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HODGE-TATE AND DE RHAM REPRESENTATIONS
IN THE IMPERFECT RESIDUE FIELD CASE

BY Kazuma MORITA

ABSTRACT. — Let K be a p-adic local field with residue field & such that [k : k7] = p® < 400 and
V be a p-adic representation of Gal(K /K). Then, by using the theory of p-adic differential modules,
we show that V' is a Hodge-Tate (resp. de Rham) representation of Gal(K /K) if and only if V is a
Hodge-Tate (resp. de Rham) representation of Gal(KPf/K™) where KP'/K is a certain p-adic local
field with residue field the smallest perfect field kP' containing k.

RESUME. — Soit K un corps local p-adique de corps résiduel & tel que [k : kP] = p® < +oo et
soit V une représentation p-adique de Gal(K /K). Nous utilisons la théorie des modules différentiels
p-adiques pour montrer que V est une représentation de Hodge-Tate (resp. de Rham) de Gal(K /K) si
et seulement si V' est une représentation de Hodge-Tate (resp. de Rham) de Gal(ﬁ/Kpf) ou K /K
est un certain corps local p-adique de corps résiduel le plus petit corps parfait k*' contenant k.

1. Introduction

Let K be a complete discrete valuation field of characteristic 0 with residue field & of char-
acteristic p > 0 such that [k : kP] = p® < +oo. Choose an algebraic closure K of K and put
Gk = Gal(K/K). By a p-adic representation of G, we mean a finite dimensional vector
space V over Q, endowed with a continuous action of Gx. In the case e = 0 (i.e. k is per-
fect), following Fontaine, we can classify p-adic representations of Gx by using the p-adic
periods rings Byt, Bgr, Bst and Bcs (Hodge-Tate, de Rham, semi-stable and crystalline
representations). In the general case (i.e. & is not necessarily perfect), Hyodo constructed the
imperfect residue field version of the ring Byt and Tsuzuki and several authors constructed
that of the ring Bgr. By using these rings, we can define the imperfect residue field version
of Hodge-Tate and de Rham representations of Gk in the evident way ([3], [7], [8], [9], [12]).

Now, we shall state the main result of this article. Let us fix some notations. Fix a lifting
(b;)1<i<e of a p-basis of k in Ok (the ring of integers of K) and for each m > 1, fixa p™ -th
root b;/”" of b; in K satisfying (b;'” T1)P = b;/"" . Put K®) = U5  K(b/7" 1< i<e)
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342 K. MORITA

and KP' = the p-adic completion of K®)_ These fields depend on the choice of a lifting
of a p-basis of k in 0. Since KP' becomes a complete discrete valuation field with perfect
residue field, we can apply theories in the perfect residue field case to p-adic representations of
G kot = Gal(K?f/KPf) where we choose an algebraic closure K of KPf containing K. Note
that, if V is a p-adic representation of G, it can be also regarded as a p-adic representation
of G g (see Section 2.2 for details). Our main result is the following.

THEOREM 1.1. — Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : kP] = p® < +oo and V be a p-adic
representation of Gg. Let KP' be the field extension of K defined as above. Then, we have the
following equivalences

1. V is a Hodge-Tate representation of G i if and only if V is a Hodge-Tate representation
OfGKpf,

2. V is a de Rham representation of Gk if and only if V is a de Rham representation of
GKpf.

In the case of Hodge-Tate representations, Tsuji [11] had proved a more refined theorem
based on this article. This paper is organized as follows. In Section 2, we shall review the
definitions and basic known facts on Hodge-Tate and de Rham representations, first in the
perfect residue field case and then in the imperfect residue field case. In Section 3, we shall
review the theory of p-adic differential modules which play a central role in this article. In
Section 4, by using the theory of p-adic differential modules, we shall prove the main theo-
rem, first for Hodge-Tate representations and then for de Rham representations.
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2. Preliminaries on Hodge-Tate and de Rham representations

2.1. Hodge-Tate and de Rham representations in the perfect residue field case

(See [4] and [5] for details.) Let K be a complete discrete valuation field of characteristic 0
with perfect residue field k of characteristic p > 0. Choose an algebraic closure K of K and
consider its p-adic completion C,,. Put

E = limy 0 Cy = {(2@,0V,...) | (aFHD) = 200 € C, )
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HODGE-TATE AND DE RHAM REPRESENTATIONS 343

and let E* denote the set of z = (z(?) € E such that (O € &, where ¢, denotes the
ring of integers of C,. For two elements z = (z(?) and y = (y@) of E, their sum and
product are defined by (z + )@ = lim;_ 4o () + D) and (zy)D = £@y®,
These sum and product make Ea perfect field of characteristic p > 0 (IE"r is a subring of ]E).
Let € = (¢(™) be an element of E such that ¢(® = 1 and () # 1. Then, E is the completion
of an algebraic closure of k((e — 1)) for the valuation defined by vg(z) = v,(2(?)) where
v, denotes the p-adic valuation of C, normalized by v,(p) = 1. The field E is equipped
with a continuous action of the Galois group Gx = Gal(K /K with respect to the topology
defined by the valuation vg. Put A+ = W(]E*) (the ring of Witt vectors with coefficients in
Et)and BY = A*[1/p] = {Shs oo P¥lzx] | 2x € ET} where [%] denotes the Teichmiiller
lift of x € E*. This ring Bt is equipped with a surjective homomorphism

0:B+ — Cp: Zpk[a:k] — Zpkx,(co).

