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HODGE-TATE AND DE RHAM REPRESENTATIONS
IN THE IMPERFECT RESIDUE FIELD CASE

 K MORITA

A. – Let K be a p-adic local field with residue field k such that [k : kp] = pe < +∞ and
V be a p-adic representation of Gal(K/K). Then, by using the theory of p-adic differential modules,
we show that V is a Hodge-Tate (resp. de Rham) representation of Gal(K/K) if and only if V is a
Hodge-Tate (resp. de Rham) representation of Gal(Kpf/Kpf) where Kpf/K is a certain p-adic local
field with residue field the smallest perfect field kpf containing k.

R. – Soit K un corps local p-adique de corps résiduel k tel que [k : kp] = pe < +∞ et
soit V une représentation p-adique de Gal(K/K). Nous utilisons la théorie des modules différentiels
p-adiques pour montrer que V est une représentation de Hodge-Tate (resp. de Rham) de Gal(K/K) si
et seulement si V est une représentation de Hodge-Tate (resp. de Rham) de Gal(Kpf/Kpf) où Kpf/K

est un certain corps local p-adique de corps résiduel le plus petit corps parfait kpf contenant k.

1. Introduction

LetK be a complete discrete valuation field of characteristic 0 with residue field k of char-
acteristic p > 0 such that [k : kp] = pe < +∞. Choose an algebraic closure K of K and put
GK = Gal(K/K). By a p-adic representation of GK , we mean a finite dimensional vector
space V over Qp endowed with a continuous action of GK . In the case e = 0 (i.e. k is per-
fect), following Fontaine, we can classify p-adic representations of GK by using the p-adic
periods rings BHT, BdR, Bst and Bcris (Hodge-Tate, de Rham, semi-stable and crystalline
representations). In the general case (i.e. k is not necessarily perfect), Hyodo constructed the
imperfect residue field version of the ring BHT and Tsuzuki and several authors constructed
that of the ring BdR. By using these rings, we can define the imperfect residue field version
of Hodge-Tate and de Rham representations of GK in the evident way ([3], [7], [8], [9], [12]).

Now, we shall state the main result of this article. Let us fix some notations. Fix a lifting
(bi)1≤i≤e of a p-basis of k in OK (the ring of integers of K) and for each m ≥ 1, fix a pm -th
root b1/p

m

i of bi in K satisfying (b
1/pm+1
i )p = b

1/pm

i . Put K(pf) = ∪m≥1K(b
1/pm

i , 1 ≤ i ≤ e)
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342 K. MORITA

and Kpf = the p-adic completion of K(pf). These fields depend on the choice of a lifting
of a p-basis of k in OK . Since Kpf becomes a complete discrete valuation field with perfect
residue field, we can apply theories in the perfect residue field case to p-adic representations of
GKpf = Gal(Kpf/Kpf) where we choose an algebraic closureKpf ofKpf containingK. Note
that, if V is a p-adic representation of GK , it can be also regarded as a p-adic representation
of GKpf (see Section 2.2 for details). Our main result is the following.

T 1.1. – Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : kp] = pe < +∞ and V be a p-adic
representation of GK . Let Kpf be the field extension of K defined as above. Then, we have the
following equivalences

1. V is a Hodge-Tate representation of GK if and only if V is a Hodge-Tate representation
of GKpf ,

2. V is a de Rham representation of GK if and only if V is a de Rham representation of
GKpf .

In the case of Hodge-Tate representations, Tsuji [11] had proved a more refined theorem
based on this article. This paper is organized as follows. In Section 2, we shall review the
definitions and basic known facts on Hodge-Tate and de Rham representations, first in the
perfect residue field case and then in the imperfect residue field case. In Section 3, we shall
review the theory of p-adic differential modules which play a central role in this article. In
Section 4, by using the theory of p-adic differential modules, we shall prove the main theo-
rem, first for Hodge-Tate representations and then for de Rham representations.
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2. Preliminaries on Hodge-Tate and de Rham representations

2.1. Hodge-Tate and de Rham representations in the perfect residue field case

(See [4] and [5] for details.) LetK be a complete discrete valuation field of characteristic 0

with perfect residue field k of characteristic p > 0. Choose an algebraic closure K of K and
consider its p-adic completion Cp. Put

Ẽ = lim←−x 7→xpCp = {(x(0), x(1), . . . ) | (x(i+1))p = x(i), x(i) ∈ Cp}
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HODGE-TATE AND DE RHAM REPRESENTATIONS 343

and let Ẽ+ denote the set of x = (x(i)) ∈ Ẽ such that x(0) ∈ OCp
where OCp

denotes the
ring of integers of Cp. For two elements x = (x(i)) and y = (y(i)) of Ẽ, their sum and
product are defined by (x + y)(i) = limj→+∞(x(i+j) + y(i+j))p

j

and (xy)(i) = x(i)y(i).
These sum and product make Ẽ a perfect field of characteristic p > 0 (Ẽ+ is a subring of Ẽ).
Let ε = (ε(n)) be an element of Ẽ such that ε(0) = 1 and ε(1) 6= 1. Then, Ẽ is the completion
of an algebraic closure of k((ε − 1)) for the valuation defined by vE(x) = vp(x

(0)) where
vp denotes the p-adic valuation of Cp normalized by vp(p) = 1. The field Ẽ is equipped
with a continuous action of the Galois groupGK = Gal(K/K) with respect to the topology
defined by the valuation vE. Put Ã+ = W (Ẽ+) (the ring of Witt vectors with coefficients in
Ẽ+) and B̃+ = Ã+[1/p] = {

∑
k�−∞ pk[xk] | xk ∈ Ẽ+} where [∗] denotes the Teichmüller

lift of ∗ ∈ Ẽ+. This ring B̃+ is equipped with a surjective homomorphism

θ : B̃+ � Cp :
∑

pk[xk] 7→
∑

pkx
(0)
k .

