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SOME REGULARITIES AND SINGULARITIES APPEARING
IN THE STUDY OF POLYNOMIALS AND OPERATORS

by

Marc Chaperon & Santiago López de Medrano

Abstract. — We apply the viewpoint of singularity theory to the following problems:
how does the decomposition of a polynomial P as the product of polynomials behave
under perturbations of P? How do the eigenvalues, eigenspaces and more generally
invariant subspaces of an operator A behave under perturbations of A? We give a
characterization of the regular situations and describe completely the singular ones
in some moderately degenerate situations.

Résumé (Quelques regularités et singularités apparaissant dans l’étude des polynômes et des opé-
rateurs )

Nous appliquons le point de vue de la théorie des singularités aux deux problèmes
suivants : comment la décomposition d’un polynôme P comme produit de polynômes
se comporte-t-elle quand on perturbe P ? Comment les valeurs propres, vecteurs
propres et plus généralement sous-espaces invariants d’un opérateur A se comportent-
ils quand on perturbe A ? Nous caractérisons les situations régulières et décrivons
complètement celles qui sont singulières mais pas trop dégénérées.

Introduction

In the study of bifurcations of dynamical systems one has to deal frequently with the
following situation: as a parameter varies one considers the variation of an eigenvalue
or of the invariant line generated by the corresponding eigenvector of the linearization
of the dynamical system at a certain point. It often happens that those elements vary
smoothly with the parameter, which is known to be the case if the eigenvalue is simple.
But nevertheless the system undergoes a bifurcation if the eigenvalue crosses a certain
subset of the plane (the unit circle, the imaginary axis, etc.). A second, more complex,
situation happens when the eigenvalue becomes multiple, since then its variation with
the parameter ceases to be smooth. The same situations occur when instead of an
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124 M. CHAPERON & S. LÓPEZ DE MEDRANO

invariant line one needs to consider an invariant subspace of dimension greater than
one.

During the years we have meditated on these questions and have arrived at various
forms of expressing the (essentially known) conditions for the smooth variation of
those elements (see for example [5, 4] for recent versions). One of those forms seems
especially suited for studying, in terms of singularities of mappings, the situations
where that variation ceases to be smooth. In this article we describe the simplest of
those singularities.

The results. — We begin by a study of the simplest singularities of the polynomial
multiplication map:

Mult : MP(n)×MP(m)→ MP(n+m)

where MP(n) will denote the space of monic polynomials of degree n over K, which
will be either the real or the complex field. The rank of this map at a point (f, g) can
be expressed in terms of the degree of the greatest common divisor gcd(f, g) so that
it is a local diffeomorphism precisely when this degree is 0, i.e. when the factors are
relatively prime. And we can describe completely the singularities of Mult when this
degree is 1 (Theorem 1). Then we proceed to study the higher corank singularities of
Mult; here our results are not as sharp, but we have a complete geometric description
of many cases and an algebraic description of the rest.

As a byproduct of Theorem 1 we give an interesting description of the classical
resultant of two polynomials and we obtain the relation between the singularities of
Mult we describe and the resultant set Res(f, g) = 0.

Then we apply Theorem 1 (and its corollary, Theorem 3, which generalizes it to
the multiplication of an arbitrary number of factors) to study the singularities of the
(monic) characteristic polynomial map

χ : M(n× n)→ MP(n)

where M(n× n) denotes the space of n× n matrices with entries in K. We will view
each M ∈ M(n × n) as a linear mapping Cn → Cn and always take into account all
its complex eigenvalues. We determine the matrices at which χ is a submersion and
give a description of its simplest singularities (Theorem 5).

All the above is used to study the singularities of the eigenvalues of operators. For
that, we introduce the set of all proper elements of a Banach space E over K to be
the space of triples consisting of a linear operator on E, an invariant line and the
corresponding eigenvalue:

Eig(E) := {(λ, L,A) ∈ K×P(E)× End(E) : A(L) ⊆ L and A|L = λ}.

Here P(E) denotes the projectivization of E and End(E) the space of continuous
linear endomorphisms of E. There is a natural projection Π : Eig(E) 7→ End(E) on
the third factor.

The basic fact here (Theorem 6) is that Eig(E) is a smooth object, actually an
analytic manifold modelled on End(E), provided with a projection Π onto End(E).
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SOME REGULARITIES AND SINGULARITIES 125

Therefore it is a kind a resolution of all the singularities associated to eigenvalue
problems.

We show that, not surprisingly, Π is a local diffeomorphism precisely at those
points where λ is a simple eigenvalue of A. And we can describe completely the
singularities of Π when λ is a geometrically simple eigenvalue of A of finite multiplicity
(Theorem 8). In the finite dimensional case this means simply that it has only one
corresponding invariant line, while in infinite dimensions there are some technical
additional conditions. We also show that the mapping that forgets the invariant line
is regular (in this case an immersion) precisely when the eigenvalue is geometrically
simple, a fact that is useful in the proof of the singularity part of Theorem 8.

In section D, we generalize this to invariant subspaces of dimension greater than
one. In fact, this was the starting point of the whole story: in [2], we explained that
the theory of formal normal forms for dynamical systems is an easy consequence of
the Jordan decomposition of endomorphisms. Thinking about the generalization of
this approach to families, we came to the conclusion that each characteristic space
F0 of an endomorphism A0 of Cn must have the following stability property: every
nearby endomorphism A has a unique invariant subspace F (A) of the same dimension
as F0 = F (A0) and close to it, depending analytically on A. This is an easy result but
it is not so well-known(1), and in section D we consider (and extend) it in the spirit
of singularity theory.

The singularities. — The singularities found in Theorems 1, 8, 15, 16 are a certain
type of Morin singularities which we will call swallowtails:

The standard k–swallowtail is the map

SWk : Kk−1 → Kk−1

defined by

SWk(a1, . . . , ak−2, u) := (a1, . . . , ak−2, u
k + ak−2u

k−2 + · · ·+ a1u)

For us a k–swallowtail will be any map germ between two Banach spaces which is
diffeomorphic to the germ at 0 of a map of the form

SWk × Id : Kk−1 × E → Kk−1 × E

for some Banach space E.When K = C but E is real—a situation occurring whenever
a real polynomial or endomorphism has nonreal roots or eigenvalues—we call such a
map a complex swallowtail.

Interesting examples of k-swallowtails are the evaluation map

ev : MP(k)×K → MP(k)×K

(P, a) 7→
(
P, P (a)

)
and the mapping

(a1, . . . , ak−1, a) 7→ (aa1, a1 + aa2, a2 + aa3, . . . , ak−2 + aak−1, ak−1 + a)

(1) The finite dimensional case led us to Theorem 1. . .
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126 M. CHAPERON & S. LÓPEZ DE MEDRANO

The second example shows that all swallowtails can be given by maps all of whose
coordinate functions are polynomials of degree at most 2, a fact that we have not seen
in the literature.

These examples, and some of their variants, will play an important role in the
proofs of the theorems.

The singularities in Theorem 5 will be k–swallowtail deformations, by which we
mean any map germ between two Banach spaces which is diffeomorphic to the germ
at 0 of a map

G : E × E′ → E

such that G(x, 0) is a k–swallowtail, where E,E′ are Banach spaces.
There are many k–swallowtail deformations between spaces of the same dimension,

so this term does not describe a precise singularity type. And though it is possible, in
principle, to describe them all, there remains to do so specifically for the singularities
of χ.

We will show by examples that in all cases the singularities that are not swallowtails
are more complicated than those one could expect from the classification results of
singularities of mappings.

We hope to give soon some applications of these results to bifurcation problems of
dynamical systems.

In the Appendices we recall the main properties of the singularities we will use in
the text and describe completely the main examples. We also provide an introduction
to the results on continuous linear maps between Banach spaces needed in the text,
referring to Rudin’s beautiful book [10] for more details about this magnificent theory.

Conversations with Sergey Antonyan, Shirley Bromberg, Lino Samaniego, Georges
Skandalis and Bernard Teissier were very helpful in the preparation of this work.

A. Singularities of Polynomial Multiplication

Polynomial multiplication defines a map

Mult : MP(n)×MP(m)→ MP(n+m)

We are interested in describing the regular points and the singularities of the map
Mult . We will denote by gcd(P,Q) the monic greatest common divisor of the monic
polynomials P and Q.

Theorem 1. — For (P0, Q0) in MP(n)×MP(m),

(i) The corank of the differential DMult(P0, Q0) is the degree of gcd(P0, Q0).

(ii) In particular, Mult is a local diffeomorphism at (P0, Q0) if and only if
gcd(P0, Q0) = 1.

(iii) The mapping Mult is a (k+ 1)–swallowtail at (P0, Q0) for some positive integer
k if, and only if, deg gcd(P0, Q0) = 1, the integer k being the maximum of the
multiplicities in P0 and Q0 of their common root.
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SOME REGULARITIES AND SINGULARITIES 127

(iv) If K = R, the mapping Mult is a complex (k + 1)–swallowtail at (P0, Q0) for
some positive integer k if, and only if, gcd(P0, Q0) is an irreducible polynomial
of degree 2, the integer k being the maximum of the multiplicities in P0 and Q0

of their complex conjugate common roots(2).

Proof. — The tangent space of MP(n) at any point is the set of polynomials of degree
less that n. The derivative of Mult at (P0, Q0) is then given by

(P,Q) 7→ P0Q+ PQ0.

Therefore its image, being the set of multiples of gcd(P0, Q0) by polynomials of degree
less than n + m − deg gcd(P0, Q0), has this dimension. This proves (i) and therefore
(ii).

If gcd(P0, Q0) = x − α then x − α must divide one of P0, Q0 with multiplicity 1

and the other one with multiplicity k. By changing the variable in the polynomials
(which induces a diffeomorphism of MP(n)) we can assume α = 0.

Consider first the case P0 = x, Q0 = xk. Then Mult is given by

Mult
(
x+ a, xk +

k−1∑
i=0

aix
i
)

=
k+1∑
i=0

(ai−1 + aai)x
i

(putting ak = 1, ak+1 = a−1 = 0) or, in coordinates (a, ak−1, . . . , a0), by

Mult(a0, . . . , ak−1, a) = (aa0, a0 + aa1, a1 + aa2, . . . , ak−1 + a),

which is a (k + 1)–swallowtail by example 2 in Appendix A.
In general, let P0 = xP1, Q0 = xkQ1, where P1, Q1 are not divisible by x. Then,

setting m1 := m− k and n1 := n− 1, we have a commutative diagram:

MP(n) × MP(m) → MP(m+ n)

↑ ↑ ↑
MP(1)×MP(n1) × MP(k)×MP(m1) → MP(k + 1)×MP(m1 + n1)

where all maps are given by multiplication. By Theorem 1, the vertical arrows are local
diffeomorphisms at (x, P1), (xk, Q1) and (xk+1, P1Q1) respectively. The lower map is
the product of the multiplication MP(1)×MP(k)→ MP(k + 1), which we have just
seen to be a (k+1)–swallowtail at (x, xk), and the multiplication MP(n1)×MP(m1)→
MP(m1 + n1), a local diffeomorphism at (P1, Q1) b Theorem 1. Therefore the upper
multiplication map is diffeomorphic to the lower one, which is a (k + 1)–swallowtail.
This proves the “if” in (i). As for the “only if”, just notice that, when the degree of
gcd(P0, Q0) is greater than 1, the corank of DMult is greater than 1 and Mult cannot
be a swallowtail at that point. This proves (iii).

