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Abstract. — We prove that the set of truncations of generalized power series solutions
of an ordinary differential equations is contained in a semi-algebraic set of dimension
bounded by twice the order of the differential equation.

Résumé (L’espace des séries formelles généralisées qui sont solution d’une équation différentielle
ordinaire)

Nous montrons que l’ensemble des troncations de séries généralisées qui sont so-
lutions d’une équation différentielle ordinaire est contenu dans un ensemble semi-
algébrique dont la dimension est bornée par le double de l’ordre de l’équation diffé-
rentielle.

1. Introduction

Consider a polynomial differential equation F (∂0(y), . . . , ∂n(y)) = 0, where
F (y0, . . . , yn) is a polynomial in the variables y0, . . . , yn with coefficients in C[xR]

(polynomials with real exponents). We are interested in series solutions of (F = 0)

of the form
∑∞
i=1 ci x

µi , where ci ∈ C and µi ∈ R with µ1 < µ2 · · · (so called
generalized power series). D.Y. Grigor’ev and M. Singer describe in [5] a parametric
version of the Newton polygon process applied to F , which for each integer k, gives
rise to a semi-algebraic subset NIC?k(F ) ⊆ R3k so that the space of truncations of
length k of generalized power series solution of (F = 0) is included in NIC?k(F ). The
main contribution of this paper is to prove that the dimension of this semi-algebraic
set is bounded by 2n. More precisely, its adapted dimension (see subsection 3.2) is
bounded by n. The adapted dimension is a proper measure of the number of free
parameters (real or complex, coefficient or exponent) which have been introduced
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62 J. CANO & P. FORTUNY AYUSO

along the Newton polygon process in a parametric family of power series solution of
a differential equation.

Briot and Bouquet [1] in 1856 use the Newton polygon for studying first order and
first degree ordinary differential equations and Fine [4] in 1889 gives a description of
the method for ordinary differential equation of arbitrary order. In section 2 we present
a brief introduction to its classical version. In section 4 we introduce the notion of
parametric Newton polygon: specifically, we define it and give some technical results
about parametric polynomials which will be used in the proof of the main theorem.

In section 3 we state the main theorem and give a straightforward proof for the
case k = 1. The general case is dealt with in section 5.

2. Newton polygon of an ODE

A well-ordered series with complex coefficients and real exponents is a series φ(x) =∑
α∈S cα x

α, where cα ∈ C, and S is a well ordered subset of R. If there exist a finitely
generated semi-group Γ of R≥0 and γ ∈ R, such that, S ⊆ γ+Γ, then we say that φ(x)

is a grid-based series (this terminology comes from [6].) Let C((x))w and C((x))g be
the sets of well-ordered series and of grid-based series, respectively. We denote C[xR]

the subring of series in C((x))g with finite support (polynomials, so to speak). It is
well-know (see [7], for example), that both C((x))w and C((x))g are actually fields.
Both are differential rings with the usual inner operations and the differential operator
∂ = x d

d x :

∂
Ä∑

cα x
α
ä

=
∑

α cα x
α.

Denote by ∂0 the identity operator and for positive integer i, ∂i = ∂ ◦ ∂i−1.
Let F (y0, . . . , yn) be a polynomial in the variables y0, . . . , yn with coefficients in

C[xR]. The differential equation

F
(
∂0(y), ∂1(y), . . . , ∂n(y)) = 0

will be denoted by F (y) = 0. Notice that any polynomial ordinary differential equation
can be rewritten in this form.

We are interested in solutions of F (y) = 0 in the field C((x))w. By virtue of [2, 5, 6],
all of them are actually in C((x))g.

Write F in a uniquely, using the standard multiindex notation yρ = yρ00 · · · yρnn (
where ρ = (ρ0, . . . , ρn)) as

F =
∑
α,ρ

Aα,ρ x
α yρ, with Aα,ρ ∈ C,

where α and ρ run over finite subsets of R and Nn+1 respectively. The cloud of points
of F is the set

P(F ) = {(α, |ρ|) : Aα,ρ 6= 0},
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POWER SERIES SOLUTIONS OF DIFFERENTIAL EQUATIONS 63

where |ρ| = ρ0 + · · ·+ ρn. The Newton polygon N (F ) of F is the convex hull of⋃
P∈ P(F )

(P + {(a, 0) | a ≥ 0}) .

Notice that N (F ) has a finite number of vertices, all of whose ordinates are non-
negative integers.

Given a line L ⊆ R2 with slope −1/µ, we say that µ is the inclination of L. Let
µ ∈ R, we denote L(F ;µ) the supporting line of N (F ) with inclination µ (i.e. the only
line L with inclination µ such that N (F ) is contained in the right closed half-plane
defined by L and L ∩ N (F ) 6= ∅). More precisely, L(F ;µ) is the set of points (a, b)

in R2 such that a+ µb = ν(F ;µ), where ν(F ;µ) = min{α+ µ |ρ| ;Aα,ρ 6= 0}.
For any µ ∈ R, define the polynomial

(1) Φ(F ;µ)(c) =
∑

(α,|ρ|)∈L(F ;µ)

Aα,ρ µ
w(ρ) c|ρ| ∈ C[c],

where w(ρ) = ρ1 + 2ρ2 + · · ·+ nρn. The Newton polygon data of F will be the set of
vertices v0, . . . , vt (ordered with decreasing ordinate), the sides [vi, vi+1], 0 ≤ i < t,
the indicial polynomials associated to each vertex v:

(2) Ψ(F ;v)(m) =
∑

(α,|ρ|)=v

Aα,ρm
w(ρ) ∈ C[m].

and the characteristic polynomials associated to each side [vi, vi+1]:

Φ(F ;[vi,vi+1])(c) = Φ(F ;µ[vi,vi+1])(c),

where µ[vi,vi+1] is the inclination of side [vi, vi+1].

2.1. Necessary Initial Conditions. — Given a well-ordered formal power series
y(x) =

∑
α∈S cα x

α, its order, ord(y(x)), is infinity if y(x) = 0 and min{α ∈ S | cα 6=
0} otherwise.

Lemma 1. — Let y(x) = c xµ+
∑
α>µ cα x

α ∈ C((x))w be a solution of the differential
equation F (y) = 0. Then

Φ(F ;µ)(c) = 0.

where c may be zero. In particular, if y(x) = 0 is a solution of F (y) = 0 then
Φ(F ;µ)(0) = 0 for all µ.
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Proof. — Developing F

F (c xµ + · · · ) =∑
α,ρ

Aα,ρ x
α (c xµ + · · · )ρ0(µc xµ + · · · )ρ1 · · · (µnc xµ + · · · )ρn =

∑
α,ρ

¶
Aα,ρ c

|ρ| µw(ρ)xα+µ|ρ| + · · ·
©

= ∑
α+µ |ρ|=ν(F ;µ)

Aα,ρ c
|ρ| µw(ρ)

xν(F ;µ) + · · · ,

where dots · · · stand for monomials of order greater than the exponent of x in the
preceding term. The lemma follows from the fact that α+ µ |ρ| = ν(F ;µ) if and only
if (α, |ρ|) ∈ L(F ;µ).

