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SEMI-CLASSICAL LIMIT OF THE LOWEST EIGENVALUE
OF A SCHRÖDINGER OPERATOR ON A WIENER SPACE:

I. UNBOUNDED ONE PARTICLE HAMILTONIANS

by

Shigeki Aida

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — We study a semi-classical limit of the lowest eigenvalue of a Schrödinger
operator on a Wiener space. The Schrödinger operator is a perturbation of the sec-
ond quantization operator of an unbounded self-adjoint operator by a C3-potential
function. This result is an extension of [1].

Résumé (Limite semi-classique de la plus petite valeur propre d’un opérateur de Schrödinger sur
l’espace de Wiener: cas d’un Hamiltonien non borné à une particule.)

Nous étudions le comportement semi-classique de la plus petite valeur propre
d’un opérateur de Schrödinger sur l’espace de Wiener. L’opérateur de Schrödinger
est obtenu par perturbation de l’opérateur de seconde quantification associé à un
opérateur non-borné autoadjoint donné par un potentiel C3. Ce résultat est une
extension de [1].

1. Introduction

In [1], we studied the semi-classical limit of the lowest eigenvalue of Schrödinger
operators which are perturbations of the number operator. In that case, one particle
Hamiltonian (the coefficient operator of the second order differential operator) is
identity operator. However, we need to study the case where the coefficient operator
is unbounded to study P (φ)-type Hamiltonians. For example, the typical coefficient
operator is

√
m2 −∆, where m > 0 and ∆ is the Laplace-Bertlami operator on R.

In this paper, we study the asymptotics of the lowest eigenvalue of a Schrödinger
operator in the case where the coefficient operator is unbounded linear operator and
the potential function is C3. In P (φ)-type model cases, the potential functions are
defined by using a renormalization and they are not continuous. In [2], we studied
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2 S. AIDA

Schrödinger operators on path spaces over Riemannian manifolds. In that case, the
differential operators are variable coefficient ones and the coefficient operators are not
bounded linear because they contain stochastic integrals. Moreover, the dependence on
the path of the coefficients are discontinuous in the natural topology. The discontinuity
comes from the discontinuity of solutions of stochastic differential equations as a
functional of Brownian motion. Thus, we need to consider two kind of discontinuity
for potential functions and coefficient operators in that case. But, the difficulties are
different from that of the P (φ)-type potentials. We will study semi-classical limit of
the lowest eigenvalue of a P (φ)2-Hamiltonian on a finite interval in [3].

2. Preliminaries

Let (W,H, µ) be an abstract Wiener space. That is,

(i) H is a separable Hilbert space and W is a separable Banach space. Moreover
H is continuously and densely embedded into W ,

(ii) µ is the unique Gaussian measure on W such that for any ϕ ∈W ∗,∫
W

e
√
−1ϕ(w)dµ(w) = e−

1
2‖ϕ‖

2
H .

Here we use the natural inclusion and the identification by the Riesz theorem
W ∗ ⊂ H∗ ' H.

In this paper, we assume that W is a Hilbert space. This is equivalent to that
there exists a positive self-adjoint trace class operator S such that W is a completion
of H with respect to the Hilbert norm ‖

√
Sh‖H . That is, ‖h‖W = ‖

√
Sh‖H for all

h ∈ H. We denote the sets of bounded linear operators, Hilbert-Schmidt operators,
trace class operators on H by L(H), L1(H), L2(H). Also we denote their operator
norms, trace norms, Hilbert-Schmidt norms by ‖ ‖, ‖ ‖1, ‖ ‖2, respectively. For λ > 0,
we define the new measure µλ on W by µλ(E) = µ

Ä√
λE

ä
(E ⊂W ). Now we define

our Schrödinger operators.

Definition 2.1. — Let A be a strictly positive self-adjoint operator on H. That is,
we assume that inf σ(A) > 0, where σ(A) denotes the spectral set of A. We de-
note cA = inf σ(A2). We denote by FC∞A (W ) the space of all smooth cylindrical
functions f(w) = F (ϕ1(w), . . . , ϕn(w)) (F ∈ C∞b (Rn), ϕi ∈ W ∗ ∩n∈N D(An)). For
such a f , we define Df(w) =

∑n
i=1 ∂iF (w)ϕi ∈ H. Here we use the identifica-

tion ϕi ∈ W ∗ ⊂ H∗ ' H and ∂iF (w) denotes the partial derivative with respect
to the i-th variable. Moreover we define DAf(w) =

∑n
i=1 ∂iF (w)Aϕi. We define a

Dirichlet form on L2(W,dµλ) by Eλ,A(f, f) =
∫
W
‖DAf(w)‖2Hdµλ(w). −Lλ,A de-

notes the generator. Let V be a real-valued measurable function on W such that
V ∈ ∩λ>0L

1(W,µλ). Under the assumption that for all λ > 0, Eλ,A,V (f, f) =
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SEMI-CLASSICAL LIMIT 3

Eλ,A(f, f) +
∫
W
λ2V (w)f(w)2dµλ(w) (f ∈ FC∞A (W )) is a lower bounded symmet-

ric form, we denote the generator of the smallest closed extension by −Lλ,A,V . Also
let E0(λ,A, V ) = inf σ(−Lλ,A,V ).