If p̃ = (p(n)) denotes an element of Ẽ+ such that p(0) = p, we can show that Ker (θ) is the
principal ideal generated by ω = [p̃] − p. The ring B+

dR,K is defined to be the Ker (θ)-adic

completion of B̃+

B+
dR,K = lim←−n≥0B̃+/(Ker (θ)n).

This is a discrete valuation ring and t = log([ε]) which converges in B+
dR,K is a gen-

erator of the maximal ideal. Put BdR,K = B+
dR,K [1/t]. This ring BdR,K becomes a

field and is equipped with an action of the Galois group GK and a filtration defined by
FiliBdR,K = tiB+

dR,K (i ∈ Z). Then, (BdR,K)GK is canonically isomorphic to K. Thus, for
a p-adic representation V of GK , DdR,K(V ) = (BdR,K ⊗Qp

V )GK is naturally a K-vector
space. We say that a p-adic representation V of GK is a de Rham representation of GK if
we have

dimQp
V = dimKDdR,K(V ) (we always have dimQp

V ≥ dimKDdR,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially de Rham repre-
sentation of GK if there exists a finite field extension L/K in K such that V is a de Rham
representation of GL. It is known that a potentially de Rham representation V of GK is a
de Rham representation of GK (see [5, 3.9]).

Define BHT,K to be the associated graded algebra to the filtration FiliBdR,K . The quo-
tient griBHT,K = FiliBdR,K/Fili+1BdR,K (i ∈ Z) is a one-dimensional Cp-vector space
spanned by the image of ti. Thus, we obtain the presentation

BHT,K =
⊕
i∈Z

Cp(i)

where Cp(i) = Cp ⊗ Zp(i) is the Tate twist. Then, (BHT,K)GK is canonically isomorphic to
K. Thus, for a p-adic representation V ofGK ,DHT,K(V ) = (BHT,K⊗Qp

V )GK is naturally a
K-vector space. We say that a p-adic representation V ofGK is a Hodge-Tate representation
of GK if we have

dimQpV = dimKDHT,K(V ) (we always have dimQpV ≥ dimKDHT,K(V )).

Furthermore, we say that a p-adic representation V ofGK is a potentially Hodge-Tate repre-
sentation of GK if there exists a finite field extension L/K in K such that V is a Hodge-Tate
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344 K. MORITA

representation of GL. It is known that a potentially Hodge-Tate representation V of GK is
a Hodge-Tate representation of GK (see [5, 3.9]). Since we have grBdR,K '

⊕
i∈Z Cp(i),

if V is a de Rham representation of GK , there exists a GK-equivariant isomorphism

Cp ⊗Qp V '
⊕d=dimQpV

j=1 Cp(nj) (nj ∈ Z). Thus, it follows that a de Rham representation
V of GK is a Hodge-Tate representation of GK .

2.2. Hodge-Tate and de Rham representations in the imperfect residue field case

LetK be a complete discrete valuation field of characteristic 0 with residue field k of char-
acteristic p > 0 such that [k : kp] = pe < +∞. Choose an algebraic closure K of K and
put GK = Gal(K/K). As in the introduction, fix a lifting (bi)1≤i≤e of a p-basis of k in OK
(the ring of integers of K) and for each m ≥ 1, fix a pm -th root b1/p

m

i of bi in K satisfying

(b
1/pm+1

i )p = b
1/pm

i . Put

K(pf) = ∪m≥0K(b
1/pm

i , 1 ≤ i ≤ e) and Kpf = the p-adic completion of K(pf).

These fields depend on the choice of a lifting of a p-basis of k in OK . Since K(pf) is a
Henselian discrete valuation field, we have an isomorphism GKpf = Gal(Kpf/Kpf) '
GK(pf) = Gal(K/K(pf)) (⊂ GK) where we choose an algebraic closure Kpf of Kpf contain-
ingK. With this isomorphism, we identifyGKpf with a subgroup ofGK . We have a bijective
map from the set of finite extensions ofK(pf) contained inK to the set of finite extensions of
Kpf contained in Kpf defined by L → LKpf. Furthermore, LKpf is the p-adic completion
of L. Hence, we have an isomorphism of rings

OK/p
nOK ' O

Kpf/p
nO

Kpf

where OK and O
Kpf denote the rings of integers of K and Kpf. Thus, the p-adic completion

ofK is isomorphic to the p-adic completion ofKpf, which we will write Cp. As in Subsection
2.1, construct the rings Ẽ+ and Ã+ = W (Ẽ+) from this Cp. Let kpf denote the perfect residue
field of Kpf and put OK0 = OK ∩ W (kpf). Let α : OK ⊗OK0

Ã+ � OK/pOK be the

natural surjection and define Ã+
(K) to be Ã+

(K) = lim←−n≥0(OK ⊗OK0
Ã+)/(Ker (α))n. Let

θK : Ã+
(K) ⊗Zp

Qp � Cp be the natural extension of θ : Ã+[1/p] � Cp. Define B+
dR,K to be

the Ker (θK)-adic completion of Ã+
(K) ⊗Zp

Qp

B+
dR,K = lim←−n≥0(Ã+

(K) ⊗Zp
Qp)/(Ker (θK)n).

This is a K-algebra equipped with an action of the Galois group GK . Let b̃i denote
(b

(n)
i ) ∈ Ẽ+ such that b(0)i = bi and then the series which defines log([b̃i]/bi) converges

to an element ti in B+
dR,K . Then, the ring B+

dR,K becomes a local ring with the maximal

ideal mdR = (t, t1, . . . , te). Define a filtration on B+
dR,K by filiB+

dR,K = mi
dR. Then, the

homomorphism

f : B+
dR,Kpf [[t1, . . . , te]]→ B+

dR,K

is an isomorphism of filtered algebras (see [3, Proposition 2.9]). From this isomorphism, it
follows easily that

i : B+
dR,Kpf ↪→ B+

dR,K and p : B+
dR,K � B+

dR,Kpf : ti 7→ 0
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HODGE-TATE AND DE RHAM REPRESENTATIONS 345

are GKpf -equivariant homomorphisms and the composition

p ◦ i : B+
dR,Kpf ↪→ B+

dR,K � B+
dR,Kpf

is an identity. Put BdR,K = B+
dR,K [1/t]. Then, K is canonically embedded in BdR,K and

we have a canonical isomorphism (BdR,K)GK = K. Thus, for a p-adic representation V of
GK , DdR,K(V ) = (BdR,K ⊗Qp

V )GK is naturally a K-vector space. We say that a p-adic
representation V of GK is a de Rham representation of GK if we have

dimQpV = dimKDdR,K(V ) (we always have dimQpV ≥ dimKDdR,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially de Rham repre-
sentation of GK if there exists a finite field extension L/K in K such that V is a de Rham
representation of GL. We can show that a potentially de Rham representation V of GK is a
de Rham representation of GK in the same way as in the perfect residue field case.

