can still construct a metric gHV on

(5.10) H = H•(E/B;F ) = H•(V, a0)→ B

as in Section 2.1. Then we still have

(5.11) dT
(
A′,∇V , gV ) = cho

(
V, gV )− cho

(
H, gHV ).

5.2. Theorem ([36], [37]). — Modulo exact forms on B,

(5.12) T
(
THE, gTM , gF

)
= T

(
A′,∇V , gV

)
+ cho

(
H, gHL2 , gHV

)
+

∫
E/B

(∇h)∗ψ
(
∇TM , gTM

)
cho
(
F, gF

)
+ p̂∗

0J(TuM − T sM) rkF.

If both F and H carry parallel metrics, we can construct a cohomology class as in
Definition 2.8. Let gV be the induced parallel metric on V .

5.3. Definition. — The analytic Igusa-Klein torsion is defined as

(5.13) T (E/B;F ) = T
(
A′,∇V , gV

)[≥2]
+ ‹cho

(
H, gH , gHV

)
∈ Heven,≥2(B; R).

To justify the name, assume that gF is parallel and the bundle H → B is a trivial
flat bundle. Then both τ(E/B;F ) and T (E/B;F ) are defined.
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5.4. Theorem ([37]). — Under these assumptions,

(5.14) T (E/B;F ) = ξh(E/B;F )∗ τ ∈ H4•,≥4(B; R).

In contrast to the situation in the previous Section 5.1, these cohomology classes
will be nontrivial in general. Also note that T (A′,∇V , gV ) can still be constructed
for generalised fibrewise Morse functions h as in Definition 4.1. In this context, Theo-
rem 5.4 still holds. A generalisation of Theorem 5.2 will be proved in [38]. As in (5.6),
one can now compare Bismut-Lott torsion and Igusa-Klein torsion.

5.5. Theorem ([37], [38]). — If F carries a parallel metric and H → B is a trivial flat
bundle, then

(5.15) T (E/B;F ) = τ(E/B;F ) + tr∗E/B
0J(TM) rkF.

5.3. Axioms for higher torsions. — In this section, we consider all smooth
proper submersions p : E → B with oriented fibres, such that the flat cohomology
bundle H•(E/B; C) → B is unipotent in the sense of Sections 4.2, 4.3. We will con-
sider characteristic classes τ(E/B) ∈ H•(B; R) of such fibre bundles that are natural
under pullback. Such a class is called additive if it satisfies a gluing formula as in
Theorem 4.6.

Let W → E be an oriented real vector bundle of rank n + 1, and let S → E be
its unit n sphere bundle. Then H•(S/B; C) → B is still unipotent. A characteristic
class τ as above is said to satisfy the transfer relation if

(5.16) τ(S/B) = χ(Sn) τ(E/B) + tr∗E/Bτ(S/E) ∈ H•(B; R).

For the analytic torsion, the analogous result is a special case of Ma’s transfer Theo-
rem 3.1.

5.6. Definition. — A higher torsion invariant in degree k is a characteristic
class τk(E/B) ∈ Hk(B; R) for all p : E → B as above that is natural under
pullback, additive, and satisfies the transfer relation (5.16).

5.7. Theorem (Igusa [44]). — Higher torsion invariants exist in degree 4k for all k > 0,
and every higher torsion invariant is a linear combination of

tr∗E/B
0J(TM)[4k],(even)

and τ2k(E/B; C) + tr∗E/B
0J(TM)[4k].(odd)

Note that even higher torsion invariants vanish for p : E → B if the fibres are
odd-dimensional, and vice versa. The even classes tr∗E/B

0J(TM)[4k] are called Miller-
Morita-Mumford classes in [44], because they generalise the classes for surface bundles
introduced in [57], [58], [60]. The odd higher torsion classes are multiples of the
Bismut-Lott torsion T (E/B; C) under the assumptions of Theorem 5.5.
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The following result follows from the proof of uniqueness in Theorem 5.7.

5.8. Theorem (Igusa [44]). — For fibre bundles p : E → B as above,

(5.17) τ2k(E/B; C) ∈ H4k(B; ζ ′(−2k)Q) .

Theorem 5.7 could in principle also be used to prove Theorem 5.5. Unfortunately,
additivity of the Bismut-Lott torsion is only known as a consequence of Theorem 5.5.
Another consequence of this result is a more general transfer formula for Igusa-Klein
torsion as in Ma’s Theorem 3.1, including the case of fibre products. By Theorems 3.7
and 5.5, Igusa-Klein torsion is also related to equivariant torsion in the case of fibre
bundles with compact structure groups. Finally, Theorems 3.6 and 5.5 describe the
variation of Igusa-Klein torsion under changes of the flat bundle F → E.

We already mentioned the smooth Dwyer-Weiss-Williams torsion. Its definition
is given in [30], see Section 6.2 below. In [3], corresponding cohomology classes
in H4k(B; R) are constructed. Additivity and the transfer relation have recently been
proved in [2]. This implies that cohomological smooth Dwyer-Weiss-Williams torsion
shares all the other properties mentioned above. It also implies a more general transfer
formula for Igusa-Klein torsion.

6. Dwyer-Weiss-Williams torsion

In this section, we present the homotopy theoretical approach to generalised Euler
characteristics and higher torsion invariants in [30] and [3], and we sketch the proof
of Theorem 1.4. Dwyer, Weiss and Williams construct three generalised Euler charac-
teristics for fibrations p : E → B, which contain information about the existence of a
topological or even smooth bundle of manifolds that is fibre homotopy equivalent to p.
If F → E is a fibrewise acyclic bundle of R-modules, then these Euler characteristics
can be lifted to three different higher torsion invariants.

6.1. The topological index theorem. — The Waldhausen K-theory A(E) of a
space E is the K-theory of a certain category of retractive spaces over E [65]. It is
a homotopy invariant functor, but not excisive, so it does not define a generalised
homology theory. One can however define an excisive functor A% by putting

(6.1) A%(E) = Ω∞(E+ ∧A(∗)) .

Here, E+ is the disjoint union of E and a basepoint ∗, and Ω∞ is the infinite loop
space construction. Weiss and Williams construct a natural assembly map

(6.2) α : A%(E) −→ A(E)
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in [66]. We will also need the spectrum

(6.3) Q(E+) = Ω∞Σ∞(E+) = limk ΩkΣk(E+) ,

where Σ denotes the reduced suspension. For a fibration p : E → B, one has relative
functors AB(E) → B, A%

B(E) → B and QB(EB) → B, which behave almost as
fibrations over B where the functors above have been applied fibrewise to p : E → B.

The homotopy Euler characteristic

(6.4) χh(E/B) : B −→ AB(E)

is a section of AB(E)→ B. It is defined as the class of E×S0 over E in AB(E) if the
fibres of p are homotopy finitely dominated, that is homotopy equivalent to retracts of
finite CW complexes. If B is a point, then χh(E) encodes precisely the Euler number
and the Wall finiteness obstruction of the fibre. A flat vector bundle F → E, or more
generally, a bundle of finitely generated projective R-modules for some ring R, induces
a map λF : A(E)→ K(R) induced by taking homology relative to E with coefficients
in F . For the proof of Theorem 1.4, one uses that the composition of maps

(6.5) B
χh(E/B)−−−−−−→ AB(E) −−−−→ A(E)

λF−−−−→ K(R)

classifies the fibrewise cohomology H(E/B;F ) → B as a virtual bundle and thus
gives the left hand side of (1.18).

If p : E → B is a bundle of topological manifolds, there exists a vertical tangent
microbundle TM → E. It has an Euler class e(TM) with coefficients in A%

B(E).
Let ℘ denote the generalised fibrewise Poincaré duality [30]. Then one can define a
topological Euler characteristic χt of p with the property that

(6.6) χt(E/B) = ℘ e(TM) : B −→ A%
B(E).

The fibrewise assembly of (6.2) maps it to AB(E). One has a Poincaré-Hopf type
index theorem.

6.1. Theorem (Dwyer, Weiss and Williams [30]). — For a bundle p : E → B of compact
topological manifolds, the sections χh(E/B) and α ◦ χt(E/B) of AB(E) → B are
homotopic by a preferred path of sections.

Conversely, if χh(E/B) lifts to A%
B(E), then p is fibre homotopy equivalent to a

bundle of compact topological manifolds.

If the vertical tangent bundle TM → E is a topological disc bundle, then p : E → B

is called a regular manifold bundle, which includes the important special case of a
proper submersion. In this case, one can define the Becker Euler class b(TM) with co-
efficients in the sphere spectrum. Its fibrewise Poincaré dual gives the Becker-Gottlieb
transfer, regarded as a section

(6.7) χd(E/B) = trE/B = ℘ b(TM) : B −→ QB(EB).
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Even though Becker-Gottlieb transfer is already defined for fibrations with homotopy
finitely dominated fibres, we can regard it as a third generalised Euler characteristic χd

for regular manifold bundles by (6.7). There is a natural unit map η : QB(EB) →
A%
B(E), and we have another Poincaré-Hopf type index theorem.

6.2. Theorem (Dwyer, Weiss and Williams [30]). — For a bundle p : E → B of closed
regular topological manifolds, the sections χt(E/B) and η ◦ trE/B of A%

B(E)→ B are
homotopic by a preferred path of sections.

Proof of Theorem 1.4. — We regard the homotopy class of maps E → K(R) induced
by the finitely generated projective R-module bundle F → E. As in (6.5), this map
can be written as a composition

(6.8) E −−−−→ Q(E)
α ◦ η−−−−→ A(E)

λF−−−−→ K(R) .

Thus, the right hand side of (1.18) in Theorem 1.4 is classified by the composition

(6.9) B
trE/B−−−−→ QB(E)

α ◦ η−−−−→ AB(E) −−−−→ A(E)
λF−−−−→ K(R) .

By Theorems 6.1 and 6.2, this map is homotopic to (6.5), which classifies the left
hand side of (1.18). This completes the proof.

One notes that both sides of (1.18) in Theorem 1.4 are defined for a fibra-
tion p : E → B with homotopy finitely dominated fibres. However, for Theorem 6.2
one needs the regular structure coming from the smooth bundle structure. It is some-
what surprising that the existence of a smooth fibre bundle structure is necessary to
compare the various Euler characteristics above.

6.3. Theorem (Dwyer, Weiss and Williams [30]). — Let p : E → B be a fibration with
homotopy finitely dominated fibres. If χh(E/B) lifts to QB(EB)→ B, then p is fibre
homotopy equivalent to a bundle of smooth manifolds.

6.2. Topological higher Reidemeister torsion. — Suppose that F → E is a
bundle of finitely generated projective R-modules that is fibrewise acyclic. Then the
three Euler characteristics χh(E/B), χt(E/B) and trE/B of the previous subsection
can be lifted to higher Reidemeister torsions.

Assume first that p : E → B is a fibration with homotopy finitely dominated fibres.
If F is fibrewise acyclic, then the composition in (6.5) is canonically homotopic to the
trivial map B → K(R). For a single space M , this gives an element τh(M ;F ) in the
homotopy fibre

(6.10) Φh(M ;F ) = hofib(λF )

of λF : A(M)→ K(R) over χh(M) ∈ A(M). For the fibration p, we get a lift

(6.11) τh(E/B;F ) : B −→ Φh(E/B;F ) = hofibB(λF )
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of χh(E/B), where the fibres of Φh(E/B;F )→ B are the homotopy fibres of λF .
If p : E → B is a bundle of topological manifolds, we similarly get a lift of χt(E/B) :

B → A%
B(E) to

(6.12) τ t(E/B;F ) : B −→ Φt(E/B;F ) = hofibB(λF ◦ α).

If p : E → B is a bundle of smooth or regular manifolds, one gets a lift of χd(E/B) =

trE/B : B → QB(EB) to

(6.13) τd(E/B;F ) : B −→ Φd(E/B;F ) = hofibB(λF ◦ α ◦ η).

6.4. Definition. — If F → E is fibrewise acyclic, then τh(E/B;F ), τ t(E/B;F )

and τd(E/B;F ) are called the homotopy, topological and smooth Dwyer-Weiss-
Williams torsion, respectively, whenever they are defined.

The natural maps α and η induce maps

(6.14)
α : Φt(E/B;F ) −→ Φh(E/B;F )

and η : Φd(E/B;F ) −→ Φt(E/B;F ).

By Theorems 6.1 and 6.2, the Dwyer-Weiss-Williams torsions are related up to a
preferred fibrewise homotopy by

(6.15) τh(E/B;F ) ∼ ατ t(E/B;F ) and τ t(E/B;F ) ∼ ητd(E/B;F )

if they are defined.
We will see in the next Section 7 that Bismut-Lott torsion and Igusa-Klein

torsion can detect different smooth bundle structures on a given topological
manifold bundle p : E → B. Thus, T (E/B;F ) and τ(E/B;F ) cannot be re-
covered from τh(E/B;F ) or τ t(E/B;F ). On the other hand, we do not know
any example yet where the difference τ(E/B;F1) − τ(E/B;F0) depends on the
smooth fibre bundle structure if F0, F1 → E are two flat vector bundles of the
same rank with unipotent fibrewise cohomology bundles. It is thus natural to
ask if one can recover τ(E/B;F1) − τ(E/B;F0) or T (E/B;F1) − T (E/B;F0)

from τ t(E/B;F1) − τ t(E/B;F0) or even from τh(E/B;F1) − τh(E/B;F0). Let
us note at this point that additivity of the topological Dwyer-Weiss-Williams tor-
sion τ t(E/B;F ) and of the underlying Euler characteristic χt(E/B) of (6.6) has
been established in [1].

In [3], a cohomological version of τd(E/B;F ) is constructed. It is still defined
if H•(E/B;F ) → B is a unipotent bundle. The following result has recently been
proved using Igusa’s axioms.

6.5. Theorem (Badzioch, Dorabiała, Klein and Williams [2]). — For any k > 0, the co-
homological smooth Dwyer-Weiss-Williams torsion of [3] in degree 4k is nontrivial
and proportional to the Igusa-Klein torsion in the same degree.
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In addition, it would be nice to have a natural map from Φd(E/B;F ) to Igusa’s
Whitehead space Whh(R,G) that sends τd(E/B;F ) to the map ξ(E/B;F ) of (4.4).

7. Exotic smooth bundles

Consider two smooth proper submersions pi : Ei → B for i = 0, 1. It is possible
that the fibres of p0 and p1 are diffeomorphic, and that there exists a homeomor-
phism ϕ : E0 → E1 such that p0 = p1 ◦ ϕ, but no such diffeomorphism. If this is the
case, then p0 and p1 are isomorphic as topological, but not as smooth fibre bundles
over B. In this case, we will say that p1 gives an exotic smooth bundle structure on
the bundle p0. Of course, in many cases there is no distinguished standard smooth
bundle structure, so the term “exotic” may be misleading. Higher torsion invariants
detect some exotic smooth bundle structures, as we will explain in this section. We
also recall Heitsch-Lazarov torsion, which might be useful to detect exotic smooth
structures on foliations.

7.1. Hatcher’s example. — It is well known that the higher stable homotopy
groups of spheres are finite, whereas some higher homotopy groups of the orthogonal
group are not. More precisely, if m is sufficiently large with respect to k, then the
kernel of the J-homomorphism

(7.1) J4k−1 : π4k−1(O(m)) −→ πn+4k−1(Sm)

contains an infinite cyclic subgroup. An element γ ∈ ker J4k−1 can be used to construct
a family of embeddings γ̃q : Sm ×Dn−1 → Sm ×Dn−1 for q ∈ D4k, if n is sufficiently
large, which are given by a pair of linear maps Sm → Sm and Dn−1 → Dn−1 for q ∈
S4k−1 = ∂D4k. Glueing Dm+1 ×Dn−1 to Sm ×Dm along Sm ×Dn−1 ⊂ ∂(Dm+1 ×
Dn−1) for all q ∈ D4k, one obtains an (m+ n)-disc bundle over D4k together with a
canonical trivialisation over S4k−1. Thus, this bundle can be extended to a smooth
disc bundle

(7.2) pγ : Eγ −→ S4k = D4k ∪S4k−1 D4k,

as described in [42] and [36].
This disc bundle was first constructed by Hatcher. Bökstedt proved that for γ 6= 0,

the bundle pγ is homeomorphic, but not diffeomorphic to a trivial disc bundle in the
sense above [19]. Note that pγ carries a fibrewise Morse function h : Eγ → R with two
critical points of index 0 and m in the part Sm ×Dn of the fibre, and another one of
index m+ 1 on Dm+1 ×Dn−1. The corresponding family of Thom-Smale complexes
is trivial, but h is not framed. If Wγ → S4k denotes the Rn-bundle with clutching
function γ|S4k−1 , Igusa’s framing principle gives

(7.3) τ(Eγ/S
4k; C) = 2(−1)m 0J(Wγ) 6= 0 ∈ H4k(S4k,R),
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see Theorem 4.8 and [42].
To construct a smooth proper submersion, we take the fibrewise double DEγ →

S4k. Its Igusa-Klein torsion of Definition 4.4 is given by

(7.4) τ(DEγ/S
4k; C) = 2

(
(−1)m − (−1)n

)
0J(Wγ),

which vanishes precisely if the fibres are even-dimensional. By Theorem 5.5, this agrees
with the Bismut-Lott torsion T (DEγ/S

4k; C) of Definition 2.8, see [36].
If p : E → B is a smooth proper submersion with dimB = 4k and dimM odd and

sufficiently large, then one can take out r copies of D4k×DdimM from E and glue in r
copies of Eγ |D4k instead. This gives an exotic smooth bundle pr : Er → B. If either
Bismut-Lott torsion or Igusa-Klein torsion are defined for some flat bundle F → E,
then this torsion will change by ±2r 0J(Wγ) rkF ∈ H4k(B; R) if B is oriented. Igusa
also constructs a difference torsion satisfying

(7.5) τ(Er/B,E/B;F ) = ±2r 0J(Wγ) rkF

even if H•(E/B;F ) ∼= H•(Er/B;F )→ B is not a unipotent bundle.
We still assume that B is oriented and that dimM is odd and sufficiently large.

The gluing construction above can be generalised to construct a discrete family of
exotic smooth bundles pν : Eν → B such that the values of their difference tor-
sions τ(Er/B,E/B;F ) form a lattice in the space

(7.6)
∞⊕
k=1

℘ im
(
p∗ : HdimB−4k(E) −→ HdimB−4k(B)

)
⊂
∞⊕
k=1

H4k(B)

of classes that are Poincaré dual to classes pushed down from E. This is an ongoing
project with Igusa.

7.2. The space of stable exotic smooth structures. — There are two natu-
ral questions: can higher torsion detect all exotic smooth bundle structures, and can
all these structures be constructed? To answer these questions, one wants to under-
stand the space of all such exotic smooth bundle structures. As Williams pointed
out, a certain stable version of this space can be analysed using the methods of the
paper [30].

We start with a bundle p : E → B of compact topological n-manifolds, equipped
with a vector bundle V → E of rank n. A smooth manifold bundle p′ : E′ → B is called
a fibrewise tangential smoothing of (E/B, V ) if there exists a homeomorphism ϕ : E′ →
E with p′ = p◦ϕ and a vector bundle isomorphism ker(dp′)→ V over ϕ. Let SB(E, V )

denote the space of all fibrewise tangential smoothings. By considering total spaces
of closed, even-dimensional linear disk bundles π : D(ξ) ⊂ ξ → E after rounding off
the corners, we construct the space of stable fibrewise tangential smoothings

(7.7) SsB(E, V ) = lim
−→

SB(D(ξ), π∗(V ⊕ ξ)) ,
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where the limit is taken over all vector bundles.
Let H (∗) be the stable h-cobordism space, and construct a fibration H %

B(E) with
fibres Ω∞(M+ ∧ H (∗)) as in (6.1).

7.1. Theorem (Dwyer, Weiss and Williams [30]). — If (E/B, V ) admits stable fibrewise
tangential smoothings, then SsB(E, V ) is homotopy equivalent to the space of sections
of H %

B(E)→ B.

In other words, the group π0ΓB H %
B(E) of homotopy classes of sections acts simply

transitively on the isomorphism classes of stable fibrewise tangential smoothings.

7.2. Theorem (Igusa and G.). — If the fibres and base of p : E → B are closed oriented
manifolds, then

(7.8) π0

(
SsB(E, V )

)
⊗Z Q ∼=

∞⊕
k=1

HdimB−4k(E; Q).

In special cases, this was already known, see [32]. Thus, if pi : D(ξi)→ B are stable
fibrewise tangential smoothings for i = 0, 1, we can define the relative Dwyer-Weiss-
Williams torsion τd/t2k (p0, p1) ∈ H4k(B; Q) for k ≥ 1 as the Poincaré dual of the image
of the corresponding difference class in HdimB−4k(B; Q).

7.3. Theorem (Igusa and G.). — In the situation above, the Igusa-Klein difference tor-
sion is a scalar multiple of the relative Dwyer-Weiss-Williams torsion.

Details will appear elsewhere.

7.4. Remark. — In general, the space in (7.8) has higher rank than the space in (7.6).
This implies that higher torsion cannot detect all rational stable fibrewise tangential
smoothings. It does not help to chose different flat vector bundles F → E either. One
reason is that E could be simply connected. Another reason is the fact that in (7.5)
and its analogue in the more general setting of (7.6), the flat vector bundle F only
contributes by its rank.

7.5. Remark. — Thus the difference of the Igusa-Klein or Bismut-Lott torsions of E →
B with two different flat vector bundles of the same rank seems to be independent of
the smooth structure in the examples known so far. This observation leads to the ques-
tion if this difference can be computed already from the topological or the homotopy
Dwyer-Weiss-Williams torsion. Theorem 3.6 shows that under special assumptions, it
can even be computed using the Becker-Gottlieb transfer only.

7.6. Remark. — In the special case of aspherical fibresM , Lott defines a noncommuta-
tive higher analytic torsion form with coefficients in a certain subalgebra of C∗r π1(M)
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in [51]. Lott asks if this invariant detects all rational exotic structures. To the au-
thor’s knowledge, this question is still open. More generally, one would like to have a
similar invariant for arbitrary fibres that can detect all rational stable exotic smooth
structures.

7.3. Heitsch-Lazarov torsion for foliations. — Let E be a smooth closed mani-
fold with a smooth foliation F . Since in general, the space of leaves E/ F is ill-behaved,
we consider a foliation groupoid whose elements are classes of paths on the leaves of F .
We will assume that this groupoid G lies between the homotopy and the holonomy
groupoid, and that it is Hausdorff and thus given by a smooth manifold and two
submersions r, s : G → E. We will assume that the strong Novikov-Shubin invariants
of the leafwise Hodge-Laplacians are positive.

Heitsch and Lazarov give a generalisation of Bismut-Lott torsion in a setting
that essentially avoids noncommutative methods [40]. Thus, let Ω•c(E/ F ) denote
the Häfliger Forms, that is, the coinvariants under F in the space of compactly sup-
ported de Rham forms on a complete transversal to F . The cohomology H•c (E/ F )

of (Ω•c(E/ F ), d) resembles the compactly supported de Rham cohomology of a man-
ifold.

Let F → E be a flat vector bundle with metric gF . If one fixes a complement THE
to T F ⊂ TE and a leafwise metric gT F , there exists a natural connection ∇T F

on T F → E. Using integration along the leaves, one defines

(7.9)
∫

F
e
(
T F ,∇T F ) cho

(
F, gF

)
∈ Ω•c(E/ F ).

Let P : Ω•( F ;F ) → H• = H•( F ;F ) denote the projection of the leafwise forms
with values in F onto the harmonic forms. Using P , one defines

(7.10) cho
(
H, gHL2

)
∈ Ω•c(E/ F )

in analogy with (1.5). As in Definition 2.4, Heitsch and Lazarov then construct a
higher analytic torsion form T (THE, gT F , gF ) ∈ Ω•c(E/ F ).

7.7. Theorem (Heitsch and Lazarov [40]). — In the situation above,

(7.11) d T
(
THE, gT F , gF

)
=

∫
F
e
(
T F ,∇T F )cho

(
F, gF

)
− cho

(
H, gHL2

)
∈ Ω•c(E/ F ).

Heitsch and Lazarov need a large positive lower bound for the strong leafwise
Novikov-Shubin invariants. Thus they only regard examples with compact leaves. It
seems however, that uniform positivity of the Novikov-Shubin invariants is sufficient
to prove Theorem 7.7. This is an ongoing joint project with Azzali.

Given F as above with dim F odd and dimE − dim F = 4k, one can re-
move r disjoint foliated regions D4k × Ddim F and glue in r copies of the disc
bundle Eγ |D4k of Section 7.1. It would be interesting to know if the Heitsch-Lazarov
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torsion T (THE, gT F , gF ) then changes by ±2r 0J(Wγ) rkF as in (7.5). In this case,
we would have a new foliation F r on E that is homeomorphic, but not diffeomorphic
to the original foliation F , and thus “exotic”. Note that F and F r have the same
dynamics, since on a complete transversal that does not meet the modified regions,
nothing changes. More generally, one would like to classify these exotic smooth
structures, construct as many as possible explicitly, and see which of them can be
distinguished by Heitsch-Lazarov torsion, or a noncommutative generalisation of it.

8. The hypoelliptic Laplacian and Bismut-Lebeau torsion

In [8] and [15], Bismut and Lebeau consider an analytic torsion form that is defined
using a hypoelliptic operator A2

b,± on differential forms on the total space T ∗M of
the vertical cotangent bundle of the family p : E → B. While the fibrewise Hodge
Laplacian generates a Brownian motion on the fibres M of p, the operator A2

b,±
generates a stochastic version of the geodesic flow on T ∗M , where the velocities are
perturbed by a Brownian motion for b ∈ (0,∞). As b → 0, this process converges
in an appropriate sense to the classical Brownian motion on M . On the other hand,
as b → ∞, one recovers the unperturbed geodesic flow. One motivation to study the
family of operators (Ab) is Fried’s conjecture, which relates the torsion of a single
manifold M to the closed orbits of a certain class of flows on M , see [34] for an
overview.

8.1. The hypoelliptic Laplacian on the cotangent bundle. — Let p : E → B

be a smooth proper submersion, and let F → E be a flat vector bundle as before.
Let π : T ∗M → E denote the vertical cotangent bundle. If one fixes THE ⊂ TE

and gTM as before, one obtains a splitting

(8.1) TT ∗M ∼= π∗(THE ⊕ TM ⊕ T ∗M)

and a corresponding splitting of the bundle Ω•(T ∗M/B;π∗F ). We regard the bun-
dle Ẽ = E × (0,∞)2 → B̃ = B × (0,∞)2, and let (b, t) denote the coordinates
of (0,∞)2.

On the vertical part TM ⊕ T ∗M of TT ∗M , one defines a metric g by

(8.2) g =

(
1
t g

TM idT∗M

idTM 2t gT
∗M

)
: TM ⊕ T ∗M −→

(
TM ⊕ T ∗M

)∗
.

Together with a metric gF on F → E and the symplectic volume form on TM ⊕
T ∗M , one obtains an L2-metric g on the bundle Ω•0(T ∗M/B;π∗F )→ B of compactly

ASTÉRISQUE 328



TORSION INVARIANTS FOR FAMILIES 201

supported forms. On this bundle, there exists a g-isometric involution u with

(8.3) (uα)(q,v) =

(
idTM 2t gT

∗M

0 −idT∗M

)
α(q,−v)

for all q ∈ E, v ∈ T ∗qM , and thus, one can define a nondegenerate Hermitian form h
of signature (∞,∞) by

(8.4) h(α, β) = g(uα, β).

As before, let A′ = dE denote the total exterior derivative on Ω•(T ∗M ;π∗F ), regarded
as a superconnection on the bundle Ω•0(T ∗M/B;π∗F ). Define Ā′ as the h-adjoint of A′.
Again, A′ and Ā′ are flat superconnections.

One has the canonical one-form ϑ ∈ Ω1(T ∗M), with

(8.5) dϑ = ωH + ωV ∈ Γ
(
π∗
(
Λ2(THE)∗ ⊕ T ∗M ⊗ TM

))
⊂ Ω2(T ∗M),

where ωV is the standard symplectic form on the cotangent bundle of each fibre of p.
Consider the Hamiltonians

(8.6) H ±(q, v) = ± t2

2b2
‖v‖2T∗M .

Then for b = t = 1, the ωV -gradient of H + is the generator

(8.7) sgrad H +|(q,v,b,t) = gT
∗M (v) ∈ TqM

of the geodesic flow on T ∗M over the fibres M of p.
Regard the flat superconnections

(8.8) A′± = e−( H±−ωH)A′e H±−ωH

and Ā′± = e H±−ωH

Ā′e−( H±−ωH).

Then there exists an h-selfadjoint superconnection A± and an h-skew adjoint endo-
morphism X with

(8.9) A± =
1

2
(A′± + Ā′±) and X± = Ā′± − A′±.

One finally defines

(8.10) Ab,t,± = A±|B×{(b,t)} and Xb,t,± = X±|B×{(b,t)} .

The operator A2
b,t,± = −X2

b,t,± is the sum of a harmonic oscillator along the fibres
of π : T ∗M → E, the Lie derivative by sgrad H ±, and some terms of lower order
or smaller growth at infinity. In particular, ∂

∂u − A
2
b,t,± is hypoelliptic in the sense

of Hörmander, for an extra variable u ∈ R. By [15], the restriction A[0],2
b,t,± of the

operator A2
b,t,± to the fibres of (p◦π) : T ∗M → B has discrete spectrum and compact

resolvent. Recall that n = dimM .
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8.1. Theorem (Bismut and Lebeau [15]). — The operator A′[0]
b,t,± acts on the generalised

0-eigenspace ker(A
[0],2N
b,t,± ) of the operator A[0],2

b,t,±, where N � 0, and for all k ∈ Z and
all b, t > 0,

(8.11)
Hk(ker(A

[0],2N
b,+ ),A

′[0]
b,+) ∼= Hk

+(E/B;F ) = Hk(E/B;F ),

Hk+n(ker(A
[0],2N
b,− ),A

′[0]
b,−) ∼= Hk+n

− (E/B;F ) = Hk(E/B;F ⊗ o(TM)) .

Note that Hn+k
− (E/B;F ∗) ∼= Hn−k

+ (E/B;F ) by fibrewise Poincaré duality.

8.2. Bismut-Lebeau torsion. — We can now explain the higher torsion T b,± of
the cotangent bundle defined by Bismut and Lebeau in [15]. We will see how it fits into
Igusa’s axiomatic framework of [44], see Section 5.3 above. At the moment, Bismut-
Lebeau torsion is only defined for small positive values of b. A definition for all b > 0

would be nicer because as the hypoelliptic Laplacian converges to the generator of the
geodesic flow as b → ∞, one hopes to recover some information about the fibrewise
geodesic flow from the higher torsion.

The Hermitian form h of (8.4) restricts to a nondegenerate Hermitian form hH±b
on H•±(E/B;F ), so one still has characteristic forms cho(H•±(E/B;F ), h

H±
b ) ∈

Ωodd(B).
Bismut and Lebeau also show that the heat operator e−A

2
b,t,± is a smoothing op-

erator and of trace class. Analytic torsion forms T b,±(THE, gTM , gF ) ∈ ΩevenB can
thus be defined as in Section 2.2. They satisfy the following analogue of Theorem 1.5.

8.2. Theorem (Bismut and Lebeau [15]). — For b > 0 sufficiently small,

(8.12) d T b,±
(
THE, gTM , gF

)
=

∫
E/B

e
(
TM,∇TM

)
cho
(
F, gF

)
− cho

(
H•±(E/B;F ), h

H±
b

)
.

Note that cho(H•−(E/B;F )) = (−1)n cho(H•+(E/B;F )) by (8.11). This gives no
contradiction in (8.12) because for odd n, the first term on the right hand side vanishes.

It is now natural to compare T b,± with the Bismut-Lott torsion T of Section 2.2.
Recall that we have defined a metric gHL2 onH(E/B;F ) in Section 1.3. Let gH±L2 denote
the induced metric on H±(E/B;F ).

8.3. Theorem (Bismut and Lebeau [15]). — For b > 0 sufficiently small, the Hermitian
form (±1)n h

H±
b is positive definite, and modulo exact forms on B one has

(8.13) T b,±
(
THE, gTM , gF

)
= (±1)n T

(
THE, gTM , gF

)
− ‹cho

(
H±(E/B;F ), gHL2 , h

H±
b

)
± tr∗E/B

0J(TM) rkF .
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8.4. Remark. — If one applies the exterior derivative d on B to (8.13), the result is
compatible with Theorems 1.5 and 8.2, which explains the first two terms on the right
hand side of (8.13).

The last term is a Miller-Morita-Mumford class in Igusa’s sense. It cannot be
guessed from Theorems 1.5 and 8.2. But if we believe that T b,±

(
THE, gTM , gF

)
is a

higher torsion invariant in the sense of Definition 5.6, then it is not surprising that such
a class appears here. On the other hand, it is surprising that T b,±

(
THE, gTM , gF

)
is given by the same linear combination of the classes in Theorem 5.7 as Igusa-Klein
torsion in the following special case. If F is acyclic and E → B admits a fibrewise
Morse function, then

(8.14) T b,−
(
THE, gTM , gF

)
= (−1)n τ(E/B;F )

by comparison with Theorem 5.5. If h has trivial stable tangent bundle T sM in an
analogous sense to Definition 4.1, the class T b,+

(
THE, gTM , gF

)
equals ξh(E/B;F )∗ τ

up to sign. Conjecturally, these equations hold even if there is no fibrewise Morse
function. This coincidence indicates a relation between the Bismut-Lebeau analytic
torsion and Igusa-Klein torsion that is even deeper than Theorems 5.5 or 5.7.
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BOUNDARIES OF POSITIVE HOLOMORPHIC CHAINS AND
THE RELATIVE HODGE QUESTION

by

F. Reese Harvey & H. Blaine Lawson, Jr

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — We characterize the boundaries of positive holomorphic chains in an
arbitrary complex manifold.

We then consider a compact oriented real submanifold M of dimension 2p− 1 in
a compact Kähler manifold X and address the question of which relative homology
classes in H2p(X,M ; Z) are represented by positive holomorphic chains. Specifically,
we define what it means for a class τ ∈ H2p(X,M ; Z) to be of type (p, p) and positive.
It is then shown that τ has these properties if and only if τ = [T + S] where T is
a positive holomorphic chain with dT = ∂τ and S is a positive (p, p)-current with
dS = 0.
Résumé (Bords de chaînes holomorphes positives et la question de Hodge relative)

On donne une caractérisation des chaînes holomorphes positives dans une variété
complexe générale.

On considère une sous-variété compacte orientée réelle M de dimension 2p − 1
dans une variété X compacte kählerienne, et on étudie les classes d’homologie relative
H2p(X,M ; Z) qui sont représentables par une chaîne holomorphe positive. On décrit
les classes τ ∈ H2p(X,M ; Z) de type (p, p) positives. On montre que τ possède cette
propriété si et seulement si τ = [T + S] où T est une chaîne holomorphe telle que
dT = ∂τ et S est un courant (p, p) positif tel que dS = 0.

1. Introduction

In the first part of this note we establish a general result concerning boundaries of
positive holomorphic chains in a complex manifold X. In the second part we address
the “Relative Hodge Question”: When is a homology class τ ∈ H2p(X,M ; Z) repre-
sented by a positive holomorphic chain? Assuming M is a real (2p − 1)-dimensional
submanifold we are able to give a surprisingly full answer.
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We begin our discussion of the first part by presenting some interesting special
cases which are quite different in nature. The first main theorem is then formulated
and proved in Section 2.

To start, suppose X compact and let Γ be a current of dimension 2p− 1 in X. By
a positive holomorphic p-chain with boundary Γ we mean a finite sum V =

∑
k mkVk

with mk ∈ Z+ and Vk an irreducible complex analytic variety of dimension p and
finite volume in X − suppΓ, such that dV = Γ as currents on X.

Equip X with a hermitian metric and let ω denote its associated (1, 1)-form. A real
(2p− 1)-form α will be called a (p, p)-positive linking form if

dp,pα+
1

p!
ωp ≥ 0 (strongly positive)

where dp,pα denotes the (p, p)-component of dα. (See [11] or [10] for the definition
of strongly and weakly positive currents.) The numbers

∫
Γ
α with α as above, will be

called the (p, p)-linking numbers of Γ.

Theorem 1.1. — Let Γ =
∑N

k=1 nkΓk be an integer linear combination of compact,
mutually disjoint, C1-submanifolds of dimension 2p − 1 in X, each of which has a
real analytic point. Then Γ = dV where V is a positive holomorphic p-chain if and
only if the (p, p)-linking numbers of Γ are bounded below.

Note 1.2. — The condition that the linking numbers of Γ are bounded below is easily
seen to be independent of the choice of hermitian metric on X. However, for any given
metric we have the precise statement that Γ bounds a positive holomorphic chain of
mass ≤ Λ if and only if

(1.1)
∫

Γ

α ≥ −Λ for all (p, p)-positive linking forms α

Note 1.3. — We shall actually prove the theorem in the more general situation where
Γ is allowed to have a “scar" set and the real analyticity assumption is replaced
by a weaker “push-out” hypothesis (see Section 2). When p > 1, this hypothesis is
satisfied at any point where the boundary is smooth and its Levi form has at least
one negative eigenvalue. In all these cases, one has regularity at almost all points of
Γ. This boundary regularity is discussed in [12] and [10].

Remark 1.4. — When X is a projective surface and p = 1, a much stronger result is
conjectured: namely, Γ bounds a positive holomorphic 1-chain if and only if

(1.2)
∫

Γ

dcu ≥ −Λ for all u ∈ C∞(X) with ddcu+ ω ≥ 0.

Functions u with ddcu + ω ≥ 0 are called quasi-plurisubharmonic. They were intro-
duced by Demailly and play an important role in complex analysis [2], [7]. Condi-
tion (1.2) is equivalent to the condition that

1

`
LinkP(Γ, Z) ≥ −Λ for all positive divisors Z in X − Γ
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of sections σ ∈ H0(X, O(`)), ` > 0, where LinkP denotes the projective linking num-
ber introduced in [17]. In this form the conjecture extends to all dimensions and
codimensions (for X projective) and is a consequence of the above case: p = 1 in
surfaces. All this is established in [16, 17] where the conjectures are also related to
the projective hull introduced in [15].

Although the hypothesis of Theorem 1.1 is conjecturally too strong for projective
manifolds, it does give the “correct” result in the general case. For example, if X is a
non-algebraic K3-surface, there appears to be no simpler condition characterizing the
boundaries of positive holomorphic 1-chains.

Quite different characterizations of the boundaries of (not necessarily positive)
holomorphic chains in projective manifolds appear in [3], [4, 5] and [14].

Remark 1.5. — The Linking Condition (1.1) forces the components of Γ to be maxi-
mally complex CR-manifolds. Maximal complexity is equivalent to the assertion that
Γ = Γp−1,p + Γp,p−1 where Γr,s denotes the Dolbeault component of Γ in bidimension
(r, s). To see that this must hold, note that any α ∈ Er,2p−1−r(X) with r 6= p − 1, p

satisfies dp,pα+ ω ≥ 0 since dp,pα = 0.

Theorem 1.1 extends to characterize boundaries of compactly supported holomor-
phic chains in certain non-compact spaces. A complex n-manifold X is called q-convex
if there exists a proper exhaustion function f : X → R+ such that ddcf has at least
n− q + 1 strictly positive eigenvalues outside some compact subset of X.

Theorem 1.6. — Theorem 1.1 remains valid (for compactly supported holomorphic
chains V ) in any q-convex hermitian manifold with q ≤ p.

Remark 1.7. — If X is 1-convex (i.e., strongly pseudoconvex), then Theorem 1.1 is
valid for all p. If, further, X admits a proper exhaustion which is strictly plurisub-
harmonic everywhere (i.e., X is Stein), much stronger results are known. Condi-
tion (1.1) implies maximal complexity, and for p > 1 this condition alone implies
that Γ bounds a holomorphic p-chain [12]. Condition (1.1) also implies the moment
condition: Γ(α) = 0 for all (p, p − 1)-forms α with ∂α = 0. When p = 1 this implies
that Γ bounds a holomorphic 1-chain [12]. Results of this kind go back to Wermer
[21].

Analogous remarks apply to results of [13] in the q-convex spaces Pn −Pn−q.

Remark 1.8. — Condition (1.1) implies that
∫

Γ
α ≥ 0 for all α with dp,pα ≥ 0. If

X is a Stein manifold embedded in some Cn, this in turn implies that the linking
number Link(Γ, Z) ≥ 0 for all algebraic subvarieties Z of codimension p in Cn−Γ. By
Alexander-Wermer [1], [22] this last condition alone implies that Γ bounds a positive
holomorphic p-chain in X.

Theorem 1.1 also holds “locally”, that is, it extends to any non-compact hermitian
manifold X where neither Γ nor V are assumed to have compact support.
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Theorem 1.9. — Suppose X is a non-compact hermitian manifold, and let Γ =∑
j njΓj be a locally finite integral combination of disjointly embedded C1-submanifolds

of dimension 2p− 1, each of which has a real analytic point. Then Γ is the boundary
of a holomorphic p-chain V of mass M(V ) ≤ Λ (whose support is a closed but not
necessarily compact analytic subvariety of X − suppΓ) if and only if

∫
Γ
α ≥ −Λ for

all (p, p)-positive linking forms α with compact support on X.

In the last section of this paper we further weaken our hypotheses on Γ to an
assumption that each component Γk be residual at some point. (See § 3 for the defi-
nition.) The concept of residual submanifolds leads to questions of some independent
interest.

In Section 3 we address a question related to the Characterization Theorems above.
Let j : M ⊂ X be a compact oriented real submanifold of dimension 2p − 1 in a
compact Kähler manifold X. Represent the relative homology group H2p(X,M ; R)

by 2p-currents T on X with dT = j∗S for some (2p−1)-current S onM . One can ask:
When does a given class τ ∈ H2p(X,M ; R) contain a positive holomorphic chain?

As a first step we show that for every T as above and every d-closed form ϕ on
X the pairing T (ϕ) depends only on the relative class τ = [T ]. This allows us to
introduce a real Hodge filtration on H2p(X,M ; Z)mod tor which extends the standard
one on the subgroup H2p(X; Z)mod tor. It also allows us to formulate the following.

Definition 1.10. — A class τ ∈ H2p(X,M ; R) is a positive (p,p)-class if τ(ϕ) ≥ 0 for
all 2p-forms ϕ with dϕ = 0 and ϕp,p ≥ 0.

Theorem 1.11. — Let M ⊂ X be as above and suppose each component of M has
a real analytic point. Let τ ∈ H2p(X,M ; Z)mod tor be a positive (p, p)-class. Then
there exists a positive holomorphic p-chain V on X with dV = ∂τ and a positive
(p, p)-current S with dS = 0 such that τ = [V + S].

In particular, if the positive classes in Hp,p(X; Q) are represented by positive
holomorphic chains with rational coefficients, then so are all the positive classes in
Hp,p(X,M ; Q).

Remark 1.12. — This last result is a strengthening of the previous ones (in the Kähler
case). Let τ be as in Theorem 1.11 and note that Γ = ∂τ =

∑
k nk[Mk] where

M1, ...,M` are the connected components of M and the nk’s are integers. If τ is a
positive (p, p)-class, then τ(dα + 1

p!ω
p) ≥ 0 whenever dp,pα + 1

p!ω
p ≥ 0. Therefore

for any (p, p)-positive linking form α we have Γ(α) = (∂τ)(α) = τ(dα) = τ(dp,pα) =

τ(dp,pα + 1
p!ω

p) − τ( 1
p!ω

p) ≥ −τ( 1
p!ω

p), and we conclude from Theorem 1.1 that Γ

bounds a positive holomorphic p-chain V . Theorem 1.11 asserts that, moreover, the
absolute class τ − [V ] is represented by a positive (p, p)-current.
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2. The Characterization Theorem

In this section we prove a general theorem which implies all of the results dis-
cussed in § 1 except Theorem 1.11. We shall assume throughout that X is a hermitian
manifold which is not necessarily compact.

Definition 2.1. — Suppose there exists a closed subset ΣΓ of Hausdorff (2p − 1)-
measure zero and an oriented, properly embedded, (2p− 1)-dimensional C1 subman-
ifold of X − ΣΓ with connected components Γ1,Γ2, .... If for given integers n1, n2, ...,

Γ =
∞∑

k=1

nkΓk

defines a current of locally finite mass in X which is d-closed, then Γ will be called a
scarred (2p − 1)–cycle of class C1 in X. By a unique choice of orientation on Γk we
assume each nk > 0.

Example 2.2. — Any real analytic (2p− 1)-cycle is automatically a scarred (2p− 1)-
cycle (see Federer [6, p. 433]).

Definition 2.3. — By a positive holomorphic p-chain with boundary Γ in X we mean
a sum V =

∑
k mkVk with mk ∈ Z+ and Vk an irreducible p-dimensional complex

analytic subvariety of X−suppΓ such that V has locally finite mass in X and dV = Γ

as currents.

Definition 2.4. — Suppose Γ is an embedded (2p− 1)-dimensional oriented submani-
fold of a complex manifold. We say that Γ can be pushed out at p ∈ Γ if there exists
a complex p-dimensional submanifold-with-boundary (V,−Γ) containing the point p
(i.e., ∂V = −Γ as oriented manifolds).

Our main result is the following.

Theorem 2.5. — Let Γ be a scarred (2p − 1)-cycle of class C1 in X such that each
component Γk can be pushed out at some point. Then Γ = dV where V is a positive
holomorphic p-chain with mass M(V ) ≤ Λ if and only if the (p, p)-linking numbers of
Γ are bounded below by −Λ.

Remark 2.6. — We say Γ is two sided at p if there exists a complex p-dimensional
submanifold V near p with Γ ⊂ V near p. Note that if Γ is real analytic and maximally
complex at p, then Γ is two-sided at p. Note also that if Γ is two-sided at p, then Γ

can be pushed out at p.

The proof of Theorem 2.5 has two parts. First the linking condition is shown to
be equivalent to the existence of a weakly positive current T of bidimension p, p

satisfying dT = Γ. In the second part it is shown that the existence of a positive T
with dT = Γ together with the pushout hypothesis on Γ implies the existence of a
positive holomorphic chain V with boundary Γ.
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2.1. Solving dT = Γ for T positive

Theorem 2.7. — Let Γ ∈ D′2p−1(X) be an arbitrary current of dimension 2p − 1 on
X. Then dT = Γ for some weakly positive (p, p)-current with mass M(T ) ≤ Λ if and
only if the linking condition

(2.1)
∫

Γ

a ≥ −Λ

is satisfied for all compactly supported, strongly positive (p, p)-linking forms α on X.

Proof. — Let

S ≡ {α ∈ D2p−1(X) : dp,pα+ 1
p!ω

p ≥ 0 (strongly positive)}

and let

C ≡ {Γ ∈ D′2p−1(X) : Γ = dT for some T ≥ 0 (weakly positive) with M(T ) ≤ 1}.

It suffices to prove the theorem for Λ = 1. In this case the theorem states that Γ ∈ C
if and only if Γ ∈ S0, where S0 ≡ {Γ ∈ D′2p−1(X) : Γ(α) ≥ −1 for all α ∈ S} is the
polar of S. So we must prove that

C = S0.

Note that C is a closed convex set in D′2p−1(X) since the set of weakly positive (p, p)-
currents T with M(T ) ≤ 1 is compact in D′p,p(X). Hence by the Bipolar Theorem
[19] C = (C0)0, and it will suffice to prove that C0 = S.

To see this first note that

(2.2) T

Å
dp,pα+

1

p!
ωp

ã
= (dT )(α) +M(T )

for all weakly positive (p, p)-currents T and all α ∈ D2p−1(X). If, in addition, α ∈ S
and Γ ∈ C, then 0 ≤ Γ(α) +M(T ) ≤ Γ(α) + 1, so that S ⊆ C0.

It remains to show that C0 ⊆ S. Choose Γ = dT with T = δxξ where ξ is a weakly
positive (p, p)-vector of mass norm one at x ∈ X. Note that Γ ∈ C. By (2.2) we have
(dp,pα + 1

p!ω
p)x(ξ) = Γ(α) + M(T ) = Γ(α) + 1. If α ∈ C0, then Γ(α) ≥ −1 which

proves that α ∈ S.

2.2. Replacing the positive solution by a holomorphic chain

Theorem 2.8. — Suppose Γ is a scarred (2p − 1)-cycle (of class C1) in an arbitrary
complex manifold X. Assume each component Γk of Γ can be pushed out at some
point. If Γ = dT for some weakly positive (p, p)-current T , then there exists a positive
holomorphic p-chain V with Γ = dV and T −V ≥ 0, so in particular, M(V ) ≤M(T )

and supp(V ) ⊂ supp(T ).

The proof depends on the following local result.

Lemma 2.9. — Suppose Γ is an oriented connected (2p− 1)-dimensional submanifold
near 0 ∈ Γ in Cn.
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(1) If Γ can be pushed out at 0 ∈ Γ and rΓ = dT for some T ≥ 0 and r > 0, then Γ is
two-sided near 0. That is, near 0 there exists a (unique) complex p-dimensional
subvariety V containing Γ, so that V = V + ∪ Γ ∪ V − and dV ± = ±Γ.

(2) If Γ is two-sided near 0 and rΓ = dT for some T ≥ 0 and r > 0, then

T = rV + + S with S ≥ 0 and dS = 0.

Proof. — By the push-out hypothesis we have that −Γ = dZ for some irreducible
subvariety Z of B(0, R) − Γ. By taking a small piece V − of Z we may assume that
the positive current T+ ≡ T + rV − ≥ 0 has boundary Γ+ which does not contain the
origin. Consider the subset

Er(T+) = {z : Θ(T+, z) ≥ r} ⊂ B(0, R)− Γ+

where Θ(T+, z) denotes the standard density, or Lelong number, of T+ at z. Since
dT+ = 0 in B(0, R)− Γ+ we know by a fundamental theorem of Siu [20] that

Er(T+) is a complex subvariety of complex dimension ≤ p and

T+ − rW ≥ 0 where W is the p-dimensional part of Er(T+).

Since Er(T+) contains V −, it must have an irreducible p-dimensional component
V ⊃ V −, defined in a neighborhood of the origin. This proves (1). Since V ⊂ W , we
have T+ − rV ≥ 0. Note also that d(T+ − rV ) = 0 near the origin. This proves (2)
since S ≡ T − rV + = T+ − rV .

Corollary 2.10. — Under the hypotheses of Lemma 2.9 (1), −Γ can also be pushed
out at 0.

Proof of Theorem 2.8. — As an easy consequence of Siu’s Theorem (See, for example,
Theorem 2.4, p. 638 in [9]), there exist irreducible p-dimensional subvarieties Vj of
X − suppΓ and positive constants cj so that

(2.3) T =
∞∑

j=1

cjVj +R

where R ≥ 0 and, for each c > 0, the complex subvariety Ec(R) is of dimension
≤ p− 1. This representation (2.3) is unique. (Note that R ≥ 0 implies that the mass
of T dominates the mass of

∑
j cjVj on any set.)

Near the point where Γ1 can be pushed out, Lemma 2.9 (with r = n1) implies that

(2.4) T = n1V
+ + S with S ≥ 0 and dS = 0.

By uniqueness V + must be contained in one of the Vj , say V1. Moreover, since S ≥ 0

we have c1 ≥ n1. This implies T̃ ≡ T − n1V1 ≥ 0.
Near the point where Γ1 can be pushed out we have dV1 = Γ1. Hence, on X we

have dV1 = Γ1 +
∑∞

k=2mkΓk with mk ∈ Z. Consequently,

dT̃ =
∞∑

k=2

(nk − n1mk)Γk,
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and so we have eliminated one of components of the boundary. Now the coeffi-
cients in this sum may not all be positive, and to make them all positive we may
have to reverse the orientation of some of the Γk. However, by Corollary 2.10 these
orientation-reversed components can also be pushed out at some point. Hence, Γ̃ =

dT̃ =
∑∞

k=2 ñkΓ̃k satisfies all the hypotheses of Theorem 2.8.
If Γ has only a finite number of components, then we are done by induction on the

number of components. If not, then by continuing this process we obtain a sequence
of positive currents T̃k = T − (n1V1 + n′2V2 + · · · + n′kVk) where the n′j are positive
integers and

dT̃k =
∞∑

j=k+1

nkjΓj .

Since T−T̃k ≥ 0, we may assume, by passing to a subsequence, that {T̃k}∞k=1 converges
in mass norm to a positive current T̃∞, which must be flat since each T̃k is a normal
current. Note that supp(dT̃∞) ⊂ ΣΓ and recall that, by assumption, the scar set
ΣΓ has Hausdorff (2p− 1)-measure zero. Hence, by [6, 4.1.20], we have dT̃∞ = 0. We
conclude that V =

∑
n′jVj = T−T̃∞ is a positive holomorphic chain with dV = Γ.

Proof of Theorems 1.1 and 1.9. — Remarks 1.5 and 2.6 show that if Γ =
∑

k mkΓk

satisfies the linking hypothesis, then Γk is two-sided at any real analytic point.

Proof of Theorem 1.6. — It suffices to show that when X is q-convex for q ≤ p, then
Theorem 2.7 also holds with Γ and T having compact support. For this we change the
definitions of S and C in the proof of Theorem 2.7 by permitting the α’s in S to have
arbitrary support and restricting the T ’s in C to have compact support. The argument
will carry through as before once it is established that the cone C is closed in the
weak topology. This follows from standard compactness theorems and the following
fact. Suppose f : X → R+ is the proper exhaustion with n−q+1 positive eigenvalues
on {x : f(x) ≥ 1}. If T ∈ Pp,p(X) for p ≥ q, then

suppT ⊂
ß
x ∈ X : f(x) ≤ max

ß
1, sup

supp dT
f

™™
.

3. Relative Hodge Classes and Representability

In this chapter we address the question of when a relative homology class can
be represented by a positive holomorphic chain. More specifically, let X be a com-
pact Kähler manifold and M ⊂ X a smooth orientable compact submanifold of real
dimension 2p− 1. Then we have the two closely related questions:

Relative Hodge Question. — Which classes in H2p(X,M ; Z) can be represented
by holomorphic chains?
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3.1. Relative Hodge Question (Positive Version). — Which classes in
H2p(X,M ; Z) can be represented by positive holomorphic chains?

We shall work in the space H2p(X,M ; Z) = H2p(X,M ; Z)/Tor where Tor is the
torsion subgroup and use the following Relative de Rham Theorem. Consider the
short exact sequence of chain complexes of Fréchet spaces

(3.1) 0 −→ E∗(X,M) −→ E∗(X)
j∗−→ E∗(M) −→ 0,

where j : M → X denotes the inclusion, and the dual sequence of topological dual
spaces

(3.2) 0←− E′∗(X)

j∗ E
′
∗(M)

←− E′∗(X)
j∗←− E′∗(M)←− 0.

The complex E∗(X,M), consisting of forms which vanish when restricted to M ,
computes the relative cohomology H∗(X,M ; R), and the complex E′∗(X,M) ≡
E′∗(X)/j∗ E

′
∗(M) computes the relative homology H∗(X,M ; R).

The Relative de Rham Theorem states that:

Hk(X,M ; R) and Hk(X,M ; R) are dual to each other.

This can be proven as follows. Consider the dual triples

Ek−1(X,M)
d−→ Ek(X,M)

d−→ Ek+1(X,M)

E′k−1(X,M)
d←− E′k(X,M)

d←− E′k+1(X,M)

whereHk(X,M ; R) = Z/B using the cycles Z and boundaries B in the first sequence,
andHk(X,M ; R) = Z̃/‹B using the cycles Z̃ and boundaries ‹B in the second sequence.
By the Hahn-Banach Theorem it suffices to show that B and ‹B are closed. These
spaces are images of continuous linear maps. If they are of finite codimension in Z

and Z̃ respectively, then they are closed by a standard result in functional analysis.
Thus is remains to show that Hk(X,M ; R) and Hk(X,M ; R) are finite dimensional.
That Hk(X,M ; R) is finite dimensional follows from the long exact sequence

· · · −→ Hk−1(M ; R) −→ Hk(X,M ; R) −→ Hk(X; R) −→ Hk(M ; R) −→ · · ·

derived from (3.1) and the fact that Hk−1(M ; R) and Hk(X; R) are finite dimen-
sional by the standard de Rham Theorem. That Hk(X,M ; R) is finite dimensional
follows similarly from the long exact sequence derived from (3.2).

In the special case k = 2p = dimM + 1 we have:

(3.3) H2p(X,M ; R) = Z/B where

{
Z = {ϕ ∈ E2p(X) : dϕ = 0}
and B = d E2p−1(X,M)

and

(3.4) H2p(X,M ; R) = Z̃/‹B where

{
Z̃ = {T ∈ E′2p(X) : dT ∈ j∗ E′2p−1(M)}
and ‹B = d E′2p+1(X).
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It is an interesting fact, established in the next section, that the group
H2p(X,M ; Z) ⊂ H2p(X,M ; R) carries a “real Hodge filtration”. A key point is
the following lemma.

Lemma 3.1. — Fix τ ∈ H2p(X,M ; R). If T, T ′ ∈ E2p(X,M) are relatively closed
currents representing τ , then

(3.5) T (ϕ) = T ′(ϕ) for all ϕ ∈ E2p(X) with dϕ = 0.

Hence, the notion of τ(ϕ) is well defined for such ϕ. Furthermore,

(3.6) dT = dT ′ =
L∑

j=1

rj [Mj ]

where M = M1 ∪ · · · ∪ML is the decomposition into connected components and the
rj are real numbers. Thus, ∂τ =

∑L
j=1 rj [Mj ] is well defined.

Proof. — Since T and T ′ both represent τ ∈ Z̃/‹B and ‹B = d E′2p+1(X) by (3.4), we
have T − T ′ = dR for R ∈ E′2p+1(X). This proves (3.5) and that dT = dT ′. Since
T ∈ Z̃, (3.4) says that dT = j∗u where u ∈ E2p−1(M). This implies that du = 0.
Hence, u is a locally constant function on M .

Definition 3.2. — A class τ ∈ H2p(X,M ; R) is called positive if τ(ϕ) ≥ 0 for all
closed, real 2p-forms ϕ such that the component

ϕp,p ≥ 0 (is weakly positive) on X.

If τ is positive, then it is of type (p, p) as defined in 4.1 below.

Proposition 3.3. — A class τ ∈ H2p(X,M ; R) is positive if and only if it is repre-
sented (in the complex E∗(X,M)) by a strongly positive current of type (p, p).

This proposition will be proved below. We first observe that it leads to the following
main result.

Theorem 3.4. — Suppose τ ∈ H2p(X,M ; Z) is positive. Suppose each component of
M has a real analytic point (or, more generally, is two-sided at some point). Then
there exists a positive holomorphic p-chain V on X with dV = ∂τ . Furthermore, there
exists a positive d-closed (p, p)-current S with τ = [V + S].

In particular, if the positive classes in H2p(X; Q) are all represented by positive
holomorphic chains with rational coefficients, then so are all the positive classes in
H2p(X,M ; Q).

Thus for example, given any real analytic M in a Grassmann manifold X, we con-
clude that every positive class in H2p(X,M ; Z) carries a positive holomorphic chain.
However there are projective manifolds X with positive (p, p)-classes in H2p(X; Z)

which do not carry positive holomorphic cycles. In fact, for every integer k ≥ 2 there
exists an abelian variety X of complex dimension 2k and a class τ ∈ H2k(X; Z) which
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is represented by a positive (k, k)-current and also by an algebraic k-cycle, but τ is
not represented by a positive algebraic k-cycle (see [18]).

Proof. — By Proposition 3.3 and (3.6) in Lemma 3.1, the class τ is represented by a
positive (p, p)-current T with dT = ∂τ =

∑
i ni[Mi] for integers ni (cf. the argument

for (3.2) above.) Applying Theorem 2.8 with Γ = dT , we deduce the existence of a
positive holomorphic chain V with

dV = dT and T − V ≥ 0.

Proof of Proposition 3.3. — Consider the closed convex cones

P ≡ {ϕ ∈ E2p(X) : ϕp,p is weakly positive} ⊂ E2p(X)‹P ≡ {T ∈ E′2p(X) : T = Tp,p is strongly positive} ⊂ E′2p(X)

These are polars of each other in the dual pair E2p(X), E′2p(X). Moreover, by the
Relative de Rham Theorem and (3.3) and (3.4) we have:

(i) ‹B ⊂ E′2p(X) is closed (in the weak topology).
(ii) Z and ‹B are polars of each other in the dual pair E2p(X), E′2p(X).
(iii) B ⊂ E2p(X) is closed.
(iv) B and Z̃ are polars of each other in the dual pair E2p(X), E′2p(X).

Lemma 3.5. — The subset ‹P + ‹B is closed in the standard topology on E′2p(X).