Notation 1. — Let ϕ ∈ C((x))g and F (y0, . . . , yn) ∈ C((x))g[y0, . . . , yn], denote

F (ϕ+ y) = F (ϕ+ y0, ∂(ϕ) + y1, . . . , ∂n(ϕ) + yn) ∈ C((x))g[y0, . . . , yn].

Definition 1. — Given F (y0, . . . , yn) and a positive integer k, define the set of nec-
essary k-initials conditions, NICk(F ), to be the subset of (R × C)k of the points
(µ1, c1, . . . , µk, ck) ∈ (R× C)k such that

µ1 < · · · < µk, and

Φ(F1;µ1)(c1) = 0, . . . ,Φ(Fk;µk)(ck) = 0,

where F1(y) = F (y) and Fi+1(y) = Fi(ci x
µi + y), for 1 ≤ i < k.

Define the NIC∗k(F ) = NICk(F ) ∩ (R× C∗)k, where C∗ = C \ {0}.

Corollary 1. — If y(x) =
∑k
i=1 cix

µi +
∑
µk<α

cαx
α is a solution of F (y) = 0 with

µ1 < · · · < µk, then
(µ1, c1, . . . , µk, ck) ∈ NICk(F ).

Corollary 2. — Let v0, . . . , vt be the vertices of N (F ), ordered by decreasing ordinate.
Let µi, 1 ≤ i ≤ t be the inclination of the side [vi−1, vi]. Set µ0 = −∞ and µt+1 = +∞.
The subset NIC1(F ) ⊆ (R × C) is semi-algebraic. Moreover, NIC∗1(F ) is the finite
union of the semi-algebraic sets corresponding to the sides of the Newton polygon of
F :

{(µ, c) ∈ R× C∗ ;µ = µi, and Φ(F ;µi)(c) = 0}, 1 ≤ i ≤ t,
and the semi-algebraic sets corresponding to the vertices:

{(µ, c) ∈ R× C∗ ;µi < µ < µi+1, and Ψ(F ;vi)(µ) = 0}, 0 ≤ i ≤ t.

Proof. — Let µ ∈ R, µi < µ < µi+1, for some 0 ≤ i ≤ t. As L(F ;µ) ∩ N (F ) = vi
and Φ(F ;µ)(c) = ch Ψ(F ;vi)(µ), (where h is the ordinate of vi) then, for c 6= 0 and
µi < µ < µi+1, one has Φ(F ;µ)(c) = 0 if and only if Ψ(F ;vi)(µ) = 0, and we are
done.
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Let µ ∈ R be a real number and fix a point (a, h) ∈ R× N.

Definition 2. — We say that (a, h) belongs to the red part with respect to µ of the
Newton polygon of F (y) if h ≥ 1 and either (a, h) is the vertex of N (F ) with minimum
ordinate or it belongs to a side of N (F ) with inclination greater than µ.

Notice that if the red part with respect to µ of N (F ) is empty, then there are no
generalized power series solution of (F = 0) of order greater than µ: the vertex (a, h)

with minimum ordinate has h = 0 and all the sides of N (F ) have inclination less
than or equal to µ, hence for γ > µ, the polynomial Φ(F ;µ)(c) is a non-zero constant
and by Corollary 2 the set NIC∗1(F ) is empty. The reciprocal is not true as Example 1
(page 65) shows.

Lemma 2. — Let (µ1, c1, . . . , µk, ck) ∈ NIC∗k(F ), ϕ =
∑k
j=1 cj x

µj and Fk+1(y) =

F (ϕ+ y). The red part of N (Fk+1(y)) with respect to µk nonempty.

Proof. — Let (µ, c) ∈ NIC∗1(F ) and consider G = F (c xµ + y). The red part of the
Newton polygon of G with respect to µ is not empty. To see this, let v0, . . . , vt be the
vertices of N (F ) ordered by decreasing ordinate and let vk be the vertex with highest
ordinate in L(F ;µ) ∩ N (F ). The ordinate of this vk is greater than zero because
otherwise Φ(F ;µ)(c) would be a nonzero constant, in contradiction with the fact that
Φ(F ;µ)(c) = 0.

Returning to the main argument, given a monomial M = xαyρ00 · · · yρnn , one may
write

(3) M(c xµ + y) = xα
n∏
i=0

(c µi xµ + yi)
ρi = M +R,

where the points corresponding to the monomials of R have ordinate less than |ρ| and
belong to the line with inclination µ passing through (α, |ρ|). If w is the intersection
of L(F ;µ) with the axis of abscissas, then the cloud of points P(G) of G is contained
in the positive convex hull of {v0, . . . , vk, w}. The coefficient of G corresponding to w
is precisely Φ(F ;µ)(c) = 0, hence w 6∈ P(G). Moreover, {v0, . . . , vk} ⊆ P(G), because
of (3). Therefore v0, . . . , vk are vertices of N (G). Hence either vk is the vertex of
N (G) with minimum ordinate or there exists a side of N (G) with inclination greater
than µ and we are done.

Example 1 (See Figure 1). — Let F = x−1 y6
0 y1+y2

0 y1+x y2
0−3 x y0 y1−x2 y0+2 x2 y1+x5.

The point (1, 1) ∈ NIC∗(F ). Let G = F (x + y). The red part of N (G) with respect to
µ = 1 is vertex v′2 and point p. In this example, there are no solutions of (G = 0) of
order greater than 1.
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Figure 1. Newton polygons of F and G from Lemma 2 and Example 1

3. Main result

In this section we introduce the notions of truncation of well-ordered power series
and of adapted dimension, and proceed to state the main result: the truncation of
length k of the solutions of the differential equation (F = 0) is contained in a semi-
algebraic subset of (R× C)k of adapted dimension less than or equal to the order of
F .

The adapted dimension is a proper measure of the number of free parameters (real
or complex, coefficient or exponent) which have been introduced along the New-
ton polygon process in a parametric family of power series solution of a differential
equation. Heuristically, when one introduces an exponent as a free parameter in the
solution space then one must also introduce a coefficient as a free parameter. The
simplest non-trivial case is the equation F (y) = y2

1 − y0 y2 = 0, whose solutions are
c xµ for any µ ∈ R and c ∈ C, (adapted dimension 2).

3.1. Truncations. — For any positive integer k and real β, the truncation of length
k to the right of β is a map Trk;β : C((x))w → (R×C)k defined as follows. If y(x) = 0,
then

Trk;β(y(x)) = ((β + 1, 0), (β + 2, 0), . . . , (β + k, 0)),

otherwise, y(x) = c xµ +
∑
α>µ cα x

α = c xµ + ȳ(x), with c 6= 0 and in this case

Trk;β(y(x)) = ((µ, c),Trk−1;µ(ȳ(x))).