(2) Or, in other words, the greatest integer k such that gcd(P0, Q0)k divides P0 or Q0.
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128 M. CHAPERON & S. LÓPEZ DE MEDRANO

Let us prove (iv). In the “if”, the same diagram as for (iii) reduces the problem to
the case where P0 = (x−α)(x− ᾱ) and Q0 = (x−α)k(x− ᾱ)k, α ∈ C \R. Applying
(ii) withm = n = 1 (resp.m = n = k), we see that every complex polynomial P (resp.
Q) of degree 2 (resp. 2k) close enough to P0 (resp. Q0) writes in a (locally) unique
fashion P = P1P2, Pj ∈ MP(1) (resp. Q = Q1Q2, Qj ∈ MP(k)), where (P1, P2) (resp.
(Q1, Q2)) is the image of P (resp. Q) by the local inverse of Mult at (x − α, x − ᾱ)

resp.
(
(x− α)k, (x− ᾱ)k

)
). This uniqueness property implies that, for real P and Q,

we must have P2 = P̄1 and Q2 = Q̄1. Thus, in that case, the mappings P 7→ P1

and Q 7→ Q1 are real analytic local diffeomorphisms, identifying (P,Q) 7→ PQ to
(P1, Q1) 7→ P1Q1, which is a complex (k + 1)–swallowtail by (iii).

For the “only if”, we observe that any other corang 2 singularity (P0, Q0) has a
common real root. In any neighborhood of (P0, Q0) we can find a pair (P1, Q1) with a
single common simple real root and by (iii) the singular set of Mult is a codimension 1
smooth manifold near (P1, Q1). Therefore, at a complex swallowtail, as the singular set
of Mult is locally of real codimension 2, it cannot be diffeomorphic to the singularity
at (P0, Q0).

Remarks. — Theorem 1 (ii), which can be found in [3] (Exercice 1, p. 234), extends
the well-known result that a simple root varies smoothly with the coefficients of the
polynomial (consider the local inverse of Mult).

If one writes down the Jacobian matrix of Mult at a point (f,g) with respect to the
standard bases of the vector spaces of (non-necessarily monic) polynomials involved,
one obtains the transpose of the usual Sylvester matrix, whose determinant is one
of the definitions of the resultant of the polynomials (g, f). Therefore we have an
interesting equality:

Res(f, g) = JMult(g, f) (Jacobian determinant).

which is natural since both sides of the equality vanish precisely when f, g have a
common complex root. One can take this as a definition of the resultant and use it
to prove its basic properties. The change from (f, g) to (g, f) in the right-hand side is
only a sign convention, as in fact the definitions of the resultant by different authors
only coincide up to sign: see for example [11, 6].

The regular points of the variety Res(f, g) = 0 are precisely the pairs with gcd
of degree 1, since the points of higher corank have to be singularities of JMult (see
Appendix 1). By (iii), this regular set can be still stratified according to the singularity
type of Mult, i.e. according to the order of the swallowtails. Thus, the singularity type
of Mult gives more information than the singularities of the resultant variety. This is
a first answer to a question by Bernard Teissier about the relation between those two
singularities.

We now turn to the singularities of corank ≥ 2 involving only simple common
roots:

ASTÉRISQUE 323



SOME REGULARITIES AND SINGULARITIES 129

Proposition 1. — Given P0 ∈ MP(n) and Q0 ∈ MP(m), assume that all the (complex)
roots of gcd(P0, Q0) are simple.
(i) If K = C, then, denoting by α1, . . . , αd the roots of gcd(P0, Q0), the map Mult

is the product of d swallowtails of respective orders k1 + 1, . . . , kd + 1, where kj
denotes the maximum of the multiplicities of the root αj in P0 and Q0.

(ii) If K = R, then, denoting by α1, . . . , αr the real roots of gcd(P0, Q0) and by
αr+1, ᾱr+1, . . . , αd, ᾱd its other roots, the map Mult is the product of r real
swallowtails of respective orders k1 + 1, . . . , kr + 1 and c complex swallowtails
of respective orders kr+1 + 1, . . . , kd + 1, where kj denotes the maximum of the
multiplicities of the root αj in P0 and Q0.

Proof. — We establish (i) by induction on d. Theorem 1 (ii) tells us that (i) is true
if d = 1. Given d > 1, assume (i) true for d − 1. Then, in the situation of (i),
exchanging P0 and Q0 if necessary, we have P0 = (x−αd)P1, Q0 = (x−αd)kdQ1 and
gcd(P0, Q0) = (x− αd) gcd(P1, Q1). By the induction hypothesis, Mult is at (P1, Q1)

the product of d−1 swallowtails of respective orders k1 +1, . . . , kd−1 +1. Now, setting
m1 := m− kd and n1 := n− 1, we have a commutative diagram:

MP(n) × MP(m) → MP(m+ n)

↑ ↑ ↑
MP(1)×MP(n1) × MP(kd)×MP(m1) → MP(kd + 1)×MP(m1 + n1)

where all maps are given by multiplication, and we conclude as in the proof of Theo-
rem 1 (iii).

This also proves (ii) if c = 0. Otherwise, exchanging P0 and Q0 if necessary, we have
that P0 = (x− αkd)(x− ᾱkd)P1, Q0 = (x− αkd)kd(x− ᾱkd)kdQ1 and gcd(P0, Q0) =

(x− αkd)(x− ᾱkd) gcd(P1, Q1). Using Theorem 1 (iv), we conclude as for (i).

Remark. — In the situation of (ii) with r = 2, c = 0 and k1 = k2 = 1, we get (a
suspension of) the “twice folded handkerchief”, product of two one-dimensional folds.
More generally in the situation of (ii) with r = 2, c = 0 and k1 + k2 = k, the critical
set of Mult is locally the (singular) union of two smooth hypersurfaces intersecting
at (P0, Q0). In particular, the critical set of Mult has codimension 1, making more
precise the end of the proof of Theorem 1 (iv) in this case.

Let us now consider all the singularities of corank ν ≥ 2 with a single common
root:

Proposition 2. — Given P0 ∈ MP(n) and Q0 ∈ MP(m),
(i) Assume gcd(P0, Q0) = (x − α)ν , α ∈ K, ν ≥ 2. Then, denoting by k ≥ ν the

maximum of the multiplicities of the root α in P0 and Q0, the map Mult has a
singularity at (P0, Q0) which is diffeomorphic to the singularity at 0 of the map

(a, b, u) 7−→
(
a, b, fν,k(b, u),

)
Km+n−k−ν ×Kk ×Kν −→ Km+n−k−ν ×Kk ×Kν
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given by fν,k = (fν,k,1, . . . , fν,k,ν) and, if b = (b1, . . . , bk),

fν,k,`(b, u) :=
∑

‖m‖=k+`

|m|!
m!

um +
k∑
j=1

bj
∑

‖m‖=k+`−j

|m|!
m!

um , 1 ≤ ` ≤ ν,

where m = (m1, . . . ,mν) ∈ Nν , m! = m1! · · ·mν !, |m| := m1 + · · · + mν ,
‖m‖ := m1 + 2m2 + · · ·+ νmν and um := um1

1 · · ·umνν .
(ii) If K = R and gcd(P0, Q0) = (x−α)ν(x− ᾱ)ν , α ∈ C \R, ν ≥ 2, then, denoting

by k ≥ ν the maximum of the multiplicities of the root α in P0 and Q0, the map
Mult has a singularity at (P0, Q0) which is diffeomorphic to the singularity at 0

of the map

(a, b, u) 7−→
(
a, b, fν,k(b, u),

)
Rm+n−2k−2ν ×Ck ×Cν −→ Rm+n−2k−2ν ×Ck ×Cν ,

where fν,k is as in (i).

Proof. — (i) If gcd(P0, Q0) = (x − α)ν then x − α must divide one of the two poly-
nomials P0, Q0 with multiplicity ν and the other one with multiplicity k ≥ ν. As in
the proof of Proposition 1, we can assume α = 0 and reduce the general case to the
case P0 = xν , Q0 = xk. Then, Mult is given by

Mult
(
xν −

ν∑
i=1

uix
ν−i, xk +

k∑
j=1

vjx
k−j
)

=
k+ν∑
j=0

(
vj −

ν∑
i=1

vj−iui

)
xk+ν−j

where

(1)

{
v0 = 1

vj = 0 for j < 0 and for j > k

or, taking u1, . . . , uν , v1, . . . , vk as coordinates, by

Mult(v1, . . . , vk, u1, . . . , uν) =
(
vj −

ν∑
i=1

vj−iui

)
1≤j≤k+ν

.

Denoting by b1, . . . , bk+ν the components of the right-hand side, we shall express the
variables v1, . . . , vk as functions of b1, . . . , bk and u1, . . . , uν by solving the equations

(2) bj = vj −
ν∑
i=1

vj−iui

for 1 ≤ j ≤ k, clearly an invertible linear system with respect to v1, . . . , vk. Then, the
equations (2) with k + 1 ≤ j ≤ k + µ will yield the required expression

(3) bj = −fν,k,j−k(b1, . . . , bk, u1, . . . , uν) , k + 1 ≤ j ≤ k + µ.
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To do all this at once, we consider (2) for all j ∈ Z and, using (1), rewrite it as

(4)


bj = 0 for j < 0

b0 = 1

vj = bj +
∑ν
i=1 vj−i ui for j > 0

We claim that these conditions imply that

vj =
∑
‖m‖≤j

|m|!
m!

bj−‖m‖ u
m , j ∈ Z,(5)

hence (3) because of (1).
Indeed, by (4), we know that (5) is true for all j < 0. Given j ≥ 0, we can therefore

make the induction hypothesis that (5) is true for all j − i, 1 ≤ i ≤ µ, hence, by (4),

vj = bj +
ν∑
i=1

∑
‖n‖≤j−i

|n|!
n!

bj−i−‖n‖ u
n+δi

where n lies in Nν and (δ1, . . . , δν) denotes the canonical basis of Kν . Now, for each
m ∈ Nν , we have m = n+ δi with n ∈ Nν if and only if mi is positive, in which case
‖m‖ = ‖n‖+ i, hence

vj = bj +
∑

1≤‖m‖≤j

∑
mi 6=0

|m− δi|!
(m− δi)!

bj−‖m‖ u
m

= bj +
∑

1≤‖m‖≤j

(|m| − 1)!

m!

( ∑
mi 6=0

mi

)
bj−‖m‖ u

m

= bj +
∑

1≤‖m‖≤j

|m|!
m!

bj−‖m‖ u
m ,

proving (5). From this particular case, we deduce (i) in general as in the proof of
Theorem 1 (iii). The proof of (ii) is that of Theorem 1 (iv).

Remarks. — Of course, for ν = 1, the proof of Proposition 2 applies and is nothing
but the proof of Theorem 1 (iii), the function f1,k being essentially the evaluation map
of MP(k + 1).

In the situation of (i) with ν = 2 and K = R, the germ of Mult at (P0, Q0)

is analytically diffeomorphic to the germ at 0 of (a, b, u) 7→
(
a, b, f2,k(b, u)

)
, a ∈

Rm+n−k−2, b = (b1, . . . , bk) ∈ Rk, whose critical set is the set of zeros of the determi-
nant Juf2,k(b, u) :=

(
∂u1

f2,k,1∂u2
f2,k,2 − ∂u1

f2,k,2∂u2
f2,k,1

)
(b, u). Since the latter is a

quadratic form in the variable b satisfying Juf2,k(b, 0) = b2k − b2k−1, this gives a more
precise idea of the shape of the critical set of Mult, which is a singular hypersurface,
as shown at the end of the proof of Theorem 1 (iv).