Proof. — Let {Ti} ⊂ Pp,p and {dSi} ⊂ ‹B be sequences such that

Ti + dSi −→ R weakly in E′2p(X)

Let ω denote the Kähler form on X. Then

p!M(Ti) = Ti (ωp) = (Ti + dSi) (ωp) −→ R (ωp) ,

and so the masses M(Ti) are uniformly bounded. By the compactness theorem for
positive currents there is a subsequence, again denoted by Ti, converging to a positive
current T . Hence, dSi −→ R − T weakly, and since d has closed range, there exists
S ∈ E′2p+1(X) with dS = R− T .

Proposition 3.6. — We have

[(P ∩ Z) +B]
0

= (‹P ∩ Z̃) + ‹B.
Proof. — By standard principles we have [(P ∩ Z) +B]

0
= (P ∩ Z)0 ∩ B0 =

(P 0 + Z0)∩B0. By (ii), (iv) and Lemma 3.5 we have (P 0 + Z0)∩B0 = (‹P + ‹B)∩Z̃ =

(‹P + ‹B)∩Z̃. Finally it is easy to see that (‹P + ‹B)∩Z̃ = (‹P ∩Z̃)+‹B since ‹B ⊂ Z̃.
To complete the proof of Proposition 3.3 choose a current T ∈ Z̃ which represents

the class τ . By hypothesis T is in the polar of (P ∩Z) +B. Therefore, by Proposition
3.6 and (3.4), T = T0 + dS with T0 ∈ ‹P .
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4. A Real Hodge Filtration on H2p(X,M ; R)

Definition 4.1. — A homology class τ ∈ H2p(X,M ; R) is of filtration level k if τ(ϕ) =

0 for all closed complex valued forms ϕ of type (r, s) with r > p+k. Classes of filtration
level 0 are called type (p, p).

Note 4.2. — This induces a real Hodge filtration F kH2p(X,M ; R) on H2p(X,M ; R)

which extends the basic one F kH2p(X; R) =
⊕k

r=0 {Hp−r,p+r(X)⊕Hp+r,p−r(X)}R
on H2p(X; R).

Proposition 4.3. — Suppose τ ∈ H2p(X,M ; R) has filtration level k. Then τ is repre-
sented by a current

(4.1) T ∈
{

E′p−k,p+k(X)⊕ · · · ⊕ E′p+k,p−k(X)
}
R
,

and therefore,

(4.2) dT ∈
{

E′p−k−1,p+k(X)⊕ · · · ⊕ E′p+k,p−k−1(X)
}
R
.

In particular, if τ is of type (p, p), then τ = [T ] for a some (p, p)-current T , and each
non-zero boundary component of ∂τ is maximally complex (cf. [12]).

Proof. — We start by establishing (4.2). Write ∂τ =
∑

j rj [Mj ] as in Lemma 3.1.
Choose any smooth form ψ ∈ Er,s(X) with r + s = 2p − 1 and either r > p + k or
s > p+k. Then 0 = τ(dψ) = (∂τ)(ψ) =

∑
j rj

∫
Mj

ψ. Since ψ is arbitrary, we conclude
that for each Mj with rj 6= 0, the Dolbeault components

[Mj ]r,s = 0 if either s > p+ k or r > p+ k.

This gives (4.2). When k = 0 this means Mj is maximally complex.
Consider the case where τ is of type (p, p) with 2p ≤ n. Choose a current T

representing τ . Then by standard harmonic theory T2p,0 = h2p,0 − ∂β where h is
harmonic (in particular, smooth) and β ∈ E′2p,1(X). Then [T −dβ]2p,0 = T2p,0−∂β =

h2p,0 ≡ h and because T (∗̄h) = ‖h‖2 = 0 (since τ = [T ] is type (p, p)), we have h = 0.
Thus replacing T by T − ∂β − ∂β we can assume T2p,0 = T0,2p = 0.

If p = 1, we are done. If p > 1, we note that ∂T2p−1,1 = M2p−1,0 = 0, and so
T2p−1,1 = h2p−1,1 + ∂β where h2p−1,1 is harmonic and β ∈ E′2p−1,2(X). We conclude
as above that h2p−1,1 = 0, and then replace T by T − ∂β − ∂β so that T2p−1,1 =

T1,2p−1 = 0. Continuing in this fashion gives the result. All other cases are entirely
analogous and details are left to the reader.

5. Residual Currents

Definition 5.1. — Let R be a weakly positive, d-closed (p, p)-current. Then R is resid-
ual if for each c > 0 the complex dimension of the subvariety Ec(R) = {z : Θ(R, z) ≥
c} is ≤ p− 1.
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Suppose T is a a weakly positive, d-closed (p, p)-current defined in the complement
of supp(Γ) where Γ is a scarred 2p − 1 cycle (of class C1). By the main result of [8]
(see Theorem 6, p. 71 and the note added in proof) T has locally finite mass across
supp(Γ). That is, T has a unique “extension by zero” across supp(Γ). Let T also denote
this extension. It follows from the two support theorems of Federer [6, 4.1.15, 4.1.20]
that dT =

∑∞
k=1 rkΓk with constants rk ∈ R.

Definition 5.2. — The set supp(Γ) is residual if each residual current R onX−supp(Γ)

satisfies dR = 0 on X.

Proposition 5.3. — If each component of Γ has a two-sided point, then supp(Γ) is
residual.

Proof. — Suppose R is a residual current on X − supp(Γ) with dR =
∑

k rkΓk,
rk ∈ R. Near a two-sided point of one of the components, say Γ1, we have dR = r1Γ1.
By Lemma 2.9 we can write R locally as R = r1V

+ +S with S ≥ 0 and dS = 0 across
Γ1. This contradicts the hypothesis that R is residual unless r1 = 0.

Remark 5.4. — This Proposition combined with the first half of Lemma 2.9 and the
next result provides a second proof of Theorem 2.5.

Theorem 5.5. — Suppose Γ is a scarred 2p − 1 cycle (of class C1) in an arbitrary
complex manifold X. Assume each component Γk of Γ is residual at some point. If
Γ = dT for some weakly positive (p, p)-current T on X, then there exists a positive
holomorphic p-chain V with Γ = dV and T − V ≥ 0.

Proof. — Suppose Γ = dT as in the theorem and consider the decomposition T =

S+R into a positive real-coefficient holomorphic chain S =
∑∞

j=1 cjVj plus a residual
current R (on X −Γ), Now dR =

∑∞
k=1 rkΓk for some rk ∈ R, but by the hypothesis

each rk must be zero. Hence, Γ = dS bounds a positive real-coefficient holomorphic
chain.

Proposition 5.6. — Let Γ be a scarred 2p−1 cycle in an arbitrary complex manifold X.
If Γ = dS bounds a positive real-coefficient holomorphic chain S =

∑∞
j=1 cjVj, then

Γ = dV bounds a positive (integer-coefficient) holomorphic chain V with S − V ≥ 0

(and therefore also suppV ⊆ suppS).

Proof. — By hypothesis d
(∑∞

j=1 cjVj

)
=
∑∞

k=1 nkΓk. Near a regular point x in Γ1

each Vj satisfies dVj = εjΓ1 with εj ∈ {−1, 0, 1}. By uniqueness there is at most one
of the subvarieties Vj with boundary Γ1. Relabel so that dV1 = Γ1. Now there are
two cases.

Case 1. — dVj = 0 for all j ≥ 2. In this case we must have c1 = n1, and we can
eliminate the component Γ1 from Γ.
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Case 2. — −Γ1 bounds exactly one of the subvarieties Vj , j ≥ 2. Relabel so that
−Γ1 = dV2. In this case c1 − c2 = n1. Note that V1 + V2 is a subvariety without
boundary near the point x on Γ1. Set S̃ = S − n1V1 = c2(V1 + V2) +

∑∞
j=3 cjVj .

Then S̃ is positive and dS̃ = 0 near the point x. Consequently, dS̃ =
∑∞

j=2 bjVj .
Finally, the bj ’s must be integers. In fact bj = nj − ε1jn1 where dV1 = ε1jΓj defines
ε1j ∈ {−1, 0, 1}. Hence, we can eliminate the component Γ1 from Γ in this case as
well.

The proof can now be completed exactly as in the last paragraph of the proof of
Theorem 2.8.

Question 5.7. — Which (maximally complex) (2p− 1)-dimensional submanifolds are
residual? Note that if Γ is two-sided, then Γ is residual. Moreover, if Γ is one-sided,
then Γ has a natural orientation so that Γ = dW where W is complex, and in this
case the residual property is equivalent to the following uniqueness property:

If T ≥ 0 satisfies dT = Γ, then T = W + S with S ≥ 0 and dS = 0.

If Γ is zero-sided, then Γ is residual if and only if

T ≥ 0 and supp{dT} ⊂ Γ ⇒ dT = 0.
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MIRZAKHARNI’S RECURSION FORMULA IS EQUIVALENT
TO THE WITTEN-KONTSEVICH THEOREM

by

Kefeng Liu & Hao Xu

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — In this paper, we give a proof of Mirzakhani’s recursion formula of Weil-
Petersson volumes of moduli spaces of curves using the Witten-Kontsevich theorem.
We also describe properties of intersections numbers involving higher degree κ classes.

Résumé (La formule de récurrence de Mirzakhani est équivalente au théorème de Witten-
Kontsevich)

Dans cet article, nous démontrons la formule de récurrence de Mirzakhani sur les
volumes de Weil-Petersson des espaces de module de courbes en utilisant le théorème
de Witten-Kontsevich. Nous donnons aussi des propriétés des nombres d’intersection
associées aux classes κ de degré supérieur.

1. Introduction

Following the notation of Mulase and Safnuk [21], let Mg,n(L) denote the moduli
space of bordered Riemann surfaces with n geodesic boundary components of spec-
ified lengths L = (L1, . . . , Ln) and let Volg,n(L) denote its Weil-Petersson volume
Vol(Mg,n(L)). Using her remarkable generalization of the McShane identity, Mirza-
khani [19] proved a beautiful recursion formula for these Weil-Petersson volumes

Volg,n(L) =
1

2L1

∑
g1+g2=g

n=I
∐

J

∫ L1

0

∫ ∞
0

∫ ∞
0

xyH(t, x+ y)

×Volg1,n1(x,LI)Volg2,n2(y,LJ)dxdydt

+
1

2L1

∫ L1

0

∫ ∞
0

∫ ∞
0

xyH(t, x+ y)Volg−1,n+1(x, y, L2, . . . , Ln)dxdydt
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Key words and phrases. — Weil-Petersson volume, Mirzakhani recursion formula, Witten-Kontsevich
theorem.
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+
1

2L1

n∑
j=2

∫ L1

0

∫ ∞
0

x
(
H(x, L1 + Lj) +H(x, L1 − Lj)

)
×Volg,n−1(x, L2, . . . , L̂j , . . . , Ln)dxdt,

where the kernel function

H(x, y) =
1

1 + e(x+y)/2
+

1

1 + e(x−y)/2
.

Using symplectic reduction, Mirzakhani [20] showed the following relation

Volg,n(2πL)

(2π2)3g+n−3
=

1

(3g + n− 3)!

∫
Mg,n

(κ1 +
n∑
i=1

L2
iψi)

3g+n−3

=
∑

d0+···+dn
=3g+n−3

n∏
i=0

1

di!
〈κd01

∏
τdi
〉g,n

∞∏
i=1

L2di
i .

Combining with her recursion formula of Weil-Petersson volumes, Mirzakhani [20]
found a new proof of the celebrated Witten-Kontsevich theorem.

By taking derivatives with respect to L = (L1, . . . , Ln) in Mirzakhani’s recursion,
Mulase and Safnuk [21] obtained the following enlightening recursion formula of in-
tersection numbers which is equivalent to Mirzakhani’s recursion.

(2d1 + 1)!!〈
n∏
j=1

τdj
κa1〉g

=
n∑
j=2

a∑
b=0

a!

(a− b)!
(2(b+ d1 + dj)− 1)!!

(2dj − 1)!!
βb〈κa−b1 τb+d1+dj−1

∏
i 6=1,j

τdi
〉g

+
1

2

a∑
b=0

∑
r+s=b+d1−2

a!

(a− b)!
(2r + 1)!!(2s+ 1)!!βb〈κa−b1 τrτs

∏
i 6=1

τdi
〉g−1

+
1

2

a∑
b=0

∑
c+c′=a−b

I
∐

J={2,...,n}

∑
r+s=b+d1−2

a!

c!c′!
(2r + 1)!!(2s+ 1)!!βb

× 〈κc1τr
∏
i∈I

τdi〉g′〈κc
′

1 τs
∏
i∈J

τdi〉g−g′ ,

where

βb = (22b+1 − 4)
ζ(2b)

(2π2)b
= (−1)b−12b(22b − 2)

B2b

(2b)!
.

Safnuk [23] gave a proof of the above differential form of Mirzakhani’s recurson
formula using localization techniques, but he also used the Mirzakhani-McShane for-
mula. The relationship between Mirzakhani’s recurson and matrix integrals has been
studied by Eynard-Orantin [7] and Eynard [6].
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Indeed, when a = 0, Mulase-Safnuk differential form of Mirzakhani’s recursion is
just the Witten-Kontsevich theorem [14, 24] in the form of DVV recursion relation
[4]. There are several other new proofs of Witten-Kontsevich theorem [3, 12, 13, 22]
besides Mirzakhani’s proof [20].

More discussions about Weil-Petersson volumes from the point of view of intersec-
tion numbers can be found in the papers [5, 10, 18, 26].

In Section 2, we show that Mirzakhani’s recursion formula is essentially equivalent
to the Witten-Kontsevich theorem via a formula from [11] expressing κ classes in
terms of ψ classes. In Section 3, we present certain results of intersection numbers
involving higher degree κ classes.

Acknowledgements. — We would like to thank Chiu-Chu Melissa Liu for helpful
discussions. We also thank the referees for helpful suggestions.

2. Proof of Mirzakhani’s recursion formula

We first give three lemmas. The following lemma can be found in [21].

Lemma 2.1. — The constants βb in Mirzakhani’s recursion satisfy the following:
∞∑
k=0

βkx
k =

√
2x

sin
√

2x
.

And its inverse:

(
∞∑
k=0

βkx
k)−1 =

sin
√

2x√
2x

=
∞∑
k=0

(−1)k2k

(2k + 1)!
xk.

Proof. — Since
∞∑
n=0

B2n

(2n)!
x2n =

x

2

ex/2 + e−x/2

ex/2 − e−x/2
=

x

2i
cot

x

2i
,

we have
∞∑
k=0

βkx
k =
√

2x(cot

…
x

2
− cot

√
2x) =

√
2x

sin
√

2x
.

The following elementary result is crucial to our proof.

Lemma 2.2. — Let F (m,n) and G(m,n) be two functions defined on N × N, where
N = {0, 1, 2, . . .} is the set of nonnegative integers. Let αk and βk be real numbers
that satisfy

∞∑
k=0

αkx
k = (

∞∑
k=0

βkx
k)−1.

Then the following two identities are equivalent:

G(m,n) =
m∑
k=0

αkF (m− k, n+ k), ∀ (m,n) ∈ N× N,
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F (m,n) =
m∑
k=0

βkG(m− k, n+ k), ∀ (m,n) ∈ N× N.

Proof. — Assume the first identity holds, then we have

m∑
i=0

βiG(m− i, n+ i) =
m∑
i=0

βi

m−i∑
j=0

αjF (m− i− j, n+ i+ j)

=
m∑
k=0

∑
i+j=k

(βiαj)F (m− k, n+ k)

=
m∑
k=0

δk0F (m− k, n+ k)

= F (m,n).

So we proved the second identity. The proof of the other direction is the same.

The fact that intersection numbers involving both κ classes and ψ classes can be
reduced to intersection numbers involving only ψ classes was already known to Witten
[9], and has been developed by Arbarello-Cornalba [2], Faber [8] and Kaufmann-
Manin-Zagier [11] into a nice combinatorial formalism.

Lemma 2.3 ([11]). — For m > 0,

〈
n∏
j=1

τdj
κm1 〉g =

m∑
k=1

(−1)m−k

k!

∑
m1+···+mk=m

mi>0

Ç
m

m1, . . . ,mk

å
〈
n∏
j=1

τdj

k∏
j=1

τmj+1〉g.

Proof. — (sketch) Let πn+p,n : Mg,n+p −→ Mg,n be the morphism which forgets the
last p marked points and denote πn+p,n∗(ψ

a1+1
n+1 . . . ψ

ap+1
n+p ) by R(a1, . . . , ap), then we

have the formula from [2]

R(a1, . . . , ap) =
∑
σ∈Sp

∏
each cycle c

of σ

κ∑
j∈c

aj
,

where we write any permutation σ in the symmetric group Sp as a product of disjoint
cycles.

A formal combinatorial argument [11] leads to the following inversion equation

κa1
· · ·κap

=

p∑
k=1

(−1)p−k

k!

∑
{1,...,p}=S1

∐
...
∐

Sk

Sk 6=∅

R(
∑
j∈S1

aj , . . . ,
∑
j∈Sk

aj),

from which the result follows easily.
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Proposition 2.4. — We have

a∑
b=0

(−1)b
Ç
a

b

å
(2(d1 + b) + 1)!!

(2b+ 1)!!
〈τd1+b

n∏
i=2

τdi
κa−b1 〉g

=
n∑
j=2

(2d1 + 2dj − 1)!!

(2dj − 1)!!
〈κa1τd1+dj−1

∏
i 6=1,j

τdi
〉g

+
1

2

∑
r+s=d1−2

(2r + 1)!!(2s+ 1)!!〈κa1τrτs
∏
i6=1

τdi〉g−1

+
1

2

∑
c+c′=a

I
∐

J={2,...,n}

Ç
a

c

å ∑
r+s=d1−2

(2r+ 1)!!(2s+ 1)!!〈κc1τr
∏
i∈I

τdi〉g′〈κc
′

1 τs
∏
i∈J

τdi〉g−g′ .

Proof. — Let LHS and RHS denote the left and right hand side of the equation
respectively. By Lemma 2.3 and the Witten-Kontsevich theorem, we have

(2d1 + 1)!!〈
n∏
j=1

τdj
κa1〉g

= (2d1 + 1)!!
a∑
k=0

(−1)a−k

k!

∑
m1+···+mk=a

mi>0

Ç
a

m1, . . . ,mk

å
〈
n∏
j=1

τdj

k∏
j=1

τmj+1〉g

=
a∑
k=0

(−1)a−k

k!

∑
m1+···+mk=a

mi>0

Ç
a

m1, . . . ,mk

å
×

Ñ
n∑
j=2

(2(d1 + dj)− 1)!!

(2dj − 1)!!
〈τd1+dj−1

∏
i6=1,j

τdi

k∏
i=1

τmi+1〉g

+
k∑
j=1

(2(d1 +mj) + 1)!!

(2mj + 1)!!
〈τd1+mj

n∏
i=2

τdi

∏
i 6=j

τmi+1〉g

+
1

2

∑
r+s=d1−2

(2r + 1)!!(2s+ 1)!!〈τrτs
n∏
i=2

τdi

k∏
i=1

τmi+1〉g−1

+
1

2

∑
I
∐

J={2,...,n}
I′
∐

J′={1,...,k}

∑
r+s=d1−2

(2r + 1)!!(2s+ 1)!!

×〈τr
∏
i∈I

τdi

∏
i∈I′

τmi+1〉g′〈τs
∏
i∈J

τdi

∏
i∈J′

τmi+1〉g−g′
)
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=
n∑
j=2

(2d1 + 2dj − 1)!!

(2dj − 1)!!
〈κa1τd1+dj−1

∏
i 6=1,j

τdi〉g

+
1

2

∑
r+s=d1−2

(2r + 1)!!(2s+ 1)!!〈κa1τrτs
∏
i6=1

τdi〉g−1

+
1

2

∑
c+c′=a

I
∐

J={2,...,n}

Ç
a

c

å ∑
r+s=d1−2

(2r + 1)!!(2s+ 1)!!〈κc1τr
∏
i∈I

τdi
〉g′〈κc

′

1 τs
∏
i∈J

τdi
〉g−g′

+
a∑
k=0

(−1)a−k

k!

∑
m1+···+mk=a

mi>0

Ç
a

m1, . . . ,mk

å
×

k∑
j=1

(2(d1 +mj) + 1)!!

(2mj + 1)!!
〈τd1+mj

n∏
i=2

τdi

∏
i 6=j

τmi+1〉g

= RHS +
∑
k≥0

(−1)a−k−1

(k + 1)!

a∑
b=1

∑
m1+···+mk=a−b

mi>0

Ç
a

b

åÇ
a− b

m1, . . . ,mk

å
× (k + 1)

(2(d1 + b) + 1)!!

(2b+ 1)!!
〈τd1+b

n∏
i=2

τdi

k∏
i=1

τmi+1〉g

= RHS −
a∑
b=1

(−1)b
Ç
a

b

å
(2(d1 + b) + 1)!!

(2b+ 1)!!
〈τd1+b

n∏
i=2

τdiκ
a−b
1 〉g

= RHS − LHS + (2d1 + 1)!!〈
n∏
j=1

τdj
κa1〉g.

So we have proved RHS = LHS.

Proposition 2.4 is also implicitly contained in the arguments of Mulase and Safnuk
[21].

Theorem 2.5. — We have

(2d1 + 1)!!

a!
〈
n∏
j=1

τdjκ
a
1〉g

=
a∑
b=0

n∑
j=2

(2(b+ d1 + dj)− 1)!!

(a− b)!(2dj − 1)!!
βb〈κa−b1 τb+d1+dj−1

∏
i 6=1,j

τdi〉g

+
1

2

a∑
b=0

∑
r+s=b+d1−2

(2r + 1)!!(2s+ 1)!!

(a− b)!
βb〈κa−b1 τrτs

∏
i 6=1

τdi
〉g−1
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+
1

2

a∑
b=0

∑
c+c′=a−b

I
∐

J={2,...,n}

∑
r+s=b+d1−2

(2r + 1)!!(2s+ 1)!!

c!c′!
βb

× 〈κc1τr
∏
i∈I

τdi〉g′〈κc
′

1 τs
∏
i∈J

τdi〉g−g′ ,

where the constants βk are given by

(
∞∑
k=0

βkx
k)−1 =

sin
√

2x√
2x

=
∞∑
k=0

(−1)k

k!(2k + 1)!!
xk.

Proof. — Denote the LHS by F (a, d1). Let

G(a, d1) =
n∑
j=2

(2(d1 + dj)− 1)!!

a!(2dj − 1)!!
〈κa1τd1+dj−1

∏
i6=1,j

τdi〉g

+
1

2

∑
r+s=d1−2

(2r + 1)!!(2s+ 1)!!

a!
〈κa1τrτs

∏
i 6=1

τdi
〉g−1

+
1

2

∑
c+c′=a

I
∐

J={2,...,n}

∑
r+s=d1−2

(2r + 1)!!(2s+ 1)!!

c!c′!
× 〈κc1τr

∏
i∈I

τdi
〉g′〈κc

′

1 τs
∏
i∈J

τdi
〉g−g′ ,

Note that Proposition 2.4 is just
a∑
b=0

(−1)b

b!(2b+ 1)!!
F (a− b, d1 + b) = G(a, d1).

By Lemmas 2.1 and 2.2, we have

F (a, d1) =
a∑
b=0

βbG(a− b, d1 + b) = RHS.

So we conclude the proof.

3. Higher Weil-Petersson volumes

Mirzakhani’s formula provides a recursive way of computing the following Weil-
Petersson volumes of moduli spaces of curves

WP (g) :=

∫
Mg,n

κ3g−3+n
1 .

Mirzakhani’s formula resorts to intersection numbers of mixed ψ and κ classes.
A natural question is whether there exist an explicit formula expressing WP (g)

in terms of those WP (g′) with g′ < g. Recall the following beautiful formula due to
Itzykson-Zuber [9].
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Proposition 3.1 (Itzykson-Zuber). — Let g ≥ 0. Then

φg+1 =
25g2 − 1

24
φg +

1

2

g∑
m=1

φg+1−mφm,

where φ0 = −1, φ1 = 1
24 and

φg =
(5g − 5)(5g − 3)

2g(3g − 3)!
〈τ3g−3

2 〉g, g ≥ 2.

By projection formula, we have

〈τ3g−3
2 〉g = 〈κ3g−3

1 〉g + · · · ,

where · · · denote terms involving higher degree kappa classes. Also note that 〈κ3g−3
1 〉g

is conjecturally [16] the largest term in the right hand side.
To our disappointment, so far, all recursion formulae forWP (g) stemming from the

Witten-Kontsevich theorem involve either ψ class or higher degree κ classes inevitably.
Mirzakhani, Mulase and Safnuk’s arguments use Wolpert’s formula [25]

κ1 =
1

2π2
ωWP ,

where ωWP is the Weil-Petersson Kähler form. We have no similar formulae for higher
degree κ classes. So a priori κ1 may be rather special in the intersection theory.
However, as we will see, this is not the case.

First we fix notations as in [11]. Consider the semigroup N∞ of sequences m =

(m(1),m(2), . . . ) where m(i) are nonnegative integers and m(i) = 0 for sufficiently
large i.

Let m, t,a1, . . . ,an ∈ N∞, m =
∑n
i=1 ai, m ≥ t and s := (s1, s2, . . . ) be a family

of independent formal variables.

|m| :=
∑
i≥1

im(i), ||m|| :=
∑
i≥1

m(i), sm :=
∏
i≥1

s
m(i)
i , m! :=

∏
i≥1

m(i)!,Ç
m

t

å
:=
∏
i≥1

Ç
m(i)

t(i)

å
,

Ç
m

a1, . . . ,an

å
:=
∏
i≥1

Ç
m(i)

a1(i), . . . , an(i)

å
.

Let b ∈ N∞, we denote a formal monomial of κ classes by

κ(b) :=
∏
i≥1

κ
b(i)
i .

We are interested in the following intersection numbers

〈κ(b)τd1 · · · τdn
〉g :=

∫
Mg,n

κ(b)ψd11 · · ·ψdn
n .

When d1 = · · · = dn = 0, these intersection numbers are called higher Weil-
Petersson volumes of moduli spaces of curves. The details of the following discussions
are contained in [17].

The following lemma is a direct generalization of Lemma 2.2.
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Lemma 3.2. — Let F (L, n) and G(L, n) be two functions defined on N∞ × N, where
N = {0, 1, 2, . . .} is the set of nonnegative integers. Let αL and βL be real numbers
depending only on L ∈ N∞ that satisfy α0β0 = 1 and∑

L+L′=b

αLβL′ = 0, b 6= 0.

Then the following two identities are equivalent:

G(b, n) =
∑

L+L′=b

αLF (L′, n+ |L|), ∀ (b, n) ∈ N∞ × N,

F (b, n) =
∑

L+L′=b

βLG(L′, n+ |L|), ∀ (b, n) ∈ N∞ × N.

We may generalize Mirzakhani’s recursion formula to include higher degree κ

classes.

Theorem 3.3. — There exist (uniquely determined) rational numbers αL depending
only on L ∈ N∞, such that for any b ∈ N∞ and dj ≥ 0, the following recursion
relation of mixed ψ and κ intersection numbers holds.

(2d1 + 1)!!〈κ(b)
n∏
j=1

τdj
〉g

=
n∑
j=2

∑
L+L′=b

αL

Ç
b

L

å
(2(|L|+ d1 + dj)− 1)!!

(2dj − 1)!!
〈κ(L′)τ|L|+d1+dj−1

∏
i 6=1,j

τdi
〉g

+
1

2

∑
L+L′=b

∑
r+s=|L|+d1−2

αL

Ç
b

L

å
(2r + 1)!!(2s+ 1)!!〈κ(L′)τrτs

∏
i 6=1

τdi〉g−1

+
1

2

∑
L+e+f=b

I
∐

J={2,...,n}

∑
r+s=|L|+d1−2

αL

Ç
b

L, e, f

å
(2r + 1)!!(2s+ 1)!!

× 〈κ(e)τr
∏
i∈I

τdi
〉g′〈κ(f)τs

∏
i∈J

τdi
〉g−g′ .

These tautological constants αL can be determined recursively from the following for-
mula ∑

L+L′=b

(−1)||L||αL

L!L′!(2|L′|+ 1)!!
= 0, b 6= 0,

namely

αb = b!
∑

L+L′=b
L′ 6=0

(−1)||L
′||−1αL

L!L′!(2|L′|+ 1)!!
, b 6= 0,

with the initial value α0 = 1.
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Theorem 3.4. — We have∑
L+L′=b

(−1)||L||
Ç

b

L

å
(2d1 + 2|L|+ 1)!!

(2|L|+ 1)!!
〈κ(L′)τd1+|L|

n∏
j=2

τdj 〉g

=
n∑
j=2

(2(d1 + dj)− 1)!!

(2dj − 1)!!
〈κ(b)τd1+dj−1

∏
i6=1,j

τdi〉g

+
1

2

∑
r+s=|d1|−2

(2r + 1)!!(2s+ 1)!!〈κ(b)τrτs
∏
i 6=1

τdi〉g−1

+
1

2

∑
e+f=b

I
∐

J={2,...,n}

∑
r+s=d1−2

Ç
b

e

å
(2r + 1)!!(2s+ 1)!!

× 〈κ(e)τr
∏
i∈I

τdi
〉g′〈κ(f)τs

∏
i∈J

τdi
〉g−g′ .

Theorem 3.3 and Theorem 3.4 implies each other through Lemma 3.2.
Both Theorems 3.3 and 3.4 are effective recursion formulae for computing higher

Weil-Petersson volumes with the three initial values

〈τ0κ1〉1 =
1

24
, 〈τ3

0 〉0 = 1, 〈τ1〉1 =
1

24
.

From the following Proposition 3.4, we have

〈κ(b)〉g =
1

2g − 2

∑
L+L′=b

(−1)||L||
Ç

b

L

å
〈τ|L|+1κ(L

′)〉g.

We have computed a table of αL for all |L| ≤ 15 and have written a Maple program
[1] implementing Theorems 3.3 and 3.4.

In fact, we find that ψ and κ classes are compatible in the sense that recursions of
pure ψ classes can be neatly generalized to recursions including both ψ and κ classes
by the same proof as Proposition 2.4. In view of Theorem 3.8 below, this can be
rephrased as differential equations governing generating functions of ψ classes also
govern generating functions of mixed ψ and κ classes.

We present some examples below.

Proposition 3.5. — Let b ∈ N∞ and dj ≥ 0. Then∑
L+L′=b

(−1)||L||
Ç

b

L

å
〈τ|L|+1

n∏
j=1

τdjκ(L
′)〉g = (2g − 2 + n)〈

n∏
j=1

τdjκ(b)〉g.

The above proposition is a generalization of the dilaton equation. In the special
case b = (m, 0, 0, . . . ), it has been proved by Norman Do and Norbury [5].

Proposition 3.6. — Let b ∈ N∞. Then

ASTÉRISQUE 328



MIRZAKHARNI’S RECURSION FORMULA 233

〈τ0τ1
n∏
j=1

τdjκ(b)〉g =
1

12
〈τ4

0

n∏
j=1

τdjκ(b)〉g

+
1

2

∑
L+L′=b
n=I

∐
J

Ç
b

L

å
〈τ2

0

∏
i∈I

τdiκ(L)〉g′〈τ2
0

∏
i∈J

τdiκ(L
′)〉g−g′ .

The above proposition, together with the projection formula, can be used to de-
rive an effective recursion formula for higher Weil-Petersson volumes [17] (without ψ
classes).

Let s := (s1, s2, . . . ) and t := (t0, t1, t2, . . . ), we introduce the following generating
function

G(s, t) :=
∑
g

∑
m,n

〈κm1
1 κm2

2 · · · τ
n0
0 τn1

1 · · · 〉g
sm

m!

∞∏
i=0

tni
i

ni!
,

where sm =
∏
i≥1 s

mi
i .

Following Mulase and Safnuk [21], we introduce the following family of differential
operators for k ≥ −1,

Vk = −1

2

∑
L

(2(|L|+ k) + 3)!!
(−1)||L||

L!(2|L|+ 1)!!
sL

∂

∂t|L|+k+1

+
1

2

∞∑
j=0

(2(j + k) + 1)!!

(2j − 1)!!
tj

∂

∂tj+k
+

1

4

∑
d1+d2=k−1

(2d1 + 1)!!(2d2 + 1)!!
∂2

∂td1∂td2

+
δk,−1t

2
0

4
+
δk,0
48

.

Theorem 3.7 ([17, 21]). — The recursion of Theorem 3.4 implies

Vk exp(G) = 0.

Moreover, we can check directly that the operators Vk, k ≥ −1 satisfy the Virasoro
relations

[Vn, Vm] = (n−m)Vn+m.

The Witten-Kontsevich theorem states that the generating function for ψ class
intersections

F (t0, t1, . . . ) =
∑
g

∑
n

〈
∞∏
i=0

τni
i 〉g

∞∏
i=0

tni
i

ni!

is a τ -function for the KdV hierarchy.

Theorem 3.8 ([17, 21]). — We have

G(s, t0, t1, . . . ) = F (t0, t1, t2 + p2, t3 + p3, . . . ),
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where pk are polynomials in s given by

pk =
∑

|L|=k−1

(−1)||L||−1

L!
sL.

In particular, for any fixed values of s, G(s, t) is a τ -function for the KdV hierarchy.

At a final remark, it would be interesting to prove that αL in Theorem 3.3 are
positive for all L ∈ N∞. This problem is kindly pointed out to us by a referee.

More generally the question can be formulated as following: two sequences αL and
βL with α0 = β0 = 1 are said to be inverse to each other if they satisfy(∑

L

αLsL

)
·

(∑
L

βLsL

)
= 1.

Find sufficient conditions on βL such that αL > 0 for all L.
We conjecture that αL are positive when

∑
L βLsL equals any of the following.∑

L

(−1)||L||

L!(2|L|+ 1)!!
sL,

∑
L

(−1)||L||

L!(2|L| − 1)!!
sL,

∑
L

(−1)||L||

L!|L|!
sL.

The latter two arise when we consider Hodge integrals involving λ classes [17].
For works on the positivity criteria of coefficients of reciprocal power series of a

single variable, see for example [15]. However it seems there is no literature dealing
with the coefficients of reciprocal series of several variables.
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FORMES AUTOMORPHES ET THÉORÈMES DE
RIEMANN-ROCH ARITHMÉTIQUES

par

Vincent Maillot & Damian Rössler

À Jean-Michel Bismut, avec admiration

Résumé. — Nous construisons trois familles de formes automorphes au moyen du
théorème de Riemann-Roch arithmétique et de la formule de Lefschetz arithmétique.
Deux de ces familles ont déjà été construites par Yoshikawa et notre construction met
en lumière leur origine arithmétique.

Abstract (Automorphic forms and arithmetic Riemann-Roch theorems). — We construct
three families of automorphic forms using the arithmetic Riemann-Roch theorem
and the arithmetic Lefschetz formula. Two of these families have already been
constructed by Yoshikawa and our construction displays their arithmetic origin.

1. Introduction

Le but de ce texte est de donner une interprétation arithmétique et géométrique
à trois familles de formes automorphes d’expression analytique. Plus précisément, on
démontre que ces formes automorphes sont algébriques et entières, lorsque les espaces
sous-jacents ont des modèles entiers.

La première est la famille de formes modulaires de Siegel construite par Yoshikawa
dans [26] (voir aussi [14] pour une autre construction). Notre calcul démontre une ver-
sion légèrement affaiblie d’une conjecture de Yoshikawa sur les coefficients de Fourier
de ces formes modulaires.

La deuxième est la famille de formes modulaires d’Igusa « produit des thêta
constantes paires », souvent notées χg. Les formes modulaires χg dégénèrent au
voisinage des variétés abéliennes munies d’un diviseur thêta singulier et notre calcul

Classification mathématique par sujets (2010). — 11F55, 14G40.
Mots clefs. — Formes automorphes, théorème de Riemann-Roch arithmétique.
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fournit une expression géométrique pour cette dégénérescence, dans le cas où le
diviseur thêta singulier est défini sur un corps fini.

La troisième est la famille de formes automorphes à coefficients sur certains espaces
de modules de surfaces K3 ; lorsque l’involution est sans point fixe, elles coïncident
avec certaines fonctions Φ de Borcherds (cf. [27, Sec. 8]). Cette famille de formes est
construite par Yoshikawa dans [27, Th. 5.2]. Notre calcul démontre en particulier que
les fonctions Φ ci-dessus sont d’origine arithmétique.

Dans l’appendice, nous formulons une extension conjecturale de la formule de Lef-
schetz arithmétique, où des irrégularités sont autorisées sur les fibres finies. Cette for-
mule n’est pas appliquée dans le présent texte mais elle représente un moyen théorique
d’étudier la dégénérescence de la deuxième forme modulaire de Yoshikawa lorsqu’on
considère une surface K3 avec involution définie sur un corps de nombres et ayant
mauvaise réduction en certaines places finies.

Dans ce texte, nous utiliserons librement la terminologie et les résultats énoncés
dans la section 4 de [13] (article dans lequel la formule de Lefschetz arithmétique
mentionnée plus haut est démontrée). Par ailleurs, nous utiliserons la terminologie et
les résultats de [11] (article dans lequel le théorème de Riemann-Roch arithmétique
en degré 1 est démontré).

L’objet du présent texte est de présenter des calculs. Pour une introduction au
théorème de Riemann-Roch arithmétique et à la formule de Lefschetz arithmétique,
nous suggérons de consulter les articles originaux cités dans le dernier paragraphe,
ainsi que [8] ou encore les notes [22].

Les résultats de la partie 4 ont fait l’objet d’une communication par les auteurs lors
de la conférence « Arithmetic Algebraic Geometry » organisée au R.I.M.S. (Université
de Kyoto, Japon) en septembre 2006.

Remerciements. — Une partie de ce travail a été réalisée alors que le premier
auteur était professeur invité au R.I.M.S. ; il lui est très agréable de remercier cette
institution pour son hospitalité et les conditions de travail exceptionnelles dont il
a pu bénéficier. Nos remerciements vont également à K.-I. Yoshikawa, pour toutes
les explications qu’il nous a fournies sur ses travaux, ainsi qu’au rapporteur pour sa
lecture très attentive du manuscrit. Enfin, les auteurs sont reconnaissants à S. Tang
de leur avoir signalé une erreur dans la formulation initiale de la Conjecture 5.1.

2. Les formes modulaires de Yoshikawa de premier type

Soit S le spectre d’un anneau arithmétique. Soit B une variété arithmétique sur S.
Dans ce texte, on appellera variété arithmétique sur S un schéma intègre et régulier,
qui est quasi-projectif sur S. Soit π : A → B un schéma abélien de dimension relative
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g. Soit h : Θ → B un morphisme lisse et propre de dimension relative g − 1 et
θ : Θ ↪→ A une B-immersion fermée. On suppose que O(Θ) est un fibré relativement
ample et que le degré de O(Θ) est g! sur chaque fibre géométrique de A/B. Une
hypothèse équivalente est que la caractéristique d’Euler de O(Θ) vaut 1 sur chaque
fibre géométrique de A/B.

Nous noterons TΘ := Ω∨Θ/B et T A := Ω∨A/B . Nous écrirons u : B → A pour la
section unité et T A0 pour u∗T A. Nous écrirons aussi ω := u∗ det(Ω A/B). On note
O(Θ) le fibré O(Θ) muni de sa métrique de Moret-Bailly (voir [16, Par. 3.2]) et on
pose L := O(Θ)⊗ π∗u∗ O(Θ)∨. La forme 2π · c1(L) définit une structure de fibration
Kählerienne sur A au sens de [4, Par. 1]. Soit N le fibré conormal de l’immersion θ.

Le morphisme de Gauss est défini de la manière suivante. Le morphisme naturel
TΘ ↪→ θ∗T A induit un morphisme Θ→ Gr(g−1, θ∗T A). Utilisant les isomorphismes
naturels Gr(g−1, θ∗T A) ' θ∗Gr(g−1,T A), Gr(g−1, π∗T A0) ' π∗Gr(g−1,T A0) et
T A ' π∗T A0, on obtient un morphisme naturel Θ→ h∗Gr(g− 1,T A0). Si l’on com-
pose ce dernier avec la projection naturelle de h∗Gr(g−1,T A0) = Gr(g−1,T A0)×BΘ

sur le premier facteur, on obtient le morphisme de Gauss γ : Θ → Gr(g − 1,T A0).
On note p : P := Gr(g − 1,T A0)→ B l’application structurale. Pour la définition de
Gr(·, ·) voir [7, App. B.5.7]. On notera

E : 0→ E → p∗T A0 → Q→ 0

la suite exacte universelle sur P . Si l’on munit p∗T A0 de la métrique image réciproque
de celle de T A0 et les fibrés E et Q des métriques induites, on obtient à partir de E
une suite exacte métrisée que nous noterons E.

Lemme 2.1. — Le morphisme de Gauss est génériquement fini de degré g!.

Démonstration. — Le fait que le morphisme de Gauss est génériquement fini (ou
autrement dit, qu’il induit une extension finie de corps de fonctions κ(Θ)|κ(Gr(g −
1,T A0)) est démontré dans [2, Th. 4]. Pour calculer son degré, nous considérons le
calcul suivant dans la théorie de Chow de A :

g!
(1)
= π∗(c1( O(Θ))g) = π∗(θ∗(1) c1( O(Θ))g−1)

(2)
= h∗(c1(θ∗( O(Θ)))g−1)

(3)
= h∗(c1(N∨)g−1)

(4)
= p∗γ∗(γ

∗(c1(Q)g−1))= deg(γ)p∗(c1(Q)g−1)

(5)
= deg(γ).

L’égalité (1) est justifiée par le théorème de Riemann-Roch (appliqué au morphisme
π et au fibré O(Θ)), l’égalité (2) est justifiée par la formule de projection, l’égalité (3)
est justifiée par la formule d’adjonction, l’égalité (4) est une conséquence la définition
de P et pour finir (5) est une conséquence du fait que le degré de O(1) sur un espace
projectif au-dessus d’un corps vaut 1.
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Nous appliquons maintenant le théorème de Riemann-Roch arithmétique à Θ.

Lemme 2.2. — Les égalités suivantes

ĉ1(R•h∗( OΘ)) = (−1)g ĉ1(R0π∗(Ω
g

A)) + log(
g!!

(g − 1)!!
)

= (−1)g+1ĉ1(T A0) + log(
g!!

(g − 1)!!
)

sont vérifiées.

On rappelle que par définition de la double factorielle :

g!!

(g − 1)!!
=

g(g − 2) · · · (1 + (1 + (−1)g)/2)

(g − 1)(g − 3) · · · (1 + (1− (−1)g)/2)
.

Démonstration. — Soit M une variété Kählerienne de dimension g et de forme de
Kähler ω. Soit k > 0 et soit ν ∈ Hk(M, OM ). On dispose de la formule suivante :

(1) |ν|2L2
:=

ik(−1)k(k+1)/2

(2π)g(g − k)!

∫
M

ν ∧ ν ∧ ωg−k.

Voir [15, Par. 2.3]. Par ailleurs, considérons la suite exacte longue de cohomologie

0 → R0π∗ O→ R0h∗ OΘ → 0

→ R1π∗ O→ R1h∗ OΘ → 0

→ · · · →
0 → Rg−1π∗ O→ Rg−1h∗ OΘ → Rgπ∗ O(−Θ)

?−→ Rgπ∗ O→ 0

née de la suite exacte
0→ O(−Θ)→ O→ OΘ → 0.

On remarque aussi que la flèche ? est un isomorphisme car Rgπ∗ O est localement libre
de rang 1. Toutes les flèches reliant deux objets non-nuls dans la suite exacte longue
sont donc des isomorphismes. En particulier les faisceaux de cohomologie Rkh∗ OΘ

sont localement libres. De plus, en comparant la formule (1) sur les fibres de A(C) et
sur les fibres de Θ(C), on conclut que pour tout entier k tel que 0 6 k 6 g − 1, on a

(2) ĉ1(Rkπ∗( O A)) = ĉ1(Rkh∗( OΘ))− log(g − k).

On utilisé ici le fait que la forme de Kähler sur les fibres est donnée par 2π · c1( O(Θ)).
Si l’on combine cette dernière égalité avec l’égalité

ĉ1(R•π∗( O A)) = 0(3)

on obtient la première égalité du lemme. L’égalité (3) est une conséquence immédiate
du théorème de Riemann-Roch arithmétique appliqué à π et O A et de l’annulation
de la torsion analytique du fibré trivial d’une variété abélienne de dimension > 2 (cf.
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[20, Par. 5, p. 173]). La deuxième égalité du lemme est une conséquence de la formule
de projection.

Le théorème de Riemann-Roch arithmétique appliqué à h et au fibré hermitien
trivial sur Θ donne l’égalité suivante dans ĈH

61
(B)Q :“ch(R•h∗ OΘ)− T (Θ, OΘ) = h∗(”Td(Th))−

∫
Θ/B

R(Th) Td(Th)

= g! p∗(”Td(E))− g!

∫
P/B

R(E) Td(E)

= g!

∫
P/B

Td−1(Q)›Td( E) + g! p∗(”Td
−1

(Q)”Td(p∗T A0))

− g!

∫
P/B

R(E) Td(E).

Remarquons à présent que pour tout k > 0, on a”Td
−1

(Q)[k] = − (−1)k+1

(k + 1)!
ĉ1(Q)k

(on rappelle que par définition Td−1(x) = (1 − exp(−x))/x). Par ailleurs, selon [17,
Par. 8.2]

p∗(ĉ1(Q)g)) = [

g−1∑
l=1

H l] + ĉ1(T A0);

ici H l :=
∑l
k=1

1
k est le l-ème nombre harmonique. On peut maintenant calculer

g! p∗(”Td
−1

(Q)”Td(p∗T A0))[61]

= −g! (1 +
1

2
ĉ1(T A0)) ·

( (−1)g

g!
deg(Q) +

(−1)g+1

(g + 1)!
(ĉ1(T A0) + [

g−1∑
l=1

H l])
)

= −g! (1 +
1

2
ĉ1(T A0)) ·

( (−1)g

g!
+

(−1)g+1

(g + 1)!
(ĉ1(T A0) + [

g−1∑
l=1

H l])
)

= −(1 +
1

2
ĉ1(T A0)) ·

(
(−1)g +

(−1)g+1

(g + 1)
(ĉ1(T A0) + [

g−1∑
l=1

H l])
)
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Si l’on combine ce dernier calcul avec le Lemme 2.2, il vient

T (Θ, OΘ) = −g!

∫
P/B

Td−1(Q)›Td( E)

− (−1)g
Å
g + 3

2g + 2

ã
ĉ1(T A0)− (−1)g

(g + 1)

g−1∑
l=1

H l

+ g!

∫
P/B

R(E) Td(E) + log(
g!!

(g − 1)!!
).

Enfin, on a le

Lemme 2.3. — L’égalité∫
P/B

Td−1(Q)›Td( E) = (−1)g
[ g2−1]∑
p=0

ζQ(−1− 2p)

(2p+ 1)! (g − 2p− 1)!
H 2p+1

est vérifiée.

Ici ζQ(·) désigne la fonction zêta de Riemann.

Démonstration. — Il suffit de démontrer l’égalité dans le cas où S = Spec C et B est
un point. Nous le supposerons donc pendant la preuve du lemme.

À toute série formelle symétrique φ on peut associer une classe caractéristique
encore notée φ et une classe secondaire de Bott-Chern φ̃ comme dans [9, §1].

D’après le théorème fondamental des fonctions symétriques, pour tout fibré vecto-
riel F la classe φ(F ) s’exprime comme combinaison linéaire finie des classes de Chern
de F :

φ(F ) =
∑

φi1,...,ikci1(F ) · · · cik(F ).

Soit F une suite exacte courte de fibrés vectoriels hermitiens sur une variété complexe
X :

F : 0→ F
′ → F → F

′′ → 0

telle que les métriques sur F ′ et F ′′ sont induites par celle sur F et telle que le
fibré hermitien F est plat, ou même simplement projectivement plat (voir [23, §6 et
Theorem 4] pour la définition de cette notion et ses conséquences). On déduit de cette
dernière hypothèse que c(F

′ ⊕ F ′′) = c(F ) en tant que formes, ce qui en appliquant
[9, Proposition 1.3.1] à chacun des termes monomiaux de :

φ̃( F ) =
∑

φi1,...,ik ‚�ci1 · · · cik( F ),

montre dans Ã(X) := A(X)/(Im ∂ + Im ∂) l’égalité :

φ̃( F ) =
∑

φi1,...,ik

k∑
q=1

ci1(F ) · · · ciq−1(F ) · c̃q( F ) · ciq+1(F ) · · · cik(F ).
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Appliquons ce qui précède pour la classe de Todd et la suite exacte universelle E.
Il vient, en remarquant de plus que c (p∗T A0) = 1, l’égalité :›Td( E) =

g∑
k=1

Tdk c̃k( E).

On sait par ailleurs [12, p. 14 Remark 2] que Tdk = Td1,...,1 (k fois). On peut donc
écrire : ›Td( E) =

1

2
c̃1( E) +

g∑
k=2

Bk
k!

c̃k( E),

où Bk = −k ζQ(1− k) pour k > 2 est le k-ième nombre de Bernoulli.
On tire de [10, Proposition 5.3] que c̃1( E) = 0 et que pour 2 6 k 6 g on a :

c̃k( E) = (−1)k−1 H k−1 c
k−1
1 (Q),

où H k−1 est le (k − 1)-ième nombre harmonique.
Mettant ce qui précède bout-à-bout en tenant compte de la nullité des nombres

B2p+1 pour p > 0, on peut finalement écrire :∫
Pg−1(C)

Td−1(Q)›Td( E)

=

∫
Pg−1(C)

Ñ∑
q>0

(
−c1(Q)

)q
(q + 1)!

é
[ g2−1]∑
p=0

ζQ(−1− 2p)

(2p+ 1)!
H 2p+1 c

2p+1
1 (Q)

= (−1)g
[ g2−1]∑
p=0

ζQ(−1− 2p)

(2p+ 1)! (g − 2p− 1)!
H 2p+1.

Enfin, en utilisant la suite exacte universelle E, on calcule que∫
P/B

R(E) Td(E) = −
∫
P/B

R(Q) Td−1(Q)

=

∫
P/B

((∑
l>0

(−1)l+1 xl

(l + 1)!

)
·
( ∑
m>1, m impair

(2ζ ′Q(−m) + HmζQ(−m)) · x
m

m!

))
où l’on a posé x = c1(Q). Ainsi

∫
P/B

R(E) Td(E) = −
[ g2−1]∑
k=0

(−1)g−2k
2ζ ′Q(−1− 2k) + ζQ(−1− 2k) H 2k+1

(2k + 1)!(g − 2k − 1)!
.

Le théorème suivant résume maintenant nos calculs :
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Théorème 2.4. — L’égalité

T (Θ, OΘ) = (−1)g
Å
g + 3

2g + 2

ã
ĉ1(ω)

− (−1)g
[ g2−1]∑
k=0

Ç
g

2k + 1

å(
2ζ ′Q(−1− 2k) + 2ζQ(−1− 2k) H 2k+1

)
− (−1)g

(g + 1)

g−1∑
l=1

H l + log(
g!!

(g − 1)!!
)

est vérifiée.

Cette dernière égalité implique notamment qu’il existe un nombre entier l ∈ N∗,
un nombre réel C et une forme modulaire µ pour le groupe d’Igusa Γ(1, 2), tels que

exp(T (Θ, OΘ))l = ‖C · µ‖2l(−1)g+1(g+3)/(2g+2)
Pet(4)

et que µ est définie sur Q. L’égalité (4) est une forme affaiblie de la première partie de
la Conjecture 6.1 de Yoshikawa dans [26]. Une autre conséquence de l’égalité (4) est
une forme affaiblie de la première assertion du « Main Theorem » dans l’introduction
de [26]. Dans les deux cas, il s’agit d’une forme affaiblie parce que le nombre l n’est
pas effectif et que le groupe d’Igusa Γ(1, 2) est plus petit que le groupe de Siegel.

Remarque. — Il est probable que le nombre l peut être déterminé en faisant usage
dans les calculs ci-dessus du théorème d’Adams-Riemann-Roch arithmétique démon-
tré dans [21] (qui tient compte des phénomènes de torsion) plutôt que du théorème
de Riemann-Roch arithmétique. Nous n’avons cependant pas effectué ce calcul.

3. Les formes modulaires d’Igusa « produit des thêta constantes paires »

Les formes modulaires décrites via la torsion analytique de OΘ dans la dernière
section coïncident avec la forme modulaire d’Igusa « produits des fonctions thêta
paires » lorsque g = 2, 3 (cf. [26, après le « Main Theorem » ]). On peut se demander
si ces dernières formes modulaires peuvent aussi être interprétées via le théorème de
Riemann-Roch arithmétique. Nous allons montrer dans cette section qu’une pareille
interprétation est possible. Le théorème de Riemann-Roch arithmétique est ici appli-
qué à O(Θ) ; il s’agit alors d’un cas particulier de la « formule clé » de Moret-Bailly.

On continue avec les mêmes hypothèses que dans la section 2. On suppose de plus
que Θ est symétrique, i.e. invariant par l’action de l’inversion [−1] du schéma en
groupes A/B ; on notera A[−1] (resp. Θ[−1]) le schéma des points fixes de [−1] dans
A (resp. dans Θ). Par ailleurs, on suppose que 2 est inversible sur B.
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Le théorème du cube (cf. par ex. [6, 4.1.23]) implique que

8 · ĉ1( O(Θ)| A[−1]
) = 8 · ĉ1(u∗ O(Θ)).

Par ailleurs, la formule clé de Moret-Bailly (cf. [16, Th. 3.3]) affirme que

8 · ĉ1(u∗ O(Θ)) = 4 · ĉ1(ω) + 2g log(4π).

On en déduit que 8 · ĉ1( O(Θ)| A[−1]
) = 4 · ĉ1(ω) + 2g log(4π). Comme Θ est lisse sur

B, le schéma Θ[−1] est régulier et donc ouvert dans A[−1]. Soit g : A[−1]\Θ[−1] → B

le morphisme de structure. On cherche à calculer

g∗(ĉ1( O(Θ)| A[−1]\Θ[−1]
)).

Vu que le fibré en droites O(Θ) est canoniquement trivialisé sur A[−1]\Θ[−1], on est
ramené à un calcul analytique sur une fibre complexe arbitraire de A → B. Nous en
fixons une et la nommons A. Nous rappelons l’expression explicite de la métrique de
Moret-Bailly de O(Θ) donnée dans [16, Par. 3, (3.2.2)]. Si Ω est une matrice g × g
complexe du demi-plan de Siegel représentant A, on dispose de la formule

‖sΘ(z)‖ = det(=(Ω))1/4 exp(−πty(=(Ω))−1y)|θ(z,Ω)|

où θ(z,Ω) est la fonction θ de Riemann associée à Ω, z = x + iy et sΘ est la sec-
tion canonique de O(Θ), restreinte à A. Si l’on utilise la formule de changement de
coordonnées

x+ iy = x1 + Ω(y1) = (x−<(Ω)(=(Ω))−1y) + Ω((=(Ω))−1y)

on peut réécrire, en utilisant la symétrie de =(Ω),

‖sΘ(z)‖ = det(=(Ω))1/4 exp(−πty1=(Ω)y1)|θ(z,Ω)|.

On calcule maintenant

g∗(ĉ1( O(Θ)| A[−1]\Θ[−1]
))

= −2 log |
∏
a,b

det(=(Ω))1/4 exp(−πta=(Ω)a)θ(Ω(a) + b,Ω)|

= − log |det(=(Ω))|2
2g−2+2g−2

− log |
∏

θ
[a
b

]
(0,Ω)|2

=: − log ‖χg(Ω)‖2Pet

où χg(·) est la forme modulaire d’Igusa « produit des thêta constantes paires » (cf.
[18, chap. II]) et ‖ · ‖Pet est la norme associée à la métrique de Petersson. La somme
porte sur les couples (a, b) ∈ Qg tels que a, b ∈ {0, 1/2} et tels que θ

[
a
b

]
(0,Ω) 6= 0.

Il y a 22g − 2g−1(2g − 1) = 22g−1 + 2g−1 tels couples. Ceci résulte par exemple de la
formule de Lefschetz habituelle appliquée à [−1] agissant sur ΘC|A. Par ailleurs,

8 · g∗(ĉ1( O(Θ)| A[−1]\Θ[−1]
)) = 4 · (22g−1 + 2g−1)ĉ1(ω) + 2g · (22g−1 + 2g−1) log(4π)

ce qui implique la
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Proposition 3.1. — L’égalité

(22g−2 + 2g−2)ĉ1(ω) +
g

4
(22g−1 + 2g−1) log(4π) = − log ‖χg(Ω)‖2Pet

est vérifiée.

Supposons à présent que S est le spectre d’un anneau de Dedekind et affaiblissons
les hypothèses précédentes en supposant seulement que Θ est lisse au-dessus d’un
ouvert non-vide V de B. Supposons de plus que B = S et que le schéma A[−1] est la
réunion disjointe de 22g sections B → A.

Soit maintenant
Z := Zar( A[−1],V \Θ[−1],V )

l’adhérence schématique de A[−1],V \Θ[−1],V . On cherche alors à calculer

g∗(ĉ1( O(Θ)|Z)).

Soit u1, . . . , u(22g−1+2g−1) une énumération des sections formant Z. Une variante du
calcul fait plus haut donne alors la

Proposition 3.2. — L’égalité

(22g−2 + 2g−2)ĉ1(ω) +
g

4
(22g−1 + 2g−1) log(4π)

=
22g−1+2g−1∑

j=1

∑
P∈uj∩Θ

long O A,P
( Ouj∩Θ) · π∗(P )− log ‖χg(Ω)‖2Pet

est vérifiée.

4. Les formes modulaires de Yoshikawa de deuxième type

On se donne un schéma régulier et intègre B, quasi-projectif sur un anneau arith-
métique D de corps de fractions K et tel que 2 est inversible sur D. On se donne
également un schéma intègre et régulier T et un morphisme projectif, plat f : T → B
tel que fK : T K → BK est lisse et dont on note ω le faisceau canonique relatif associé.
On notera B := BK (resp. T := T K) la fibre générique de B (resp. T ) sur D.

On suppose que T est un schéma en surfaces K3 sur B. Par définition, cela signifie
que les fibres géométriques de fK sont des surfaces K3. On munit T (C) d’une structure
de fibration Kählerienne ν. On suppose aussi que le morphisme d’adjonction

f∗f∗ω → ω

est un isomorphisme. Munissons ω de la métrique induite par la structure de fibration
Kählerienne et f∗f∗ω de la métrique image réciproque par f de la métrique L2. On
écrira η pour la classe secondaire ‹ch( F ) de la suite exacte de fibrés

F : 0→ f∗f∗ω → ω → 0→ 0
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munie de ces métriques.
On suppose de plus qu’il existe un automorphisme d’ordre 2 de T sur B ; on dispose

ainsi d’une action de µ2 sur T ; on note T µ2
son schéma des points fixes et l’on suppose

que la restriction fµ2
: T µ2

→ B du morphisme f est lisse. On notera g l’action de
l’automorphisme sur T (C) et ηg la restriction de la classe η à Tg := T µ2(C). On
suppose également que la fibration Kählerienne est équivariante pour l’action de g ;
on note νg la restriction de ν à Tg. Enfin on notera d (resp. dg) la dimension relative
de T (resp. Tg) sur B.

On applique la formule de Lefschetz arithmétique au morphisme f , à l’action de
µ2 sur T et au fibré trivial O := O T muni de sa métrique triviale. On note N le fibré
conormal de T µ2

dans T et on le munit de la métrique induite par la structure de
fibration Kählerienne. On obtient

ĉ1,µ2
(R0f∗ O)− ĉ1,µ2

(R1f∗ O) + ĉ1,µ2
(R2f∗ O)

= fµ2∗(
”Tdµ2

(Tf))[1] −
∫
Tg/B

Tdg(TfC)Rg(TfC) + Tg( O).

On calcule dans ĈH
62

( T µ2
)Q :”Tdµ2

(Tf) = “chµ2
(1−N)−1”Td(Tfµ2

)

=
1

2
(1 +

1

2
ĉ1(N) +

1

4
ĉ1(N)2)−1”Td(Tfµ2

)

=
(1

2
− 1

4
ĉ1(N)

)”Td(Tfµ2
).

Par ailleurs, dans ĈH
62

( T µ2
)Q, on a ”Td(Tfµ2

) = 1− 1
2 ĉ1(ωµ2

) + 1
12 ĉ1(ωµ2

)2, où ωµ2

est le fibré des différentielles relatives de T µ2
sur B, muni de la métrique induite. La

partie de degré 2 de ”Tdµ2
(Tf) est donc la partie de degré 2 de l’expression(1

2
− 1

4
ĉ1(N)

)(
1− 1

2
ĉ1(ωµ2) +

1

12
ĉ1(ωµ2)2

)
qui est

(5)
1

8
ĉ1(N)ĉ1(ωµ2) +

1

24
ĉ1(ωµ2)2.