Finally, the truncation of length k is Trk = Trk;0. For instance,

Tr4(x−0.5 + xπ) = ((−0.5, 1), (π, 1), (π + 1, 0), (π + 2, 0)) ∈ (R× C)4

Remark 1. — Let Ms be the subset of C[xR] of the elements with exactly s monomials.
Then Trk( Ms) is a semi-algebraic subset of (R× C)k.

Remark 2. — By corollary 1, if y(x) is a solution of (F = 0), then Trk(y) ⊆ NICk(F ).
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POWER SERIES SOLUTIONS OF DIFFERENTIAL EQUATIONS 67

3.2. Adapted dimension of cells of (R × C)k. — In this section we use some
known notions and results of real algebraic geometry for which we refer to the reader
to [3] (or any other standard text on the subject).

Given a finite family P1, . . . , Pr ∈ R[X1, . . . , Xt], we say that a subset C of Rt is
(P1, . . . , Pr)-invariant if every polynomial Pi has constant sign (> 0, < 0, or = 0)
on C. A C∞-cylindrical algebraic decomposition of Rt adapted to P1, . . . , Pr is a
cylindrical algebraic decomposition C all of whose cells are (P1, . . . , Pr)-invariant
C∞-manifolds and such that the defining functions of the cells of C are C∞.

Algorithms for constructing C∞-cylindrical algebraic decomposition for a given
family of polynomials are well-known (see for instance [3]).

Let C = { C1, . . . , C t} be a C∞-cylindrical algebraic decomposition of Rt. Let C
a cell of C . Let i1 < · · · < id ≤ k such that the restriction π̃C : C → Rd to C of
the projection π̃(r1, . . . , rk) = (ri1 , . . . , rid) is a local diffeomorphism of C onto an
open subset of Rd. We choose π̃C such that (i1, i2, . . . , id) is minimal with respect to
the lexicographical order. In particular, π̃C is a local system of coordinates of C at
any point α ∈ C and d is the dimension of C. We call π̃C the standard system of
coordinates of the cell C with respect to the cylindrical algebraic decomposition C .
We denote IC the d-uple IC = (i1, . . . , id). The derivations ∂

∂ri1

∣∣∣
α
, . . . , ∂

∂rid

∣∣∣
α
span

the tangent space of C at α. One proves easily that

(4)
∂

∂rij

∣∣∣∣
α

(rs|C) = 0, s < ij , 1 ≤ j ≤ d.

Remark 3. — The sequence IC = (i1, . . . , id) is characterized as follows: let iC be the
inclusion of C in Rk and α ∈ C any point. Then j 6∈ IC if and only if i∗C(d rj)α
depends linearly on {i∗C(d rs)α | s < j}.

We identify (R×C)k with R3k as follows: let (r1, . . . , r3k) be the coordinate func-
tions of R3k and (µ1, c1, . . . , µk, ck) the coordinate functions of (R×C)k. For 1 ≤ t ≤ k,
let

µt = r3(t−1)+1, and(5)

ct = r3(t−1)+2 +
√
−1 r3(t−1)+3.

Definition 3 (Adapted dimension). — Let C be a cell of a C∞-cylindrical algebraic de-
composition C of (R×C)k = R3k and π̃C(r1, . . . , r3k) = (ri1 , . . . , rid) be the standard
system of coordinates of C with respect to C . For each t, 1 ≤ t ≤ k, define dt as
follows:

1. dt = 2 if 3(t− 1) + 1 ∈ {i1, . . . , id}.
2. dt = 1 if either 3(t − 1) + 2 or 3(t − 1) + 3 belongs to {i1, . . . , id} and we are

not in case (1).
3. dt = 0 otherwise.

The adapted dimension of C is dima(C) = d1 + · · ·+ dk.

Remark 4. — Certainly, dim(C) ≤ 2 dima(C).
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Lemma 3. — Let C1 and C2 be two C∞-cylindrical algebraic decompositions of (R×
C)k. Let C be a cell of C1, and assume that C = C ′1 ∪ · · · ∪ C ′s,where C ′i is a cell of
C2 for all i. Then dima(C ′i) ≤ dima(C) for 1 ≤ i ≤ s and there exists j ∈ {1, . . . , s}
such that dima(C ′j) = dima(C), dimC ′j = dimC and IC′

j
= IC .

Proof. — From the characterization given in Remark 3 and the fact that linear de-
pendency is preserved by the pull-back of the inclusion of C ′i into C, one infers that
IC′

i
⊆ IC , which implies that dima C

′
i ≤ dima C. Then there must exist an index j

with dimC ′j = dimC, whence IC′
j

= IC and dima C
′
j = dima C.

3.3. Main result. — Let F (y0, . . . , yn) be a polynomial in the variables y0, . . . , yn
with coefficients in C[xR].

Theorem 1. — Let Sol(F ) the set of solutions of the differential equation F (y) = 0

in C((x))g. For any positive integer k, there exists a C∞-cylindrical algebraic decom-
position C of (R × C)k and a finite number number of cells C1, . . . , Cs of C such
that:
• Trk(Sol(F )) ⊆ C1 ∪ · · · ∪ Cs, and
• dima(Ci) ≤ n, for 1 ≤ i ≤ s.

As a consequence, dim(Ci) ≤ 2n, for 1 ≤ i ≤ s.

We end this section doing a technical reduction for the proof of Theorem 1 and,
for the sake of clarity, giving a simple proof of case k = 1.

Claim: it is enough to prove the theorem substituting NIC∗k(F ) for Trk(Sol(F )) in
the statement.
Proof of the claim: let Ms be the subset of C[xR] of “polynomials” with exactly s

monomials, and M≥s the subset of C((x))w of series with at least s monomials. Cer-
tainly,

(6) Trk(Sol(F )) = Trk
(

Sol(F ) ∩ M≥k
)
∪

k⋃
s=0

Trk
(

Sol(F ) ∩ Ms

)
.

By definition Trk
(

Sol(F ) ∩ M≥k
)
⊆ (R× C∗)k, so that by corollary 1,

(7) Trk
(

Sol(F ) ∩ M≥k
)
⊆ NIC∗k(F ).

Let 0 ≤ s < k, and consider the differentiable semi-algebraic function Fs : (R×C∗)s →
(R× C)k−s given by

Fs
(

(µ1, c1), . . . , (µs, cs)
)

=
(

(µs + 1, 0), . . . , (µs + k − s, 0)
)
.

One sees easily that Trk
(

Sol(F )∩ Ms

)
is the graph of Fs restricted to Trs

(
Sol(F )∩

Ms

)
. As above, Trs

(
Sol(F ) ∩ Ms

)
⊆ NIC∗s(F ) and also, the adapted and the usual

dimensions of NIC∗s(F ) are (respectively) equal to the adapted and usual dimensions
of the graph of Fs restricted to NIC∗s(F ), which finishes. �

Follows a straightforward proof of the theorem for k = 1.
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Proof of the theorem for k = 1. — In this case, the first result of the theorem is just
Corollary 2.