We can now glue together Theorem 1 (iv) and Proposition 2 as in the proof of
Proposition 1 to obtain an algebraic description of all the singularities of Mult:
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Theorem 2. — Given P0 ∈ MP(n) and Q0 ∈ MP(m),
(i) If K = C, then, denoting by α1, . . . , αd the roots of gcd(P0, Q0) and by ν1, . . . , νd

their respective multiplicities, the germ of Mult at (P0, Q0) is diffeomorphic to
the germ at 0 of the map

Kp ×
d∏
1

(
Kki ×Kνi

)
−→ Kp ×

d∏
1

(
Kki ×Kνi

)
(
a, (b1, x1), . . . , (bd, xd)

)
7−→

(
a, fν1,k1(b1, x1), . . . , fνd,kd(bd, xd)

)
,

where ki ≥ νi denotes the maximum of the multiplicities of the root αi in P0

and Q0, and p = m+ n− |k| − |ν|.
(ii) If K = R, then, denoting by α1, . . . , αr the real roots of gcd(P0, Q0), by

αr+1, ᾱr+1, . . . , αd, ᾱd its other roots, by νj the multiplicity of the root αj and
setting d := r + c, the germ of Mult at (P0, Q0) is diffeomorphic to the germ at
0 of the map(

a, (b1, x1), . . . , (bd, xd)
)
7−→

(
a, fν1,k1(b1, x1), . . . , fνd,kd(bd, xd)

)
,

of Rp ×
∏r

1

(
Rki ×Rνi

)
×
∏d
r+1

(
Cki ×Cνi

)
into itself, where ki ≥ νi denotes

the maximum of the multiplicities of the root αi in P0 and Q0, and p = m+n−∑r
1(ki + νi)− 2

∑d
r+1(ki + νi).

Products of p monic polynomials. — Theorem 1 has the following obvious generali-
sation:

Theorem 3. — Given integers m1, . . . ,mp, p > 1, denote again the multiplication map
by Mult : MP(m1)×· · ·×MP(mp)→ MP(m1+· · ·+mp). Then, for each (P1, . . . , Pp) ∈
MP(m1)× · · · ×MP(mp):
(i) The corank of DMult(P1, . . . , Pp) is the degree of gcd(P1 · · ·Pp/Pj)1≤j≤p.
(ii) In particular, Mult is a local diffeomorphism at (P1, . . . , Pp) if, and only if

gcd(Pi, Pj) = 1 for 1 ≤ i < j ≤ p.
(iii) The map Mult is a (k+ 1)–swallowtail at (P1, . . . , Pp) for some positive integer

k if, and only if, it has corank one. If this is the case, there exist i, j ∈ {1, . . . , p}
and α ∈ K such that

gcd
(
P`, Pm) =

{
x− α if {`,m} = {i, j}
1 otherwise,

and k is the maximum of the multiplicities of the root α in Pi and Pj.
(iv) If K = R, the map Mult is a complex (k + 1)–swallowtail at (P1, . . . , Pp) for

some positive integer k if, and only if, there exist i, j ∈ {1, . . . , p} and α ∈ C \R

such that

gcd
(
P`, Pm) =

{
(x− α)(x− ᾱ) if {`,m} = {i, j}
1 otherwise,

and k is the maximum of the multiplicities of the root α in Pi and Pj.
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The following result, whose proof is that of Proposition 2, describes the simplest
singularities of higher corank:

Theorem 4. — Given (P1, . . . , Pp) ∈ MP(m1) × · · · × MP(mp), assume that all the
(complex) roots of gcd(P1 · · ·Pp/Pj)1≤j≤p are simple.
(i) If K = C, then, denoting the roots by α1, . . . , αd, the map Mult is the product

of d swallowtails of respective orders k1 + 1, . . . , kd + 1, where kj denotes the
maximum of the multiplicities of the root αj in P1, . . . , Pp.

(ii) If K = R, then, denoting the real roots of gcd(P1 · · ·Pp/Pj)1≤j≤p by α1, . . . , αr
and its other roots by αr+1, ᾱr+1, . . . , αd, ᾱd, the map Mult is the product of r
real swallowtails of respective orders k1+1, . . . , kr+1 and c complex swallowtails
of respective orders kr+1 + 1, . . . , kd + 1, where kj denotes the maximum of the
multiplicities of the root αj in P1, . . . , Pp.

Remark. — For p > 2, when gcd(P1 · · ·Pp/Pj)1≤j≤p has multiple roots, they can
be common to three or more of the Pj ’s, yielding other singularities which deserve
a better study. For example, when p = 3, gcd(P1P2P3/Pj)1≤j≤3 = x − α and α is
a simple root of all three polynomials, the singularity we get is a suspension of the
germ at 0 ∈ C of z 7→

(
|z|2,=(z3)

)
.

B. Singularities of the characteristic polynomial function

Let M(n× n) be the space of n× n matrices with entries in K. We will view each
M ∈ M(n × n) as a linear mapping Cn → Cn and always take into account all its
complex eigenvalues. We will denote by

χ : M(n× n)→ MP(n)

the mapping sending M to its monic characteristic polynomial:

χ(M) := det(xI −M).

We are interested in the regular points and the simplest singularities of the mapping
χ. Recall that an eigenvalue of M ∈ M(n× n) is called simple if it is a simple root of
χ(M).

We will call the eigenvalue λ of M ∈ M(n × n) geometrically simple if the corre-
sponding eigenspace is a line.

Theorem 5. — Let M0 ∈ M(n× n). Then
(i) The map χ is regular at M0 if, and only if, all the eigenvalues of M0 are geo-

metrically simple.
(ii) The rank of Dχ(M0) is the degree m(M0) of the minimal polynomial of M0. In

other words, the corank of Dχ(M0) equals∑
λ∈σ(M0)

(dλ −mλ),
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where dλ is the dimension of the characteristic space Eλ of M0 associated to λ,
and mλ is the smallest integer m such that Eλ = Ker(λI −M0)m.(3)

(iii) The map χ is a (k + 1)–swallowtail deformation at M0 if, and only if, it has
corank 1, the integer k being as follows: all eigenvalues of M0 are geometrically
simple except one, for which mλ = k and dλ = k + 1.

Proof. — We can assume K = C since even in the real case all definitions involve
the complex numbers and the regularity of χ does not depend on the field. We will
denote the Jordan block of order n and eigenvalue λ by Jn(λ) :

Jn(λ) =


λ if n = 1

λIn +

(
0 In−1

0 0

)
for n > 1.

Let us prove the “if” part of (i), first in the case where M0 = Jn(λ) . To see that
χ is a submersion at M0 we can also assume λ = 0, since we can compose with a
translation in the space of matrices and with a change of variable in the space of
polynomials. In this case χ admits a section, sending a polynomial to its companion
matrix, defined as follows: we let

Comp : MP(n)→ M(n× n),

be given by

Comp
(
xn +

n−1∑
i=0

aix
i
)

:= Jn(0) +

(
0 · · · 0

−a0 · · · −an−1

)
.

Then χ(Comp(P )) = P and in particular χ is a submersion.
If M0 has only geometrically simple eigenvalues then, changing coordinates, we

may assume that it is block-diagonal, of the form (as a map)

M0 = Jm1
(λ1)× · · · × Jmp(λp),

where the λj ’s are all different. Now, the restriction of χ to the vector subspace of
M(n × n) consisting of block-diagonal matrices (linear maps) M1 × · · · ×Mp with
Mj ∈ M(mj ×mj) is already a submersion at M0: indeed, it is the composed map of
— the map M1 × · · · ×Mp

χp7−→
(
χ(M1), . . . , χ(Mp)

)
, which is a submersion at M0

by what we have just done, and
— the product map

MP(m1)× · · · ×MP(mp) 3 (P1, . . . , Pp) 7→ P1 · · ·Pp ∈ MP(n),

which is a local diffeomorphism at χp(M0) =
(
(x − λ1)m1 , . . . , (x − λp)mp

)
by

Theorem 3 (i) since the λj ’s are all different.

(3) This is the size of the largest Jordan block with eigenvalue λ or, equivalently, the multiplicity of
λ as a root of the minimal polynomial of M0.
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To prove (ii) and therefore the “only if” part of (i), we can again assume that
M0 = Jm1

(λ1)×· · ·×Jmp(λp), where the λj ’s may not be all different. Then, writing
each A ∈ M(n× n) in block form

A =

Ü
a1
1 · · · a1

p

...
. . .

...
ap1 · · · app

ê
, aji : Kmi → Kmj ,

we notice(4) thatDχ(M0)A = Dχ(M0)(a1
1×· · ·×app). Therefore, the corank ofDχ(M0)

is the corank of the differential at M0 of the the restriction of χ to the space of all
M1× · · · ×Mp with Mj ∈ M(mj ×mj). Now, we have seen that this restriction is the
composed map of the submersion χp and the map Mult : MP(m1)× · · ·×MP(mp)→
MP(m1 + · · · + mp). Thus, the corank of Dχ(M0) is that of DMult

(
χp(M0)

)
=

DMult
(
(x − λ1)m1 , . . . , (x − λp)mp

)
. By Theorem 3 (ii), this is indeed the degree of

gcd
(∏

i 6=j(x− λi)mi
)
1≤j≤p =

∏
λ∈σ(M0)

(x− λ)dλ−mλ .

To prove (iii), still assuming that M0 = Jm1
(λ1) × · · · × Jmp(λp), just notice the

following two facts:

— If the corank of Dχ(M0) is greater than 1, then χ is not a (k + 1)–swallowtail
deformation at M0.

— If Dχ(M0) has corank 1, then, by (ii) and Theorem 3 (iii), the map Mult is a (k+

1)–swallowtail at χp(M0) with just the right k. Therefore χ, being the composed
map of Mult with a local submersion, is a (k + 1)–swallowtail deformation at
M0.

Remarks on the real case. — If K = R, it follows from Theorem 3 (iv) that χ is
a (k + 1)–complex swallowtail deformation at M0 when all eigenvalues of M0 are
geometrically simple except one pair {λ, λ̄}, for which λ ∈ C \R, mλ = k and dλ =

k + 1.
This is coherent with the following (maybe not so well-known) Jordan normal form

theorem in the real case: every endomorphism A of a real vector space E of finite
dimension n is conjugate to a block-diagonal endomorphism of

∏r
1 Rmj ×

∏p
r+1 Cmj

of the form Jm1(λ1)× · · · × Jmp(λp), where the λj ’s and the λ̄j ’s are the eigenvalues
of A, real for j ≤ r and nonreal for j > r.

Higher singularites. — It follows from the above arguments that all the singularities
of χ are deformations of singularities of Mult for 2 or more factors. We shall not dwell
on this fact for the time being.

(4) Using the fact that detA is an n–linear function of the columns of A, implying that Dχ(M0)A
is the sum of the determinants of the n matrices obtained each by replacing one column of xI −M0

by the corresponding column of −A.
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C. Singularities of eigenvalues of linear operators

First we will describe several linear spaces, manifolds and maps related to the
Banach space E.

All closed hyperplanes H 3 0 are isomorphic as Banach spaces. We will use the
notation E0 for their common type(5).

Let P(E) be the projective space associated to E, that is, the space of all one-
dimensional linear subspaces of E. Then P(E) has a natural analytic (algebraic)
Banach manifold structure modelled on E0, defined in the usual way—it is a connected
component of the Grassmannian G(E) described in Section D.