Remark 2.2. — (1) −Lλ,A can be viewed as the second quantization of A2 on H. Let
H = H1/2(R) be the Hilbert space with the norm ‖h‖2H =

∫
R |(m

2 −∆)1/4h(x)|2dx,
where m > 0. Consider A = (m2−∆)1/4 on H. In this case, −L1,A is the time 0 field
free Hamiltonian in P (φ)2-model. However note that −L1,A is usually identified with
the second quantization of

√
m2 −∆ on H∗ = H−1/2(R). See also Example 3.3.

(2) In [1, 5], the Schrödinger operator with semi-classical parameter λ is defined in
a different way. Let Vλ(w) = λV

Ä
w√
λ

ä
. The semi-classical limit of −L1,A + Vλ on

L2(W,dµ) is studied in the above papers. However note that this operator is unitarily
equivalent to −Lλ,A,V /λ on L2(W,µλ). We adopt the similar definition to −Lλ,A,V in
the case of Schrödinger operators on path spaces over Riemannian manifolds because
the scaling w/

√
λ can not defined on the curved spaces but the measure corresponding

to µλ can be defined on curves spaces too. See Remark 5.3 in [1] and [2].

Let us introduce the following assumptions on potential functions of Schrödinger
operators.

Assumption 2.3. — The following assumptions (A1), (A2) are standard in semi-
classical analysis. (A4) assures that the symmetric form Eλ,A,V is bounded from
below by Corollary 2.8 (2). Note that (A5) implies that A is an unbounded operator.

(A1) V is a C2-function on H. Let U(h) = 1
4‖Ah‖

2
H + V (h) (h ∈ D(A)). Then

minh∈D(A) U(h) = 0 and the zero point set is a finite set N = {h1, . . . , hn}.
(A2) 1

2D
2U(hi) = 1

4A
2 +Ki is a strictly positive self-adjoint operator on H, where

Ki = 1
2D

2V (hi) ∈ L(H,H).
(A3) V can be extended to a C3-function onW such that for any R > 0 and 0 ≤ k ≤ 3

sup
{
‖DkV (w)‖L(W×···×W,R) | ‖w‖W ≤ R

}
≤ C(R) <∞.

(A4) V can be extended to a continuous function on W and there exists p > 1 such
that

lim sup
λ→∞

λ−1 log

∫
W

e
− 2pλ
cA

V (w)
dµλ(w) <∞,

(A5) There exists γ0 > 1 such that A−γ0 ∈ L2(H).

For r > 0 and z ∈ W,k ∈ H, we denote Br(z) = {w ∈W | ‖w − z‖W ≤ r} and
Br,H(k) = {h ∈ H | ‖h− k‖H ≤ r}.

Lemma 2.4. — (1) Suppose that (A4) holds or inf{V (h) | h ∈ H} > −∞. Then we
have lim

‖h‖H→∞

(cA
4
‖h‖2H + V (h)

)
= +∞.
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4 S. AIDA

(2) Assume (A1), the same assumptions in (1) and for any L > 0, sup{|V (h)| | ‖h‖H ≤
L} <∞. Then for any ε > 0,

κ(ε) := inf {U(h) | h ∈ {∪ni=1Bε(hi)}
c} > 0.

Proof. — (1) If inf{V (h) | h ∈ H} > −∞, the statement is trivial. We assume (A4).
Let C be a positive number such that lim supλ→∞ λ−1 log

∫
W
e
− 2pλ
cA

V
dµλ < C. Take

R > 0. Then for sufficiently large λ, we have

1

λ
log

∫
W

exp

Å
−2pλ

cA
(R ∧ V (w) ∨ (−R))

ã
dµλ(w)

≤ 1

λ
log

Å∫
W

Å
e
− 2pλ
cA

R
+ exp

Å
−2pλ

cA
(V (w) ∨ (−R))

ã
dµλ(w)

ãã
≤ 1

λ
log
(
eλC + e

− 2pλ
cA

R
)
≤ C +

log 2

λ
.

By the Large deviation estimate, we have

sup
h

Å
−1

2
‖h‖2H −

2p

cA
((−R) ∨ V (h) ∧R)

ã
≤ C.

Since R is an arbitrary number, we get

−cA
4
‖h‖2H − pV (h) ≤ C · cA

2
for all h ∈ H.

Suppose that there exists {hn} such that ‖hn‖H →∞ and
supn

(
cA
4 ‖hn‖

2
H + V (hn)

)
=: l < +∞. Then limn→∞ V (hn) = −∞. Hence

cA
4
‖hn‖2H + pV (hn) =

cA
4
‖hn‖2H + V (hn) + (p− 1)V (hn) ≤ l+ (p− 1)V (hn)→ −∞.

This is a contradiction. So we are done.
(2) By the result in (1), we need to prove that for sufficiently large positive number L,

inf{U(h) | h ∈ BL,H(0) ∩ (∪ni=1Bε(hi))
c} > 0.