For the second result, notice that the adapted dimension of any cell in R × C∗ is
less than or equal to 2. Hence, it is enough to prove that dima(C) ≤ n for n = 0 and
n = 1, which we do separately.
If n = 0, the only monomial of F (y) corresponding to point (a, b) ∈ R× N is exactly
Aa,bx

ayb0, whence the polynomial ΦF ;µi(C) is nonzero and has only a finite number
of roots. The polynomial Ψ(F ;v)(m) = Av is clearly a nonzero constant. From these
two facts, it follows that the dimension of NIC∗1 (F ) is zero
For n = 1, in order to prove that dima(C) ≤ 1, it suffices to show that the projection
(µ, c) 7→ µ cannot belong to a local coordinate system of NIC∗1(F ). Let v = (a, b) be a
vertex of the Newton polygon. Since n = 1, all the monomials of F (y) corresponding
to v are of the form Aa,(ρ0,ρ1)x

ayρ00 yρ11 with ρ0 + ρ1 = b. Hence,

Ψ(F ;v)(m) =
b∑
j=0

Aa,(b−j,j)m
j .

and Ψ(F ;v)(m) cannot be zero because for some j, Aa,(b−j,j) 6= 0. The image of
NIC∗1(F ) by the projection (µ, c) 7→ µ is thus a finite number of points and we are
done for k = 1.

4. Parametric polynomials and parametric Newton polygon

In this section we define the parametric Newton polygon data of a parametric dif-
ferential polynomial. A parametric polynomial is a finite sum of the form

∑
i∈I ci x

µi ,
where µi and ci are respectively real and complex semi-algebraic C∞-functions on a
semi-algebraic C∞-submanifold C. A parametric differential polynomial H is a poly-
nomial in y0, . . . , yn whose coefficients are parametric polynomials. For any parameter
φ ∈ C, the value Hφ of H at φ is an ordinary differential polynomial. The parametric
polygon data of H will be defined as a family of functional objects on C whose “val-
ues” are classical Newton polygon data (vertices, slopes, characteristics polynomials,
etc) in such a way that their values at φ coincide with the Newton polygon data of
Hφ.

In order to define the parametric Newton polygon data of H, some semi-algebraic
properties on the family of exponents of x and on the real and imaginary parts of
the coefficients of H are required. They are gathered in the notion of invariance on a
cell C.

Specifically, for a parametric polynomial H =
∑
i∈I ci x

µi to be invariant on C we
require that the family of exponents E = {µi; i ∈ I} is totally ordered on C and that
none of the coefficients ci vanishes at any point of C. This way, both the minimum
of E and the (function) coefficient of xθ in H, provided θ ∈ E, are well defined.
Moreover, the value of the minimum of E at every point φ ∈ C is the minimum
of {µi(φ); i ∈ I}. For technical reasons one needs also to be able to compare the
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coefficients with functions belonging to some family of functions E (for instance,
some constant functions or the coordinate functions of the cell). This gives rise to the
notion of invariance with respect to a family E.
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Figure 2.

All the above is probably better understood with an example. In Figure 2 are
shown the different shapes (and points) of the Newton polygon of

H = 1 + x1+r + (1 + r2)x2 r y3 + (2− r)xr y0y1, r ∈ R.

One should imagine r “moving” on R “from left to right” giving rise to the six essentially
different shapes of the Newton polygon. One can see how three exceptional situations
can happen (in the same order as in the figure): (a) two or more points of the polygon
collide, (b) a point in the interior of the polygon collides with a side, and (c) a point
disappears from the polygon. These are respectively the cases r = −1, r = 0 and r = 2

in Figure 2. All the equations describing those events are of semi-algebraic nature, so
that there exists a cylindrical algebraic decomposition of the parameter space such
that H is invariant on each cell. In our example, the cells are the sets defined by the
equations in r below each diagram.

In the cell r < −1, the parametric Newton polygon data is composed of the se-
quence of functions V0 = (r, 2), V1 = (2r, 1), V2 = (1 + r, 0), the indicial polynomials
corresponding to each vertex (Ψ(H;V0)(m) = (2 − r)m, Ψ(H;V1)(m) = (1 + r2)m3,
and Ψ(H;V2)(m) = 1), and the characteristic polynomials corresponding to the sides:
Φ(H;[V0,V1])(c) = Ψ(H;V0)(r)c

2 + Ψ(H;V1)(r)c, and Φ(H;[V1,V2])(c) = Ψ(H;V1)(1 − r)c2 +

Ψ(H;V0)(1− r)c. Similarly for the other cells.
In the proof of Theorem 1 we shall differentiate the parametric polynomials with

respect to the “parameters”. As the class of parametric polynomials is not closed under
such derivations (due to d(xr)/dr), we need to consider a larger family including
polynomials in log x, which can be related to the space of mappings from C× C̃ to C,
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where C̃ is the Riemann surface of the logarithm and C is a semi-algebraic smooth
manifold.

Throughout this section, C ⊆ Rn denotes a nonempty semi-algebraic C∞ subman-
ifold.

4.1. Parametric polynomials

Definition 4. — An N -function on C is a semi-algebraic smooth function f : C → R.
An N C-function is a function c : C → C of the form c = a +

√
−1 b, where a, b are

N -functions on C.
Let C̃ be the Riemann surface of the logarithm. A function

H : C × C̃→ C

is called an N X-function over C if there exist a finite number of functions ci ∈ N C(C)

and µi ∈ N (C), 1 ≤ i ≤ k, such that

(8) H(φ, x) =
k∑
j=1

ci(φ)xµi(φ), for all (φ, x) ∈ C × C̃.

Denote N (C), N C(C) and N X(C) the rings of N , N C or N X-functions over C,
respectively.

N X(C)[log x] is the set of finite sums

H(φ, x) =
∑
i,j

ci,j(φ)xµi,j(φ) (log x)j , for all (φ, x) ∈ C × C̃.

where ci,j ∈ N C(C) and µi,j ∈ N (C), 1 ≤ i ≤ k, 0 ≤ j ≤ s.

The following result shows that N X(c)[log x] is actually the set of “polynomials” in
log x with coefficients in N X(C):

Lemma 4. — Any H ∈ N X(C)[log x], can be written uniquely as H =
∑s
j=0Hj (log x)j,

where Hj ∈ N X(C).

Proof. — Let O(C̃) be the differential ring of holomorphic functions on C̃ with the
derivation δ = x ∂

∂x , which is an integral domain. The map sending
∑
cα x

α ∈ C[xR]

to the holomorphic function C̃ 3 x 7→
∑
cα x

α is an injective differential ring homo-
morphism. The result follows from log x ∈ O(C̃) being algebraically independent over
the quotient ring of C[xR].