Let End(E) be the space of bounded linear operators from E to E. We will denote
the identity operator by 1 and its multiple by a scalar k also by k. If A ∈ End(E) we
denote by σ(A) its spectrum.

More generally, if we have two Banach spaces E1, E2 over K we will denote by
B(E1, E2) the space of continuous linear maps from E1 to E2.

C1. The manifold of proper elements. — The manifold of proper elements of
E is the space

Eig(E) := {(λ, L,A) ∈ K×P(E)× End(E) : A(L) ⊆ L and A|L = λ}.

That is, the space of triples consisting of a linear operator, an invariant line and
the corresponding eigenvalue. The specification of the eigenvalue λ is redundant but
useful, as we shall see.

Theorem 6. — The set Eig(E) is an analytic (algebraic) Banach submanifold of the
manifold K×P(E)× End(E), modelled on End(E).

Proof. — Given (λ0, L0, A0) ∈ Eig(E), choose x ∈ L0 \{0} and a complementary
subspace H of L0. Identifying E = Kx ⊕ H to K × H we can identify each line
L ∈ P(E) transversal to H to the unique h ∈ H satisfying (1, h) ∈ L (6) and write
every operator A ∈ End(E) in matrix form

A↔

(
a b

c d

)
, a ∈ K, b ∈ H∗, c ∈ H, d ∈ End(H)

Hence in particular

A0 =

(
λ0 b0

0 d0

)
.

(5) For E the Hilbert space l2 (or any of the well known Banach spaces from Functional Analysis) E0

is isomorphic to E. However, there are examples of infinite dimensional Banach spaces where this is
not the case [7].
(6) Therefore, L0 corresponds to h = 0.
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In these identifications, the relation (λ, L,A) ∈ Eig(E) reads(
a b

c d

)(
1

h

)
= λ

(
1

h

)
,

that is

(6)
a = λ− bh
c = (λ− d)h.

In other words, the open subset of Eig(E) consisting of those (λ, L,A) such that L is
not contained in H admits the parametrisation

End(E) 3

(
λ b

h d

)
7→

(
λ, h,

(
λ− bh b

(λ− d)h d

))
as the graph of the polynomial map defined by (6).

Corollary. — For (λ0, L0, A0) ∈ Eig(E), there is an analytic function A(λ, L) defined
in a neighborhood of (λ0, L0) such that A(λ0, L0) = A0 and that the nonzero elements
of L are eigenvectors of A(λ, L) with eigenvalue λ.

Proof. — Just take A(λ, h) =

(
λ− b0h b0

(λ− d0)h d0

)
modulo the identifications of the

previous proof.

This function is clearly not unique, and although it is possible from the proof of
the theorem to describe all of them, much more interesting is the question whether
λ, L are analytic functions of the operator A. To present our version of the (classical)
answer, we consider the following geometric reformulation:

Question. — Let Π be the projection from Eig(E) to End(E) which forgets the first
two components. When is it a local diffeomorphism? What are its simplest singulari-
ties?

C2. The Immersion Theorem

Definition. — If λ is an eigenvalue of A ∈ End(E) with eigenvector x and L is the
line generated by x, then A induces an operator Ȧ from the quotient E/L to itself.
We will say that λ is a simple eigenvalue of A if we have λ 6∈ σ(Ȧ).
We call λ a geometrically simple eigenvalue of A if

(i) the corresponding eigenspace is a line (i.e. dim Ker(A− λ) = 1) and,
(ii) the image of the operator λ−A is a direct factor(7).

We call λ a geometrically simple eigenvalue of A of (finite) multiplicity k ≥ 1 if

(7) Meaning that it is closed and admits a closed complementary subspace.
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dim Ker(A − λ)k = k, and λ is not in the spectrum of the endomorphism of the
quotient E/Ker(A− λ)k induced by A.
Let

Val(E) := {(λ,A) ∈ K× End(E) : λ is an eigenvalue of A}.

Theorem 7. — Let j : Eig(E)→ K×End(E) be defined by j(λ, L,A) := (λ,A), hence
j
(
Eig(E)

)
= Val(E).

(i) The map j is an immersion in the neighbourhood of (λ0, L0, A0) ∈ Eig(E) if,
and only if, λ0 is a geometrically simple eigenvalue of A0.

(ii) The set of those (λ,A) ∈ Val(E) where λ is a geometrically simple eigenvalue
of A with finite multiplicity is a manifold modelled on End(E).

Proof. — (i) In terms of the parametrization of Eig(E) introduced in the proof of
Theorem 6, j is the map

j :

(
λ b

h d

)
7−→

(
λ,

(
λ− bh b

(λ− d)h d

))
,

(λ0, L0, A0) and A0 being identified to the same matrix

(7) A0 =

(
λ0 b0

0 d0

)
.

Therefore, the derivative of j at (λ0, L0, A0) is the map

(8) Dj(λ0, L0, A0) :

(
λ b

h d

)
7−→

(
λ,

(
λ− b0h b

(λ0 − d0)h d

))
,

which vanishes if and only if λ = 0, b = 0, d = 0 and

(9) b0h = 0 , (λ0 − d0)h = 0.

As (9) writes (
λ0 b0

0 d0

)(
0

h

)
= λ0

(
0

h

)
,

we have(8) KerDj(λ0, L0, A0) 6= {0} if and only if A0v = λ0v for some v 6∈ L0. From
this (i) follows for dimE <∞. In infinite dimensions, we have to check that, moreover,
the image of Dj(λ0, L0, A0) is a direct factor if and only if so is the image of λ0−A0.
Now, by (7)–(8), this amounts to proving that the image of(

λ

h

)
7−→

(
λ,

(
λ− b0h

(λ0 − d0)h

))

(8) Recall that, in our parametrization, L0 is generated by

Å
1

0

ã
.
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is a direct factor in K× E if and only if the image of(
λ

h

)
7−→

(
−b0h

(λ0 − d0)h

)

is a direct factor in E. In other words, setting e :=

(
1,

(
1

0

))
, we should prove

that Ke ⊕
(
{0} × Im(λ0 − A0)

)
has a closed complement S in K × E if and only if

Im(λ0 − A0) has a closed complement S0 in E, which is obvious: take S = {0} × S0

to get the “if” part and {0} × S0 = ({0} × E) ∩ (Ke⊕ S) to obtain the converse.

(ii) Given (λ0, L0, A0) ∈ Eig(E), we should prove that if λ0 is a simple eigenvalue
of A0 of finite multiplicity k then, near (λ0, A0), the subset Val(E) consists solely of
the image by j of a neighbourhood of (λ0, L0, A0), a consequence of the following

Lemma. — For each sequence (λn, Ln, An)n≥1 in Eig(E) such that (λn, An) converges
to (λ0, A0), the line Ln tends to L0 when n→∞.

Proof. — For dimE <∞, the projective space P(E) is compact and every convergent
subsequence of (Ln) must tend to a line L invariant by A0 = limAn and such that
A0|L = limλn = λ0, hence L = L0, proving the lemma.

When E is infinite dimensional, the subspace K0 := Ker(λ0−A0)k admits an A0–
invariant closed complement S by the Hahn-Banach theorem. Identifying E = K0⊕S

to K0 × S, we can write An =

(
αn βn

γn δn

)
with αn ∈ End(K0), βn ∈ B(S,K0),

γn ∈ B(K0, S), δn ∈ End(S) for all n ∈ N and, as K0 is A0–invariant, γ0 = 0 and
λ0 6∈ σ(δ0). For n ≥ 1, choose a generator un = (vn, wn) of Ln with |un| = 1. The
S–component of the relation (λn −An)un = 0 reads

(10) − γnvn + (λn − δn)wn = 0.

Now, as λ0 − δ0 is invertible, so is λn − δn for large enough n. Therefore, (10) can be
written

(11) wn = (λn − δn)−1γnvn,

hence in particular

(12) lim
n→∞

wn = 0

since vn is bounded, lim(λn − δn)−1 = (λ0 − δ0)−1 and lim γn = γ0 = 0. By (11), for
large enough n, the K0–component of the relation (λn −An)un = 0 becomes

(13)
(
(λn − αn) + βn(λn − δn)−1γn

)
vn = 0.

By (12), |vn| tends to 1 when n → ∞. Therefore, for large enough n, the vector vn
generates a line L′n ⊂ K0 and, by (13), the hypotheses of the finite dimensional case
are satisfied by the sequence (0, L′n, A

′
n) ∈ Eig(K0) defined by the formula A′n :=

(λn − αn) + βn(λn − δn)−1γn, as limA′n = λ0 − α0. It follows that the line L′n tends
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to the one-dimensional kernel of λ0 − α0, namely L0. Therefore, by (12), we do have
limLn = limL′n = L0.

Remark. — Let π : Val(E)→ End(E) be the natural map, induced by the projection
K×End(E)→ End(E). When λ is geometrically simple this map is diffeomorphic to
the natural map Π : Eig(E)→ End(E) via the local diffeomorphism Eig(E) ≈ Val(E)

defined by j.
The singularities of Val(E) might be of some interest. In the finite dimensional

case, Val(E) is an algebraic subset, given by the equation χ(A)(λ) = 0, whose regular
part contains the points with geometrically simple eigenvalue. Near each such regular
point, it can be proven that χ̃ : (λ,A) 7→

(
λ, χ(A)

)
is a submersion of Val(E) into

Root(n) (see Example 1c).

C3. Singularities of eigenvalues

Theorem 8. — Let Π : Eig(E)→ End(E) be the natural map (λ, L,A) 7→ A.

(i) The map Π is a local diffeomorphism near (λ0, L0, A0) ∈ Eig(E) if, and only if,
λ0 is a simple eigenvalue of A0.

(ii) The dimension of the kernel of DΠ(λ0, L0, A0) equals the dimension of the kernel
of λ0 − Ȧ0.

(iii) The map Π is a k–swallowtail at (λ0, L0, A0) if (and, for dimE < ∞, only if)
λ0 is a geometrically simple eigenvalue of A0 with mutiplicity k.

Proof. — In terms of the parametrization of Eig(E) introduced in the proof of The-
orem 6, Π is the map

Π :

(
λ b

h d

)
7−→

(
λ− bh b

(λ− d)h d

)
and (λ0, L0, A0) identifies to the matrix

A0 =

(
λ0 b0

0 d0

)
Therefore, the derivative of Π at (λ0, L0, A0) is

DΠ(λ0, L0, A0) :

(
λ b

h d

)
7−→

(
λ− b0h b

(λ0 − d0)h d

)
,

which is an isomorphism if, and only if, λ0−d0 is an automorphism ofH, i.e. λ0 6∈ σ(d0)

or, equivalently, λ0 6∈ σ(Ȧ0). By the Inverse Function Theorem in Banach spaces this
condition is equivalent to Π being a local diffeomorphism in the neighborhood of
(λ0, L0, A0).

The same argument proves (ii).
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Proof of the “if ” part of (iii) when dimE = k. — We can assume that λ0 = 0 and
A0 = Jk(0). Then, we have a commutative diagram

Val(Kk)
χ̃→ Root(k)

↓ π ↓ π̄
End(Kk)

χ→ MP(k)

where π : (λ,A) 7→ A equals Π up to the local diffeomorphism j near
(
0, Jk(0)

)
and

π̄ : (λ, P ) 7→ P is a k–swallowtail by example 1c of section A. The map χ is a local
submersion since it admits the local section Comp (see the proof of Theorem 3), and
so is χ̃ : (λ,A) 7→

(
λ, χ(A)

)
since it admits the local section (λ, P ) 7→

(
λ,Comp(P )

)
.