On rappelle qu’on dispose d’une suite exacte équivariante

0→ N → Ω→ ωµ2
→ 0

sur T µ2
. Pour des raisons de rang, cette suite est isométriquement scindée. On a donc

ĉ1(N) = f∗µ2
ĉ1(f∗ω)− ηg − ĉ1(ωµ2

)
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dans ĈH
1
( T µ2). On peut donc évaluer l’expression (5) comme

1

8

(
f∗µ2

ĉ1(f∗ω)− ηg − ĉ1(ωµ2
)
)

ĉ1(ωµ2
) +

1

24
ĉ1(ωµ2

)2

=
1

8
f∗µ2

ĉ1(f∗ω)ĉ1(ωµ2)− 1

12
ĉ1(ωµ2)2 − 1

8
c1(ωµ2)ηg.

Par ailleurs, on calcule :

∫
Tg/B

Tdg(TfC)Rg(TfC)

= −2

∫
Tg/B

(
(2ζ ′Q(−1,−1) + ζQ(−1,−1))c1(N) + (2ζ ′Q(−1) + ζQ(−1))c1(ωµ2

)
)

= −2

∫
Tg/B

(
(6ζ ′Q(−1) + (3− log(16))ζQ(−1))c1(N)

+ (2ζ ′Q(−1) + ζQ(−1))c1(ωµ2
)
)

= −2

∫
Tg/B

(
− (6ζ ′Q(−1) + (3− log(16))ζQ(−1)) + (2ζ ′Q(−1) + ζQ(−1))

)
c1(ωµ2

)

= −2

∫
Tg/B

(
− 4ζ ′Q(−1) + (log(16)− 2)ζQ(−1)

)
c1(ωµ2)

= −2G
(
− 4ζ ′Q(−1) + (log(16)− 2)ζQ(−1)

)
où G est une fonction localement constante sur B(C). En un point P ∈ B(C), G vaut

∑
C⊆Tg,P

(2 · genre(C)− 2)

où la somme porte sur les composantes connexes C de la fibre Tg,P de Tg au-dessus
de P . Pour résumer, on obtient

ĉ1,µ2(R0f∗ O)− ĉ1,µ2(R1f∗ O) + ĉ1,µ2(R2f∗ O)

=
G

8
ĉ1(f∗ω)− 1

12
fµ2∗ĉ1(ωµ2)2 + Tg( O)− 1

8

∫
Tg/B

c1(ωµ2)ηg

+ 2G
(
− 4ζ ′Q(−1) + (log(16)− 2)ζQ(−1)

)
.

Ceci implique en particulier le
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Théorème 4.1. — Supposons que toutes les fibres géométriques de f sont des surfaces
K3, alors on a :

− log

∣∣∣∣∣ 1

d!(2π)d

∫
T/B

νd

∣∣∣∣∣
=
G− 8

8
ĉ1(f∗ω)− 1

12
fµ2∗ĉ1(ωµ2)2 + Tg( O)− 1

8

∫
Tg/B

c1(ωµ2)ηg

+ 2G
(
− 4ζ ′Q(−1) + (log(16)− 2)ζQ(−1)

)
.

Remarque. — Lorsque T µ2
est vide, on trouve :

− log

∣∣∣∣∣ 1

d!(2π)d

∫
T/B

νd

∣∣∣∣∣+ ĉ1(f∗ω) = Tg( O)(6)

sous les hypothèses du théorème 4.1. On aurait pu montrer directement ce résultat en
appliquant le théorème de Riemann-Roch arithmétique au quotient T /µ2. Borcherds
[5] avait montré la trivialité (modulo torsion) de f∗ω en construisant explicitement
une section non-nulle Φ de (f∗ω)⊗4. Pappas [19] redémontre (indépendamment de
ce qui précède) le fait que f∗ω est de torsion sur B(C) en appliquant le théorème
de Grothendieck-Riemann-Roch au schéma T /µ2. L’identité (6) montre que ces deux
démonstrations, a priori totalement différentes, ne sont que les deux versants d’une
même application du théorème de Riemann-Roch arithmétique. On notera que l’iden-
tité (6) implique même que l’ordre de f∗ω est une puissance de 2.

On peut exprimer la quantité 1
12fµ2∗ĉ1(ωµ2)2 du Théorème 4.1 au moyen de la

torsion analytique des fibres de Tg sur B(C), via le théorème de Riemann-Roch arith-
métique. On obtient

1

12
fµ2∗ĉ1(ωµ2

)2 = f∗(”Td( T /B))[1]

= −T ( Og)− log

∣∣∣∣∣ 1

dg!(2π)dg

∫
Tg/B

νdgg

∣∣∣∣∣+ ĉ1(fµ2∗ωµ2)

−
∫
Tg/B

(2ζ ′Q(−1) + ζQ(−1))c1(ωµ2
)

dans ĈH
1
( B)Q. Si l’on juxtapose cette dernière expression à celle du Théorème 4.1,

on obtient

ĉ1(fµ2∗ωµ2
) +

8−G
8

ĉ1(f∗ω)

= Tg( O) + T ( Og)−
1

8

∫
Tg/B

c1(ωµ2
)ηg +

∫
Tg/B

(2ζ ′Q(−1) + ζQ(−1))c1(ωµ2
)
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+ 2G
(
− 4ζ ′Q(−1) + (log(16)− 2)ζQ(−1)

)
+ log

∣∣∣∣∣ 1

d!(2π)d

∫
T/B

νd

∣∣∣∣∣+ log

∣∣∣∣∣ 1

dg!(2π)dg

∫
Tg/B

νdgg

∣∣∣∣∣
= Tg( O) + T ( Og)−

1

8

∫
Tg/B

c1(ωµ2
)ηg − 6Gζ ′Q(−1)− 2G

3
log(2) +

G

4

+ log

∣∣∣∣∣ 1

d!(2π)d

∫
T/B

νd

∣∣∣∣∣+ log

∣∣∣∣∣ 1

dg!(2π)dg

∫
Tg/B

νdgg

∣∣∣∣∣
sous les hypothèses du Théorème 4.1. On suppose maintenant que D = C ; les hypo-
thèses du Théorème 4.1 sont alors automatiquement satisfaites. Supposons par ailleurs
que f∗ω a une section analytique trivialisante de norme L2 constante. Ceci est le cas
par exemple si la famille T est munie d’un marquage (cf. [27, Par. 1.2 (b)] pour cette
notion). Soit κ un entier tel que le fibré f∗ω⊗(8−G)κ⊗ (det fµ2∗ωµ2)⊗8κ est trivial. Le
fibré (det fµ2∗ωµ2

)⊗(−8κ) est alors analytiquement trivial. Il existe donc t une section
analytique trivialisante de (det fµ2∗ωµ2

)⊗8κ satisfaisant l’égalité

|t|−
1
4κ

L2 = eTg( O) · eT (Og)

·
∣∣∣∣∣ 1

d!(2π)d

∫
T/B

νd

∣∣∣∣∣ ·
∣∣∣∣∣ 1

dg!(2π)dg

∫
Tg/B

νdgg

∣∣∣∣∣ · exp(−1

8

∫
Tg/B

c1(ωµ2
)ηg).

Écrivons Vol(Tg) := | 1
dg !(2π)dg

∫
Tg/B

ν
dg
g | et Vol(T ) := | 1

d!(2π)d

∫
T/B

νd|. Soit r+ (resp.
r−) la dimension du sous-espace de H2(T (C)b,C) invariant par g (resp. celui où g agit
par −1) ; b étant un élément générique de B(C). Remarquons que par la formule du
point fixe holomorphe et la formule de Gauss-Bonnet généralisée (cf. [25, Example
3.8, chap. III, sec. 3, p.96] pour cette dernière), on a l’égalité

1− 0 + r+ − r− + 1− 0 = −G

et par ailleurs, le formulaire [3, VIII, 3.] nous assure que r+ + r− = 22. On en déduit
que

G = 20− 2r+ .

On reprend maintenant l’expression pour |t|−
1
4κ

L2 et on calcule

eTg( O)·eT (Og) ·Vol(T ) ·Vol(Tg) · exp(−1

8

∫
Tg/B

c1(ωµ2
)ηg)

= eTg( O) · eT (Og) ·Vol(T ) ·Vol(Tg)

· exp

Ç
−1

8

∫
Tg/B

c1(ωµ2
)(ηg + log |Vol(T )|)

å
·Vol(T )

G
8
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= eTg( O) · eT (Og) ·Vol(T )G/8+1 ·Vol(Tg)

· exp

Ç
−1

8

∫
Tg/B

c1(ωµ2
)(ηg + log |Vol(T )|)

å
.

Par ailleurs, on a

G/8 + 1 =
G+ 8

8
=

20− 2r+ + 8

8
=

14− r+

4

et on conclut que

|t|−
1
4κ

L2 = eTg( O) · eT (Og)

·Vol(T )
14−r+

4 ·Vol(Tg) · exp

Ç
−1

8

∫
Tg/B

c1(ωµ2)(ηg + log |Vol(T )|)
å
.

Il s’agit de l’égalité du théorème principal [27, Main Th., Introduction] de Yoshikawa.

5. Appendice : une formule du point fixe singulière conjecturale
en théorie d’Arakelov

Soit D un anneau arithmétique d’anneau de fractions K et supposons que D est
régulier. Soit f : X → SpecD un schéma intègre, projectif sur D, dont la fibre sur
K est lisse. Soit h : Z → SpecD un schéma intègre et régulier, projectif sur D,
dont la fibre sur K est lisse. Soit j une D-immersion fermée X ↪→ Z. On munit Z
d’une métrique Kählerienne ωZ et on munit X de la structure ωX induite. On se
donne un nombre entier n > 1 et des structures µn-équivariantes sur X et Z telle
que f, h, j soient µn-équivariants et que la structure ωZ soit µn(C)-invariante (D est
supposé muni de la structure équivariante triviale). Soit enfin R(µn) = Z/(1 − Tn)

le groupe de Grothendieck des µn-comodules de type fini sur Z. On choisit un racine
primitive n-ième de l’unité ζn et une R(µn)-algèbre R telle que les éléments 1 − T k

(k = 1, . . . , n− 1) sont inversibles dans R.
Soit N le fibré conormal de l’immersion Zµn ↪→ Z. Soit enfin

∑
i riEi une R

combinaison linéaire finie de fibrés hermitiens sur Zµn tels que
∑
i riEi = (Λ−1(N))−1

dans “Kµn
0 (Zµn)⊗R(µn) R.

Soit E un fibré hermitien µn-équivariant sur X.
On remarque que l’immersion XC ↪→ ZC est régulière et on a donc

TorkOZ (j∗E, OZµn )C ' jC∗(Λk(F )⊗ EC),

où F est un fibré localement libre défini sur Xµn,C par la suite exacte

F : 0→ F → NZµn,C/ZC → NXµn,C/XC → 0

(voir [1, Exp. VII, Prop. 2.5]). Nous munissons le fibré F de la métrique induite par
NZµn/Z .
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Pour tout l > 0, les fibrés cohérents Rlh∗(Ei⊗TorkOZ (j∗E, OZµn )) (qui sont locale-
ment libres sur la fibre générique) peuvent être munis de métriques hermitiennes via
l’isomorphisme naturel

Rlh∗(Ei ⊗ TorkOZ (j∗E, OZµn ))C ' RlfC∗(j
∗(Ei,C)⊗ Λk(F )⊗ EC).

Par abus de notation, on notera Rlh∗(Ei ⊗ TorkOZ (j∗E, OZµn )) le fibré cohérent her-
mitien sur D (« hermitian coherent sheaf » en anglais) correspondant.

Conjecture 5.1. — L’égalité∑
l>0

(−1)lRlf∗(E)− Tg(EC) =
∑
i

ri
∑
l,k>0

(−1)l+kRlh∗(Ei ⊗ TorkOZ (j∗E, OZµn ))

−
∑
i

ri
∑
k>0

(−1)kTg(j
∗
µn(Ei,C)⊗ Λk(F )⊗ EC|Xµn )

+

∫
Xµn

Td(TXC) chg(EC) eTdg( F ) Td−1
g (F )

−
∫
Xµn

Tdg(TXC) chg(EC)Rg(NXµn,C/XC)

est vérifiée dans “Kµn
′

0 (D)⊗R(µn) R.

Cette conjecture est inspirée par la formule [24, Th. 3.5].
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THE INDEX OF PROJECTIVE FAMILIES OF ELLIPTIC
OPERATORS: THE DECOMPOSABLE CASE
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Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — An index theory for projective families of elliptic pseudodifferential oper-
ators is developed under two conditions. First, that the twisting, i.e. Dixmier-Douady,
class is in H2(X; Z)∪H1(X; Z) ⊂ H3(X; Z) and secondly that the 2-class part is triv-
ialized on the total space of the fibration. One of the features of this special case
is that the corresponding Azumaya bundle can be refined to a bundle of smoothing
operators. The topological and the analytic index of a projective family of elliptic
operators associated with the smooth Azumaya bundle both take values in twisted
K-theory of the parameterizing space and the main result is the equality of these two
notions of index. The twisted Chern character of the index class is then computed by
a variant of Chern-Weil theory.

Résumé (L’indice des familles projectives d’opérateurs elliptiques: le cas décomposable)
Une théorie de l’indice pour des familles projectives d’opérateurs pseudodifféren-

tiels elliptiques est développée sous les deux conditions suivantes: la classe de Dixmier-
Douady est dans H2(X; Z) ∪ H1(X; Z) ⊂ H3(X; Z), et la partie de degré deux est
trivialisée sur l’espace total de la fibration. Le fibré d’Azumaya correspondant peut
alors être raffiné en un fibré d’opérateurs régularisants. Les indices topologiques et
analytiques d’une famille projective d’opérateurs elliptiques associée au fibré d’Azu-
maya lisse sont à valeurs dans la K-théorie tordue de la base de la famille et le résultat
principal est l’égalité de ces deux indices. Le caractère de Chern tordu de la famille
est calculé par une variante de la théorie de Chern-Weil.
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Introduction

The basic object leading to twisted K-theory for a space, X, can be taken to be
a principal PU-bundle P −→ X, where PU = U( H )/U(1) is the group of projective
unitary operators on some separable infinite-dimensional Hilbert space H . Circle bun-
dles over X are classified up to isomorphism by their Chern classes in H2(X; Z) and
analogously principal PU bundles are classified by H3(X; Z) with the element δ( P) be-
ing the Dixmier-Douady invariant of P. Just as K0(X), the ordinary K-theory group
of X, may be identified with the group of homotopy classes of maps X −→ F ( H )

into the Fredholm operators on H , the twisted K-theory group K0(X; P) may be
identified with the homotopy classes of sections of the bundle P ×PU F arising from
the conjugation action of PU on F . The action of PU on the compact operators, K ,
induces the Azumaya bundle, A. The K-theory, in the sense of C∗ algebras, of the
space of continuous sections of this bundle, written K0(X; A), is naturally identified
with K0(X; P). From an analytic viewpoint A is more convenient to deal with than
P itself.

In the case of circle bundles isomorphisms are classified up to homotopy by an
element of H1(X; Z), corresponding to the homotopy class of a smooth map X −→
U(1). Similarly, δ ∈ H3(X; Z) determines P up to isomorphism with the isomorphism
class determined up to homotopy by an element of H2(X; Z), corresponding to the
fact that PU is a K(Z, 2). The result is that K0(X; A) depends as a group on the
choice of Azumaya bundle with DD invariant δ up to an action of H2(X; Z).

In [20] we extended the index theorem for a family of elliptic operators, giving the
equality of the analytic and the topological index maps in K-theory, to the case of
twisted K-theory where the twisting class is a torsion element of H3(X; Z). In this
paper we prove a similar index equality in the case of twisted K-theory when the
index class is decomposable

(1) δ = α ∪ β, α ∈ H1(X; Z), β ∈ H2(X; Z),

and the fibration φ : Y −→ X is such that φ∗β = 0 in H2(Y ; Z).

Under the assumption (1), that the class δ is decomposed, we show below that there
is a choice of principal PU bundle with class δ such that the classifying map above,
cP : X −→ K(Z; 3) factors through U(1) × PU . Twisting by a homotopically non-
trivial map κ : X −→ PU does not preserve this property, so in this decomposed case
there is indeed a natural choice of smooth Azumaya bundle, S, up to homotopically
trivial isomorphism and this induces a choice of twisted K-group determined by the
decomposition of δ; we denote this well-defined twisted K-group by

(2) K0(X;α, β) = K0(X; A), A = S.

The effect on smoothness of the assumption of decomposability on the Dixmier-
Douady class can be appreciated by comparison with the simpler case of degree 2.
Thus, if α1 ∪ α2 ∈ H2(X; Z) is a decomposed class, αi ∈ H1(X; Z) for i = 1, 2, then
the associated line bundle is the pull-back of the Poincaré line bundle associated to
a polarization on the 2-torus under the map u1 × u2, where the ui ∈ C∞(X; U(1))
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represent the αi. This is to be contrasted with the general case in with the line bundle
is the pull-back from a classifying space such as PU, and is only unique up to twisting
by a smooth map κ′ : X −→ U(1).

The data we use to define a smooth Azumaya bundle is:

– A smooth function

(3) u ∈ C∞(X; U(1))

the homotopy class of which represents α ∈ H1(X,Z).

– A Hermitian line bundle (later with unitary connection)

(4) L

��
X

with Chern class β ∈ H2(X; Z).

– A smooth fiber bundle of compact manifolds

(5) Z Y

φ

��
X

such that φ∗β = 0 in H2(Y ; Z).

– An explicit global unitary trivialization

(6) γ : φ∗(L)
'−→ Y × C.

These hypotheses are satisfied by taking Y = L̃, the circle bundle of L, and then there
is a natural choice of γ in (6). This corresponds to the ‘natural’ smooth Azumaya
bundle associated to the given decomposition of δ = α ∪ β and we take K0(X;α, β)

in (2) to be defined by this Azumaya bundle, discussed as a warm-up exercise in
Section 1. In Appendix C it is observed that any fibration for which β is a multiple
of a degree 2 characteristic class of φ : Y −→ X satisfies the hypothesis in (5).

In general, the data (3) – (6) are shown below to determine an infinite rank ‘smooth
Azumaya bundle’, which we denote S(γ). This has fibres isomorphic to the algebra
of smoothing operators on the fibre, Z, of Y with Schwartz kernels consisting of the
smooth sections of a line bundle J(γ) over Z2. The completion of this algebra of
‘smoothing operators’ to a bundle with fibres modelled on the compact operators has
Dixmier-Douady invariant α ∪ β.

In outline the construction of S(γ) proceeds as follows; details may be found in
Section 3. The trivialization (6) induces a groupoid character Y [2] −→ U(1), where
Y [2] is the fiber product of two copies of fibration. Combined with the choice (3) this
gives a map from Y [2] into the torus and hence by pull-back the line bundle J = J(γ).

This line bundle is primitive in the sense that under lifting by the three projection
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maps

(7) L̃[3]

πS //
πC //
πF //

L̃[2]

(corresponding respectively to the left two, the outer two and the right two factors)
there is a natural isomorphism

(8) π∗SJ ⊗ π∗FJ = π∗CJ.

This is enough to give the space of global sections, C∞(Y [2]; J ⊗ ΩR), where ΩR is
the fiber-density bundle on the right factor, a fibrewise product isomorphic to the
smoothing operators on Z. Indeed, if z represents a fiber variable then

(9) A ◦B(x, z, z′) =

∫
Z

A(x, z, z′′) ·B(x, z′′, z′)

where · denotes the isomorphism (8) which gives the identification

(10) J(z,z′′) ⊗ J(z′′,z′) ' J(z,z′)

needed to interpret the integral in (9). The naturality of the isomorphism corresponds
to the associativity of this product.

Then the smooth Azumaya bundle is defined in terms of its space of global sections

(11) C∞(X; S(γ)) = C∞(Y [2]; J(γ)).

As remarked above, J(γ), and hence also the Azumaya bundle, depends on the par-
ticular global trivialization (6). Two trivializations, γi, i = 1, 2 as in (6) determine

(12) γ12 : Y −→ U(1), γ12(y)γ2(y) = γ1(y)

which fixes an element [γ12] ∈ H1(Y ; Z) and hence a line bundle K12 over Y with
Chern class [γ12] ∪ [φ∗α]. Then

(13) J(γ2) ' (K−1
12 �K12)⊗ J(γ1)

with the isomorphism consistent with primitivity.
Pulling back to Y, φ∗ A(γ) is trivialized as an Azumaya bundle and this trivializa-

tion induces an isomorphism of twisted and untwisted K-theory

(14) K0(Y ;φ∗ A(γ))
'−→ K0(Y ).

In fact there are stable isomorphisms between the different smooth Azumaya bundles
and these induce natural and consistent isomorphisms

(15) K0(X; A(γ))
'−→ K0(X;α, β).

The proof may be found in Section 4.
The transition maps for the local presentation of the smooth Azumaya bundle,

S(γ), determined by the data (3) – (6), are given by multiplication by smooth func-
tions. Thus they also preserve the corresponding spaces of differential, or pseudod-
ifferential, operators on the fibres; the corresponding algebras of twisted fibrewise
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pseudodifferential operators are therefore well defined. Moreover, since the princi-
pal symbol of a pseudodifferential operator is invariant under conjugation by (non-
vanishing) functions there is a well-defined symbol map from the pseudodifferential
extension of the Azumaya bundle, with values in the usual symbol space on T ∗(Y/X)

(so with no additional twisting). The trivialization of the Azumaya bundle over Y,
and hence over T ∗(Y/X), means that the class of an elliptic element can also be in-
terpreted as an element of K0

c(T ∗(Y/X); ρ∗φ∗ A(γ)) where ρ : T (Y/X) −→ Y is the
bundle projection. This leads to the analytic index map,

(16) inda : K0
c(T ∗(Y/X); ρ∗φ∗ A(γ)) −→ K0(X; A(γ)).

The topological index can be defined using the standard argument by embedding
of the fibration Y into the product fibration π : RN ×X −→ X for large N. Namely,
the Azumaya bundle is trivialized over Y and this trivialization extends naturally to
a fibred collar neighborhood Ω of Y embedded in RN×X. Thus, the usual Thom map
K0

c(T ∗(Y/X)) −→ K0
c(T ∗(Ω/X) is trivially lifted to a map for the twisted K-theory,

which then extends by excision to a map giving the topological index as the composite
with Bott periodicity:

(17) indt : K0
c(T ∗(Y/X); ρ∗φ∗ A(γ)) −→ K0

c(T ∗(Ω/X); ρ∗π̃∗ A(γ))

−→ K0
c(T ∗(RN/X); ρ∗π∗ A(γ)) −→ K0(X; A(γ)).

In the proof of the equality of these two index maps we pass through an inter-
mediate step using an index map given by semiclassical quantization of smoothing
operators, rather than standard pseudodifferential quantiztion. This has the virtue
of circumventing the usual problems with multiplicativity of the analytic index even
though it is somewhat less familiar. A fuller treatment of this semiclassical approach
can be found in [21] so only the novelties, such as they are, in the twisted case are
discussed here. The more conventional route, as used in [20], is still available but is
technically more demanding. In particular it is worth noting that the semiclassical
index map, as defined below, is well-defined even for a general fibration – without as-
suming that φ∗β = 0. Indeed, this is essential in the proof, since the product fibration
RN ×X does not have this property.

For a fixed fibration the index maps induced by two different trivializations γ may
be compared and induce a commutative diagram

(18) K0
c(T ∗(Y/X))

' //

[K12]×

��

K0
c(T ∗(Y/X); ρ∗φ∗ A(γ1))

ind(γ1)// K0(X; A(γ1))

'
��

K0(X;α, β)

K0
c(T ∗(Y/X))

' // K0
c(T ∗(Y/X); ρ∗φ∗ A(γ2))

ind(γ2)// K0(X; A(γ2)).

'

OO

This follows from the proof of the index theorem.
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The smoothness of the Azumaya bundle here allows us to give an explicit Chern-
Weil formulation for the index in twisted cohomology. We recall that the twisted
deRham cohomology H∗(X; δ) is obtained by deforming the deRham differential to
d+ δ∧, where

δ = ᾱ ∧ β̄

2πi
.

Here ᾱ = u∗(θ) is the closed 1-form on X with integral periods, where θ is the Cartan-
Maurer 1-form on U(1) and β̄ is the closed 2-form with integral periods which is the
curvature of the hermitian connection γ on L.

We remark that our results easily extend to the case when the Dixmier-Douady
class is the sum of decomposable classes, ie when it is in the Z-span of H2(X; Z) ∪
H1(X; Z). The Azumya bundle in this case is the tensor product of the decomposable
Azumaya bundles as defined in this paper. The case of an arbitrary, not necessarily
decomposable, Dixmier-Douady invariant is postponed to a subsequent paper where
the twisted index theorem is treated in full. The general case uses pseudodifferential
operators valued in the Azumaya bundle, rather than the pseudodifferential operator
extension of the smooth Azumaya bundle as discussed here. Again, the semiclassical
index map extends without difficulty to this general case.

In outline the paper proceeds as follows. The special case of the circle bundle is
discussed in §1 and §2 contains the geometry of the general decomposable case. The
smooth Azumaya bundle corresponding to a decomposable Dixmier-Douady class is
constructed in §3 and some examples are also given. In §4, (15) is proved. The analytic
index maps is defined in §5 using spaces of projective elliptic operators but including
the case of twisted families of Dirac operators. The topological index is defined in
§6. The Chern-Weil representative of the twisted Chern Character is studied in §7.
Semiclassical versions of the index maps are introduced in §8 and §9 contains the
proof of the equality of these two indices. In §10, the Chern character of the index is
computed. In Appendix A the formulation of the Dixmier-Douady invariant in terms
of differential characters is explored and in Appendix B it is computed using Čech
cohomology (following a similar computation by Brylinski). Appendix C contains a
discussion of the conditions on a fibration under which a line bundle from the base is
trivial when lifted to the total space. It also contains the description of a canonical
projective family of Dirac operators on a Riemann surface.

1. Trivialization by the circle bundle

An element β ∈ H2(X; Z) for a compact manifold X, represents an isomorphism
class of line bundles over X. Let L be such a line bundle with Hermitian inner product
h and unitary connection ∇L. We proceed to outline the construction of the smooth
Azumaya bundle in the special case, alluded to above, where Y = L̃ is the circle
bundle of L. This is carried out separately since this case gives a natural choice of the
smooth Azumaya bundle, and hence the twisted K-group. The corresponding twisted
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cohomology is also identified with the cohomology of a subcomplex of the deRham
complex over L̃.

From u ∈ C∞(X; U(1)) construct the principal Z-bundle

(1.1) Z X̂

π

��
X

with total space the possible values of 1
2πi log u over points ofX and with C∞ structure

determined by the smoothness of a local branch of this function. Thus f = 1
2πi log u ∈

C∞(X̂; R) is a well defined smooth function and under deck transformations

(1.2) f(x̂+ n) = f(x̂) + n ∀ x̂ ∈ X̂, n ∈ Z.

Let p : L̃ −→ X be the circle bundle of L; pulled back to L̃, L is canonically trivial. If
∇L is an Hermitian connection on L then pulled back to L̃ it is of the form d+ γ on
the trivialization of L, with γ ∈ C∞(L̃,Λ1) a principal U(1)-bundle connection form
in the usual sense. That is, under the action

(1.3) m : U(1)× L̃ −→ L̃,

m∗γ = idθ + γ. This corresponds to the ‘fiber shift map’ on the fiber product

(1.4) s : L̃[2] = L̃×X L̃ −→ U(1), l̃1 = s(l̃1, l̃2)l̃2 in L̃x
in that d log s = p∗1γ − p∗2γ is the difference of the pull-back of the connection form
from the two factors. From the character s a bundle, J, can be constructed from
the trivial bundle over the fiber product Q = L̃ ×X L̃ ×X X̂ corresponding to the
identification

(1.5) (l̃1, l̃2, x̂+ n, z) ' (l̃1, l̃2, x̂, s(l̃1, l̃2)nz).

Thus, J is associated to Q as a principal Z-bundle over L̃[2]. The primitivity property
(8) follows from the multiplicativity property of s, that s(l1, l2)s(l2, l3) = s(l1, l2) for
any three points in a fixed fiber, which in turn follows from (1.4). The connection
d + fd log s on the trivial bundle over Q descends to a connection on J which has
curvature equal to a difference

(1.6) ωJ =
1

2πi
α ∧ d log s = α ∧ 1

2πi
(p∗1γ − p∗2γ), α = df.

By definition, the space of global sections of the smooth Azumaya bundle is

(1.7) C∞(X; A) = C∞(L̃[2]; J),

where the product on the right hand side is given by composition of Schwartz kernels.
The ‘Dixmier-Douady twisting’, given the decomposed form, corresponds to two

different trivializations of J. Over any open set U ⊂ X where u has a smooth loga-
rithm, J is trivial using the section of X̂ this gives. On the other hand, over any open
set U ⊂ X over which L̃ has a smooth section τ, the character in (1.5) is decomposed
as the product s(l̃1, l̃2) = sτ (l̃1)sτ (l̃2)−1 where sτ (l̃) = s(l̃, τ(p(l̃)). This allows a line
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bundle K to be defined over the preimage of U in L̃ by the identification of the trivial
bundle

(1.8) (l̃, x̂+ n, z) ' (l̃, x̂, sτ (l̃)nz).

Clearly then J may be identified with K � K ′, where K ′ is the dual, over U. In
terms of a local trivialization in both senses over a small open set U ⊂ X, in which
LU = U × C, L̃U = U × S, X̂U = U × Z, a(x, θ, θ′) ∈ C∞(U × Z× S× S) satisfies

(1.9) a(x, n, θ, θ′) = einθa(x, 0, θ, θ′)e−inθ
′
.

This twisted conjugation means that A is a bundle of algebras, modelled on the
smoothing operators on the circle with (1.9) giving local algebra trivializations. In this
case the Azumaya bundle is associated with the principal U(1)×Z bundle L̃×X X̂ and
to the projective representation of this structure group through its central extension
to the Heisenberg group.

The corresponding construction in the general case is quite similar and is described
in §3.

The 3-twisted cohomology on X, with twisting form δ = α ∧ β, is the target for
the twisted Chern character discussed below. Here α is a closed 1-form and β is the
curvature 2-form on X for the Hermitian connection on L. Thus, on L̃, dγ = (2πi)p∗β.

In fact the δ-twisted deRham cohomology on X can be expressed as the cohomology
of a subcomplex of the ordinary (total) deRham complex on L̃.

Proposition 1. — The even and odd degree subspaces of C∞(L̃,Λ∗) fixed by the con-
ditions with respect to the infinitesmal generator of the U(1) action on L̃

(1.10) L∂/∂θṽ = 0, ι∂/∂θṽ =
p∗α

2π
∧ ṽ, ṽ ∈ C∞(L̃,Λ∗)

are mapped into each other by the standard deRham differential which has cohomology
groups canonically isomorphic to the δ-twisted deRham cohomology on X.

Proof. — The conditions in (1.10) are preserved by d since it commutes with the Lie
derivative and given the first condition

(1.11) ι∂/∂θdṽ = L∂/∂θṽ − d(
p∗α

2π
∧ ṽ) =

p∗α

2π
∧ dṽ.

If ṽ satisfies (1.10) then v′ = ṽ − γ
2πi ∧ p

∗α ∧ ṽ satisfies

(1.12) L∂/∂θv′ = 0, ι∂/∂θv
′ = 0 =⇒ v′ = p∗v, v ∈ C∞(X; Λ∗).

Conversely if v ∈ C∞(X; Λ∗) then ṽ = p∗v+ γ
2πi ∧α∧ p

∗v satisfies (1.10). Thus every
form satisfying (1.10) can be written uniquely

(1.13) ṽ = exp

Å
γ ∧ p∗α

2πi

ã
p∗v = p∗v +

γ ∧ p∗α
2πi

∧ p∗v.

Under this isomorphism d is clearly conjugated to d+δ∧ proving the Proposition.
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2. Geometry of the decomposed class

For a given line bundle L over X consider a fiber bundle (5) such that L is trivial
when lifted to the total space. As discussed above, the circle bundle L̃ is an example.
A more general discussion of this condition can be found in Appendix C. An explicit
trivialization of the lift, γ, as in (6) is equivalent to a global section which is the
preimage of 1 :

(2.1) s′ : Y −→ φ∗(L̃).

Over each fiber of Y, the image is fixed so this determines a map

s(z1, z2) = s′(z1)(s′(z2))−1

which is well-defined on the fiber product and is a groupoid character:

(2.2)
s : Y [2] −→ U(1),

s(z1, z2)s(z2, z3) = s(z1, z3) ∀ zi ∈ Y with φ(zi) = x, i = 1, 2, 3, ∀ x ∈ X.

Conversely one can start with a unitary character s of Y [2] and recover L as the
associated Hermitian line bundle

(2.3)
L = Y × C/ 's,

(z1, t) 's (z2, s(z2, z1)t) ∀ t ∈ C, φ(z1) = φ(z2).

The connection on L lifts to a connection

(2.4) φ∗∇L = d+ γ, γ ∈ C∞(Y ; Λ1), π∗1γ − π∗2γ = d log s on Y [2]

on the trivial bundle φ∗(L). Conversely any 1-form on Y with this property defines a
connection on L.

Now, let Q = Y [2]×X X̂ be the fiber product of Y [2] and X̂, so as a bundle over X
it has typical fiber Z2 × Z; it is also a principal Z-bundle over Y [2]. The data above
determines an action of Z on the trivial bundle Q× C over Q, namely

(2.5) Tn : (z1, z2, x̂;w) −→ (z1, z2, x̂+ n, s(z1, z2)−nw) ∀ n ∈ Z.

Let J be the associated line bundle over Y [2]

(2.6) J = (Q× C)/ ', (z1, z2, x̂;w) ' Tn(z1, z2, x̂;w) ∀ n ∈ Z.

The fiber of J at (z1, z2) ∈ Y [2] such that φ(z1) = φ(z2) = x is

(2.7) Jz1,z2 = X̂x × C/ ', (x̂+ n,w) ' (x̂, s(z1, z2)nw).

Lemma 1. — The connection d+ fd log s on Q× C descends to a connection ∇J on
J which has curvature

(2.8) F∇J = π∗1µ− π∗2µ, µ = df ∧ γ

2πi
∈ C∞(Y ; Λ2), Y [2]

π1 //
π2

//Y.

Moreover dµ = φ∗(δ), for the uniquely determined 3-form on X, δ = α ∧ β ∈
C∞(X; Λ3), where df = φ∗(α) and dγ = 2πiφ∗(β) represent the characteristic class
of X̂ and the first Chern class of L respectively.
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Proof. — Clearly the 1-form fd log s has the correct transformation law under the
Z action on Y [2] ×X X̂ to give a connection on J. Its curvature is α ∧ d log s

2πi where
α = 1

2πid log u. If γ is the connection form for the trivialization of L on Y then

(2.9) d log s = π∗1γ − π∗2γ in Y [2]

from which (2.8), together with the remainder of the Lemma, follows.

3. Smooth Azumaya bundle

We proceed to show how to associate to the data (3) – (6) discussed above a
smooth Azumaya bundle over X. That is, we construct a locally trivial bundle with
fibres modelled on the smoothing operators on the sections of a line bundle over the
fibres of Y and having completion with Dixmier-Douady invariant α ∪ β. Note that
this Azumaya bundle does depend on the trivialization data in (6); we will therefore
denote it J(γ). The effect of changing this trivialization is discussed in Lemma 4
below.

First consider local trivializations of the data.

Proposition 2. — A section of φ, over on open set U ⊂ X, τ : U −→ φ−1(U), induces
a trivialization of L over U and an isomorphism of J(γ) over the open subset V =

φ−1(U)×U φ−1(U) of Y [2], with

(3.1) J
∣∣
V
∼=τ Hom(Kτ ) = Kτ �K ′τ

for a line bundle Kτ over φ−1(U) ⊂ Y, where K ′τ denotes the line bundle dual to Kτ .

Another choice of section τ ′ : U −→ φ−1(U), determines another line bundle Kτ ′ over
φ−1(U) ⊂ Y, satisfying

(3.2) Kτ = Kτ ′ ⊗ φ∗(Lτ,τ ′),

where Lτ,τ ′ = (τ, τ ′)∗J is the fixed local line bundle over U.

Proof. — A local section of φ induces a local trivialization of the character s,

(3.3) s(z1, z2) = χτ (z1)χ−1
τ (z2), χτ (z) = s(z, τ(φ(z))) on φ−1(U) ⊂ Y.

This trivializes L over U, identifying it with τ∗C with connection d+ τ∗γ.

The line bundle Kτ over φ−1(U) associated to the Z bundle φ−1(U) ×U X̂U by
the identification (z, x̂ + n,w) ' (z, x̂, χτ (z)nw) then satisfies (3.1). The line bundle
Kτ ′ is similarly defined over φ−1(U), satisfying (3.1) with τ ′ substituted for τ . The
relation (3.2) follows from (3.1) and its modification with τ ′ substituted for τ .

Such a section of Y will induce a local trivialization of the smooth Azumaya bundle
in which it becomes the smoothing operators on the fibres of Y acting on sections of
Kτ :

(3.4) Sτ = Ψ−∞(φ−1(U)/U ;Kτ ).
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Using Proposition 2, we get the local patching,

(3.5) Sτ = Sτ ′ ⊗Ψ−∞(φ−1(U)/U ;φ∗(Lτ,τ ′)).

Rather than use this as a definition we adopt an a priori global definition by
trivializing over Y.

Definition 1. — For any x ∈ X, the fiber of the smooth Azumaya bundle associated
to the geometric data in §2 is

(3.6) Sx = C∞(Y 2
x ; J

∣∣
Y 2
x
⊗ ΩR)

where ΩR is the fiber density bundle on the right factor of Y 2
x . Globally, we have a

natural identification,

(3.7) C∞(X, S) ∼= C∞(Y [2], J ⊗ ΩR).

Thus a smooth section of S over any open set U ⊂ X is just a smooth section of
J ⊗ ΩR, where ΩR = π∗RΩ, over the preimage of U in Y [2].

Of course, we need to show that S is a bundle of algebras over X with local
trivializations as indicated in (3.4). To see this globally, observe that J has the same
‘primitivity’ property as for L̃ in §1 with respect to the groupoid structure.

Lemma 2. — If

(3.8) Y [3]

πS //
πC //
πF //

Y [2]

are the three projections (respectively onto the two left-most, the outer two and the
two right-most factors – the notation stands for ‘second’, ‘composite’ and ‘first’ for
operator composition) then there is a natural isomorphism

(3.9) π∗SJ ⊗ π∗FJ
'−→ π∗CJ

and moreover J carries a connection ∇J which respects this primitivity property.

Proof. — The identity (3.9) is evident from the definition of J and Proposition 2.
The naturality property for (3.9) corresponds to an identity on Y [4]. Namely if J ′ is
the dual of J then the tensor product of the pull-backs under the four projections
Y [4] −→ Y [3] of the combination π∗SJ⊗π∗FJ⊗π∗CJ ′ over Y [3] is naturally trivial. That
this trivialization is equal to the tensor product of the four trivializations from (3.9)
follows again from the definition of J.

By Proposition 2, a section τ : U −→ Y of φ over the open subset U of X defines
an isomorphism J

∣∣
V
∼=τ Hom(Kτ ) = Kτ �K ′τ where V = φ−1(U) ×U φ−1(U) is the

open subset of Y [2]. A choice of connection ∇τ on Kτ induces a connection ∇V on
J
∣∣
V

which clearly respects the primitivity property. A global connection preserving
the primitivity property can then be constructed using a partition of unity on X.
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As a consequence of Lemma 2 there is a lifting map

(3.10) C∞(Y [2]; J ⊗ ΩR)
π∗F−→ C∞(Y [3];πSJ

′ ⊗ πCJ ⊗ π∗FΩR)
'−→ Ψ−∞(Y [2]/Y ; J ′)

which embeds into an algebra, namely the smoothing operators on sections of J ′ on
the fibres of Y [2] as a fibration over Y (projecting onto the first factor).

Proposition 3. — Lifting C∞(Y [2]; J ⊗ ΩR) to Y [3] under the projection off the left-
most factor (the ‘first’ projection in terms of composition) embeds it as a subalgebra
of the smoothing operators on sections of J ′ as a bundle over Y [2] on the fibres of the
projection onto the right factor such that the lift of the bundle of algebras over X is
equal to the bundle of algebras over Y.

This justifies (3.4). As discussed below it also shows that, as an Azumaya bundle, the
completion of S is A = A(γ).

Proof. — It only remains to show that composition of two local sections of S in the
algebra of fiber smoothing operators gives another section of the Azumaya bundle.
However, this follows from (3.4), which in turn is a consequence of Lemma 2 applied
to the local decomposition of J in (3.1).

An infinite rank Azumaya bundle A, over a topological space X, is a bundle of
star algebras with local isomorphisms with the trivial bundle of compact operators,
K ( H ), on a fixed separable but infinite-dimensional Hilbert space H . The Dixmier-
Douady invariant of A is an element of H3(X; Z). It classifies the bundle up to sta-
ble isomorphism (i.e. after tensoring with K ) and can be realized in terms of Čech
cohomology or alternatively in terms of classifying spaces as follows. The group of
∗-automorphism of K is PU( H ) = U( H )/U(1), the projective unitary group of the
Hilbert space acting by conjugation. Thus the fiber trivializations of A form a prin-
cipal PU( H )-bundle over X. Since PU( H ) = K(Z, 2) is an Eilenberg-Maclane space,
this bundle, and hence A, is classified up to isomorphism by an homotopy class of
maps X −→ B PU( H ) = K(Z, 3) which represents, and is equivalent to, the Dixmier-
Douady invariant.

The Chern class of a line bundle L over a space X has a similar representation.
Taking an Hermitian structure and passing to the associated circle bundle L̃ over X
one can consider the Hilbert bundle L2(L̃/X) of Lebesgue square integrable functions
on the fibres of the circle bundle. Each point l ∈ L̃ defines a unitary operator on
the fiber through that point, namely multiplication by U(l̂) = exp(iθl̂)× where the
normalization is such that exp(iθl̂)(l̂) = 1. Changing l̂ within the fiber changes U(l̂)

to exp(iθ′)U(l̂′) so this defines a map

(3.11) X −→ PU(L2(L̃/X))

into the bundle of projective unitary operators on the fibres of the Hilbert bundle.
By Kuiper’s theorem any Hilbert bundle is trivial (in the uniform topology) and
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the trivialization is natural up to homotopy. Thus the map (3.11) lifts to a unique
homotopy class of maps

(3.12) X −→ PU( H ) = K(Z, 2)

and this represents, and is equivalent to, the first Chern class. This follows from
the evident fact that L̃ is isomorphic to the pull-back of the canonical circle bunde,
U( H )/PU( H ) over PU( H ).

Now consider the decomposed case under consideration here. Over the given space
X we have both a map u ∈ C∞(X; U(1)) and a line bundle L. Passing to the classifying
map (3.11) this gives a unique homotopy class of maps

(3.13) X −→ U(1)× PU( H ).

Proposition 4. — The completion of the smooth Azumaya bundle S associated above
to (3) – (6) to an Azumaya bundle A = A(γ), has Dixmier-Douady invariant α∪β ∈
H3(X; Z) which is represented by the composite of (3.13) with the classifying map
U(1)×PU( H ) −→ K(Z, 3) induced by the projectivisation of the basic representation
of the Heisenberg group Z×U(1) −→ PU( H ).

Proof. — The classifying spaceBG of a topological groupG is defined up to homotopy
as the quotient ∗/G of a contractible space on which G acts freely. In particular it
follows that (always up to homotopy)

(3.14) B(G1 ×G2) ' BG1 ×BG2

and if H ⊂ G is a closed subgroup then there is a well defined homotopy class of maps

(3.15) BH −→ BG.

Recall that the basic representation of the Heisenberg group H arises from the
actions of U(1) and Z on L2(S) (or C∞(S)) respectively by translation and multipli-
cation by einθ. These commute up to scalars, which is the action of the center of H
as a central extension

(3.16) U(1) −→ H −→ Z×U(1)

and so embeds

(3.17) Z×U(1) ↪→ PU( H )

as a subgroup of the projective unitary group on L2(S). By (3.14) and (3.15) this
induces an homotopy class of continuous maps

(3.18) ∆ : U(1)× PU ' B(Z×U(1)) −→ K(Z, 3).

So the claim in the Proposition is that under this map the pull-back of the degree 3
generator of the cohomology of K(Z, 3) is the Dixmier-Douady invariant of A and is
equal to α ∪ β in H3(X,Z).

The first statement follows from the fact that the PU bundle to which A is associ-
ated is obtained from the Z×U(1) bundle X̂ ×X L̃ by extending the structure group
using (3.17). The second statement follows from the fact that under the map (3.18)
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the generating 3-class δDD ∈ H3(K(Z, 3),Z) pulls back to α′ ∪β′ where α′ ∈ H1(S,Z)

and β′ ∈ H2(PU,Z) are the generators, that is,

(3.19) ∆∗δ = α′ ∪ β′.

Indeed, the degree 3-cohomology of U(1)×PU has a single generator, so (3.19) must
be correct up to a multiple on the right side. Thus it is enough to check one example,
to determine that the multiple is equal to one. Take X = S× S2 with u the identity
on S and L the standard line bundle over the sphere. We know that the induced map
(3.12) for the sphere generates the second homotopy group of PU and pulls back to
the fundamental class on S2. Thus it suffices to note that the PU bundle over S× S2

with which our smooth Azumaya bundle is associated in this case is just obtained by
the clutching construction from the trivial bundle over [0, 2π]×S2 using this map.

An interesting special case of this construction, close to the lifting to the circle
bundle described in §1, arises when β ∈ H2(X; Z) is thought of as the first Chern
class of a complex vector bundle rather than a line bundle. Then Y can be taken to
be the associated principal bundle

U(n) P

��
X.

Since the abelianization of U(n) is canonically isomorphic to U(1), any character
(i.e. 1-dimensional unitary representation) of U(n) factorizes through U(1), and con-
versely, any character of U(1) lifts to a character of U(n). A U(1)-central extension
of the group U(n) × Z arises in the form of a generalized Heisenberg group. Namely
the group product on Hn = U(n)× Z×U(1) can be taken to be

(g1, n1, z1)(g2, n2, z2) = (g1g2, n1 + n2,det(g1)n2z1z2).

Then
1 −→ U(1) −→ Hn −→ U(n)× Z −→ 1

is a central extension.

4. Stable Azumaya isomorphism

We proceed to show that the twisted K-groups, K0(X; A(γ)), defined through the
possible data (3) – (6) corresponding to a fixed decomposition (1) are all naturally
isomorphic, as indicated in (15). This is a consequence of the Morita invariance of
the C∗ K-groups and the existence of stabilized isomorphisms between the various
Azumaya bundles.

For a smooth 1-parameter family of trivializations, as in (6), so depending smoothly
on t ∈ [0, 1], the K-groups K0(X; A(γ(t))) are all naturally isomorphic. Since two such
trivializations differ by a smooth map Y −→ U(1), the K-group can only depend on
the homotopy class of this map, when the other data is fixed. It is also the case
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that K-theory of C∗ algebras admits Morita equivalence. That is, the K-group of A
is naturally isomorphic to the K-group of A ⊗ K . Kuiper’s theorem shows that the
completion of the smoothing operators on any fiber bundle over a space, and acting
on sections of any vector bundle, V, over the fiber bundle, is naturally isomorphic up
to homotopy to the trivial Azumaya bundle K . It follows that the ‘twisted’ K-theory
of a space, computed with respect to such a bundle is naturally isomorphic to the
untwisted K-theory. More generally, taking the smooth Azumaya bundle S(γ) and
tensoring with the bundle of smoothing operators, Ψ−∞(ψ;V ), on any other fiber
bundle ψ : Y ′ −→ X, over the same base, gives an Azumaya bundle with the same
twisted K-theory, K0(X; A(γ)). This proves:

Lemma 3. — If ψ : Y ′ −→ X is a fibration of compact manifolds and S(γ) is the
Azumaya bundle associated to data (3) – (6) then there is a natural isomorphism of
twisted K-theory

(4.1) K0(X; A(γ))
'−→ K0(X; A(γ′))

where γ′ is the trivialization obtained by pulling back γ to the product bundle Y ×X
Y ′ −→ X.

Applying this result to the initial Azumaya bundle in § 1 and the general case, shows
that K0(X;α, β) and K0(X; A(γ)) are each naturally isomorphic to some (possibly
different) K0(X; A(γ′)) where γ′ is a trivialization of the lift of L̃ to L̃×X Y, obtained
in the two cases by lifting the trivialization from L̃ or Y to the fibre product. Thus it
remains to consider two different trivializations over the same fibration.

Proposition 5. — If γi are two trivializations of φ∗L over Y as in (6) then there is an
embedding of algebras, unique up to homotopy,

(4.2) S(γ2) −→ S(γ1) � Ψ−∞(T2;K)

for a line bundle over the 2-torus which induces natural isomorphisms

(4.3) K0(X; A(γ2))
'−→ K0(X; A12))

'−→ K0(X; A(γ1))

where A12 is the completion of S(γ1) � Ψ−∞(T2;K).

Proof. — This is really an adaptation of the proof of the index theorem via embed-
ding. First, we recall the discussion above, which shows that the primitive line bundle
J(γ2) is isomorphic to J(γ1)⊗ (K12 �K ′12) for a line bundle K12 over Y pulled back
from a line bundle K over T by a smooth map κ12 : Y −→ R2. This map embeds Y
as a subfibration of φ ◦π1 : Y ×T2 −→ X. Let N −→ Y be the normal bundle to this
embedding. Given a metric this carries a field of harmonic oscillators on the fibres,
the ground states of which give the desired embedding.

Let v(z, ζ) be the L2-orthonormalized ground state on the fiber over z ∈ Y. Then

(4.4) C∞(Y [2]; J(γ)) 3 a(z1, z2) 7−→ ã = v(z1, ζ1)a(z1, z2)v(z2, ζ2) ∈ S(V [2]; J(γ2))

is an embedding. Moreover, this is an embedding of algebras with the algebra structure
on the right given by Schwartz-smoothing operators. Now consider the bundle J(γ1)�
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K �K ′ over Y [2] × T2 × T2. Restricted to the image of the embedding of Y [2] given
by κ12 acting in both fibres, this is isomorphic to J(γ2) since by construction K pulls
back to K12 over Y. Now, consider an embedding of V, using the collar neighborhood
theorem, as a neigborhood, Ω ⊂ Y × T2, of the image of Y [2] under this embedding.
The bundle K, pulled back to Y × T2 by the projection onto T2 can be deformed to
a bundle K̃, which is equal over Ω to the pull back under the normal retraction of its
restriction, K12, to the image of Y. Then the embeddign (4.4) embeds C∞(Y [2]; J(γ2)

as a subalgebra of C∞((Y ′)[2]; J(γ1) ⊗ K̃ � K̃ ′), Y ′ = Y × T2. Moreover, using the
full spectral expansion of the harmonic oscillator, the completion of the image is
Morita equivalent to the whole subalgebra with support in the compact manifold
with boundary which is the closure of Ω ⊂ Y ′. This in turn is Morita equivalent
to the whole algebra and hence, after another deformation of K̃ back to K over T2

to A12 in (4.3). This gives the first isomorphism in (4.3). The second follows from
stabilization by the compact operators on K over T2 as discussed above, completing
the proof.

Proof of (15). — As noted above this is a corollary of Proposition 5 and the preceed-
ing discussion. Namely this provides a stabilized isomorphism, unique up to homotopy,
of the Azumaya bundle in §1 with that constructed over L̃×X Y by lifting the trivial-
ization over L̃ to the fiber product. The same is true by lifting the trivialization over
Y to the fiber product. Then the Proposition constructs a stable isomorphism, again
unique up to homotopy, of the two lifts to L̃×X ×Y ×T2. These stable isomorphisms
project to a unique isomorphism of the twisted K-groups, as in (15), consistent under
composition.

Lemma 4. — The Azumaya bundle S(γ), lifted to Y, is completion isomorphic to the
trivial bundle K , with the isomorphism fixed up to homotopy, and this induces the
natural isomorphisms (14).

Proof. — The primitivity condition on J shows that when lifted to the second two
factors of Y [3] it is isomorphic to the bundle over Y [3] of which the elements of
Ψ(Y [2]/Y ; J ′), the smoothing operators on the fibers of Y [2] as a bundle over Y, are
(density-valued) sections. As noted above, Kuiper’s theorem shows that the comple-
tion of Ψ(Y [2]/Y ; J ′) is naturally, up to homotopy, isomorphic to the trivial Azumaya
bundle K , from which (14) follows.

5. Analytic index

We now proceed to define the analytic index map (16) using the constructions in
§2, §3 and §4. The first step is to define the projective bundle of pseudodifferential
operators. We do this by direct generalization of Definition 1. So, for any Z2-graded
bundle E = (E+, E−) over Y set

(5.1) Ψ`(Y/X; A ⊗ E) = I`(Y [2],Diag; J ⊗Hom(E)⊗ ΩR)
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where Hom(E) = E− � E′+ over Y [2] and I` is the space of (classical) conormal
distributions. As is typical in projective index theory, the Schwartz kernel of the
projective family of elliptic operators is globally defined, even though one only has
local families of elliptic operators with a compatibility condition on triple overlaps
given by a phase factor. More precisely, definition (5.1) means that on any open set in
Y [2] over which J is trivialized as Hom(Kτ ) as in Proposition 2, the kernel is that of a
family of pseudodifferential operators on the fibres of Y acting from sections of E+ to
sections of E−. It follows from the standard case that (3.4) also extends immediately
to show that if τ : U −→ Y is a section over an open set, then

(5.2) Ψ`(φ−1(U)/U ; A ⊗ E) ∼=τ Ψ`(φ−1(U)/U ;Kτ ⊗ E)
σ`−→ C∞(S∗(φ−1(U)/U); hom(E)⊗N`),

where we have used the fact that hom(Kτ ) is canonically trivial. The principal symbol
map here is invariant under conjugation by functions and hence well-defined indepen-
dent of the trivialization; N` is the trivial line bundle corresponding to functions of
homogeneity ` on T ∗(φ−1(U)/U) and hom(E) is the bundle (over S∗(φ−1(U)/U)) of
homomorphisms from E+ to E−. Thus the usual composition properties of pseudod-
ifferential operators extend without any difficulty as do the symbolic properties. More
precisely,

Lemma 5. — The spaces of smooth sections of Ψ`(Y/X; A ⊗E) form graded modules
under composition and the principal symbol defined through (5.2) is independent of τ
and gives a multiplicative short exact sequence for any ` :

(5.3) Ψ`−1(Y/X; A ⊗ E) ↪→ Ψ`(Y/X; A ⊗ E)
σ`−→ C∞(S∗(Y/X; p∗ hom(E)⊗N`)).

Proof. — The theory of conormal distributional sections of a complex vector bundle
with respect to a submanifold, implicit already in Hörmander’s paper [18], shows that
these have well-defined principal symbols which are homogeneous sections over the
conormal bundle of the submanifold, in this case the fibre diagonal, of the pull-back
of the bundle tensored with a density bundle. In this case, as for pseudodifferential
operators, the density bundles cancel. Moreover the bundle J is canonically trivial
over the (fiber) diagonal in Y [2] by the primitivity property of J. The symbol in
(5.3) therefore does not involve any twisting – it takes values in the same space as in
the untwisted case, and is a well-defined homogeneous section of the homomorphism
bundle of E (hence section of that bundle tensored with the homogeneity bundle Nl)
on the fibre cotangent bundle – which is canonically the conormal bundle of the fibre
diagonal, as claimed.

With the trivialization κ fixed, the symbol of a projective family of elliptic pseu-
dodifferential operators determines an element in K0

c(T ∗(Y/X)) We now show that
the index of such a projective elliptic family is an element in twisted K-theory of
the base, K0(X, A). More precisely, let P ∈ Ψm(Y/X; A ⊗ E) be a projective fam-
ily of elliptic operators. This means that the symbol is invertible in the usual sense,
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so from the standard ellipticity construction (using iteration over ` in the sequence
(5.3)) P has a parametrix Q ∈ Ψ−m(Y/X; A⊗E−), where E− = (E−, E+), such that
S0 = 1−QP ∈ Ψ−∞(Y/X; A ⊗E+) and S1 = 1− PQ ∈ Ψ−∞(Y/X; A ⊗E−). Then
the index is realized using the idempotent

E1 =

(
1− S2

0 Q(S1 + S2
1)

S1P S2
1

)
∈M2(Ψ−∞(Y/X; A ⊗ E)†).

Here, † denotes the unital extension of the algebra. It is standard to verify that E1 is
an idempotent.

Then, as in the usual case, the analytic index of P expressed in terms of idempotents
is

(5.4)

inda (P ) = [E1 − E0] ∈ K0(Ψ−∞(Y/X; A ⊗ E)) where

E0 =

(
1 0

0 0

)
∈M2(Ψ−∞(Y/X; A ⊗ E)†).

That inda (P ) is a well-defined element in the K-theory follows from invariance of
K-theory under Morita equivalence of algebras. Thus, the inclusion

C∞(X, A) = Ψ−∞(Y/X; A) ↪→ Ψ−∞(Y/X; A ⊗ E),

induces a natural isomorphism of K0(Ψ−∞(Y/X; A⊗E)) and K0(X; A). Therefore we
have defined the analytic index of any projective family of elliptic pseudodifferential
operators.

To see that this fixes the map,

(5.5) inda : K0
c(T ∗(Y/X); ρ∗φ∗ A) −→ K0(X, A)

we need, as usual, to check homotopy invariance, invariance under bundle isomor-
phisms and stability. However, this all follows as in the standard case.

Of particular geometric interest are examples arising from projective families of
(twisted) Dirac operators. If the fibres of Y are even-dimensional and consistently
oriented, let Cl(Y/X) denote the bundle of Clifford algebras associated to some family
of fiber metrics and let E be a Z2-graded hermitian Clifford module over Y with
unitary Clifford connection ∇E.

This data determines a family of (twisted) Dirac operators ðE acting fibrewise on
the sections of E. We can further twist ðE by a connection ∇τ of the line bundle Kτ

over φ−1(U) ⊂ Y for contractible open subsets U ⊂ X. In this way, we get a projective
family of (twisted) Dirac operators ð A⊗E ∈ Ψ1(Y/X; E⊗ A) which can be viewed as a
family of twisted Dirac operators acting on a projective Hilbert bundle P(φ∗(E⊗Kτ ))

over X. Here the local bundle φ∗(E⊗Kτ ) is given by U ×L2(φ−1(U)/U ; E⊗Kτ ) for
contractible open subsets U ⊂ X.

The above projective Dirac family can be globally defined as follows. Consider the
delta distributional section δE,J

Z ∈ I•(Y [2], J ⊗Hom(E)⊗ΩR), which is supported on
the fibrewise diagonal in Y [2]. Let L∇E denote the unitary Clifford connection acting
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on the left variables, and ∇J a connection on J which is compatible with the primitive
property of J . Then

(1⊗ L∇E +∇J ⊗ 1)δE,J
Z ∈ I•−1(Y [2], J ⊗Hom(E)⊗ T ∗(Y/X)⊗ ΩR),

and composition with the contraction given by Clifford multiplication gives

c ◦ (1⊗ L∇E +∇J ⊗ 1)δE,J
Z ∈ I•−1(Y [2], J ⊗Hom(E)⊗ ΩR),

which represents the Schwartz kernels of the projective family of (twisted) Dirac
operators denoted above by ð A⊗E.

6. The topological index

In this section we define the topological index map for the setup in the previous
section,

(6.1) indt : K0
c(T (Y/X); ρ∗φ∗ A) −→ K0(X; A).

It is defined in terms of Gysin maps in twisted K-theory, which have been studied in
the case of torsion twists in [20], which extends routinely to the general case as in
[10, 8]. In the particular case that we consider here, there are several simplifications
that we shall highlight.

We first recall some functorial properties of twisted K-theory. Let F : Z −→ X be
a smooth map between compact manifolds. Then the pullback map,

F ! : K0(X, A) −→ K0(Z,F ∗ A),

is well defined.

Lemma 6. — There is a canonical isomorphism,

j! : K0(X, A) ∼= K0
c(X × R2N , π∗1 A),

determined by Bott periodicity, where the inclusion j : X → X×R2N is onto the zero
section. Here π1 : X × R2N → X is the projection onto the first factor.

Proof. — First notice that K•(X, A) = K•(C
∞(X, A)) and K•c(X × R2N , π∗1 A) =

K•(C
∞
c (X × R2N ;π∗1 A)). But C∞c (X × R2N ;π∗1 A) = C∞(X, A)⊗ C∞c (R2N ). So the

lemma follows from Bott periodicity for the K-theory of (smooth) operators algebras.