Suppose that there exists {ϕl} ⊂ BL,H(0)∩ (∪ni=1Bε(hi))
c such that liml→∞ U(ϕl) =

0. By the assumption, there exists a subsequence {ϕl(i)} which converges to a certain
element ϕ∞ ∈ H weakly. Since 1

4‖Aϕl(i)‖
2
H = U(ϕl(i))−V (ϕl(i)), supi ‖Aϕl(i)‖H <∞

holds. Hence again by choosing a subsequence {ϕp(i)}, Aϕp(i) also converges to some
φ∞ weakly. By the Banach-Saks theorem, we see that ϕ∞ ∈ D(A) and Aϕ∞ = φ∞. On
the other hand, since the embedding H ⊂W is compact, limi→∞ ‖ϕp(i)−ϕ∞‖W = 0

which implies limi→∞ V (ϕp(i)) = V (ϕ∞). Since ‖Aϕ∞‖2H ≤ lim infi→∞ ‖Aϕp(i)‖2H , we
obtain U(ϕ∞) ≤ lim infi→∞ U(ϕp(i)) = 0. This implies ϕ∞ ∈ N and ϕp(i) ∈ Bε(hj)
for some large i and 1 ≤ j ≤ n. This is a contradiction.
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SEMI-CLASSICAL LIMIT 5

Lemma 2.5. — Let A be a strictly positive self-adjoint operator and K be a trace class
self-adjoint operator on H. Assume that A2 + K is also a strictly positive operator.
Then

√
A2 +K −A ∈ L1(H) and∥∥∥√A2 +K −A

∥∥∥
1
≤ ‖K‖1

min
¶

inf σ(
√
A2 +K), inf σ(A)

© .
Proof. — We prove this in three steps: (i) A = I+T and T is a trace class operator,
(ii) A is a bounded linear operator, (iii) General cases.
(i) We denote S1 =

√
A2 +K and S0 = A. Note that S1 − S0 =

√
A2 +K − A

is a trace class operator. We denote the all eigenvalues and corresponding complete
orthonormal system of S1 − S0 by {αn} and {en}. Then

|(Ken, en)| = |
(
(S2

1 − S2
0)en, en

)
|

=
∣∣((S1(S1 − S0) + (S1 − S0)S1 − (S1 − S0)2

)
en, en

)∣∣
= |αn ((S1 + S0)en, en)|
≥ |αn| inf σ(S1 + S0).

This implies that

‖
√
A2 +K −A‖1 =

∞∑
n=1

|αn| ≤
‖K‖1

inf σ(
√
A2 +K +A)

.

(ii) Let {um} be all eigenvectors ofK which is a c.o.n.s. ofH. Set Pmh =
∑m
i=1(h, ui)ui

and Am =
√
PmA2Pm + P⊥m . Then A2

m → A2, Am → A converge strongly. On the
other hand, A2

m+K = Pm(A2 +K)Pm+P⊥m(IH +P⊥mKP
⊥
m)P⊥m . Hence for sufficiently

large m, we have

min
¶

inf σ(
√
A2
m +K), inf σ(Am)

ä
≥ min

Ä
inf σ(

√
A2 +K), 1/2, inf σ(A)

ä
.

Since Am − IH is a trace class operator, by (i),

‖
√
A2
m +K −Am‖1 ≤

‖K‖1
min (inf σ(A2 +K), inf σ(A), 1/2)

.

By taking the limit m→∞, we see that
√
A2 +K −A ∈ L1(H). Therefore again by

the same argument as in (i), we can prove (ii).
(iii) Let χn(x) be a function such that χn(x) = 1 for x ≤ n and χn(x) = 0 for
x > n. Then χn(A) is a projection operator which commutes with A. Let An =

Aχn(A) + (1− χn(A)) and Kn = χn(A)Kχn(A). Then√
A2 +Kn −A =

»
A2χn(A) + χn(A)Kχn(A)−Aχn(A)

=
√
A2
n +Kn −An ∈ L(Im(χn(A)))
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By (ii), we have

‖
√
A2 +Kn −A‖1 ≤ ‖Kn‖1

inf σ
Ä√

A2χn(A) + χn(A)Kχn(A) +Aχn(A)
ä(2.1)

≤ ‖Kn‖1
min

Ä
inf σ(

√
A2 +K), inf σ(A)

ä .
For l > n > m,Ä√

A2
n +Kn −An

ä
−
Ä√

A2
m +Km −Am

ä
=

√
A2 +Kn −

√
A2 +Km

=
»
A2
l +Kn −

»
A2
l +Km.

This and (ii) implies that
√
A2
n +Kn − An converges in the trace norm. It is not

difficult to check that the strong limit is equal to
√
A2 +K − A. Therefore, (2.1)

implies the conclusion.

Proposition 2.6. — Let A be a strictly positive self-adjoint operator. For a trace class
self-adjoint operator K on H and h ∈ D(A2), we set

VK,h(w) =
1

4
‖Ah‖2H −

1

2
(A2h,w) + (K(w − h), w − h) .

We assume that A2 + 4K is a strictly positive self-adjoint operator and AKA can be
extended to a trace class operator. Then Eλ,A,VK,h is a symmetric form bounded from
below and E0(λ,A, VK,h) = λe(A,K) holds, where

(2.2) e(A,K) =
1

2
tr
Ä√

A4 + 4AKA−A2
ä
.

Moreover it is the lowest eigenvalue of −Lλ,A,VK,h and the corresponding normalized
positive eigenfunction is

Ωλ,A,VK,h(w) = det (IH + TK)
1/4

× exp

ß
−λ

4

ÄÄ
A−1{A4 + 4AKA}1/2A−1 − IH

ä
(w − h), (w − h)

ä™
× exp

Å
λ

2
(h,w)− λ

4
‖h‖2H

ã
,

where TK = A−1(
√
A4 + 4AKA−A2)A−1.