In particular, the (algebraic) fiber

F := χ−1(xk) ⊂ End(Kk)

is a submanifold near Jk(0) and so is

χ̃−1(0, xk) = {0} × F ≈ F

near
(
0, Jk(0)

)
∈ Val(Kk). As χ is a submersion, there exists a local diffeomorphism

defined near Jk(0) and of the form

End(Kk)
g−→ MP(k)× F

A 7−→
(
χ(A), f(A)

)
such that

f(A) = A for A ∈ F .
It follows at once that, near

(
0, Jk(0)

)
, the map

Val(Kk)
g̃−→ Root(k)× F

(λ,A) 7−→
(
χ̃(A), f(A)

)
is a local diffeomorphism. As the diagram

Val(Kk)
g̃→ Root(k)× F

↓ π ↓ π̄ × Id
End(Kk)

g→ MP(k)× F

is commutative and π̄ is a k–swallowtail, so is π.

Proof of the “if ” part of (iii) in general. — If λ0 is a geometrically simple eigenvalue
of A0 with multiplicity k, we can choose a closed complement F of Ker(λ0−A0)k and
identify Ker(λ0 − A0)k to Kk so that E = Ker(λ0 − A0)k ⊕ F identifies to Kk × F
and

A0 =

(
Jk(λ0) b0

0 d0

)
with b0 ∈ B(F,Kk), d0 ∈ End(F ), λ0 6∈ σ(d0).
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More generally, every A ∈ End(E) writes

A =

(
a b

c d

)
, a ∈ End(Kk), b ∈ B(F,Kk), c ∈ B(Kk, F ), d ∈ End(F ).

Note that the graph of h ∈ B(Kk, F ) is invariant by A if and only if

c+ dh = h(a+ bh)

or, equivalently, if and only if

a = α− bh
c = hα− dh

for some α ∈ End(Kk). The following crucial observation is a particular case of the
proof of Theorem 10 hereafter:

Lemma 1. — The polynomial map(
α b

h d

)
7−→

(
α− bh b

hα− dh d

)

is a local diffeomorphism
(
End(E), A0

)
→
(
End(E), A0

)
.

Proof of Lemma 1 As its derivative at A0 is(
α b

h d

)
7−→

(
α− b0h b

hJk(λ0)− dh d

)
,

we should show that the continuous linear map h 7→ hJk(λ0)− d0h of B(Kk, F ) into
itself is an isomorphism, i.e. that, for each c ∈ B(Kk, F ), the equation hJk(λ0)−d0h =

c or, equivalently, hJk(0) + (λ0 − d0)h = c, which (as we have λ0 6∈ σ(d0)) can be
written

(14) h = (λ0 − d0)−1
(
c− hJk(0)

)
,

has a unique solution. Now, this is obvious since, denoting the canonical basis of Kk

by (e1, . . . , ek), (14) is equivalent to the triangular system

hej =

{
(λ0 − d0)−1cej if j = k

(λ0 − d0)−1(cej − hej+1) for 1 ≤ j < k.

The following result concludes the proof of the “if” part of Theorem 8 (iii):
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Lemma 2. — We have a commutative diagram

Val(Kk)× B(F,Kk)× B(Kk, F )× End(F ) → Val(E)

↓ π × Id× Id× Id ↓ π
End(Kk)× B(F,Kk)× B(Kk, F )× End(F ) → End(E)

(
(λ, α), b, h, d

)
7→

(
λ,

(
α− bh b

hα− dh d

))
↓ ↓

(α, b, h, d)) 7→

(
α− bh b

hα− dh d

)
,

where the horizontal arrows are local diffeomorphisms at
((
λ0, Jk(λ0)

)
, b0, 0, d0

)
and(

Jk(λ0), b0, 0, d0

)
respectively, the right vertical one is diffeomorphic to Π (since λ is

geometrically simple) and the left one is a swallowtail by the particular case E = Kk

already treated.

Proof of Lemma 2 The two things we do not already know are the following:
(a) the upper arrow does send Val(Kk)× B(F,Kk)× B(Kk, F )×End(F ) into Val(E)

(b) it is a local diffeomorphism.

To obtain (a), just notice that

(
α− bh b

hα− dh d

)(
x

hx

)
= λ

(
x

hx

)
if and only if

αx = λx.
By Lemma 1, to get (b), we should show that, for (λ, α, b, h, d) close enough to(

λ0, Jk(λ0), b0, 0, d0

)
, we have

(
α− bh b

hα− dh d

)(
x

y

)
= λ

(
x

y

)
if and only if

αx = λx and y = hx. Now, setting z := y − hx, the first relation reads{
(α− λ)x = bz

h(α− λ)x = (λ− d)z

or, equivalently, {
(α− λ)x = bz

(λ− d− hb)z = 0.

As λ0 − d0 is invertible, so is λ− d− hb for (λ, b, h, d) close enough to (λ0, b0, 0, d0),
in which case our system is equivalent to z = 0 and (α− λ)x = 0, proving Lemma 2.

Proof of the “only if” part of (iii). When the eigenspace associated to λ is not a
line there is (at least) a circle of invariant lines with the same eigenvalue mapping to
the same operator. This cannot happen in a swallowtail, proving our result since we
assume(9) dimE <∞.

(9) Though the result might well be true in general.
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C4. Simple eigenvalues. — Theorem 8 (i) is a version of the following well-known
result:

Corollary. — For (λ0, L0, A0) ∈ Eig(E) the following assertions are equivalent:
(i) There are (necessarily unique) analytic functions λ(A), B(A) defined near A0

such that λ(A0) = λ0, B(A0) = L0 and
(
λ(A), B(A), A

)
∈ Eig(E).

(ii) λ0 is a simple eigenvalue of A0.

Proof. — Just observe that such functions provide a local inverse of Π.

Remarks. — Actually, under the conditions of the corollary there is also an analytic
function v(A) (which is not unique) defined in a neighborhood of A such that v(A) is
an eigenvector of A with eigenvalue λ(A). As we said above, this result is classical and
many proofs have been given of it. For a proof that uses, as we do here, the Implicit
Function Theorem in Banach spaces see for example [3], exercice 14 p. 268. Proofs
using this method have been known for a long time, see for example [9].

Part (iii) of Theorem 8 is related to the usual expansion of the eigenvalue as a
power series on roots of the parameters [8].

In the finite dimensional case, for (λ, L,M) ∈ Eig(Kn) and P = χ(M) we always
have P (λ) = 0, and λ is simple if and only if the derivative P ′(λ) is nonzero. It can
be checked that Simp(λ, L,M) := P ′(λ) equals the Jacobian of Π at (λ, L,M) in the
coordinates introduced in the proof of Theorem 6.

Since at the singularities with higher corank of Π the jacobian determinant is a
singular function (see Appendix A1), it follows that the regular points of the variety
Simp = 0 are precisely the points with a geometrically simple eigenvalue. This regular
set can be still stratified according to the singularity type of Π, i.e. according to the
order of the swallowtails.

In the case of geometrically multiple eigenvalues, we have observed that there is
(at least) a circle of invariant lines with the same eigenvalue mapping to the same
operator. This means that the singularity type is not finite, and is therefore very
degenerate from the viewpoint of singularity theory. Nevertheless, it is a kind of
blow-down map that could be described combining the blow-down singularities of the
map j and some simpler singularities.

The group GL(E) of invertible endomorphisms acts naturally by conjugation on
both Eig(E) and End(E) and the mapping Π is equivariant. Therefore Π maps the
stratification by orbits of the first space into the second one and is some kind of
(partial) resolution of the latter’s singularities.

In the finite dimensional case, Arnold [1] has given a complete description of the
stratification by orbits of M(n × n) which is possible to lift to those of Eig(Kn).

The images of our swallowtail singularities can be observed in the slice around the
corresponding orbit. Although no explicit statement appears it is probable that some
version of our results was known to Arnold.
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D. Singularities of linear operators and invariant subspaces

D1. Grassmannians. — We will denote by G(E) the set of closed linear subspaces
S of E with a closed complement. For each such S and each pair (V,W ) of comple-
mentary closed subspaces of E such that E = S ⊕ W , the subspace S is (in the
identification of E = V ⊕W to V ×W ) the graph of a unique continuous linear map
h = hV,W (S) of V into W .

Proposition. — The charts hV,W make G(E) into an analytic Banach manifold, which
is impure(10) but Hausdorff.

Proof. — The intersection of the domains of two such maps hV,W and hV1,W1
can be

nonempty only if V1 is isomorphic to V and W1 to W . When this is the case, each
v ∈ E writes (x, y) ∈ V ×W in one identification and (x1, y1) ∈ V1×W1 in the other,
and there exists a unique invertible transition matrix

P =

(
a b

c d

)
, a ∈ B(V1, V ) , b ∈ B(W1, V ) , c ∈ B(V1,W ) , d ∈ B(W1,W )

such that the first expression of v is obtained from the second by the formula(
x

y

)
= P

(
x1

y1

)
.

If S ∈ G(E) lies in the domain of both hV,W and hV1,W1 , then h := hV,W (S) and
h1 := hV1,W1

(S) satisfy
c+ dh1 = h (a+ bh1) .

Now, a + bh1 is an isomorphism of V1 onto V , as it is obtained by composing the
isomorphism x1 7→ (x1, h1x1) of V1 onto S and the isomorphism (x, y) 7→ x of S onto
V in the identification of E to V ×W . In other words, the domain of the transition
map hV,W ◦ h−1

V1,W1
is the open subset of B(V1,W1) consisting of those h1 such that

a+ bh1 is an isomorphism, and

hV,W ◦ h−1
V1,W1

(h1) = (c+ dh1) (a+ bh1)
−1
.

To see that G(E) is Hausdorff (which we do not care much about), one can proceeed
as follows:

– If E is a Hilbert space, each S ∈ G(E) can be identified to the orthogonal
projector onto S, yielding a natural embedding of G(E) into End(E). The image
is the smooth real (11) algebraic subset of End(E) defined by the equations P 2 =

(10) Meaning the following: each hV,W applies only to subspaces S isomorphic to V and such that E/S
is isomorphic toW . It follows for example that two subspaces S which do not have the same dimension
or the same codimension lie in different connected components—which have various dimensions when
E is finite dimensional. In particular, the projective space P(E) is a connected component of G(E).
(11) If K = C, the holomorphic manifold G(E) is compact for dimE < ∞ and therefore cannot be
embedded as a holomorphic submanifold of the complex linear space End(E).
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P and (1− P ∗)P + P ∗(1− P ) = 0, where P ∗ denotes the adjoint of P . See [3],
exercice 31 p. 271.

– Otherwise, for each p ∈ E, it is quite easy to prove (using the charts hV,W ) that
the function distp : G(E)→ R defined by

distp(S) = dist(p, S) := inf
q∈S
|q − p|

is continuous. Given distinct elements S, S1 of G(E), exchanging them if neces-
sary, there exists p ∈ S1 \S and we have dist(p, S1) = 0 < D := dist(p, S), hence
two disjoint open subsets dist−1

p (−∞, D/2) ⊃ S1 and dist−1
p (D/2,+∞) ⊃ S.

D2. The manifold of invariant subspaces. — The manifold of invariant sub-
spaces of E is the space

Inv(E) := {(S,A) ∈ G(E)× End(E) : A(S) ⊆ S}.