For the fiber bundle φ : Y −→ X of compact manifolds, we know that there is an
embedding i : Y −→ X × RN , cf. [5] §3. The fibrewise differential is an embedding
Di : T (Y/X) −→ X × R2N with complex normal bundle N .

Let A be the smooth Azumaya algebra over X as defined earlier in §3; there is a
fixed trivialization of φ∗ A. Let A N be the lift of φ∗ A to N . Let ρ : T (Y/X) −→ Y be
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the projection map. Then since φ∗ A is trivialized, we have the commutative diagram

(6.2)

K0
c(T (Y/X), ρ∗φ∗ A)

Di!:−−−−→ K0
c( N , A N )

∼=κ−1

y y∼=
K0
c(T (Y/X))

Di!:−−−−→ K0
c( N ),

where Di! in the lower horizontal arrow is given by ξ = (ξ+, ξ−, G) 7−→ π∗ξ ⊗
(π∗ S+, π∗ S−, c(v)). Here ξ = (ξ+, ξ−) is pair of vector bundles over T (Y/X), G :

ξ+ −→ ξ− a bundle map between them which is an isomorphism outside a compact
subset and (π∗ S+, π∗ S−, c(v)) is the usual Thom class of the complex vector bundle
N , where π is the projection map of N and S± denotes the bundle of half spinors
on N . On the the right hand side the the graded pair of vector bundle data is

(π∗ξ+ ⊗ π∗ S+ ⊕ π∗ξ− ⊗ π∗ S−, π∗ξ+ ⊗ π∗ S− ⊕ π∗ξ− ⊗ π∗ S+)

with map between them being [
G c(v)

c(v) G

]
, v ∈ N .

This is an isomorphism outside a compact subset of N and defines a class in K0
c( N )

which is independent of choices, provided the trivialization of φ∗( A) is kept fixed.
Then the usual Thom isomorphism theorem asserts that Di! is an isomorphism. The
upper horizontal arrow is defined in the same way by tensoring with the same Thom
class.

Now, N is diffeomorphic to a tubular neighborhood U of the image of Y ; let
Φ : U −→ N denote this diffeomorphism. Then the induced map in K-theory gives
isomorphisms,

Φ∗ : K0
c( N ) ∼= K0

c( U), Φ∗ : K0
c( N , A N ) ∼= K0

c( U,Φ∗( A N )).

We will next show that the inclusion i U : U → X × R2N of the open set U in
X ×R2N induces a natural extension map

(i U)! : K0
c( U,Φ∗( A N )) −→ K0

c(X ×R2N , π∗1 A)

To see this, we need to show that the restriction i∗Uπ
∗
1 A is trivialized. Note that

φ◦τ = π1 ◦ i U , where τ : U −→ Y is equal to the composition, λ◦Φ, and λ : N −→ Y

the projection map. Since (φ◦τ)∗ A = τ∗φ∗ A is trivializable because φ∗ A is trivialized,
it follows that i∗Uπ

∗
1 A is trivialized.

We have the following commutative diagram.
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(6.3) K0
c(T (Y/X))

Di!

∼=
//

∼=ρ∗κ∗

��

K0
c( N )

∼=

��

Φ∗

∼=
// K0

c( U)

∼=

��
K0
c(T (Y/X), ρ∗φ∗ A)

ĩndt

''

Di!

∼=
// K0

c( N , A N )
Φ∗

∼=
// K0

c( U,Φ∗( A N ))

(i U)!

��
K0

c(X ×R2N , π∗1 A)

j−1
!

∼=

��
K0

c(X, A).

The composition of the maps in the diagram above defines the Gysin map in twisted
K-theory,

Di! : K0
c(T (Y/X)) −→ K0

c(X × R2N , π∗1 A).

Here we have used the fact that since π = π1 ◦ i it follows that Di∗π∗1 A = ρ∗φ∗ A is
trivialized. Now define the topological index, as the map

(6.4) indt = j−1
! ◦Di! : K0

c(T (Y/X)) −→ K0(X; A),

where we apply the Thom isomorphism in Lemma 6 to see that the inverse j−1
! exists.

We also note that ›indt ◦ ρ∗κ∗ = indt, consistent with the corresponding analytic
indices.

The source is untwisted since A is trivialized by κ, as an Azumaya bundle, when
pulled back to Y. The identification of twisted and untwisted K-theory in (16) depends
on the choice of trivialization (6) but then so does the Azumaya bundle and these
choices do not change the index map ›indt.

7. Twisted Chern character

First we recall an explicit formula for the odd Chern character in the untwisted
case. For any compact manifold (of positive dimension), Z, the group of invertible,
smoothing, perturbations of the identity operator

(7.1) G−∞(Z) = {a ∈ Ψ−∞(Z);∃ (Id +a)−1 = Id +b, b ∈ Ψ−∞(Z)}

is classifying for odd K-theory. So there is a canonical identification of the odd K-
theory of a compact manifold X with the (smooth) homotopy classes of (smooth)
maps

(7.2) K1(X) = [X;G−∞(Z)].
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The odd Chern character is then represented in deRham cohomology by the pull-
back of the universal Chern character on G−∞(Z) :

(7.3)
Ch =

∞∑
k=0

ck tr
(
(A−1dA)2k+1

)
= − 1

2πi

∫ 1

0

tr

Å
(A−1dA) exp(

t(1− t)
2πi

(A−1dA)2)

ã
dt, A = Id +a.

Here dA = da, as for finite dimensional Lie groups, is the natural identification of
TaG

−∞ with Ψ−∞(Z) coming from the fact that G−∞(Z) is an open (and dense) set
in Ψ−∞(Z). Thus for an odd K-class

(7.4)
a : X −→G−∞(Z), Ch([a]) = [a∗Ch] ∈ Hodd(X),

a∗ Ch = − 1

2πi

∫ 1

0

tr

Å
(Id +a)−1da exp(

t(1− t)
2πi

((Id +a)−1da)2

ã
dt

where now the differential can be interpreted in the usual way for functions valued in
the fixed vector space Ψ−∞(Z).

For any fiber bundle φ : Y −→ X, with typical fiber Z, K1(X) is also naturally
identified with the abelian group of homotopy classes of sections of the bundle of
groups over X with fiber G−∞(Zx) at x ∈ X. That is, the twisting by the diffeomor-
phism group does not affect this property. The formula (7.4) can be extended to this
geometric setting by choosing a connection on φ, i.e. a lift of vector fields from X to Y.
Indeed, such a connection can be identified as a connection on the bundle C∞(Y/X),

with fibres C∞(Zx) (and space of sections C∞(Y )), as a differential operator

(7.5)
∇ : C∞(Y ) −→ C∞(Y ;φ∗T ∗X),

∇(hg) = (dh)g + h∇g, h ∈ C∞(X), g ∈ C∞(Y ).

The curvature of such a connection (extended to a superconnection), is a first order
differential operator on the fibres w = ∇2/2πi ∈ Diff1(Y/X; C, φ∗Λ2X) from the
trivial bundle to the 2-form bundle lifted from the base. The connection on Y in-
duces a connection on Ψ−∞(Y/X), as a bundle of operators on C∞(Y/X), acting by
conjugation and then (7.4) is replaced by

(7.6) Ch(A) =

− 1

2πi

∫ 1

0

tr

Å
(A−1∇A) exp

(
(1− t)w + tA−1wA+

t(1− t)
2πi

(A−1∇A)2
)ã
dt,

A : X 7−→ G−∞(Y/X), π ◦A = Id .

Note that any such section is homotopic to a section which is a finite rank perturbation
of the identity, in which case (7.6) becomes the more familiar formula. The same
conclusions, and formula hold, if the bundle of groups of smoothing perturbations of
the identity acting on a vector bundle over Y, G−∞(Y/X;E), is considered, provided
the connection (and curvature) are lifted to a connection on E.

ASTÉRISQUE 328



PROJECTIVE FAMILIES WITH DECOMPOSABLE DD INVARIANT 277

Note that (7.6) can also be considered as the pull-back of a universal form on the
total space of the fibration G−∞(Y/X). It then has the property that restricted to a
fiber, so that the curvature vanishes, one recovers the original form in (7.3).

The case of immediate interest arises from a circle bundle p : L̃ −→ X. As explained
in §3 we consider the fiber product L̃[2] fibred over L̃ with the fibres taken to be in the
second factor, with the smoothing operators acting on sections of J. Of course these
operators are acting on the restriction of this line bundle to each fiber, which is a circle,
so they can always be identified on each fiber with ordinary smoothing operators. On
the other hand J has the primitivity property of Lemma 2 which allows us to identify
the smoothing operators on sections of J on the fibres of L̃[2] with C∞(L̃[3];π∗FJ) as
in Proposition 3. An explicit fiber density factor is not needed since this is supplied
naturally by the Hermitian structure.

Proposition 6. — Suppose a ∈ C∞(L̃[2]; J) is such that A = Id +a is everywhere
invertible over X. Then the odd Chern character of Id +a, as a form on L̃ computed
with respect to a unitary connection on L and the primitive connection of Lemma 1
on J, with combined curvature Ω,

(7.7) Ch A(A) =

− 1

2πi

∫ 1

0

tr
(
(A−1∇A) exp

(
(1− t)Ω + tA−1ΩA+ t(1− t)(A−1∇A)2

))
dt

∈ C∞(L̃; Λodd)

is closed and satisfies the conditions in (1.10).

Proof. — That the Chern form (7.7) is closed follows from the standard properties.
To see the other stated properties, we choose a section of L̃ over an open set U ⊂ X
over which u has a smooth logarithm and set f = 1

2πi log u. In terms of the induced
trivializations

(7.8) L̃U = U × S, L̃[2]
U = U × S× S,

let the fiber variables be θ1 and θ2. The operators are acting in the θ2 variable and
the lifted connection on L̃ as a fibration over L̃ is therefore

(7.9) ∇ = dx + dθ1 + γ∂θ2

where γ ∈ C∞(U ; Λ) is the local connection form for L. The corresponding connection
on C∞(L̃[2]/L̃; J) in terms of this trivialization and of the connection on J from
Lemma 1

(7.10) ∇J = dx + dθ1 + γ∂θ2 + fdθ1 − γf.

The curvature is

(7.11) Ω = ∇2
J/2πi = β(∂θ2 − f) +

1

2πi
α ∧ γ, γ = dθ1 + γ.
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In terms of this local trivialization a = a(x, θ2, θ3) is independent of the first (param-
eter) fiber variable. Inserting (7.11) into (7.7) observe that the two terms in (7.11)
commute so

(7.12) Ch A(A) = e
α∧γ
2πi v, v ∈ C∞(U ; Λodd)

satisfies the conditions of (1.10).

Note that under a deck transformation of X̂, i.e. integral shift of f by n ∈ N,
each term undergoes conjugation by exp(inθ) and the Chern form itself is therefore
unchanged.

It follows from Proposition 1 that Ch A(A) defines an element in the twisted coho-
mology of X, given explicitly by the form v in (7.12). Although the proof above is
written out for sections of J over L̃[2] the passage to matrix-valued sections is merely
notational, so it applies essentially unchanged to elements of

(7.13) G(X; A ⊗M(N,C)) =

{a ∈ C∞(L̃[2]; J ⊗M(N,C); IdN×N +a(x) is invertible for all x ∈ X}.

Lemma 7. — The Chern form (7.7) descends to represent the twisted Chern character

(7.14) G(X; A ⊗M(N,C))/∼ = K1(X; A) −→ Hodd(X; δ)

where the equivalence relation on invertible matrix-valued sections of the Azumaya
bundle is homotopy and stability.

Proof. — The invariance of the twisted cohomology class under stabilization follows
directly from the definition. Invariance under homotopy follows as usual from the fact
that the construction is universal and the form is closed, so is closed for a homotopy
when interpreted as a family over X × [0, 1] and this proves the invariance of the
cohomology class.

It also follows directly from the definition that the twisted Chern character behaves
appropriately under the Thom isomorphism for a complex (or symplectic) vector
bundle w : W −→ X. That is, there is a commutative diagram with horizontal
isomorphisms

(7.15) K1(X; A)
�b //

Ch A

��

K1(W ;w∗ A)

Ch A

��
Hodd(X; δ)

∧Td // Hodd
c (W ;w∗δ)

As in the case of the bundle of groups G−∞(Y/X) the form (7.7) is again the pull-
back from the total space of the bundle of groups G−∞(X; A) of invertible sections
of the unital extension of the Azumaya bundle and then restricting this universal
form to a fiber one again recovers the standard odd Chern character in (7.3). This is
enough to show that the Chern form here does represent the twisted Chern character
as widely discussed in the literature, for instance recently by Atiyah and Segal in
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[4]. Namely they remark that the Chern character as they describe it (in the even
case), which is determined by universality under pull-back from the twisted PU bundle
over K(Z, 3), is actually determined by its pull-back to the 3-sphere. The PU bundle
over S3 with generating DD class is trivial over points and so can be transferred to
(0, π)× S2 to be trivial outside a compact set and thence to S× S2 where it reduces
to the twisted bundle again with generating DD class. As shown in [4], the universal
twisted Chern character over the 3-sphere is determined by multiplicativity and the
fact that it restricts to the standard Chern character on the fibres over points. The
odd case follows by suspension so the deRham version of the Chern character above
does correspond with more topological definitions.

We need some extensions of this discussion of the odd twisted Chern character.
In particular we need to discuss the even case. However, the context needs to be
broadened to cover operators on the fibres of a trivializing bundle Y as in (3) –
(6). Finally the relative case is needed for the discussion of the Chern character of
the symbol and the index formula in twisted cohomology. Fortunately these are all
straightforward generalizations of the untwisted case.

We start with the extension of the odd twisted Chern character to the more general
geometric case under discussion here. Thus, instead of being over L̃[2], the bundle J
is defined over Y [2]. Still, when lifted to the fiber product

(7.16) Ỹ [2] = L̃×X Y [2],

J is reduced to a the exterior tensor product

(7.17) p∗J = J̃ � J̃ ′ over Ỹ [2]

where J̃ is a line bundle over Ỹ = L̃×X Y. Namely, there is a character property for
s : Y [2] −→ U(1), which is determined by the trivialization of L over Y, when lifted
to Ỹ [2] :

(7.18) s(z1, z2) = s̃(z1, l̃)s̃(z2, l̃)
−1, s̃ : Ỹ −→ U(1).

Here s̃ is fixed by the demand that it intertwine the trivializations over L̃ and Y.

Thus, using s̃ to define J̃ by the same procedure as previously used to define J, (7.17)
follows.

From this point the discussion proceeds as before. That is, the Azumaya bundle
AY acting on the fibres of Y over X lifts to Ỹ , acting on the same fibres but now
over L̃, into a subalgebra of Ψ−∞(Ỹ /L̃; J̃). Then, as above, the odd Chern character
for invertible sections of the unital extension of the Azumaya bundle is a differential
form on L̃ satisfying (1.10) and so defines the twisted odd Chern character in this
more general geometric setting.

Next, consider the even twisted Chern character. To do so, recall that for a complex
vector bundle E embedded as a subbundle of some trivial CN over a manifold X the
curvature, and Chern character, can be written in terms of an idempotent e project-
ing onto the range as the 2-form valued homomorphism ωE = e(de)(1− e)(de)e/2πi.
There is a similar formula if E is embedded in a possibly non-trivial bundle F with
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connection∇F which is projected onto E using e. The same formula applies in the case
of a subbundle of C∞(Y/X;E) given by a family of idempotents e. In the untwisted
case, the K-theory of X can be represented by formal differences of finite rank idem-
potents in the fibres of C∞(Y/X;E), giving finite dimensional bundles. In general,
in the twisted case, the K-theory is interpreted as the C∗ K-theory of a non-unital
algebra (the completion of A in the compacts), it is necessary to take pairs of infinite
rank idempotents in CN ⊗ A† with differences valued in CN ⊗ A. In fact it is enough
to take single idempotents in CN ⊗ A† with constant unital part e0 ∈ M(N,C) and
consider the formal difference e	e0 to generate the K-theory. For the untwisted case,
the usual Chern character is given by

(7.19) tr(exp(
ω2
E

2πi
)− e0)

as can be shown by suspension from the odd case if desired. Here all terms in Λ>0

involve a derivative of e and hence are smoothing, as is the normalized term of form
degree zero, so the trace functional can be applied.

To carry this discussion of the even Chern character to the twisted case, we can
proceed precisely as above. Namely, given an idempotent section, e, of CN ⊗ A†Y as a
bundle over X with constant unital term e0 one can compute the Chern form (7.19)
after lifting the idempotent to CN ⊗ Ψ−∞(Ỹ /L̃; J̃ ⊗ CN ) as discussed above. Then,
for the same reason, the form satisfies (1.10) and defines the even Chern character as
a twisted deRham form on X.

The final extension is to the relative case to handle the Chern character of the
symbol of a pseudodifferential operator. As discussed in [1] for any real vector bundle
W −→ Y (here applied to T ∗(Y/X)) the compactly supported cohomology of W can
be obtained directly as from the relative deRham complex of SW, the sphere bundle
of W, and Y. This involves the same odd Chern class on SW (which is no longer
closed) and the even Chern class on Y which ‘corrects’ the failure of the odd form
to be closed. The extension to the twisted case just combines the two cases discussed
above; this is briefly considered in §10.

8. Semiclassical quantization

To avoid the usual complications which arise in the proof of the index theorem,
especially concerning the multiplicativity of the analytic index – although they are
no worse in the present twisted setting than the standard one – we introduce another
definition of the index map using semiclassical pseudodifferential operators. This ap-
proach is discussed in more detail in [21] but the underlying notion of a semiclassical
family of pseudodifferential operators is well established in the literature [15]. The
method of ‘asymptotic morphism’ of Connes and Higson is closely related to the
notion of semiclassical limit.
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Proposition 7. — Let ψ : M −→ B be a fibre bundle of possibly non-compact manifolds
then the modules

Ψ`
c,scl(M/B; E) ⊂ C∞((0, 1)ε; Ψ`

c(M/B; E))

of semiclassical families of classical, uniformly compactly-supported, pseudodifferential
operators on the fibres of ψ are well defined for any Z2-graded bundle E, have a global
multiplicative exact symbol sequence

(8.1) 0 −→ εΨ`
c,scl(M/B; E) ↪→ Ψ`

c,scl(M/B; E)
σscl−→ S`c(T ∗(M/B); hom(E)) −→ 0

and completeness property

(8.2)
⋂
j

εjΨ`
c,scl(M/B; E) = Ċ

∞
([0, 1); Ψ`

c(M/B; E)).

Note that the space of functions on the right in (8.1) consists of the global classical
symbols on T ∗(M/B), with compact support in the base M, not the quotient by the
symbols of order `− 1. The space on the right in (8.2) consists of the smooth families
of pseudodifferential operators with uniformly compact support in the usual sense,
depending smoothly on the additional parameter ε ∈ [0, 1) down to ε = 0 where
they vanish with all derivatives. Thus, by iteration, the semiclassical symbol in (8.1)
captures the complete behaviour of these operators as ε ↓ 0.

To define the semiclassical index maps, one for each parity, we only need the
smoothing operators of this type, for ` = −∞; indeed this is the key to their utility. In
this special case the Schwartz kernels of the operators are easily described explicitly.
Namely they correspond to the subspace of C∞((0, 1) ×M [2]

ψ ; Hom(E) ⊗ ΩR)) con-

sisting of those functions which have support in some set (0, 1) ×K with K ⊂ M
[2]
ψ

compact, which tend to 0 rapidly with all derivatives as ε ↓ 0 in any closed set inM [2]
ψ

disjoint from the diagonal and which near each point of the diagonal take the from

(8.3) ε−dK(ε, b, z, z′,
z − z′

ε
)|dz′|

where K is a smooth bundle homomorphism which is uniformly Schwartz in the last
variable and d is the fiber dimension.

As with usual pseudodifferential operators, there is no obstruction to defining
Ψ`

scl(Y/X; A⊗E) either by transferring the kernels directly to sections of J⊗Hom(E)

over Y [2] or by using the local form (3.4).

Proposition 8. — The space of invertible elements in the unital extension of the semi-
classical twisted smoothing operators defines an odd index map via the diagram
(8.4) ⋃

N

{
(A,B) ∈ Ψ−∞scl (M/B; A ⊗ CN ); (Id +A)−1 = Id +B

}
[Id +σscl(A)]

ss

[(Id +A)
∣∣
ε= 1

2

]

**
K1

c(T ∗(Y/X))
ind1

scl // K1
c(X; A).
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Proof. — The space on the top line in (8.4) consists of the invertible perturbations of
the identity by semiclassical smoothing operators, with the inverse of the same form.
Thus it follows that Id +σscl(A) is invertible as a smooth family of N × N matrices
over T ∗(Y/X), reducing to the identity at infinity. It therefore defines an element of
odd K-theory giving the map on the left. Conversely, the invertibility of Id +a for
a symbol a implies, using the exactness of the symbol sequence, that Id +A, where
σscl(A) = a, is invertible at least for small ε. Modifying the semiclassical family to
remain invertible for ε ∈ (0, 1) shows that this map is surjective. The map on the
right, defined by restriction to ε = 1

2 (or any other positive value) immediately gives
an element of the odd twisted K-theory of the base.

To see that the ‘odd semiclassical index’, or push-forward map, is defined from this
diagram it suffices to note that the ‘quantized’ class on the right only depends on the
class on the left up to homotopy and stability, which as usual follows directly from
the properties of the algebra.

For this odd index there is a companion even index map. Recall that a compactly
supported K-class can be defined by a smooth map into N ×N matrices which takes
values in the idempotents and is constant outside a compact set, where the class can
be identified with the difference of the projection and the limiting constant projection.

Proposition 9. — If a ∈ C∞c (T ∗(Y/X); CN ) is such that Π∞ + a takes values in the
idempotents, where Π∞ ∈M(N,C), then a has a semiclassical quantization

(8.5) A ∈ Ψ−∞scl (Y/X; A ⊗ CN ), σscl(A) = a,

such that (Π∞ + A)2 = Π∞ + A and this leads to a well-defined even semiclassical
index map

(8.6) K0
c(T ∗(Y/X))

ind0
scl //

=

ind0
a

//K
0
c(X; A)

analogous to (8.4) and as indicated, equal to the analytic index as defined in §5.

Proof. — Certainly a quantization of a exists by the surjectivity of the symbol map.
Moreover the idempotent Π∞+a can be extended to a ‘formal’ idempotent, meaning
that, using the symbol calculus, the quantization can be arranged to be idempotent
up to infinite order error at ε = 0. The error terms of order −∞ in the semiclassical
smoothing algebra are simply smoothing operators vanishing to infinite order with ε.
Use of the functional calculus then allows one to perturb the quantization by such
a term to give a true idempotent for small ε > 0. Then stretching the parameter
arranges this for ε ∈ (0, 1). The pair of this projection, for any ε > 0, and the limiting
constant projection, Π∞ defines a K-class. The existence of the map (8.6) then follows
in view of the homotopy invariance and stability of this construction.

To see the equality with the analytic index as previously defined is the major step
in the proof of the index theorem. This amounts to a construction giving both this
semiclassical index map and the usual analytic index map at the same time. The
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two index maps, semiclassical and analytic are based on two different models for the
compactly supported K-theory of T ∗(Y/X) – or more generally of a vector bundle
W. The first reduces to the set of projection-valued smooth maps W −→ M(N,C)

into matrices which are constant outside a compact set. The second is defined in
terms of triples, consisting of a pair of vector bundles over the base together with an
isomorphism between their lifts to S∗W.

These two models can be combined into a larger one, in which the set of objects are
triples (E,F, a) where E and F are vector bundles overW, the radial compactification
of W, given directly as smooth projection-valued matrices into some CN and where
a intertwines these two smooth families of projections over S∗W, the boundary of
the radial compactification. The equivalence relation (E1, F1, a1) ' (E2, F2, a2) is
generated by isomorphisms, meaning smooth intertwinings of E1, and E2 and of F1

and F2 over W which also intertwine the isomorphisms over S∗W, the boundary, plus
stability. This again gives Kc(W ).

Standard arguments show that any such class in this general sense is equivalent to
an ‘analytic class’ in which the bundles are lifted from the base, or a ‘semiclassical
class’ in which the projections are constant outside a compact set and the isomorphism
between them is the identity – in fact the second projection can be taken to be globally
constant. Moreover equivalence is preserved under these reductions.

Using these more general triples a combined analytic-semiclassical quantization
procedure may be defined by first taking semiclassical quantizations of the projec-
tions E, F to actual semiclassical families P, Q which are projections; the classical
symbols of these projections can be chosen to be independent of ε. This is again the
standard argument for quantizations of idempotents which is outlined above. Then
the isomorphism a can be quantized to a pseudodifferential operator A in the ordinary
sense but this can be chosen to satisfy AP ( 1

2 ) = A = Q( 1
2 )A so it ‘acts between’ the

images of P ( 1
2 ) and Q( 1

2 ). This is accomplished by choosing some A′ with symbol a
and replacing it by the ‘Toeplitz operator’ A = Q( 1

2 )A′P ( 1
2 ) which necessarily has

the same symbol.
Then A is relatively elliptic, in the sense that it has a parametrix B satisfying

BQ( 1
2 ) = B = P ( 1

2 )B and with AB − Q( 1
2 ) and BA − P ( 1

2 ) smoothing operators.
The analytic-semiclassical index can now be defined using the using the same formula
as the analytic index above. That it is well-defined involves the standard homotopy
and stability arguments.

Finally then this map clearly reduces to the analytic and semiclassical index maps
on the corresponding subsets of data and hence these two maps must be equal. The
introduction of the Dixmier-Douady twisting makes essentially no difference to these
constructions so the equality in (8.6) follows.
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Proposition 10. — The appropriate form of Bott periodicity can be proved directly
giving commutative diagrams

(8.7) K1
c(T ∗(Y/X)) //

ind1
scl

��

K0
c(T ∗(Y × R)/(X × R))

ind0
scl

��
K1(X; A) // K0(X × R; A)

where the horizontal maps are the clutching construction and

(8.8) K0
c(T ∗(Y/X)) //

indscl 10

��

K1
c(T ∗(Y × R)/(X × R))

ind1
scl

��
K0(X; A) // K1(X × R; A)

where the inverses of the horizontal isomorphism are the Toeplitz index maps.

Corollary 1. — To prove the equality of the analytic and topological index maps it
suffices to prove the equality of the odd semiclassical and odd topological index maps.

Proof. — Suppose we have proved the equality of odd semiclassical and odd topolog-
ical index maps

(8.9) K1
c(T ∗(Y/X))

ind1
scl //

=

ind1
t

//K
1
c(X; A).

Both the topological and the semiclassical index maps give commutative diagrams as
in Proposition 10, so it follows that the more standard, even, versions of these maps
are also equal.

Lemma 8. — For an iterated fibration of manifolds

(8.10) Z ′ M ′

ψ

��
Z M

φ

��
B
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the semiclassical index gives a commutative diagram

(8.11) K1
c(T ∗(M ′/Y ))

ind1
scl

��

ind1
scl

((
K1

c(T ∗(M/Y ))

ind1
sclvv

K1
c(Y )

where the map on the top right is the semiclassical index map for the fibration of M ′

over M pulled back to T ∗(M/Y ).

Proof. — The commutativity of (8.11) follows from the use of a double semiclassical
quantization, with different parameters in the two fibres (see the extensive discussion
in [21]).

Lemma 9. — For any complex, or real-symplectic, vector bundle W over a manifold
X the semiclassical index implements the Thom isomorphism

(8.12) K1
c(W )

ind1
scl

=
//

Thom
// K

1
c(X).

Proof. — This again follows from the use of semiclassical quantization in the
‘isotropic’ of (pseudodifferential) Weyl algebra of operators on a symplectic vector
space. The resulting symbol map is shown, in [21], to be an isomorphism using the
argument of Atiyah. Since the Thom map constructed this way is homotopy invariant
it applies to to case of a complex vector bundle where the ‘positive’ sympectic
structure on the underlying real bundle is fixed up to homotopy.

9. The index theorem

The odd topological index is defined as the composite map arising from an embed-
ding so we wish to prove the commutativity of the diagram

(9.1) K1
c(T ∗(Y/X)) //

indscl

,,

K1
c(T ∗(Ω/X); A)

ι∗ //

indscl

))

K1
c(T ∗(RM )×X); A)

=indscl

��
Thom

��
K1

c(X; A).

Here Ω is a collar neighbourhood of Y embedded in RM , so is isomorphic to the
normal bundle to Y. Thus, it suffices to prove commutativity in three places. The last
of these is equality of the two maps on the right, that the semiclassical index map
implements the Thom isomorphism (or in this trivial case, Bott periodicity). The
second is ‘excision’ which is immediate from the definition of the semiclassical index.
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The first commutativity, for the triangle on the left corresponds to multiplicativity of
the semiclassical index which in this case reduces to (a special case of) Lemma 8.

This leads to the main theorem. Here we tacitly identify the tangent and cotangent
bundles via a Riemannian metric.

Theorem 1 (The index theorem in K-theory). — Let φ : Y −→ X be a fiber bundle of
compact manifolds, together with the other data in (3) – (6). Let A be the smooth
Azumaya bundle over X as defined in §3 and P ∈ Ψ•(Y/X, A ⊗ E) be a projective
family of elliptic pseudodifferential operators acting on the projective Hilbert bundle
P(φ∗(E⊗Kτ )) over X, with symbol p ∈ Kc(T (Y/X)), then

(9.2) inda(P ) = indt(p) ∈ K0(X, A).

10. The Chern character of the index

As discussed above, the index map in K-theory can be considered as acting on the
untwisted K-theory, with compact supports, of T ∗(Y/X), via the identification with
the (trivially) twisted K-theory coming from the original choice of data (3) – (6). The
Chern character for the symbol class in the standard setting,

(10.1) K0
c(T ∗(Y/X)) −→ Heven

c (T ∗(Y/X))

can be represented explicitly in terms of symbol data and connections in a relative
version of the formulæ in §7 following Fedosov [13]. A K-class is represented by
bundles (E+, E−) over Y and an elliptic symbol a identifying them over S∗(Y/X). It
is convenient to use the relative interpretation of the cohomology from [1]. Thus one
can take the explicit representative

(10.2)

Ch([(E+, E−, a)] = (›Ch(a),Ch(E+)− Ch(E−)),›Ch(a) = − 1

2πi

∫ 1

0

tr
Ä
a−1(∇a)ew(t)

ä
dt where

w(t) = (1− t)F+ + ta−1F−a+
1

2πi
t(1− t)(a−1∇a)2 and

Ch(E±) = tr exp(F±/2πi), F± = ∇2
±.

Here ∇± are connections on E± over Y and ∇ is the induced connection on
hom(E+, E−) lifted to S∗(Y/X). Note that the underlying relative complex is the
direct sum of the deRham complexes with differential

(10.3) C∞(S∗(Y/X); Λ∗)⊕ C∞(Y ; Λ∗), D =

(
d π∗

0 −d

)
.

In our twisted case, as shown in §7 the line bundle J over Y [2] decomposes as J̃� J̃ ′

when lifted to Ỹ [2] which has an additional fiber factor of L̃. The discussion of the
Chern character therefore carries over directly to this relative setting.
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Proposition 11. — For any element of K0
c(T ∗(Y/X)) represented by (untwisted) data

(E+, E−, a) the twisted Chern character of the image in Kc(T ∗(Y/X); ρ∗φ∗ A) is rep-
resented by the pair of forms after lifting to L̃ and trivializing J as in (7.17)

(10.4) Chρ∗φ∗ A([(E+, E−, a)]) = (›Ch A(a),Ch A(E+)− Ch A(E−))

in the subcomplex of the relative deRham complex fixed by (1.10), and ρ : T ∗(Y/X) −→
Y is the projection.

Of course the point of this discussion is that these forms do give the analogue of
the index formula in (twisted) cohomology.

Theorem 2. — For the twisted index map (5.5) the twisted Chern character is given
by the push-forward of the differential form in (10.4)

(10.5)
Ch A ◦ ind : K0

c(T ∗(Y/X); ρ∗φ∗ A) ' K0
c(T ∗(Y/X)) −→ Heven(X, δ),

Ch A ◦ ind(p) = (−1)nφ∗ρ∗
{
ρ∗Todd(T ∗(Y/X)⊗ C) ∧ Chρ∗φ∗ A(p)

}
,

where Todd(T ∗(Y/X)⊗C) denotes the Todd class of the complexified vertical cotangent
bundle and p = [(E+, E−, a)] as identified in Proposition 11.

Proof. — By the Index Theorem in K-theory, Theorem 1 of the previous section,
it suffices to compute the twisted Chern character of the topological index of the
projective family of elliptic pseudodifferential operators. We begin with by recalling
the basic properties of the twisted Chern character. As before, we assume that the
primitive line bundle J defining the smooth Azumaya bundle A is endowed with a
fixed connection respecting the primitive property. It gives a homomorphism,

(10.6) Ch A : K0(X, A) −→ Heven(X, δ),

satisfying the following properties.

1. The Chern character is functorial under smooth maps in the sense that if
f : W −→ X is a smooth map between compact manifolds, then the follow-
ing diagram commutes:

(10.7)

K0(X, A)
f !

−−−−→ K0(W, f∗ A)yCh A

yChf∗ A

Heven(X, δ)
f∗−−−−→ Heven(W, f∗δ).

Here the pullback primitive line bundle f [2]∗J defining the pullback smooth
Azumaya bundle f∗ A is endowed with the pullback of the fixed connection
respecting the primitive property.
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2. The Chern character respects the structure of K0(X, A) as a module over K0(X),

in the sense that the following diagram commutes:

(10.8)

K0(X)×K0(X, A) −−−−→ K0(X, A)yCh×Ch A

yCh A

Heven(X,Q)×Heven(X, δ) −−−−→ Heven(X, δ)

where the top horizontal arrow is the action of K0(X) on K0(X, A) given by
tensor product and the bottom horizontal arrow is given by the cup product.

The theorem now follows rather routinely from the index theorem in K-theory,
Theorem 1. The key step to getting the formula is the analog of the Riemann-Roch
formula in the context of twisted K-theory, which we now give details.

Let π : E −→ X be a spinC vector bundle over X, i : X −→ E the zero sec-
tion embedding, and F ∈ K0(X, A). Then using the properties of the twisted Chern
character as above, we compute,

Chπ∗ A(i!F ) = Chπ∗ A(i!1⊗ π∗F )

= Ch(i!1) ∧ Chπ∗ A(π∗F ).

The standard Riemann-Roch formula asserts that

Ch(i!1) = i∗Todd(E)−1.

Therefore we deduce the following Riemann-Roch formula for twisted K-theory,

(10.9) Chπ∗ A(i!F ) = i∗
{

Todd(E)−1 ∧ Ch A(F )
}
.

We need to compute Ch A(indt p) where

p = [E+, E−, a] ∈ K0
c(T (Y/X)) ∼= K0

c(T (Y/X), ρ∗φ∗ A).

We will henceforth identify T (Y/X) ∼= T ∗(Y/X) via a Riemannian metric. Recall
from §6 that the topological index, indt = j−1

! ◦ (Di)! where i : Y ↪→ X × R2N is an
embedding that commutes with the projections φ : Y −→ X and π1 : X×R2N −→ X,
and j : X ↪→ X × R2N is the zero section embedding. Therefore

Ch A(indt p) = Ch A(j−1
! ◦ (Di)!p)

By the Riemann-Roch formula for twisted K-theory (10.9),

Chπ∗1 A(j!F ) = j∗Ch A(F )

since π1 : X × R2N −→ X is a trivial bundle. Since π1∗j∗1 = (−1)n, it follows that
for ξ ∈ K0

c(X × R2N , π∗1 A), one has

Ch A(j−1
! ξ) = (−1)nπ1∗Chπ∗1 A(ξ)

Therefore

(10.10) Ch A(j−1
! ◦ (Di)!p) = (−1)nπ1∗Chπ∗1 A((Di)!p)
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By the Riemann-Roch formula for twisted K-theory (10.9),

(10.11) Chπ∗1 A((Di)!p) = (Di)∗
{
ρ∗Todd( N )−1 ∧ Chρ∗φ∗ A(p)

}
where N is the complexified normal bundle to the embedding Di : T (Y/X) −→
X × TR2N , that is, N = X × TR2N/Di(T (Y/X)) ⊗ C. Therefore Todd( N )−1 =

Todd(T (Y/X)⊗ C) and (10.11) becomes

Chπ∗1 A((Di)!p) = (Di)∗
{
ρ∗Todd(T (Y/X)⊗ C) ∧ Chρ∗φ∗ A(p)

}
.

Therefore (10.10) becomes
(10.12)

Ch A(j−1
! ◦ (Di)!p) = (−1)nπ1∗(Di)∗

{
ρ∗Todd(T (Y/X)⊗ C) ∧ Chρ∗φ∗ A(p)

}
= (−1)nφ∗ρ∗

{
ρ∗Todd(T (Y/X)⊗ C) ∧ Chρ∗φ∗ A(p)

}
since φ∗ρ∗ = π1∗(Di)∗. Therefore

(10.13) Ch A(indt p) = (−1)nφ∗ρ∗
{
ρ∗Todd(T (Y/X)⊗ C) ∧ Chρ∗φ∗ A(p)

}
,

proving Theorem 2.

Appendix A
Differential characters

We will refine Lemma 1 to an equality of differential characters. For an account of
differential characters, see [17, 12].

We first relate a connection γ̃ on L̃ to the 1-form γ on Y . Consider the commutative
diagram

(A.1) φ∗(L̃)
φ̃

//

pr1

��

L̃

π

��
Y

φ
// X

where φ∗(L̃) = Y × S as observed earlier, and pr1 : Y × S −→ Y denotes projection
to the first factor. Then the connection 1-form γ̃ on L̃ with curvature equal to β is
related to the 1-form γ on Y by φ̃∗(γ̃) = γ+θ where θ is the Cartan-Maurer 1-form on
S. If ι : Y → Y × S denotes the inclusion map into the first factor, then ι∗φ̃∗(γ̃) = γ.

Now the circle bundle L̃ has a section τ̃ : X \M1 → L̃, where M1 is a codimension
2 submanifold of X. We define a section τ : X \M1 → Y such that φ̃ ◦ ι ◦ τ = τ̃ . Then
we have a well defined singular 1-form ϕ1 := τ̃∗(γ̃) = τ∗(γ) on X with the property
that dϕ1 = β. The differential character associated to ϕ1 is (cf. [11])

S(ϕ1)(z) = ϕ1(z′) + β(c)

where z, z′ ∈ Z1(X,Z) and c ∈ C2(X,Z) is such that ∂c = z− z′, where z′ ∩M1 = ∅.
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The smooth map u : X → R/Z gives rise to a singular function ϕ0 on X as follows.
If t ∈ R/Z is a regular value for u, then M0 := u−1(t) is a codimension 1 submanifold
of X, and the Cartan-Maurer 1-form θ on R/Z is exact on R/Z \ {t}, say dg, where g
is a smooth function on R/Z\{t}. Then the pullback function ϕ0 = u∗(g) is a smooth
function on X \M0, ie it is a singular function on X such that dϕ0 = u∗(θ) = α is
the associated global smooth 1-form on X with integer periods.

With µ as in Lemma 1, ϕ2 := τ∗(µ) = dϕ0 ∧ ϕ1 is a singular 2-form on X, whose
associated differential character is

S(ϕ2)(z) = dϕ0 ∧ ϕ1(z′) + α ∧ β(c)

where z, z′ ∈ Z2(X,Z) and c ∈ C3(X,Z) is such that ∂c = z− z′, where z′ ∩M1 = ∅.
By the argument given above, it is also the differential character associated to the
Azumaya bundle A with connection.

Lemma 10. — In the notation above, S(ϕ2) = S(ϕ0) ? S(ϕ1), where ? denotes the
Cheeger-Simons product of differential characters.

Proof. — First note that by [12], the field strength of S(ϕ0) ? S(ϕ1) is ᾱ ∧ β̄, which
by Lemma 1 is equal to δ̄ which is the field strength of S(ϕ2). That is,

S(ϕ0) ? S(ϕ1)(∂c) = S(ϕ2)(∂c)

for every degree 3 integral cochain c.
By [12], we see that the characteristic class of S(ϕ0) ? S(ϕ1) is equal to the cup

product α ∪ β, and by Appendix B, also equal to δ, which is the characteristic class
of S(ϕ2). Note that the image in real cohomology of α and β is equal to [ᾱ] and [β̄]

respectively.
According to [11], if z ∈ Z2(X,Z) is transverse to M1, then

S(ϕ0) ? S(ϕ1)(z) = −dϕ0 ∧ ϕ1(z) +
∑

p∈z∩M1

ϕ0(p)

In particular, if z ∩M1 = ∅, then

S(ϕ0) ? S(ϕ1)(z) = S(ϕ2)(z),

proving the lemma.

Appendix B
Čech class of the Azumaya bundle

Suppose that there is a line bundle K over Y such that J ∼= K �K ′. That is, in
this case, C∞(X, A) ∼= Ψ−∞(Y/X,K) is the algebra of smoothing operators along
the fibres of φ : Y −→ X acting on sections of K, and therefore has trivial Dixmier-
Douady invariant. Here Ax = Ψ−∞(φ−1(x),K

∣∣
φ−1(x)

) for all x ∈ X.
Conversely, suppose that the Dixmier-Douady invariant of A is trivial, where

C∞(X, A) = C∞(Y [2], J). Then there is a line bundle K over Y such that J ∼=
K �K ′. To see this, we use the connection ∇J preserving the primitive property of

ASTÉRISQUE 328



PROJECTIVE FAMILIES WITH DECOMPOSABLE DD INVARIANT 291

J, and Lemma 1 to see that dµ = φ∗dB, for some global 2-form B ∈ Ω2(X). Then
d(µ−φ∗(B)) = 0, and π∗1(µ−φ∗(B))−π∗2(µ−φ∗(B)) = F∇J . So µ−φ∗(B) is a closed
2-form on Y and can be chosen to have integral periods, since F∇J has integral periods
(this is clear from the Čech description below). Therefore there is a line bundle K on
Y with connection, whose curvature is equal to µ− φ∗(B) such that J ∼= K �K ′.

Suppose that J1 and J2 are two primitive line bundles over Y [2] and let A1 and A2

be the corresponding Azumaya bundles, that is, C∞(X, Aj) = C∞(Y [2], Jj), j = 1, 2.
Then we conclude by the argument above that A1

∼= A2 if and only if there is a line
bundle K over Y such that J1

∼= J2 ⊗ (K �K ′).

The main result that we want to show here is the following.

Lemma 11. — Suppose φ : Y −→ X, L −→ X and u : X −→ U(1) are as in the
introduction. Then the Dixmier-Douady class of the Azumaya bundle A constructed
from this data as in §3, is equal to α ∪ β, where α ∈ H1(X,Z) is the cohomology
defined by u and β ∈ H2(X,Z) is the Chern class of L.

Proof. — As noted above, the Dixmier-Douady invariant of A is the degree 3 coho-
mology class on X associated to the primitive line bundle J over Y [2].

As argued in §2, the line bundle L gives rise to a character s : Y [2] → U(1). Suppose
that τi : Ui → Y are local sections of Y . Then it is clear from §2 that cij := s(τi, τj)

defines a U(1)-valued Cech 1-cocycle representing the first Chern class of L.
Using the same local sections of Y , we see that Jij := (τi × τj)∗J = L

−nij
j , where

njk : Uj ∩Uk → Z denotes the transition functions of X̂. If sj is a local nowhere zero
section of Lj , then σij := s

−nij
j is a local nowhere zero section of Jij . We compute,

σijσjk = s
−nij
j s

−njk
k(B.1)

= c
−nij
jk s

−nij
k s

−njk
k(B.2)

= c
−nji
kj s−nikk = c

−nji
kj σik.(B.3)

Therefore the U(1)-valued Cech 2-cocycle associated to J is dijk := c
−nji
kj But it is

well known (cf. equation (1-18), page 29, [9]) that the right hand side represents the
cup product of the Cech cocycles [c] and [−n], that is, [d] = [c] ∪ [−n] = −β ∪ α =

α ∪ β ∈ H3(X,Z), proving the lemma.

Appendix C

The universal case

Let φ : Y → X be a fibre bundle of compact manifolds, L→ X a line bundle over
X with the property that the pullback φ∗(β) = 0 in H2(Y,Z), where β ∈ H2(X,Z) is
the first Chern class of L.
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Lemma 12. — In the notation above, φ∗(β) = 0 in H2(Y,Z) if and only if there is a
β̃ ∈ H2(BDiff(Z),Z) such that β = f∗(β̃) in H2(X,Z), where f : X → BDiff(Z) is
the classifying map for φ : Y → X, and Z is the typical fiber of φ : Y → X.

This follows in a straightforward way from standard algebraic topology. The
direction that we will mainly use is trivial to prove, viz. if there is a class
β̃ ∈ H2(BDiff(Z),Z) such that β = f∗(β̃) in H2(X,Z), then φ∗(β) = 0 in H2(Y,Z).

Therefore we see that given any fibre bundle of compact manifolds φ : Y → X

with typical fiber Z, and β ∈ f∗(H2(BDiff(Z),Z)) ⊂ H2(X,Z) (that is, if β is a
characteristic class of the fiber bundle φ : Y → X), then φ∗(β) = 0 in H2(Y,Z),
satisfying the hypotheses of our main index theorem.

But what are line bundles on BDiff(Z)? Since roughly speaking, BDiff(Z) =

Metrics(Z)/Diff(Z), where Metrics(Z) denotes the contractible space of all Riemanian
metrics on Z, the theory of anomalies in gravity constructs line bundles on BDiff(Z)

via determinant line bundles of index bundles of families of twisted Dirac operators
obtained by varying the Riemannian metric on Z, cf. [2].

In particular, let φ : Y → X be a fibre bundle of compact manifolds, with typical
fiber a compact Riemann surface Σg of genus g ≥ 2. Then T (Y/X) is an oriented rank
2 bundle over Y. Define β = φ∗(e ∪ e) ∈ H2(X,Z), where e := e(T (Y/X)) ∈ H2(Y,Z)

is the Euler class of T (Y/X). By naturality of this construction, β = f∗(e1), where
e1 ∈ H2(BDiff(Σg),Z) and f : X → BDiff(Σg) is the classifying map for φ : Y → X.
e1 is known as the universal first Mumford-Morita-Miller class, and β is the first
Mumford-Morita-Miller class of φ : Y → X, cf. Chapter 4 in [22]. Therefore by
Lemma 12, we have the following.

Lemma 13. — In the notation above, let φ : Y → X be a fibre bundle of compact
manifolds, with typical fiber a compact Riemann surface Σg of genus g ≥ 2, and let
β ∈ H2(X,Z) be a multiple of the first Mumford-Morita-Miller class of φ : Y → X.
Then φ∗(β) = 0 in H2(Y,Z).

Such choices satisfy the hypotheses of our main index theorem. In fact, if φ : Y −→
X be as above, and in addition let X be a closed Riemann surface. Then Proposition
4.11 in [22] asserts that 〈e1, [X]〉 = Sign(Y ), where Sign(Y ) is the signature of the
4-dimensional manifold Y , which is originally a result of Atiyah. As a consequence,
Morita is able to produce infinitely many surface bundles Y over X that have non-
trivial first Mumford-Morita-Miller class.

On the other hand, given any β ∈ H2(X,Z), we know that there is a fibre bundle of
compact manifolds φ : Y → X such that φ∗(β) = 0 in H2(Y,Z). In fact we can choose
Y to be the total space of a principal U(n) bundle over X with first Chern class β.
Here we can also replace U(n) by any compact Lie group G such that H1(G,Z) is
nontrivial and torsion-free, such as the torus Tn.

Lemma 14. — Let φ : Y → X be a fibre bundle of compact manifolds with typical fiber
Z and β ∈ H2(X,Z). Let π : P → X be a principal U(n)-bundle whose first Chern
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class is β. Then the fibred product φ× π : Y ×X P → X is a fiber bundle with typical
fiber Z ×U(n), and has the property that (φ× π)∗(β) = 0 in H2(Y ×X P,Z).

This follows from the obvious commutativity of the following diagram,

(C.1)

Y ×X P
pr1−−−−→ Y

pr2

y yφ
P

π−−−−→ X.

Hence this data also satisfy the hypotheses of our main index theorem.
The construction of the universal fibre bundle of Riemann surfaces which we will

describe next, is well known, cf. [6, 14, 2]. Let Σ be a compact Riemann surface of
genus g greater than 1, M(−1) the space of all hyperbolic metrics on Σ of curvature
equal to −1, and Diff+(Σ) the group of all orientation preserving diffeomorphisms of
Σ. Then the quotient

M(−1)/Diff+(Σ) = Mg

is a noncompact orbifold, namely the moduli space of Riemann surfaces of genus equal
to g. The fact that Mg has singularities can be dealt with in several ways, for instance
by going to a finite smooth cover, and the noncompactness of Mg can be dealt with for
instance by considering compact submanifolds. We will however not deal with these
delicate issues in the discussion below. The group Diff+(Σ) also acts on Σ ×M(−1)

via g(z, h) = (g(z), g∗h) and the resulting smooth fibre bundle,

(C.2) π : Y = (Σ×M(−1))/Diff+(Σ) −→M(−1)/Diff+(Σ) = Mg

is the universal bundle of genus g Riemann surfaces. The classifying map for (C.2) is
the identity map on Mg so π is maximally nontrivial in a sense made precise below.

As defined above, let

e1 = e1(Y/Mg) = π∗(e ∪ e) ∈ H2( Mg; Z)

be the first Mumford-Morita-Miller class of π : Y → Mg.

A theorem of Harer [22, 16] asserts that:

H2( Mg; Q) = Q(e1);

H1( Mg; Q) = {0}.

Our next goal is to define a line bundle L over Mg such that c1( L) = ke1 for some
k ∈ Z. This line bundle then automatically has the property that π∗( L) is trivializable
since e1 is a characteristic class of the fibre bundle π : Y −→ Mg. This is exactly the
data that is needed to define a projective family of Dirac operators. The line bundle
L turns out to be a power of the determinant line bundle of the virtual vector bundle
Λ known as the Hodge bundle, which is defined using the Gysin map in K-theory.

Λ = π!(T (Y/Mg)) ∈ K0( Mg).

Then det(Λ) is actually a line bundle over Mg. Next we need the following special
Grothendieck-Riemann-Roch (GRR) calculation.
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Lemma 15. — In the notation above, one has the following identity of first Chern
classes,

c1(π!(T (Y/Mg)) =
13

12
π∗(c1(T (Y/Mg))

2).

Proof. — By the usual GRR calculation [3], we have

ch(π!(T (Y/Mg)) = π∗ (Todd(T (Y/Mg) ∪ Ch(T (Y/Mg))) .

Now

Todd(x) = 1 +
x

2
+
x2

12
+ . . .

and

Ch(x) = 1 + x+
x2

2
+ . . .

where x = c1(T (Y/Mg)). Therefore the degree 4 component is

[Todd(x)Ch(x)](4) =
13

12
x2.

That is, the degree 2 component of the GRR formula in our case is

c1(π!(T (Y/Mg)) =
13

12
π∗(x

2).

Observing that c1(T (Y/Mg) = e and

c1(π!(T (Y/Mg)) = c1(Λ) = c1(det(Λ)),

the lemma above shows that c1(det(Λ)) = 13
12e1. Setting L = det(Λ)⊗12, we obtain

Corollary 2. — In the notation above, L is a line bundle over Mg and one has the
following identity:

c1( L) = 13e1.

We next construct a canonical projective family of Dirac operators on the Riemann
surface Σ. We enlarge the parametrizing space by taking the product with the circle
T. Applying the main construction in the paper, we get a primitive line bundle J −→
Y [2], where we denote the pullback of Y over T × Mg by the same symbol. By the
construction at the end of §5, we obtain a projective family of Dirac operators ðJ on
the Riemann surface Σ, parametrized by T× Mg, having analytic index,

Indexa(ðJ) ∈ K0(T× Mg; a ∪ e1),

where a ∈ H1(T; Z) is the generator.
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INDEX OF TRANSVERSALLY ELLIPTIC OPERATORS

by

Paul-Émile Paradan & Michèle Vergne

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — In the 70’s, the notion of analytic index has been extended by Atiyah and
Singer to the class of transversally elliptic operators. They did not, however, give a
general cohomological formula for the index. This was accomplished many years later
by Berline and Vergne. The Berline-Vergne formula is an integral of a non-compactly
supported equivariant form on the cotangent bundle, and depends on rather subtle
growth conditions for these forms.

This paper gives an alternative expression for the index, where the non-compactly
supported form is replaced with a compactly supported one, but with generalized
coefficients.

Résumé (Indice d’opérateurs transversalement elliptiques). — Dans les années 70, Atiyah et
Singer ont étendu la notion d’indice analytique au cadre des opérateurs transversale-
ment elliptiques. Néanmoins, ils ne donnaient pas de formule cohomologique générale
pour cet indice. Ce problème a été résolu bien des années après par Berline et Vergne.
La formule de Berline-Vergne exprime l’indice comme l’intégrale sur un fibré cotan-
gent d’une forme équivariante à support non-compact: ici une propriété de croissance
très particulière de cette forme est requise pour assurer l’existence de l’intégrale.

Le but de ce travail est de donner une autre formulation de cet indice, où la
forme équivariante à support non-compact est remplacée par une forme équivariante
à support compact, mais avec des coefficients généralisés.

1. Introduction

Let M be a compact manifold. The Atiyah-Singer formula for the index of an
elliptic pseudo-differential operator P on M with elliptic symbol σ on T∗M involves

2010 Mathematics Subject Classification. — 19L47, 19L10, 55N25.
Key words and phrases. — index, transversally elliptic, equivariant cohomology, generalized coefficients.
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integration over the non compact manifold T∗M of the Chern character Chc(σ) of σ
multiplied by the square of the Â-genus of M :

index(P ) = (2iπ)− dimM

∫
T∗M

Â(M)2 Chc(σ).

Here σ, the principal symbol of P , is a morphism of vector bundles on T∗M invert-
ible outside the zero section of T∗M and the Chern character Chc(σ) is supported
on a compact neighborhood of M embedded in T∗M as the zero section. It is impor-
tant that the representative of the Chern character Chc(σ) is compactly supported to
perform integration.

Assume that a compact Lie group K (with Lie algebra k) acts on M . If the elliptic
operator P is K-invariant, then index(P ) is a smooth function on K. The equivariant
index of P can be expressed similarly as the integral of the equivariant Chern character
of σ multiplied by the square of the equivariant Â-genus ofM : for X ∈ k small enough,

(1) index(P )(eX) = (2iπ)− dimM

∫
T∗M

Â(M)2(X) Chc(σ)(X).

Here Chc(σ)(X) is a compactly supported closed equivariant differential form, that
is a differential form on T∗M depending smoothly of X ∈ k, and closed for the
equivariant differential D. The result of the integration determines a smooth function
on a neighborhood of e in K and similar formulae can be given near any point of
K. Formula (1) is a “delocalization" of the Atiyah-Bott-Segal-Singer formula, in the
sense of Bismut [9].

The delocalized index formula (1) can be adapted to new cases such as:

– Index of transversally elliptic operators.
– L2-index of some elliptic operators on some non-compact manifolds (Rossmann

formula for discrete series [20]).

Indeed, in these two contexts, the index exists in the sense of generalized functions
but cannot be always computed in terms of fixed point formulae. A “delocalized"
formula will however continue to have a meaning, as we explain now for transversally
elliptic operators.

The invariant operator P with symbol σ(x, ξ) on T∗M is called transversally ellip-
tic, if it is elliptic in the directions transverse to K-orbits. In this case, the operator
P has again an index which is a generalized function on K [1]. A very simple ex-
ample of transversally elliptic operator is the operator 0 on L2(K): its index is the
trace of the action of K in L2(K), that is the δ-function on K. At the opposite side,
K-invariant elliptic operators are of course transversally elliptic, and index of such
operators are smooth functions on K given by Formula (1). Thus a cohomological
formula must incorporate these two extreme cases. Such a cohomological formula was

ASTÉRISQUE 328



INDEX OF TRANSVERSALLY ELLIPTIC OPERATORS 299

given in Berline-Vergne [7, 8]. We present here a new point of view, where the equiv-
ariant Chern character Chc(σ)(X) entering in Formula (1) is replaced by a Chern
character with generalized coefficients, but still compactly supported. Let us briefly
explain the construction.

Let T∗KM ⊂ T∗M be the cone formed by the covectors ξ ∈ T∗xM which van-
ish on tangent vectors to the orbit K · x. Let supp(σ) be the support of the symbol
σ of a transversally elliptic operator P . By definition, the intersection supp(σ) ∩
T∗K(M) is compact. By the Quillen super-connection construction, the Chern char-
acter Ch(σ)(X) is a closed equivariant differential form supported near the closed
set supp(σ). Using the Liouville 1-form ω of T∗M , we construct a closed equivari-
ant form One(ω) supported near T∗KM . Outside T∗KM , one has indeed the equation
1 = D( ω

Dω ), where the inverse of the form Dω is defined by −i
∫∞

0
eitDωdt, an in-

tegral which is well defined in the generalized sense, that is tested against a smooth
compactly supported density on k. Thus using a function χ equal to 1 on a small
neighborhood of T∗KM , the closed equivariant form

One(ω)(X) = χ+ dχ
ω

Dω(X)
, X ∈ k,

is well defined, supported near T∗KM , and represents 1 in cohomology. Remark that

Chc(σ, ω) := Ch(σ)(X)One(ω)(X)

is compactly supported. We prove that, for X ∈ k small enough, we have

(2) index(P )(eX) = (2iπ)− dimM

∫
T∗M

Â(M)2(X) Ch(σ)(X) One(ω)(X).

This formula is thus similar to the delocalized version of the Atiyah-Bott-Segal-
Singer equivariant index theorem. We have just localized the formula for the index
near T∗KM with the help of the form One(ω), equal to 1 in cohomology, but supported
near T∗KM .

When P is elliptic we can furthermore localize on the zeros of V X (the vector field
onM produced by the action of X) and we obtain the Atiyah-Bott-Segal-Singer fixed
point formulae for the equivariant index of P . However the main difference is that
usually we cannot obtain a fixed point formula for the index. For example, the index
of a transversally elliptic operator P where K acts freely is a generalized function on
K supported at the origin. Thus in this case the use of the form One(ω) is essential.
Its role is clearly explained in the example of the 0 operator on S1 given at the end
of this introduction.

We need also to define the formula for the index at any point s ∈ K, in terms of
integrals over T∗M(s), where M(s) is the fixed point submanifold of M under the
action of s. The compatibility properties (descent method) between the formulae at
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different points s are easy to prove, thanks to a localization formula adapted to this
generalized setting.

In the Berline-Vergne cohomological formula for the index of P , the Chern char-
acter Chc(σ)(X) in Formula (1) was replaced by a Chern character ChBV (σ, ω)(X)

depending also of the Liouville 1-form ω. This Chern character ChBV (σ, ω) is con-
structed for “good symbols" σ. It looks like a Gaussian in the transverse directions,
and is oscillatory in the directions of the orbits. Our new point of view defines the
compactly supported product class Ch(σ)One(ω) in a straightforward way. We proved
in [17] that the classes ChBV (σ, ω) and Ch(σ)One(ω) are equivalent in an appropriate
cohomology space, so that our new cohomological formula gives the analytic index.
Nevertheless, we will see in this paper that it is technically simpler to work with the
compactly supported equivariant form Ch(σ)One(ω) rather than with the equivariant
form ChBV (σ, ω) which has subtle growth on the cotangent bundle. So we choose to
prove directly the equality between the analytic index and the cohomological index,
and we show that our formula in terms of the product class Ch(σ)One(ω) is natural.
We follow the same line as Atiyah-Singer: functoriality with respect to products and
free actions. The compatibility with the free action reduces basically to the case of
the zero operator on K, and the calculation is straightforward. The typical calcula-
tion is shown below. The multiplicativity property is more delicate, but is based on a
general principle on multiplicativity of relative Chern characters that we proved in a
preceding article [17]. Thus, following Atiyah-Singer [1], we are reduced to the case
of S1 acting on a vector space. The basic examples are then the pushed symbol with
index −

∑∞
n=1 e

inθ and the index of the tangential ∂ operators on odd dimensional
spheres. We include at the end a general formula due to Fitzpatrick [11] for contact
manifolds.

Let us finally point out that there are many examples of transversally elliptic oper-
ators of great interest. The index of elliptic operators on orbifolds are best understood
as indices of transversally elliptic operators on manifolds where a group K acts with
finite stabilizers. The restriction to the maximal compact subgroup K of a repre-
sentation of the discrete series of a real reductive group are indices of transversally
elliptic operators [16]. More generally, there is a canonical transversally elliptic opera-
tor on any prequantized Hamiltonian manifold with proper moment map (under some
mild assumptions) [16], [22]. Furthermore, as already noticed in Atiyah-Singer, and
systematically used in [15], transversally elliptic operators associated to symplectic
vector spaces with proper moment maps and to cotangent manifolds T∗K are the
local building pieces of any K-invariant elliptic operator.