Proof. — If A is bounded linear operator, the proof is a straightforward calcu-
lation. Suppose that A is unbounded. Let An and Kn be the operators which
are defined in the proof of (iii) in Lemma 2.5. Then AKnA = AnKnAn. Thus(
A−1{A4 + 4AKnA}1/2A−1 − IH

)
∈ L1(H)∩k D(Ak). Therefore for sufficiently large

n, Ωλ,A,VKn,h ∈ L
2(µλ) and the simple calculation shows that

−Lλ,A,VKn,hΩλ,A,VKn,h = λe(A,Kn)Ωλ,A,VKn,h .
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Letting n→∞, we have

−Lλ,A,VK,hΩλ,A,VK,h = λe(A,K)Ωλ,A,VK,h .

To prove that λe(A,K) = inf σ
(
−Lλ,A,VK,h

)
, we note that for any f ∈ FC∞A (W ), it

holds that

Eλ,A,VK,h(f, f) =

∫
W

‖DA(fΩ−1
λ,A,VK,h

)‖2HΩλ,A,VK,h(w)2dµλ(w)

+ λe(A,K)‖f‖2L2(µλ).

We use the following estimate to prove a lower bound in Lemma 3.4. We refer the
reader to [7, 12, 14] for this estimate.

Theorem 2.7 (NGS estimate). — Let E(f, f) be a closed form on L2(X,m), where
(X, F ,m) is a probability space. Assume that there exists α > 0 such that for any
f ∈ D( E), ∫

X

f(x)2 log
Ä
f(x)2/‖f‖2L2(X,m)

ä
dm(x) ≤ α E(f, f).

Then for any bounded measurable function V , it holds that

(2.3) E(f, f) +

∫
X

V (x)f(x)2dm(x) ≥ − 1

α
log

Å∫
X

e−αV (x)dm(x)

ã
‖f‖2L2(X,m).

The following follows from the above estimate and Gross’s logarithmic Sobolev
inequality [7]: For any f ∈ FC∞I (W ),∫

W

f(w)2 log
Ä
f(w)2/‖f‖2L2(µλ)

ä
dµλ(w) ≤ 2

λ

∫
W

‖Df(w)‖2Hdµλ(w).

Originally NGS(=Nelson, Glimm, Segal) estimate (2.3) was proved by the hyper-
contractivity of the corresponding semigroup. See [14]. Corollary 2.8 (2) is proved
by Lemma 4.5 in [2] which follows from Gross’s log-Sobolev inequalities and finite
dimensional approximations.

Corollary 2.8. — (1) It holds that

E0(λ,A, V ) ≥ −λcA
2

log

Å∫
W

exp

Å
−2λ

cA
V

ã
dµλ(w)

ã
.

(2) Suppose that there exists a Hilbert-Schmidt operator T such that A = I+T . Then

E0(λ,A, V )(2.4)

≥ −λ
2

log

ß∫
W

exp

Å
−2λV (w)− λ : (Tw,w) :µλ −

λ

2
‖Tw‖2H

ã
dµλ(w)

™
+
λ

2
log det (2)(IH + T )− λ

2
tr
(
T 2
)
.
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In (2.4), : (Tw,w) :µλ is defined by the limit limn→∞
{

(PnTPnw,w)− 1
λ trPnTPn

}
,

where Pn is a projection on to a finite dimensional subspace of H such that Pn ↑ IH .
det (2) denotes the Carleman-Fredholm determinant.

3. Results

Theorem 3.1 (Bounded case). — We assume that A is a bounded linear operator and
satisfies the assumptions (A1), (A2), (A3), (A4). Then we have

(3.1) lim
λ→∞

E0(λ,A, V )

λ
= min

1≤i≤n
e(A,Ki).

In the unbounded case, we can prove the following. The assumption is too strong
to cover the P (φ)-type Hamiltonian. We will relax the assumptions and discuss such
a case in a separate paper.

Theorem 3.2 (Unbounded case). — Assume (A5). Let γ ≥ 1 + γ0 and S = A−2γ . Then
AKiA is a trace class operator and (2.2) is well-defined. Furthermore, we assume that
(A1), (A2), (A3), (A4) hold. Then the asymptotics (3.1) holds.

Example 3.3. — Let I = [− l
2 ,

l
2 ] (l > 0) be an interval of R. Let −∆ be the Laplacian

with periodic boundary condition on X = L2(I → R, dx). Let m > 0. For α ∈ R, let
Hα = D((m2 −∆)α/2) and ‖h‖Hα = ‖(m2 −∆)α/2h‖X .
(1) Let H = H1/2. Then for any ε > 0, we can take W = H−ε. Let 0 < ε < 1/2.
Then using the inclusion and the identification H1/2 ⊂ Hε = (H−ε)∗, we can see
that µ satisfies that

∫
W H−ε (w, h)

2
Hε dµ(w) = ‖(m2 − ∆)−1/4h‖2X for h ∈ H. Let

U : X → H1/2 be the natural isometry operator and define A = U(m2 −∆)1/4U−1.
This is a standard example in P (φ)2-model on finite interval. Let P (u) =