That is, the space of pairs consisting of a linear operator and an invariant subspace
with a closed complement. Compare with the definition of Eig(E). This manifold
resembles more the manifold Eig(E) (which it contains), than the more complicated
Grassmannian:

Theorem 9. — The subset Inv(E) is an analytic submanifold modelled on End(E).

Proof. — For each chart hV,W , every S ∈ G(E) such that E = S⊕W identifies to the
linear map h = hV,W (S) of which it is the graph in the identification of E = V ⊕W
to V ×W . In this identification, every A ∈ End(E) reads as usual

A =

(
a b

c d

)
, a ∈ End(V ), b ∈ B(W,V ), c ∈ B(V,W ), d ∈ End(W )

and we have (S,A) ∈ Inv(E) if and only if

(15) c+ dh = h(a+ bh)

or, equivalently, if and only if

a = α− bh
c = hα− dh

for some α ∈ End(Kk). In other words:
– The image of the restriction of hV,W×IdEnd(E) to Inv(E) is the smooth algebraic

submanifold of B(V,W ) × End(E) defined by (15), which is the graph c =

h(a+ bh)− dh.
– This graph admits the global parametrization

(16) ΦV,W :

(
α b

h d

)
7−→

(
h,

(
α− bh b

hα− dh d

))
by End(E).

ASTÉRISQUE 323



SOME REGULARITIES AND SINGULARITIES 147

Corollary. — For all (S0, A0) ∈ Inv(E), there is an analytic function A(S) defined in
a neighborhood of (S0) such that A(S0) = A0 and A(S) is an operator with invariant
subspace S.

Proof. — Given any complementary subspace W of V := S0, with the notation of
the above proof, we have

A0 =

(
a0 b0

0 d0

)

and we can take A
(
h−1
V,W (h)

)
:= ϕV,W

(
a0 b0

h d0

)
, where ϕV,W is the second com-

ponent of the parametrization ΦV,W defined by (16).

Again, a more interesting question is whether S is an analytic function of the
operator A. Or, in our terms, whether the map Π of Inv(E) into End(E) which
forgets the first component is a local diffeomorphism.

D3. Simple invariant subspaces. — For (S,A) ∈ Inv(E), let a denote the re-
striction of A to S and Ȧ the induced endomorphism of the quotient E/S.

Proposition and definition. — The following three conditions are equivalent:

(a) We have that σ(a) ∩ σ(Ȧ) = ∅.
(b) The mapping h 7→ ha− Ȧh is an automorphism of B(S,E/S).
(c) The mapping h 7→ hȦ− ah is an automorphism of B(E/S, S).

When they are satisfied, we call S a simple invariant subspace of A (compare with the
definition of a simple eigenvalue).

Equivalence between (a), (b), (c) follows from Proposition B.6 in Appendix B.

Theorem 10. — The restriction Π : Inv(E) → End(E) of the canonical projection
G(E)×End(E)→ End(E) is a local diffeomorphism in the neighborhood of (S0, A0) ∈
Inv(E) if, and only if, S0 is a simple invariant subspace of A0.

Proof. — Given any complementary subspace W of V := S0, we can read everything
in the chart (S,A) 7→ Φ−1

V,W

(
hV,W (S), A

)
. Then, Π is the map(

α b

h d

)
7−→

(
α− bh b

hα− dh d

)
of End(E) into itself and (S0, A0) equals

A0 =

(
a0 b0

0 d0

)
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It follows that

dΠ(S0, A0) :

(
α b

h d

)
7−→

(
α− b0h b

ha0 − d0h d

)
is an isomorphism if, and only if, the mapping h → ha0 − d0h is an automorphism
of B(V,W ). As d0 identifies to Ȧ0, the theorem follows from the Inverse Function
Theorem in Banach spaces and the characterization (b) of simple invariant subspaces.

Theorem 11. — Given (S0, A0) ∈ Inv(E), if S0 is a simple invariant subspace of A0,
then:

(i) The subspace S0 admits a unique A0–invariant closed complement S1, which is
a simple invariant subspace of A0.

(ii) Such a pair of complementary invariant subspaces exists for all A ∈ End(E)

close enough to A0. More precisely, there exists a unique analytic map germ
(V0, V1) :

(
End(E), A0

)
→
(
G(E)2, (S0, S1)

)
such that V0(A) and V1(A) are

complementary A–invariant subspaces.

Proof. — Assertion (ii) clearly follows from (i) and Theorem 10, as V0 and V1 are
the first components of the maps obtained by inverting the local diffeomorphisms(
Inv(E), (S0, A0)

)
→ End(E) and

(
Inv(E), (S1, A0)

)
→ End(E) induced by Π.

To prove (i), denote by W any closed complementary subspace of S0. In the iden-
tification of E = S0 ⊕W to S0 ×W , we can as usual write

A0 =

(
a0 b0

0 d0

)
and notice that S1, if it exists, must be the “graph” {(x, y) ∈ S0 ×W : x = hy} of a
map h ∈ B(W,S0), whose invariance is expressed by the equation

a0h+ b0 = hd0.

Now, as d0 identifies to Ȧ0, the characterization (c) of simple invariant subspaces
implies that this equation has a unique solution h, namely the inverse image of b0 by
the automorphism h 7→ hd0 − a0h of B(W,S0).

D4. Existence of simple invariant subsets. — Under the hypothesis of Theo-
rem 11, in the identification of E = S0 ⊕ S1 to S0 × S1, the operator A0 writes

A0 =

(
a0 0

0 a1

)
and therefore σ(A0) is the disjoint union of σ(a0) and σ(a1) = σ(Ȧ0). In fact, each
decomposition of σ(A) as the disjoint union of two compact subsets yields a unique
decomposition of E as the direct sum of two closed invariant subspaces:
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Theorem 12. — Assume that K = C. If the spectrum of A0 ∈ End(E) is the union of
two disjoint nonempty compact subsets σ0 and σ1, then:
(i) For j = 0, 1, there exists a unique invariant subspace Sj of A0 such that the

spectra of the maps aj ∈ End(Sj) and Ȧj ∈ End(E/Sj) induced by A0 are σj
and σj±1 respectively (in particular, Sj is simple).

(ii) The A0–invariant subspaces S0 and S1 are complementary. Thus, in the identi-
fication of E = S0 ⊕ S1 to S0 × S1,

A0 =

(
a0 0

0 a1

)
.

(iii) Therefore, by Theorem 11, there exist uniquely determined analytic germ Vj :(
End(E), A0

)
→
(
G(E), Sj

)
, j = 0, 1, such that V0(A) and V1(A) are comple-

mentary A–invariant subspaces for each A in their domains.

Definition Under the hypotheses of Theorem 12, we call Sj the invariant subspace
of A0 associated to σj .

Proof of Theorem 12 By Theorem 11, the subspace Sj exists and is unique if and
only if the pair (S0, S1) exists and is unique. Therefore, our problem is the following:

– find a projector(12) P ∈ End(E) such that S0 := ImP and S1 := KerP have the
required properties

– prove that P is unique.

Lemma. — Given a bounded open subset U of C with smooth boundary, containing
σ0 and such that σ1 lies in its exterior, we have the following:
(a) The map P ∈ End(E) defined by

P :=
1

2πi

∫
∂U

(z −A0)−1dz

is a projector.
(b) As P commutes with A0, the complementary subspaces S0 := ImP and S1 :=

KerP are invariant by A0.
(c) Moreover, the maps a0 ∈ End(S0) and a1 ∈ End(S1) induced by A0 satisfy

σ(a0) = σ0 and σ(a1) = σ1.

Proof of the lemma. — We can enlarge U into a bounded open subset U1 of C con-
taining ∂U and σ0 and such that σ1 lies in its exterior. Then(13) P = f(A0), where
the holomorphic function f : C \ ∂U1 → C is given by

f(z) :=

{
1 for z ∈ U1

0 otherwise.

(12) Endomorphism P such that P 2 = P .
(13) See [10], chapter 10 from 10.21 to 10.29, for an account of the beautiful theory sometimes called
holomorphic functional calculus.
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Since f(z)2 = f(z) for all z ∈ C \ ∂U1, we have f(A0)2 = f(A0), hence (a).
As (b) is obvious, let us prove (c). Given λ ∈ C \σ(A0) observe that (A0 − λ)P =

P (A0− λ) equals g(A0), where the holomorphic function g : C \ ∂U1 → C is given by
g(z) = (z − λ)f(z). It follows that
(A) the spectrum of (A0 − λ)P is g

(
σ(A0)

)
= (σ0 − λ) ∪ {0}

(B) similarly, the spectrum of (A0 − λ)(1− P ) is (σ1 − λ) ∪ {0}.
Now, in the identification v 7→ (Pv, v − Pv) of E to S0 × S1, we have

(A0 − λ)P =

(
a0 − λ 0

0 0

)
and A0 − λ =

(
a0 − λ 0

0 a1 − λ

)
,

hence, by (A)–(B),

(σ(a0)− λ) ∪ (σ(a1)− λ) = σ(A0 − λ) = (σ0 − λ) ∪ (σ1 − λ)

(σ(a0)− λ) ∪ {0} = σ
(
(A0 − λ)P

)
= (σ0 − λ) ∪ {0}

(σ(a1)− λ) ∪ {0} = σ
(
(A0 − λ)(1− P )

)
= (σ1 − λ) ∪ {0},

implying (c) since λ belongs neither to σ0, nor to σ1.

Proof that P is unique. — Let Q ∈ End(E) be a projector with the required proper-
ties. As ImQ and KerQ = Im(1−Q) are complementary subspaces invariant by A0,
we have, for all v ∈ E,

QA0v + (1−Q)A0v = A0v = A0

(
Qv + (1−Q)v

)
= A0Qv +A0(1−Q)v ,

hence A0Qv = QA0v and therefore

A0Q = QA0.

Identifying E = S0 ⊕ S1 to S0 × S1, we can write

A0 =

(
a0 0

0 a1

)
and Q =

(
q0 b

c q1

)
.

The commutation relation implies that a0b = ba1 and ca0 = a1c, hence b = 0 and
c = 0 by the characterizations (b)–(c) of a simple invariant subspace. It follows that

Q =

(
q0 0

0 q1

)
,

where qj ∈ End(Sj) is a projector which commutes with aj for j = 0, 1. For every
λ ∈ C, we have

σ
(
(A0 − λ)Q

)
= (σ0 − λ) ∪ {0}

since the spectrum of A0 − λ restricted to ImQ is σ0 − λ and Q is not the identity
(otherwise σ1 would be empty). Now, we also have

σ
(
(A0 − λ)Q

)
= σ

(
(a0 − λ)q0

)
∪ σ
(
(a1 − λ)q1

)
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and(14), as aj − λ commutes with qj ,

σ
(
(aj − λ)qj

)
⊂ σ(aj − λ)σ(qj) = (σj − λ)σ(qj) ⊂ (σj − λ) ∪ {0}.

It follows that we must have σ
(
(a1−λ)q1

)
= {0} for every λ and therefore σ(q1) = 0,

hence q1 = 0 since q1 is a projector, yielding

ImQ ⊂ S0.

Replacing Q by 1−Q in this argument, we obtain the inclusion

Im(1−Q) ⊂ S1.

As E = S0 ⊕ S1 = ImQ⊕ Im(1−Q), it follows that ImQ = S0 and Im(1−Q) = S1,
hence Q = P .