Define a filtration on BdR,K to be

Fil0BdR,K =
∞∑
n=0

t−nfilnB+
dR,K = B+

dR,K [
t1
t
, . . . ,

te
t

],

FiliBdR,K = tiFil0BdR,K (i ∈ Z).

Define BHT,K to be the associated graded algebra to this filtration. Since the quotient
griBHT,K = FiliBdR,K/Fili+1BdR,K (i ∈ Z) is given by griBHT,K = tiCp[ t1t , . . . ,

te
t ], we

obtain the presentation

BHT,K = Cp[t, t−1,
t1
t
, . . . ,

te
t

] = BHT,Kpf [
t1
t
, . . . ,

te
t

].

From this presentation, it follows easily that

i : BHT,Kpf ↪→ BHT,K and p : BHT,K � BHT,Kpf : ti/t 7→ 0

are GKpf -equivariant homomorphisms and the composition

p ◦ i : BHT,Kpf ↪→ BHT,K � BHT,Kpf

is an identity. The field K is canonically embedded in BHT,K and we have (BHT,K)GK = K.
Thus, for a p-adic representation V of GK , DHT,K(V ) = (BHT,K ⊗Qp

V )GK is naturally a
K-vector space. We say that a p-adic representation V ofGK is a Hodge-Tate representation
of GK if we have

dimQp
V = dimKDHT,K(V ) (we always have dimQp

V ≥ dimKDHT,K(V )).

Furthermore, we say that a p-adic representation V ofGK is a potentially Hodge-Tate repre-
sentation of GK if there exists a finite field extension L/K in K such that V is a Hodge-Tate
representation of GL. We can show that a potentially Hodge-Tate representation V of GK
is a Hodge-Tate representation of GK in the same way as in the perfect residue field case.
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346 K. MORITA

3. Preliminaries on p-adic differential modules

In this section, we shall review the theory of p-adic differential modules which plays an
important role in this article. First, let us fix the notations. Let K be a complete discrete
valuation field of characteristic 0 with residue field k of characteristic p > 0 such that
[k : kp] = pe < ∞ and V be a p-adic representation of GK . Define K(pf) and Kpf

as in the introduction and in Subsection 2.2. Put K(pf)
∞ = ∪m≥0K

(pf)(ζpm) (resp.
Kpf
∞ = ∪m≥0K

pf(ζpm)) where ζpm denotes a primitive pm-th root of unity in K (resp.
Kpf) such that (ζpm+1)p = ζpm . Let K̂pf

∞ denote the p-adic completion of Kpf
∞. These fields

K
(pf)
∞ , Kpf

∞ and K̂pf
∞ depend on the choice of a lifting of a p-basis of k in OK . Then, we have

the following inclusions
K(pf)
∞ ⊂ Kpf

∞ ⊂ K̂pf
∞.

LetH denote the kernel of the cyclotomic character χ : GKpf → Z∗p. Then, the Galois group

H is isomorphic to the subgroup Gal(K/K(pf)
∞ ) ofGK . Define ΓK = GK/H. Let Γ0 denote

the subgroup Gal(K(pf)
∞ /K(pf)) (' GKpf/H) of ΓK . Let Γi (1 ≤ i ≤ e) be the subgroup of

ΓK such that actions of βi ∈ Γi (1 ≤ i ≤ e) satisfy βi(ζpm) = ζpm and βi(b
1/pm

j ) = b
1/pm

j

(i 6= j) and define the homomorphism ci : Γi → Zp such that we have
βi(b

1/pm

i ) = b
1/pm

i ζ
ci(βi)
pm . Then, the homomorphism ci defines an isomorphism Γi ' Zp of

profinite groups. With this, we can see that there exist isomorphisms of profinite groups

ΓK ' Γ0 n (⊕ei=1Γi) ' Γ0 n Z⊕ep .

3.1. Definitions of p-adic differential modules

We shall review the definitions of p-adic differential modules and have the following dia-
gram, for a p-adic representation V of GK ,

(B+
dR,K⊗Qp

V )H
θK

� (Cp ⊗Qp
V )H

∪ ∪

D+
dif(V ) � DSen(V )

∪ ∪

D+
e-dif(V ) � DBri(V ).

3.1.1. The module DSen(V ). – In the article [10], Sen shows that, for a p-adic repre-
sentation V of GKpf , the K̂pf

∞-vector space (Cp ⊗Qp V )H has dimension d = dimQpV

and the union of the finite dimensional Kpf
∞-subspaces of (Cp ⊗Qp V )H stable under Γ0

(' GKpf/H) is aKpf
∞-vector space of dimension d stable under Γ0 (calledDSen(V )). We have

Cp ⊗Kpf
∞
DSen(V ) = Cp ⊗Qp V and the natural map K̂pf

∞ ⊗Kpf
∞
DSen(V )→ (Cp ⊗Qp V )H is

an isomorphism. Furthermore, if γ ∈ Γ0 is close enough to 1, then the series of operators
on DSen(V )

log(γ)

log(χ(γ))
= − 1

log(χ(γ))

∑
k≥1

(1− γ)k

k

converges to a Kpf
∞-linear derivation ∇(0) : DSen(V ) → DSen(V ) and does not depend on

the choice of γ.
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3.1.2. The module DBri(V ). – In the article [2], Brinon generalizes Sen’s work above. For
a p-adic representation V of GK , he shows that the union of the finite dimensional K(pf)