If 5 = (p™) denotes an element of E+ such that p® = p, we can show that Ker (6) is the
principal ideal generated by w = [p] — p. The ring B;R’ x 1s defined to be the Ker (6)-adic
completion of B+
B;_R,K = liLnnZOIEJr/(Ker 0)").

This is a discrete valuation ring and ¢t = log([e]) which converges in BIR’ K 1s a gen-
erator of the maximal ideal. Put Bgr x = B;{K [1/t]. This ring Byr x becomes a
field and is equipped with an action of the Galois group Gk and a filtration defined by
FilinR) K= t"BcJ{K « (i € Z). Then, (Bgr, k)¢ is canonically isomorphic to K. Thus, for
a p-adic representation V of Gx, Dar,x (V) = (Bqr,x ®q, V)Ex is naturally a K -vector
space. We say that a p-adic representation V of Gk is a de Rham representation of G if
we have

dimg,V = dimg Dgr,x (V) (we always have dimg, V' > dimg Dyr, x (V))-

Furthermore, we say that a p-adic representation V' of G is a potentially de Rham repre-
sentation of G if there exists a finite field extension L/K in K such that V is a de Rham
representation of G . It is known that a potentially de Rham representation V of Gk is a
de Rham representation of Gk (see [5, 3.9]).

Define Bur,x to be the associated graded algebra to the filtration FilinR, k. The quo-
tient gr' Bur x = FilinK K/ FiliHBdR, x (i € Z) is a one-dimensional C,-vector space
spanned by the image of t*. Thus, we obtain the presentation

But,x = @ Cp(3)
i€z
where C, (i) = Cp, ® Z,(4) is the Tate twist. Then, (Byt,x)¢* is canonically isomorphic to
K. Thus, for a p-adic representation V of G, Dut,x (V) = (Burt,k ®qQ, V)@« isnaturally a
K -vector space. We say that a p-adic representation V of Gk is a Hodge-Tate representation
of Gk if we have

dimeV = dimKDHIK(V) (we always have dim@pV Z dimKDHT,K(V)).

Furthermore, we say that a p-adic representation V' of G is a potentially Hodge-Tate repre-
sentation of G if there exists a finite field extension L/K in K such that V is a Hodge-Tate
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representation of G, It is known that a potentially Hodge-Tate representation V' of Gk is
a Hodge-Tate representation of G (see [5, 3.9]). Since we have grByr, x ~ @;cz Cp(i),
if V' is a de Rham representation of G, there exists a Gx-equivariant isomorphism
Cp®q, V ~ @j:lm@pv Cp(n;) (n; € Z). Thus, it follows that a de Rham representation
V of Gk is a Hodge-Tate representation of G .

2.2. Hodge-Tate and de Rham representations in the imperfect residue field case

Let K be a complete discrete valuation field of characteristic 0 with residue field & of char-
acteristic p > 0 such that [k : kP] = p® < +o0o. Choose an algebraic closure K of K and
put Gk = Gal(K/K). As in the introduction, fix a lifting (b;)1<i<. of a p-basis of k in O
(the ring of integers of K) and for each m > 1, fix a p™ -th root b; /P of b; in K satisfying
By = b7 put

K®) — UmZOK(bi/pm, 1<i<e) and KP' = the p-adic completion of K®D,

These fields depend on the choice of a lifting of a p-basis of k in Ox. Since K®9 is a
Henselian discrete valuation field, we have an isomorphism Gy = Gal(KP[/KP) ~
Gron = Gal(K/K®)) (c Gg) where we choose an algebraic closure KPf of KPf contain-
ing K. With this isomorphism, we identify G gr with a subgroup of Gx. We have a bijective
map from the set of finite extensions of K (°") contained in K to the set of finite extensions of
KPf contained in KPf defined by L — LKP'. Furthermore, LKP" is the p-adic completion
of L. Hence, we have an isomorphism of rings

Ox/p" O ~ O/ P" Oir

where 0% and 07 denote the rings of integers of K and KPf. Thus, the p-adic completion
of K is isomorphic to the p-adic completion of KPf, which we will write C,p. Asin Subsection
2.1, construct the rings E+ and At = W (E*) from this C,,. Let kPf denote the perfect residue
field of K* and put Ok, = Ox N W(k™). Leta : Ok ®o,, AT — O/pOx be the

natural surjection and define A&ZFK) to be &?K) = lim,>0 (O @y, AT)/(Ker (a))™. Let

Ok : A?FK) ®z, Qp — C, be the natural extension of 6 : A*[1/p] — C,. Define Bd+R, K tobe

the Ker (6 )-adic completion of &?’K) ®z, Qp
Bl i = limnzo(Afy) ®2, Qp)/(Ker (0)").