Remarks. — Instead of deducing part (iii) of the theorem from the inverse function
theorem, one can use directly the observation that, for A close enough to A0, the
formula

P (A) :=
1

2πi

∫
∂U

(z −A)−1dz

defines a projector. As it depends analytically on A, so do its image V0(A) and its
kernel V1(A), which are invariant by A since P (A)A = AP (A). This type of proof (and
the result) are well-known, although it must be said that in the standard reference
on the subject ([8], Chapter IV, Section 4, Theorem 3.16) the result is obscured by
unnecessary “additional” hypotheses.

Of course, Theorem 12 enables us to associate to every decomposition of σ(A0)

as the union of finitely many mutually disjoint nonempty compact subsets σ1, . . . , σp
the decomposition E = S1 ⊕ · · · ⊕ Sp, where Sj denotes the A0–invariant subspace
associated to σj .

In finite dimensions, we can consider the maximal decomposition of σ(A0) defined
by σj = {λj}, where the λj ’s are the eigenvalues of A0. The subspace Sj is then
called the characteristic subspace of A0 associated to λj . In that case, as mentioned
in the introduction, Theorem 12 (iii) (or, rather, Theorem 10) tells us something which
deserves being better known: every A close enough to A0 admits an invariant subspace
Vj(A) of the same dimension as the characteristic subspace Sj , unique in a suitable
neighborhood of Sj and depending analytically on A even though the eigenvalues do
not and the eigenspaces may explode—for generic A, the subspace Vj(A) is the direct
sum of one-dimensional eigenspaces corresponding to mutually distinct eigenvalues of
A close to λj .

Theorem 13. — Theorem 12 holds if K = R, provided σ0 and (therefore) σ1 are in-
variant by complex conjugation.

(14) See [10], Theorem 11.23.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009



152 M. CHAPERON & S. LÓPEZ DE MEDRANO

Proof. — On the complex Banach space EC := E⊕ iE obtained from E by complex-
ification, there is a conjugation

v + iw 7→ v + iw := v − iw, v, w ∈ E.
Denoting again by A0 the complexified endomorphism v + iw 7→ A0v + iA0w, the
identity

A0z = A0z

implies that the complementary A0–invariant subspaces S0, S1 ⊂ EC obtained from
Theorem 12 satisfy

(17) Sj = Sj .

Indeed, Sj is an A0–invariant subspace of which A0 induces an endomorphism with
spectrum σj = σj , hence (17) since Sj is unique.

It follows that Sj is the complexification of the real A0–invariant subspace Sj ∩E,
that E = (S0 ∩E)⊕ (S1 ∩E) and, of course, that the spectrum of the endomorphism
of Sj ∩ E induced by A0 is σj .

Theorem 14. — If K = R, then, given A0 ∈ End(E):
(i) If σ(A0) ∩R = ∅, there exist a complex Banach space F and an analytic local

map I :
(
End(E), A0

)
→ Iso(E,F )(space of continuous isomorphisms of E onto

F ) such that every I(A)∗A := I(A) ◦ A ◦ I(A)−1 is a C–linear operator whose
spectrum is the intersection σ+(A) of σ(A) with the upper half-plane =z > 0.

(ii) More generally, if σ(A0) ∩C \R is compact(15), there exist Banach spaces S, F
with F complex and an analytic I :

(
End(E), A0

)
→ Iso(E,S × F ) such that

every I(A)∗A is block diagonal a(A) × d(A), the endomorphism d(A) of F is
C–linear, σ

(
a(A)

)
= σ(A) ∩R and σ

(
d(A)

)
= σ+(A).

Proof. — (i) By Theorem 12, applied with σ0 := σ+(A0) to the complexified map
A0C of A0, there is a unique analytic local map P :

(
End(E), A0

)
→ End(EC) such

that
– each P (A) is a projector whose kernel and image are invariant by AC

– the map AC induces endomorphisms of kerP (A) and ImP (A) whose spectra
are σ+(A) and σ+(A) respectively.

The projection v 7→ <v of EC onto E, restricted to ImP (A), is an isomorphism and,
denoting the inverse map by r(A), the map r(A)∗A clearly is the C–linear endomor-
phism of ImP (A) induced by AC. The image of r(A) depends on A but we can make
it constant by composing r(A) with P (A0), as the latter induces an isomorphism of
ImP (A) onto ImP (A0) for A close enough to A0. This proves (i) with F := ImP (A0)

and P (A) := P (A0) ◦ r(A).
(ii) By Theorem 13, applied to A0 with σ0 := σ(A0) ∩R, the same argument as

in the proof of (i) shows that there exist real Banach spaces S, V and an analytic
J :
(
End(E), A0

)
→ Iso(E,S×V ) such that every J(A)∗A has the form a(A)×D(A)

(15) Which is automatically the case for dimE <∞.
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with σ
(
a(A)

)
= σ(A) ∩R and σ

(
D(A)

)
= σ(A) ∩ C \R. Applying (i) to D(A), we

get what we want.

Remark. — This easy complexification result is extremely useful in the theory of
normal forms of dynamical systems.

D5. Singularities of invariant subspaces. — In infinite dimensions, the map
Π : Inv(E) → End(E) can have a very wild singularity at (S0, A0) when S0 is not a
simple invariant subspace of A0. We shall only consider the simplest cases, which do
occur naturally, at least for compact or Fredholm operators and in particular in finite
dimensions.

Theorem 15. — Assume that (S0, A0) ∈ Inv(E) satisfies σ(a0)∩σ(Ȧ0) = {λ0}, where
λ0 is a geometrically simple eigenvalue of A0 of multiplicity k and a simple eigenvalue
of a0 or Ȧ0. Then Π is a k–swallowtail at (S0, A0).

Proof. — Our hypothesis implies that σ(a0) = τ0 ∪ {λ0}, σ(Ȧ0) = τ1 ∪ {λ0} and
σ(A0) = τ0 ∪ {λ0} ∪ τ1, where τ0, τ1 are disjoint compact subsets, which may be
empty and do not contain λ0.

First assume that λ0 is a simple eigenvalue of a0. If τ0 = ∅, our theorem is the “if”
part of Theorem 8 (iii). Otherwise, we proceed as in the proof of Theorem 8 (iii) to
show that the contribution of τ0 (and τ1) to the singularity is trivial.

If λ0 is a simple eigenvalue of Ȧ0, then the contribution of τ0 and τ1 to the sin-
gularity is trivial, which reduces the problem to the case where E = Kk. Then, the
hypotheses of Theorem 8 (iii) are satisfied by the transposed map A∗0 ∈ End(E∗) and
the line S⊥0 , hence our theorem since (A,S) 7→ (A∗, S⊥) is a diffeomorphism of the
open subset of Inv(Kk) associated to hyperplanes S onto Eig(Kk∗), fibered over the
isomorphism A 7→ A∗.

Remark. — For k > 1, the hypotheses of Theorem 15 imply that S0 admits no A0–
invariant complement.

Theorem 16. — Assume that K = R and that (S0, A0) ∈ Inv(E) satisfies
σ(a0) ∩ σ(Ȧ0) = {λ0, λ̄0}, where λ0 ∈ C \R is a geometrically simple eigen-
value of A0 of multiplicity k and a simple eigenvalue of a0 or Ȧ0. Then Π is a
complex k–swallowtail at (S0, A0).

Proof. — As in the proof of Theorem 15, we have that σ(a0) = τ0∪{λ0, λ̄0}, σ(Ȧ0) =

τ1∪{λ0, λ̄0} and σ(A0) = τ0∪{λ0, λ̄0}∪ τ1, where τ0, τ1 are disjoint compact subsets,
invariant by complex conjugation, which may be empty and do not contain λ0. The
contributions of τ0 and τ1 to the singularity are trivial, reducing us to the case where
E = R2k and λ0, λ̄0 are the only (geometrically simple) eigenvalues of A0. Therefore,
our problem is to prove a real version of Theorem 8 (iii) in its simplest case, assuming
that S0 has dimension 2 (if it has codimension 2, the same duality argument as in the
proof of Theorem 15 applies).
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By Theorem 14, there exists an isomorphism I(A) of R2k onto Ck, depending ana-
lytically on A such that I(A)∗A := I(A)◦A◦I(A)−1 is a complex endomorphism of Ck,
that λ0 is the sole, geometrically simple, eigenvalue of P (A0)∗A0 and that P (A0)S0 is
the corresponding complex one-dimensional eigenspace. Applying Theorem 8 (iii) to
I(A)∗A, we do get what we want for A.

APPENDICES

Appendix A

Some Useful Singularities

We will recall in this appendix some simple properties of singularities, especially
of the swallowtail type, and we describe some examples of them that are used in the
main text.

Two function germs f, g : E1, 0 → E2, 0 are called diffeomorphic (16) if there are
local diffeomorphisms ϕ of E1, 0 and ψ of E2, 0 such that g ◦ ϕ = ψ ◦ f .

A singular function germ f : Kn, 0→ Kn, 0 is called good (in the sense of Whitney)
if its jacobian determinant Jf : Kn, 0→ K, 0 is regular at 0.

It is clear that a good map is of corank 1, because if two rows of the jacobian
matrix of f vanish at 0, then the jacobian determinant is at least of order 2 and so
is singular at the origin. In fact, the good function germs are exactly those such that
j1f is transversal to the stratum Σ1 of mappings of corank 1.

Swallowtails. — The standard k–swallowtail is the mapping

SWk : Kk−1 → Kk−1

SWk(a1, . . . , ak−2, u) := (a1, . . . , ak−2, u
k + ak−2u

k−2 + · · ·+ a1u).

In other words, it is the universal unfolding of the map u→ uk.

For us a k–swallowtail will be any map germ between two Banach spaces which is
diffeomorphic to the germ at 0 of a suspension of the standard one, that is, a map of
the form

SWk × Id : Kk−1 × E → Kk−1 × E
for some Banach space E. In other words, it is a versal unfolding of the map u→ uk.

A k–swallowtail has the following properties:
(i) It is a stable map germ of corank 1.
(ii) It is a Morin singularity of type Σ1k .
(iii) It is a good function in the sense of Whitney.

(16) Usually called left-right equivalent.
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Example 1. — The evaluation map

ev : MP(k)×K → MP(k)×K

(P, a) 7→
(
P, P (a)

)
is a k–swallowtail. Indeed, if we restrict (in the souce and target) to the subspace of
polynomials without terms of degree k − 1 and 0 we get the standard k−swallowtail.
For the whole space of monic polynomials we need only put aside those coefficients
by the standard translation procedures: Let

P (x) = xk + ak−1x
k−1 + · · ·+ a1x+ a0

Q(x) := P (x− ak−1/k)

Q0(x) := Q(x)−Q(0).

Then, the map ev factors as:

(P, a) → (Q0, a+ ak−1/k, ak−1, Q(0))

↓ ↓
(P, P (a)) ← (Q0, Q0(a+ ak−1/k), ak−1, Q(0))

and the second vertical arrow is of the form SWk × Id while the two horizontal ones
are diffeomorphisms.

Example 1a. — The evaluation map restricted to polynomials P with ak−1 = 0 is
also a k–swallowtail.

This is because in the above factorization of ev one can eliminate the third com-
ponent from the right-hand spaces.

Example 1b. — The evaluation map restricted to polynomials P with a0 = 0 is also
a k–swallowtail.

This is because in the above factorization of ev one can eliminate the fourth com-
ponent Q(0) from the right-hand spaces since it is determined from the other ones by
the relation 0 = Q0(a+ ak−1/k) +Q(0) (the last expression equals P (0) = a0).