4.1.1. Derivations with respect the parameters. — Assume that C is a cell of a C∞-
cylindrical algebraic decomposition and πC(r1, . . . , rs) = (ri1 , . . . , rid) its standard
system of coordinates. It is known that if f is an N -function then its partial derivatives
∂f
∂rij

are also N -functions. The operator ∂
∂rij

acts as a derivation on N X(C)[log x] as
follows: if µ ∈ N (C) and c ∈ N C(C), then

(9)
∂

∂rij
(c xµ logs x) =

Ç
∂c

∂rij
xµ + c

∂µ

∂rij
xµ log x

å
logs x.
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4.1.2. The notion of invariance
Notation 2. — Let H ∈ N X(C)[log x]. For φ ∈ C, denote by H(φ) the function C̃ 3
x 7→ H(φ, x).

If H ∈ N X(C), then H(φ) ∈ C[xR]; for τ ∈ N (C), denote by [H]τ the function
[H]τ : C → C such that [H]τ (φ) is the value of the coefficient of xτ(φ) in H(τ). This
[H]τ is a semi-algebraic function but it is not smooth in general.

If H =
∑
j Hj logj x ∈ N X(C)[log x], we write [H]τ =

∑
j [Hj ]τ logj x.

We shall denote <C the partial order over N (C) given by µ <C µ′ if and only if
µ(φ) < µ′(φ) for all φ ∈ C.

Definition 5. — Let H ∈ N X(C) and E be a finite subset of N (C). We say that H
is invariant on C with respect to E, if either H = 0 or there exist a finite subset
E ⊆ N (C) and functions cθ ∈ N C(C) for each θ ∈ E with the following properties:

1. For all (φ, x) ∈ C × C̃, H(φ, x) =
∑
θ∈ E cθ(φ)xθ(φ).

2. The set E ∪ E is totally ordered with respect to <C .
3. For every θ ∈ E and every φ ∈ C, cθ(φ) 6= 0.

We remark that a set E satisfying (1), (2) and (3) is uniquely determined and inde-
pendent of E: by (2), its elements are ordered θ1 <C θ2 <C · · · <C θs and for each
φ ∈ C, θ1(φ) < θ2(φ) < · · · < θs(φ) are the exponents of x in H(φ).

The set E will be denoted E(H). By definition E(0) = ∅.

Definition 6. — An element H =
∑s
j=0Hj logj x ∈ N X(C)[log x] is invariant with

respect to E if each Hj ∈ N X(C), 0 ≤ j ≤ t is invariant on C with respect to E and
the set E(H) = ∪j E(Hj) is totally ordered on C.

Lemma 5. — Let H ∈ N X(C) be invariant on C with respect to E. If τ ∈ E ∪
E(H), then [H]τ ∈ N C(C). If τ 6∈ E(H), then [H]τ = 0. In particular, H =∑
τ∈ E(H)∪E [H]τ x

θ.

Proof. — If τ 6∈ E(H), then for each φ ∈ C, τ(φ) 6∈ {θ(φ) | θ ∈ E(H)} because
E ∪ E(H) is totally ordered. If τ ∈ E then [H]τ = cτ ∈ N C(C), using the notation of
(1) in Definition 5.

Corollary 3. — Let H,G ∈ N C(C)[log x] be such that H,G and HG are invariant on
C with respect to E. Let τ ∈ E be such that τ − θ ∈ E for all θ ∈ E(G). Then

[H G]τ =
∑

θ∈ E(G)

[H]τ−θ [G]θ .

Corollary 4. — Let H1, . . . ,Ht ∈ N X(C)[log x] be invariant on C with respect to E.
Assume that

∑s
j=1H

j, is also invariant on C with respect to E. Let τ ∈ E, then[∑s
j=1H

j
]
τ

=
∑s
j=1

[
Hj
]
τ
. If ∂

∂rij
be a vector field on C, then ∂

∂rij

[∑s
j=1H

j
]
τ

=∑s
j=1

[
∂
∂rij

Hj
]
τ
.
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The following result is a consequence of the fact that invariance is a semi-algebraic
property.

Lemma 6. — Let H1, . . . ,Ht ∈ N X(C)[log x], E a finite subset of N (C) and P a
finite family of polynomials in R[r1, . . . , rn]. There exists a C∞-cylindrical algebraic
decomposition C of Rn adapted to P such that C is a finite union of cells of C and
for any cell C ′ ∈ C and any s, 1 ≤ s ≤ t, Hs is invariant on C ′ with respect to
E|C′ = {f |C′ | f ∈ E}.

4.2. The Parametric Newton polygon. — A parametric differential polynomial
is an element H(y) ∈ N X(C)[y0 . . . , yn]. Let d be the total degree in the indetermi-
nates y0, . . . , yn of H(y). Write uniquely

H(y) =
∑
|ρ|≤d

Hρ y
ρ0
0 · · · yρnn , Hρ ∈ N X(C).

We proceed to the definition of the parametric Newton polygon (and its data) of H(y)

on C. This notion requires several properties on the coefficients of H(y), expressed
technically in Definition 8. The first one (condition (a)) is invariance on a cell, which
lets us speak of monomials of H(y) and their coefficients (no monomial disappears
or appears inside a cell). In (b) we require that for each height (each ordinate) one
can define the leftmost point at that height of the cloud of H(y). We follow the usual
algorithm to compute the positive convex hull: starting from the top-leftmost point,
which will be the first vertex, we determine inductively the following ones. This is
possible, for example (and this is what we impose in (c)) if the “slopes” appearing in
the polygon are totally ordered in C:

Definition 7. — A parametric differential polynomial H(y) is invariant on C with
respect to a finite subset E ⊆ N (C) if the following conditions hold:

(a) For all ρ ∈ R, Hρ is invariant on C with respect to E.
(b) Let h be an integer, 0 ≤ h ≤ d, and set

Eh(H) =
⋃
|ρ|=h

E(Hρ).

Then E ∪ Eh(H) is totally ordered for all h, 0 ≤ h ≤ d.
(c) For Eh(H) 6= ∅, let θh = min Eh(H). Then the union of E with the set of

functions on C given by

θh2 − θh1

h1 − h2
, for 0 ≤ h2 < h1 ≤ d, Eh1

(H) 6= ∅ 6= Eh2
(H),

is totally ordered.

We say that H(y) ∈ N X(C)[log x][y0 . . . , yn] is invariant on C with respect to E if,
writing H(y) =

∑s
j=0Hj(y) logj x, then each Hj(y) is invariant on C with respect to

E. H(y) is just invariant if it is invariant with respect to the empty set.
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We proceed to “build up” the Newton polygon. Assume H(y) ∈ N X(C)[y0 . . . , yn]

is invariant on C. The parametric Newton polygon of H(y) with respect to C is just
a sequence V0, V1, . . . , Vt of vertices, each being a pair (θ, h) where h is an integer,
0 ≤ h ≤ d and θ belongs to Eh(C). These vertices are defined inductively:

Definition 8. — Let V0 = (θd, d), where d is the total degree of H(y) on y0, . . . , yn.
Assume that vertex Vi = (θhi , hi) has been defined. If

⋃
h<hi

Eh(H) is empty, then
we have finished, Otherwise, set Vi+1 = (θhi+1

, hi+1), where hi+1 is the minimum of
those h < hi such that

θh − θhi
hi − h

= min{θh
′ − θhi
hi − h′

| h′ < hi, Eh′(C) 6= ∅}.