Example 1.1. — Let us check the validity of (2) in the example of the zero operator
0S1 from S1 × C to S1 × {0}. This operator is S1-transversally elliptic and its index
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is equal to

δ1(eiX) =
∑
k∈Z

eikX , X ∈ Lie(S1) ' R.

The principal symbol σ of 0S1 is the zero morphism T∗S1 × C → T∗S1 × {0}.
Hence Ch(σ)(X) = 1. The equivariant class Â(S1)2(X) is also equal to 1. Thus the
right hand side of (2) becomes

(2iπ)−1

∫
T∗S1

One(ω)(X).

The cotangent bundle T∗S1 is parametrized by (eiθ, ξ) ∈ S1×R. The Liouville 1-form
is ω = −ξdθ : the symplectic form dω = dθ ∧ dξ gives the orientation of T∗S1. Since
V X = −X ∂

∂θ , we have Dω(X) = dθ ∧ dξ −Xξ.
Let g ∈ C∞(R) with compact support and equal to 1 in a neighborhood of 0.

Then χ = g(ξ2) is a function on T∗S1 which is supported in a neighborhood of
T∗S1S1 = zero section. We look now at the equivariant form One(ω)(X) = χ + dχ ∧
(−iω)

∫∞
0

eitDω(X) dt. We have

One(ω)(eiθ, ξ,X) = g(ξ2) + g′(ξ2)2ξdξ ∧ (iξdθ)

∫ ∞
0

eit(dθ∧dξ−Xξ) dt

= g(ξ2)− idθ ∧ d(g(ξ2))

Å∫ ∞
0

e−itXξ ξdt

ã
.

If we make the change of variable tξ → t in the integral
∫∞

0
e−itXξ ξdt we get

One(ω)(eiθ, ξ,X) =

{
g(ξ2)− idθ ∧ d(g(ξ2))

(∫∞
0

e−itX dt
)
, if ξ ≥ 0;

g(ξ2) + idθ ∧ d(g(ξ2))
Ä∫ 0

−∞ e−itX dt
ä
, if ξ ≤ 0.

Finally, since −
∫
ξ≥0

d(g(ξ2)) =
∫
ξ≤0

d(g(ξ2)) = 1, we have

(2iπ)−1

∫
T∗S1

One(ω)(X) =

∫ ∞
−∞

e−itX dt.

The generalized function δ0(X) =
∫∞
−∞ e−itX dt satisfies∫

Lie(S1)

δ0(X)ϕ(X)dX = vol(S1, dX)ϕ(0)

for any function ϕ ∈ C∞(Lie(S1)) with compact support. Here vol(S1, dX) =
∫ 2π

0
dX

is also the volume of S1 with the Haar measure compatible with dX.
Finally, we see that (2) corresponds to the following equality of generalized functions

δ1(eiX) = δ0(X),

which holds for X ∈ Lie(S1) small enough.
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2. The analytic index

2.1. Generalized functions. — Let K be a compact Lie group. We denote by
K̂ the set of equivalence classes of finite dimensional irreducible (complex) repre-
sentations of K. If τ ∈ K̂, we denote by Vτ the representation space of τ and by
k 7→ Tr(k, τ) its character. Let τ∗ be the dual representation of K in V ∗τ .

We denote by C−∞(K) the space of generalized functions on K and by C−∞(K)K

the subspace of generalized functions invariant by conjugaison. The space C∞(K) of
smooth functions on K is naturally a subspace of C−∞(K). We will often use the
notation Θ(k) to denote a generalized function Θ on K, although (in general) the
value of Θ on a particular point k of K does not have a meaning. By definition, Θ is
a linear form on the space of smooth densities on K. If dk is a Haar measure on K
and Φ ∈ C∞(K), we denote by

∫
K

Θ(k)Φ(k)dk the value of Θ on the density Φdk.
Any invariant generalized function on K is expressed as Θ(k) =

∑
τ∈K̂ nτ Tr(k, τ)

where the Fourier coefficients nτ have at most a polynomial growth [21].

2.2. Symbols and pseudo-differential operators. — LetM be a compact man-
ifold with a smooth action of a compact Lie group K. We consider the closed subset
T∗KM of the cotangent bundle T∗M , union of the spaces (T∗KM)x, x ∈ M , where
(T∗KM)x ⊂ T∗xM is the orthogonal of the tangent space at x to the orbit K · x. Let
E± be two K-equivariant complex vector bundles over M . We denote by Γ(M, E±)

the space of smooth sections of E±. Let P : Γ(M, E+)→ Γ(M, E−) be a K-invariant
pseudo-differential operator of order m. Let p : T∗M →M be the natural projection.
The principal symbol σ(P ) of P is a bundle map p∗ E+ → p∗ E− which is homogeneous
of degree m, defined over T∗M \M .

The operator P is elliptic if its principal symbol σ(P )(x, ξ) is invertible for all
(x, ξ) ∈ T∗M such that ξ 6= 0. The operator P is said to be K-transversally elliptic
if its principal symbol σ(P )(x, ξ) is invertible for all (x, ξ) ∈ T∗KM such that ξ 6= 0.

Using a K- invariant function χ on T∗M identically equal to 1 in a neighborhood of
M and compactly supported, then σP (x, ξ) := (1− χ(x, ξ))σ(P )(x, ξ) is a morphism
from p∗ E+ to p∗ E− defined on the whole spaceT∗M and which is almost homogeneous:
σP (x, tξ) = tmσP (x, ξ) for t > 1 and ξ large enough. We consider the support of the
morphism σP ,

supp(σP ) := {(x, ξ) ∈ T∗M | σP (x, ξ) is not invertible}

which is a closed K-invariant subset of T∗M .
When P is elliptic, then supp(σP ) is compact, and the morphism σP gives rise

to a K0-theory class [σP ] ∈ K0
K(T∗M) which does not depend on the choice of χ.

Similarly, when P is K-transversally elliptic, then supp(σP ) ∩T∗KM is compact and
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the morphism σP gives rise to a K0-theory class [σP |T∗
K
M ] ∈ K0

K(T∗KM) which does
not depend on the choice of χ.

Recall the definition of the K-equivariant index of a pseudo-differential operator
P which is K-transversally elliptic. Let us choose a K-invariant metric on M and
K-invariant Hermitian structures on E±. Then the adjoint P ∗ of P is also a K-
transversally elliptic pseudo-differential operator.

If P is elliptic, its kernel kerP := {s ∈ Γ(M, E+)| Ps = 0} is finite dimensional, and
the K-equivariant index of P is the invariant function indexK(P )(k) = Tr(k, kerP )−
Tr(k, kerP ∗).

If P is K-transversally elliptic, its kernel kerP is not finite dimensional, but it
has finite multiplicities: for any irreducible representation τ ∈ K̂, the multiplicity
mτ (P ) := dim(homK(Vτ , kerP )) is finite, and τ 7→ mτ (P ) has at most a polynomial
growth [1]. We define then an invariant generalized function on K by setting

Tr(k, kerP ) :=
∑
τ∈K̂

mτ (P ) Tr(k, τ).

Definition 2.1. — The K-equivariant index of a K-transversally elliptic pseudo-
differential operator P is the generalized function

indexK(P )(k) = Tr(k, kerP )− Tr(k, kerP ∗).

We recall

Theorem 2.2 (Atiyah-Singer). — The K-equivariant index of a K-invariant elliptic
pseudo-differential operator P depends only of [σP ] ∈ K0

K(T∗M).
— The K-equivariant index of a K-transversally elliptic pseudo-differential oper-

ator P depends only of [σP |T∗
K
M ] ∈ K0

K(T∗KM).
— Each element in K0

K(T∗KM) is represented by the class [σP |T∗
K
M ] of a K-

transversally elliptic pseudo differential operator P of order m. Similarly, each ele-
ment in K0

K(T∗M) is represented by the class [σP ] of a K-invariant elliptic pseudo
differential operator P of order m.

Thus we can define

(3) indexK,Ma : K0
K(T∗KM)→ C−∞(K)K

by setting, for P a K-transversally elliptic pseudo-differential operator of order m,
indexK,Ma ([σP |T∗

K
M ]) = indexK(P ). Similarly, we can define in the elliptic setting

(4) indexK,Ma : K0
K(T∗M)→ C∞(K)K .
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Note that we have a natural restriction map K0
K(T∗M)→ K0

K(T∗KM) which makes
the following diagram

(5) K0
K(T∗M) //

indexK,Ma

��

K0
K(T∗KM)

indexK,Ma

��
C∞(K)K // C−∞(K)K

commutative.
Let R(K) be the representation ring of K. Using the trace, we will consider R(K)

as a sub-ring of C∞(K)K . The map (3) and (4) are homomorphisms of R(K)-modules
and will be called the analytic indices.

Remark 2.3. — In order to simplify the notations we will make no distinction between
an element V ∈ R(K), and its trace function k → Tr(k, V ) which belongs to C∞(K)K .
For example, the constant function 1 on K is identified with the trivial representation
of K.

Let H be a compact Lie group acting on M and commuting with the action of K.
Then the space T∗KM is provided with an action of K ×H. If [σ] ∈ K0

K×H(T∗KM),
we can associate to [σ] a virtual trace class representation of K × H. Indeed, we
can choose as representative of [σ] the symbol of a H-invariant and K-transversally
elliptic operator P . Then kerP −kerP ∗ is a trace class representation of K×H. Thus
we can define a R(K ×H)-homomorphism:

indexK,H,Ma : K0
K×H(T∗KM)→ C−∞(K ×H)K×H .

Obviously T∗K×H(M) is contained in T∗K(M) so we have a restriction morphism
r : K0

K×H(T∗KM)→ K0
K×H(T∗K×HM). We see that

indexK,H,Ma = indexK×H,Ma ◦ r.

However, it is easy to see that for a H-invariant and K-transversally elliptic sym-
bol [σ], indexK,H,Ma ([σ])(k, h) is a generalized function on K × H which is smooth
relative to the variable h ∈ H (see [1], remark p. 17). In particular we can re-
strict indexK,H,Ma ([σ]) to K × H ′, for a subgroup H ′ of H. We can also multiply
indexK,H,Ma ([σ])(k, h) by generalized functions Ψ(h) on H.

2.3. Functoriality properties of the analytic index. — We have defined for
any compact K ×H-manifold M a R(K ×H)-morphism

indexK,H,Ma : K0
K×H(T∗KM)→ C∞(H,C−∞(K))K×H ,

where C∞(H,C−∞(K))K×H denote the subspace of invariant generalized functions
Θ(k, h) on K ×H which are smooth relative to the variable h ∈ H.
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Let us recall some basic properties of the analytic index map:

– [N1] If M = {point}, then indexK,Ma is the trace map R(K) ↪→ C∞(K)K .
– [Diff ] Compatibility with diffeomorphisms: if f : M1 → M2 is a K × H-

diffeomorphism then indexK,H,M1
a ◦f∗ is equal to indexK,H,M2

a .
– [Morph] If φ : H ′ → H is a Lie group morphism, we have φ∗ ◦ indexK,H,Ma

= indexK,H
′,M

a .

2.3.1. Excision. — Let U be a non-compact K-manifold. Lemma 3.6 of [1] tell us
that, for any open K-embedding j : U ↪→ M into a compact manifold, we have a
pushforward map j∗ : K0

K(T∗KU)→ K0
K(T∗KM).

Let us rephrase Theorem 3.7 of [1].

Theorem 2.4 (Excision property). — The composition

K0
K(T∗KU)

j∗−→ K0
K(T∗KM)

indexK,Ma−→ C−∞(K)K

is independent of the choice of j : U ↪→M : we denote this map indexK,Ua .

Note that a relatively compact K-invariant open subset U of a K-manifold admits
an open K-embedding j : U ↪→ M into a compact K-manifold. So the index map
indexK,Ua is defined in this case. An important example is when U → N is a K-
equivariant vector bundle over a compact manifold N : we can imbed U as an open
subset of the real projective bundle P(U ⊕ R).

2.3.2. Exterior product. — Let us recall the multiplicative property of the analytic
index for the product of manifolds that was proved by Atiyah-Singer in [1]. Consider a
compact Lie group K2 acting on two manifolds M1 and M2, and assume that another
compact Lie group K1 acts on M1 commuting with the action of K2.

The external product of complexes on T∗M1 and T∗M2 induces a multiplication
(see [1]):

�ext : K0
K1×K2

(T∗K1
M1)×K0

K2
(T∗K2

M2) −→ K0
K1×K2

(T∗K1×K2
(M1 ×M2)).

Let us recall the definition of this external product. For k = 1, 2, we consider
equivariant morphisms(1) σk : E+

k → E−k on T∗Mk. We consider the equivariant
morphism on T∗(M1 ×M2)

σ1 �ext σ2 : E+
1 ⊗ E+

2 ⊕ E−1 ⊗ E−2 −→ E−1 ⊗ E+
2 ⊕ E+

1 ⊗ E−2

defined by

(6) σ1 �ext σ2 =

(
σ1 ⊗ Id −Id⊗ σ∗2
Id⊗ σ2 σ∗1 ⊗ Id

)
.

(1) In order to simplify the notation, we do not make the distinctions between vector bundles on
T∗M and on M .
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We see that the set supp(σ1�σ2) ⊂ T∗M1×T∗M2 is equal to supp(σ1)× supp(σ2).
We suppose now that the morphisms σk are respectively Kk-transversally elliptic.

Since T∗K1×K2
(M1×M2) 6= T∗K1

M1×T∗K2
M2, the morphism σ1�ext σ2 is not neces-

sarily K1 ×K2-transversally elliptic. Nevertheless, if σ2 is taken almost homogeneous
of order m = 0, then the morphism σ1 �ext σ2 is K1 ×K2-transversally elliptic (see
Lemma 4.9 in [17]). So the exterior product a1 �ext a2 is the K0-theory class defined
by σ1 �ext σ2, where ak = [σk] and σ2 is taken almost homogeneous of order m = 0.

Theorem 2.5 (Multiplicative property). — For any [σ1] ∈ K0
K1×K2

(T∗K1
M1) and any

[σ2] ∈ K0
K2

(T∗K2
M2) we have

indexK1×K2,M1×M2
a ([σ1]�ext [σ2]) = indexK1,K2,M1

a ([σ1]) indexK2,M2
a ([σ2]).

2.3.3. Free action. — Let K and G be two compact Lie groups. Let P be a compact
manifold provided with an action of K ×G. We assume that the action of K is free.
Then the manifold M := P/K is provided with an action of G and the quotient map
q : P → M is G-equivariant. Note that we have the natural identification of T∗KP
with q∗T∗M , hence (T∗KP )/K ' T∗M and more generally

(T∗K×GP )/K ' T∗GM.

This isomorphism induces an isomorphism

Q∗ : K0
G(T∗GM)→ K0

K×G(T∗K×GP ).

Let E± be two G-equivariant complex vector bundles on M and σ : p∗ E+ → p∗ E− be
a G-transversally elliptic symbol. For any finite dimensional irreducible representation
(τ, Vτ ) of K, we form the G-equivariant complex vector bundle V τ := P ×K Vτ on
M . We consider the morphism

στ := σ ⊗ IdVτ : p∗( E+ ⊗ V τ )→ p∗( E− ⊗ V τ )

which is G-transversally elliptic.
The following theorem was obtained by Atiyah-Singer in [1].

Theorem 2.6 (Free action property). — We have the following equality in C−∞(K ×
G)K×G: for (k, g) ∈ K ×G

indexK×G,Pa (Q∗[σ])(k, g) =
∑
τ∈K̂

Tr(k, τ) indexG,Ma ([στ∗ ])(g).

2.4. Basic examples

2.4.1. Bott symbols. — Let W be a Hermitian vector space. For any v ∈ W , we
consider on the Z2-graded vector space ∧W the following odd operators: the exterior
multiplication m(v) and the contraction ι(v). The contraction ι(v) is an odd derivation
of ∧W such that ι(v)w = (w, v) for w ∈ ∧1W = W .
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The Clifford action of W on ∧W is defined by the formula

(7) c(v) = m(v)− ι(v)

Then c(v) is an odd operator on ∧W such that c(v)2 = −‖v‖2Id. So c(v) is invertible
when v 6= 0.

Consider the trivial vector bundles E± := W ×∧±W over W with fiber ∧±W . The
Bott morphism Bott(W ) : E+ → E− is defined by

(8) Bott(W )(v, w) = (v, c(v)w).

Consider now a Euclidean vector space V . Then its complexification VC is an Her-
mitian vector space. The cotangent bundle T∗V is identified with VC: we associate
to the covector ξ ∈ T∗vV the element v + iξ̂ ∈ VC, where ξ ∈ V ∗ → ξ̂ ∈ V is the
identification given by the Euclidean structure.

Then Bott(VC) defines an elliptic symbol on V which is equivariant relative to the
action of the orthogonal group O(V ). Its analytic index is computed in [3].

Proposition 2.7. — We have [N2]: indexO(V ),V
a (Bott(VC)) = 1.

Remark 2.8. — If V and W are two Euclidean vector spaces we see that the symbol
Bott((V × W )C) is equal to the product Bott(VC) � Bott(WC). Then for (g, h) ∈
O(V )×O(W ), the multiplicative property tells us that

indexO(V×W ),V×W
a (Bott((V ×W )C))(g, h)

is equal to the product indexO(V ),V
a (Bott(VC))(g) indexO(W ),W

a (Bott(WC))(h).
For any fixed g ∈ O(V ), the vector space V decomposes as an orthogonal sum ⊕iVi

of g-stable subspaces, where either dimVi = 1 and g acts on Vi as ±1, or dimVi = 2

and g acts on Vi as a rotation.
Hence [N2] is satisfied for any Euclidean vector space if one checks it for the cases:
• V = R with the action of the group O(V ) = Z2,
• V = R2 with the action of the group SO(V ) = S1.

2.4.2. Atiyah symbol. — In the following example, we denote, for any integer k, by
C[k] the vector space C with the action of the circle group S1 given by : t · z = tkz.

The Atiyah symbol is the S1-equivariant morphism on N = T∗C[1] ' C[1] × C[1]

σAt : N × C[0] −→ N × C[1](
ξ, v
)
7−→

(
ξ, σAt(ξ)v

)
defined by σAt(ξ) = ξ2 + iξ1 for ξ = (ξ1, ξ2) ∈ T∗C[1].

The symbol σAt is not elliptic since supp(σAt) = {ξ1 = iξ2} ⊂ C2 is not compact.
But T∗S1C[1] = {(ξ1, ξ2) | Im (ξ1ξ2) = 0} and supp(σAt) ∩ T∗S1C[1] = {(0, 0)} : the
symbol σAt is S1-transversally elliptic. Atiyah-Singer compute its analytic index in
[1]. Another computation is done in the Appendix of [8].
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Proposition 2.9. — We have [N3]: indexS
1,C

a (σAt)(t) = −
∑∞
k=1 t

k.

2.5. Unicity of the index. — The next theorem is the crucial point that we use
in the next sections to give a cohomological formula for the index of a transversally
elliptic operator (see [7, 8]). Note that, in the elliptic case, Atiyah-Segal-Singer used
similar strategy to prove that the analytical index coincides with the topological one
[2, 3, 4, 5].

Suppose that for any compact Lie groups K and H, and any compact K × H-
manifold M , we have a map of R(K ×H)-modules:

IK,H,M : K0
K×H(T∗KM)→ C∞(H,C−∞(K))K×H .

Theorem 2.10. — Suppose that the maps I− satisfy
— the normalization conditions [N1], [N2] and [N3],
— the functorial properties Diff and Morph,
— the “excision property”, the “multiplicative property” and the “free action prop-

erty”.
Then I− coincides with the analytic index map index−a .

3. The cohomological index

Let N be a manifold, and let A(N) be the algebra of differential forms on N . We
denote by Ac(N) the subalgebra of compactly supported differential forms. We will
consider on A(N) and Ac(N) the Z2-grading in even or odd differential forms.

Let K be a compact Lie group with Lie algebra k. We suppose that the manifold
N is provided with an action of K. We denote X 7→ V X the corresponding morphism
from k into the Lie algebra of vectors fields on N : for n ∈ N ,

VnX :=
d

dε
exp(−εX) · n|ε=0.

Let A∞(k, N) be the Z2-graded algebra of equivariant smooth functions α : k →
A(N). Its Z2-grading is the grading induced by the exterior degree. Let D = d −
ι(V X) be the equivariant differential: (Dα)(X) = d(α(X)) − ι(V X)α(X). Here the
operator ι(V X) is the contraction of a differential form by the vector field V X.
Let H∞(k, N) := KerD/ImD be the equivariant cohomology algebra with C∞-
coefficients. It is a module over the algebra C∞(k)K of K-invariant C∞-functions
on k.

The sub-algebra A∞c (k, N) ⊂ A∞(k, N) of equivariant differential forms with com-
pact support is defined as follows : α ∈ A∞c (k, N) if there exists a compact subset
Kα ⊂ N such that the differential form α(X) ∈ A(N) is supported on Kα for any
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X ∈ k. We denote H∞c (k, N) the corresponding cohomology algebra: it is a Z2-graded
algebra.

Let A−∞(k, N) be the space of generalized equivariant differential forms. An ele-
ment α ∈ A−∞(k, N) is, by definition, a C−∞ map α : k→ A(N) which is equivariant
relative to the actions of K on k and A(N) (see [12]). The value taken by α on a
smooth compactly supported density Q(X)dX on k is denoted by

∫
k
α(X)Q(X)dX ∈

A(N). We have A∞(k, N) ⊂ A−∞(k, N) and we can extend the differential D to
A−∞(k, N) [12]. We denote by H −∞(k, N) the corresponding cohomology space. Note
that A−∞(k, N) is a module over A∞(k, N) under the wedge product, hence the co-
homology space H −∞(k, N) is a module over H∞(k, N).

The sub-space A−∞c (k, N) ⊂ A−∞(k, N) of generalized equivariant differential
forms with compact support is defined as follows : α ∈ A−∞c (k, N) if there exist a com-
pact subset Kα ⊂ N such that the differential form

∫
k
α(X)Q(X)dX ∈ A(N) is sup-

ported on Kα for any compactly supported density Q(X)dX. We denote H −∞c (k, N)

the corresponding space of cohomology. The Z2-grading on A(N) induces a Z2-grading
on the cohomology spaces H −∞(k, N) and H −∞c (k, N).

If U is a K-invariant open subset of k, ones defines also H −∞( U, N) and
H −∞c ( U, N). If N is equipped with a K-invariant orientation, the integration over
N defines a morphism ∫

N

: H −∞c ( U, N) −→ C−∞( U)K .

3.1. Restrictions of generalized functions. — Let K be a compact Lie group
with Lie algebra k. In this section, we recall the notions of restriction of invariant
generalized functions defined on the Lie group K or on the Lie algebra k. For more
details, see [10].

For any s ∈ K (resp. S ∈ k), we denote K(s) (resp. K(S)) the stabilizer subgroup:
the corresponding Lie algebra is denoted k(s) (resp. k(S)).

For any s ∈ K, we consider a (small) open K(s)-invariant neighborhood Us of 0

in k(s) such that the map [k, Y ] 7→ ks eY k−1 is an open embedding of K ×K(s) Us on
an open neighborhood of the conjugacy class K · s := {ksk−1, k ∈ K} ' K/K(s).

Similarly, for any S ∈ k, we consider a (small) open K(S)-invariant neighborhood
US of 0 in k(S) such that the map [k, Y ] 7→ Ad(k)(S + Y ) is a open embedding of
K ×K(S) US on an open neighborhood of the adjoint orbit K · S ' K/K(S).

Note that the map Y 7→ [e, Y ] realizes Us (resp. US) as a K(s)-invariant sub-
manifold of K ×K(s) Us (resp. K ×K(S) US).

Let Θ be a generalized function on K invariant by conjugation. For any s ∈ K,
Θ defines a K-invariant generalized function on K ×K(s) Us ↪→ K which admits a
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restriction to the submanifold Us that we denote

Θ||s ∈ C−∞( Us)K(s).

This notation means that we restrict Θ to the slice Us. If Θ is smooth, we have
Θ||s(Y ) = Θ(s eY ) for any Y ∈ Us.

Similarly, let θ be a K-invariant generalized function on k. For any S ∈ k, θ defines
a K-invariant generalized function on K ×K(S) US ↪→ k which admits a restriction to
the submanifold US that we denote

θ||S ∈ C−∞( US)K(S).

If θ is smooth, we have θ||S(Y ) = θ(S + Y ) for any Y ∈ US .

We have K(seS) = K(s) ∩K(S) for any S ∈ Us. Let Θ||s ∈ C−∞( Us)K(s) be the
restriction of a generalized function Θ ∈ C−∞(K)K . For any S ∈ Us, the generalized
function Θ||s admits a restriction (Θ||s)||S which is a K(s eS)-invariant generalized
function defined in a neighborhood of 0 in k(s) ∩ k(S) = k(s eS).

Lemma 3.1 ([10]). — Let Θ ∈ C−∞(K)K .
— For s ∈ K, and S ∈ Us, we have the following equality of generalized functions

defined in a neighborhood of 0 in k(s eS)

(9) (Θ||s)||S = Θ||s eS .

— Let s, k ∈ K. We have the following equality of generalized functions defined in
a neighborhood of 0 in k(s)

(10) Θ||s = Θ||ksk−1 ◦Ad(k).

When Θ ∈ C∞(K)K is smooth, condition (9) is easy to check: for Y ∈ k(s eS), we
have

(Θ||s)||S(Y ) = Θ||s(S + Y ) = Θ(s eS+Y ) = Θ(s eS eY ) = Θ||s eS (Y ).

We have the following

Theorem 3.2 ([10]). — Let K be a compact Lie group. Consider a family of generalized
function θs ∈ C−∞( Us)K(s). We assume that the following conditions are verified.

— Invariance: for any k and s ∈ K, we have the following equality of generalized
functions defined in a neighborhood of 0 in k(s)

θs = θksk−1 ◦Ad(k).

— Compatibility: for every s ∈ K and S ∈ Us, we have the following equality of
generalized functions defined in a neighborhood of 0 in k(s eS)

θs||S = θs eS .
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Then there exists a unique generalized function Θ ∈ C−∞(K)K such that, for any
s ∈ K, the equality Θ||s = θs holds in C−∞( Us)K(s).

3.2. Integration of bouquet of equivariant forms. — Let K be a compact Lie
group acting on a compact manifold M . We are interested in the invariant functions
on K that can be defined by integrating equivariant forms on T∗M .

Let ω be the Liouville 1-form on T∗M . For any s ∈ K, we denote M(s) the fixed
points set {x ∈M |sx = x}. Similarly, for any S ∈ k, we denoteM(S) ⊂M the subset
fixed by the 1-parameter subgroup exp(RS). As K is compact, M(s) and M(S) are
submanifolds of M , and T∗(M(s)) = (T∗M)(s). The cotangent bundle T∗M(s) is a
symplectic submanifold of T∗M and the restriction ω|T∗M(s) is equal to the Liouville
1-form ωs on T∗M(s). The manifolds T∗M(s) are oriented by their symplectic form
dωs.

For any s ∈ K, the tangent bundle TM , when restricted to M(s), decomposes as

TM |M(s) = TM(s)⊕ N .

Let s be the linear action induced by s on the bundle TM |M(s): here TM(s) is the
kernel of s− Id, and the normal bundle N is equal to the image of s− Id.

Let ∇ be a K-equivariant connection on the the tangent bundle TM . It induces
K(s)-equivariant connections : ∇0,s on the bundle TM(s) and ∇1,s on the bundle N .
For i = 0, 1, we consider the equivariant curvature Ri(Y ), Y ∈ k(s) of the connections
∇i,s. We will use the following equivariant forms

Definition 3.3. — We consider the following smooth closed K(s)-equivariant forms on
M(s): the equivariant Â-genus of the manifold M(s)

Â(M(s))(Y ) = det 1/2

Å
R0(Y )

eR0(Y )/2− e−R0(Y )/2

ã
which is defined for Y in a (small) neighborhood Us of 0 ∈ k(s), and

Ds( N )(Y ) = det
Ä
1− s eR1(Y )

ä
.

In the previous definition, the equivariant form Â(M(s)) may be understood as the
exponential of the characteristic form associated to the power series 1

2 log( z
ez/2− e−z/2

)

(see [6], Section 1).
The manifold M(s) may have several connected components Ci. We denote by

dimM(s) the locally constant function onM(s) equal to dimCi on Ci. In the formulas
of the cohomological index, we will use the following closed equivariant form onM(s).

Definition 3.4. — We consider the smooth closed equivariant form on M(s)

Λs(Y ) := (2iπ)− dimM(s) Â(M(s))2(Y )

Ds( N )(Y )
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which is defined for Y in a (small) neighborhood Us of 0 ∈ k(s).

Here Us is a small K(s)-invariant neighborhood of 0 in k(s). It is chosen so that
: ad(k) Us = Uksk−1 , and M(s) ∩M(S) = M(s eS) for any s ∈ K and any S ∈ Us.
For any s ∈ K and any S ∈ Us, let N (s,S) be the normal bundle of M(s eS) =

M(s)∩M(S) inM(s). Let Z ∈ k(seS). Let R(Z) be the K(s eS)-equivariant curvature
of an invariant Euclidean connection on N (s,S). Let

Eul
(
N (s,S)

)
(Z) := (−2π)−rank N (s,S)/2 det 1/2

o (R(Z))

be its K(s eS)-equivariant Euler form. Recall that S induces a complex structure JS
on the bundle N (s,S): the action of S is linear on the fibers of N (s,S) and we take
JS = S(−S2)−1/2. The square root det

1/2
o is computed using the orientation o defined

by this complex structure. Remark that Eul
(
N (s,S)

)
(Z) is invertible near Z = S, as

S acts by an invertible map on the bundle N (s,S).
Note that the diffeomorphism k : T∗M(s) → T∗M(ksk−1) induces a map k :

A∞c ( Us,T∗M(s)) → A∞c ( Uksk−1 ,T∗M(ksk−1)). It is easy to check that the family
Λs ∈ A∞( Us,M(s)) satisfies :

(11) k · Λs = Λksk−1 in H∞( Us,M(s)),

(12) Λs eS (Z) = (−1)r
Λs|M(s eS)

Eul( N (s,S))2
(S + Z) in H∞( U′,M(s eS)),

where U′ ⊂ k(s eS) is a small invariant neighborhood of 0, and r = 1
2 rankR N (s,S).

Let γs ∈ A∞c ( U(s),T∗M(s)) be a family of closed equivariant forms with compact
support. We look now at the family of smooth invariant functions

θ(γ)s(Y ) =

∫
T∗M(s)

Λs(Y )γs(Y ), Y ∈ Us.

Lemma 3.5. — The family θ(γ)s defines an invariant function Θ(γ) ∈ C∞(K)K if

k · γs = γksk−1 in H∞c ( Us,T∗M(s)),

and

γs eS (Z) = γs|T∗M(s eS)(S + Z) in H∞c ( U′,T∗M(s eS)),

where U′ ⊂ k(s eS) is a small invariant neighborhood of 0.

Proof. — The proof, that can be found in [10] and [7, 8], follows directly from the
localization formula in equivariant cohomology. Note that the square Eul( N (s,S))

2 is
equal to the equivariant Euler form of the normal bundle ofT∗M(s eS) inT∗M(s).
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In this article, the equivariant forms γs that we use are the Chern forms attached
to a transversally elliptic symbol. Since they have generalized coefficients, we give an
extension of Lemma 3.5 to this setting in Section 3.5 (see Theorem 3.18).

3.3. The Chern character with support. — In this subsection, we recall some
constructions and some results of [18].

Let M be a K-manifold. Let p : T∗M →M be the projection.
Let E = E+ ⊕ E− be a Hermitian K-equivariant super-vector bundle over M . Let

σ : p∗ E+ → p∗ E− be a K-equivariant symbol. Recall that supp(σ) ⊂ T∗M is the set
where σ is not invertible. In this section, we do not assume that supp(σ) is compact.

Choose a K-invariant super-connection A on p∗ E, without 0 exterior degree term.
As in [18, 19], we deform A with the help of σ : we consider the family of super-
connections

Aσ(t) = A + it vσ, t ∈ R,

on E where vσ =

(
0 σ∗

σ 0

)
is an odd endomorphism of E defined with the help

of the Hermitian structure. Let F(σ,A, t)(X), X ∈ k, be the equivariant curvature of
Aσ(t).

We denote by F(X), X ∈ k, the equivariant curvature of A: we have F(X) =

A2 + µA(X) where µA(X) ∈ A(T∗M,End(p∗ E)) is the moment of A [6]. Then
F(σ,A, t)(X) ∈ A(T∗M,End(p∗ E))+ is given by:

(13) F(σ,A, t)(X) = −t2vσ + it[A, vσ] + F(X).

Let Str : A(T∗M,End(p∗ E)) → A(T∗M) be the super-trace. Let t ∈ R. Consider
the K-equivariant forms on T∗M :

Ch(A)(X) = Str(eF(X)),

Ch(A, t)(X) = Str
Ä
eF(σ,A,t)(X)

ä
,

η(σ,A, t)(X) = −i Str
Ä
vσ eF(σ,A,t)(X)

ä
,

β(σ,A, t)(X) =

∫ t

0

η(σ,A, r)(X)dr.

The forms Ch(A), Ch(A, t) and β(σ,A, t) are equivariant forms on T∗M with C∞-
coefficients. We have on T∗M the relation D(β(σ,A, t)) = Ch(A)− Ch(A, t).

We show in [18] that the equivariant forms Ch(A, t) and η(σ,A, t) tends to zero
exponentially fast on the open subset T∗M \ supp(σ), when t goes to infinity. Hence
the integral

β(σ,A)(X) =

∫ ∞
0

η(σ,A, t)(X)dt
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defines an equivariant form with C∞-coefficients on T∗M \ supp(σ), and we have
D(β(σ,A)) = Ch(A) on T∗M \ supp(σ).

We will now define the Chern character with support of σ. For any invariant open
neighborhood U of supp(σ), we consider the algebra AU (T∗M) of differential forms on
T∗M which are supported in U . Let A∞U (k,T∗M) be the vector space of equivariant
differential forms α : k → AU (T∗M) which are supported in U : A∞U (k,T∗M) is a
subspace of A∞(k,T∗M) which is stable under the derivative D. Let H∞U (k,T∗M) be
the corresponding cohomology space.

The following proposition follows easily:

Proposition 3.6 ([18]). — Let U be a K-invariant open neighborhood of supp(σ). Let
χ ∈ C∞(T∗M) be a K-invariant function, with support contained in U and equal to
1 in a neighborhood of supp(σ). The equivariant differential form on T∗M

c(σ,A, χ) = χCh(A) + dχβ(σ,A)

is equivariantly closed and supported in U . Its cohomology class ChU (σ) in
H∞U (k,T∗M) does not depend on the choice of (A, χ), nor on the Hermitian
structure on E.

Definition 3.7. — We define the “Chern character with support" Chsup(σ) as the col-
lection (ChU (σ))U , where U runs over K-invariant open neighborhood of supp(σ).

In practice, the Chern character with support Chsup(σ) will be identified with
a class ChU (σ) ∈ H∞U (k,T∗M), where U is a “sufficiently" small neighborhood of
supp(σ).

When σ is elliptic, that is when supp(σ) is compact, we can choose χ ∈ C∞(T∗M)K

with compact support, and we denote

(14) Chc(σ) ∈ H∞c (k,T∗M)

the class defined by the equivariant form with compact support c(σ,A, χ).

We introduce now the bouquet of Chern characters with support.
Let s ∈ K. Then the action of s on E|M(s) is given by s E, an even endomorphism

of E|M(s). The restriction of ω to T∗M(s) is the canonical 1-form ωs of T∗M(s).
The super-connection A + itvσ restricts to a super-connection on p∗ E|T∗M(s).

Its curvature F(σ,A, t) restricted to T∗M(s) = N(s) gives an element of A(N(s),
End(p∗ E|N(s))). To avoid further notations, if χ is a function on M , we still denote
by χ its restriction to M(s), by σ the restriction of σ to T∗M(s), by F(σ,A, t) the
restriction of F(σ,A, t) to T∗M(s), etc.
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For Y ∈ k(s), we introduce the following K(s)-equivariant forms on T∗M(s):

Chs(A)(Y ) = Str(s E eF(Y )),

ηs(σ,A, t)(Y ) = −i Str
Ä
vσ s

E eF(σ,A,t)(Y )
ä
,

βs(σ,A)(Y ) =

∫ ∞
0

ηs(σ,A, t)(Y )dt.

Then βs(σ,A) is a well defined K(s)-equivariant form with C∞-coefficients on
T∗M(s) \ supp(σ) ∩ T∗M(s). We have similarly dβs(σ,A) = Chs(A) outside
supp(σ) ∩T∗M(s).

The bouquet of Chern characters (Chsup(σ, s))s∈K can be constructed as follows.

Proposition 3.8. — Let U be a K(s)-invariant open neighborhood of supp(σ)∩T∗M(s)

in T∗M(s). Let χ ∈ C∞(T∗M(s)) be a K(s)-invariant function, with support con-
tained in U and equal to 1 in a neighborhood of supp(σ) ∩ T∗M(s). The equivariant
differential form on T∗M(s)

cs(σ,A, χ)(Y ) = χChs(A)(Y ) + dχβs(σ,A)(Y ), Y ∈ k(s),

is equivariantly closed and supported in U . Its cohomology class ChU (σ, s) in
H∞U (k,T∗M(s)) does not depend on the choice of (A, χ), nor on the Hermitian
structure on E.

The proof of this proposition is entirely similar to the proof of Proposition 3.6.

Definition 3.9. — We define the “Chern character with support" Chsup(σ, s) as the
collection (ChU (σ, s))U , where U runs over the K(s)-invariant open neighborhood of
supp(σ) ∩T∗M(s) in T∗M(s).

Lemma 3.10. — Let s ∈ K and S ∈ K(s). Then for all Y ∈ k(s) ∩ k(S), one has

cs eS (σ,A, χ)(Y ) = cs(σ,A, χ)(S + Y )|N(s)∩N(S).

Proof. — Let N = T∗M . We have to compare the following forms on N(s) ∩N(S)

Chs eS (A)(Y ) = Str(s E eS
E
eF(Y )),

Chs(A)(S + Y ) = Str(s E eF(S+Y )),

as well as the following forms

ηs eS (σ, ω,A, t)(Y ) = −i Str
Ä
vσ s

E eS
E
eF(σ,A,t)(Y )

ä
,

ηs(σ,A, t)(S + Y ) = −i Str
Ä
vσ s

E eF(σ,A,t)(S+Y )
ä
.

For S ∈ k, the equivariant curvature F(σ,A, t)(S + Y ) on N(S) is equal to S E +

F(σ,A, t)(Y ) as the vector field V S vanishes on N(S). Furthermore, above N(s) ∩
N(S), the endomorphism F(σ,A, t)(Y ) commutes with S E, for Y ∈ k(S) ∩ k(s). Thus
the result follows.
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Then, for any open neighborhood U of supp(σ), the family (ChU (σ, s))s∈K forms
a bouquet of cohomology classes in the sense of [10].

3.4. The Chern character of a transversally elliptic symbol. — We keep the
same notations than in the previous sections. We will use definition and results of
[17] specialized to the case where N is T∗M .

We denote by ω the Liouville form on T∗M . In local coordinates (q, p) then
ω = −

∑
a padqa. The two-form Ω = dω =

∑
a dqa∧dpa gives a symplectic structure to

T∗M . The orientation of T∗M is the orientation determined by the symplectic struc-
ture (our convention for the canonical 1-form ω differs from [7], but the symplectic
form Ω is the same).

The moment map for the action of K on (T∗M,Ω) is the map fω : T∗M → k∗

defined by 〈fω(x, ξ), X〉 = 〈ξ, VxX〉: we have Dω(X) = Ω + 〈fω, X〉.
Remark that T∗KM is the set of zeroes of fω. Recall [14, 17] how to associate to

the 1-form ω a K-equivariant form One(ω) with generalized coefficients supported
near T∗KM .

On the complement of T∗KM , the K-equivariant form

(15) β(ω) = −iω
∫ ∞

0

eitDω dt

is well defined as a K-equivariant form with generalized coefficients, and it is obvious
to check that Dβ(ω) = 1 outside T∗KM .

Proposition 3.11 ([14, 17]). — Let U ′ be a K-invariant open neighborhood of T∗KM .
Let χ′ ∈ C∞(T∗M) be a K-invariant function, with support contained in U ′ and
equal to 1 in a neighborhood of T∗KM . The equivariant differential form on T∗M

One(ω, χ′) = χ′ + dχ′ β(ω)

is closed, with generalized coefficients, and supported in U ′. Its cohomology class
OneU ′(ω) in H −∞U ′ (k,T∗M) does not depend on the choice of χ′.

This proposition allows us to make the following definition.

Definition 3.12. — We will denote One(ω) the collection (OneU ′(ω))U ′ .

It is immediate to verify that

(16) One(ω, χ′) = 1 +D
(

(χ′ − 1)β(ω)
)
.

Thus, if we do not impose support conditions, the K-equivariant form One(ω, χ′)

represents 1 in H −∞(k,T∗M). The notation One is suggestive of this fact.

We consider now a K-transversally elliptic symbol σ on M . We have the Chern
character Chsup(σ) which is an equivariant form with C∞-coefficients supported near
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supp(σ), and the equivariant form One(ω) with C−∞-coefficients supported near
T∗KM . Since supp(σ) ∩T∗KM is compact, the product

Chsup(σ) ∧One(ω)

defines an equivariant form with compact support with C−∞-coefficients. We summa-
rize the preceding discussion by the

Theorem 3.13 ([17]). — Let σ be a K-transversally elliptic symbol. Let U,U ′ be re-
spectively K-invariant open neighborhoods of supp(σ) and T∗KM such that U ∩ U ′ is
compact. The product

ChU (σ) ∧OneU ′(ω)

defines a compactly supported class in H −∞c (k,T∗M) which depends uniquely of
[σ|T∗

K
M ] ∈ K0

K(T∗KM).

Definition 3.14. — We define Chc(σ, ω) ∈ H −∞c (k,T∗M) to be the equivariant class
of ChU (σ) ∧OneU ′(ω)

We will use the notation

Chc(σ, ω) = Chsup(σ) ∧One(ω)

which summarizes the fact that the class with compact support Chc(σ, ω) is repre-
sented by the product

(17) c(σ,A, χ) ∧One(ω, χ′)

where χ, χ′ ∈ C∞(T∗M)K are equal to 1 respectively in a neighborhood of supp(σ)

and T∗KM , and furthermore the product χχ′ is compactly supported.

Remark 3.15. — If σ is elliptic, one can take χ with compact support, and χ′ = 1 on
T∗M in Equation (17). We see then that

Chc(σ, ω) = Chc(σ) in H −∞c (k,T∗M).

Let s ∈ K. Similarly, we denote by One(ωs, χ
′) the closed K(s)-equivariant form

on T∗M(s) associated to the canonical 1-form ωs = ω|T∗M(s) and a function χ′ ∈
C∞(T∗M(s))K(s) equal to 1 in a neighborhood of T∗K(s)M(s). For any K(s)-invariant
neighborhood U ′ ⊂ T∗M(s) of T∗K(s)M(s), we denote

OneU ′(ωs) ∈ H −∞U ′ (k(s),T∗M(s))

the class defined by One(ωs, χ
′) when χ′ is supported in U ′. We denote One(ωs) the

collection (OneU ′(ω, s))U ′ .
We defined, in Section 3.3, the family of Chern classes (Chsup(σ, s))s∈K for any

K-invariant symbol. We now define a family (Chc(σ, ω, s))s∈K with compact support
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and C−∞-coefficients when σ is a K-transversally elliptic symbol onM . Note that the
restriction σ|T∗M(s) of aK-transversally elliptic symbol onM is aK(s)-transversally
elliptic symbol on the submanifold M(s).

The following proposition is proved in an entirely similar way than Theorem 3.13.

Proposition 3.16. — Let σ be a K-transversally elliptic symbol. Let s ∈ K.
Let U,U ′ ⊂ T∗M(s) be respectively K(s)-invariant open neighborhoods of

supp(σ|T∗M(s)) and T∗K(s)M such that U ∩ U ′ is compact. The product

ChU (σ, s) ∧OneU ′(ωs)

defines a compactly supported class in H −∞c (k(s),T∗M(s)) which depends uniquely of
[σ|T∗

K(s)
M(s)].

Definition 3.17. — We define Chc(σ, ω, s) ∈ H −∞c (k(s),T∗M(s)) to be the equivariant
class of ChU (σ) ∧OneU ′(ω)

The notation
Chc(σ, ω, s) = Chsup(σ, s) ∧One(ωs)

summarizes the fact that the class with compact support Chc(σ, ω, s) is represented
by cs(σ,A, χ)∧One(ωs, χ

′) where χ, χ′ ∈ C∞(T∗M(s))K(s) are chosen so that χχ′ is
compactly supported.

3.5. Definition of the cohomological index. — Let K be a compact Lie group
and let M be a compact K-manifold. The aim of this section is to define the coho-
mological index

indexK,Mc : K0
K(T∗KM)→ C−∞(K)K .

For any [σ] ∈ K0
K(T∗KM), the generalized function indexK,Mc ([σ]) will be described

through their restrictions indexK,Mc ([σ])||s, s ∈ K (see Section 3.1).
In Subsection 3.2, we have introduced for any s ∈ K, the closed equivariant form

on M(s)

Λs(Y ) := (2iπ)− dimM(s) Â(M(s))2(Y )

Ds( N )(Y )
.

We wish to prove first the following theorem.

Theorem 3.18. — Let σ be a K-transversally elliptic symbol. There exists a unique
invariant generalized function indexK,Mc ([σ]) on K satisfying the following equations.
Let s ∈ K. For every Y ∈ k(s) sufficiently small,

(18) indexK,Mc ([σ])||s(Y ) =

∫
T∗M(s)

Λs(Y ) Chsup(σ, s)(Y ) One(ωs)(Y ).
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As Chc(σ, ω, s) = Chsup(σ, s)(Y ) One(ωs)(Y ) is compactly supported, the integral
(18) of equivariant differential forms with generalized coefficients defines a generalized
function on a neighborhood of zero in k(s). However, we need to prove that the different
local formulae patch together (see Theorem 3.2). The proof of this theorem occupies
the rest of this subsection. Once this theorem is proved, we can make the following
definition.

Definition 3.19. — Let σ be a K-transversally elliptic symbol. The cohomological index
of σ is the invariant generalized function indexK,Mc ([σ]) on K satisfying Equation
(18). We also rewrite the formula for the cohomological index as

(19) indexK,Mc ([σ])||s(Y ) =

∫
T∗M(s)

Λs(Y ) Chc(σ, ω, s)(Y ).

In particular, when s = e is the identity of the group K, Equation (18) becomes

(20) indexK,Mc ([σ])(eX) = (2iπ)− dimM

∫
T∗M

Â(M)2(X) Chsup(σ)(X) One(ω)(X).

Remark 3.20. — In (18), (20) and (19) we take for the integration the symplectic
orientation on the cotangent bundles.

Let us now prove Theorem 3.18.

Proof. — The right hand side of (18) defines a K(s)-invariant generalized function
θs(Y ) on a neighborhood Us of 0 in ks. Following Theorem 3.2, the family (θs)s∈K
defines an invariant generalized function on K, if the invariance condition and the
compatibility condition are satisfied. The invariance condition is easy to check. We
will now prove the compatibility condition.

Let s ∈ K, and S ∈ Us. We have to check that the restriction θs||S coincides with
θs eS in a neighborhood of 0 in k(s) ∩ k(S) = k(s eS). We conduct the proof only for s
equal to the identity e, as the proof for s general is entirely similar.

For a differential form α on a manifold N , we denote by support(α) ⊂ N its
support. For a smooth equivariant form X → η(X), its support support(η) is defined
as the smallest closed subset containing support(η(X)) for all X ∈ k.

We have to compute the restriction at θe||S of the generalized invariant function

θe(X) :=

∫
T∗M

Λe(X) Chsup(σ)(X) One(ω)(X), X ∈ Ue.

For this purpose, we choose a particular representative of the class Chsup(σ)One(ω)

in H −∞c (k,T∗M). Since this class only depends of [σ|T∗
K
M ] ∈ K0

K(T∗KM), we choose
a transversally elliptic symbol σh which is almost homogeneous of degree 0 and such
that [σh|T∗

K
M ] = [σ|T∗

K
M ].

One can show [17] that the moment map fω : T∗M → k∗ is proper when restricted
to the support supp(σh). We represent Chsup(σh) by the form c(σh,A, χσ) where χσ
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is a function on T∗M such that support(χσ) ∩ {‖fω‖2 ≤ 1} is compact. For this
choice of χσ, the equivariant form α(X) = Λe(X) c(σh,A, χσ)(X) is thus such that
support(α) ∩ {‖fω‖2 ≤ 1} is compact. It is defined for X small enough. Multiplying
by a smooth invariant function of X with small compact support and equal to 1 in a
neighborhood of 0, we may find α(X) defined for all X ∈ k and which coincides with
Λe(X) c(σh,A, χσ)(X) for X small enough.

We choose χ supported in {‖fω‖2 < 1} and equal to 1 on {‖fω‖2 ≤ ε}, and define
One(ω) with this choice of χ. Then α(X)One(ω)(X) is compactly supported.

We will now prove the following result:

Proposition 3.21. — Let α(X) be a closed equivariant form with C∞-coefficients on
N := T∗M such that {‖fω‖2 ≤ 1} ∩ support(α) is compact. Define the generalized
function θ ∈ C−∞(k)K by

(21) θ(X) :=

∫
N

α(X)One(ω)(X).

Then, the restriction θ||S is given, for Y = Z − S sufficiently close to 0 by

(22) θ||S(Y ) = (−1)r
∫
N(S)

α|N(S)(Z)

Eul( N S)2(Z)
One(ωS)(Z).

Here N S denotes the normal bundle ofM(S) inM , and r = 1
2 (dimM−dimM(S)).

Remark 3.22. — The integral (22) is defined using the symplectic orientation o(ωS)

on N(S) = T∗M(S). The linear action of S on the normal bundle N ′S of N(S) in N
induces a complex structure JS : let o(JS) be corresponding orientation of the fibers
of N ′S. We have then on N(S) the orientation o(S) such that o(ω) = o(S)o(JS). One
can check that (−1)r is the quotient between o(S) and o(ωS).

Let us apply the last proposition to the form α(X) = Λe(X) Chsup(σh)(X).
If we use (12) and Lemma 3.10, we see that (−1)r

α|N(S)

Eul( N S)2 (S + Y ) is equal to
ΛeS (Y ) Chsup(σh, e

S)(Y ). Hence Proposition 3.21 tells us that the the restriction of
θe||S is equal to θeS : Theorem 3.18 is proved.

Proof. — We now concentrate on the proof of Proposition 3.21.
Remark that if α is compactly supported, we can get rid of the forms One(ω) and

One(ωS) in the integrals (21) and (22), since they are equal to 1 in cohomology. In
this case, the proposition is just the localization formula, as Eul( N S)2 is the Euler
class of the normal bundle of T∗M(S) in T∗M .

The proof will follow the same scheme as the usual localization formula (see [6])
and will use the fact that α|k(S) is exact outside the set of zeroes of S. To extend the
proof of the localization formula in our setting, we have to bypass the fact that the
restriction of One(ω) to k(S) has no meaning, since One(ω) is an equivariant form
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with generalized coefficients. However, we will use in a crucial way the fact that the
closed equivariant form One(ω) is the limit of smooth equivariant forms

OneT (ω)(X) = χ+ dχ

∫ T

0

(−iω eitDω(X))dt.

Here D
Ä
OneT (ω)

ä
= dχ eiTDω tends to zero as T goes to infinity.

Let OneT (ω)(Z) be the restriction of OneT (ω)(X) to k(S). We write fω = fSω + fqω
relative to the K(S)-invariant decomposition k∗ = k(S)∗ ⊕ q. Then the family of
K(S)-equivariant forms

eitDω(Z) = eitdω eit〈f
S
ω ,Z〉

tends to 0 outside {fSω = 0}, as t goes to ∞. Since dχ can be non-zero on the subset
{fSω = 0}, the family of k(S)-equivariant forms OneT (ω)(Z) does not have a limit
when T →∞ in general.

Consider the sub-manifold N(S) := T∗M(S) of N := T∗M . Note that fqω vanishes
on N(S). Let V be an invariant tubular neighborhood of N(S) which is contained
in {‖fqω‖2 ≤ ε

2}. We are interested in the restriction OneT (ω)| V (Z) to V . Since the
function χ is equal to 1 on {‖fω‖2 ≤ ε}, we see that dχ| V is equal to zero in the
neighborhood V ∩ {‖fSω ‖2 ≤ ε

2} of V ∩ {fSω = 0}. Hence the limit

(23) One(ω)| V (Z) = lim
T→∞

OneT (ω)| V (Z), Z ∈ k(S),

defines a K(S)-equivariant form with generalized coefficients on V . Note that the
restriction of One(ω)| V toN(S) ⊂ V is theK(S)-equivariant form One(ωS) associated
to the Liouville 1-form ωS on T∗M(S).

The generalized function θ ∈ C−∞(k)K is the limit, as T goes to infinity, of the
family of smooth functions

θT (X) :=

∫
N

α(X)OneT (ω)(X).

Here the equivariant forms αT = αOneT (ω) stay supported in the fixed compact set
K := {‖fω‖2 ≤ 1} ∩ support(α).

The proof will be completed if we show that the family of smooth functions
θT (Z), Z ∈ k(S), converge to the generalized function

θ′(Z) := (−1)r
∫
N(S)

α(Z)

Eul( N S)2(Z)
One(ωS)(Z),

as T goes to infinity, and when Z varies in a small neighborhood of S in k(S).
Let U be a relatively compact invariant neighborhood of K in N . Let χ′ ∈

C∞(U)K(S) be such that χ′ is supported in V ∩ U , and χ′ = 1 in a neighborhood of
U(S) = N(S)∩U . Here V is a tubular neighborhood of N(S) satisfying the conditions
for the existence of the limit (23).
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Choose a K-invariant metric 〈−,−〉 on TN . Let λ be the K(S)-invariant 1-form
on N defined by λ = 〈V S,−〉. Note that D(λ)(S) = dλ− ‖V S‖2 is invertible outside
N(S). One sees that

Pχ′(Z) = χ′ + dχ′
λ

Dλ(Z)

is a K(S)-equivariant form on U for Z in a small neighborhood of S. The following
equation of K(S)-equivariant forms on U is immediate to verify:

(24) 1 = Pχ′ +D

Å
(1− χ′) λ

Dλ

ã
.

Since the K(S)-equivariant forms

αT (Z) := α(Z)OneT (ω)(Z)

are supported in U , one can multiply (24) by αT . We have then the following relations
between compactly supported K(S)-equivariant forms on N :

αT = Pχ′α
T +D

Å
(1− χ′) λ

Dλ

ã
αT

= Pχ′α
T +D

Å
(1− χ′) λ

Dλ
αT

ã
+ (1− χ′) λ

Dλ
D(αT ).

According to this equation, we divide the function θT (Z) in two parts

θT (Z) = AT (Z) +BT (Z), for Z − S small

with

AT (Z) =

∫
N

Pχ′(Z)αT (Z)

and

BT (Z) =

∫
N

(1− χ′) λ

Dλ(Z)
DαT (Z) =

∫
N

(1− χ′) λ

Dλ(Z)
α(Z)dχ eiTDω(Z) .

Let p : V → N(S) be the projection, and let i : N(S) → V be the inclusion.
Since the form Pχ′(Z) is supported in V , the family of smooth equivariant forms
Pχ′(Z)α(Z)OneT (ω)(Z) converges to

Pχ′(Z)α(Z)One(ω)| V (Z)
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as T goes to ∞, by our previous computation of the limit (23). Hence the functions
AT (Z) converge to∫

V
Pχ′(Z)α(Z)One(ω)| V (Z) =

∫
V

Pχ′(Z) p∗◦i∗ (αOne(ω)| V ) (Z) [1]

=

∫
N(S),o(S)

p∗(Pχ′)(Z) α|N(S)(Z) One(ωS)(Z) [2]

=

∫
N(S),o(S)

α|N(S)(Z)

Eul( N S)2(Z)
One(ωS)(Z) [3]

= (−1)r
∫
N(S)

α|N(S)(Z)

Eul( N S)2(Z)
One(ωS)(Z). [4]

Points [1] and [2] are due to the fact that α(Z)One(ω)| V (Z) is equal to p∗◦
i∗ (αOne(ω)| V ) (Z) in H −∞(k(S), V ) and that Pχ′ has a compact support relative to
the fibers of p (here p∗ denotes the integration along the fibers). For point [3], we use
then that p∗(Pχ′) multiplied by the Euler class(2) of V is equal to the restriction of
Pχ′ to N(S), which is identically equal to 1. In [4], we use the symplectic orientation
for the integration.

Let us show that the integral
∫
k(S)

BT (Z)ϕ(Z)dZ tends to 0, as T goes to infinity,
for any ϕ ∈ C∞(k(S))K(S) supported in a small neighborhood of S. As detk/k(S)(Z)

does not vanish when Z − S remains small enough, it is enough to show that

I(T ) :=

∫
N×k(S)

(1− χ′) λ

Dλ(Z)
DαT (Z)ϕ(Z) det k/k(S)(Z)dZ

tends to 0, as T goes to infinity. We have

I(T ) :=

∫
N×k(S)

eiTDω(Z) η(Z) det k/k(S)(Z)dZ

where η(Z) = (χ′ − 1) λ
Dλ(Z)α(Z)dχϕ(Z) is a compactly supported K(S)-equivariant

form on N with C∞-coefficients, which is defined for all Z ∈ k(S). Furthermore we
have η(Z) = 0 for Z outside a small neighborhood of S and

support(η) ∩
{
fω = 0

}
= ∅.

There exists a K-equivariant form Γ : k → A(N) such that Γ(Z) = η(Z) for any
Z−S small in k(S). Indeed we define Γ(X) = k ·η(Z) for any choice of k, Z such that
k ·Z = X. Here X varies in a (small) neighborhood of K · S. As η(Z) is zero when Z
is not near S, the map X 7→ Γ(X) is supported on a compact neighborhood of K · S
in k. We see also that

(25) support(Γ) ∩
{
fω = 0

}
= ∅.

(2) The Euler form of the vector bundle V → N(S) is equal to the square of the Euler form of the
normal bundle N S of M(S) in M .
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Condition (25) implies that the integral J(T ) :=
∫
k×N eiTDω(X) Γ(X)dX goes to 0,

as T goes to infinity. But I(T ) = J(T ). Indeed, write X = k · Z and apply the Weyl
integration formula. We obtain

J(T ) =

∫
k(S)

(∫
K×N

eiTDω(k·Z) Γ(k · Z)dk
)

det k/k(S)(Z)dZ

=

∫
k(S)

∫
K×N

k ·
(

eiTDω(Z) η(Z)
)
dk det k/k(S)(Z)dZ.

Integration on the K-manifold N is invariant under diffeomorphisms, thus

J(T ) =

∫
k(S)

∫
N

eiTDω(Z) η(Z) det k/k(S)(Z)dZ = I(T ).

We have shown that the family of smooth function BT (Z) goes to 0, as T goes to
infinity. The proof of Proposition 3.21 is then completed.

Let H be a compact Lie group acting on M and commuting with the action of K.
Then the space T∗KM is provided with an action of K ×H.

Lemma 3.23. — If [σ] ∈ K0
K×H(T∗KM), then the cohomological index indexK,H,Mc

([σ])(k, h) ∈ C−∞(K ×H)K×H is smooth relative to the variable h ∈ H.

Proof. — We have to prove that for any s = (s1, s2) ∈ K×H, the generalized function

indexK,H,Mc ([σ])||s(Y1, Y2)

which is defined for (Y1, Y2) in a neighborhood of 0 in k(s1)×h(s2), is smooth relative
to the variable Y2 ∈ h(s2). We check it for s = e.

We have

(26) indexK,H,Mc ([σ])||e(X,Y ) =

∫
T∗M

Λe(X,Y ) Chsup(σ)(X,Y )One(ω)(X,Y )

for (X,Y ) ∈ k×h in a neighborhood of 0. The equivariant class with compact support
Chsup(σ)One(ω) is represented by the product c(σ,A, χ)One(ω, χ′) where (χ, χ′) is
chosen so that χ = 1 in a neighborhood of supp(σ), χ′ = 1 in a neighborhood of
T∗K×HM , and χχ′ is compactly supported.

Since σ is K-transversally elliptic, the set supp(σ) ∩ T∗KM is compact. Hence we
can choose (χ, χ′) so that χ′ = 1 in a neighborhood of T∗KM and χχ′ is compactly
supported. It easy to check that the equivariant form One(ω, χ′)(X,Y ) is then smooth
relative to the variable Y ∈ h. This show that the right hand side of (26) is smooth
relative to the variable Y ∈ h.