∞ -
subspaces of (Cp ⊗Qp V )H stable under ΓK is a K(pf)

∞ -vector space of dimension d stable
under ΓK (we call it DBri(V )). We have Cp ⊗K(pf)

∞
DBri(V ) = Cp ⊗Qp V and the natural

map K̂pf
∞ ⊗K(pf)

∞
DBri(V ) → (Cp ⊗Qp

V )H is an isomorphism. As in the case of DSen(V ),

the K(pf)
∞ -vector space DBri(V ) is endowed with the action of the K(pf)

∞ -linear derivation
∇(0) = log(γ)

log(χ(γ)) if γ ∈ Γ0 is close enough to 1. In addition to this operator ∇(0), if βi ∈ Γi
is close enough to 1, then the series of operators on DBri(V )

log(βi)

ci(βi)
= − 1

ci(βi)

∑
k≥1

(1− βi)k

k

converges to a K(pf)
∞ -linear derivation ∇(i) : DBri(V ) → DBri(V ) and does not depend on

the choice of βi.

3.1.3. The module D+
e-dif(V ). – In the article [1], Andreatta and Brinon generalize

Fontaine’s work [6]. For a p-adic representation V of GK , they show that the union of
K

(pf)
∞ [[t, t1, . . . , te]]-submodules of finite type of (B+

dR,K ⊗Qp
V )H stable under ΓK is a

free K(pf)
∞ [[t, t1, . . . , te]]-module of rank d stable under ΓK (we call it D+

e-dif(V )). We have
B+

dR,K ⊗K(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V ) = B+

dR,K ⊗Qp
V and the natural map

(B+
dR,K)H ⊗

K
(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V )→ (B+

dR,K ⊗Qp V )H

is an isomorphism. The K(pf)
∞ [[t, t1, . . . , te]]-module D+

e-dif(V ) is endowed with the ac-

tion of the K(pf)
∞ -linear derivations ∇(0) = log(γ)

log(χ(γ)) if γ ∈ Γ0 is close enough to 1 and

∇(i) = log(βi)
ci(βi)

(1 ≤ i ≤ e) if βi ∈ Γi is close enough to 1.

3.1.4. The module D+
dif(V ). – For a p-adic representation V of GK , define D+

dif(V )

to be lim←−r(K
pf
∞[[t, t1, . . . , te]]⊗K(pf)

∞ [[t,t1,...,te]]
D

+,(r)
e-dif (V )) where we put D

+,(r)
e-dif (V ) =

D+
e-dif(V )/(t, t1, . . . , te)

rD+
e-dif(V ). One can verify that D+

dif(V ) is the union of
Kpf
∞[[t, t1, . . . , te]]-submodules of finite type of (B+

dR,K⊗QpV )H stable under Γ0 (' GKpf/H)
and is a free Kpf

∞[[t, t1, . . . , te]]-module of rank d stable under Γ0. Furthermore, we
have B+

dR,K ⊗Kpf
∞[[t,t1,...,te]]

D+
dif(V ) = B+

dR,K ⊗Qp
V and the natural map (B+

dR,K)H

⊗
Kpf
∞[[t,t1,...,te]]

D+
dif(V )→ (B+

dR,K ⊗Qp V )H is an isomorphism. As in the case of D+
e-dif(V ),

the Kpf
∞[[t, t1, . . . , te]]-module D+

dif(V ) is endowed with the action of the Kpf
∞-linear deriva-

tion ∇(0) = log(γ)
log(χ(γ)) if γ ∈ Γ0 is close enough to 1.

R 3.1. – 1. The preceding results in Subsection 3.1.1 are obtained when V is
a p-adic representation of GL = Gal(L/L) where L is a complete discrete valuation
field of characteristic 0 with perfect residue field of characteristic p > 0 and we choose
an algebraic closure L of L. However, in Subsection 3.1.1, for simplicity, we stated the
results in the case L = Kpf.

2. Note that, though many people denote the p-adic differential module constructed by
Fontaine in [6] by D+

dif(V ), the module D+
dif(V ) in Subsection 3.1.4 is a little different

from this module.
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3.2. Some properties of differential operators

We shall describe the action of derivations {∇(i)}ei=0 onDBri(V ) andD+
e-dif(V ). First, by

a standard argument, we can show that, if x ∈ DBri(V ) (resp. D+
e-dif(V )), we have

∇(0)(x) = limγ→1
γ(x)− x
χ(γ)− 1

and ∇(i)(x) = limβi→1
βi(x)− x
ci(βi)

.

With this, we can easily describe the actions of K(pf)
∞ -linear derivations {∇(i)}ei=0 on

K
(pf)
∞ [[t, t1, . . . , te]] = D+

e-dif(Qp) where Qp is equipped with the structure of p-adic repre-
sentations of GK induced by the trivial action of GK .

L 3.2. – The actions of K(pf)
∞ -linear derivations {∇(i)}ei=0 on K(pf)

∞ [[t, t1, . . . , te]]

are given by∇(0) = t ddt and∇(i) = t ddti (1 ≤ i ≤ e).

Proof. – Since {∇(j)}ej=0 are K
(pf)
∞ -linear derivations and we can see that we have

∇(j)(tk) = 0 (j 6= k) and ∇(i)(t) = 0 (i 6= 0), it suffices to show that we have ∇(0)(t) = t

and∇(i)(ti) = t. These follow from

∇(0)(t) = limγ→1
γ(t)− t
χ(γ)− 1

= limγ→1
χ(γ)t− t
χ(γ)− 1

= t

∇(i)(ti) = limβi→1
βi(ti)− ti
ci(βi)

= limβi→1
(ti + ci(βi)t)− ti

ci(βi)
= t.