The parametric Newton polygon of H(y) with respect to C as the sequence V0, . . . , Vi.
The sides are the sets [Vi, Vi+1] for i = 0, . . . , t− 1:

[Vi, Vi+1] = {Vi} ∪ {(θh, h) | hi > h ≥ hi+1,
θh − θhi
hi − h

=
θhi+1

− θhi
hi − hi+1

}.

The inclination of side [Vi, Vi+1] is µ[Vi,Vi+1] =
θhi+1

−θhi
hi−hi+1

∈ N (C).

One can write uniquely

H(y) =
∑
|ρ|≤d

∑
θ∈ E|ρ|(H)

Hρ,θ x
θyρ00 . . . yρnn , Hρ,θ ∈ N C(C).

Given a vertex V = (θh, h) and a side [Vi, Vi+1], define the indicial and characteristic
polynomials as follows (respectively):

Ψ(H;V )(m) =
∑
|ρ|=h

Hρ,θh m
w(ρ) ∈ N C[m],

Φ(H;[Vi,Vi+1])(c) =
∑

(θ,|ρ|)∈[Vi,Vi+1]

Hρ,θ µ
w(ρ)
[Vi,Vi+1]

c|ρ| ∈ N C[c].

Definition 9. — The parametric Newton polygon data ofH(y) with respect to C is the
family of vertices V0, . . . , Vt, sides [Vi, Vi+1], 0 ≤ i < t, and polynomials Ψ(H;Vi)(m),
0 ≤ i ≤ t and Φ(H;[Vi,Vi+1])(c), 0 ≤ i ≤ t− 1.

Lemma 7. — Let H(y) be invariant on C with respect to E and C ′ ⊆ be a semi-
algebraic C∞-submanifold. Then H(y) is invariant on C ′ with respect to E and the
parametric Newton polygon data of H(y) with respect to C ′ is the natural restriction
of the parametric Newton polygon data of H(y) with respect to C. In particular, if
V = (θ, h) is a vertex with respect to C, then V |C′ = (θ|C′ , h) is a vertex with respect
to C ′.

Proof. — If E′ ⊆ N (C) is totally ordered with respect to <C , then E′|C′ = {τ |C′ |
τ ∈ E′} is totally ordered with respect to <C′ . The minimum of E′|C′ is the restriction
to C ′ of the minimum of E. This implies that if G ∈ N X(C) is invariant with respect
to E, then G|C′ ∈ N X(C ′) is invariant with respect to E|C′ and E(G) = E(G|C′).
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Condition (a) of Definition 7 holds for H|C′ . Moreover, Eh(H) = Eh(H|C′) so that
also conditions (b) and (c) are satisfied. As one can write

H(y) =
∑
|ρ|≤d

∑
θ∈ E|ρ|(H)

Hρ,θ|C′ xθ|C′ yρ00 . . . yρnn , Hρ,θ ∈ N C(C ′),

then Ψ(H|C′ ;Vi)(m) and Φ(H|C′ ;[Vi|C′ ,Vi+1|C′ ])(c) are (respectively) the restrictions to
C ′ of the polynomials Ψ(H;Vi)(m) and Φ(H;[Vi,Vi+1])(c).

Remark 5. — The above lemma holds for C ′ a single point. Namely, for any φ ∈ C,
denote

Hφ(y) =
∑
ρ,θ

Hρ,θ(φ)xθ(φ) yρ ∈ C[xR][y0, . . . , yn].

The vertices of the Newton polygon of Hφ(y) are precisely the points V0(φ), . . . , Vt(φ),
where Vi(φ) = (θhi(φ), hi). Moreover, the (differential) monomials of Hφ(y) whose
corresponding points belong to the side [Vi(φ), Vi+1(φ)] are precisely the monomials
Hρ,θ(φ)xθ(φ) yρ, where (θ, |ρ|) ∈ [Vi, Vi+1]. Hence,

Ψ(H;V )(φ,m) = Ψ(Hφ(y);V (φ))(m),(10)
Φ(H;[Vi,Vi+1])(φ, c) = Φ(Hφ(y);µ[Vi,Vi+1](φ))(c).(11)

From the semialgebraic nature of the properties required in Definition 7, one infers

Lemma 8. — Let H1(y), . . . ,Ht(y) ∈ N X(C)[log x][y0 . . . , yn], let E ⊆ N (C) be a
finite subset, and P a finite set of polynomials. There exists a C∞-cylindrical decom-
position C adapted to P such that C is a finite union of cells of C and for each cell
C ′ ∈ C with C ′ ⊆ C, and for each j, Hj(Y ) is invariant on C ′ with respect to E.

5. Proof of the Main Theorem

We start with the differential equation F (y) = 0, where

F (y) =
∑
a∈S

∑
|ρ|≤d

Aa,ρ x
a yρ00 · · · yρnn ∈ C[xR][y0, . . . , yn],

where S is finite subset of R. Rewrite it in the following way

F (y) =
∑
a∈S

fa(y)xa, where fa(y) ∈ C[y0, . . . , yn].

Before proceeding, we need to provide some notation. Then we shall prove in
Lemma 9 that NIC?k(F ) is semi-algebraic and state and prove Proposition 1, which
is the cornerstone of the present paper, from which Theorem 1 will follow.

Let (µ1, c1, . . . , µk, ck) denote the coordinate functions on (R×C)k and (r1, . . . , r3k)

those on R3k with the identification given in (5). Define

ϕ = ϕ0 = c1 x
µ1 + · · ·+ ck x

µk ∈ N X(R3k),

ϕs = µs1 c1 x
µ1 + · · ·+ µsk ck x

µk ∈ N X(R3k),
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for any non-negative integer s, and let

F (y) = F (y0 + ϕ0, . . . , yn + ϕn) ∈ N X(R3k)[y0, . . . , yn].

For any φ ∈ (R×C)k, F φ(y) ∈ C[xR][y0, . . . , yn] denotes the value of F (y) at φ. One
has

F φ(y) = F (y0 + ϕ0(φ), . . . , yn + ϕn(φ)) = F (y + ϕ(φ))

because ϕs(φ) = ∂s(ϕ(φ)) for s ∈ N.

Lemma 9. — The set NIC∗k(F ) ⊆ (R× C∗)k is semi-algebraic for all k ≥ 1.

Proof. — We proceed by induction on k, the case k = 1 having already been proved
in Corollary 2.