This is a K-algebra equipped with an action of the Galois group Gg. Let b; denote
(bg")) € E* such that bgo) = b; and then the series which defines log([b;]/b;) converges
to an element ¢; in BIR’ x- Then, the ring B:{K . becomes a local ring with the maximal

ideal mgr = (t,t1,...,t.). Define a filtration on B;“R,K by ﬁl"B;rR’K = mig. Then, the
homomorphism
I B:{R’Kpf[[tl, sy te]] — B;rR’K

is an isomorphism of filtered algebras (see [3, Proposition 2.9]). From this isomorphism, it
follows easily that

i: BT

4R, Ko ti—0

+ .t + .
— Bir.x and p: Bir,x BdR,KPf :
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HODGE-TATE AND DE RHAM REPRESENTATIONS 345

are G gpe-equivariant homomorphisms and the composition

poi: B:IFR,KP‘” - B;rR,K - Bd+R,KPf

is an identity. Put B4r x = B(;FR k[1/t]. Then, K is canonically embedded in Bgr, x and
we have a canonical isomorphism (Bgg, k)¢5 = K. Thus, for a p-adic representation V of
Gk, Dar,x (V) = (Bar,x ®q, V)G is naturally a K-vector space. We say that a p-adic

representation V' of Gk is a de Rham representation of Gk if we have
dimg, V' = dimg Dgr,x (V) (we always have dimg, V' > dimg Dgr,x (V).

Furthermore, we say that a p-adic representation V of Gk is a potentially de Rham repre-
sentation of G if there exists a finite field extension L/K in K such that V is a de Rham
representation of Gr. We can show that a potentially de Rham representation V of G is a
de Rham representation of Gk in the same way as in the perfect residue field case.

Define a filtration on Byr i to be

o0
. . t te
Fil'Bap,xc = » ¢t "il"Bfy ; = B:{R’K[%, !

n=0

Fil'Byr x = t'Fil’ Bar x (i € Z).

Define Byr,x to be the associated graded algebra to this filtration. Since the quotient
gI‘iBHT)K = FﬂzBdR7K/Fﬂz+leR7K (Z (S Z) 1S giVCIl by gI‘iBHT)K = ti(cp[t?l, ey tf], we
obtain the presentation

1 h te

t t
Bur.x = Cplt,t~ ST ! ¢

]:BHT,KPf[?a"‘ *]~

From this presentation, it follows easily that
i: Byt et = Bur,xk  and  p: Bur,x — But gt ti/t — 0
are G gpr-equivariant homomorphisms and the composition
poi: Byr g — Bur,x — Byt xoer

is an identity. The field K is canonically embedded in Byt x and we have (Byr, k) =K.
Thus, for a p-adic representation V' of Gk, Dut,x (V) = (Bur,x ®q, V)@« is naturally a
K -vector space. We say that a p-adic representation V of Gk is a Hodge-Tate representation
of Gk if we have

dimeV = dimKDHTJ((V) (we always have dimeV Z dimKDHTyK(V)).

Furthermore, we say that a p-adic representation V' of G is a potentially Hodge-Tate repre-
sentation of G if there exists a finite field extension L/K in K such that V is a Hodge-Tate
representation of Gy. We can show that a potentially Hodge-Tate representation V' of G
is a Hodge-Tate representation of G in the same way as in the perfect residue field case.
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3. Preliminaries on p-adic differential modules

In this section, we shall review the theory of p-adic differential modules which plays an
important role in this article. First, let us fix the notations. Let K be a complete discrete
valuation field of characteristic 0 with residue field k& of characteristic p > 0 such that
[k : kP] = p° < oo and V be a p-adic representation of Gg. Define K®" and KPf

as in the introduction and in Subsection 2.2. Put K& = U,50K®)(¢ym) (resp.
K2 = Up>0KPH(¢m)) where (,m denotes a primitive p™-th root of unity in K (resp.

KPf) such that (Cpm+1)P = (pm. Let K Pl denote the p-adic completion of KPf. These fields
K®Y Kl and K2 depend on the choice of a lifting of a p-basis of k in €. Then, we have
the following inclusions
K®) ¢ KPf c KPI

Let H denote the kernel of the cyclotomic character x : G ger — Zj,. Then, the Galois group
H is isomorphic to the subgroup Gal(K /K. égf)) of Gi. DefineI'y = Gk /H. LetT'y denote
the subgroup Gal(K®" /K ®D) (~ G gor/H) of Tc. Let T (1 < i < e) be the subgroup of
'k such that actions of 8; € T'; (1 < i < e) satisfy 8;(pm) = (pm and ﬁi(b;/pm) = b;/pm
(:1#j) and define the homomorphism ¢;:I'; = 7Z, such that we have
ﬂi(by P m) = b, /P (f,ﬁ,fﬁ ). Then, the homomorphism ¢; defines an isomorphism I'; ~ Zy of

2

profinite groups. With this, we can see that there exist isomorphisms of profinite groups

FK ~ Fo X (@lefi) ~ FO X Z;?e.

3.1. Definitions of p-adic differential modules

We shall review the definitions of p-adic differential modules and have the following dia-
gram, for a p-adic representation V of G,

(3%
(BIR,K@’QPV)H - (G ®q, V)H
U U
D:ii_if(v) —  Dsen(V)
U U

D:—dif(v) —  Dgi(V).