Remark 3.24. — We will denote Ch1
c(σ, ω)(X,Y ) the K×H-equivariant form defined

by the product c(σ,A, χ)One(ω, χ′) where (χ, χ′) is chosen so that χ = 1 in a neighbor-
hood of supp(σ), χ′ = 1 in a neighborhood of T∗KM , and χχ′ is compactly supported.
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The equivariant form Ch1
c(σ, ω)(X,Y ) is compactly supported and is smooth relative

to the variable Y ∈ h.

4. The cohomological index coincides with the analytic one

In this section, we now prove that the cohomological index is equal to the analytical
index. The main difficulty in the proof of this result in Berline-Vergne [7, 8] was to
prove that their formulae were defining generalized functions which, moreover, were
compatible with each other. The heart of this new proof is the fact the Chern character
with compact support is multiplicative. Thus we rely heavily here on the results of
[17], so that the proof is now easy.

Theorem 4.1. — The analytic index of a transversally elliptic operator P on a K-
manifold M is equal to indexK,Mc ([σP ]).

To prove that the cohomological index is equal to the analytic index, following the
Atiyah-Singer algorithm, we need only to verify that the cohomological index satisfies
the properties that we listed of the analytic index:

– Invariance by diffeomorphism : Diff ,
– Functorial with respect to subgroups : Morph,
– Excision property,
– Free action properties,
– Multiplicative properties,
– Normalization conditions [N1], [N2] and [N3].

The invariance by diffeomorphism, the functoriality with respect to subgroups and
the excision property are obviously satisfied by indexK,Mc .

4.1. Free action. — We now prove that the cohomological index satisfies the free
action property. We consider the setting of Subsection 2.3.3. The action of K on the
bundle T∗KP is free and the quotient T∗KP/K admit a canonical identification with
T∗M . Then we still denote by

q : T∗KP → T∗M

the quotient map by K: it is a G-equivariant map such that q−1(T∗GM) = T∗K×GP .
We choose a G-invariant connection θ for the principal fibration q : P → M of

group K. With the help of this connection, we have a direct sum decomposition

T∗P = T∗KP ⊕ P × k∗.

Let π1 : T∗P → T∗KP and π2 : T∗P → P × k∗ be the projections on each factors. Let

Q : T∗P → T∗M
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be the map q ◦ π1.
Let σ be a G-transversally elliptic morphism on T∗M . Its pull-back Q∗σ is then a

K ×G-transversally elliptic morphism on T∗P : we have supp(Q∗σ) = Q−1(supp(σ))

and then supp(Q∗σ) ∩T∗K×GP = q−1(supp(σ) ∩T∗GM) is compact.

Theorem 4.2. — Let P → M be a principal fibration with a free right action of K,
provided with a left action of G. Consider a class [σ] ∈ K0

G(T∗GM) and its pull-back
by Q : [Q∗σ] ∈ K0

K×G(T∗K×GP ). Then we have the equality of generalized functions:
for (k, g) ∈ K ×G

indexK×G,Pc ([Q∗σ])(k, g) =
∑
τ∈K̂

Tr(k, τ) indexG,Mc ([στ∗ ])(g).

The rest of this section is devoted to the proof. We have to check that for any
(s, s′) ∈ K × G we have the following equality of generalized functions defined in a
neighborhood of k(s)× g(s′) :

(27) indexK×G,Pc ([Q∗σ])||(s,s′)(X,Y ) =
∑
τ∈K̂

Tr(s eX , τ) indexG,Mc ([στ∗ ])||s′(Y ).

We conduct the proof of (27) only for (s, s′) = (e, e) the identity of K × G. This
proof can be adapted to the general case by using the same arguments as Berline-
Vergne [8].

First, we analyze the left hand side of (27) at (s, s′) = (e, e).
We consider the K ×G-invariant 1-form ν = 〈ξ, θ〉 on P × k∗ : here θ ∈ A1(P )⊗ k

is our connection form, and ξ is the variable in k∗. We have

(28) Dν(X,Y ) = dν + 〈ξ, µ(Y )−X〉, X ∈ k, Y ∈ g.

where µ(Y ) = −θ(V Y ) ∈ C∞(P )⊗ k.
We associate to ν the K × G-equivariant form with generalized coefficients

β(−ν)(X,Y ) = iν
∫∞

0
e−itDν(X,Y ) dt, (X,Y ) ∈ k × g, which is defined on the open

subset P × k∗ \ {0}. One checks that β(−ν)(X,Y ) is smooth relative to the variable
Y ∈ g. Let χk∗ ∈ C∞(k∗)K be a function with compact support and equal to 1 near
0. Then

(29) One(−ν)(X,Y ) := χk∗ + dχk∗β(−ν)(X,Y )

is a closed equivariant form on P × k∗, with compact support, and which is smooth
relative to the variable Y ∈ g.

Let σ be a G-transversally elliptic morphism on T∗M . Its pull-back Q∗σ is then
a K × G-transversally elliptic morphism on T∗P . Let ωP and ωM be the Liouville
1-forms on T∗P and T∗M respectively. We have defined the equivariant Chern classes
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with compact support Chc(σ, ωM ) ∈ H −∞c (g,T∗M) and Chc(Q
∗σ, ωP ) ∈ H −∞c (k ×

g,T∗P ).

Proposition 4.3. — We have the following equality

Chc(Q
∗σ, ωP )(X,Y ) = Q∗

(
Chc(σ, ωM )

)
(Y ) ∧ π∗2

(
One(−ν)

)
(X,Y )

in H −∞c (k×g,T∗P ). Note that the product on the right hand side is well defined since
One(−ν)(X,Y ) is smooth relative to the variable Y ∈ g.

Proof. — The proof which is done in [17] follows from the relation

(30) ωP = Q∗(ωM )− π∗2(ν).

We now analyze the term

indexK×G,Pc ([Q∗σ])||(e,e)(X,Y ) = (2iπ)−dimP

∫
T∗P

Â(P )2 Chc(Q
∗σ, ωP )(X,Y ).

An easy computation gives that Â(P )2(X,Y ) = jk(X)−1q∗Â(M)2(Y ), with
jk(X) = detk

Ä
ead(X)/2− e−ad(X)/2

ad(X)

ä
. If we use Proposition 4.3, we see that

indexK×G,Pc ([Q∗σ])||(e,e)(X,Y )

=
(2iπ)−dimP

jk(X)

∫
T∗P

π∗1 ◦q∗
Ä
Â(M)2 Chc(σ, ωM )

ä
(Y ) ∧ π∗2One(−ν)(X,Y )

=
(2iπ)−dimP

jk(X)

∫
T∗
K
P

q∗
Ä
Â(M)2 Chc(σ, ωM )

ä
(Y ) ∧

∫
k∗

One(−ν)(X,Y ).(31)

Let us compute the integral
∫
k∗

One(−ν)(X,Y ).
We choose a K-invariant scalar product on k and an orthonormal basis E1, . . . , Er

of k, with dual basis E1, . . . , Er : we write X =
∑
kXkE

k for X ∈ k, and ξ =
∑
k ξkEk

for ξ ∈ k∗. Let θk = 〈Ek, θ〉 be the 1-forms on P associated to the connection 1-form.
Let vol(K, dXo) be the volume of K computed with the Haar measure compatible
with the volume form dXo = dX1 . . . dXr.

We have dν =
∑
k ξkdθk + dξkθk, and (30) gives that

(dωP )
dimP

= q∗ (dωM )
dimM ∧ θr · · · θ1 ∧ π∗2 (dξ1 · · · dξr) .

So, in the integral (31), the vector space k∗ is oriented by the volume form dξo =

dξ1 · · · dξr, and T∗KP is oriented by q∗ (dωM )
dimM ∧ θr · · · θ1.

Let Θ = dθ+ 1
2 [θ, θ] ∈ A2(P )⊗ k be the curvature of θ. The equivariant curvature

of θ is
Θ(Y ) = µ(Y ) + Θ.

Then Θ(Y ) ∈ A(P )⊗ k is horizontal, and the element Θ ∈ A2(P )⊗ k is nilpotent. If
ϕ is a C∞ function on k, then ϕ(Θ(Y )) is computed via the Taylor series expansion
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at µ(Y )(p) and ϕ(Θ(Y )) is a horizontal form on P which depends smoothly and G-
equivariantly of Y ∈ g. When ϕ ∈ C∞(k) is K-invariant, the form ϕ(Θ(Y )) is basic,
hence we can look at it as a differential form on M which depends smoothly and
G-equivariantly of Y ∈ g.

Definition 4.4. — Let δ(X − Θ(Y )) be the K × G-equivariant form on P defined by
the relation∫

k×g
δ(X −Θ(Y ))ϕ(X,Y )dXdY := vol(K, dX)

∫
g

ϕ(Θ(Y ), Y )dY,

for any ϕ ∈ C∞(k × g) with compact support. Here vol(K, dX) is the volume of K
computed with the Haar measure compatible with dX.

One sees that δ(X − Θ(Y )) is a K × G-equivariant form on P which depends
smoothly of the variable Y ∈ g.

Lemma 4.5. — Let k∗ be oriented by the volume form dξo = dξ1 · · · dξr. Then∫
k∗

One(−ν)(X,Y ) = (2iπ)dimKδ(X −Θ(Y ))
θr · · · θ1

vol(K, dXo)
.

Proof. — Take χk∗(ξ) = g(‖ξ‖2) where g ∈ C∞c (R) is equal to 1 in a neighborhood of
0. Let ϕ ∈ C∞c (k) and let ϕ̂(ξ) =

∫
k
ei〈ξ,X〉 ϕ(X)dXo be its Fourier transform relative

to dXo.
To compute the integral over the fiber k∗ of One(−ν)(X,Y ), only the highest

exterior degree term in dξ will contribute to the integral. This term comes only from
the term dχk∗β(−ν)(X,Y ) in One(−ν)(X,Y ) := χk∗+dχk∗β(−ν)(X,Y ). We compute

∫
k

Å∫
k∗

One(−ν)(X,Y )

ã
ϕ(X)dXo =

∫
k∗

Å∫
k

One(−ν)(X,Y )ϕ(X)dXo

ã
=

∫
k∗
dχk∗(iν)

Å∫ ∞
0

e−it(dν+〈ξ,µ(Y )〉) ϕ̂(tξ)dt

ã
=

∫ ∞
0

Å∫
k∗
dχk∗(iν) e−it(dν+〈ξ,µ(Y )〉) ϕ̂(tξ)

ã
︸ ︷︷ ︸

I(t)

dt.

Since dν =
∑
k ξkdθk + dξkθk, the differential form dχk∗(iν) e−itdν is equal to

2i g′(‖ξ‖2)(
∑
j

ξjdξj)(
∑
k

ξkθk)
∏
l

(1− itdξlθl) e−it〈ξ,dθ〉,

and its component [dχk∗(iν) e−itdν ]max of highest exterior degree in dξ is

[dχk∗(iν) e−itdν ]max = −2(−i)rtr−1g′(‖ξ‖2)‖ξ‖2
∏
j

(dξj ∧ θj) e−it〈ξ,dθ〉

= −2(i)rtr−1 θr · · · θ1 g
′(‖ξ‖2)‖ξ‖2 e−it〈ξ,dθ〉 dξo.
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So for t > 0 we have

I(t) = −2(i)rtr−1θr · · · θ1

Å∫
k∗
g′(‖ξ‖2)‖ξ‖2 e−it〈ξ,dθ+µ(Y )〉 ϕ̂(tξ)dξo

ã
= (i)rθr · · · θ1

Å∫
k∗

[
(−2g′(‖ξ‖

2

t2 )‖ξ‖
2

t3

]
e−i〈ξ,dθ+µ(Y )〉 ϕ̂(ξ)dξo

ã
= (i)rθr · · · θ1

d

dt

Å∫
k∗
g(‖ξ‖

2

t2 ) e−i〈ξ,dθ+µ(Y )〉 ϕ̂(ξ)dξo
ã
.

Finally
∫
k

(∫
k∗

One(−ν)(X,Y )
)
ϕ(X)dXo is equal to∫ ∞

0

I(t)dt = (i)rθr · · · θ1

Å∫
k∗

e−i〈ξ,dθ+µ(Y )〉 ϕ̂(ξ)dξo
ã

= (2iπ)r θr · · · θ1 ϕ(dθ + µ(Y ))

= (2iπ)r θr · · · θ1 ϕ(Θ + µ(Y ))

= (2iπ)r
Å∫
k

δ(X −Θ(Y ))ϕ(X)dXo

ã
θr · · · θ1

vol(K, dXo)
.

The last lemma shows that indexK×G,Pc ([Q∗σ])||(e,e)(X,Y ) is equal to

(2iπ)−dimM

jk(X)

∫
T∗
K
P

q∗
Ä
Â(M)2 Chc(σ, ωM )

ä
(Y ) δ(X −Θ(Y ))

θr · · · θ1

vol(K, dXo)

=
(2iπ)−dimM

jk(X)

∫
T∗M

Â(M)2(Y ) Chc(σ, ωM )(Y ) δo(X −Θ(Y )).(32)

Here δo(X −Θ(Y )) denotes the closed K ×G-equivariant form M defined by the
relation ∫

k

δo(X −Θ(Y ))ϕ(X)dX = vol(K, dX)ϕ(Θ(Y ))

for any ϕ ∈ C∞c (k). Here ϕ(X) := vol(K, dk)−1
∫
K
ϕ(kX)dk is the K-invariant func-

tion obtained by averaging ϕ.

Now we analyze the right hand side of (27) at (s, s′) = (e, e). Here the Chern class
Chsup(στ∗)(Y ) is equal to Chsup(σ)(Y ) Ch( V τ∗)(Y ) where the equivariant Chern
character Ch( V τ∗)(Y ) is represented by Tr(eΘ(Y ), τ∗). Hence Chc(στ∗ , ωM )(Y ) =

Chc(σ, ωM )(Y ) Tr(eΘ(Y ), τ∗). So the generalized function
∑
τ∈K̂ Tr(eX , τ) indexG,Mc ([στ∗ ])||e(Y )

is equal to

(33) (2iπ)−dimM

∫
T∗M

Â(M)2(Y ) Chc(σ, ωM )(Y ) Ξ(X,Θ(Y ))

where Ξ(X,X ′) is a generalized function on a neighborhood of 0 in k × k defined by
the relation Ξ(X,X ′) =

∑
τ∈K̂ Tr(eX , τ) Tr(eX

′
, τ∗).

The Schur orthogonality relation shows that

Ξ(X,X ′) = jk(X)−1δo(X −X ′).
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In other words, Ξ(X,X ′) is smooth relative to the variable X ′ and for any ϕ ∈
C∞(k)K which is supported in a small neighborhood of 0, we have vol(K, dX)ϕ(X ′)

=
∫
k
Ξ(X,X ′)jk(X)ϕ(X)dX.

Finally, we have proved that the generalized functions (32) and (33) coincide: the
proof of (27) is then completed for (s, s′) = (e, e).

4.2. Multiplicative property. — We consider the setting of Subsection 2.3.2.
We will check that the cohomological index satisfies the Multiplicative property (see
Theorem 2.5).

LetM1 be a compact K1×K2-manifold, and letM2 be a K2-manifold. We consider
the product M := M1 ×M2 with the action of K := K1 ×K2.

Theorem 4.6 (Multiplicative property). — For any [σ1] ∈ K0
K1×K2

(T∗K1
M1) and any

[σ2] ∈ K0
K2

(T∗K2
M2) we have

(34) indexK,Mc ([σ1]�ext [σ2]) = indexK1,K2,M1
c ([σ1]) indexK2,M2

c ([σ2]).

The product on the right hand side of (34) is well defined since
indexK1,K2,M1

c ([σ1])(k1, k2) is a generalized function on K1 × K2 which is smooth
relative to the variable k2 ∈ K2 (see Lemma 3.23).

Proof. — Let σ1 be a morphism on T∗M1, which is K1 × K2-equivariant and K1-
transversally elliptic. Let σ2 be a morphism on T∗M2, which is K2-transversally
elliptic. The morphism σ2 can be chosen so that it is almost homogeneous of degree
0. Then the product σ := σ1 �ext σ2 is a K-transversally elliptic morphism on T∗M ,
and [σ] = [σ1]�ext [σ2] in K0

K(T∗KM).
We have to show that for any s = (s1, s2) ∈ K1 ×K2, we have

indexK,Mc ([σ])||s(Y1, Y2) =(35)

indexK1,K2,M1
c ([σ1])||s1(Y1, Y2) indexK2,M2

c ([σ2])||s2(Y2)

for (Y1, Y2) in a neighborhood of 0 in k1(s1) × k2(s2). We conduct the proof only for
s equal to the identity e, as the proof for s general is entirely similar.

For k = 1, 2, let πk : T∗M → T∗Mk be the projection. The Liouville 1-form ω on
T∗(M1 ×M2) is equal to π∗1ω1 + π∗2ω2, where ωk is the Liouville 1-form on T∗Mk.

We have three index formulas:

indexK,Mc ([σ])||e(X1, X2) := (2iπ)− dimM

∫
T∗M

Â(M)2 Chc(σ, ω)(X1, X2),

indexK,M1
c ([σ1])||e(X1, X2) := (2iπ)− dimM1

∫
T∗M1

Â(M1)2 Ch1
c(σ1, ω1)(X1, X2),

indexK2,M2
c ([σ2])||e(X2) := (2iπ)− dimM2

∫
T∗M2

Â(M2)2 Chc(σ2, ω2)(X2).

ASTÉRISQUE 328



INDEX OF TRANSVERSALLY ELLIPTIC OPERATORS 331

Following Remark 3.24, Ch1
c(σ1, ω1)(X1, X2) denotes a closed equivariant form with

compact support which represents the class Chc(σ1, ω1), and which is smooth relative
to X2 ∈ k2.

It is immediate to check that Â(M)2(X1, X2) = Â(M1)2(X1, X2)Â(M2)2(X2).
Hence Equality (35) follows from the following identity in H −∞c (k1 × k2,T∗M) that
we proved in [17]:

π∗1 Ch1
c(σ1, ω1)(X1, X2) ∧ π∗2 Chc(σ2, ω2)(X2) = Chc(σ, ω)(X1, X2).

4.3. Normalization conditions

4.3.1. Atiyah symbol. — Let V := C[1] be equipped with the canonical action of S1.
The Atiyah symbol σAt was introduced in Subsection 2.4.2 : it is a S1-transversally
elliptic symbol on V . It is the first basic example of a “pushed” symbol (see Subsection
5.1).

We consider on V the Euclidean metric (v, w) = <(vw) : it gives at any v ∈ V

identifications TvV ' T∗vV ' C[1]. So in this example we will make no distinction
between vectors fields and 1-forms on V . Let κ(ξ1) = iξ1 be the vector field on V

associated to the action of S1 : κ = −V X where X = i ∈ Lie(S1).
Let σV be the symbol on the complex vector space V : at any (ξ1, ξ2) ∈ T∗V ,

σV (ξ1, ξ2) : ∧0V → ∧1V acts by multiplication by ξ2. We see then that

σAt(ξ1, ξ2) = σV (ξ1, ξ2 + κ(ξ1)).

The symbol σAt is obtained by “pushing” the symbol σ by the vector field κ.
We can attached to the 1-form κ, the equivariant form One(κ) which is defined

on V , and localized near {κ = 0} = {0} ⊂ V . Since the support of σV is the zero
section, the equivariant Chern character Chsup(σV ) is an equivariant form on T∗V
which is compactly supported in the fibers of p : T∗V → V . Then the product
Chsup(σV )p∗One(κ) defines an equivariant form with compact support on T∗V .

Here we will use the relation (see Proposition 5.5)

(36) Chsup(σAt)One(ω) = Chsup(σV ) p∗One(κ) in H −∞c (k,T∗V ).

Using (36), we now compute the cohomological index of the Atiyah symbol.

Proposition 4.7. — We have

[N3] indexS
1,V

c ([σAt])(e
iθ) = −

∞∑
n=1

einθ .

Proof. — We first prove the equality above when s = eiθ is not equal to 1. Then,
near s, the generalized function −

∑∞
n=1 einθ is analytic and given by − s

1−s .
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Now, at a point s ∈ S1 different from 1, the fixed point set V (s) is {0}. The
character Chs( E) is (1− s), and the form Ds( N ) is (1− s)(1− s−1). Thus

indexS
1,V

c (s) =
(1− s)

(1− s)(1− s−1)
= − s

1− s
.

This shows the equality of both members in Proposition 4.7 on the open set s 6= 1 of
S1.

We now compute near s = 1. Thanks to Formula (36) we have

indexS
1,V

c (σAt)||1(θ) = (2iπ)−2

∫
T∗V

Â(V )2(θ) Chsup(σV )(θ) p∗One(κ)(θ).

The Chern character with support Chsup(σV )(θ) is proportional to the S1-
equivariant Thom form of the real vector bundle T∗V → V . More precisely,
calculation already done in [18] shows that

Chsup(σV )(θ) = (2iπ)
eiθ −1

iθ
Thom(T∗V )(θ).

However the symplectic orientation on T∗V ' C2 is the opposite of the orientation
given by its complex structure. Now

Â(V )2(θ) =
(iθ)(−iθ)

(1− eiθ)(1− e−iθ)
.

Thus we obtain

indexS
1,V

c (σAt)||1(θ) =
−iθ

(1− e−iθ)

1

2iπ

∫
V

One(κ)(θ).

As (1−e−iθ)
−iθ = −

∫ 0

−1
eixθ dx, we see that (1−e−iθ)

−iθ (−
∑∞
n=1 einθ) =

∫∞
0

eixθ dx. It re-
mains to show

(37)
1

2iπ

∫
V

One(κ)(θ) =

∫ ∞
0

eirθ dr.

We have Dκ(θ) = θ(x2 +y2)+2dx∧dy. Take a function g on R with compact support
and equal to 1 on a neighborhood of 0. Let χ = g(x2 + y2). Then

One(κ)(θ) = χ− idχ ∧ κ
∫ ∞

0

eitDκ(θ) dt

= g(x2 + y2)− 2ig′(x2 + y2)dx ∧ dy
∫ ∞

0

(x2 + y2) eiθt(x
2+y2) dt
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= g(x2 + y2)− 2ig′(x2 + y2)dx ∧ dy
∫ ∞

0

eiθt dt.

Finally we obtain (37) since
∫
V
−2ig′(x2 + y2)dx ∧ dy = 2iπ. This completes the

proof.

4.3.2. Bott symbols. — We will check here that the cohomological index satisfies the
condition [N2]: indexO(V ),V

c (Bott(VC)) = 1, for any Euclidean vector space V .
We have explain in Remark 2.8 that it is sufficient to prove [N2] for the cases:
• V = R with the action of the group O(V ) = Z/2Z,
• V = R2 with the action of the group SO(V ) = S1.
Let V = R with the multiplicative action of Z2. We have to check that

indexR,Z2
c (Bott(C))(ε) = 1 for ε ∈ Z2. When ε = 1, we have

indexR,Z2
c (Bott(C))(1) = (2iπ)−1

∫
T∗R

Â(R)2 Chc(Bott(C)).

Here Â(R)2 = 1. We have proved in [18] that the class Chc(Bott(C)) ∈ H 2
c(T

∗R) is
equal to 2iπ times the Thom form of the oriented vector space of R2 ' T∗R. Hence
indexR,Z2

c (Bott(C))(1) = 1. When ε = −1, the space T∗R(ε) is reduced to a point. We
see that Chc(Bott(C), ε) = 2, Dε( N ) = det(1− ε) = 2. Then indexR,Z2

c (Bott(C))(1) =
Chc(Bott(C),ε)

Dε( N ) = 1.

Let V = R2 with the rotation action of S1. Like before indexR2,S1

c (Bott(C2))(1)

is equal to 1 since the Chern class Chc(Bott(C2)) is equal to (2iπ)2 times the Thom
form of the oriented vector space of R4 ' T∗R2. When eiθ 6= 1, the space T∗R2(eiθ)

is reduced to a point. We see that Chc(Bott(C), eiθ) = Deiθ ( N ) = 2(1−cos(θ)). Then
indexR2,S1

c (Bott(C2))(eiθ) = 1.

5. Examples

5.1. Pushed symbols. — Let M be a K-manifold and N = T∗M . Let E± → M

be two K-equivariant complex vector bundles on M and σ : p∗ E+ → p∗ E− be a K-
equivariant symbol which is supposed to be invertible exactly outside the zero
section : the set supp(σ) coincides with the zero section of T∗M .

IfM is compact, σ defines an elliptic symbol on T∗M , thus a fortiori a transversally
elliptic symbol.

Here we assumeM non compact. Following Atiyah’s strategy [1], we can “push" the
symbol σ outside the zero section, by means of a K-invariant real 1-form κ onM . This
construction provides new transversally elliptic symbols. We recall some definitions
of [17]:
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Definition 5.1. — Let κ be a real K-invariant 1-form on M . Define fκ : M → k∗ by
〈fκ(x), X〉 = 〈κ(x), VxX〉. We define the subset Cκ of M by Cκ = f−1

κ (0). We call Cκ
the critical set of κ.

We define the symbol σ(κ) on M by

σ(κ)(x, ξ) = σ(x, ξ + κ(x)), for (x, ξ) ∈ T∗M.

Thus σ(κ) is not invertible at (x, ξ) if and only if ξ = −κ(x), and then (x, ξ) ∈
supp(σ(κ)) ∩T∗KM if ξ = −κ(x) and 〈κ(x), VxX〉 = 0 for all X ∈ k. Thus

supp(σ(κ)) ∩T∗KM = {(x,−κ(x)) | x ∈ Cκ}.

If Cκ is compact, then the morphism σ(κ) is transversally elliptic.

Using a K-invariant metric on TM , we can associate to a K-invariant vector field
K on M a K-invariant real 1-form.

Example 5.2. — Let S ∈ k be a central element of k such that the set of zeroes of V S
is compact. Then the associated form κS(•) = 〈V S, •〉 is a K-invariant real 1-form
such that CκS is compact. Indeed the value of fκS on S is ‖V S‖2, so that the set CκS
coincides with the fixed point set M(S).

Definition 5.3. — If κ is a K-invariant real 1-form on M such that Cκ is compact,
the transversally elliptic symbol

σ(κ)(x, ξ) = σ(x, ξ + κ(x))

is called the pushed symbol of σ by κ.

Example 5.4. — The Atiyah symbol is a pushed symbol defined on M = R2 (see Sub-
section 4.3.1).

We construct as in (15) the K-equivariant differential form

β(κ)(X) = −iκ ∧
∫ ∞

0

eitDκ(X) dt

which is defined on M \ Cκ. We choose a compactly supported function χκ on M

identically 1 near Cκ. Then the K-equivariant form

One(κ)(X) = χκ + dχκβ(κ)(X)

defined a class in H −∞c (k,M).
The K-equivariant form One(κ) is congruent to 1 in cohomology without support

conditions. Indeed one verify that One(κ) = 1 +D((χκ − 1)β(κ)).
Let p : T∗M → M be the projection. We can multiply the K-equivariant form

p∗One(κ)(X) with C−∞-coefficients by the K-equivariant form Chsup(σ)(X). In this
way, we obtain a K-equivariant form with compact support on T∗M .
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Proposition 5.5. — The K-equivariant form Chsup(σ)p∗One(κ) represents the class
Chc(σ(κ), ω) in H −∞c (k,T∗M).

Proof. — By definition the class Chc(σ(κ), ω) is represented by the product
Chsup(σ(κ))One(ω). We first prove Chsup(σ(κ))One(ω) = Chsup(σ(κ))One(p∗κ)

in H −∞c (k,T∗M).
Indeed if (x, ξ) ∈ supp(σ(κ)), then ξ = −κ(x). Thus 〈ω(x, ξ), v〉 = −〈ξ, p∗v〉 =

〈κ(x), p∗v〉 where v is any tangent vector at (x, ξ) ∈ T∗M . So the 1-forms ω and p∗κ
coincides on the support of σ(κ). Thus Chsup(σ(κ))One(ω) = Chsup(σ(κ))p∗One(κ)

as consequence of ([17], Corollary 3.12).
Let us prove now that Chsup(σ(κ))p∗One(κ) = Chsup(σ)p∗One(κ). Consider the

family of symbols on M defined by σt(x, ξ) = σ(x, ξ + tκ(x)) for t ∈ [0, 1] : we have
σ0 = σ and σ1 = σ(κ).

On a compact neighborhood U of Cκ, the support of σt stays in the compact
set {(x, ξ) : x ∈ U, ξ = −tκ(x)} when t varies between 0 and 1. It follows from
([17], Theorem 3.11) that all the classes Chsup(σt)p

∗One(κ), t ∈ [0, 1] coincides in
H −∞c (k,T∗M).

Similarly for any s ∈ K, we consider the restriction κs of the form κ to M(s). We
finally obtain the following formula:

Theorem 5.6. — For any s ∈ K and X ∈ k(s) small, the cohomological index
indexK,Mc ([σ(κ)])||s(Y ) is given on k(s) by the integral formula:∫

T∗M(s)

Λs(Y ) Chsup(σ, s)(Y ) One(κs)(Y ).

In particular, when s = e we get

indexK,Mc ([σ(κ)])||e(X) = (2iπ)− dimM

∫
T∗M

Â(M)2(X) Chsup(σ)(X) One(κ)(X).

An interesting situation is when the manifold M is oriented, and is equipped with
a K-invariant Spin structure. Let SM → M be the corresponding spinor bundle.
We associate to any K-equivariant complex vector bundle E → M the K-invariant
symbol σEspin : p∗( S+

M ⊗E)→ p∗( S−M ⊗E) : its support is exactly the zero section of
the cotangent bundle. For any invariant 1-form κ on M such that Cκ is compact we
consider the transversally elliptic symbol σEspin(κ).

We have proved in [18] that

Chsup(σEspin)(X) = (2iπ)dimM Â(M)−1(X) Ch(E)(X) Thom(T∗M)(X).

Hence Theorem 5.6 tells us that

indexK,Mc ([σEspin(κ)])||e(X) =

∫
M

Â(M)(X) Ch(E)(X) One(κ)(X).
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5.2. Contact manifolds. — The following geometric example is taken from [11].
Let M be a compact manifold of dimension 2n + 1. Suppose that M carries a

contact 1-form α ; that is, E = ker(α) is a hyperplane distribution of TM , and the
restriction of the 2-form dα to E is symplectic. In this context, the Reeb vector field
Y is uniquely determined by the conditions α(Y) = 1 and L(Y)α = 0. We have then
canonical decompositions TM = E ⊕ RY and T∗M = E∗ ⊕ E0 with E0 = Rα.

Let J be aK-invariant complex structure on the bundle E which is compatible with
the symplectic structure dα. We equipped the bundle E∗ with the complex structure
J∗ defined by J∗(ξ) := ξ ◦ J for any cotangent vector ξ. We note that the complex
bundle (E∗, J∗) is the complex dual of the vector bundle (E, J).

We consider the Z2-graded complex vector bundle E := ∧J∗E∗. The Clifford action
defines a bundle map c : E∗ → EndC( E). We consider now the symbol on M

σb : p∗( E+)→ p∗( E−)

defined by σb(x, ξ) = c(ξ′) where ξ′ is the projection of ξ ∈ T∗M on E∗.
We see that the support of σb is equal to E0 ⊂ T∗M : σb is not an elliptic symbol.
Let K be a compact Lie group acting on M , which leaves α invariant. Then E,E∗

are K-equivariant complex vector bundles, and the complex struture J can be chosen
K-invariant. The morphism σb is then K-equivariant.

We suppose for the rest of this section that

(38) E0 ∩T∗KM = zero section of T∗M.

It means that for any x ∈ M , the map fα(x) : X 7→ αx(VxX) is not the zero map.
Under this hypothesis the symbol σb is transversally elliptic.

Under the hypothesis (38), we can define the following closed equivariant form on
M with C−∞-coefficients

J α(X) := α

∫
R

eitDα(X) dt.

For any ϕ ∈ C∞c (k), the expression
∫
k
J α(X)ϕ(X)dX := α

∫
R eitdα ϕ̂(tfα)dt is a

well defined differential form on M since the map fα : M → k∗ as an empty 0-level
set.

Let Todd(E)(X) be the equivariant Todd class of the complex vector bundle (E, J).
We have the following

Theorem 5.7 ([11]). — For any X ∈ k sufficiently small,

indexK,Mc ([σb])||e(X) = (2iπ)−n
∫
M

Todd(E)(X) J α(X).

Proof. — Consider the equivariant form with compact support Chsup(σb)One(ω). The
Chern form Chsup(σb) attached to the complex vector bundle E∗ is computed in [17]

ASTÉRISQUE 328



INDEX OF TRANSVERSALLY ELLIPTIC OPERATORS 337

as follows. Let Thom(E∗)(X) be the equivariant Thom form, and let Todd(E∗)(X)

be the equivariant Todd form. We have proved in [17], that

(39) Chsup(σb) = (2iπ)n Todd(E∗)(X)−1Thom(E∗)(X).

Let [R] be the trivial vector bundle over M . We work with the isomorphism E∗ ⊕
[R] ' T∗M who sends (x, ξ, t) to (x, ξ + tα(x)). We consider the invariant 1-form λ

on E∗ ⊕ [R] ' T∗M defined by

λ = −t p∗(α)

Here p : E∗⊕ [R]→M is the projection, and t denotes the function that sends (x, ξ, t)

to t.
It is easy to check that the form λ and the Liouville 1-form ω are equal on the

support of σb. Thus

Chsup(σb)One(ω) = Chsup(σb)One(λ) in H −∞c (k,T∗M),

as consequence of [17], Corollary 3.12. We have then

indexK,Mc ([σb])||e(X) = (2iπ)− dimM

∫
T∗M

Â(M)2(X) Chsup(σb)(X)One(λ)(X).

The integral of Chsup(σb)(X)One(λ)(X) on the fibers of T∗M is then equal to the
product Ç∫

E∗ fiber

Chsup(σb)(X)

åÅ∫
R

One(λ)(X)

ã
If we uses (39), we see that the integral

∫
E∗ fiber

Chsup(σb)(X) is equal to
(2iπ)nTodd(E∗)(X)−1. A small computation gives that

∫
R One(λ)(X) is equal

to (2iπ) J α(X). The proof is now completed since Â(M)2(X)Todd(E∗)(X)−1 =

Todd(E)(X).
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Abstract. — The Mabuchi K-energy map is exhibited as a singular metric on the
refined CM polarization of any equivariant family X

p→ S. Consequently we show
that the generalized Futaki invariant is the leading term in the asymptotics of the
reduced K-energy of the generic fiber of the map p. Properness of the K-energy implies
that the generalized Futaki invariant is strictly negative.

Résumé (CM-stabilité et invariant de Futaki généralisé II). — On interpréte la K-énergie
de Mabuchi comme une métrique singulière sur la CM-polarisation raffinée d’une
famille équivariante X

p→ S. Nous montrons que l’invariant de Futaki généralisé est
le terme principal de l’asymptotique de la K-énergie réduite de la fibre générique de
l’application p. Si la K-énergie est propre, alors l’invariant de Futaki généralisé est
strictement négatif.

1. Introduction

1.1. Statement of results. — Throughout this paper X and S denote smooth,
proper complex projective varieties satisfying the following conditions.

1. X ⊂ S × PN ; PN denotes the complex projective space of lines in CN+1.
2. p := p1 : X → S is flat of relative dimension n, degree d with Hilbert polyno-

mial P .
3. L|Xz is very ample and the embedding Xz := p−1

1 (z)
L
↪→ PN is given by a

complete linear system for z ∈ S.
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4. There is an action of G := SL(N + 1,C) on the data compatible with the
projection and the standard action on PN .

It is well known that (1) and (3) imply that

P(p1∗L) ∼= S × PN .(1.1)

Which in turn is equivalent to the existence of a line bundle A on S such that

p1∗L
∼=
⊕

A︸ ︷︷ ︸
N+1

.(1.2)

Below Chow(X
/
S) denotes the Chow form of the family X

/
S, µ is the coefficient of

kn−1 in P (k), and Mn is the coefficient of
(
m
n

)
in the CGKM expansion of det(p1∗L

⊗m)

for m >> 0. A complete discussion of these notions is given in “CM Stability and the
Generalized Futaki Invariant I ". We refer the reader to that paper for the basic
definitions and constructions that are used in the present article.

We define an invertible sheaf on S as follows.

Definition 1 (The Refined CM polarization(1)). — We have

L1(X
/
S) := {Chow(X

/
S)⊗ Ad(n+1)}n(n+1)+µ ⊗ M−2(n+1)

n(1.3)

With the family p1 : X → S fixed throughout, we will denote L1(X
/
S) by L1 in

the remainder of the paper.
Our first result exhibits the Mabuchi energy as a singular Hermitian metric on L1.

Theorem 1. — Let || || be any smooth Hermitian metric on L−1
1 .(2) Then there is a

continuous function ΨS : S \∆→ (−∞, c) such that for all z ∈ S
/

∆

d(n+ 1)νω|Xz (ϕσ) = log

Å
e(n+1)ΨS(σz) || ||2(σz)

|| ||2(z)

ã
.(1.4)

Here c denotes a constant which depends only on the choice of background Kähler
metrics on S and X, ∆ denotes the discriminant locus of the map p1, and ω|Xz

denotes the restriction of the Fubini Study form of PN to the fiber Xz.

Remark 1. — This should be compared with the main result in Section 8 of [17]. The
principal contribution of our present work is the observation that the whole theory in
Section 8 of [17] should be recast from the beginning with the sheaf L1.

Let X ↪→ PN be an n dimensional projective variety with Hilbert polynomial P .
Let Hilbm(X) denote the mth Hilbert point of X (see [12] for further information ).
If λ is a one parameter subgroup of G then it is known (see [12] ) that the weight,

(1) We use this terminology in order to distinguish this sheaf from one introduced by the second
author in ([17]).
(2) L−1

1 denotes the dual of L1.
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wλ(m), of Hilbm(X) with respect to λ is a polynomial in m of degree at most n+ 1.
That is,

wλ(m) = an+1(λ)mn+1 + an(λ)mn + · · ·

Then the ratio may be expanded as follows.

wλ(m)

mP (m)
= F0(λ) + F1(λ)

1

m
+ · · ·+ Fl(λ)

1

ml
+ . . .

Definition 2 (Donaldson ([5])). — F1(λ) is the generalized Futaki invariant of X with
respect to λ.

In our previous paper we have shown the following.

Theorem (The weight of the Refined CM polarization). — i) There is a natural G lin-
earization on the line bundle L1.

ii) Let λ be a one parameter subgroup of G. Let z ∈ HilbPPN (C). Let wλ(z) denote
the weight of the restricted C∗ action (whose existence is asserted in i)) on L−1

1 |z0
where z0 = λ(0)z. Then

wλ(z) = F1(λ).(1.5)

The main result of the paper is the following corollary of (1.4) and (1.5).

Corollary 1 (Algebraic asymptotics of the Mabuchi energy). — Let ϕλ(t) be the Bergman
potential associated to an algebraic 1psg λ of G, and let z ∈ S \∆. Then there is an
asymptotic expansion

d(n+ 1)νω|Xz (ϕλ(t))−ΨS(λ(t)) = F1(λ) log(|t|2) +O(1) as |t| → 0.(1.6)

Moreover ΨS(λ(t)) = ψ(λ) log(|t|2) +O(1) where ψ(λ) ∈ Q≥0. Moreover, ψ(λ) ∈ Q+

if and only if λ(0)Xz = Xλ(0)z (the limit cycle(3) of Xz under λ ) has a component
of multiplicity greater than one. Here O(1) denotes any quantity which is bounded as
|t| → 0.

Moser iteration and a refined Sobolev inequality (see [11] and [7]) yield the follow-
ing.

Corollary 2. — If νω|Xz is proper (bounded from below) then the generalized Futaki
invariant of Xz is strictly negative (nonnegative) for all λ ∈ G.

Remark 2. — We call the left hand side of (1.6) the reduced K-Energy along λ. We
also point out that while it is certainly the case that F1(λ) may be defined for any
subscheme of PN it evidently only controls the behavior of the K-Energy when λ(0)Xz

is reduced.

(3) See [12] pg. 61.
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Remark 3. — The precise constant d(n+ 1) in front of νω is not really crucial, since
what really matters is the sign of F1(λ) +ψ(λ). That ΨS(λ(t)) has logarithmic singu-
larities can be deduced from [13].

Remark 4. — We emphasize that we do not assume the limit cycle is smooth.

2. Background and Motivation

Let (X,ω) be a compact Kähler manifold (ω not necessarily a Hodge class) and
P (X,ω) := {ϕ ∈ C∞(X) : ωϕ := ω +

√
−1

2π ∂∂ϕ > 0} the space of Kähler potentials.
This is the usual description of all Kähler metrics in the same class as ω (up to
translations by constants). It is not an overstatement to say that the most basic
problem in Kähler geometry is the following

Does there exist ϕ ∈ P (X,ω) such that Scal(ωϕ) ≡ µ? (∗)
This is a fully nonlinear fourth order elliptic partial differential equation for ϕ. µ is a
constant, the average of the scalar curvature, it depends only on c1(X) and [ω]. When
c1(X) > 0 and ω represents the anticanonical class a simple application of the Hodge
Theory shows that (∗) is equivalent to the Monge-Ampere equation.

det(gij + ϕij)

det(gij)
= eF−κϕ (κ = 1) (∗∗)

where F denotes the Ricci potential. When κ = 0 this is the celebrated Calabi problem
solved by S.T.Yau and when κ < 0 this was solved by Aubin and Yau independently
in the 70’s. It is well known that (∗) is actually a variational problem. There is a
natural energy on the space P (X,ω) whose critical points are those ϕ such that ωϕ
has constant scalar curvature (csc). This energy was introduced by T. Mabuchi ([10])
in the 1980’s. It is called the K-Energy map (denoted by νω) and is given by the
following formula

νω(ϕ) := − 1

V

∫ 1

0

∫
X

ϕ̇t(Scal(ϕt)− µ)ωnt dt.

Above, ϕt is a smooth path in P (X,ω) joining 0 with ϕ. The K-Energy does not
depend on the path chosen. In fact there is the following well known formula for νω
where O(1) denotes a quantity which is bounded on P (X,ω).

νω(ϕ) =

∫
X

log
Å
ωϕ

n

ωn

ã
ωϕ

n

V
− µ(Iω(ϕ)− Jω(ϕ)) +O(1)

Jω(ϕ) :=
1

V

∫
X

n−1∑
i=0

√
−1

2π

i+ 1

n+ 1
∂ϕ ∧ ∂ϕ ∧ ωi ∧ ωϕn−i−1

Iω(ϕ) :=
1

V

∫
X

ϕ(ωn − ωϕn).

We have written down the K-energy in the case when ω = c1(X). Observe that νω
is essentially the difference of two positive terms. What is of interest for us is that
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the problem (∗) is not only a variational problem but a minimization problem. With
this said we have the following fundamental result.

Theorem (S. Bando and T. Mabuchi [1]). — If ω = c1(X) admits a Kähler Einstein
metric then νω ≥ 0. The absolute minimum is taken on the solution to (∗∗) (which is
unique up to automorphisms of X).

Therefore a necessary condition for the existence of a Kähler Einstien metric is a
bound from below on νω. In order to get a sufficient condition one requires that the
K-energy grow at a certain rate. Precisely, it is required that the K-Energy be proper.
This concept was introduced by the second author in [17].

Definition 3. — νω is proper if there exists a strictly increasing function f : R+ −→
R+ (where limT−→∞ f(T ) =∞) such that νω(ϕ) ≥ f(Jω(ϕ)) for all ϕ ∈ P (M,ω).

Theorem ([17]). — Assume that Aut(X) is discrete. Then ω = c1(X) admits a Kähler
Einstein metric if and only if νω is proper.

The next result was established by the second author and Xiuxiong Chen. It holds
in an arbitrary Kähler class ω. An alternative proof of this was given by Donaldson
for polarized projective manifolds.

Theorem ([3]). — If ω admits a metric of csc then νω ≥ 0.

In this paper our interest is to test for a lower bound of νω along the large but
finite dimensional group G of matrices in the polarized case. When we restrict our
attention to G we make the connection with Mumfords’ Geometric Invariant Theory.
The past couple of years have witnessed quite a bit of activity on this problem due
to this connection.

To put things in historical perspective consider the various formulations of the
Futaki invariant.

i) 1983 Futaki ([6]) introduces his invariant as a lie algebra character on a Fano
manifold X

Fω : η(X) −→ C.

ii) 1986 Mabuchi (see [10] ) integrates the Futaki invariant with the introduction
of the K-energy map. The linearization of the K-energy along orbits of holomorphic
vector fields is the real part of the Futaki invariant.

iii) 1992 Ding and Tian ([4]) introduced the generalized Futaki invariant. Here
the jumping of complex structures is introduced. The limit of the derivative of the
K-Energy map is identified with the generalized Futaki invariant of Xλ(0) provided
this limit has at most normal singularities.

iv) 1997 The CM polarization is defined (see [17]) for smooth families, as the
relative canonical bundle is explicitly involved in the definition. K-Stability is defined
in terms of special degenerations and the generalized Futaki invariant.
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v) 1999 Yotov formulated the generalized Futaki Invariant in terms of equivariant
Chow groups of a normal variety.

vi) 2002 For an arbitrary scheme Donaldson ([5]) defined the weight F1(λ). This
is identified with the limit of the derivative of K-energy (by [4]) when the limit cycle
is a smooth (or normal) scheme.

Remark 5. — We hope that we have clarified the role of the CM polarization. The
main point is that once the CM polarization is extended to the Hilbert scheme ([14])
the polarization computes the precise asymptotics of the K-energy of any generic fiber
of the map X→ S. This extension was made possible by an application of the Knudsen
Mumford expansion of the determinant of direct images of perfect complexes of sheaves
(see [8]). In fact, ψ(λ) already appeared in work of the second author (see [17]).
Despite this, the role of ψ(λ) becomes more precise in the present work.

3. Algebraic potentials

In order to connect these notions to the K-Energy map we now give an account of
how to associate an admissible potential ϕλ(t) to a one parameter subgroup of G. In
order to detect properness (conjecturally) one restricts attention to the subspace of
Bergman metrics inside P (M,ω) since these metrics are dense in P (M,ω) (see [16],
[15], [19], [2]). By definition these metrics are induced by the Kodaira embeddings
furnished by the polarization L. The construction is as follows. We have an embedding

X −−−−→
L

P(H0(X,L)∗) = PN

furnished by some basis {S0, . . . , SN} of H0(X,L). Observe that with the natural
Hermitian metric on H0(X,L), the induced Fubini-Study metric on PN is related to
the curvature of the initial metric on L by the formula

ωFS |X = ω +

√
−1

2π
∂∂log

(
N∑
i=0

||Si||2
)
.

We conclude that

log

(
N∑
i=0

||Si||2
)
∈ P (X,ω).

Let σ ∈ SL(N + 1,C), then

σ∗(ωFS) = ωFS +

√
−1

2π
∂∂ϕσ.

Where ϕσ is given by the formula

ϕσ = log
Å ||σz||2
||z||2

ã
.
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We let {T0, . . . TN} denote the corresponding change of basisà
σ00 . . . σ0N

σ10 . . . σ1N

. . . . . . . . .

σN0 . . . σNN

íà
S0

. . .

. . .

SN

í
=

à
T0

. . .

. . .

TN

í
.

Then we have

ϕσ|X = log
Ç∑N

i=0 ||Ti||2∑N
i=0 ||Si||2

å
.

Putting these ingredients together gives

σ∗ωFS |X = ω +

√
−1

2π
∂∂log

(
N∑
i=0

||Ti||2
)
.(3.1)

Therefore, if we fix a basis of H0(X,L) we get a natural map

SL(N + 1,C)→ P (X,ω).

A one parameter subgroup of SL(N + 1,C) is an algebraic(4) homomorphism

λ : C∗ → SL(N + 1,C).

Any such λ(t) can be diagonalised. That is, we may assume that λ(t) takes values in
the standard maximal torus H ∼= (C∗)N of SL(N + 1,C).

λ(t) =

Ö
tm0 . . . . . . 0

0 tm1 . . . 0

0 . . . . . . tmN

è
.

The exponents mi satisfy ∑
0≤i≤N

mi = 0.

We arrive at the following formula.

ϕλ(t)(z) := log

Ñ ∑
0≤j≤N

|t|2mj ||Sj ||2(z)

é
.

Now we may consider the K-energy map as a function on SL(N + 1,C).

(4) “Algebraic” means that the matrix coefficients λ(t)i,j ∈ C[t, t−1].
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4. Singular Hermitian metrics

Proof of Theorem 1. — In part I of this work the authors provided the following
formula for the first Chern class of L1.

c1(L1) = p1∗
(
(n+ 1)c1(KX/S)c1(L)n + µc1(L)n+1

)
KX/S := KX ⊗ p∗1(K∨S ).

(4.1)

( 4.1) allows us to exhibit the K-energy map as a singular metric on the CM po-
larization (see [17]). Recall that p−1(z) = Xz ⊂ PN , where z ∈ S∞ := S \ ∆. We
define

GXz := {(σ, y) ∈ G× PN : y ∈ σXz}.

Observe that GXz is biholomorphic to G×Xz. Then we have the following diagram,
where pz denotes the evaluation map, i.e. pz(σ) := σz.

p∗z(X) ∼= GXz

pz,2 - X ⊂
ι- S × PN

p2 - PN

G

pz,1

? pz - S

p

?�

π

Given z ∈ B \∆ we can consider KXz , the canonical bundle of the fiber Xz. These fit
together holomorphically into a line bundle K∞ on X \ p−1(∆). On the other hand,
the relative canonical bundle Kp of the map p exists and lives on all of X.

Kp := KX ⊗ p∗K−1
S

When we restrict this sheaf to X \ p−1(∆) we have an isomorphism

Kp
∼= K∞.

ι∗p∗2ωFS restricts to a Kähler metric on p−1(z) (z ∈ S∞) and hence induces a
Hermitian metric on the bundle K∞. We denote its curvature by R(ι∗p∗2(ωFS)). Let
gX and gS denote two Kähler metrics on X and S respectively. In this way we obtain
a metric on the relative canonical bundle Kp. We let Rf denote its curvature

Rp := R(gX)− p∗R(gS).

In this way we obtain two metrics on the relative canonical bundle over the smooth
locus. The crucial point is the following fact.

The curvatures of these metrics are not the same.

The relation between them is given in the following proposition (see [17] Lemma 8.5
pg. 31).
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Proposition 1 (“∂∂ lemma along the fibers”). — There is a smooth function Ψ : X \
p−1(∆)→ R such that

1) R(gX)− p∗R(gS) +
√
−1

2π ∂∂Ψ = R(ι∗p∗2(ωFS));
2) Ψ ≤ C, for some constant C.

Example 1. — (The universal family of hypersurfaces of degree d in CPn+1)

S := P(H0(CPn+1, O(d)))

X := {([f ], [z]) ∈ S × CPn+1 |f(z) = 0}
p := p1 (projection onto the first factor).

Let |||.||| denote any norm on H0(CPn+1, O(d)), with associated Fubini-Study metric
ωS. Then a computation shows that

Ψ(([f ], [z])) = log

( ∑n+1
i=0 |

∂f
∂zi

(z)|2

|||f |||2||z||2(d−1)

)
.

The next result is a pointwise version of (4.1).

Proposition 2. — There is a continuous Hermitian metric || || on L−1
1 such that, in

the sense of currents we have
√
−1

2π
∂∂log(|| ||2) = (n+ 1)p∗(R(gX)− p∗R(gS))p∗2(ωFS)n + µp∗p

∗
2(ωFS)n+1.

Proof. — See Proposition 4.3 pg. 2576 of [13].

Now we pull back the curvature form of K∞ to GXz

RG|Xz
:= p∗z,2(R(π∗2(ωFS))).

Recall that for σ ∈ G we define ϕσ by the relation

σ∗ωFS = ωFS +

√
−1

2π
∂∂ϕσ.

Let νω,z(σ) denote the K energy of (Xz, ωFS) applied to the potential ϕσ. With these
notations in place we have the following result.

Proposition 3 (The complex Hessian of the K-Energy map on G)
For every smooth compactly supported (N2 + 2N − 1, N2 + 2N − 1) form η on G

we have

d(n+ 1)

∫
G

νω,z(ϕσ)∂∂η =

∫
GXz

((n+ 1)RG|Xz
+ µp∗2(ωFS)) ∧ p∗2(ωFS)n ∧ p∗z,1η.

The proof of Proposition 3 appears in the next section after some standard pre-
liminaries on Bott Chern classes.
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4.1. Bott Chern secondary classes. — Let φ be a GLN (C) invariant polynomial
on MN×N (C) homogeneous of degree d. φ1 denotes the complete polarization of φ.
Let E be a holomorphic vector bundle of rank N over a base X. Let h1 and h0 be two
Hermitian metrics on E and

√
−1

2π R(hi) the curvatures. Then we define the Bott-Chern
class BC(φ,E;h0, h1) by the expression

BC(φ,E;h0, h1) :=

∫ 1

0

φ1(h−1
t ḣt,

d−1︷ ︸︸ ︷√
−1

2π
Rt, . . . ,

√
−1

2π
Rt)dt ∈ Ω

(d−1,d−1)
X(4.2)

where ht is any piecewise C1 path of Hermitian metrics joining h0 and h1. The point
of the construction is the following identity:

√
−1

2π
∂∂BC(φ,E;h0, h1) =

Ç√
−1

2π

åd

(φ(Rh0)− φ(Rh1)).

Let d = n + 1 where, n = dim(X) in this case BC(φ,E;h0, h1) has top dimension
and we may introduce the Donaldson Functional associated to φ.

DE(h0, h1) :=

∫
X

BC(φ,E;h0, h1).(4.3)

When h0 is fixed, we consider it to be a functional on ME (the space of hermitian
metrics on E). In what follows we take φ = Chn+1, the n+1st component of the chern
character. We can extend the Donaldson functional to “virtual bundles” E = E − F
by observing that a Hermitian metric h on E is just a pair of metrics, one on E and
one on F :

h = (hE , hF ).

We set

BC(φ, E;h0, h1) := BC(φ,E;hE0 , h
E
1 )−BC(φ, F ;hF0 , h

F
1 ).(4.4)

Let h : Y → M E be a smooth map, where Y is a complex manifold of dimension m.

Lemma 4.1. — Let φ be homogeneous of degree n + 1 and h0 a fixed metric on E.
Then for all smooth compactly supported forms ψ of type (m− 1,m− 1) we have the
identity

√
−1

2π

∫
Y

D E(φ;h0, h(y))∂Y ∂Y ψ =

∫
Y×X

φ(R(

√
−1

2π
h(y))) ∧ π∗1(ψ).(4.5)

Next we want to realize the Mabuchi K-energy as the Donaldson functional, with
respect to the polynomial φ = Chn+1, of a certain virtual bundle to be defined below.
Then proposition (3) follows at once from the preceding lemma.

Let X be a complex projective manifold (in our present application X is a smooth
fiber of X

p→ S), and let L be the restriction of O(1) to X. Let ϕ be a kahler
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potential. The two metrics hFS and e−ϕhFS induce metrics on the canonical bundle
K . We consider the virtual bundle

2n+1 E := (n+ 1)( K−1 − K )(L− L−1)n − µ(L− L−1)n+1.(4.6)

Here µ is the average of the scalar curvature. We need to calculate the following terms.

BC(φ; K−1 ⊗ Ln−2j , h0, h1)

BC(φ; K ⊗ Ln−2j , h0, h1)

BC(φ;Ln+1−2j , h0, h1).

(4.7)

The path of metrics for the first two expression are given as follows.

hK−1⊗Ln−2j ,t := det(gαβ + t
∂2

∂zα∂zβ
ϕ)e−t(n−2j)ϕhn−2j

FS

hK⊗Ln−2j ,t := det(gαβ + t
∂2

∂zα∂zβ
ϕ)−1e−t(n−2j)ϕhn−2j

FS .

(4.8)

The complete polarization of φ is given by

φ1(B,A . . . A) = tr(BAn) A,B ∈Mk(C).(4.9)

Therefore,

BC( K−1 ⊗ Ln−2j , h0, h1) =

∫ 1

0

(∆tϕϕ− (n− 2j)ϕ)((n− 2j)ωtϕ +Ricωt)
ndt

BC( K ⊗ Ln−2j , h0, h1) = −
∫ 1

0

(∆tϕϕ+ (n− 2j)ϕ)((n− 2j)ωtϕ −Ricωt)ndt.

(4.10)

Similarly we have

BC(Ln+1−2j , h0, h1) = −(n+ 1− 2j)n+1

∫ 1

0

ϕωnt dt ωt := ω + t∂∂ϕ.(4.11)

We see that

BC((L− L−1)n+1, hFS , e
−ϕhFS) = −

n+1∑
j=0

(−1)j
Ç
n+ 1

j

å
(n+ 1− 2j)n+1

∫ 1

0

ϕωnt dt.

(4.12)

Now we need the following numerical identity.
n+1∑
j=0

(−1)j
Ç
n+ 1

j

å
(n+ 1− 2j)i =

{
0 i < n+ 1 or i = n+ 2

(n+ 1)!2n+1 i = n+ 1.
(4.13)

It follows at once that∫
X

BC((L− L−1)n+1, hFS , e
−ϕhFS) = −(n+ 1)!2n+1

∫ 1

0

∫
X

ϕωnt dt.(4.14)
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It follows from (3.9) that

BC( K−1 ⊗ Ln−2j) =∫ 1

0

∆tϕϕ
n∑
i=0

Ç
n

i

å
(n− 2j)iRicn−it ωit −

∫ 1

0

n∑
i=0

Ç
n

i

å
(n− 2j)i+1ϕRicn−it ωit.

We use the identity (4.13) to see that
n∑
j=0

(−1)j
Ç
n

j

å
BC( K−1 ⊗ Ln−2j) = n!2n

∫ 1

0

(
∆tϕω

n
t − ϕnRictωn−1

t

)
dt.(4.15)

Similarly we have the second term
n∑
j=0

(−1)j+1

Ç
n

j

å
BC( K ⊗ Ln−2j) = n!2n

∫ 1

0

(
∆tϕω

n
t − ϕnRictωn−1

t

)
dt.(4.16)

The next lemma follows at once from summing up (4.15), (4.16), and (4.14).

Lemma 4.2. — Let D( E, hFS , e−ϕhFS) denote the Donaldson functional of Chn+1

with respect to E. Then the following identity holds.

D( E, hFS , e−ϕhFS) = νω(ϕ)(4.17)

Let ϕ = ϕσ and apply 4.5 to Lemma 4.2 to conclude the proof of Proposition 3. �
Next we observe that the identity

RG|Xz
= p∗2,z

Ç
R(gX)− p∗R(gS) +

√
−1

2π
∂∂Ψ

å
(4.18)

together with the previous lemmas yields the following corollary.

Corollary 3. — The function

σ ∈ G→ D(σ) := d(n+ 1)νω,z(σ)− log

Å
e(n+1)ΨS(σz) || ||2(σz)

|| ||2(z)

ã
is pluriharmonic. Where we have defined ΨS(z) :=

∫
{y∈f−1(z)}Ψ(y)p∗2(ωFS)n.

Moreover ΨS(z) ≤ C on S \∆, extends continuously to the locus of reduced fibers,
and limz→z∞ ΨS(z) = −∞ whenever Xz∞ is non-reduced.

Remark 6. — The construction of Ψ and ΨS as well as their behavior on the locus
of singular fibers can be seen directly in Example 1. The general case is treated in
Lemma 8.5 pg. 31 in [17].

Since π1(G) = 1 there is a (nonvanishing) entire function ξ on G such that

D(σ) = log(|ξ(σ)|2).

An analysis of the growth of this function on the standard compactification G

G := {[(wij , z)] ∈ P(N+1)2 : det(wij) = zN+1}
reveals that it must reduce to a constant.
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Tying everything together establishes our main result.

Theorem 1 (The K-Energy as a singular metric on L−1
1 ). — We have

(4.19) d(n+ 1)νω,z(σ) = log

Å
e(n+1)ΨS(σz) || ||2(σz)

|| ||2(z)

ã
.

We proceed to the proof of Corollary 1. First substitute σ = λ(t) in (4.19). Then
we have the string of identities.

d(n+ 1)νω,z(λ(t)) = log

Å
e(n+1)ΨS(λ(t)z) || ||2(λ(t)z)

|| ||2(z)

ã
= (n+ 1)ΨS(λ(t)z) + log

Å || ||2(λ(t)z)

|| ||2(z)

ã
= (n+ 1)ΨS(λ(t)z) + log

Ç
|| ||2(twλ(z)−wλ(z)λ(t)z)

|| ||2(z)

å
= (n+ 1)ΨS(λ(t)z) + wλ(z) log(|t|2) +O(1)

= F1(λ) log(|t|2) + (n+ 1)ΨS(λ(t)z) +O(1).