We extend naturally actions of K(pf)
∞ -linear derivations {∇(i)}ei=0 on K(pf)

∞ [[t, t1, . . . , te]]

to K
(pf)
∞ [[t, t1, . . . , te]][t

−1] (⊂ BdR,K) by putting ∇(0)(t−1) = −t−1 and ∇(i)(t−1) = 0

(1 ≤ i ≤ e). Now, we compute the bracket [ , ] of derivations {∇(i)}ei=0 on DBri(V ) (resp.
D+
e-dif(V )).

P 3.3. – On the p-adic differential module DBri(V ) (resp. D+
e-dif(V )), we

have [∇(0),∇(i)] = ∇(i) (i 6= 0) and [∇(i),∇(j)] = 0 (i, j 6= 0).

Proof. – The second equality follows from the commutativity of βi and βj . For the first
equality, we have the relation γβi = β

χ(γ)
i γ. Then, since we have

limh→0
ah+1 − a

(h+ 1)− 1
= alog(a),

we obtain

[∇(0),∇(i)](∗) = limγ→1
γ − 1

χ(γ)− 1
limβi→1

βi − 1

ci(βi)
(∗)− limβi→1

βi − 1

ci(βi)
limγ→1

γ − 1

χ(γ)− 1
(∗)

= limβi→1limγ→1
γβi − γ − βi + 1

(χ(γ)− 1)ci(βi)
(∗)− limβi→1limγ→1

βiγ − γ − βi + 1

(χ(γ)− 1)ci(βi)
(∗)

= limβi→1limγ→1
β
χ(γ)
i γ − βiγ

(χ(γ)− 1)ci(βi)
(∗)

= limβi→1
βilog(βi)

ci(βi)
(∗)

= ∇(i)(∗).
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P 3.4. – The action of the K(pf)
∞ -linear derivation∇(i) (i 6= 0) on DBri(V ) is

nilpotent.

Proof. – From the equality∇(0)∇(i)−∇(i)∇(0) = ∇(i), we get∇(0)(∇(i))r−(∇(i))r∇(0)

= r(∇(i))r and tr(r(∇(i))r) = 0 for all r ∈ N. Since the characteristic ofK(pf)
∞ is 0, we obtain

tr((∇(i))r) = 0 for all r ∈ N. As is well known in linear algebra, this shows that the action
of the K(pf)

∞ -linear derivation∇(i) (i 6= 0) on DBri(V ) is nilpotent.

N . – For simplicity, put

R = K(pf)
∞ [t,

t1
t
, . . . ,

te
t

] or K(pf)
∞ [[t, t1, . . . , te]].

P 3.5. – Let M be a finitely generated free R[1/t]-module endowed with
K

(pf)
∞ -linear derivations {∇(i)}ei=0 which satisfy the same properties in Lemma 3.2 and

Proposition 3.3. Assume that we can choose a basis {gj}dj=1 of M over R[1/t] such that
∇(0)(gj) = 0. Then, the action of∇(i) (i 6= 0) on this basis is given by∇(i)(gj) = t

∑d
k=1 ckgk

where ck is an element of R such that∇(0)(ck) = 0.

Proof. – Since {gj}dj=1 forms a basis of M over R[1/t], we can write, for i 6= 0,

∇(i)(gj) =
d∑
k=1

akgk (ak ∈ R[1/t]).(3.1)

Then, the relation [∇(0),∇(i)] = ∇(i) (i 6= 0) of Proposition 3.3 says that we have∑d
k=1∇(0)(ak)gk =

∑d
k=1 akgk. Note that we have ∇(0)(gj) = 0 by hypothesis. Hence, we

obtain the differential equation ∇(0)(ak) = ak. Define an element ck of R[1/t] to be ak/t.
Then, we can see that ck satisfies ∇(0)(ck) = ak/t − ak/t = 0 and that ck is contained in
R. Thus, the solution of the differential equation ∇(0)(ak) = ak in R[1/t] has the following
form

ak = ckt(3.2)

where ck is an element of R such that∇(0)(ck) = 0. Hence, from (3.1) and (3.2), we obtain,
for i 6= 0, ∇(i)(gj) = t

∑d
k=1 ckgk where ck is an element of R such that ∇(0)(ck) = 0.

C 3.6. – With notations as in Proposition 3.5 above, we have the following
presentation

(∇(1))k1 · · · (∇(e))ke(gj) = tk1+···+ke

d∑
k=1

ckgk

where ck is an element of R such that∇(0)(ck) = 0.

4. Proof of the main theorem

In this section, we keep the notation and the assumption of Section 3.
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4.1. Main theorem for Hodge-Tate representations

P 4.1 ([10, Section (2.3)]). – If V is a Hodge-Tate representation of GKpf ,
there exists a Γ0-equivariant isomorphism of Kpf

∞-vector spaces

DSen(V ) '
d=dimQpV⊕

j=1

Kpf
∞(nj) (nj ∈ Z).

R 4.2. – In general, if L denotes a complete discrete valuation field of character-
istic 0 with perfect residue field of characteristic p > 0 and V is a Hodge-Tate representation
ofGL = Gal(L/L) where we choose an algebraic closure L of L, Sen shows that there exists
aGL/H-equivariant isomorphism ofL∞(= ∪m≥1L(ζpm))-vector spaces ([10, Section (2.3)])

DSen(V ) '
d=dimQpV⊕

j=1

L∞(nj) (nj ∈ Z).

C 4.3. – For a p-adic representation V of GK , assume that V is a Hodge-Tate
representation of GKpf . Then, there exists a ∇(0)- equivariant isomorphism of K(pf)

∞ -vector
spaces

DBri(V ) '∇(0)

d=dimQpV⊕
j=1

K(pf)
∞ (nj) (nj ∈ Z).

Here,'∇(0) denotes a∇(0)-equivariant isomorphism. Furthermore, the multiplicity of {nj}dj=1

is the same as that of {nj}dj=1 in Proposition 4.1.