3.1.1. The module Dgen(V). — In the article [10], Sen shows that, for a p-adic repre-
sentation V of G gpr, the KBf-vector space (C, ®g, V) has dimension d = dimg,V
and the union of the finite dimensional K2 -subspaces of (C, ®g, V) stable under I'
(=~ G gpr/H) is a KB -vector space of dimension d stable under T'g (called Dsen (V). We have
(o ® geor Dsen(V) = C, ®q, V and the natural map f(gg ® geot Dsen (V) — (Cp ®q, V)H is
an isomorphism. Furthermore, if v € Ty is close enough to 1, then the series of operators
on Dgen (V)

log(x() ~ loglx(7) &2

log(v) 1 (1—9)F
(7)) 2

converges to a KP -linear derivation v . Dgen (V) — Dgen (V) and does not depend on
the choice of .
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3.1.2. The module Dgi(V)). — In the article [2], Brinon generalizes Sen’s work above. For
a p-adic representation V' of Gk, he shows that the union of the finite dimensional K. égf)-
subspaces of (C, ®q, V) stable under I'g is a K8 vector space of dimension d stable
under I'ie (we call it Dg;(V)). We have C, ® K0 Dgi(V) = C, ®q, V and the natural
map Ko ® o0 Dgii(V) — (C, ®g, V)* is an isomorphism. As in the case of Dgen(V),
the Kégf)—vector space Dgi(V) is endowed with the action of the K " linear derivation
v = e _ip v € Ty is close enough to 1. In addition to this operator V(¥ if 3; € T;

) — log(x() )
is close enough to 1, then the series of operators on Dg,i(V')

log(8;) 1 (1- )"
Ci(ﬁi) B Ci(ﬂi) Z

k>1

converges to a K, C(Ef)-linear derivation V(® : Dg,i(V) — Dg;i(V) and does not depend on
the choice of ;.

3.1.3. The module D} (V). - In the article [I], Andreatta and Brinon generalize
Fontaine’s work [0]. For a p-adic representation V' of Gk, they show that the union of
Kc(,gf)[[t, t1,...,t.]]-submodules of finite type of (B iR.E ®Q, V)H stable under I' is a
free Kéopf)[[t, t1,...,te]]-module of rank d stable under T'x (we call it DY ;,(V)). We have
Bir ® @0 (1, t.]] D7 4is(V) = Big x ®q, V and the natural map

(Bir )" ® 0011,y Peaie(V) = (B i ®0, V)"

is an isomorphism. The Kégf)[[t,tl, ..., te]]-module DY ,..(V) is endowed with the ac-
tion of the K" linear derivations V(© = lozi(&))) if v € Ty is close enough to 1 and

v = 1°g((ﬂl)) (1 <i<e)if B; € T is close enough to 1.

3.1.4. The module D} (V). — For a p-adic representation V of Gk, define DL.(V)
to be @T(Kgg[[t t1y .- te]] ® o0 (41, t.]] D:d(lf( V)) where we put Dia(i?)(v) -
Df (V) /(tt1, ... te)" D (V). One can venfy that DJ(V) is the union of
KP[[t,t1, ..., t]]-submodules of finite type of (B iR & ®Q, V)H stable under T'g (=~ G gor/ H)
and is a free KB[[t,ty,...,t.]]-module of rank d stable under T'y. Furthermore, we
have Bjy « ® Kot (1101, ] D3 (V) = Bgp g ®q, V and the natural map (Bgy x)"
® gt (... Patie(V) = (Bir i ®q, V)" is an isomorphism. As in the case of D (V).
the K2f[[t, t1,...,t.]]-module D (V) is endowed with the action of the K2 -linear deriva-

0) _ _log(v) ;
tion V = oz (1) if v € T'g is close enough to 1.

REMARK 3.1. — 1. The preceding results in Subsection 3.1.1 are obtained when V is
a p-adic representation of Gy, = Gal(L/L) where L is a complete discrete valuation
field of characteristic 0 with perfect residue field of characteristic p > 0 and we choose
an algebraic closure L of L. However, in Subsection 3.1.1, for simplicity, we stated the
results in the case L = KPf,

2. Note that, though many people denote the p-adic differential module constructed by
Fontaine in [6] by DJ:(V), the module DZ(V') in Subsection 3.1.4 is a little different
from this module.
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3.2. Some properties of differential operators

We shall describe the action of derivations {V(¥}¢_j on Dy (V) and D} ;,(V). First, by
a standard argument, we can show that, if z € Dg,i (V') (resp. D:_dif(V)), we have

VO (z) = lim._, M and VO(z) = limg _, W

(o) = m ) =1 (2) = lms1 = 5
With this, we can easily describe the actions of K®"-linear derivations {v@}e ) on
K égf) [ty t1,. .. te]] = D:_ 4ir(Qp) where Q,, is equipped with the structure of p-adic repre-
sentations of G induced by the trivial action of G.

LEMMA 3.2. — The actions of KD linear derivations {V®ye_ on Kgo)f)[[t,tl, oy tel]
are given by V(©) = t% and V@) = tditi (1<i<e).