The passage from line 3 to 4 follows from the defining property of the weight (see
the introduction to [14]). The passage from line 4 to 5 is the statement of (1.5).

Rationality of the contribution from ΨS(λ(t)z) follows easily from [13] Theorem
3.5 pg. 2564 and Zhiqin Lu’s explicit computation of the asymptotics of the K-Energy
on hypersurfaces (see [9]). This completes the proof of Corollary 1.

4.2. Properness Implies that F1(λ) < 0. — Let X := Xz a smooth fiber of p.
Recall that the algebraic potential associated to a one parameter subgroup λ is given
by

ϕt := ϕλ(t) = log(
N∑
i=0

t2qi ||Si||2).

Then, as we have seen, ϕt ∈ P (X,ω). Following Yau [18], our plan is to use the
standard Moser iteration to control Osc(ϕt) by Iω(ϕt). Define

ϕ− := Max{−ϕt, 1} ≥ 1.

Let p ∈ Z+. Then we have the (obvious ) inequality

ϕp−

√
−1

2π
∂∂ϕ ∧ ωn−1

ϕ ≤ ϕp−ωnϕ.

Trivially this implies∫
X

ϕp−

√
−1

2π
∂∂ϕ ∧ ωn−1

ϕ ≤
∫
X

ϕp−ω
n
ϕ ≤

∫
X

ϕp+1
− ωnϕ.
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Next integrate by parts on the leftmost side of this inequality∫
X

ϕp−

√
−1

2π
∂∂ϕ ∧ ωn−1

ϕ = −
∫
X

√
−1

2π
∂ϕp− ∧ ∂ϕ ωn−1

ϕ

=

∫
X

√
−1

2π
∂ϕp− ∧ ∂ϕ−ωn−1

ϕ

=
4p

(p+ 1)2

√
−1

2π

∫
X

∂ϕ
p+1
2
− ∧ ∂ϕ

p+1
2
− ∧ ωn−1

ϕ .

Since ϕ− ≥ 1 we deduce the gradient estimate

4p

(p+ 1)2

√
−1

2π

∫
X

∂ϕ
p+1
2
− ∧ ∂ϕ

p+1
2
− ∧ ωn−1

ϕ ≤
∫
X

ϕp−ω
n
ϕ ≤

∫
X

ϕp+1
− ωnϕ.

We concentrate on the outermost inequality
4p

n(p+ 1)2

∫
X

||∇ϕtϕ
p+1
2
− ||2ϕtω

n
ϕt ≤

∫
X

ϕp+1
− ωnϕ.

Now we invoke the Sobolev inequalityÅ∫
X

ϕ
(p+1)n
n−1

−
ωnϕ
V

ãn−1
n

≤ C(ϕt)

Å∫
X

||∇ϕtϕ
p+1
2
− ||2ϕt

ωnϕt
V

+

∫
X

ϕp+1
−

ωnϕ
V

ã
.

C(ϕt) is the Sobolev constant of the metric ω +
√
−1

2π ∂∂ϕt. Concerning this constant
we have the crucial

Proposition 4 ([11], [7]). — There is a positive constant δ = δ(n) such that for all
σ ∈ SL(N + 1,C) we have

C(ϕσ) < δ.

This follows from the fact the complex projective subvarieties are minimal as Rie-
mannian submanifolds of PN and hence have vanishing mean curvature.

Therefore, Å∫
X

ϕ
(p+1)n
n−1

−
ωnϕ
V

ãn−1
n

≤ n(p+ 1)δ

∫
X

ϕp+1
−

ωnϕ
V
.

Now extract the p+ 1st root of both sides to getÅ∫
X

ϕ
(p+1)n
n−1

−
ωnϕ
V

ã n−1
n(p+1)

≤ (n(p+ 1)δ)
1
p+1

Å∫
X

ϕp+1
−

ωnϕ
V

ã 1
p+1

.

Now we start the standard iteration: Let p0 := 1 and pj+1 + 1 := n
n−1 (pj + 1). Then

we have that

||ϕ−||pj+1+1 ≤ C
1

pj+1 (pj + 1)
1

pj+1 ||ϕ−||pj+1 ≤ . . .

≤ C
∑ 1

pi+1

i=0

j∏
i=0

(pi + 1)
1

pj+1 ||ϕ−||2.
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That is to say

||ϕ−||pj+1+1 ≤ C
∑ 1

pi+1

i=0

j∏
i=0

(pi + 1)
1

pj+1 ||ϕ−||2.

It is not hard to check that the infinite product converges. Taking limits as j −→ ∞
gives

||ϕ−||∞ ≤ C
Å∫

X

ϕ2
−
ωnϕ
V

ã 1
2

≤ ||ϕ−||
1
2∞ C

Å∫
X

ϕ−
ωnϕ
V

ã 1
2

.

Which implies

||ϕ−||∞ ≤ C2

Å∫
X

ϕ−
ωnϕ
V

ã
.

Since ϕt ≤ C as t→ 0 we have

−infXϕt ≤ C1

∫
X

(−ϕt)
ωnϕ
V

+ C2.

Now, by the Green identity we deduce

OscX(ϕt) := SupX(ϕt)− InfX(ϕt) ≤ C1

Å∫
X

ϕtω
n −

∫
X

ϕtω
n
ϕ

ã
+ C2.

Using the properness assumption gives:

f(OscX(ϕt)) ≤ νω(ϕt).

Now we are prepared to complete the proof of the corollary.

Case 1: Assume that Xλ(0) 6= X and moreover that Xλ(0) is reduced, then by the
same argument as in [17] we have

limt→0OscX(ϕt)→∞.

Consequently we deduce that

limt→0νω(ϕt)→∞.

Corollary 1 yields the precise asymptotics (5)

νω(ϕλ(t)) = F1(λ) log(t2) +O(1).

This forces the desired sign F1(λ) < 0.

Case 2: If Xλ(0) is nonreduced, then Ψ(λ(t))→ −∞, however, under the properness
assumption the K-Energy is bounded from below, and we again have that F1(λ) < 0.
This completes the proof of Corollary 2. �

(5) Recall that when Xλ(0) is multiplicity free Ψ(λ(t)) = O(1).
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Abstract. — For a class of Borcea–Voisin threefolds, we give an explicit formula for
the BCOV invariant [3], [14] as a function on the moduli space. For those Calabi–
Yau threefolds, the BCOV invariant is expressed as the Petersson norm of the tensor
product of a certain Borcherds lift on the Kähler moduli of a Del Pezzo surface and
the Dedekind η-function. As a by-product, we construct an automorphic form on
the orthogonal modular variety associated to the odd unimodular lattice of signature
(2,m), m ≤ 10, which vanishes exactly on the Heegner divisor of norm (−1)-vectors.

Résumé (Variétés de Calabi-Yau de dimension trois de type Borcea–Voisin, torsion analytique,
et produits de Borcherds)

Pour une classe de variétés de Borcea–Voisin, nous donnons une formule expli-
cite de l’invariant de BCOV [3], [14] comme une fonction sur l’espace de modules.
Pour ces variétés de Calabi–Yau de dimension trois, l’invariant de BCOV s’exprime
comme la norme du produit tensoriel d’un relèvement de Borcherds à l’espace des
modules kählériens d’une surface de Del Pezzo et de la fonction η de Dedekind. Nous
construisons une forme automorphe sur la variété modulaire orthogonale associée au
réseau unimodulaire impair de signature (2,m), m ≤ 10, qui s’annule exactement sur
le diviseur de Heegner des vecteurs de norme −1.

1. Introduction

In [33], Ray–Singer introduced the notion of analytic torsion for compact Kähler
manifolds. Their definition was extended to arbitrary holomorphic Hermitian vector
bundles over a compact Kähler manifold by Quillen [32] and Bismut–Gillet–Soulé
[7]. Let ξ → X be a holomorphic Hermitian vector bundle over a compact Kähler
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356 K. YOSHIKAWA

manifold and let ζq(s) be the spectral zeta function of the Hodge–Kodaira Laplacian
acting on the space of (0, q)-forms on X with values in ξ. Then the real number

τ(X, ξ) = exp[−
∑
q≥0

(−1)qq ζ ′q(0)]

is called the analytic torsion of ξ. The most fundamental results in the theory of
analytic torsion such as the first variational formula, the second variational formula
and the comparison formula for complex immersions were obtained by Bismut–Gillet–
Soulé and Bismut–Lebeau as the corresponding results in the theory of Quillen met-
rics, i.e., the anomaly formula, the curvature formula and the immersion formula for
Quillen metrics [7], [8],...

In [3], Bershadsky–Cecotti–Ooguri–Vafa introduced the following combination of
analytic torsions for a compact Kähler manifold X∏

p≥0

τ(X,ΩpX)(−1)pp,

which we call the BCOV torsion ofX. They studied the BCOV torsion as a function on
the moduli space of Calabi–Yau threefolds and used it to extend the mirror symmetry
conjecture to higher-genus Gromov–Witten invariants [2], [3].

In [14], the notion of BCOV invariant was introduced for Calabi–Yau threefolds
by Fang–Lu–Yoshikawa, which they obtained using the BCOV torsion and a certain
Bott–Chern secondary class. (See Sect. 5.1 for the definition.) The BCOV invariant of
a Calabi–Yau threefold X is denoted by τBCOV(X). Then τBCOV(X) depends only on
the isomorphism class of X, while the BCOV torsion does depend on the choice of a
Kähler metric on X. Because of this invariance property, the BCOV invariant τBCOV

gives rise to a function on the moduli space of Calabi–Yau threefolds and is identified
with the partition function F1 in [3]. In this paper, we give an explicit formula for
the BCOV invariant for a class of Calabi–Yau threefolds studied by Borcea [9] and
Voisin [36]. (See [14] for some other examples including the quintic mirror threefolds
and the FHSV models.) Let us explain our results.

Let S be a K3 surface and let θ : S → S be an anti-symplectic holomorphic in-
volution. Let T be an elliptic curve and let −1T : T → T be the involution defined
as −1T (x) = −x. Let X(S,θ,T ) be the blow-up of the orbifold (S × T )/θ × (−1)T
along the singular locus. Then X(S,θ,T ) is a smooth Calabi–Yau threefold equipped
with the following two fibrations. Let π1 : X(S,θ,T ) → S/θ be the elliptic fibration
with constant fiber T induced from the projection (S × T )/θ × (−1)T → S/θ and
let π2 : X(S,θ,T ) → T/(−1T ) be the K3-fibration with constant fiber S induced from
the projection (S × T )/θ × (−1)T → T/(−1T ). The triplet (X(S,θ,T ), π1, π2) is called
the Borcea–Voisin threefold associated with (S, θ, T ). The moduli space of the triplet
(X(S,θ,T ), π1, π2) is determined by the lattice H2

−(S,Z), the anti-invariant part of
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the θ-action on H2(S,Z). By [28], H2
−(S,Z) is isometric to a primitive 2-elementary

sublattice of the K3-lattice LK3. Let Λ ⊂ LK3 be a sublattice of rank r(Λ). A Borcea–
Voisin threefold (X(S,θ,T ), π1, π2) is of type Λ if H2

−(S,Z) is isometric to Λ. Since θ is
anti-symplectic, there exist Borcea–Voisin threefolds of type Λ if and only if Λ ⊂ LK3

is a primitive 2-elementary sublattice of signature (2, r(Λ)− 2).
Some Borcea–Voisin threefolds are related to Del Pezzo surfaces. Let V be a Del

Pezzo surface and set deg V = c1(V )2 ∈ Z>0. Let H(V,Z) be the total cohomol-
ogy group of V , which is equipped with the cup-product 〈·, ·〉V . Then the sublattice
H2(V,Z) ⊂ H(V,Z) is Lorentzian. Let H(V,Z)(2) be the lattice (H(V,Z), 2〈·, ·〉V ).
By the classification of primitive 2-elementary Lorentzian sublattices of LK3 [29],
there exist Borcea–Voisin threefolds of type H(V,Z)(2). Let us explain their moduli
space briefly.

Let KV ⊂ H2(V,R) be the Kähler cone of V , let C+
V ⊂ H2(V,R) be the component

of the positive cone of H2(V,R) with KV ⊂ C+
V and let Eff(V ) ⊂ H2(V,Z) be the

set of effective classes on V . The tube domain H2(V,R) + i C+
V is isomorphic to

a bounded symmetric domain of type IV and its subdomain H2(V,R) + i KV is
called the complexified Kähler cone of V . Let H be the complex upper half-plane.
By assigning (X(S,θ,T ), π1, π2) the periods of (S, θ) and T , the coarse moduli space of
Borcea–Voisin threefolds of type H(V,Z)(2) is isomorphic to the quotient of the tube
domain (H2(V,R)+ i C+

V )×H by the group O+(H(V,Z))×SL2(Z) with some divisor
removed (cf. Theorem 3.7), where O+(H(V,Z)) is the group of isometries of H(V,Z)

preserving H2(V,R) + i C+
V . Hence τBCOV is regarded as an O+(H(V,Z))× SL2(Z)-

invariant function on a certain Zariski open subset of (H2(V,R)+ i C+
V )×H. The goal

of this paper is to give an explicit formula for τBCOV as a function on (H2(V,R) +

i C+
V )×H for Borcea–Voisin threefolds of type H2(V,Z)(2). Let us explain the infinite

product appearing in the formula.
After Borcherds [12] and Gritsenko–Nikulin [16], we introduce the following infinite

product ΦV (z) on the complexified Kähler cone H2(V,R) + i KV :

ΦV (z) = eπi〈c1(V ),z〉V
∏

α∈Eff(V )

Ä
1− e2πi〈α,z〉V

äc(0)

deg V
(α2)

×
∏

β∈Eff(V ), β/2≡c1(V )/2 mod H2(V,Z)

Ä
1− eπi〈β,z〉V

äc(1)

deg V
(β2/4)

,

where c(0)
k (m) and c(1)

k (m) are the m-th Fourier coefficients of the modular forms

f
(0)
k (τ) = η(τ)−8η(2τ)8η(4τ)−8 θA+

1
(τ)k, f

(1)
k (τ) = −8 η(4τ)8η(2τ)−16 θA+

1 + 1
2
(τ)k,

respectively. Here η(τ) is the Dedekind η-function and θA+
1

(τ), θA+
1 +1/2(τ) are the

theta series of the A1-lattice. Let AH(V,Z)(2) be the discriminant group of the lat-
tice H(V,Z)(2) and let {eγ}γ∈AH(V,Z)(2)

be the standard basis of C[AH(V,Z)(2)], the
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group ring of AH(V,Z)(2). In Sects. 4.3, 4.4 and 6.2, we shall prove that ΦV (2z)2 is the
Borcherds lift [12] of the C[AH(V,Z)(2)]-valued elliptic modular form

f
(0)
deg V (τ) e0 +

∑
γ∈AH(V,Z)(2)

∑
m≡2γ2 mod 4

c
(0)
deg V (m) qm/4 eγ + f

(1)
deg V (τ) e1H(V,Z)(2)

with respect to the lattice H(V,Z)(2). Here 1H(V,Z)(2) ∈ AH(V,Z)(2) is the charac-
teristic element and q = exp(2πiτ). As a result, ΦV (z) converges when (Im z)2 � 0

and extends to an automorphic form on H2(V,R) + i C+
V for O+(H(V,Z)) of weight

deg V + 4 vanishing exactly on the Heegner divisor of norm (−1)-vectors of H(V,Z).
If Exc(V ) ⊂ H2(V,Z) denotes the exceptional classes on V , the following functional
equations hold by the automorphic property of ΦV (z) (cf. Sect. 6.3):

(a) ΦV (z + l) = ΦV (z) for all l ∈ H2(V,Z) with 〈l, c1(V )〉V ≡ 0 mod 2.
(b) ΦV (g(z)) = ±ΦV (z) for all g ∈ O+(H2(V,Z)).
(c) ΦV (− z

〈z,z〉V + δ) = −(−〈z, z〉V )deg V+4 ΦV (z + δ) for all δ ∈ Exc(V ).

(d) ΦV (− 2z
〈z,z〉V ) = (− 〈z,z〉V2 )deg V+4 ΦV (z).

Since c1(V )/2 is a Weyl vector of H2(V,Z)(2), the Fourier expansion of ΦV (2z) is
of Lie type in the sense of [18] by (a), (b). Hence there exists a Borcherds superalgebra
whose denominator function is ΦV (2z). This Borcherds superalgebra is obtained as
an automorphic correction [17] of the Kac-Moody algebra defined by the generalized
Cartan matrix (2〈c1(E), c1(E′)〉V )E,E′∈Exc(V ). (See Question 4.4.)

Let ‖ΦV ‖ and ‖η‖ be the Petersson norms of ΦV (z) and η(τ), respectively. Then
‖ΦV ‖2 · ‖η24‖2 is a function on (H2(V,R) + i C+

V )× H invariant under the action of
O+(H(V,Z)) × SL2(Z). The following (cf. Theorems 5.7 and 6.4) is the main result
of this paper.

Theorem 1.1. — If V is a Del Pezzo surface with 1 ≤ deg V ≤ 6, then there exists a
constant Cdeg V depending only on deg V such that the following equation of functions
on the moduli space of Borcea–Voisin threefolds of type H(V,Z)(2) holds:

τBCOV = Cdeg V ‖ΦV ‖2 · ‖η24‖2.

Under the identification of τBCOV with F1 in B-model [2], [3], it follows from
Theorem 1.1 that the conjecture of Harvey–Moore [19, Sect. 7] holds for Borcea–
Voisin threefolds of type H(V,Z)(2) when 1 ≤ deg V ≤ 6, since ΦV is the denominator
function of a Borcherds superalgebra.

After Theorem 1.1, the conjecture of Bershadsky–Cecotti–Ooguri–Vafa [2], [3]
seems to predict that the elliptic Gromov–Witten invariants of the mirror of Borcea–
Voisin threefolds of type H(V,Z)(2) are expressed as certain linear combinations of
the Fourier coefficients c(0)

deg V (m), c(1)
deg V (m). If this is the case, the invariant of K3
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surfaces with involution constructed in [37] would be the Borcherds lift of an ellip-
tic modular form whose Fourier coefficients are elliptic Gromov–Witten invariants of
some Calabi–Yau threefolds by the structure theorem [38, Th. 0.1]. However, since
the Borcea–Voisin construction of mirrors [9], [36] does not apply to Borcea–Voisin
threefolds of type H(V,Z)(2), we do not know the existence of mirrors for those
Borcea–Voisin threefolds as well as their elliptic Gromov–Witten invariants.

This paper is organized as follows. In Sect. 2, we recall some definitions and results
about lattices. In Sect. 3, we recall Borcea–Voisin threefolds and study their moduli
space. In Sect. 4, we introduce the automorphic form Φm, which will be identified with
ΦV in Sect. 6. In Sect. 5, we recall the BCOV invariant of a Calabi–Yau threefold and
we prove the main theorem. In Sect. 6, we rewrite the automorphic form Φm as an
automorphic form on the complexified Kähler cone of a Del Pezzo surface to give an
identification between Φm and ΦV .

Acknowledgements. — The author thanks the referee for helpful comments, which
inspired Question 5.18.

2. Lattices and orthogonal modular varieties

A free Z-module of finite rank endowed with a non-degenerate, integral, sym-
metric bilinear form is called a lattice. We often identify a non-degenerate, integral,
symmetric matrix with the corresponding lattice. The rank of a lattice L is denoted
by r(L). The signature of L is denoted by sign(L) = (b+(L), b−(L)). A lattice L is
Lorentzian if sign(L) = (1, r(L) − 1). For a lattice L with bilinear form 〈·, ·〉, we de-
note by L(k) the lattice with bilinear form k〈·, ·〉. The set of roots of L is defined
by ∆L := {d ∈ L; 〈d, d〉 = −2}. The isometry group of L is denoted by O(L). For
r ∈ L⊗R, the reflection sr ∈ O(L⊗R) is defined by sr(x) = x−2 〈x,r〉〈r,r〉 r for x ∈ L⊗R.
If δ ∈ L and δ2 = −1 or δ2 = −2, then sδ ∈ O(L). The subgroup of O(L) generated
by the reflections {sδ}δ∈∆L

is called the Weyl group of L and is denoted by W (L).
The dual lattice of L is defined by L∨ := HomZ(L,Z) ⊂ L⊗Q. We set AL := L∨/L.
A lattice L is unimodular if AL = 0. A lattice L is even if 〈x, x〉 ∈ 2Z for all x ∈ L. A
lattice is odd if it is not even. A sublattice M ⊂ L is primitive if L/M has no torsion
elements.

2.1. 2-elementary lattices. — Set Z2 := Z/2Z. An even lattice L is 2-elementary
if there is an integer l ≥ 0 with AL ∼= Zl2. For a 2-elementary lattice L, we set
l(L) := dimZ2

AL.
Let U =

(
0 1
1 0

)
and let A1, E8 be the negative-definite Cartan matrix of type A1, E8

respectively, which are identified with the corresponding even lattices. Then U and
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E8 are unimodular, and A1 is 2-elementary. The lattice

LK3 := U⊕ U⊕ U⊕ E8 ⊕ E8

is called the K3 lattice. For a sublattice Λ ⊂ LK3, set Λ⊥ := {l ∈ LK3; 〈l,Λ〉 = 0}.
For a primitive 2-elementary Lorentzian sublattice M ⊂ LK3, let IM be the in-

volution on M ⊕M⊥ defined as IM (x, y) = (x,−y) for (x, y) ∈ M ⊕M⊥. Then IM
extends uniquely to an involution on LK3 by [28, Cor. 1.5.2].

Let L be an even 2-elementary lattice. Since AL is a vector space over Z2, the
mapping AL 3 γ → γ2 ∈ 1

2Z/Z
∼= Z2 is Z2-linear. Since the discriminant bilinear form

on AL is non-degenerate, there is a unique element 1L ∈ AL such that 〈γ,1L〉 ≡ γ2

mod Z for all γ ∈ AL. If L = L′ ⊕ L′′, then 1L = 1L′ ⊕ 1L′′ .

2.2. Lorentzian lattices. — Let L be a Lorentzian lattice. The set CL := {v ∈
L ⊗ R; v2 > 0} is called the positive cone of L, which consists of two connected
components. Let C+

L be one of the connected components of CL. For λ ∈ L ⊗ R,
we set hλ := {v ∈ C+

L ; 〈v, λ〉 = 0}. Define ( C+
L)o := C+

L \
⋃
δ∈∆L

hδ. The Weyl
group W (L) acts simply transitively on the set of connected components of ( C+

L)o.
Each connected component of ( C+

L)o is called a Weyl chamber of L. Let W be a
Weyl chamber of L. A hyperplane hd ⊂ L ⊗ R, d ∈ ∆+

L is called a wall of W if
dim(hd ∩ W ) = r(L)− 1, where W is the closure of W in L⊗R. We set Π(L, W ) :=

{d ∈ ∆L; d · W > 0, hd is a wall of W }, which is the minimal set of roots defining W ,
i.e.,

(2.1) W = {v ∈ C+
L ; 〈v, d〉 > 0, ∀ d ∈ Π(L, W )}.

In (2.1), each inequality 〈v, d〉 > 0, d ∈ Π(L, W ) is essential. A vector % ∈ L ⊗Q is
called a Weyl vector of (L, W ) if 〈%, d〉 = 1 for all d ∈ Π(L, W ).

2.3. Lattices of signature (2, n). — Let Λ be a lattice with sign(Λ) = (2, r(Λ)−2).
Define

ΩΛ := {[η] ∈ P(Λ⊗C); 〈η, η〉 = 0, 〈η, η̄〉 > 0}.
Then ΩΛ consists of two connected components Ω±Λ , each of which is isomorphic to a
bounded symmetric domain of type IV of dimension r(Λ) − 2. The group O(Λ) acts
on ΩΛ projectively. We set O+(Λ) := {g ∈ O(Λ); g(Ω±Λ ) = Ω±Λ}. Then O+(Λ) acts on
Ω+

Λ properly discontinuously, and the quotient

MΛ := ΩΛ/O(Λ) = Ω+
Λ/O

+(Λ)

is an analytic space. The Baily–Borel–Satake compactification of MΛ is denoted by
M∗Λ. Then M∗Λ is an irreducible normal projective variety with dim( M∗Λ \ MΛ) ≤ 1.
For λ ∈ Λ⊗R, set

Hλ := {[η] ∈ ΩΛ; 〈η, λ〉 = 0}.
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Then Hλ 6= ∅ if and only if 〈λ, λ〉 < 0. We define

DΛ :=
⋃
d∈∆Λ

Hd, ΩoΛ := ΩΛ \ DΛ.

The reduced divisor DΛ is called the discriminant locus of ΩΛ. We define the subsets
Ho
d ⊂ Hd (d ∈ ∆Λ) and DoΛ ⊂ DΛ by

Ho
d := {[η] ∈ Ω+

Λ ; O+(Λ)[η] = {±1, ±sd}}, DoΛ :=
∑

d∈∆Λ/±1

Ho
d .

Since O(Λ) preserves DΛ and DoΛ, we define

DΛ := DΛ/O(Λ), D
o

Λ := DoΛ/O(Λ) ⊂ DΛ.

Then D
o

Λ ∩ Sing MΛ = ∅ by [38, Prop. 1.9 (5)] and ΩoΛ ∪ DoΛ is a Zariski open subset
of ΩΛ such that ΩΛ \ (ΩoΛ ∪ DoΛ) has codimension at least 2 by [37, Prop. 1.9 (2)].

When Λ = U(N) ⊕ L, a vector of Λ ⊗C is denoted by (m,n, v), where m,n ∈ C

and v ∈ L⊗C. The tube domain L⊗R + i CL is identified with ΩΛ via the map

(2.2) L⊗R + i CL 3 z → [(−z2/2, 1/N, z)] ∈ ΩΛ ⊂ P(Λ⊗C), z ∈ L⊗C.

The component of ΩΛ corresponding to L⊗R + i C+
L via (2.2) is written as Ω+

Λ .

3. Calabi–Yau threefolds of Borcea–Voisin

An irreducible, smooth, compact Kähler n-fold X with canonical line bundle KX

is Calabi–Yau if

(1) KX
∼= OX , (2) Hq(X, OX) = 0 (0 < q < n).

A two-dimensional Calabi–Yau manifold is called a K3 surface. In this section, we
recall a class of Calabi–Yau threefolds studied by Borcea [9] and Voisin [36].

3.1. K3 surfaces with involution and their moduli space. — Let S be a K3

surface. Then H2(S,Z) endowed with the cup-product pairing is isometric to the K3

lattice LK3. An isometry of lattices α : H2(S,Z) ∼= LK3 is called a marking of S, and
the pair (S, α) is called a marked K3 surface. The period of a marked K3 surface
(S, α) is defined by

π(S, α) := [α(η)] ∈ P(LK3 ⊗C), η ∈ H0(S,KS) \ {0}.

LetM ⊂ LK3 be a sublattice. AK3 surface equipped with a holomorphic involution
θ : S → S is called a 2-elementary K3 surface of type M if

θ∗ = α−1 ◦ IM ◦ α, θ∗|H0(S,KS) = −1.
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By the global Torelli theorem [31], [13] and by [28, Cor. 1.5.2], there exists a 2-
elementary K3 surface of type M if and only if M ⊂ LK3 is a primitive 2-elementary
Lorentzian sublattice.

Let (S, θ) be a 2-elementary K3 surface of type M and let α be a marking with
θ∗ = α−1 ◦ IM ◦ α. Let η ∈ H0(S,KS) \ {0}. Then π(S, α) ∈ ΩoM⊥ . By [37, Th. 1.8]
and [38, Prop. 11.2], the O(M⊥)-orbit of π(S, α) is independent of the choice of a
marking α with θ∗ = α−1 ◦ IM ◦α. The period of (S, θ) is defined as the O(M⊥)-orbit

$M (S, θ) := O(M⊥) · π(S, α) ∈ ΩM⊥/O(M⊥) = MM⊥ .

By [37, Th. 1.8], the period map induces an isomorphism from the coarse moduli
space of 2-elementary K3 surfaces of type M to the analytic space

Mo
M⊥ := ΩoM⊥/O(M⊥) = (Ω+

M⊥
\ DM⊥)/O+(M⊥).

Theorem 3.1. — Let x ∈ D
o

M⊥ and let C ⊂ M∗M⊥ be an irreducible projective curve
passing through x. Assume that x ∈ C \ SingC and that C intersects D

o

M⊥ transver-
sally at x. Then there exist a pointed smooth projective curve (B, y), a neighborhood
U of y, a holomorphic map f : (B, y)→ (C, x), a smooth projective threefold W with
an involution θ : W → W , and a surjective holomorphic map p : W → B satisfying
the following properties:

(1) f(B) = C and the map f |U : (U, y)→ (f(U), x) is an isomorphism.
(2) The projection p : W → B is Z2-equivariant with respect to the Z2-action on W

induced by θ and with respect to the trivial Z2-action on B.
(3) For every b ∈ U \ {y}, ( W , θ)|p−1(b) is a 2-elementary K3 surface of type M

such that $M (( W , θ)|p−1(b)) = f(b).

Proof. — See [37, Th. 2.8].

For a 2-elementary K3 surface (S, θ), we define Sθ := {x ∈ S; θ(x) = x}.

Proposition 3.2. — Let (S, θ) be a 2-elementary K3 surface of type M and set

g(M) := (22− r(M)− l(M))/2, k(M) := (r(M)− l(M))/2.

If M 6∼= U(2) ⊕ E8(2), U ⊕ E8(2), then there exist a smooth irreducible curve C of
genus g(M) and (−2)-curves E1, . . . , Ek(M) such that Sθ = C q E1 q · · · q Ek(M).

Proof. — See [29, Th. 4.2.2].

3.2. Elliptic curves and elliptic fibrations. — Let H = {τ ∈ C; Im τ > 0} be
the complex upper half-plane and let M be the modular curve

M := SL2(Z)\H.
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For an elliptic curve T , let Ω(T ) ∈ M denote the period of T . Let −1T : T → T be
the holomorphic involution that assigns x ∈ T the inverse −x ∈ T . Let j(T ) ∈ C

denote the value of the j-invariant of T . If T is isomorphic to the cubic curve of P2

defined by the inhomogeneous equation y2 = 4x3 − g2 x− g3, then

j(T ) =
g3

2

g3
2 − 27 g2

3

.

The j-invariant induces an identification between M with the complex plane C.
Let S be a compact complex surface, let B be a compact Riemann surface, and

let f : S → B be a surjective holomorphic map. We set Sb := f−1(b) for b ∈ B. Let
∆S/B ⊂ B be the set of critical values of f . Then f : S → B is an elliptic fibration
if Sb is an elliptic curve for every b ∈ B \∆S/B . The analytic invariant of an elliptic
fibration f : S → B is the meromorphic function on B defined as jS/B(b) := j(Sb)

for b ∈ B \ ∆S/B . For an elliptic fibration f : S → B, we set Bo := B \ ∆S/B ,
So := f−1(Bo) and fo := f |So .

Let f : S → B be an elliptic fibration with a holomorphic section σ : B → S. By
[1, Chap.V Prop. 9.1], the elliptic fibration fo : So → Bo is canonically isomorphic
to the Jacobian fibration (R1f∗ OS/R1f∗Z)|Bo → Bo such that σ(b) is identified with
the identity element of the Jacobian H1(Sb, OSb)/H

1(Sb,Z). Hence there exists a
holomorphic involution −1So on So such that −1So |Sb = −1Sb for all b ∈ Bo. When
−1So extends to a holomorphic involution on S, we call the elliptic fibration f : S → B

with a holomorphic section admissible.

3.3. Borcea–Voisin threefolds and their moduli space. — Let (S, θ) be a 2-
elementary K3 surface. Let T be an elliptic curve. Let T [2] denote the 2-torsion points
of T , which is the set of fixed points of −1T .

Define a holomorphic involution on S × T by ι := θ × (−1T ), which acts trivially
on H0(S × T,KS×T ). By identifying the generator of Z2 with the involutions θ, −1T
and ι, the group Z2 acts holomorphically on S, T , S×T , respectively. The set of fixed
points of ι, (S × T )ι = Sθ × T [2], is the disjoint union of four copies of the curve Sθ.
After Borcea [9] and Voisin [36], we make the following

Definition 3.3. — For a 2-elementary K3 surface (S, θ) and an elliptic curve T , let
X(S,θ,T ) be the resolution of S × T/Z2 defined as the blow-up of S × T/Z2 along
Sing (S × T/Z2) ∼= (S × T )ι. Let π1 : X(S,θ,T ) → S/Z2 and π2 : X(S,θ,T ) → T/Z2 be
the projections induced from the projections pr1 : S×T → S and pr2 : S×T → T , re-
spectively. The triplet (X(S,θ,T ), π1, π2) is called the Borcea–Voisin threefold associated
with (S, θ, T ). Two Borcea–Voisin threefolds (X(S,θ,T ), π1, π2) and (X(S′,θ′,T ′), π

′
1, π
′
2)

are isomorphic if there exist isomorphisms of complex manifolds

f : X(S,θ,T ) → X(S′,θ′,T ′), g : S/Z2 → S′/Z2, h : T/Z2 → T ′/Z2
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such that π′1 ◦ f = g ◦ π1 and π′2 ◦ f = h ◦ π2.

By Borcea [9] and Voisin [36],X(S,θ,T ) is a Calabi–Yau threefold, which is equipped
with the elliptic fibration π1 : X(S,θ,T ) → S/Z2 with constant fiber T and with the
K3-fibration π2 : X(S,θ,T ) → T/Z2 with constant fiber S.

We recall another construction of X(S,θ,T ). Let q : ‡S × T → S × T be the blow-up

of S × T along the curve Σ(S,θ,T ) := Sθ × T [2] = (S × T )θ×(−1T ). Let ‰�θ × (−1T )

be the involution on ‡S × T induced from θ × (−1T ). We consider the Z2-action on‡S × T induced from ‰�θ × (−1T ), so that q : ‡S × T → S × T is Z2-equivariant. Since
θ × (−1T ) acts as −1 on the normal bundle NΣ(S,θ,T )/(S×T ), ‰�θ × (−1T ) acts trivially
on the exceptional divisor q−1(Σ(S,θ,T )). Hence

(‡S × T )
·�θ×(−1T ) = q−1(Σ(S,θ,T )).

Since ‰�θ × (−1T ) acts as the reflection with respect to the hypersurface q−1(Σ(S,θ,T )),
we have KfiS×T ∼= OfiS×T (q−1(Σ(S,θ,T ))) and KfiS×T/Z2

∼= OfiS×T/Z2
. Hence ‡S × T/Z2 is

a Calabi–Yau threefold. The natural projection ·�(S × T )/Z2 → (S × T )/Z2 induces
an isomorphism

(3.1) X(S,θ,T )
∼= ·�(S × T )/Z2 = ·�(S × T )/‰�θ × (−1T ).

By (3.1), the projections π1 : X(S,θ,T ) → S/Z2 and π2 : X(S,θ,T ) → T/Z2 are induced
from the projections pr1 : ‡S × T → S and pr2 : ‡S × T → T .

Definition 3.4. — Let Λ ⊂ LK3 be a primitive 2-elementary sublattice with signature
(2, r(Λ) − 2). A Borcea–Voisin threefold (X(S,θ,T ), π1, π2) is of type Λ if there exists
an isometry of lattices H2

−(S,Z) := {l ∈ H2(S,Z); θ∗l = −l} ∼= Λ.

Notice that when X(S,θ,T ) is a Borcea–Voisin threefold of type Λ, (S, θ) is a 2-
elementary K3 surface of type Λ⊥.

Lemma 3.5. — Let (S, θ) and (S′, θ′) be 2-elementary K3 surfaces of type Λ⊥, and let
T and T ′ be elliptic curves. Then the Borcea–Voisin threefolds (X(S,θ,T ), π1, π2) and
(X(S′,θ′,T ′), π

′
1, π
′
2) are isomorphic if and only if (S, θ) ∼= (S′, θ′) and T ∼= T ′.

Proof. — Let f : X(S,θ,T ) → X(S′,θ′,T ′), g : S/Z2 → S′/Z2 and h : T/Z2 → T ′/Z2 be
isomorphisms as in Definition 3.3. Let t = {±t} ∈ T/Z2 be a regular value of π2 and
set t′ := h(t) ∈ T ′/Z2. Since t 6= −t, we have π−1

2 (t) = (S × {t} q S × {−t})/Z2
∼=

S. Similarly, we have (π′2)−1(t′) ∼= S′. We obtain the involutions θ : S → S and
θ′ : S′ → S′ as the non-trivial covering transformations of the projections π1 : S =

π−1
2 (t) → S/Z2 and π′1 : S′ = (π′2)−1(t′) → S′/Z2, respectively. The isomorphism
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of fibers f |π−1
2 (t) : π−1

2 (t) → (π′2)−1(t′) is an isomorphism from S to S′ such that
θ = (f |π−1

2 (t))
−1 ◦ θ′ ◦ f |π−1

2 (t). This proves that (S, θ) ∼= (S′, θ′).
Let x ∈ (S \ Sθ)/Z2 be a regular value of π1 and set x′ := g(x) ∈ S′/Z2. Since

T = π−1
1 (x) and T ′ = π−1

1 (x′), the map f |π−1
1 (x) is an isomorphism from T to T ′.

Conversely, if (S, θ) ∼= (S′, θ′) and T ∼= T ′, then it is obvious by construction that
(X(S,θ,T ), π1, π2) ∼= (X(S′,θ′,T ′), π

′
1, π
′
2). This proves the lemma.

By Lemma 3.5, the following definition makes sense.

Definition 3.6. — Let (X(S,θ,T ), π1, π2) be a Borcea–Voisin threefold of type Λ. The
point ‹$Λ(X(S,θ,T ), π1, π2) is defined as the pair of the periods of (S, θ) and T , i.e.,‹$Λ(X(S,θ,T ), π1, π2) := ($Λ⊥(S, θ), Ω(T )) ∈ Mo

Λ ×M.

Let p : X → B be a proper, surjective holomorphic submersion between smooth
complex spaces. Let p1 : ( S, ϑ)→ B be a family of 2-elementary K3 surfaces of type
Λ and let p2 : T → B be a family of elliptic curves with a holomorphic section. Then
T is equipped with an involution −1 T which induces −1p−1

2 (b) for every b ∈ B. With
respect to the trivial Z2-action on B, p2 : T → B is Z2-equivariant. Let π1 : X → S/Z2

and π2 : X → T /Z2 be surjective holomorphic maps such that p = p1 ◦ π1 = p2 ◦ π2.
Then the quintet (p : X → B, p1 : ( S, ϑ) → B, p2 : T → B, π1, π2) is called a family
of Borcea–Voisin threefold of type Λ if (p−1(b), π1|p−1(b), π2|p−1(b)) is a Borcea–Voisin
threefold of type Λ for all b ∈ B.

Theorem 3.7. — The coarse moduli space of Borcea–Voisin threefolds of type Λ is
isomorphic to Mo

Λ ×M via the map ‹$Λ.

Proof. — By Lemma 3.5, the set of isomorphism classes of Borcea–Voisin threefold of
type Λ is identified with Mo

Λ ×M via the map ‹$Λ. Since the period map $Λ⊥ (resp.
Ω) is holomorphic for every family of 2-elementary K3 surfaces of type Λ⊥ (resp.
elliptic curves), ‹$Λ is also holomorphic for every family of Borcea–Voisin threefold of
type Λ by Definition 3.6.

By Theorem 3.7 and [38, Cor. 8.3], the coarse moduli space of Borcea–Voisin three-
folds of type Λ is quasi-affine if r(Λ) ≤ 12.

3.4. Degenerations of Borcea–Voisin threefolds

Theorem 3.8. — Let (p, q) ∈ D
o

Λ × M and let C ⊂ M∗Λ be an irreducible projec-
tive curve passing through p. Assume that p ∈ C \ SingC and that C intersects D

o

Λ

transversally at p. Then there exist an irreducible projective fourfold X , a pointed
compact Riemann surface (B, b), a neighborhood U of b, a surjective flat holomorphic
map π : X → B, and a holomorphic map f : (B, b)→ (C, p) satisfying
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(1) f(B) = C and the map f |U : (U, b)→ (f(U), p) is an isomorphism;
(2) for all b ∈ U \ {b}, π−1(b) is the Calabi–Yau threefold underlying a Borcea–

Voisin threefold (π−1(b), π1,b, π2,b) of type Λ such that‹$Λ(π−1(b), π1,b, π2,b) = (f(b), q).

Proof. — By Theorem 3.1, there exist a pointed smooth projective curve (B, b),
a neighborhood U of b, a holomorphic map f : (B, b) → (C, p), a smooth projec-
tive threefold W with an involution θ : W → W , and a surjective holomorphic map
p : W → B satisfying Theorem 3.1 (1), (2), (3).

Let T be an elliptic curve with Ω(T ) = q ∈ M. Let Σ be the union of all 2-
dimensional components of ( W × T )θ×(−1T ) = W θ × T [2]. Let q : ·�W × T → W × T
be the blow-up of W × T along Σ. Since θ × (−1T ) acts as −1 on the normal bundle
NΣ/( W×T ) and since q−1(Σ) = P(NΣ/( W×T )), θ × (−1T ) lifts to an involution I on·�W × T , which acts trivially on the exceptional divisor q−1(Σ).

We consider the Z2-action on ·�W × T induced from I , so that q : ·�W × T → W ×T
is Z2-equivariant. Set X := (·�W × T )/Z2 = (·�W × T )/ I . Then X is an irreducible pro-
jective fourfold. Since the projections p : W → B, pr1 : W ×T → W , and q : ·�W × T →
W × T are Z2-equivariant, the composite p ◦ pr1 ◦ q : ·�W × T → B is Z2-equivariant
and induces a surjective holomorphic map π : X → B. Since X is irreducible and
dimB = 1, π : X → B is a flat holomorphic map.

For b ∈ U \ {b}, set Wb := p−1(b), θb := θ|Wb
and Σb := Σ ∩ (Wb × T ). Then

(Wb, θb) is a 2-elementary K3 surface of type Λ⊥ and Σb = W θb
b × T [2] by Theorem

3.1 (3). Let qb : ·�Wb × T →Wb × T be the blow-up along Σb. Since Wb × T intersects
Σ transversely, we get q−1(Wb × T ) = ·�Wb × T and qb = q|q−1(Wb×T ). Thus

(3.2) (p ◦ pr1 ◦ q)−1(b) = q−1 ◦ (pr1)−1 ◦ p−1(b) = q−1(Wb × T ) = ·�Wb × T .

Since p◦pr1◦q is Z2-equivariant, I preserves the fibers of p◦pr1◦q. Set I b := I |flWb×T
.

Since q ◦ I ◦ q−1|( W×T )\Σ = θ × (−1T )|( W×T )\Σ by the definition of I , we get

q ◦ I b ◦ q−1|(Wb×T )\Σb = θb × (−1T )|(Wb×T )\Σb .

Since qb|‡(Wb×T )\q−1
b

(Σb)
: „�(Wb × T ) \ q−1

b (Σb)→ (Wb × T ) \ Σb is an isomorphism,

I b|‡(Wb×T )\q−1(Σb)
= q−1

b ◦(θb×(−1T ))◦qb|‡(Wb×T )\q−1(Σb)
= Â�θb × (−1T )|‡(Wb×T )\q−1(Σb)

for all b ∈ U \ {b}. Since both of I b and Â�θb × (−1T ) are defined on ·�Wb × T , this
implies that

(3.3) I b = Â�θb × (−1T ).
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By (3.1), (3.2), (3.3), we get

(3.4) π−1(b) = (p ◦ pr1 ◦ q)−1(b)/Z2 = „�(Wb × T )/ I b = X(Wb,θb,T ).

Consider the projections π1,b : X(Wb,θb,T ) → Wb/Z2 and π2,b : X(Wb,θb,T ) → T/Z2.
Then the triplet (π−1(b), π1,b, π2,b) is a Borcea–Voisin threefold of type Λ.
Since $Λ⊥(Wb, θb) = f(b) by Theorem 3.1 (3) and since Ω(T ) = q, we get‹$Λ(π−1(b), π1,b, π2,b) = (f(b), q) by (3.4). This completes the proof.

Theorem 3.9. — Let p ∈ Mo
Λ. Let p : E→ B be an admissible elliptic fibration over a

compact Riemann surface with a holomorphic section such that E is projective. Then
there exist an irreducible projective fourfold X and a surjective flat holomorphic map
π : X → B such that π−1(b) is the Calabi–Yau threefold underlying a Borcea–Voisin
threefold (π−1(b), π1,b, π2,b) of type Λ such that‹$Λ(π−1(b), π1,b, π2,b) = (p, Ω(p−1(b))), b ∈ Bo.

Proof. — Set Eb := p−1(b) for b ∈ Bo. Let −1 E be the holomorphic involution on E
preserving the fibers of p such that −1 E|Eb = −1Eb for all b ∈ Bo. Let (S, θ) be a
2-elementary K3 surface of type Λ⊥ with p = $Λ⊥(S, θ). Then S× E is equipped with
the Z2-action induced from the involution θ× (−1 E). Let E[2] denote the set of fixed
points of −1 E. The fixed point set of θ×(−1 E) is given by Sθ× E[2]. Since dim E[2] = 1,
we get dim(Sθ × E[2]) = 2, where Sθ × E[2] may not be pure dimensional. Let Σ be
the union of all 2-dimensional components of Sθ × E[2]. Then Σ is the disjoint union
of smooth complex surfaces. Let q : ‡S × E→ S× E be the blow-up along Σ. As in the
proof of Theorem 3.8, θ × (−1 E) lifts to an involution I on ‡S × E, which induces a
Z2-action on ‡S × E. Then q : ‡S × E→ S × E is Z2-equivariant.

Set X := (‡S × E)/Z2, which is an irreducible projective fourfold. Since the pro-
jections q : ‡S × E → S × E, pr2 : S × E → E, and p : E → B are Z2-equivariant, the
composite map p ◦ pr2 ◦ q : ‡S × E → B is Z2-equivariant and induces a holomorphic
surjection π : X → B.

Let b ∈ Bo. Let ·�S × Eb be the blow-up of S ×Eb along Sθ ×Eb[2] = (S ×Eb)∩Σ.
Since S × Eb intersects Σ transversally, we get q−1(S × Eb) = ·�S × Eb. Thus
(3.5) (p ◦ pr2 ◦ q)−1(b) = q−1 ◦ (pr2)−1 ◦ p−1(b) = q−1(S × Eb) = ·�S × Eb.
Since p◦pr2◦q is Z2-equivariant, I preserves the fibers of p◦pr2◦q. Set I b := I |fiS×Eb .
Since −1 E|Eb = −1Eb , we get

(3.6) Ib = Â�θ × (−1Eb)

as before in the proof of Theorem 3.8. By (3.5), (3.6), we get

(3.7) π−1(b) = (p ◦ pr2 ◦ q)−1(b)/Z2 = ‚�(S × Eb)/ I b = X(S,θ,Eb).
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Consider the projections π1,b : X(S,θ,Eb) → S/Z2 and π2,b : X(S,θ,Eb) → Eb/Z2.
Then (π−1(b), π1,b, π2,b) is a Borcea–Voisin threefold of type Λ. Since $Λ⊥(S, θ) = p,
we get ‹$Λ(π−1(b), π1,b, π2,b) = (p, Ω(Eb)).

Example 3.10. — We consider the pencil of plane cubics

S := {((x : y : z), (t0 : t1)) ∈ P2 ×P1; t0y
2z = 4t0x

3 − 3t1xz
2 − t0z3},

B := P1, p := pr2 : S → P1. Then p : S → P1 is an elliptic fibration equipped with a
section σ : P1 3 t = (t0 : t1)→ ((0 : 1 : 0), t) ∈ S. When t is a regular value of p, σ(t)

is the identity element of p−1(t). The involution

−1S : S 3 ((x : y : z), (t0 : t1))→ ((x : −y : z), (t0 : t1)) ∈ S

induces the map −1p−1(t) when t is a regular value of p. Let ( E,−1 E)→ (S,−1S) be
an equivariant resolution of the singularity of S and set p̃ := q ◦ p. Then p̃ : E → P1

is an admissible elliptic fibration with section. Since j E/P1(t) = 27t3

27(t3−1) , 1/j E/P1(t)

is a local coordinate of P1 near the set {(t0 : t1) ∈ P1; t30 = t31} ⊂ ∆ E/P1 .

3.5. Borcea–Voisin threefolds of exceptional type. — Let 1k denote the k×k-
identity matrix. For `,m ∈ Z, we set

I`,m :=

(
1` 0

0 −1m

)
, I`,m(2) = 2

(
1` 0

0 −1m

)
,

which are identified with the corresponding lattices. Then I1,m is an odd unimodular
lattice and I1,m(2) is a 2-elementary lattice. For m ≥ 0, we define

Λm := U(2)⊕ I1,m−1(2) (m ≥ 1), Λ0 := I2,0(2).

By the classification of primitive 2-elementary Lorentzian sublattices of LK3 [29,
p. 1434 Table 1], there exists a Borcea–Voisin threefold of type Λm if 0 ≤ m ≤ 9.

Remark 3.11. — Let X be the Calabi–Yau threefold underlying a Borcea–Voisin
threefold of type Λ and let π : (X, X)→ (Def(X), [X]) be the Kuranishi family of X.
We define the Borcea–Voisin locus Def(X)BV ⊂ Def(X) as follows: u ∈ Def(X)BV if
there exist a 2-elementaryK3 surface (Su, θu) of type Λ⊥ and an elliptic curve Tu such
that π−1(u) = X(Su,θu,Tu). Comparing dim Def(X) (cf. [9], [36]) and dim( Mo

Λ ×M),
we have Def(X) = Def(X)BV if and only if Λ is isometric to one of Λm (0 ≤ m ≤ 9),
U(2)⊕U(2), U⊕U(2)⊕E8(2). When Λ is isometric to one of these lattices, then the
Weil–Petersson metric on Def(X) coincides with the Bergman metric on ΩΛ ×H (cf.
Proof of Lemma 5.8). Notice that even if the moduli space is covered by a bounded
symmetric domain, the Weil–Petersson metric does not necessarily coincide with
the Bergman metric. For example, the moduli space of quintic mirror threefolds is
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covered by H, but the curvature of the Weil–Petersson metric is positive on some
domain of the moduli space.

Lemma 3.12. — Let (X(S,θ,T ), π1, π2) be a Borcea–Voisin threefold of type Λ. If Λ is
isometric to one of Λm (0 ≤ m ≤ 9), U(2)⊕ U(2), U⊕ U(2)⊕ E8(2), then

(3.8) h1,2(X(S,θ,T )) +
χ(X(S,θ,T ))

12
+ 3 = 14.

Proof. — Set N := dimH0(Sθ,C) and N ′ := 1
2 dimH1(Sθ,C). By [9], [36], we get

(3.9) h1,1(X(S,θ,T )) = 11− 5N −N ′, h1,2(X(S,θ,T )) = 11 + 5N ′ −N.

Assume Λ ∼= Λm (0 ≤ m ≤ 9) or Λ ∼= U(2) ⊕ U(2). Set r := r(Λ), r⊥ := r(Λ⊥) and
l⊥ := l(Λ⊥) = l(Λ). Then r⊥ = 22− r and l⊥ = r. By Proposition 3.2,

(3.10) N = 1 +
r⊥ − l⊥

2
, N ′ = 11− r⊥ + l⊥

2
.

By (3.9) and (3.10), we get

(3.11) h1,1(X(S,θ,T )) = 5r⊥ − 39, h1,2(X(S,θ,T )) = 21− r⊥.

Since χ(X(S,θ,T )) = 2(h1,1(X(S,θ,T ))− h1,2(X(S,θ,T ))), we get

(3.12) χ(X(S,θ,T )) = 12(r⊥ − 10).

The result follows from (3.11) and (3.12) in this case.
Assume Λ ∼= U ⊕ U(2) ⊕ E8(2). Then Λ⊥ ∼= U(2) ⊕ E8(2) and a 2-elementary K3

surface of type Λ⊥ is the universal covering of an Enriques surface. Hence N = N ′ = 0

in this case. Since h1,1(X(S,θ,T )) = h1,2(X(S,θ,T )) = 11 and χ(X(S,θ,T )) = 0 in this
case, we get the result.

4. Odd unimodular lattices and Borcherds products

In this section, we assume that Λ is a lattice of signature (2, r(Λ)− 2).

4.1. Automorphic forms. — We fix a vector lΛ ∈ Λ⊗R with 〈lΛ, lΛ〉 ≥ 0. Hence
HlΛ = ∅. We define

jΛ(γ, [z]) :=
〈γ(z), lΛ〉
〈z, lΛ〉

, [z] ∈ Ω+
Λ , γ ∈ O+(Λ).

Then jΛ(γ, ·) is a nowhere vanishing holomorphic function on Ω+
Λ . A holomorphic

function f ∈ O(Ω+
Λ) is called an automorphic form on Ω+

Λ for O+(Λ) of weight p if

f(γ · [z]) = χ(γ) jΛ(γ, [z])p f([z]), [z] ∈ Ω+
Λ , γ ∈ O+(Λ),
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where χ ∈ Hom(O+(Λ),C∗) is a character. For an automorphic form f on Ω+
Λ for

O+(Λ) of weight p, the Petersson norm ‖f‖ is the C∞ function on Ω+
Λ defined as

‖f([z])‖2 := KΛ([z])p |f([z])|2, KΛ([z]) :=
〈z, z̄〉
|〈z, lΛ〉|2

.

Since O+(Λ)/[O+(Λ), O+(Λ)] is finite when r(Λ) ≥ 5, ‖f‖2 is O+(Λ)-invariant.
Let ωΛ be the Kähler form of the Bergman metric on Ω+

Λ :

ωΛ := −ddc logKΛ =
1

2πi
∂∂̄ logKΛ.

For a divisor D on Ω+
Λ , δD denotes the Dirac δ-current on Ω+

Λ with support D.

4.2. Borcherds product associated with 2-elementary lattices. — For τ ∈ H,
set q = e2πiτ . The Dedekind η-function is defined by

η(τ) := q
1
24

∞∏
n=1

(1− qn).

The theta series of the positive-definite A1-lattice A+
1 = 〈2〉 are defined by

θA+
1

(τ) :=
∑
n∈Z

qn
2

, θA+
1 +1/2(τ) :=

∑
n∈Z

q(n+ 1
2 )2

.

Define f (0)
k (τ), f

(1)
k (τ) ∈ O(H) and the series {c(0)

k (`)}`∈Z, {c(1)
k (`)}`∈Z+k/4 by

f
(0)
k (τ) =

∑
l∈Z c

(0)
k (`) q` := η(τ)−8η(2τ)8η(4τ)−8 θA+

1
(τ)k,

f
(1)
k (τ) =

∑
l∈k/4+Z 2c

(1)
k (`) q` := −16 η(4τ)8η(2τ)−16 θA+

1 +1/2(τ)k.

We define holomorphic functions g(i)
k (τ) ∈ O(H), i ∈ Z/4Z by

g
(i)
k (τ) :=

∑
`≡i mod 4

c
(0)
k (`) q`/4.

Let C[AΛ] be the group ring of the discriminant group AΛ and let {eγ}γ∈AΛ
be its

standard basis. Recall that the element 1Λ ∈ AΛ was defined in Sect. 2.1. If Λ is
2-elementary and r(Λ) ≤ 12, the C[AΛ]-valued holomorphic function on H

FΛ(τ) := f
(0)
12−r(Λ)(τ) e0 + 2

r(Λ)−l(Λ)
2

∑
γ∈AΛ

g
(2γ2)
12−r(Λ)(τ) eγ + f

(1)
12−r(Λ)(τ) e1Λ

is a modular form for Mp2(Z) of type ρΛ in the sense of [12, Sect. 2] by [38, Th. 7.7].
Let N ∈ {1, 2} and let L be a 2-elementary Lorentzian lattice. Let W be a Weyl

chamber of L. We set Λ := U(N)⊕L and lΛ = (1, 0, 0) in Sect. 4.1. By [12, Th. 13.3],
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the following infinite product on L⊗R + i W converges absolutely when (Im z)2 � 0

and it extends to an automorphic form on Ω+
Λ for O+(Λ):

(4.1)

ΨΛ(z, FΛ) := e2πi〈%(L,FL,W ),z〉
∏

λ∈L, λ·W>0, λ2≥−2

Ä
1− e2πi〈λ,z〉

äc(0)

12−r(Λ)
(λ2/2)

×
∏

λ∈2L∨, λ·W>0, λ2≥−2

Ä
1− eπiN〈λ,z〉

ä2
r(Λ)−l(Λ)

2 c
(0)

12−r(Λ)
(λ2/2)

×
∏

λ∈(1L+L), λ·W>0, λ2≥0

Ä
1− e2πi〈λ,z〉

ä2c
(1)

12−r(Λ)
(λ2/2)

,

where %(L,FL, W ) ∈ L ⊗Q is the Weyl vector of (L,FL, W ). See [12, Th. 10.4] for
an explicit formula for %(L,FL, W ). We refer to [38] for more about ΨΛ(·, FΛ).

4.3. A Borcherds product associated with Λm. — Let m ≥ 1. We fix a basis
{h, d1, · · · , dm−1} of I1,m−1(2) over Z such that

〈h, h〉 = 2, 〈h, di〉 = 0, 〈di, dj〉 = −2δij (1 ≤ i, j ≤ m− 1).

We define

%m :=
1

2
(3h− d1 − · · · − dm−1) ∈ I1,m−1(2)∨ = I1,m−1(1/2)

and
Πm := {d ∈ ∆I1,m−1(2); 〈%m, d〉 = 1}.

When m ≤ 9, %2
m > 0 and Πm is finite. See [27, Th. 26.2] for an explicit formula for

Πm. Let Wm be the Weyl chamber of C I1,m−1(2) containing %m. Set

Aut( Wm) := {g ∈ O(I1,m−1(2)); g( Wm) = Wm}.

Proposition 4.1. — If 1 ≤ m ≤ 9, then the following hold:

(1) %m is a Weyl vector of (I1,m−1(2), Wm).
(2) Πm is the set of simple roots of (I1,m−1(2), Wm).
(3) Wm = {v ∈ I1,m−1(2)⊗R; v2 > 0, 〈v, d〉 > 0 ∀ d ∈ Πm}.
(4) {v ∈ I1,m−1(2)⊗R; 〈v, d〉 ≥ 0, ∀ d ∈ Πm} ⊂ C+

I1,m−1(2) ⊂
∑
d∈Πm R≥0d.

Proof. — Since %(I1,m−1(2), FI1,m−1(2), Wm) = 2%m by [12, Th. 10.4], we get (1)
by [38, Th. 7.11 (2)]. We get the inclusion Π(I1,m−1(2), Wm) ⊂ Πm by the defi-
nition of a Weyl vector of (I1,m−1(2), Wm). We prove the converse inclusion. Let
δ ∈ Π(I1,m−1(2), Wm). Since Aut( Wm) acts transitively on Πm by [27, Cor. 26.7
(ii)],

Πm = Aut( Wm) · δ ⊂ Aut( Wm) ·Π(I1,m−1(2), Wm).

Since Aut( Wm) preserves Π(I1,m−1(2), Wm), we get Πm ⊂ Π(I1,m−1(2), Wm). This
proves (2). We get (3) by (2.1) and (2).
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Since O(I1,m−1(2))/W (I1,m−1(2)) is finite by [29, Cor. 4.2.3], the first inclusion of
(4) follows from [30, Th. 1.4.3 and (1.4.5)]. Since C+

I1,m−1(2) is a self-dual cone and
since

∑
d∈Πm R≥0d is the dual cone of {v ∈ I1,m−1(2)⊗R; 〈v, d〉 ≥ 0, ∀ d ∈ Πm}, the

second inclusion of (4) is a consequence of the first inclusion of (4).

Theorem 4.2. — If 1 ≤ m ≤ 10, then the following hold:

(1) There exists an automorphic form Φm on Ω+
Λm

for O+(Λm) of weight 14 −m
with zero divisor DΛm such that

Φm(z)2 = ΨΛm(z, FΛm).

(2) The following identity holds for z ∈ I1,m−1(2)⊗R + i Wm with (Im z)2 � 0:

Φm(z) = e2πi〈%m,z〉
∏

δ∈{0,1}

∏
λ∈Π

+(δ)
m

Ä
1− e2πi〈λ,z〉

äc(δ)
10−m(λ2/2)

,

where Π
+(δ)
m := {λ ∈ δ%m + I1,m−1(2); λ · Wm > 0, λ2 ≥ 2(δ − 1)}.

Proof. — Since r(Λm) = l(Λm), we deduce from [38, Th. 8.1] that the weight
of ΨΛm(z, FΛm) is 2(14 − m) and that div(ΨΛm(z, FΛm)) = 2 DΛm . We set
ϕ = ‖ΨΛm(z, FΛm)‖ in [37, Th. 3.17]. Since we may choose ν(Λ⊥m) = 1 in [37,
Th. 3.17], we get the existence of an automorphic form Φm on Ω+

Λm
for O+(Λm) of

weight 14 − m with zero divisor DΛm . Comparing the weights and zeros, we get
Φ2
m = ΨΛm(·, FΛm). This proves (1).
By [12, Th. 10.4], we get %(L,FL, W ) = 2%m when L = I1,m−1(2) and W = Wm.