∑2M
k=0 aku

k

be a polynomial with real coefficients with a2M > 0. For h ∈ H, Ṽ (h) =
∫
I
P (h(x))dx

is well-defined by the Sobolev embedding theorem. However H−ε is the space of
distribution and P (w(x)) is not defined for w ∈ H−ε. Actually, it should be defined
by
∫
I

: P (w(x)) :µλ dx where : P (w(x)) : denotes the Wick product. However this
is not a smooth function on W = H−ε and cannot be covered by Theorem 3.2. This
will be studied in [3].
(2) Let H = H2. Then µ can be defined on W = H1. For 0 < δ < 1/2, let A =

U(m2 − ∆)
1
2 ( 1

2−δ)U−1, where U is the natural isometry from X to H. Let Q(u) =
1
4m

1−2δu2 + P (u), where P (u) is the polynomial defined in (1). Let {c1, . . . , cn} be
the minimum points of Q and asssume that Q′′(ci) > 0 (1 ≤ i ≤ n). Again let
Ṽ (h) =

∫
I
P (h(x))dx for h ∈ H. Then we see that Ṽ (h)− lminQ can be extended to

a smooth function V (w) on W . Then the zero point set of U(h) = 1
4‖Ah‖

2
H + V (h)

is the set of the constant functions {c1, . . . , cn}. For this V and A, all assumptions in
Theorem 3.2 hold with γ0 = 1 + 4δ

1−2δ and γ = 1 + γ0.
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SEMI-CLASSICAL LIMIT 9

We prove these theorems after preparations. Here we just prove AKiA ∈ L1(H)

under (A5). Since V ∈ C2(W ), there exists a bounded linear operator K̂i on W such
that D2V (hi)(u, v) =

Ä
K̂iu, v

ä
W

for any u, v ∈ W . By the definition of the norm of

W , there exists K̃i ∈ L(H) such that K̂i = AγK̃iA
−γ . Thus for any u, v ∈ H ⊂W ,

D2V (hi)(u, v) =
Ä
K̂iu, v

ä
W

=
Ä
A−γAγK̃iA

−γu,A−γv
ä
H

=
Ä
A−γK̃iA

−γu, v
ä
H
.

This shows Ki = A−γK̃iA
−γ and AKiA = A1−γK̃iA

1−γ . Because γ − 1 ≥ γ0, A1−γ

is a Hilbert-Schmidt operator and this implies AKiA is a trace class operator on H.
In our main theorems, we may assume that cA = 1. Because, if Theorems hold

in the case where cA = 1, then it implies that E0

Ä
λ, A√

cA
, VcA

ä
= e

Ä
A√
cA
, VcA

ä
. This

shows the general cases.
The proof of upper bound is standard. Let χ be a smooth function on R satisfying

0 ≤ χ(x) ≤ 1, χ(x) = 1 for x ∈ [−1, 1] and χ(x) = 0 for |x| ≥ 2. For 2/3 < δ < 1, set

Ω̃λ,A,VKi,hi (w) = ZλΩλ,A,VKi,hi (w)χ
(
λδ‖w − hi‖2W

)
.

Here Zλ is a normalization constant which makes the L2-norm to be equal to 1.
It holds that limλ→∞ Zλ = 1. Since hi is a minimizer of U , for any k ∈ D(A),
1
2 (Ahi, Ak)H +DV (hi)(k) = 0. The fact DV (hi) ∈ H∗ implies that hi ∈ D(A2) and
DV (hi) = − 1

2A
2hi. Using this and by the Taylor expansion, we have

V (w) = V (hi) +DV (hi)(w − hi) + (Ki(w − hi), w − hi)(3.2)

+
1

3!
DV 3(w + θ(w − hi))((w − hi)⊗3)

=
1

4
‖Ahi‖2H −

1

2

(
A2hi, w

)
+ (Ki(w − hi), w − hi) +Rhi(w)

= VKi,hi(w) +Rhi(w).

Here we denote the remainder term by Rhi(w). If χ(λδ‖w − hi‖2W ) 6= 0, then
|Rhi(w)| ≤ Cλ−3δ/2. This and the tail estimate of the Gaussian measure shows that

Eλ,A,V
Ä
Ω̃λ,A,VKi,hi , Ω̃λ,A,VKi,hi

ä
= E0(λ,A,Ki) +O(λ2− 3

2 δ).

This proves the upper bound.
To prove the lower bound estimates, it suffices to prove the following Lemma 3.4.

Let R be a sufficiently large positive number. Set χi,R(w) = χ
(
R‖w − hi‖2W

)
(1 ≤

i ≤ n) and χ0,R(w) =
√

1−
∑n
i=1 χi,R(w)2.

Lemma 3.4. — Let us assume that the conditions of either Theorem 3.1 or Theo-
rem 3.2 hold.
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(1)There exists a constant C > 0 such that for all i, χi,R ∈ D(DA) and
‖DAχi,R(w)‖2H ≤ CR µλ-a.e. w. Moreover it holds that

Eλ,A,V (f, f)(3.3)

=
n∑
i=0

Eλ,A,V (fχi,R, fχi,R)−
n∑
i=0

∫
W

‖DAχi,R(w)‖2Hf(w)2dµλ(w).