Proof. — Since {V(j)}jzo are K linear derivations and we can see that we have

V@ (ty) =0 # k)and VO (t) = 0 (i # 0), it suffices to show that we have V() (t) = ¢
and V¥ (t;) = t. These follow from

. ty—t . x(7)t —t
vO(t) = lim,_, at = lim,_, =t
() =lmoas oy =1 = M) =
; : Bi(t:) —ti _ . (ti + ci(Bi)t) — ¢
V@ (t;) = limg, _, = limg, _, =t O
( ) ﬂz 1 CZ(/BZ) B'L 1 cz(ﬂl)
We extend naturally actions of K8V -linear derivations {V®}¢_, on KE[[t,t1, ... t.]]
to KEO[[t, t1,...,t])][t™!] (C Bar.x) by putting VO (¢t~1) = —t=1 and VO (t~1) = 0

(1 < i < e). Now, we compute the bracket [, ] of derivations {V®}¢_, on Dg;(V) (resp.
D 4it(V))-

PROPOSITION 3.3. — On the p-adic differential module Dysi(V') (resp. DT :(V)), we
have [V© V] = V© (5 £ 0) and [V®, V] =0 (3,5 # 0).

Proof. — The second equality follows from the commutativity of 5; and 3; . For the first
equality, we have the relation v3; = ﬂf(w ~. Then, since we have
h+1

. a B al
llmhﬂom = alOg(a)a
we obtain
i . y—-1 . pi—1 ~ i1y 71
[V(O)7 v )](*) = limy_ Wllmﬁi—’lm(*) N llm/@i_thmw—’l x(v) — 1(*)

Biy—y—-Bi+1 9
(x(v) = Dei(6:)

= limgi_,llimy_,l (*) — limgi_,llimw_,l

(x(v) = Dei(B:)
By — By
(x(v) = Dei(B)

=V (x). O

= limg, _,1lim,_,;

(%)

= lil’nf@iﬂl

ci(Bi)
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PROPOSITION 3.4. — The action of the KD _linear derivation V@ (i #0) on Dgi(V) is
nilpotent.

Proof. — From the equality VO V®) —v®v(©) = v we get VO (V@) —(v®)ry©)
= (VD) and tr(r(V®)") = 0 forallr € N. Since the characteristic of K is 0, we obtain
tr((V®)") = 0 for all » € N. As is well known in linear algebra, this shows that the action
of the K®"-linear derivation V® (i # 0) on Dg,i(V) is nilpotent. O

NoTaTION . — For simplicity, put

t te
R=K®Dt, 71,...,?] or KOVt ty,... t]].

PROPOSITION 3.5. — Let M be a finitely generated free R[1/t]-module endowed with
K linear derivations {VOYe_ which satisfy the same properties in Lemma 3.2 and
Proposition 3.3. Assume that we can choose a basis {g;}9_, of M over R[1/t] such that
V©(g;) = 0. Then, the action of V) (i # 0) on this basis is given by V. (g;) = t S4_, crgn
where ¢y, is an element of R such that V(O)(ck) =0.

Proof. — Since {g;}9_, forms a basis of M over R[1/t], we can write, for i # 0,

d
(3.1) V@(g;)=> arge (ax € R[1/1)).

k=1
Then, the relation [V(®,V®] = V& (; # 0) of Proposition 3.3 says that we have

S VO (ar)gr = 3¢, argr. Note that we have V() (g;) = 0 by hypothesis. Hence, we
obtain the differential equation V(9 (a;) = aj. Define an element ¢, of R[1/t] to be a/t.
Then, we can see that ¢;, satisfies V(O)(ck) = ay/t — ax/t = 0 and that ¢ is contained in
R. Thus, the solution of the differential equation V(9 (az) = a, in R[1/t] has the following
form

(32) ar = ¢t
where ¢, is an element of R such that V() (¢;) = 0. Hence, from (3.1) and (3.2), we obtain,

fori # 0, V¥ (g;) =t S°¢_, cugr Where ¢y is an element of R such that V(O (¢;) = 0. O

COROLLARY 3.6. — With notations as in Proposition 3.5 above, we have the following

presentation
d

(VD)ks (v(e))ke (9;) = tht ke Z ChOk
k=1

where cy, is an element of R such that V(® (c;,) = 0.

4. Proof of the main theorem

In this section, we keep the notation and the assumption of Section 3.
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4.1. Main theorem for Hodge-Tate representations

ProrosiTiON 4.1 ([10, Section (2.3)]). — If V is a Hodge-Tate representation of G gor,
there exists a Tg-equivariant isomorphism of Kt -vector spaces

d:dimeV
Dsa(V)~ @ KE(n;) (n;€2).
j=1

REMARK 4.2. — In general, if L denotes a complete discrete valuation field of character-
istic 0 with perfect residue field of characteristic p > 0 and V is a Hodge-Tate representation
of G1, = Gal(L/L) where we choose an algebraic closure L of L, Sen shows that there exists
a G,/ H-equivariant isomorphism of Lo, (= Uy, >1 L({pm ) )-vector spaces ([10, Section (2.3)])

d=dimg, V
DSen(V) =~ @ LOO(”J) (’I’L]' € Z)
j=1

COROLLARY 4.3. — For a p-adic representation V of Gk, assume that V is a Hodge-Tate
representation of G . Then, there exists a V' ©)- equivariant isomorphism of K& vector
spaces

d=dimg, V
Dpi(V) =y €D K& (ny) (n; €2).
j=1

Here, ~g ) denotes a VO -equivariant isomorphism. Furthermore, the multiplicity of {n; };l:l
is the same as that of {n; }?-:1 in Proposition 4.1.