Proof. – From the presentation of Proposition 4.1, the action of the Kpf
∞-linear deriva-

tion ∇(0) on DSen(V ) is semi-simple and its eigenvalues are integers. Thus, the action of
the K(pf)

∞ -linear derivation ∇(0) on the subspace DBri(V ) of DSen(V ) is also semi-simple
and its eigenvalues are the same. Therefore, we obtain a ∇(0)-equivariant isomorphism
DBri(V ) '∇(0)

⊕d
j=1K

(pf)
∞ (nj) (nj ∈ Z). By tensoring Kpf

∞⊗K(pf)
∞

over both sides, we

obtain Kpf
∞ ⊗K(pf)

∞
DBri(V ) '∇(0)

⊕d
j=1K

pf
∞(nj) (nj ∈ Z). Furthermore, since we have

Kpf
∞ ⊗K(pf)

∞
DBri(V ) ↪→ DSen(V ) by definition and both sides have the same dimension d

over Kpf
∞, we obtain Kpf

∞ ⊗K(pf)
∞

DBri(V ) = DSen(V ) and can see that the multiplicity of

{nj}dj=1 is the same as that of {nj}dj=1 in Proposition 4.1.

T 4.4. – Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : kp] = pe < +∞ and V be a p-adic
representation of GK . Let Kpf be the field extension of K defined as before. Then, V is a
Hodge-Tate representation of GK if and only if V is a Hodge-Tate representation of GKpf .

Proof. – We shall prove the main theorem in two parts.
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(1) V : HT rep. of GK ⇒ V : HT rep. of GKpf . – Since V is a Hodge-Tate representation of
GK , there exists a GK-equivariant isomorphism of BHT,K-modules

BHT,K ⊗Qp V ' (BHT,K)d=dimQpV .(4.1)

Now, by tensoring BHT,Kpf⊗BHT,K
(which is induced by the GKpf -equivariant surjection

p : BHT,K � BHT,Kpf : ti/t 7→ 0) over (4.1), we obtain a GKpf -equivariant isomorphism of
BHT,Kpf -modules

BHT,Kpf ⊗Qp
V ' (BHT,Kpf)d.

This means that V is a Hodge-Tate representation of GKpf .

(2) V : HT rep. of GKpf ⇒ V : HT rep. of GK . – For simplicity, put
R = K

(pf)
∞ [t, t1t , . . . ,

te
t ]. We shall construct the K

(pf)
∞ -linearly independent elements

{f (∗)
j }

d=dimQpV

j=1 of

R[1/t] ⊗
K

(pf)
∞

DBri(V ) (⊂ BHT,K ⊗Qp V ) such that ∇(i)(f
(∗)
j ) = 0 for all 0 ≤ i ≤ e

and 1 ≤ j ≤ d.

(A) Construction of {f (∗)
j }dj=1 ∈ R[1/t] ⊗

K
(pf)
∞

DBri(V ). – From the presentation

of Corollary 4.3 above, if we twist by some powers of t, we obtain a basis {fj}dj=1 of
R[1/t] ⊗

K
(pf)
∞

DBri(V ) over R[1/t] such that ∇(0)(fj) = 0 for all 1 ≤ j ≤ d. Thus, by

applying Corollary 3.6 to the R[1/t]-module R[1/t] ⊗
K

(pf)
∞

DBri(V ) generated by {fj}dj=1,
we can deduce

(∇(1))k1 · · · (∇(e))ke(fj) = tk1+···+ke

d∑
k=1

ckfk(4.2)

where ck is an element of R such that ∇(0)(ck) = 0. Furthermore, since the action of
K

(pf)
∞ -linear derivation ∇(i) (i 6= 0) on DBri(V ) is nilpotent by Proposition 3.4, if we take

n ∈ N large enough, we obtain

(∇(i))n(fj) = 0 for all 1 ≤ j ≤ d and 1 ≤ i ≤ e.(4.3)

Define an element f (∗)
j of R[1/t]⊗

K
(pf)
∞

DBri(V ) by

f
(∗)
j =

∑
0≤k1,...,ke

(−1)k1+···+ke
tk11 · · · tke

e

k1! · · · ke!tk1+···+ke
(∇(1))k1 · · · (∇(e))ke(fj).

Note that this series is a finite sum by (4.3) and thus f (∗)
j actually defines an element of

R[1/t]⊗
K

(pf)
∞
DBri(V ). Then, it follows easily that we have∇(i)(f

(∗)
j ) = 0 for all 1 ≤ i ≤ e and

1 ≤ j ≤ d by using the Leibniz rule. Furthermore, by using (4.2) and the fact∇(0)(fj) = 0,
we can deduce that we have∇(0)(f

(∗)
j ) = 0 for all 1 ≤ j ≤ d.

(B) {f (∗)
j }dj=1 ∈ R[1/t]⊗

K
(pf)
∞

DBri(V ) is linearly independent over K(pf)
∞ . – By the presen-

tation of f (∗)
j , we have

f
(∗)
j = fj + gj (gj ∈ (

t1
t
, . . . ,

te
t

)(BHT,K ⊗Qp
V )).
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Since {fj}dj=1 forms a basis of R[1/t]⊗
K

(pf)
∞

DBri(V ) over R[1/t], it is, in particular, linearly

independent over K(pf)
∞ (⊂ R[1/t]). Thus, {fj = fj

(∗)}dj=1 (− denotes the reduction mod-

ulo (t1, . . . , te)) is linearly independent over K(pf)
∞ and we can see that {f (∗)

j }dj=1 is linearly

independent over K(pf)
∞ in R[1/t]⊗

K
(pf)
∞

DBri(V ).

(C) Conclusion. – Therefore, on the K-vector space generated by {f (∗)
j }dj=1, log(γ) and

{log(βi)}ei=1 act trivially (⇔ ∇(0)(f
(∗)
j ) = 0 and ∇(i)(f

(∗)
j ) = 0 for all 1 ≤ i ≤ e and

1 ≤ j ≤ d). Thus, this means that ΓK acts on thisK-vector space via finite quotient and there
exists a finite field extension L/K in K(pf)

∞ such that {f (∗)}dj=1 forms a basis of DHT,L(V )

overL. Since a potentially Hodge-Tate representation ofGK is a Hodge-Tate representation
of GK , this completes the proof.