(2) For 1 ≤ i ≤ n,

Eλ,A,V (fχi,R, fχi,R) ≥ λ(1 + g(λ))e(A,Ki)‖fχi,R‖2L2(µλ),

where limλ→∞ g(λ) = 0.
(3) There exists a constant C > 0 such that

Eλ,A,V (fχ0,R, fχ0,R) ≥ Cλ2‖fχ0,R‖2L2(µλ).

The essential part of this lemma is in (3). In the case where A = I +

Hilbert-Schmidt operator, we can apply the same method as in [1] without any
modification by using Corollary 2.8 (2) to prove (3). In general cases, we need to
approximate A by such kind of operators.

Lemma 3.5. — Assume that A is a bounded linear operator and (A1), (A3), (A4)
hold. Also we assume that cA = 1. Let R be a sufficiently large positive number such
that

inf

ß
1

4
‖h‖2H + V (h) | ‖h‖W ≥ R

™
≥ 1

and ε be a small positive number. Set Dε,R = BR(0) ∩ (∪ni=1B3ε(hi))
c. Then there

exists a self-adjoint operator Tε ∈ L1(H) and a positive number δ(ε) such that
(1) it holds that for any h ∈ D(A), ‖Ah‖2H ≥ ‖(IH + Tε)h‖2H ,
(2)

inf

ß
1

4
‖(IH + Tε)h‖2H + V (h)

∣∣∣ h ∈ Dε,R ∩H
™
≥ δ(ε).

Proof. — It holds that for a large positive number L,

inf

ß
1

4
‖h‖2H + V (h)

∣∣∣ h ∈ Dε,R ∩BL,H(0)c
™
≥ 1.

Hence we prove the lemma on Dε,R ∩ BL,H(0). For a natural number k, we define
Ak =

∑∞
i=2k

i
2k

1Ik,i(A), where Ik,i =
{
x ∈ R | i

2k
≤ x < i+1

2k

}
. Then

0 ≤ ‖Ah‖2H − ‖Akh‖2H ≤
3

2k
‖Ah‖2H ≤

3

2k
‖A‖2‖h‖2H .

By Lemma 2.4 (2), for sufficiently large k0,

inf

ß
1

4
‖Ak0h‖

2
H + V (h)

∣∣∣ h ∈ Dε,R ∩BL,H(0)

™
≥ 1

2
κ(ε),

3

2k0
‖A‖2L2 ≤ 1

4
ε2‖
√
S‖−2.
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Note that there exists a family of finite dimensional projection operators on H such
that Pn ↑ IH and Ak0Pn = PnAk0 for all n ≥ 1. Hence, it holds that for any h ∈ H
and n

‖Ak0h‖2H = ‖Ak0Pnh‖2H + ‖Ak0P⊥n h‖2H ≥ ‖Ak0Pnh‖2H + ‖P⊥n h‖2H .

Let h ∈ BL,H(0). Then |V (h)−V (Pnh)| ≤ ‖DV (Pnh+ θP⊥n h)‖W∗‖P⊥n h‖W (0 < θ <

1). Noting

‖Pnh+ θP⊥n h‖W ≤ L‖
√
S‖,

‖P⊥n h‖W = ‖
√
SP⊥n h‖H ≤ ‖

√
SP⊥n ‖2‖h‖H ,

lim
n→∞

‖
√
SP⊥n ‖2 = 0,

by (A2),
lim
n→∞

sup {|V (h)− V (Pnh)| | h ∈ BL,H(0)} = 0.

Now we take a natural number n0 such that

sup {|V (h)− V (Pn0
h)| | h ∈ BL,H(0)} ≤ 1

4
min

Ä
κ(ε), 1, ε2‖

√
S‖−2

ä
.

Let h ∈ Dε,R ∩BL,H(0). Then three cases are possible for Pn0h such that (i) Pn0h ∈
Dε/3,R ∩BL,H(0), (ii) Pn0h ∈ BR(0)c, (iii) Pn0h ∈ ∪ni=1Bε(hi).

In the case of (i),
1

4
‖Ak0Pn0

h‖2H + V (h) =
1

4
‖Ak0Pn0

h‖2H + V (Pn0
h) + (V (h)− V (Pn0

h)) ≥ 1

4
κ(ε).

If (ii) happens, then
1

4
‖Ak0Pn0h‖2H + V (h) =

1

4
‖Ak0Pn0h‖2H + V (Pn0h) + (V (h)− V (Pn0h)) ≥ 3/4.

In the case where Pn0
h ∈ Bε(hi) for some i,

‖P⊥n0
h‖W = ‖h− Pn0

h‖W = ‖h− hi‖W − ‖hi − Pn0
h‖W ≥ 2ε.

Thus ‖P⊥n0
h‖H ≥ ‖

√
S‖−1‖P⊥n0

h‖W ≥ 2ε‖
√
S‖−1. Therefore, we have for h ∈ Dε,R ∩

BL,H(0) satisfying (iii),
1

4
‖Ak0Pn0

h‖2H +
1

4
‖P⊥n0

h‖2H + V (h)

=
1

4
‖P⊥n0

h‖2H +
1

4
‖APn0

h‖2H + V (Pn0
h)− 1

4

(
‖APn0

h‖2H − ‖Ak0Pn0
h‖2H

)
+ (V (h)− V (Pn0

h))

≥ ε2‖
√
S‖−2 − 3

2k0
‖A‖2L2 − 1

4
ε2‖
√
S‖−2 ≥ 1

2
ε2‖
√
S‖−2.

