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DEFORMATIONS OF GQp AND GL2(Qp) REPRESENTATIONS

by

Mark Kisin

Abstract. — We show that Colmez’s functor from GL2(Qp) representations to GQp
representation produces essentially all two dimensional representations of GQp . The
method compares the deformation theory for the two kinds of representations: An Ext
group calculation of Colmez implies that the deformation space for GL2(Qp) represen-
tations is closed in that for GQp -representations. A local version of the Gouvêa-Mazur
“infinite fern” argument shows that this closed subspace is also dense.

Résumé (Déformations de GQp et représentations de GL2(Qp)). — On montre que le fonc-
teur de Colmez, entre les représentations de GL2(Qp) et celles de GQp , produit es-
sentiellement toutes les représentations bidimensionnelles de GQp . Notre méthode
compare les théories de déformation des deux types de représentations : un calcul
de groupe Ext effectué par Colmez implique que l’espace de déformation pour les
représentations de GL2(Qp) est fermé dans celui des GQp -représentations. Une ver-
sion locale de l’argument «infinite fern» de Gouvêa-Mazur montre que ce sous-espace
fermé est également dense.

Introduction

The purpose of this appendix is to prove that Colmez’s functor V from
GL2(Qp)-representations to GQp -representations produces essentially all two di-
mensional representations of GQp . Here GQp denotes the absolute Galois group of Qp.
More precisely, let E/Qp be a finite extension with ring of integers O and uniformiser
πO . For a continuous representation of GQp on a 2-dimensional E-vector space V,
and L ⊂ V a GQp -stable O-lattice, we denote by V̄ the semi-simplification of L/πOL.

This does not depend on L.
We denote by χcyc : GQp → Z×p the cyclotomic character and by ω : GQp → F×p its

mod p reduction. Finally we denote by ω2 a fundamental character of level 2 of IQp .
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512 M. KISIN

Then our main result is the following

Theorem 0.1. — Suppose that p > 2 and if p = 3 assume that V̄ is not of the form
( ω 0

0 1 )⊗ χ and V̄ |IQp
is not of the form

(
ω2

2 0

0 ω6
2

)
⊗ χ.

1. If V is irreducible, then there exists an admissible O-lattice Π with central char-
acter detV · χ−1

cyc such that

V(Π)⊗Zp Qp
∼−→ V.

2. If V̄ � ( 1 0
0 ω )⊗ χ then for any GQp-stable O-lattice L ⊂ V, then there exists an

admissible O-lattice Π with central character detV · χ−1
cyc such that V(Π)

∼−→ L.

Here by an admissible O-lattice we mean a representation of GL2(Qp) on a
p-torsion free, p-adically complete and separated O-module Π such that for n ≥ 1

the quotient Π/pnΠ is a smooth, finite length representation of GL2(Qp). These
are exactly the representations to which Colmez’s functor applies, and we can then
extend it to admissible O-lattices, so that V(Π) is a GQp -stable O-lattice in V.

To explain the idea of the argument, let F be the residue field of O and VF a two
dimensional representation of GQp . Suppose that VF � ( 1 ∗

0 ω )⊗χ. Then Colmez shows
that there is a smooth, finite length representation of GL2(Qp) on an F-vector space
π̄, having central character ψ̄ = detVFχ

−1
cyc and such that V(π̄)

∼−→ VF.

Now fix a continuous character ψ : GQp → O× lifting ψ̄. For simplicity of nota-
tion we will assume that VF, and hence π̄ has only scalar endomorphisms.(1) Then
one can define three deformation problems over the category of finite, local, Artinian
O-algebras: The first one, Dπ̄,ψ, parameterizes deformations of π̄ with central charac-
ter ψ. The other two DVF , (resp. D

ψχcyc
VF

) parameterize deformations of VF (resp. de-
formations of VF with determinant ψχcyc). Each of these deformation problems is
pro-representable by a complete local O-algebra which we denote by Rπ̄,ψ, RVF and
R
ψχcyc
VF

respectively. Colmez’s functor produces a map

(1) SpecRπ̄,ψ → SpecRVF

and one of the main results of [9, § VII] is that (1) induces an injection on tangent
spaces. Hence it is a closed embedding.