Assume that NIC∗k(F ) is a semi-algebraic subset of (R × C)k. From Lemma 8,
there exists a C∞-cylindrical algebraic decomposition C of (R× C)k such that F (y)

in invariant on each cell of C and NIC∗k(F ) is the union of some of these cells.
Let φ ∈ (R × C)k and φ′ = (φ,mk+1, bk+1) ∈ (R × C)k+1. One sees easily that

φ′ ∈ NIC∗k+1(F ) if and only if both φ ∈ NIC∗k(F ) and (mk+1, bk+1) ∈ NIC∗1( F φ(y)).
Hence it is enough to prove that for any cell C ∈ C the set

AC = {(φ, µ, c) | φ ∈ C, (µ, c) ∈ NIC∗1( F φ(y))}

is semi-algebraic. If C is contained in the complement of NIC∗k(F ), then AC = ∅.
Assume that C ⊆ NIC∗k(F ) and let V0, V1, . . . , Vt be the vertices of the parametric
Newton Polygon of F (y) with respect to C. By Remark 5 the vertices of the Newton
polygon of F φ(y) are V0(φ), . . . , Vt(φ). From the proof of case k = 1 (Corollary 2)
and equations (10) and (11), one infers that AC is the union of the semi-algebraic
sets given by the following conditions:

φ ∈ C, µ = µ[Vi−1,Vi](φ), and Φ( F ;[Vi−1,Vi])(φ, c) = 0,

for 1 ≤ i ≤ t, and

φ ∈ C, µ[Vi−1,Vi](φ) < µ < µ[Vi,Vi+1](φ), and Ψ( F ;Vi)(φ, µ) = 0,

for 0 ≤ i ≤ t, (where by definition µ[V−1,V0](φ) = −∞ and µ[Vt,Vt+1](φ) = ∞). These
conditions are semi-algebraic, so AC is semi-algebraic and so is NIC∗k+1(F ).

Given a nonempty C∞-differentiable semi-algebraic manifold C ⊆ NIC∗k(F ), let
E0 = {µk} ⊆ N (C). Assume that F (y) is invariant on C with respect to E0, let
V0, . . . , Vt be the vertices of the parametric Newton Polygon of F (y) on C and let
(θh, h) ∈ [Vi, Vi+1] for some 0 ≤ i < t.

Definition 10. — With the above notation, we say that (θh, h) is in the red part with
respect to µk of the parametric Newton Polygon of F (y) on C if h ≥ 1 and either the
inclination µ[Vi,Vi+1] > µk or (θh, h) = Vt.

Notice that the definition makes sense because since F (y) is invariant on C with
respect to E0, any inclination µ[Vi,Vi+1] can be compared with the function µk.
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Lemma 10. — In the conditions of the above definition, the red part with respect to
µk of the parametric Newton Polygon of F (y) on C is nonempty.

Proof. — Let φ ∈ C. Since φ ∈ NIC∗k( F φ(y)), by Lemma 2, the red part with respect
to µk(φ) of the Newton polygon of F φ(y) is nonempty. The vertices of the Newton
polygon of F φ(y) are V0(φ), . . . , Vt(φ). Hence, either there exists a side [Vi(φ), Vi+1(φ)]

with inclination µ[Vi,Vi+1](φ) greater than µk(φ), or Vt(φ) has ordinate greater than
zero. If µk(φ) < µ[Vi,Vi+1](φ), then µk <C µ[Vi,Vi+1], because µk ∈ E0 and Vi is in the
red part. Otherwise, if Vt(φ) = (θt(φ), ht) with ht ≥ 1, then Vt is in the red part.

Let NIC∗,>k (F ) denote the following semi-algebraic set:

NIC∗,>k (F ) = NIC∗k(F ) ∩ {µ1 > 0}

and let C be a C∞-cylindrical algebraic decomposition of (R × C)k such that
NIC∗,>k (F ) is the union of some cells of C . NIC∗,>k (F ) is defined as semi-algebraic
set by a finite family of polynomials Q and each cell Ci ∈ C by a finite family Pi.
Set P = Q

⋃
∪i Pi. Fix a cell C ∈ C and let IC = (i1, . . . , id) (so that d = dim(C)).

Denote da = dima(C).

Proposition 1. — With the notation above, the adapted dimension of C with respect
to C is less than or equal to the order of F : da ≤ ord(F ).

Before starting the proof, let us introduce some useful notation.
Given λ ∈ Nn+1 and f(y) ∈ C[y0, . . . , yn], let

f (λ)(ϕ) =
∂|λ|f

∂λ0y0 . . . ∂λnyn
(ϕ0, . . . , ϕn) ∈ N X(R3k).

By the Taylor expansion formula,

fa(y0 + ϕ0, . . . , yn + ϕn) =
∑
|λ|≤d

1

λ!
f (λ)
a (ϕ) yλ ∈ N X(R3k)[y0, . . . , yn],

where λ! = λ0! · · ·λn! and yλ = yλ0
0 · · · yλnn . Hence

F (y) =
∑
a∈S

∑
|λ|≤d

1

λ!
f (λ)
a (ϕ)xa yλ.

Fλ will denote the coefficient of yλ in F (y):

Fλ =
∑
a∈S

1

λ!
f (λ)
a (ϕ)xa ∈ N X(R3k),

so that F (y) =
∑
|λ|≤d Fλ y

λ.

Proof of Proposition 1. — Let E0 = {µk}. By Lemma 8 there exists a C∞-cylindrical
algebraic decomposition C1 of (R×C)k adapted to P such that F (y) and ∂

∂rij
F (y),

for 1 ≤ j ≤ d, are all invariant with respect to E0 on any cell of C1 contained in C. In
particular, C is a finite union of cells of C1. By Lemma 3, there exists a cell C1 of C1
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such that dima C1 = da and IC1 = IC0 . Let P1 be a family of polynomials defining
C1 as semi-algebraic set.

Let V0, . . . , Vl be the vertices of the parametric Newton polygon of F (y) on C1

(in decreasing order or height: h0 > h1 > · · · > hl). Let θh be as in Definition 8, so
that Vs = (θhs , hs), 0 ≤ s ≤ l. Given a side [Vs, Vs+1] of the Polygon and a height
h ∈ N with hs ≥ h ≥ hs+1, we denote by τh the following value (see Figure 2):
τh = θhs + (hs − h)µ[Vs,Vs+1] ∈ N (C1). Notice that τhj = θhj for 0 ≤ j ≤ l. Given h
with Eh( F ) 6= ∅, if (θh, h) ∈ [Vs, Vs+1], then τh = θh, otherwise τh < θh.