Consequently,

inf

ß
1

4
‖Ak0Pn0

h‖2H +
1

4
‖P⊥n0

h‖2H + V (h)
∣∣∣ h ∈ Dε,R

™
≥ δ(ε).
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This implies that the operator Tε = (Ak0−IH)Pn0 satisfies the desired properties.

In Theorem 3.2, we assume γ ≥ 1 + γ0. But γ ≥ γ0 is sufficient for χi,R ∈ D(DA).

Lemma 3.6. — (1) Assume that A is bounded. Then ‖w‖W ∈ D(DA) and ‖DA‖w‖W ‖H ≤
‖A
√
S‖.

(2) Assume (A5) and let S = A−2γ , where γ ≥ γ0. Then ‖w‖W ∈ D(DA) and
‖DA‖w‖W ‖H ≤ ‖A1−γ‖.

Proof. — (1) We have D‖w‖W = Sw
‖w‖W . So DA‖w‖W = ASw

‖w‖W and ‖DA‖w‖W ‖H ≤
‖A
√
S‖.

(2) This is proved in the same way as in (1).

Lemma 3.7. — Assume (A1), (A3), (A4), (A5) and cA = 1. Let γ ≥ γ0 and S = A−2γ .
Then the same results as in Lemma 3.5 hold .

Proof. — For a > 0 let ψa(x) be the positive function such that ψa(x) = 1 for x ≤ a
and ψa(x) = a/x for x ≥ a. Then for h ∈ H

‖ψa(A)h‖2W = ‖ψa(A)A−γh‖2H ≤ ‖A−γh‖2H = ‖h‖2W ,

‖ψa(A)h− h‖2W ≤ ‖(ψa(A)− 1)A−γh‖2H ≤
1

a2γ
‖h‖2H .

Therefore,

‖ψa(A)h− hi‖W = ‖ψa(A)h− h+ h− hi‖W

≥ ‖h− hi‖W −
1

aγ
‖h‖H

Thus, if ‖h − hi‖W ≥ 3ε and ‖h‖H ≤ 3aγ

2 ε, hold, then ‖ψa(A)h − hi‖W ≥ 3ε
2 .

Let A(a) = Aψa(A). Let L be a positive number such that for h with ‖h‖H ≥ L,
1
4‖h‖

2
H + V (h) ≥ 1

2κ(ε). Now let a be a positive number satisfying that

C(L)

aγ
L ≤ min

Å
1

2
κ(ε),

1

4
ε2‖
√
S‖−2

ã
,

3aγ

2
ε ≥ L.

Here C(L) is the number which appeared in (A3). Then for such an a, for h with
‖h‖H ≤ L, by the above estimates, we have

|V (h)− V (ψa(A)h)| ≤ C(L)

aγ
L ≤ 1

2
κ(ε),

1

4
‖Aψa(A)h‖2H + V (ψa(A)h) ≥ κ(ε).

Consequently, we have, for sufficiently large a,

inf

ß
1

4
‖A(a)h‖2H + V (h) | h ∈ Dε,R ∩H

™
≥ 1

2
κ(ε).

Therefore, it suffices for us to do the same calculation as in the bounded case replacing
A by A(a). But of course, the norm of W is still defined by S = A−2γ . Note that

ASTÉRISQUE 327



SEMI-CLASSICAL LIMIT 13

(A(a))k0 is defined first and next Pn0 is defined by (A(a))k0 . Case (iii) requires some
additional care. That is, we use the following estimate:
1

4
‖(A(a))k0Pn0

h‖2H +
1

4
‖P⊥n0

h‖2H + V (h)

=
1

4
‖P⊥n0

h‖2H +
1

4
‖A(a)Pn0h‖2H + V (Pn0h)− 1

4

Ä
‖A(a)Pn0h‖2H − ‖(A(a))k0Pn0h‖2H

ä
+ (V (h)− V (Pn0

h))

≥ ε2‖
√
S‖−2 +

1

4
‖Aψa(A)Pn0h‖2H + V (ψa(A)Pn0h) + (V (Pn0h)− V (ψa(A)Pn0h))

− 3

2k0
‖A(a)‖2L2 − 1

4
ε2‖
√
S‖−2

≥ 1

4
ε2‖
√
S‖−2.

Therefore, it suffices to put Tε =
Ä(
A(a)

)
k0
− IH

ä
Pn0 .

Proof of Lemma 3.4. — (1) The first assertion is proved in Lemma 3.6. (3.3) can be
proved by a simple calculation

(2) In the Taylor expansion (3.2) when χi,R(w) 6= 0, we have |Rhi(w)| ≤ C‖w −
hi‖3B ≤ CR−1/2‖w − hi‖2W . This implies

Eλ,A,V (fχi,R, fχi,R) ≥ λe(A,Ki − CR−1/2S)‖fχi,R‖2L2(µλ).