Proof. — From the presentation of Proposition 4.1, the action of the K®!-linear deriva-
tion V(©) on Dg., (V) is semi-simple and its eigenvalues are integers. Thus, the action of
the K& linear derivation V(© on the subspace Dyyi(V) of Dsen(V) is also semi-simple
and its eigenvalues are the same. Therefore, we obtain a V(?-equivariant isomorphism
Dg,i(V) ~go @?21 (ggf)(nj) (n; € Z). By tensoring Kgg@Kégf) over both sides, we
obtain KP! ® g o0 Dg:i(V) ~go @?21 KP(n;) (n; € Z). Furthermore, since we have
KM ® K@ Dg,i(V) < Dgen(V) by definition and both sides have the same dimension d
over K }f; we obtain KPf @ F D) Dg,i(V) = Dgen(V) and can see that the multiplicity of
{n;}?_, is the same as that ofoj[nj }4_, in Proposition 4.1. O

THEOREM 4.4. — Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : kP] = p® < +oo and V be a p-adic
representation of Gg. Let KP' be the field extension of K defined as before. Then, V is a
Hodge-Tate representation of G if and only if V' is a Hodge-Tate representation of G gpt.

Proof. — We shall prove the main theorem in two parts.
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(1) V:HTrep. of Gk = V: HT rep. of Gor. — Since V is a Hodge-Tate representation of
G, there exists a G g-equivariant isomorphism of Byt x-modules

(41) BHT,K ®@p V ~ (BHT’K)d:dimQPV.

Now, by tensoring Byt grr®Byy , (Which is induced by the G grr-equivariant surjection
p: Bur,x — Bur ket ¢ ti/t — 0) over (4.1), we obtain a G gpe-equivariant isomorphism of
By, ker-modules

Byr,gn ®g, V = (Bur ko)

This means that V' is a Hodge-Tate representation of G gor.

(2) V: HT rep. of Ggee = V: HT rep. of Ggk.— For simplicity, put

R = gf) ¢, %,,%] We shall construct the Kéopf) -linearly independent elements
iy of

R[1/t] ® gon Dpri(V) (C Bur,x ®q, V) such that V(i)(f;*)) = 0forall0 < ¢ < e
and1 <j<d.

(A) Construction of {f;*)}?zl € R[1/t] ® o0 Dpri(V). - From the presentation
of Corollary 4.3 above, if we twist by some powers of ¢, we obtain a basis { fj};-lzl of
R[1/t] ® o0 Dg,i(V) over R[1/t] such that V(O(f;) = 0foralll < j < d. Thus, by
applying Corollary 3.6 to the R[1/¢]-module R[1/t] ® K@D Dpg,i(V) generated by {f; };1:1,
we can deduce

d
4.2) (Ve ... (V(e))kf(fj) — otk Z cxfr
k=1
where ¢, is an element of R such that V(O)(ck) = 0. Furthermore, since the action of

K égf) -linear derivation V() (i # 0) on Dg,;(V) is nilpotent by Proposition 3.4, if we take
n € N large enough, we obtain

4.3) (VY (f;) =0 foralll <j<dand1<i<e.
Define an element f;*) of R[1/t] ® o (oh) Dg,i(V) by
t’fl .. .tlece

§7= 3 N e (VO (VO ()
0<kq,.... ke

Note that this series is a finite sum by (4.3) and thus f](*) actually defines an element of
R[1/t]® o0 Dpri(V). Then, it follows easily that we have V(i)(f;*)) =0foralll <i <eand
1 < j < d by using the Leibniz rule. Furthermore, by using (4.2) and the fact VO (f;) = 0,
we can deduce that we have V(©) (f;*)) =0foralll<j<d.

(B) f(*) 4 € R[1/t] ®,. «wn Dp(V) is linearly independent over KC(,ED. — By the presen-
i Ji=1 K& Y inaep p
tation of f;*), we have

P =tite (g e ) (Burk ®g, V).
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Since {f;}4_, forms a basis of R[1/{] ® K@D Dg;i(V') over R[1/¢], it is, in particular, linearly

independent over KD (C R[1/t]). Thus, {f; = f]( Nye_ _, (— denotes the reduction mod-

ulo (t1,...,t)) is linearly independent over K (0 and we can see that { f](*) }4_, is linearly
independent over Kégf) in R[1/t] ® KO0 Dgi(V).