Example 1c. — Let Root(n) = {(a, P ) ∈ K × MP(n) such that P (a) = 0}, which
is diffeomorphic to Kn since the defining equation can be solved for a0. The map
Root(n)→ MP(n) which sends (a, P ) to P is also a k–swallowtail.

This is because, in terms of the natural parametrizations of Root(n) and MP(n)

the above map is given by

(a,Q) 7→
(
a,Q−Q(a)

)
7→ Q−Q(a) ∼=

(
Q,−Q(a)

)
,

where Q(0) = 0, which is diffeomorphic to the evaluation map for polynomials with
a0 = 0 (Example 1b).

Example 2. — The map

(a1, . . . , ak−1, a)→ (aa1, a1 + aa2, a2 + aa3, . . . , ak−2 + aak−1, ak−1 + a)

is a k–swallowtail.
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To see this, take as new coordinates u = −a and the last k − 1 components of the
map:

bi := ai − uai+1)

for i = 1, . . . k−1, where we take ak = 1 (so bk−1 := ak−1−u)). This yields inductively

ak−i = ui +
i∑

j=1

bk−ju
i−j

and therefore

aa1 = −u
(
uk−1 +

k−1∑
j=1

bk−ju
k−1−j

)
= −

(
uk +

k−1∑
j=1

bk−ju
k−j
)

so the mapping is equivalent to

(u, b1, . . . , bk−1)→ (uk + bk−1u
k−1 + · · ·+ b1u, b1, . . . , bk−1)

which is essentially the evaluation map for polynomials with null constant term. As
we have seen in example 1b above, it is a k–swallowtail.

If we put ak−1 = −a on example 2 we get essentially the map:

(a1, . . . , ak−2, a)→ (aa1, a1 + aa2, a2 + aa3, . . . , ak−2 − a2).

As this corresponds to making bk−1 = 0 in the new coordinates, it is diffeomorphic
to the standard k–swallowtail. This shows that every swallowtail can be given by
polynomial functions of degree 2.

Complex Swallowtails. — The complex swallowtail

SWk : Ck−1 → Ck−1

can be considered as a real mapping

SWk : R2k−2 → R2k−2

which we will call the standard complex swallowtail and by a complex swallowtail we
will mean any map diffeomorphic to one of its real suspensions. For example, the
standard 2-swallowtail is the real map (x, y) 7→ (x2 − y2, 2xy).

The complex swallowtails are not stable as real maps. In fact they are very de-
generate since their singular set is of codimension 2 and can explode into a subset of
codimension 1 (for k > 2, in uncountably many ways).

Swallowtail deformations. — A k–swallowtail deformation is any map germ between
two Banach spaces which is diffeomorphic to the germ at 0 of a map

G : E × E′ → E

such that G(x, 0) is a k–swallowtail, where E,E′ are Banach spaces. The stability of
the swallowtail implies that any k–swallowtail deformation is diffeomorphic to a simple
form, essentially a k–swallowtail with coefficients that depend on the parameters.

A k-swallowtail has always corank 1 at its singular points. However, observe that,
in a k–swallowtail deformation, the derivative with respect to the parameters may add
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the missing direction in the image of the derivative, in which case it is a submersion
(this is due to the fact that we are thinking of it as a mapping where variables and
parameters are not to be distinguished). Thus a k–swallowtail deformation can have
corank 0 or 1.

The first case of a k–swallowtail deformation in our work corresponds to a double
eigenvalue. In this case the map χ is

(a, b, c, d)→ (a+ d, ad− bc)

which is easily seen to be diffeomorphic to

(a, b, c, d)→ (a, d2 + bc)

This is a stable map, being the suspension of a Morse funcion.

Appendix B
Some useful facts about Banach spaces

We denote by E,F two Banach spaces over K = R or C and by B(E,F ) the space
of continuous linear maps of E into F .

Proposition B.1. — For A ∈ B(E,F ), the following properties are equivalent:
(i) The map A is injective and its image ImA is closed, in which case we call A an

embedding.
(ii) There exists c > 0 such that c|Ax| ≥ |x| for all x ∈ E.
(iii) There does not exist any sequence (xn) in E such that |xn| = 1 for all n and

limn→∞Axn = 0.

Proof. — By the open mapping theorem, if (i) holds, then A induces an isomorphism
A1 of E onto ImA and A−1

1 ◦ A = IdE , hence (iii) since limn→∞Axn = 0 implies
limn→∞ xn = A−1

1 limn→∞Axn = 0.
If (ii) does not hold, there is a sequence (yn) in E satisfying |yn| > n|Ayn| for

all n and therefore the sequence xn := yn/|yn| is such that |xn| = 1 for all n and
limn→∞Axn = 0, proving that (iii) implies (ii).

Finally, assuming (ii), the linear map A is clearly injective. Moreover, any sequence
(xn) in E such that Axn converges to some y satisfies |xn − xp| ≤ c|A(xn − xp)| =

c|Axn −Axp| and therefore is Cauchy. It follows that (xn) converges to some x ∈ E,
which must satisfy Ax = A limxn = limAxn = y, proving that ImA is closed and
therefore that (ii) implies (i).

Corollary B.2. — The set of all embeddings A ∈ B(E,F ) is open.

Proof. — By Proposition B.1 (ii), the embeddings are exactly those A such that
|Ax|/|x| is bounded below by a positive constant on E \{0}.

Proposition B.3. — Given A ∈ B(E,F ), let A∗ ∈ B(F ∗, E∗) denote the adjoint map
q 7→ q ◦A (also called transposed map).
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(i) The map A∗ is injective if and only if ImA is dense.
(ii) The subspace A∗F ∗ is closed if and only if ImA is closed.
(iii) In particular, A∗ is an embedding if and only if A is onto.
(iv) The map A∗ is onto if and only if A is an embedding.

Proof. — As A∗q(x) = q(Ax) for all x ∈ E, the kernel of A∗ is the set (ImA)⊥ of
those q which vanish on the image of A, hence (i). Assertion (ii) is Theorem 4.14 of
[10], and (iii) follows at once from (i)–(ii).

Let us prove (iv). Clearly, for each q ∈ F ∗, the function A∗q : v 7→ q(Av) van-
ishes on KerA, hence the inclusion A∗F ∗ ⊂ (KerA)⊥. Therefore, if A∗ is onto, then
(KerA)⊥ = E∗, hence (Hahn-Banach) KerA = {0}, proving that A—which has closed
image by (ii)—is an embedding. Conversely, if A is an embedding, then it induces an
isomorphism A1 of E onto ImA. For each p ∈ E∗, the map q := p◦A−1

1 ∈ (ImA)∗ can
be extended (Hahn-Banach) to a mapQ ∈ F ∗, which satisfies A∗Q = Q◦A = q◦A = p,
proving that A∗ is onto.

Corollary B.4. — The set of all surjective A ∈ B(E,F ) is open.

Proof. — As the linear map A 7→ A∗ of B(E,F ) into B(F ∗, E∗) is continuous (iso-
metric), this follows at once from Proposition B.3 and Corollary B.2.

Proposition B.5. — The subset of B(E,F ) consisting of those A which are onto but
not embeddings is open, and so is the subset consisting of those embeddings which are
not onto.

Proof. — By Proposition B.3 (iii)–(iv) and the fact that A 7→ A∗ is continuous, we
just have to prove the second assertion. Given an embedding A which is not onto and
y ∈ F \ ImA, the distance 2D from y to the closed subset ImA is positive, that is

(18) |Ax− y| ≥ 2D > 0 for all x ∈ E

and, by Proposition B.1, there exists C > 0 such that

(19) |Ax| > C|x| for all x ∈ E.

We claim that every B = A + u ∈ B(E,F ) close enough to A is an embedding and
satisfies

(20) |Bx− y| ≥ D > 0 for all x ∈ E,

proving our result. Indeed, (19) implies the inequality

|Bx| = |Ax+ ux| ≥ |Ax| − |ux| ≥ (C − |u|)|x|,

proving that B is an embedding for |u| < C and implying

|Bx− y| ≥ |Bx| − |y| ≥ (C − |u|)|x| − |y|,

which shows that (20) holds for

|u| < C and |x| ≥ D + |y|
C − |u|

.
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Therefore, all we have to prove is that it holds for small enough |u| < C when x

satisfies |x| ≤ D+|y|
C−|u| . Now, this is clear as we then have

|Bx− y| = |Ax+ ux− y| ≥ |Ax− y| − |ux| ≥ 2D − |u|D + |y|
C − |u|

by (18).

Proposition B.6. — Given two Banach spaces S, F and endomorphisms a, d of S and
F respectively, the spectrum of the endomorphism a∗ − d∗ : h 7→ ha − dh of B(S, F )

is σ(a)− σ(d) := {λ− µ : λ ∈ σ(a), µ ∈ σ(d)}.

Proof. — Our endomorphism is the sum of the two commuting endomorphisms a∗ :

u 7→ ua and −d∗ : u 7→ −du. Now, a classical application of the Gel’fand transform
([10], Theorem 11.23) is that if two elements of a Banach algebra with unit(17) com-
mute, the spectrum of their sum is included in the sum of their spectra. As, clearly,
σ(a∗) = σ(a) and σ(d∗) = σ(d), we get the inclusion

σ(a∗ − d∗) ⊂ σ(a)− σ(d).

Alternatively, one can use the holomorphic functional calculus to verify that, if
σ(a) ∩ σ(d) = ∅ then the mapping

k 7−→ 1

2πi

∫
∂U

(ζI − d)−1k(ζI − a)−1dζ

(where U is a bounded open subset of C with smooth boundary, containing σ(a) only,
cf. subsection D4) is the inverse of a∗ − d∗ and then use this particular case to prove
the above inclusion.

There remains to prove that we have λ − µ ∈ σ(a∗ − d∗) for all λ ∈ σ(a) and
µ ∈ σ(d). Replacing a by a− λ and d by d−µ, this amounts to proving the following

Lemma. — If neither a, nor d is invertible, then a∗ − d∗ is not invertible.

Indeed(18), there are four possible situations:
– If a is not onto and d is not an embedding, then by Propositions B.1 and B.3 (iii),

there exist a sequence yn in F and a sequence pn in S∗ with |yn| = |pn| = 1

such that pna and dyn converge to 0. The sequence un in B(S, F ) defined by
un(v) = pn(v)yn satisfies |un| = 1 and lim(a∗− d∗)un = 0, proving that a∗− d∗
is not an embedding.

– Similarly, if a is not an embedding and d is not onto, there exist a sequence xn in
S and a sequence qn in F ∗ with |xn| = |qn| = 1 such that qnd and axn converge
to 0. It follows that the sequence ϕn in B(S, F )∗ defined by ϕn(u) := qnuxn
satisfies |ϕn| = 1 and limϕn(a∗ − d∗) = 0, proving that a∗ − d∗ is not onto.

(17) In our case, End (B(S, F )) .
(18) We are indebted to Georges Skandalis for what follows.
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– If both a and d are non-surjective embeddings, it follows from Proposition B.5
that the set of those λ ∈ C such that both a − λ and b − λ are non-surjective
embeddings is open. Going to the boundary, one of the maps a − λ and b − λ
is not an embedding, and the other one is not onto by Corollary B.4. Thus,
replacing a, d by a− λ, d− λ, we are in one of the previous two cases.

– Similarly, if both a and d are non-injective but onto, the set of those λ ∈ C such
that both a−λ and b−λ are non-injective but onto is open by Proposition B.5.
Going to the boundary, we are again in one of the previous first two cases:
indeed, one of the maps a− λ and b− λ is not onto and the other one is not an
embedding by Corollary B.2.
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