Here S is the trace class operator which defines the norm of W . Using the fact that

lim
R→∞

e(A,Ki − CR−1/2S) = e(A,Ki)

which follows from Lemma 2.5, we complete the proof of (2).
(3) Let ρ be a continuous function on W such that (i) 0 ≤ ρ(w) ≤ 1, (ii) ρ is 0 near
the neighborhood U(N) of the zero point set N , (iii) ρ is 1 in V (N)c, where V (N) is
a neighborhood of N such that U(N) ⊂ V (N). Moreover assume that {w | χ0,R(w) 6=
0} ⊂ {w | ρ(w) = 1}. Let r be a small positive number. Then

Eλ,A,V (fχ0,R, fχ0,R) = Eλ,A,V−rρ(fχ0,R, fχ0,R) +

∫
W

rλ2ρf2χ2
0,Rdµλ

= Eλ,A,(V−rρ)ρ(fχ0,R, fχ0,R) +

∫
W

rλ2f2χ2
0,Rdµλ.

L2-norm of the second term on the right-hand side is rλ2‖fχ0,R‖2. To estimate the
first term, we use again IMS localization formula. We write g0 = fχ0,R. Let ϕ0(w) =

χ
(
‖w‖2W
R2

)
and ϕ1(w) =

√
1− ϕ0(w)2. Then

Eλ,A,(V−rρ)ρ(g0, g0) =
∑
i=0,1

Eλ,A,(V−rρ)ρ(g0ϕi, g0ϕi)−
∑
i=0,1

∫
W

‖DAϕi‖2Hg2
0dµλ.
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We use Corollary 2.8 (2) to estimate the term containing g0ϕ0. Let ϕ̃0(w) =

χ
(
‖w‖2W
3R2

)
. We can find a positive number ε′ and R′ such that {w ∈W | ρ(w)ϕ̃0(w) 6=

0} ⊂ Dε′,R′ . Let Tε′ be a trace class operator which satisfies the property in Lemma 3.5
for Dε′,R′ . Then

Eλ,A,(V−rρ)ρ(g0ϕ0, g0ϕ0) ≥ Eλ,IH+Tε′ ,(V−rρ)ρϕ̃0
(g0ϕ0, g0ϕ0)

≥ −λ
2

log I(λ)‖g0ϕ0‖2L2(µλ)

+

Å
λ

2
log det (2)(IH + Tε′)−

λ

2
tr
(
T 2
ε′
)ã
‖g0ϕ0‖2L2(µλ),

where

I(λ) =

∫
W

exp
(
−2λ ((V (w)− rρ(w)) ρ(w)ϕ̃0(w)

− λ : (Tε′w,w) :λ −
λ

2
‖Tε′w‖2H

)
dµλ(w).

Let Uε′(h) = 1
4‖(IH + Tε′)h‖2H + (V (h)− rρ(h))ρ(h)ϕ̃0(h). Then

Uε′(h) =
1

4
‖(IH + Tε′)h‖2H(1− ρ(h)ϕ̃0(h))

+

ß
1

4
‖(IH + Tε′)h‖2H + (V (h)− rρ(h))

™
ρ(h)ϕ̃0(h).

By the property of Tε′ , by taking r to be sufficiently small, we haveß
1

4
‖(IH + Tε′)h‖2H + (V (h)− rρ(h))

™
ρ(h)ϕ̃0(h) ≥ 0 for all h ∈ H.

Therefore by the Large deviation estimate, for such an r, limλ
1
λ log I(λ) ≤ 0. This

shows that for any c > 0 it holds that for large λ

Eλ,A,(V−rρ)ρ(g0ϕ0, g0ϕ0) ≥ −cλ2‖g0ϕ0‖2L2(µλ).

Next, we give a lower bound estimate for the another term. Let ϕ̃1(w) =…
1− χ

(
3‖w‖2

W

R2

)2

. Then {w | g0(w)ϕ1(w) 6= 0} ⊂ {w | ϕ̃1(w) = 1}. By using

Corollary 2.8 (1),

Eλ,A,(V−rρ)ρ(g0ϕ1, g0ϕ1) ≥ −λ
2

log

Å∫
W

exp (−2λ(V − rρ)ρϕ̃1) dµλ

ã
‖g0ϕ1‖2L2(µλ).

If R is sufficiently large and r is small, then

inf

ß
1

4
‖h‖2H + (V (h)− rρ(h)) ρ(h)ϕ̃1(h)

∣∣∣ ϕ̃1(h) 6= 0, h ∈ H
™
> 0.

Thus, by the Large deviation results, for any c > 0 it holds that for large λ

Eλ,A,(V−rρ)ρ(g0ϕ1, g0ϕ1) ≥ −cλ2‖g0ϕ1‖2L2(µλ).

These prove (3).
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Remark 3.8. — Let Ṽ be a bounded measurable function on W . Assume that A4 +

4AKA is strictly positive and AKA is a trace class operator. Let

cA,K = inf σ
Ä√

A4 + 4AKA
ä
.

Then it holds that for any f ∈ FC∞A (W ),

Eλ,A,Vk,h+Ṽ (f, f)

≥ E0(λ,A, VK)‖f‖2L2(µλ)

−λcA,K
2

log

Å∫
W

exp

Å
− 2λ

cA,K
Ṽ (w)

ã
Ωλ,A,VK,h(w)2dµλ(w)

ã
‖f‖2L2(µλ).

By this estimate, we can prove local estimates near N in Lemma 3.4 (2) using the
Laplace method. This proof could be extended to the case of Schrödinger operators
with more general potential functions.
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