(C) Conclusion. — Therefore, on the K-vector space generated by { f J 1> log(y) and
{log(B:)}¢_, act trivially (& V(O)(fj( )) = 0 and V(”(f]( )y = 0foralll < i < eand
1 < j < d). Thus, this means that I' i acts on this K -vector space via finite quotient and there
exists a finite field extension L/K in K D such that {f (*)}?21 forms a basis of Dy, (V)
over L. Since a potentially Hodge-Tate representation of G i is a Hodge-Tate representation
of G, this completes the proof. O

4.2. Main theorem for de Rham representations

LeEmMA 4.5. — For a p-adic representation V. of Gk, assume lhat V is a de Rham
d=dimg, V
representation of Gyt  Then, we can choose a basis {h;},;_ N DL(V)[1/t] over

KEI([t,t1, ..., te)][L/t] such that the action of To on {h; Y is lrlvial.

Proof. — Since V is a de Rham representation of G, there exists a basis {h; };’:1 of
Byr ket ®q, V over Byg gopr such that the action of G gor on {h; }?:1 is trivial. We can see that
these elements {h;}7_, are contained in D;(V')[1/¢] by definition. For each j, if we twist h;
by some power of ¢, we obtain an element g; of B;’R, e @0, V such that g; ¢ tB;R’ ot ®q, V.
Then, it follows that g; is contained in DG1 (V) and satisfies g; # 0 (— denotes the reduc-
tion modulo (¢,t1,...,t.)DE(V)). Since DF(V') is a free module of rank d over the local
ring KEf[[t,t1,. .., tc]] and {g;}9_, forms a basis of Dse, (V) over KEL, the lifting {g;}4_,
of {gj}d L in D(V) forms a basis of DL(V)) over KB[[t, 1,...,t.]]. Thus, it follows that
{h;}9_, forms a basis of D,(V)[1/t] over KB![[t,t1,. .., tc]][1/1]. O

With notations as above, note that, since we have the inclusion D, f(V) — D;rlf( )[1/t]
by definition, any element g of D (V) can be written as g = 7% (E]=1 ajrh;)tk
(ajr € KB [[t1,...,tc]]).

REMARK 4.6. — Keep the notation as in Lemma 4.5. Since we assume that V' is a de
Rham representation of G, by Corollary 4.3, there exists a basis {v;}9_; of Dg(V)
over K&®Y such that VO (v;) = njv;. Put M = Max(n;)%_,. Then, for an element
g € DY ,(V), there exists an element Y70 (S°9_; c;uh;)t* of (t,t1,. .., te) DS yi(V) such
that we can write

Z Zb]kh t* + Z chkh (bjk, ik € K2[[t1, ..., te]]).
k=m j=1 k=n j=1
Thus, ¢ = S p,, (39—, bjih;)t* defines an element of DY (V).
LEMMA 4.7. — With notations as above, for an element g’ = Eﬂim(zgzl bikhi)th of

DT (V). each (Z;'l=1 bjih;)t* is contained in D7 4, (V).
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Proof. — We shall prove this lemma by induction on the smallest degree of ¢’ with
respect to ¢. Since we have g’ — (Z?:l bimh;)t™ € DF (V) if (Z;’zl bjmh;)t™ is con-
tained in D" ;;;(V'), it suffices to show that (3°9_; bjn.h;)t™ is contained in D (V). Since

the KEf[[t1, . .., tc]]-linear derivation V(®) acts trivially on {h;}9_,, we have
M M d
I[I O =k)g) =TI m—=k)Q_ bjmhy)i™.
k=m+1 k=m+1 j=1

It follows that (Z?Zl bjmh;)t™ is contained in DY ,..(V) since the action of V(® on
D7 (V) is stable. Thus, this completes the proof. O

ProrosITION 4.8. — For a p-adic representation V of G, assume that V is a de Rham
representation of G gor. Then, there exists a NV O-equivariant isomorphism of
KD [[t,t1,. .., te]]-modules

d=dimg, V'
D 4i(V) =g @ K&t t1,...,t]l(ny) (n; € Z).
j=1

Proof. — Since V is also a Hodge-Tate representation of G gpr, by Corollary 4.3, there
exists a basis {v;}4_, of D (V)/(t,t1,. .., te) DS 4ie(V) =~ Dpi(V') over K9 such that it

gives a V(9 -equivariant isomorphism of K. ®_vector spaces
d
D gie(V)/(t 1, te) DI e (V) g0 @D KR (n)) s v+ 7.
j=1

Since D ;..(V) is a free module of rank d over the local ring KD [[t,t1,...,te]], any lifting
{9;}0_; of {v;}9_, in D} (V) forms a basis of D7 4;(V) over KS&O[t, t1, ... t]]. Let
{h;}4_, denote a basis of DJ(V)[1/t] over K¥[[t, t1,...,t]][1/t] such that V(@ (h;) = 0
obtained in Lemma 4.5. Then, we may assume that each g; is written as
gi = S0 (o brihy) tF (bgy € KB [[t1, . . . ,t.]]) where we take M € N as in Remark 4.6.
Now, define an element f; of D ;..(V)) (Lemma 4.7 above) by