Since I1,m−1(2) = A+
1 ⊕ A1 ⊕ · · · ⊕ A1 and since 1Zh = h/2, 1Zdi = di/2, we get

1I1,m−1(2) = (h+d1+· · ·+dm−1)/2 ≡ %m mod I1,m−1(2). Since L = I1,m−1(2) = 2L∨,
N = 2 and r(I2,m(2)) = l(I2,m(2)) in (4.1), we get

Φm(z)2 = ΨΛm(z, FΛm)

= e2πi〈2%m,z〉
∏

λ∈Π
+(0)
m

Ä
1− e2πi〈λ,z〉

ä2c
(0)
10−m(λ

2

2 ) ∏
λ∈Π

+(1)
m

Ä
1− e2πi〈λ,z〉

ä2c
(1)
10−m(λ

2

2 )

=

e2πi〈%m,z〉
∏

δ∈{0,1}

∏
λ∈Π

+(δ)
m

Ä
1− e2πi〈λ,z〉

äc(δ)
10−m(λ2/2)

2

.

This proves (2).

We study the invariance property of Φm. Recall that W (I1,m−1(2)) is the Weyl
group of I1,m−1(2). By Proposition 4.1 (3) and the definition of Πm, we have

Aut( Wm) = {g ∈ O+(I1,m−1(2)); g(%m) = %m}.
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By [27, Th. 23.9], Aut( Wm) (4 ≤ m ≤ 9) is isomorphic to the Weyl group of the
root system of type A1 × A2, A4, D5, E6, E7, E8, respectively. Since the Weyl
group W (I1,m−1(2)) acts transitively on the set of Weyl chambers of I1,m−1(2),
O+(I1,m−1(2)) is generated by the reflection groups W (I1,m−1(2)) and Aut( Wm).

Proposition 4.3. — If 1 ≤ m ≤ 9, then the following hold:

(1) For all r ∈ I1,m−1(2)∨ with 〈r, %m〉 ≡ 0 mod 2,

Φm(z + r) = Φm(z).

(2) For all w ∈W (I1,m−1(2)),

Φm(w(z)) = det(w) Φm(z).

(3) For all g ∈ Aut( Wm),
Φm(g(z)) = Φm(z).

Proof. — We get (1) by the infinite product expansion of Φm in Theorem 4.2 (2).
Since Aut( Wm) preserves %m and Wm, Π

+ (0)
m and Π

+ (1)
m are Aut( Wm)-invariant. We

get (3) by the infinite product expansion of Φm in Theorem 4.2.(2).
Since O+(I1,m−1(2)) ⊂ O+(U(2) ⊕ I1,m−1(2)) and since Φm is an automorphic

form for O+(U(2) ⊕ I1,m−1(2)), there is a character ε ∈ Hom(O+(I1,m−1(2)),C∗)

such that Φm(g(z)) = ε(g) Φm(z) for all g ∈ O+(I1,m−1(2)). Since W (I1,m−1(2)) is
generated by the reflections {sδ; δ ∈ ∆I1,m−1(2)}, it suffices to prove ε(sδ) = −1 for
all δ ∈ ∆I1,m−1(2). Since s2

δ = 1, we get ε(sδ) ∈ {±1}. If ε(sδ) = 1, the vanishing order
of Φm along the divisor Hδ would be an even integer, which contradicts Theorem 4.2
(1), i.e., div(Φm) = DI1,m−1(2). Hence we get ε(sδ) = −1.

Question 4.4. — By Proposition 4.3 (1) and the infinite product expansion in Theo-
rem 4.2, Φm(z) has a Fourier expansion with integral Fourier coefficients. By the same
argument as in [17, Proof of Th. 2.3 (a)] (cf. [21]), we see that Φm(z) has a Fourier
expansion of Lie type in the sense of [18, Def. 2.5.1]. Namely, the Fourier expansion
of Φm(z) with respect to the cusp defined by a primitive isotropic vector of U(2) is of
the form:∑
w∈W (I1,m−1(2))

det(w) {e2πi〈w(%m),z〉 −
∑

r∈(I1,m−1(2)+Z%m)∩Wm\{0}

m(r) e2πi〈w(%m+r),z〉},

wherem(r) ∈ Z for all r ∈ (I1,m−1(2)+Z%m)∩Wm\{0}. To get this Fourier expansion,
we used Propositions 4.1 and 4.3 (1), (2) instead of [17, Prop. 2.2, Eqs (2.2), (2.3)].
Since Φm(z) has a Fourier expansion of Lie type, there exists by [17, Sect. 3 and
p. 222 Statement 6.8’], [18, Sect. 2.5] a Borcherds superalgebra gm such that gm is an
automorphic correction of the Kac–Moody algebra defined by the generalized Cartan
matrix 〈d, δ〉d,δ∈Πm and such that Φm(z) is the denominator function of gm.
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Since Φm(z) has the Aut( Wm)-invariance by Proposition 4.3 (3), it is very likely
that there is an Aut( Wm)-action on gm inducing the Aut( Wm)-invariance of Φm(z).

In Theorem 6.4 below, we shall see that Φm(z) is regarded as an automorphic form
on the Kähler moduli of a Del Pezzo surface of degree 10 − m. A more interesting
question is the construction of Φm(z) from the geometry of Del Pezzo surface. Is Φm(z)

(or equivalently ΦV (z) in Sect. 6) related to the Borcherds superalgebra constructed
in [20] for a Del Pezzo surface of degree 10−m?

4.4. Borcherds products associated with the odd unimodular lattices. —
We identify I1,m−1 ⊗R + i C+

I1,m−1
with Ω+

U⊕I1,m−1
by the isomorphism (2.2).

Theorem 4.5. — For 1 ≤ m ≤ 10, Φm(z/2) is an automorphic form on Ω+
U⊕I1,m−1

for
O+(U⊕ I1,m−1) of weight 14−m with zero divisor

∑
d∈U⊕I1,m−1, d2=−1Hd.

Proof. — Set L = I1,m−1(2). Hence L( 1
2 ) = I1,m−1. By (2.2), ΩU(2)⊕L = ΩΛm is

isomorphic to L⊗R + i CL via the map

(4.2) ι : L⊗R + i CL 3 z →
ïÅ
−1

2
〈z, z〉L,

1

2
, z

ãò
∈ ΩU(2)⊕L.

Identify U with U(2) via the identity map of the Abelian groups underlying them.
The lattice U⊕L(1/2) is an odd unimodular lattice. The map (2.2) gives the following
identification between L(1/2)⊗R + i CL(1/2) and ΩU⊕L(1/2):

(4.3) ι′ : L(1/2)⊗R + i CL(1/2) 3 z →
ïÅ
−1

2
〈z, z〉L(1/2), 1, z

ãò
∈ ΩU⊕L(1/2).

The identity map of the free Z-modules underlying Λm = U(2) ⊕ L and U ⊕ L(1/2)

induces an isomorphism from ΩU(2)⊕L to ΩU⊕L(1/2). This isomorphism is denoted by
I : ΩU(2)⊕L 3 [z]→ [z] ∈ ΩU⊕L(1/2). By (4.2) and (4.3), we get

(4.4) (ι′)−1 ◦ I ◦ ι(z) = 2z.

By (4.2), (4.3), (4.4), an automorphic form Ψ(z) on L(1/2)⊗R+i CL(1/2) for O+(U⊕
L(1/2)) is identified with the automorphic form Ψ((ι′)−1◦I ◦ι(z)) = Ψ(2z) on L⊗R+

i CL for O+(U(2) ⊕ L) via the identity map I : ΩU(2)⊕L → ΩU⊕L(1/2). In particular,
Φm(z/2) is an automorphic form on Ω+

U⊕I1,m−1
for O+(U⊕ I1,m−1) of weight 14−m.

Since the zero divisor of Φm(z/2) on Ω+
U⊕I1,m−1

coincides with the zero divisor of
Φm(z) on Ω+

U(2)⊕I1,m−1(2), we get

div(Φm(z/2)) =
∑

d∈∆Λm

Hd =
∑

d∈U⊕I1,m−1, d2=−1

Hd.

This proves the theorem.
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Remark 4.6. — Let e, e′ be primitive isotropic vectors of Λm. By [28, Prop. 1.17.1],
there exists g ∈ O(Λm) with g(e) = e′ if and only if e⊥/e ∼= (e′)⊥/e′. Since e⊥/e is a
unimodular Lorentzian lattice of signature (1,m−1), Λm has a unique O(Λm)-orbit of
primitive isotropic vectors if m 6= 2, 10. If m = 2, 10, there exist two O(Λm)-orbits of
primitive isotropic vectors: If we set V :=

(
0 1
1 1

)
, then Λ2 = U⊕V and Λ10 = U⊕V⊕E8.

Let e (resp. e′) be a primitive isotropic vector of U (resp. V). Then e⊥/e is an odd
unimodular lattice, while (e′)⊥/e′ is an even unimodular lattice. Hence e and e′ do
not lie on the same O(Λm)-orbit. Since the choice of an O(Λm)-orbit of an isotropic
vector of Λm corresponds to the choice of a zero-dimensional cusp of M∗Λm , M∗Λm has
a unique zero-dimensional cusp if 3 ≤ m ≤ 9.

4.5. The Borcherds Φ-function and Φ10. — By [12, Th. 13.3], [38, Th. 8.1],
ΨU(2)⊕U(2)⊕E8(2)(·, FU(2)⊕U(2)⊕E8(2)) is a meromorphic function on MU(2)⊕U(2)⊕E8(2)

without zeros and poles and hence is a constant function. By comparing the exponents
of the infinite product (4.1), this implies that the Fourier coefficients of f (0)

0 (τ) and
f

(1)
0 (τ) satisfy the following relation:

(4.5) c
(0)
0 (2m) + c

(1)
0 (2m) = 0, m ∈ Z.

Since η(2τ)−16η(4τ)8 =
∏∞
n=1(1− q2n)(1 + q2n)−1, we get by the definition of f (1)

0 (τ)

(4.6) c
(0)
0 (2m− 1) = 0, m ∈ Z.

Let Λ = U(2) ⊕ U ⊕ E8(2). The weight of ΨΛ(·, FΛ) is 4 by [12, Th. 13.3], [38,
Th. 8.1]. The automorphic form ΨΛ(·, FΛ) is the Borcherds Φ-function of dimension
10 (cf. [11]). We set N = 2, L = U ⊕ E8(2) and ρ = ((0, 1), 0E8(2)) in (4.1). Then
%(L, , FLW ) = ρ by [12, Th. 10.4]. Substituting this into (4.1) and using (4.5), (4.6),
we get the expression in [11]:

ΨΛ(z, FΛ) = e2πi〈ρ,z〉
∏

λ∈∆+
L
∪(L∩ C

+

L)

(1− e2πi〈λ,z〉)ε(λ)c
(0)
0 (λ2/2),

which is the denominator function of the fake monster algebra [10, Sect. 14 Example
3]. Here ε(λ) = 1 when λ ∈ 2L∨. When λ ∈ L \ (2L∨), we set ε(λ) = 1 if λ2/2 6∈ 2Z

and ε(λ) = −1 if λ2/2 ∈ 2Z. Then ΨΛ(·, FΛ) is identified with Φ10 as follows.
Using the basis {h, d1, . . . , d9} of I1,9(2) with Gram matrix I1,9(2), we define

K := {k ∈ I1,9(2); 〈k, d9〉 = 〈k, 3h−
8∑
i=1

di〉 = 0} ∼= E8(2),

where the last isometry follows from e.g. [27, Th. 25.4]. We set

f := (3h−
9∑
i=1

di)/2 = %9, f′ := (3h−
8∑
i=1

di + d9)/2.
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Then f2 = (f′)2 = 0 and 〈f, f′〉 = 1. We define L := Zf+ Zf′ + Zh+
∑9
i=1 Zdi, which

is equipped with the bilinear form induced from I1,9(2). Since

(4.7) Zh⊕ Zd1 ⊕ · · · ⊕ Zd9 = Z(3h−
8∑
i=1

di)⊕ Zd9 ⊕K = Z(f′ + f)⊕ Z(f′ − f)⊕K

and hence L = Zf ⊕ Zf′ ⊕ K, we get L ∼= U ⊕ E8(2). Since I1,9(2) ⊂ L, we have
the inclusion of lattices Λ10 = U(2) ⊕ I1,9(2) ⊂ U(2) ⊕ L = Λ, which yields the
identification ΩΛ10 = ΩΛ. Since O(Λ10) = {g ∈ O(Λ); g(Λ10) = Λ10} ⊂ O(Λ), an
automorphic form on Ω+

Λ10
for O+(Λ10) is identified with an automorphic form on Ω+

Λ

for the cofinite subgroup O+(Λ10) ⊂ O+(Λ).

Theorem 4.7. — Under the identification Ω+
Λ10

= Ω+
Λ and the inclusion of groups

O+(Λ10) ⊂ O+(Λ) induced from the inclusion of lattices Λ10 ⊂ Λ as above,

Φ10 = ΨΛ(·, FΛ).

Proof. — We prove ∆Λ10 = ∆Λ. Since Λ10 ⊂ Λ and hence ∆Λ10 ⊂ ∆Λ, it suffices to
prove ∆Λ10

⊃ ∆Λ. Let d = (a, b,m, n, λ) ∈ ∆Λ, where (a, b) ∈ U(2), (m,n) ∈ U, and
λ ∈ E8(2). Since d2 = 4ab + 2mn + λ2 = −2 and λ2 ≡ 0 mod 4, we get mn ≡ 1

mod 2 and hence m ≡ n ≡ 1 mod 2. By (4.7), we get

m f+ n f′ + λ =
m+ n

2
(f+ f′) +

n−m
2

(f′ − f) + λ ∈ I1,9(2).

This proves d ∈ Λ10 = U(2) ⊕ I1,9(2). Since ∆Λ10 = ∆Λ via the inclusion Λ10 ⊂ Λ,
both of Φ10 and ΨΛ(·, FΛ) are automorphic forms on Ω+

Λ for O+(Λ10) of weight 4 with
zero divisor DΛ. Hence Φ10 = Const.ΨΛ(·, FΛ) by the Koecher principle. Comparing
limz→+i∞ Φ10(z) and limz→+i∞ΨΛ(z, FΛ), we get the result.

5. The BCOV invariant of Borcea–Voisin threefolds

5.1. The BCOV invariant of Calabi–Yau threefolds. — Let X be a compact
Kähler manifold with Kähler form γ. Let D :=

√
2(∂̄ + ∂̄∗) be the Dirac operator of

(X, γ) and let �p,q := D2 be the Laplacian of (X, γ) acting on (p, q)-forms on X. Let
ζp,q(s) be the spectral zeta function of �p,q. After Ray-Singer [33], Bismut-Gillet-
Soulé [7], and Bershadsky-Cecotti-Ooguri-Vafa [3], we make the following:

Definition 5.1. — The BCOV torsion of (X, γ) is the real number defined by

T BCOV(X, γ) := exp[−
∑
p,q≥0

(−1)p+qpq ζ ′p,q(0)].

Assume that X is a Calabi–Yau n-fold. Let Vol(X, γ) = (2π)−n
∫
X
γn/n! be the

volume of (X, γ) and let ci(X, γ) denote the i-th Chern form of (TX, γ). Let η be a
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nowhere vanishing holomorphic n-form on X, whose L2-norm is defined as ‖η‖2L2 =

(2π)−n(
√
−1)n

2 ∫
X
η ∧ η̄. Define

A(X, γ) := Vol(X, γ)
χ(X)

12 exp

ñ
−
∫
X

log

Ç
(
√
−1)n

2

η ∧ η̄
γn/n!

· Vol(X, γ)

‖η‖2L2

å
cn(X, γ)

12

ô
.

Set b2(X) := dimH2(X,R). Let {e1, . . . , eb2(X)} be an integral basis of the free
Z-module H2(X,Z)fr := H2(X,Z)/Torsion. Let κ be a Kähler class on X, and let
VolL2(H2(X,Z), κ) be the covolume of H2(X,Z) with respect to κ, i.e.,

VolL2(H2(X,Z), κ) := det
(
〈ei, ej〉L2,κ

)
= Vol(H2(X,R)/H2(X,Z)fr, 〈·, ·〉L2,κ).

Definition 5.2. — When X is a Calabi–Yau threefold, define

τBCOV(X) :=
A(X, γ) T BCOV(X, γ)

Vol(X, γ)3 VolL2(H2(X,Z), [γ])
.

We call τBCOV(X) the BCOV invariant of X.

The following result is a consequence of the curvature formula for Quillen metrics
[7, Th. 0.1].

Theorem 5.3. — When X is a Calabi–Yau threefold, τBCOV(X) is independent of the
choice of a Kähler metric on X. In particular, τBCOV(X) is an invariant of X.

Proof. — See [14, Th. 4.16].

5.2. The singularity of the BCOV invariant. — The following result is an
application of the immersion formula for Quillen metrics [8], [5] (cf. [39]).

Theorem 5.4. — Let X be an irreducible projective algebraic fourfold and let S be a
compact Riemann surface. Let π : X → S be a surjective, flat holomorphic map. Let
D ⊂ S be a reduced divisor and set Xo := X \ π−1( D), So := S \ D, πo := π| Xo . Let
0 ∈ D, and let (U, t) be a coordinate neighborhood of S centered at 0 such that U \{0}
is isomorphic to the unit punctured disc in C. If πo : Xo → So is a smooth morphism
whose fibers are Calabi–Yau threefolds, then there exists α ∈ R such that

log τBCOV(Xt) = α log |t|2 +O(log(− log |t|2)) (t→ 0).

Proof. — See [14, Th. 9.1].

For a Borcea–Voisin threefold (X(S,θ,T ), π1, π2) of type Λ, set

τΛ
BCOV($Λ⊥(S, θ), Ω(T )) := τBCOV(X(S,θ,T )).

By Theorem 3.7, τΛ
BCOV is a function on Mo

Λ ×M.
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Proposition 5.5. — Let (p, q) ∈ D
o

Λ ×M and let C ⊂ M∗Λ be an irreducible projec-
tive curve passing through p. Assume that p ∈ C \ SingC and that C intersects D

o

Λ

transversally at p. Let (V, s) be a coordinate neighborhood of p in C centered at p
satisfying ( M∗Λ \ Mo

Λ) ∩ V = {p} and supz∈V |s(z)| < 1. Then there exist constants
α ∈ R and K ∈ R>0 such that for all z ∈ V \ {p},

(5.1)
∣∣τΛ

BCOV|V (z, q) + α log |s(z)|2
∣∣ ≤ K log(− log |s(z)|2).

Proof. — Let π : X → B, f : (B, b) → (C, p), and (U, b) ⊂ (B, b) be the same as
in Theorem 3.8. Choosing U sufficiently small, f∗s is a coordinate on U centered at
b. It suffices to prove (5.1) when V = f(U). By Theorem 5.4 applied to the family
π : X → B, there exist constants α ∈ R and K ∈ R>0 such that for all b ∈ U \ {b},

(5.2)
∣∣τΛ

BCOV|f(U)(f(b), q) + α log |s(f(b))|2
∣∣ ≤ K log(− log |s(f(b))|2),

because τΛ
BCOV|f(U)(f(b), q) = τBCOV(X(Wb,θb,T )) by Theorem 3.8 (2). By setting

z = f(b), Estimate (5.1) follows from (5.2).

Proposition 5.6. — Let p ∈ Mo
Λ. Let p : E → B be an admissible elliptic fibration

over a compact Riemann surface with a holomorphic section such that E is projective.
For b ∈ j−1

E/B({∞}), let (V, s) be a coordinate neighborhood of b in B centered at b
satisfying supz∈V |s(z)| < 1 and V ∩ j−1

E/B({∞}) = {b}. Then there exist constants
β ∈ R and K ∈ R>0 such that for all z ∈ V \ {b},

(5.3)
∣∣τΛ

BCOV(p, j(Eb)) + β log |s(z)|2
∣∣ ≤ K log(− log |s(z)|2).

Proof. — Let π : X → B be the same as in Theorem 3.9. The result follows from
Theorem 5.4 applied to the family π : X → B.

5.3. The BCOV invariant of Borcea–Voisin threefolds of type Λm. — Let
∆(τ) := η(τ)24 = q

∏∞
n=1(1−qn)24 be the Jacobi ∆-function. Then ∆(τ) is a cusp form

on H for SL2(Z) of weight 12. Let ‖∆(τ)‖2 := (Im τ)12|∆(τ)|2 be the Petersson norm
of ∆(τ), which is a SL2(Z)-invariant C∞ function on H. We often regard ‖∆(τ)‖2 as
a function on M = SL2(Z)\H.

Theorem 5.7. — Assume that m = 0 or 4 ≤ m ≤ 9 and set ‖Φm‖ := 1 when m = 0.
Then there exists a constant Cm depending only on m such that for every Borcea–
Voisin threefold (X(S,T ), π1, π2) of type Λm,

(5.4) τBCOV(X(S,θ,T )) = Cm ‖Φm($Λ⊥m
(S, θ))‖2 · ‖∆(Ω(T ))‖2.

Since Φm is the denominator function of a Borcherds superalgebra (cf. Question
4.4), Theorem 5.7 implies that the conjecture of Harvey–Moore [19, Sect. 7 Conjec-
ture] holds for Borcea–Voisin threefolds of type Λm, 4 ≤ m ≤ 9.
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For the proof of Theorem 5.7, we need some intermediate results. Let

Πm : ΩΛm × H→ MΛm ×M

be the natural projection and set

τΛm
BCOV := Π∗mτ

Λm
BCOV.

By Theorems 3.7 and 5.3, τΛm
BCOV is an O+(Λm)× SL2(Z)-invariant C∞ function on

ΩoΛm × H. Set

Fm := log

ñ
τΛm

BCOV

‖Φm‖2‖∆‖2

ô
.

Then Fm is a function on Mo
Λm ×M. Set

Fm := Π∗mFm,

which is an O(Λm)+ × SL2(Z)-invariant C∞ function on ΩoΛm × H.

Lemma 5.8. — If 0 ≤ m ≤ 9, then Fm is pluri-harmonic on ΩoΛm × H.

Proof. — Let X = X(S,θ,T ) be the Calabi–Yau threefold underlying a Borcea–Voisin
threefold of type Λm and let π : (X, X)→ (Def(X), [X]) be the Kuranishi family of X.
Similarly, let π′ : ((S,Θ), (S, θ))→ (Def(S, θ), [(S, θ)]) and π′′ : (T, T )→ (Def(T ), [T ])

be the Kuranishi family of (S, θ) and T , respectively. Comparing the dimensions of
the Kuranishi spaces (cf. Remark 3.11 and (3.11)), we have an isomorphism of germs
(Def(S, θ), [(S, θ)])× (Def(T ), [T ]) ∼= (Def(X), [X]), which is induced by the map

(Def(S, θ), [(S, θ)])× (Def(T ), [T ]) 3 (s, t)→ [X(Ss,θs,Tt)] ∈ (Def(X), [X]).

We regard Def(X) as a small open subset of ΩoΛm ×H. Similarly, we regard Def(S, θ)

and Def(T ) as small open subsets of ΩoΛm and H, respectively.
Let ξ′ ∈ H0(Def(S, θ), π∗KS/Def(S,θ)), ξ′′ ∈ H0(Def(T ), π∗KT/Def(T )) and ξ ∈

H0(Def(X), π∗KX/Def(X)) be nowhere vanishing relative canonical forms, respectively.
Then ξ|(s,t) is a non-zero holomorphic 3-form on X(Ss,θs,Tt). Let ‖ξ‖2L2 be the C∞

function on Def(X) ⊂ ΩoΛm × H defined as

‖ξ‖2L2(s, t) =

∣∣∣∣∣
∫
X(Ss,θs,Tt)

ξ|(s,t) ∧ ξ|(s,t)

∣∣∣∣∣ , (s, t) ∈ Def(X).

We define the functions ‖ξ′‖2L2 ∈ C∞(Def(S, θ)) and ‖ξ′′‖2L2 ∈ C∞(Def(T )) in the
same manner. Since the holomorphic 3-form ξ′|s ∧ ξ′′|t on (Ss × Tt)/θs × (−1)Tt lifts
to a holomorphic 3-form on X(Ss,θs,Tt), there is a nowhere vanishing holomorphic
function ψ ∈ O(Def(X)) such that

‖ξ‖2L2 = |ψ|2 ‖ξ′‖2L2‖ξ′′‖2L2 .

Let ωWP be the Weil-Petersson form on ΩoΛm×H. Then log ‖ξ‖2L2 is a local potential
function of ωWP (cf. [14, Sect. 4.2]). Similarly, log ‖ξ′‖2L2 is a local potential function
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of ωΛm (cf. [38, Eq. (5.4)]). Let ωH be the Kähler form of the Poincaré metric on H,
i.e.,

ωH = −ddc log Im τ.

Then log ‖ξ′′‖2L2 is a local potential function of ωH.
Since ωWP, ωΛm , ωH have potentials ‖ξ‖2L2 , ‖ξ′‖2L2 , ‖ξ′′‖2L2 respectively, we have

ωWP|Def(X) = −ddc log ‖ξ‖2L2 = −ddc log(‖ξ′‖2L2‖ξ′′‖2L2) = ωΛm |Def(S,θ) + ωH|Def(T ),

which implies the following equation of (1, 1)-forms on ΩoΛm × H:

(5.5) ωWP = ωΛm + ωH.

Let Ric(ωWP), Ric(ωΛm), Ric(ωH) be the Ricci-forms of ωWP, ωΛm , ωH, respectively.
By (5.5), we get

(5.6) Ric(ωWP) = Ric(ωΛm) + Ric(ωH) = −mωΛm − 2ωH,

where we used [22, Th. 4.1] and the explicit formula for the Bergman kernel [23, p. 34]
to get the second equality. Notice that KΛ([z])−(r(Λ)−2) is the Bergman kernel of ΩΛ

up to a constant by [23, p. 34].
Let h1,2 and χ denote the Hodge number and the Euler characteristic of a Borcea–

Voisin threefold of type Λm (cf. (3.11), (3.12)). By [14, Th. 4.14], Lemma 3.12, (5.5),
(5.6), we get the following equation of C∞ (1, 1)-forms on ΩoΛm × H:

(5.7) ddc log τΛm
BCOV = −

(
h1,2 +

χ

12
+ 3
)
ωWP−Ric(ωWP) = −(14−m)ωΛm−12ωH.

Since Φm is an automorphic form on Ω+
Λm

for O+(Λm) of weight 14 −m with zero
divisor DΛm by Theorem 4.2 and since ∆(τ) is an elliptic modular form for SL2(Z)

without zeros on H, we get the following equation on ΩoΛm × H

−ddc log(‖Φm‖2‖∆‖2) = (14−m)ωΛm + 12ωH,

which, together with (5.7), yields the desired equation ddcFm = 0 on ΩoΛm × H. This
proves the lemma.

Lemma 5.9. — Let ∆ ⊂ C be the unit disc and set ∆∗ := ∆\{0}. Let f be a real-valued
pluri-harmonic function on ∆∗ × ∆n. Assume the existence of real-valued functions
α(z) and C(z) on ∆n such that for all |t| < 1

2 and z ∈ ∆n,

|f(t, z)− α(z) log |t|2| ≤ C(z) log(− log |t|).

Then α(z) is a constant function on ∆n and there exists a real-valued pluri-harmonic
function ϕ(t, z) on ∆n+1 such that the following equation holds on ∆∗ ×∆n:

f(t, z) = α log |t|2 + ϕ(t, z), α = α(0).

In particular, the following identity of currents on ∆n+1 holds

ddcf = α δ{0}×∆n .
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Proof. — Fix z ∈ ∆n. Since ddcf = 0 on ∆∗×∆n, we can put P = f(·, z), α = α(z),
q = 0 in [37, Prop. 3.11]. For each z ∈ ∆n, there exists by [37, Prop. 3.11] a harmonic
function ϕ(·, z) on ∆ satisfying the following the equation on ∆∗ × {z}:

f(t, z) = α(z) log |t|2 + ϕ(t, z).

By the same argument as in [6, pp. 54-75, Proof of Prop. 10.2 (ii)], α(z) is a constant
function on ∆n and ϕ(t, z) is a pluri-harmonic function on ∆n+1.

Lemma 5.10. — Let 0 ≤ m ≤ 9. For every d ∈ ∆Λm , there exists α(d) ∈ R such that
the following equation of currents on ΩΛm × H holds:

(5.8) ddcFm =
∑

d∈∆Λm/{±1}

α(d) δHd×H.

Proof. — Since the result is obvious when m = 0, we assume 1 ≤ m ≤ 9. By [37,
Prop. 1.9 (2)], there is a Zariski closed subset Zm ⊂ ΩΛm of codimension ≥ 2 such
that ΩoΛm ∪ DoΛm = ΩΛm \ Zm. Let P ⊂ ΩoΛm ∪ DoΛm be a small polydisc and set
H := P ∩ DoΛm . Choosing P smaller if necessary, we may assume that H is a smooth
hypersurfaces of P . By the same argument as in [37, Sect. 7 Step 1], there is a system of
coordinates (f1, . . . , fm) on P such that f1, . . . , fm extend to meromorphic functions
on M∗Λm and such that H is defined by the equation f1 = 0. By Proposition 5.5 and
Lemma 5.8, there exist real-valued functions α(f2, . . . , fm, τ) and C(f2, . . . , fm, τ)

defined on H × H such that the following estimate holds on (P \H)× H:

|Fm(f1, f2, . . . , fm, τ)− α(f2, . . . , fm, τ) log |f1|2| ≤ C(f2, . . . , fm, τ) log(− log |f1|2).

By Lemma 5.9 applied to Fm|(P\H)×H, α is a constant function on H × H and the
equation of currents ddcFm|P×H = α δH×H holds on P × H. This implies (5.8) on
ΩoΛm ∪ DoΛm = ΩΛm \ Zm. By [35, p. 53 Th. 1], Eq. (5.8) holds on ΩΛm .

Lemma 5.11. — Let m = 0 or 4 ≤ m ≤ 9. Then Fm is pluri-harmonic on ΩΛm × H.
In particular, Fm extends to a pluri-harmonic function on MΛm ×M.

Proof. — When m = 0, ΩΛm is a point and ∆Λm = ∅. The result follows from (5.8)
in this case. We assume 4 ≤ m ≤ 9. By Lemma 5.9, it suffices to prove α(d) = 0

for all d ∈ ∆Λm/{±1}. Let γ ∈ O+(Λm). Since Fm is O+(Λm)-invariant and hence
γ∗ddcFm = ddcFm, we get by (5.8)∑
d∈∆Λm/{±1}

α(d) δHd×H = γ∗(
∑

d∈∆Λm/{±1}

α(d) δHd×H) =
∑

d∈∆Λm/{±1}

α(d) δHγ(d)×H.

Hence α(γ(d)) = α(d) for all d ∈ ∆Λm/{±1} and γ ∈ O+(Λm). Since m ≥ 4,
∆Λm/{±1} consists of a unique O+(Λm)-orbit by [38, Prop. 11.8]. There exists α ∈ R

such that α(d) = α for all d ∈ ∆Λm/{±1}. Replacing Fm by −Fm if necessary, we
may assume that α ≥ 0.
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Let q ∈ H be an arbitrary point. Set fm := Fm|ΩΛm×{q}. Equation (5.8) restricted
to ΩΛm × {q} yields that

(5.9) ddcfm = ddc(Fm|ΩΛm×{q}) = α
∑

d∈∆Λm/{±1}

δHd×{q}.

Assume α 6= 0. By (5.9) and the O+(Λm)-invariance of Fm|ΩΛm×{q}, we may set
ϕ = fm, p = q = 0 in [37, Th. 3.17]. Then there would exist by [37, Th. 3.17] an
integer ν ≥ 1 and an O+(Λm)-invariant meromorphic function ψ on ΩΛm such that

fm = α log |ψ|2/ν , div(ψ) = ν DΛm .

Since dim( M∗Λm \ MΛm) ≤ dim M∗Λm − 2 when m ≥ 3, we deduce from the Levi
extension theorem [1, Th. I.8.7] that ψ descends to a meromorphic function ψ̃ on
M∗Λm . Since div(ψ̃) = ν DΛm by the relation div(ψ) = ν DΛm , we get a contradiction
that the divisor of the meromorphic function ψ̃ on the compact complex space M∗Λm
is non-zero and effective. Hence α(d) = α = 0 for all d ∈ ∆Λm .

Lemma 5.12. — Let pr2 : MΛm ×M→M be the projection. If m = 0 or 4 ≤ m ≤ 9,
then there exists a harmonic function φm on M such that Fm = (pr2)∗φm.

Proof. — Since MΛm is a point when m = 0, the result is obvious in this case. We
assume 4 ≤ m ≤ 9. By Lemma 5.11, Fm extends to a pluri-harmonic function on
MΛm×M when 4 ≤ m ≤ 9. Since dim( M∗Λm \ MΛm) ≤ dim M∗Λm−2 when m ≥ 3 and
since M∗Λm is normal, Fm extends to a pluri-harmonic function on M∗Λm ×M by [15,
Satz 4]. Since M∗Λm is compact, Fm is constant on every slice M∗Λm × {q}, q ∈M, by
the maximum principle. This proves the lemma.

5.4. Proof of Theorem 5.7. — Let M∗ be the compactification of the modular
curveM = SL2(Z)\H and set ∞ :=M∗ \M. The j-function induces an isomorphism
j : M∗ ∼= P1 with j(∞) = ∞ and j(M) = C, such that 1/j is a local coordinate of
M∗ centered at ∞. Since j(τ) = q−1 + O(1) and ∆(τ) = q + O(q2) near τ = +i∞,
the following estimate holds near j =∞:

(5.10) log ‖∆‖2 = log |j|2 +O(log log |j|).

Let (S, θ) be a 2-elementary K3 surface of type Λm with period p ∈ Mo
Λm . Let

p : E → B be an admissible elliptic surface with a holomorphic section such that
E is projective and such that there exists a singular fiber of type I1, i.e., a nodal
rational curve with a unique node. Such an elliptic fibration exists by Example 3.10.
Set Eb := p−1(b) for b ∈ B. Let b ∈ ∆ E/B be such that Eb is a nodal rational curve
with a unique node. Then 1/j E/B is a local coordinate of B near b. By (5.3), (5.10)
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and the definition of Fm, there exists γ ∈ R such that as b→ b,

(5.11)
Fm(p, j E/B(b)) = log τΛm

BCOV(p, j E/B(b))− log ‖Φm(p)‖2 − log ‖∆(Ω(Eb))‖2

= γ log |j E/B(b)|2 +O(log log |j E/B(b)|2).

Since Fm = (pr2)∗φm and since φm is a harmonic function on M = P1 \ {∞}, we
deduce from (5.11) the following estimate near j =∞:

(5.12) φm(j) = γ log |j|2 +O(log log |j|).

Assume that γ 6= 0. Since φm is a harmonic function onM = P1 \ {∞}, ∂φm must
be a meromorphic 1-form on P1 with divisor div(∂φm) = −{∞} by (5.12). Namely,
∂φm is a logarithmic 1-form on P1 with a unique pole at ∞. This contradicts the
residue theorem. Hence γ = 0 and φm extends to a harmonic function on P1. By
the maximum principle, φm is a constant. This proves that Fm = pr∗2φm is also a
constant. This completes the proof of Theorem 5.7.

The proof contains technical difficulties when 1 ≤ m ≤ 3; when m = 3, DΛm is not
irreducible by [38, Prop. 11.8] and we can not get Lemma 5.11 by the same argument;
when m = 1, 2, the boundary locus M∗Λm \ MΛm is a divisor of M∗Λm and the Hartogs
extension theorem does not apply in Lemmas 5.11 and 5.12.

Conjecture 5.13. — Equation (5.4) holds when 1 ≤ m ≤ 3.

5.5. Factorization of the BCOV invariant for Borcea–Voisin threefolds.
— Let (X, γ) be a compact Kähler manifold. Let G be a compact Lie group acting
holomorphically on X and preserving γ. Recall that �0,q is the Laplacian acting on
C∞ (0, q)-forms on X. Let σ(�0,q) be the spectrum of �0,q. For λ ∈ σ(�0,q), let
E0,q(λ) be the eigenspace of �0,q with respect to the eigenvalue λ. Since G preserves
γ, E0,q(λ) is a finite-dimensional unitary representation of G. For g ∈ G and s ∈ C,
set

ζ0,q(g)(s) :=
∑

λ∈σ(�0,q)\{0}

Tr (g|E0,q(λ))λ
−s.

Then ζ0,q(g)(s) converges absolutely when Re s > dimX, admits a meromorphic
continuation to the complex plane C, and is holomorphic at s = 0. The equivariant
analytic torsion of (X, γ) is the class function on G defined by

τG(X, γ)(g) := exp[−
∑
q≥0

(−1)qq ζ ′0,q(g)(0)].

When g = 1, τG(X, γ)(1) is denoted by τ(X, γ). We refer to [4], [25] for more about
equivariant analytic torsion.

Let (S, θ) be a 2-elementary K3 surface of type M . Identify Z2 with the subgroup
of Aut(S) generated by θ. Let γ be a Z2-invariant Kähler form on S and let η be
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a nonzero holomorphic 2-form on S. Let Sθ =
∑
i Ci be the decomposition into the

connected components. In [37], we introduced the number

τM (S, θ) := vol(S, γ)
14−r(M)

4 τZ2(S, γ)(θ)
∏
i

Vol(Ci, γ|Ci)τ(Ci, γ|Ci)

× exp

[
1

8

∫
Sθ

log

Ç
η ∧ η̄
γ2/2!

· Vol(S, γ)

‖η‖2L2

å∣∣∣∣∣
Sθ

c1(Sθ, γ|Sθ )

]
.

By [37], τM (S, θ) is an invariant of the pair (S, θ), so that τM descends to a function
on Mo

M⊥ , the coarse moduli space of 2-elementary K3 surfaces of type M .

Theorem 5.14. — If m = 0 or 3 ≤ m ≤ 9, there exists a constant CΛm depending only
on Λm such that for every 2-elementary K3 surface (S, θ) of type Λ⊥m,

τΛ⊥m(S, θ) = CΛm ‖Φm($Λ⊥m
(S, θ))‖− 1

2 .

Proof. — Since Mo
Λm is a point when m = 0, the result is obvious in this case. When

3 ≤ m ≤ 9, the result follows from [38, Th. 9.1] and Theorem 4.2 (1).

Let E be an elliptic curve and let γ be a Kähler form on E. Let ξ be a nonzero
holomorphic 1-form on E. We set

τelliptic(E) := Vol(E, γ) τ(E, γ) exp

ï
1

12

∫
E

log

Å
ξ ∧ ξ̄
γ

ã
c1(E, γ)

ò
.

Since χ(E) =
∫
E
c1(E, γ) = 0, τ(E)elliptic is independent of the choice of ξ.

Lemma 5.15. — The following identity holds:

τelliptic(E) = ‖∆(Ω(E))‖− 1
6 .

Proof. — The result follows from [7, Th. 0.2] and the Kronecker limit formula.

Theorem 5.16. — Assume m = 0 or 4 ≤ m ≤ 9. The following identity holds for every
Borcea–Voisin threefold (X(S,θ,T ), π1, π2) of type Λm:

τBCOV(X(S,θ,T )) = CmC
4
Λm τΛ⊥m(S, θ)−4 τelliptic(T )−12.

Proof. — The result follows from Theorems 5.7 and 5.14 and Lemma 5.15.

Conjecture 5.17. — If Λ ⊂ LK3 is a primitive 2-elementary sublattice with sign(Λ) =

(2, r(Λ) − 2), then there exist constants a(Λ), b(Λ), C(Λ) depending only on Λ such
that for every Borcea–Voisin threefold (X(S,θ,T ), π1, π2) of type Λ,

τBCOV(X(S,θ,T )) = C(Λ) τΛ⊥(S, θ)a(Λ) τelliptic(T )b(Λ).

If this conjecture holds, then an explicit formula for the BCOV invariant of the
Borcea–Voisin threefolds of type Λ will be obtained from [38, Th. 0.1] when r(Λ) ≤ 11

or (r(Λ), δ(Λ)) = (12, 1).
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Question 5.18. — Let X(S,θ,T ) be a Borcea–Voisin threefold and let π : X(S,θ,T ) →
(S × T )/Z2 be the projection with exceptional divisor E := π−1(Sing (S × T )/Z2).
Then E has the structure of a P1-bundle over Sing (S × T )/Z2, whose fiber has
negative intersection number with E.

Let γ be a Kähler metric on (S × T )/Z2 in the sense of orbifolds and let γε be a
family of Kähler metrics on X(S,θ,T ) converging to γ as ε→ 0 such that

[γε] = π∗[γ]− ε c1([E]), 0 < ε� 1.

It is very likely that T BCOV(X(S,θ,T ), γε), A(X(S,θ,T ), γε), VolL2(H2(X(S,θ,T ),Z), [γε])

admit the following asymptotic expansions as ε→ 0:

log T BCOV(X(S,θ,T ), γε) = α1 log ε+ β1 + o(1),

log A(X(S,θ,T ), γε) = α2 log ε+ β2 + o(1),

log VolL2(H2(X(S,θ,T ),Z), [γε]) = α3 log ε+ β3 + o(1).

It is worth asking explicit formulae for β1, β2, β3, which will lead to direct proofs of
Theorems 5.7 and 5.16 and Conjecture 5.13 (and possibly Conjecture 5.17).

Question 5.19. — As an application of the arithmetic Lefschetz formula [24], the
arithmetic counterpart of the invariant τM and hence Φm was studied by Maillot–
Rössler [26]. After [26] and Theorem 5.16, it is worth asking the arithmetic counter-
part of the BCOV invariant for general Calabi–Yau threefolds.

6. Automorphic forms on the Kähler moduli of a Del Pezzo surface

6.1. Del Pezzo surfaces. — A compact connected smooth complex surface V
is a Del Pezzo surface if its anti-canonical line bundle K−1

V is ample. The integer
deg V := c1(V )2 is called the degree of V . Then 1 ≤ deg V ≤ 9. Throughout this
section, V is a Del Pezzo surface. A Del Pezzo surface of degree d 6= 8 is isomorphic
to the blow-up of P2 at 9−d points in general position. A Del Pezzo surface of degree
8 is isomorphic to the blow-up of P2 at one point or to P1 ×P1. If deg V = d, then
H2(V,Z) equipped with the cup-product is isometric to I1,9−d or to U. Let 〈·, ·〉V
denote the cup-product pairing on the total integral cohomology lattice of V

H(V,Z) := H0(V,Z)⊕H2(V,Z)⊕H4(V,Z).

We have an isometry of lattices (H(V,Z), 〈·, ·〉V ) ∼= U⊕ I1,9−deg V if V 6∼= P1×P1 and
(H(V,Z), 〈·, ·〉V ) ∼= U⊕ U if V ∼= P1 ×P1. The Z-module H0(V,Z) (resp. H4(V,Z))
has natural generators [1] (resp. [V ]∨) such that 〈[1], [V ]∨〉V = 1.

Let 1 ≤ m ≤ 9 and let P1, . . . , Pm−1 be m − 1 points of P2 in general position.
Let π : V → P2 be the blow-up of P2 at P1, . . . , Pm−1. Then V is a Del Pezzo surface
of degree 10 −m. Set Ei = π−1(Pi). Then E1, . . . , Em−1 are (−1)-curves of V . Set
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H := π∗c1( OP2(1)) ∈ H2(V,Z) and Di := c1([Ei]), where [Ei] is the line bundle on
V defined by the divisor Ei. Then {H,D1, . . . , Dm−1} is a basis of H2(V,Z) over Z

with Gram matrix I1,m−1. By the adjunction formula, we have

c1(V ) = c1(K−1
V ) = 3H − (D1 + · · ·+Dm−1).

Recall that the basis {h, d1, . . . , dm−1} of I1,m−1(2) and the Weyl vector %m ∈
I1,m−1(2)∨ were defined in Sect. 4.3. Let i : H2(V,Z)→ I1,m−1(2) be the isomorphism
of Z-modules defined by

i(H) = h, i(Di) = di (1 ≤ i ≤ m− 1).

The following identities hold:

(6.1) 〈i(v), i(w)〉I1,m−1(2) = 2〈v, w〉V , ∀ v, w ∈ H2(V,Z),

(6.2) i(c1(V )) = 2%m.

Set

Exc(V ) := {c1([C]) ∈ H2(V,Z); C is a (−1)-curve on V }.

By [27, Th. 26.2 (i)],

(6.3) i(Exc(V )) = Πm.

The set of effective classes on V is the subset of H2(V,Z) defined by

Eff(V ) := {c1(L) ∈ H2(V,Z); L ∈ H1(V, O∗V ), h0(L) > 0}.

We set Eff(V )≥m := {α ∈ Eff(V ); α2 ≥ m} for m ∈ Z. Let KV ⊂ H2(V,R) be the
set of Kähler classes on V . By Nakai’s criterion [1, Chap. IV Cor. 5.4], KV is the cone
of H2(V,R) given by KV = {x ∈ H2(V,R); x2 > 0, 〈x , α〉V > 0, ∀α ∈ Eff(V )}.
If D is an irreducible projective curve on V with arithmetic genus a(D), we get
c1([D])2 = 2a(D) − 2 + deg(K−1

V |D) ≥ 2a(D) − 1 ≥ −1 by the adjunction formula
and the ampleness of K−1

V . If c1([D])2 = −1 for an irreducible curve D ⊂ V , then
a(D) = 0 and D must be a (−1)-curve by [27, Th. 26.2 (i)]. Hence c1([D])2 ≥ 0 if
c1([D]) 6∈ Exc(V ). Since H2(V,R) is a Lorentzian vector space, this implies that

(6.4) KV = {x ∈ H2(V,R); x2 > 0, 〈x , δ〉V > 0, ∀ δ ∈ Exc(V )}.

By Proposition 4.1 (3) and (6.3), (6.4), we get

(6.5) Wm = i( KV ).

Lemma 6.1. — Let L be a holomorphic line bundle on V with c1(L)2 ≥ −1. Then
c1(L) · KV > 0 if and only if L is effective, i.e., h0(L) > 0.
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Proof. — Assume that c1(L) · KV > 0 and c1(L)2 ≥ −1. By the Riemann-Roch
theorem, h0(L) − h1(L) + h0(KV ⊗ L−1) = 1 + {〈c1(V ), c1(L)〉V + c1(L)2}/2. Since
c1(V ) ∈ KV and c1(L)2 ≥ −1, we get h0(L) + h0(KV ⊗ L−1) ≥ 1. Since K−1

V is
ample, we get 〈c1(K−1

V ), c1(KV ⊗ L−1)〉V = −c1(K−1
V )2 − 〈c1(K−1

V ), c1(L)〉V < 0 by
the condition c1(L) · KV > 0. It follows from Nakai’s criterion [1, Chap. 4 Cor. 5.4]
that KV ⊗ L−1 is not effective, i.e., h0(KV ⊗ L−1) = 0. Thus we get h0(L) > 0.

If h0(L) > 0 and c1(L)2 ≥ −1, then L is effective and hence 〈c1(L), κ〉V > 0 for
every Kähler class κ ∈ H2(V,R) on V . This proves the converse.

Recall that the subset Π
+ (δ)
m was defined in Theorem 4.2 (2).

Lemma 6.2. — The following identities hold:

(1) i−1(Π
+(0)
m ) = Eff(V )≥−1.

(2) i−1(Π
+(1)
m ) = {α ∈ H2(V,Q); 2α ∈ Eff(V )≥0, α ≡ c1(V )/2 mod H2(V,Z)}.

Proof. — By (6.1), (6.5), the result is a consequence of Lemma 6.1 and the definition
of Π

+ (δ)
m .

6.2. An automorphic form on the Kähler moduli of V . — The complexified
Kähler cone of V is the tube domain of H2(V,C) defined as H2(V,R) + i KV . Recall
that CH2(V,Z) is the positive cone of the Lorentzian vector space H2(V,Z). Let C+

V

be the component of CH2(V,Z) containing KV . The complexified Kähler cone of V is
regarded as an open subset of Ω+

H(V,Z) via (2.2):

H2(V,R) + i KV 3 η →
ï
[1] + η − η2

2
[V ]∨

ò
∈ Ω+

H(V,Z).

Definition 6.3. — Define a formal infinite product ΦV (w) on H2(V,R) + i KV by

ΦV (w) := eπi〈c1(V ),w〉V
∏

α∈Eff(V )

Ä
1− e2πi〈α,w〉V

äc(0)

deg V
(α2)

×
∏

β∈Eff(V ), β/2≡c1(V )/2 mod H2(V,Z)

Ä
1− eπi〈β,w〉V

äc(1)

deg V
(β2/4)

.

This is an analogue of similar infinite products for algebraic K3 surfaces [16].

Theorem 6.4. — The following identity holds:

ΦV (w) = Φ10−deg V (i(w)/2).

In particular, ΦV (w) converges absolutely for w ∈ H2(V,R)+i KV with (Imw)2 � 0.
Under the identification H2(V,R) + i C+

H2(V,Z)
∼= Ω+

H(V,Z) given by (2.2), ΦV extends
to an automorphic form on ΩH(V,Z) for O+(H(V,Z)) of weight deg V + 4 with zero
divisor

∑
δ∈H(V,Z), δ2=−1Hδ.
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Proof. — Set m = 10− deg V . By Theorem 4.2 (2), we get

Φm(i(w)/2) = e2πi〈%m,i(w)/2〉
∏
δ∈Z2

∏
λ∈Π

+(δ)
m

Ä
1− e2πi〈λ,i(w)/2〉

äc(δ)
10−m(λ2/2)

= eπi〈c1(V ),w〉V
∏
δ∈Z2

∏
α∈i−1(Π

+(δ)
m )

Ä
1− e2πi〈α,w〉V

äc(δ)
10−m(α2)

= eπi〈c1(V ),w〉V
∏

α∈Eff(V )

Ä
1− e2πi〈α,w〉V

äc(0)

deg V
(α2)

×
∏

2α∈Eff(V ), α≡c1(V )/2 mod H2(V,Z)

Ä
1− e2πi〈α,w〉V

äc(1)

deg V
(α2)

= ΦV (w),

where the second equality follows from (6.1), (6.2) and the third equality follows from
Lemma 6.2 and the vanishings c(0)

m (`) = 0 for ` < −1 and c(1)
m (`) = 0 for ` < 0. The

rest of the theorem follows from Theorems 4.2 (1) and 4.5.

Remark 6.5. — Let Λ be the total cohomology lattice of a K3 surface. In [12, Ex-
ample 15.2], Borcherds constructed an O+(Λ)-invariant real analytic function on the
Grassmannian G+(Λ) with singularities along the subgrassmannians orthogonal to
vectors of Λ of norm −2. The automorphic form ΦV may be regarded as an analogue
of this Borcherds’ function for Del Pezzo surfaces.

Let (S, θ) be a 2-elementary K3 surface of type M with M⊥ ∼= H(V,Z)(2). By
definition, there is an isometry j : H2

−(S,Z)→ H(V,Z)(2). By (2.2), there is a vector“$M (S, θ, j) ∈ H2(V,R) + i C+
V with

j(H2,0(S,C)) =

ï
[1] + “$M (S, θ, j)− 1

2
“$M (S, θ, j)2 [V ]∨

ò
∈ Ω+

H(V,Z).

Theorem 6.6. — If deg V ≤ 7, there is a constant Cdeg V depending only on deg V

such that for every 2-elementary K3 surface (S, θ) of type M with M⊥ ∼= Λ10−deg V ,

τM (S, θ) = Cdeg V ‖ΦV (“$M (S, θ, j))‖−
1
2 .

Notice that the left hand side is a function on the moduli space of 2-elementary
K3 surfaces of type M , while the right hand side is a function on the Kähler moduli
of the Del Pezzo surface V .

Proof. — Since i ◦ j : H2
−(S,Z) → I1,m−1(2) is an isometry of lattices, the point

(− 1
4“$M (S, θ, j)2, 1, 1

2 i(“$M (S, θ, j))) ∈ Ω+
Λm

is the period of (S, θ). By Theorems 4.2,
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5.13 and 6.4, we get

τM (S, θ) = CM

∥∥∥∥Φm

Å
1

2
i(“$M (S, θ, j))

ã∥∥∥∥− 1
2

= CM ‖ΦV (“$M (S, θ, j))‖− 1
2 .

Since the isometry class of M is determined by deg V , we get the result.

6.3. The functional equations of ΦV . — Let H2(V,Z)0 be the maximal even
sublattice of H2(V,Z):

H2(V,Z)0 := {α ∈ H2(V,Z); 〈α, c1(V )〉V ≡ 0 mod 2}.

Set W (V ) := {g ∈ O+(H2(V,Z)); g(c1(V )) = c1(V )}. By [27, Th. 23.9], W (V ) is the
Weyl group of the root system with root lattice c1(V )⊥ ⊂ H2(V,Z)0. Set

ΓV := H2(V,Z)0 oO+(H2(V,Z)), W̃ (V ) := c1(V )⊥ oW (V ) ⊂ ΓV .

Then W̃ (V ) is the affine Weyl group of the root system with root lattice c1(V )⊥. The
group ΓV preserves both of H2(V,R) + i KV and H2(V,R) + i C+

V and is regarded
as a subgroup of O+(H(V,Z)) by the following injective homomorphism ϕ : ΓV →
O+(H(V,Z)): For (a, x, b) = a[1] + x+ b[V ]∨,

ϕλ(a, x, b) :=

{
a[1] + (x+ aλ) +

Ä
b− λ2

2 a− 〈λ, x〉V
ä

[V ]∨ (λ ∈ H2(V,Z)0),

a[1] + λ(x) + b[V ]∨ (λ ∈ O+(H2(V,Z))).

Then ϕ(ΓV ) is the stabilizer of the isotropic vector [1] ∈ H0(V,Z) in O+(H(V,Z)).
Let GV be the subgroup of O+(H(V,Z)) generated by the set

ϕ(ΓV ), {s[1]+δ}δ∈Exc(V ), s[1]−[V ]∨ , −1.

Following [11, Sect. 2], one can verify that GV is a cofinite subgroup of O+(H(V,Z))

when 1 ≤ deg V ≤ 7. We give explicit functional equations of ΦV for the above system
of generators of GV . We set Λ = H(V,Z) and lH(V,Z) = [V ]∨ in Sect. 4.1.

Let W(1)(V ) be the subgroup of O+(H2(V,Z)) generated by the reflections
{sδ}δ∈Exc(V ). Since KV is a fundamental domain for the W(1)(V )-action on C+

V and
since W (V ) is the stabilizer of KV in O+(H2(V,Z)), O+(H2(V,Z)) is generated
by W(1)(V ) and W (V ). Let ε : O+(H2(V,Z)) → {±1} be the character such that
ε(g) = 1 for g ∈W (V ) and ε(g) = det(g) for g ∈W(1)(V ).

By Proposition 4.3 (1), (2), (3), we get the following equations for ϕ(ΓV ):

(a) ΦV (w + l) = ΦV (w), ∀ l ∈ H2(V,Z)0,

(b) ΦV (g(w)) = ε(g)ΦV (w), ∀ g ∈ O+(H2(V,Z)).

In particular, ΦV (w) is invariant under the action of the affine Weyl group W̃ (V ).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



390 K. YOSHIKAWA

Let δ ∈ Exc(V ). Since

s[1]+δ

Å
[1] + (w + δ)− (w + δ)2

2
[V ]∨

ã
= −〈w,w〉V

®
[1] +

Å
− w

〈w,w〉V
+ δ

ã
− 1

2

Å
− w

〈w,w〉V
+ δ

ã2

[V ]∨
´

and since ΦV vanishes of order 1 on H[1]+δ, the automorphic property of ΦV with
respect to s[1]+δ (cf. Sect. 4.1) implies that

(c) ΦV

Å
− w

〈w,w〉V
+ δ

ã
= −(−〈w,w〉V )deg V+4 ΦV (w + δ), ∀ δ ∈ Exc(V ).

Since s[1]−[V ]∨([1]+w− w2

2 [V ]∨) = −w
2

2 [1]+w+[V ]∨, the automorphic property of
ΦV with respect to s[1]−[V ]∨ implies that ΦV (− 2w

〈w,w〉V ) = ε(− 〈w,w〉V2 )deg V+4 ΦV (w),
ε ∈ {±1}. Since [1] − [V ]∨ ∈ H(V,Z) is a vector of norm −2 and since ΦV does not
vanish on the divisor H[1]−[V ]∨ ⊂ Ω+

H(V,Z), we get ε = 1, i.e.,

(d) ΦV

Å
− 2w

〈w,w〉V

ã
=

Å
−〈w,w〉V

2

ãdeg V+4

ΦV (w).

Remark 6.7. — When 1 ≤ deg V ≤ 7, the conditions div(ΦV ) =
∑
δ∈H(V,Z), δ2=−1Hδ

and (a), (b), (c), (d) are sufficient to characterize ΦV up to a constant, since
|O+(H(V,Z))/GV | <∞.

6.4. Borcherds Φ-function as an analogue of ΦV for Enriques surfaces. —
Consider the case N = 1 and L = U(2) ⊕ E8(2) in (4.1). Then L∨ = 1

2L, 1L = 0,
∆L = ∅. By [12, Th. 10.4], we get %(L,FL, W ) = 0. Substituting these into (4.1), we
get another expression of the Borcherds Φ-function [12, Example 13.7]

(6.6) ΨU⊕L(z, FU⊕L) =
∏

λ∈L∩ C
+

L

Ç
1− eπi〈λ,z〉L
1 + eπi〈λ,z〉L

åc
(0)
0 (λ2/2)

,

which is the Fourier expansion of the Borcherds Φ-function at the level 1 cusp and is
the denominator function of the fake monster superalgebra [34]. We see that (6.6) is
regarded as an analogue of Theorem 6.4 in the case of Enriques surfaces.

Let S be an Enriques surface [1, Chap.VIII] and let p : S̃ → S be the universal
covering. Let θ ∈ π1(S̃) be the generator. Hence S = S̃/θ. Assume that S contains no
rational curves. Let KS ⊂ H2(S,R) be the Kähler cone of S. We define the infinite
product ΦS on the complexified Kähler cone H2(S,R) + i KS by

(6.7) ΦS(w) :=
∏

α∈H2(S,Z)∩KS

Ç
1− e2πi〈α,w〉S

1 + e2πi〈α,w〉S

åc
(0)
0 (α2)

.
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We set H+(S̃,Z) := {v ∈ H(S̃,Z) = H0(S̃,Z)⊕H2(S̃,Z)⊕H4(S̃,Z); θ∗v = v}. Then
H+(S̃,Z) ∼= U⊕H2(S̃,Z) ∼= U⊕U(2)⊕E8(2) = U⊕L. The pull-back p∗ : H2(S,Z)→
H2(S̃,Z) induces the following embedding:

p∗ : H2(S,R) + i KS ↪→ H2
+(S̃,R) + i C+

H2
+

(S̃,Z)
∼= Ω+

H+(S̃,Z)
,

where H2
+(S̃,Z) = H2(S̃,Z) ∩H+(S̃,Z) and the last isomorphism is given by (2.2).

By (6.6), ΦS is an automorphic form on Ω+

H(S̃,Z)
for O+(H+(S̃,Z)) of weight 4.

There is a formula for the analytic torsion of a Ricci-flat Enriques surface [37,
Th. 8.3] analogous to Theorem 6.6: For every Ricci-flat Enriques surface (S, ω),

Vol(S, ω)
1
2 τ(S, ω) = Const. ‖ΦS(“$(S̃, θ))‖− 1

2 .

Question 6.8. — After Theorem 4.7, it is worth asking the limiting situation in Theo-
rem 6.4. Let W be the blow-up of P2 at 9 points. Is Φ10 regarded as an automorphic
form on H2(W,R) + i C+

W ? If this is the case, the Fourier expansion of the Borcherds
Φ-function at the level 2 cusp would be regarded as an automorphic form on the com-
plexified Kähler cone of W by Theorem 4.7. The case when these 9 points are given
by the intersection of two generic cubics in P2 will be the most interesting, in which
case W is a rational elliptic surface.

Question 6.9. — Let X be a smooth projective surface with h1( OX) = h2( OX) = 0.
As before, the tube domain H2(X,R) + i C+

X is isomorphic to a bounded symmetric
domain of type IV of dimension b2(X). As we have seen, there is a nice automorphic
form on H2(X,R) + i C+

X when X is a Del Pezzo surface or an Enriques surface. Is
there a canonical way of constructing a nice Borcherds product on H2(X,R) + i C+

X?
For example, when X is of general type with h1( OX) = h2( OX) = 0 or when X is
rational, is there an analogue of the Borcherds Φ-function for X?
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