4.2. Main theorem for de Rham representations

L 4.5. – For a p-adic representation V of GK , assume that V is a de Rham
representation of GKpf . Then, we can choose a basis {hj}

d=dimQpV

j=1 of D+
dif(V )[1/t] over

Kpf
∞[[t, t1, . . . , te]][1/t] such that the action of Γ0 on {hj}dj=1 is trivial.

Proof. – Since V is a de Rham representation of GKpf , there exists a basis {hj}dj=1 of
BdR,Kpf⊗Qp

V overBdR,Kpf such that the action ofGKpf on {hj}dj=1 is trivial. We can see that
these elements {hj}dj=1 are contained inD+

dif(V )[1/t] by definition. For each j, if we twist hj
by some power of t, we obtain an element gj ofB+

dR,Kpf⊗Qp
V such that gj 6∈ tB+

dR,Kpf⊗Qp
V .

Then, it follows that gj is contained in D+
dif(V ) and satisfies gj 6= 0 (− denotes the reduc-

tion modulo (t, t1, . . . , te)D
+
dif(V )). Since D+

dif(V ) is a free module of rank d over the local
ring Kpf

∞[[t, t1, . . . , te]] and {gj}dj=1 forms a basis of DSen(V ) over Kpf
∞, the lifting {gj}dj=1

of {gj}dj=1 in D+
dif(V ) forms a basis of D+

dif(V ) over Kpf
∞[[t, t1, . . . , te]]. Thus, it follows that

{hj}dj=1 forms a basis of D+
dif(V )[1/t] over Kpf

∞[[t, t1, . . . , te]][1/t].

With notations as above, note that, since we have the inclusionD+
e-dif(V ) ↪→ D+

dif(V )[1/t]

by definition, any element g of D+
e-dif(V ) can be written as g =

∑+∞
k=l (

∑d
j=1 ajkhj)t

k

(ajk ∈ Kpf
∞[[t1, . . . , te]]).

R 4.6. – Keep the notation as in Lemma 4.5. Since we assume that V is a de
Rham representation of GKpf , by Corollary 4.3, there exists a basis {vj}dj=1 of DBri(V )

over K(pf)
∞ such that ∇(0)(vj) = njvj . Put M = Max(nj)

d
j=1. Then, for an element

g ∈ D+
e-dif(V ), there exists an element

∑+∞
k=n(

∑d
j=1 cjkhj)t

k of (t, t1, . . . , te)D
+
e-dif(V ) such

that we can write

g =
M∑
k=m

(
d∑
j=1

bjkhj)t
k +

+∞∑
k=n

(
d∑
j=1

cjkhj)t
k (bjk, cjk ∈ Kpf

∞[[t1, . . . , te]]).

Thus, g′ =
∑M
k=m(

∑d
j=1 bjkhj)t

k defines an element of D+
e-dif(V ).

L 4.7. – With notations as above, for an element g′ =
∑M
k=m(

∑d
j=1 bjkhj)t

k of
D+
e-dif(V ), each (

∑d
j=1 bjkhj)t

k is contained in D+
e-dif(V ).
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Proof. – We shall prove this lemma by induction on the smallest degree of g′ with
respect to t. Since we have g′ − (

∑d
j=1 bjmhj)t

m ∈ D+
e-dif(V ) if (

∑d
j=1 bjmhj)t

m is con-
tained inD+

e-dif(V ), it suffices to show that (
∑d
j=1 bjmhj)t

m is contained inD+
e-dif(V ). Since

the Kpf
∞[[t1, . . . , te]]-linear derivation∇(0) acts trivially on {hj}dj=1, we have

M∏
k=m+1

(∇(0) − k)(g′) = (
M∏

k=m+1

(m− k))(
d∑
j=1

bjmhj)t
m.

It follows that (
∑d
j=1 bjmhj)t

m is contained in D+
e-dif(V ) since the action of ∇(0) on

D+
e-dif(V ) is stable. Thus, this completes the proof.

P 4.8. – For a p-adic representation V of GK , assume that V is a de Rham
representation of GKpf . Then, there exists a ∇(0)-equivariant isomorphism of
K

(pf)
∞ [[t, t1, . . . , te]]-modules

D+
e-dif(V ) '∇(0)

d=dimQpV⊕
j=1

K(pf)
∞ [[t, t1, . . . , te]](nj) (nj ∈ Z).

Proof. – Since V is also a Hodge-Tate representation of GKpf , by Corollary 4.3, there
exists a basis {vj}dj=1 of D+

e-dif(V )/(t, t1, . . . , te)D
+
e-dif(V ) ' DBri(V ) over K(pf)

∞ such that it

gives a∇(0)-equivariant isomorphism of K(pf)
∞ -vector spaces

D+
e-dif(V )/(t, t1, . . . , te)D

+
e-dif(V ) '∇(0)

d⊕
j=1

K(pf)
∞ (nj) : vj 7→ tnj .

Since D+
e-dif(V ) is a free module of rank d over the local ring K(pf)

∞ [[t, t1, . . . , te]], any lifting

{gj}dj=1 of {vj}dj=1 in D+
e-dif(V ) forms a basis of D+

e-dif(V ) over K(pf)
∞ [[t, t1, . . . , te]]. Let

{hj}dj=1 denote a basis of D+
dif(V )[1/t] over Kpf

∞[[t, t1, . . . , te]][1/t] such that ∇(0)(hj) = 0

obtained in Lemma 4.5. Then, we may assume that each gj is written as
gj =

∑M
k=m(

∑d
l=1 bklhl) t

k (bkl ∈ Kpf
∞[[t1, . . . , te]]) where we take M ∈ N as in Remark 4.6.

Now, define an element fj of D+
e-dif(V ) (Lemma 4.7 above) by

fj = (
d∑
l=1

bnj lhl)t
nj .