d
fi =0 buyiho)t™.
=1

It is easy to see V(O (f;) = n; f;. Therefore, the rest is to show that {f;}¢_, forms a basis
of DF (V) over K®"[[t, 11, ... ,t.]]. To prove that {f; }4_, is a lifting of {v;}9_,, it suf-
fices to show g; — f; € (t,t1, ..., te) DL 4 (V). For each g;, put sy = (Y5 bruhy)t* € DT (V)
(Lemma 4.7 above). Since we have V(®(5;5) = k55 (— denotes the reduction
modulo (¢,¢1,...,t.)) and this means that 5 is an eigenvector of v© it follows that
the elements {v;, 5 # 0}k, are linearly independent over K. égf) in Dg,i(V'). Since we have
v; = Y nL, 5% by definition, it follows that we obtain 55 = 0 for k # n;. This means that
we have s € (t,t1,...,te)DF (V) (k # nj) and g; — f; € (t,t1,...,te) DT (V). Thus,
this completes the proof. O
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REMARK 4.9. — In general, it is evident from the proof that, if L denotes a complete dis-
crete valuation field of characteristic 0 with perfect residue field of characteristic p > 0 and
V is a de Rham representation of G, = Gal(L/L) where we choose an algebraic closure L
of L, we have a V(®)-equivariant isomorphism of L, [[t]]-modules

d=dimg, V
D3(V) ~go @ Lo[[tl)(nj) (n; € Z).
j=1

THEOREM 4.10. — Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : kP] = p® < +oo and V be a p-adic
representation of Gg. Let KP' be the field extension of K defined as before. Then, V is a de
Rham representation of Gk if and only if V' is a de Rham representation of G gor.

Proof. — We shall prove the main theorem in two parts.

(1) V:dRrep. of Gx = V: dR rep. of Ggee. — Since V is a de Rham representation of
G, there exists a G g-equivariant isomorphism of Byr, x-modules

4.4 Bar,x ®q, V =~ (Bar k)= V.
Now, by tensoring Bgg, get®Byg  (Which is induced by the G gpr-equivariant surjection
P : Bar,k — Bggr ket : t; — 0) over (4.4), we obtain a G ger-equivariant isomorphism of
Bgyr grr-modules

Bar kot ®g, V = (Bar o)
This means that V' is a de Rham representation of G .
(2) V. dRrep. of Gyt = V: dRrep. of G — For simplicity, put R = K&V [[t, ¢4, .. ., t]).
We shall construct the K éopf)-linearly independent elements { f;*)}j:flm@”v of
R[1/t] ®r D} 4+(V) (C Bgr,x ®g, V) such that V(i)(f;*)) = 0forall0 < i < eand
1<j<d

(A) Construction of { f;*)}?zl € R[1/t] ®gr DI (V). — From the presentation of
Proposition 4.8 above, if we twist by some powers of ¢, we obtain a basis { fj}?:l of
R[1/t)®g D (V) over R[1/t] such that V(®)(f;) = 0 forall 1 < j < d. Thus, by applying
Corollary 3.6 to the R[1/t]-module R[1/t] ® DI (V) generated by {f;}4_,, we can
deduce

d
4.5) (V(1))k1 .. (v(e))ke(fj) — kit tke Z i fe
k=1

where cj, is an element of R such that V(®(c;) = 0. Define an element f;*) of
R[1/t] ®g D} (V') by

% tkl e tlece .
f]( ) Z (_1)k1+ +kek llk TR (V(l))kl ...(V( ))ke(fj)_
0<k1,... ke L e’

Note that this series converges in R[1/t] ® g D ;.(V) for (t1,. . ., t.)-adic topology by (4.5)
and thus f;*) actually defines an element of R[1/t]®r D ;,(V). Then, it follows easily that

4¢ SERIE — TOME 43 — 2010 — N° 2



HODGE-TATE AND DE RHAM REPRESENTATIONS 355

we have V() (f;*)) =0foralll <i<eand1 < j < d by using the Leibniz rule. Further-

more, by using (4.5) and the fact V(9 (f;) = 0, we can deduce that we have V(*) (f;*)) =0
foralll <j<d.

(B) {f;*) 9_, € R[1/t|®rD (V) is linearly independent over K$&Y. _ By the presentation
of f;*), we have

f;*) =fi+tg; (95 € (t1,...,te)(Bar,x ®q, V)).
Since {f;}_, forms a basis of R[1/t] ® g D 4,«(V') over R[1/t], it is, in particular, linearly
independent over K&V (c R[1/4]). Thus, {f; = Tj(*) 4_, (— denotes the reduction modulo
(t1,...,te))is linearly independent over Kégf) and we can see that { f;*) ?21 is linearly inde-
pendent over K&V in R[1/t] ® g Dt 4 (V).

(C) Conclusion. — Therefore, on the K-vector space generated by { f;*)}?zl, log(~y) and

{log(B;)}¢_, act trivially (< V(O)(f;*)) = 0 and V(i)(f;*)) = 0foralll < i < eand
1 < j < d). Thus, this means that I'i acts on this K-vector space via finite quotient and there
exists a finite field extension L/ K in K& such that { f* }4_, forms a basis of Dy, (V) over
L. Since a potentially de Rham representation of Gk is a de Rham representation of G,
this completes the proof. O
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