We shall later need to take coefficients with respect to the functions µs and τh−µs,
and compare τh + µs with τh−1. For simplicity, let E1 denote the subset of N (C1)

composed of τh, µs, τh − µs, and τh + µs for h0 ≥ h ≥ hl and 1 ≤ s ≤ k.
Let H ⊂ N X(C1) be the set composed of the following functions:

Fλ,
∂Fλ
∂rij

, f (λ′)
a (ϕ)xa,

∂

∂rij
f (λ)
a (ϕ)xa, f (λ)

a (ϕ)xa
∂ϕs
∂rij

,
∂ϕj
∂ri

,

for all |λ| ≤ d, 1 ≤ j ≤ d and a ∈ S. Fix a C∞-cylindrical algebraic decomposition
C2 adapted to P1 such that any element of H is invariant with respect to E1 on any
cell of C2. As above, C1 is a finite union of cells of C2 and we may choose a cell C2

of C2 such that C2 ⊆ C1, dima C2 = da and IC2
= IC0

.
By Lemma 7, F (y) and ∂ F (y)

∂rij
are invariant on C2 with respect to E0 and the

parametric Newton Polygon of F (y) on C2 has vertices V0|C2
, . . . , Vt|C2

. Therefore,
we may write uniquely

F (y) =
∑
|λ|≤d

∑
θ∈E1∪ E|λ|( F )

Fθ,λ x
θ yλ, Fθ,λ ∈ N C(C).

Let (θh, h) ∈ [Vs, Vs+1] be in the red part with respect to µk of the parametric
Newton polygon of F (y) on C2 (recall that h ≥ 1).

Take i ∈ {i1, . . . , id} and let t the minimum integer greater than or equal to i/3,
so that the corresponding ri in (5) is µi, <(ci) or =(ci) (real and imaginary parts).
Let λ′ ∈ Nn+1 such that |λ′| = h− 1. Fix t ∈ {1 . . . , k} and let τ = θh + µt ∈ E1|C2

.
We claim that Fτ,λ′ = 0: if (θh, h) = Vl then Eh−1 = ∅ and by Lemma 5 [Fλ′ ]τ = 0;

if (θh, h) ∈ [Vs, Vs+1] then µt < µ[Vs,Vs+1], so τ < θh−1 and τ 6∈ Eh−1( F ) and again
by Lemma 5 [Fλ′ ]τ = 0. Therefore 0 =

∂Fτ,λ′

∂ri
.

On the other hand, by direct computation

∂Fτ,λ′

∂ri
=

∂

∂ri

ñ∑
a

1

λ′!
f (λ′)
a (ϕ)xa

ô
τ

(a)
=
∑
a

1

λ′!

ï
∂

∂ri
f (λ′)
a (ϕ)xa

ò
τ

=
∑
a

[
1

λ′!

n∑
j=0

f (λ′+ej)
a (ϕ)

∂ϕj
∂ri

xa

]
τ

(b)
=

n∑
j=0

(λ′j + 1)

ñ∑
a

1

(λ′ + ej)!
f (λ′+ej)
a (ϕ) xa

∂ϕj
∂ri

ô
τ

(12)
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(θh + µt, |λ′|)τh−1
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Figure 3. Two possibilities for a point in the red part.

(c)
=

n∑
j=0

(λ′j + 1)
∑

θ∈ E(
∂ϕj
∂ri

)

ñ∑
a

1

(λ′ + ej)!
f (λ′+ej)
a (ϕ) xa

ô
τ−θ

ï
∂ϕj
∂ri

ò
θ

(d)
=

n∑
j=0

(λ′j + 1)
∑

θ∈{µ1,...,µk}

Fτ−θ,λ′+ej

ï
∂ϕj
∂ri

ò
θ

Where ej is the element of Nj+1 (0, . . . , 0, 1, 0, . . . , 0) where the 1 appears in the
j−th place counting from 0.

Equality (a) is a consequence of Corollary 4 and the fact that all members of H are
invariant on C2 with respect to E1 (cf. Lemma 7). For (b), we just rewrite 1

λ! =
λj+1

(λ+ej)!
.

Equality (d) follows from the definition of Fλ′+ej and the fact that it is invariant in
C2 with respect to E1. Finally, in order to get (c), we use Corollary 3 together with
the inclusion E(

∂ϕj
∂rj

) ⊆ {µ1, . . . , µk} which is proved as follows:
From relations (5) and equation (9) one gets

∂

∂ri
(µsj cj x

µj ) = (sµs−1
j

∂µj
∂ri

cj + µsj
∂cj
∂ri

+ µsj cj
∂µj
∂ri

log x)xµj , 1 ≤ j ≤ k.

and since ϕs =
∑k
j=1 µ

s
j cj x

µj ∈ N X(C2), then E(∂ϕs∂ri
) ⊆ {µ1, . . . , µs}.

From equation (4), ∂
∂ri

(rj) = 0 if j < i and ∂
∂ri

(ri) = 1, so that

∂

∂ri
(µsj cj x

µj ) = 0, for j < t,

∂

∂ri
(µst ct x

µt) = (sµs−1
t ct + µst

∂ct
∂ri

+ µst ct log x)xµt , (i = 1 mod 3),(13)

∂

∂ri
(µst ct x

µt) = µst
∂ct
∂ri

xµt , (i = 2, 3 mod 3).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



80 J. CANO & P. FORTUNY AYUSO

Therefore one may write

∂ϕj
∂ri

=
∂

∂ri
(µjt ct x

µt) +
k∑

s=t+1

ï
∂ϕj
∂ri

ò
µs

.

For s > t, τ − µs < θh, so that Fτ−µs,λ′+ej = 0 and the last member of equation (12)
is

0 =
n∑
j=0

(λ′j + 1)
∑

θ∈{µ1,...,µk}

Fτ−θ,λ′+ej

ï
∂ϕj
∂ri

ò
θ

=

=
n∑
j=0

(λ′j + 1) Fθh,λ′+ej
∂

∂ri
(µjt ct x

µt).

If i = 1 mod 3, from (13) and the fact that ct does not vanish in C2 ⊆ NIC∗k(F ), one
infers the following two linear equations

0 =
n∑
j=0

(λ′j + 1)µjt Fθh,λ′+ej ,(14)

0 =
n∑
j=0

(λ′j + 1) j µj−1
t Fθh,λ′+ej .(15)

(If i = 2 or 0 mod 3 then only (14) appears). Letting i run over {i1, . . . , id}, one
obtains a linear system of equations in the variables Fθh,λ′+e0 , . . . , Fθh,λ′+en . An el-
ementary argument of linear algebra shows that it has rank da = dima(C2). Hence,
if da > n its only solution is the trivial one, which implies that the red part of the
parametric Newton polygon of F (y) on C2 is empty, contradicting Lemma 10.

Proof of Theorem 1. Proceed by contradiction. Assume that there exists a cell C in
NIC∗k(F ) with adapted dimension greater than n and let φ ∈ C, m = µ1(φ) − 1 and
consider the differential polynomial G(y) = F (xmy). The set NIC∗k(G) is the image
of NIC∗k(F ) under the translation T (x, y) = (x − m, y) so that T (C) ∩ NIC∗>k (G)

is nonempty. Since translations preserve the adapted dimension of cells, there must
exist a cell in NIC∗>k (G) with adapted dimension greater than the order of G, which
is equal to the order of F , against Proposition 1. �
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