It is easy to see ∇(0)(fj) = njfj . Therefore, the rest is to show that {fj}dj=1 forms a basis

of D+
e-dif(V ) over K(pf)

∞ [[t, t1, . . . , te]]. To prove that {fj}dj=1 is a lifting of {vj}dj=1, it suf-
fices to show gj − fj ∈ (t, t1, . . . , te)D

+
e-dif(V ). For each gj , put sk = (

∑d
l=1 bklhl)t

k ∈ D+
e-dif(V )

(Lemma 4.7 above). Since we have ∇(0)(sk) = ksk (− denotes the reduction
modulo (t, t1, . . . , te)) and this means that sk is an eigenvector of ∇(0), it follows that
the elements {vj , sk 6= 0}k 6=nj are linearly independent overK(pf)

∞ inDBri(V ). Since we have
vj =

∑M
k=m sk by definition, it follows that we obtain sk = 0 for k 6= nj . This means that

we have sk ∈ (t, t1, . . . , te)D
+
e-dif(V ) (k 6= nj) and gj − fj ∈ (t, t1, . . . , te)D

+
e-dif(V ). Thus,

this completes the proof.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



354 K. MORITA

R 4.9. – In general, it is evident from the proof that, if L denotes a complete dis-
crete valuation field of characteristic 0 with perfect residue field of characteristic p > 0 and
V is a de Rham representation of GL = Gal(L/L) where we choose an algebraic closure L
of L, we have a ∇(0)-equivariant isomorphism of L∞[[t]]-modules

D+
dif(V ) '∇(0)

d=dimQpV⊕
j=1

L∞[[t]](nj) (nj ∈ Z).

T 4.10. – Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : kp] = pe < +∞ and V be a p-adic
representation of GK . Let Kpf be the field extension of K defined as before. Then, V is a de
Rham representation of GK if and only if V is a de Rham representation of GKpf .

Proof. – We shall prove the main theorem in two parts.

(1) V : dR rep. of GK ⇒ V : dR rep. of GKpf . – Since V is a de Rham representation of
GK , there exists a GK-equivariant isomorphism of BdR,K-modules

BdR,K ⊗Qp
V ' (BdR,K)d=dimQpV .(4.4)

Now, by tensoring BdR,Kpf⊗BdR,K
(which is induced by the GKpf -equivariant surjection

p : BdR,K � BdR,Kpf : ti 7→ 0) over (4.4), we obtain a GKpf -equivariant isomorphism of
BdR,Kpf -modules

BdR,Kpf ⊗Qp
V ' (BdR,Kpf)d.

This means that V is a de Rham representation of GKpf .

(2) V : dR rep. ofGKpf ⇒ V : dR rep. ofGK . – For simplicity, putR = K
(pf)
∞ [[t, t1, . . . , te]].

We shall construct the K
(pf)
∞ -linearly independent elements {f (∗)

j }
d=dimQpV

j=1 of

R[1/t] ⊗R D+
e-dif(V ) (⊂ BdR,K ⊗Qp

V ) such that ∇(i)(f
(∗)
j ) = 0 for all 0 ≤ i ≤ e and

1 ≤ j ≤ d.

(A) Construction of {f (∗)
j }dj=1 ∈ R[1/t] ⊗R D+

e-dif(V ). – From the presentation of
Proposition 4.8 above, if we twist by some powers of t, we obtain a basis {fj}dj=1 of
R[1/t]⊗RD+

e-dif(V ) over R[1/t] such that∇(0)(fj) = 0 for all 1 ≤ j ≤ d. Thus, by applying
Corollary 3.6 to the R[1/t]-module R[1/t] ⊗R D+

e-dif(V ) generated by {fj}dj=1, we can
deduce

(∇(1))k1 · · · (∇(e))ke(fj) = tk1+···+ke

d∑
k=1

ckfk(4.5)

where ck is an element of R such that ∇(0)(ck) = 0. Define an element f (∗)
j of

R[1/t]⊗R D+
e-dif(V ) by

f
(∗)
j =

∑
0≤k1,...,ke

(−1)k1+···+ke
tk11 · · · tke

e

k1! · · · ke!tk1+···+ke
(∇(1))k1 · · · (∇(e))ke(fj).

Note that this series converges in R[1/t]⊗RD+
e-dif(V ) for (t1, . . . , te)-adic topology by (4.5)

and thus f (∗)
j actually defines an element ofR[1/t]⊗RD+

e-dif(V ). Then, it follows easily that
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we have ∇(i)(f
(∗)
j ) = 0 for all 1 ≤ i ≤ e and 1 ≤ j ≤ d by using the Leibniz rule. Further-

more, by using (4.5) and the fact ∇(0)(fj) = 0, we can deduce that we have ∇(0)(f
(∗)
j ) = 0

for all 1 ≤ j ≤ d.

(B) {f (∗)
j }dj=1 ∈ R[1/t]⊗RD+

e-dif(V ) is linearly independent overK(pf)
∞ . – By the presentation

of f (∗)
j , we have

f
(∗)
j = fj + gj (gj ∈ (t1, . . . , te)(BdR,K ⊗Qp

V )).

Since {fj}dj=1 forms a basis of R[1/t] ⊗R D+
e-dif(V ) over R[1/t], it is, in particular, linearly

independent overK(pf)
∞ (⊂ R[1/t]). Thus, {fj = fj

(∗)}dj=1 (− denotes the reduction modulo

(t1, . . . , te)) is linearly independent overK(pf)
∞ and we can see that {f (∗)

j }dj=1 is linearly inde-

pendent over K(pf)
∞ in R[1/t]⊗R D+

e-dif(V ).

(C) Conclusion. – Therefore, on the K-vector space generated by {f (∗)
j }dj=1, log(γ) and

{log(βi)}ei=1 act trivially (⇔ ∇(0)(f
(∗)
j ) = 0 and ∇(i)(f

(∗)
j ) = 0 for all 1 ≤ i ≤ e and

1 ≤ j ≤ d). Thus, this means that ΓK acts on thisK-vector space via finite quotient and there
exists a finite field extensionL/K inK(pf)

∞ such that {f (∗)}dj=1 forms a basis ofDdR,L(V ) over
L. Since a potentially de Rham representation of GK is a de Rham representation of GK ,
this completes the proof.
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