One can sometimes show that this embedding factors through SpecRψχcyc
VF

, but
this does not always hold.(2) On the other hand, results of Colmez and Berger-Breuil
allow one to show that any crystalline point with distinct Hodge-Tate weights and
determinant ψχcyc is in the image of (1). By imitating the “infinite fern” argument of
Gouvêa-Mazur [10], we are able to show that the set of crystalline points is dense in
SpecRψχcyc

VF
[1/p] :

(1) Below this condition will be avoided by using framings.
(2) However see the remark at the end of this introduction.
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DEFORMATIONS OF GQp AND GL2(Qp) REPRESENTATIONS 513

Theorem 0.2. — Suppose that p > 2, and that VF � ( 1 ∗
0 ω ) and VF|IQp

�
Ä
ω2 0
0 ω6

2

ä
.

Then the set of closed points x ∈ SpecRψχcyc
VF

[1/p] such that the corresponding
GQp-representation is crystalline is Zariski dense.

In fact it is technically simpler to work with crystalline points satisfying some mild
non-degeneracy conditions, so the results in the text refer to “benign” or “twisted
benign” points. Such points are, in particular, crystalline.

As an immediate consequence of 0.2, one sees that the image of (1) contains
SpecRψχcyc

VF
and this leads to Theorem 0.1. The restrictions on VF in 0.2 arise be-

cause in these cases Rψχcyc
VF

is not formally smooth over O, and we know of no way to
check that every component of Rψχcyc

VF
[1/p] contains a crystalline point.

The result 0.2 is a local analogue of a theorem of Gouvêa-Mazur [10], extended
by Böckle [5] which says that for a two dimensional F-representation of the absolute
Galois group of Q, the generic fibre of the universal deformation space has a Zariski
dense set of points corresponding to cusp forms on Γ1(N) (of various weights) where
N is a suitable integer not divisible by p. The original argument of Gouvêa-Mazur
uses the eigencurve [7], which is a kind of p-adic interpolation of these cusp forms.
In particular, one can interpolate the global Galois representations attached to cusp
forms into a family of Galois representations over the eigencurve.

In [12], we showed that the Galois representation attached to a point of the
eigencurve admits at least one crystalline period. This local property (up to twist)
was later dubbed trianguline by Colmez [8]. One of the results of [12] shows that
2-dimensional representations of GQp with a crystalline period can be interpolated
into a p-adic analytic space Xfs, which is a kind of local analogue of the eigencurve.
Using it, one can imitate the arguments of Gouvêa-Mazur for local Galois represen-
tations, and show a statement about density of crystalline representations. This has
also been carried out by Colmez, using his theory of Vector Spaces [8].

Finally let us mention that Paskunas [18] has shown that, when π̄ is supersingular
(that is, VF is absolutely irreducible), then the surjection Rπ̄,ψ → R

ψχcyc
VF

is an isomor-
phism. To prove this he shows directly that the dimension of the tangent space of the
left hand side is at most 3, which is the dimension of the tangent space of the right
hand side. (3) As a consequence one sees that, in this case, if πA is a deformation of
π̄ with central character ψ, then det V(πA) = ψχcyc. Paskunas has also pointed out
that this formula does not hold if VF is unipotent.

Acknowledgments. — It is a pleasure to thank P. Colmez, M. Emerton and
V. Paskunas for useful conversations regarding the ideas in this note. I would es-
pecially like to thank Paskunas who pointed out that the deformation theoretic argu-
ment could not work in general unless one worked with deformations of fixed central
character. Finally I would like to thank the referee for a careful reading of the paper.

(3) Of course when p = 3 we continue to exclude the case
(

ω2
2 0

0 ω6
2

)
⊗ χ.
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514 M. KISIN

1. Density of crystalline representations

1.1. — Let Q̄p be an algebraic closure of Qp.We will write GQp = Gal(Q̄p/Qp), and
we denote by χcyc : GQp → Z×p the p-adic cyclotomic character. As in the introduction,
we denote by ω the mod p cyclotomic character, by IQp ⊂ GQp the inertia subgroup,
and by ω2 a fundamental character of level 2 of IQp .

Let E/Qp be a finite extension. We will consider pairs (V, λ) consisting of a con-
tinuous representation of GQp a two dimensional E-vector space V and λ ∈ E× such
that

1. HomGQp
(V, V ) = E.

2. V is crystalline and the action of ϕ on

Dcris(V
∗) = HomE[GQp ](V,B

+
cris ⊗Qp E)

has eigenvalues λ, λ′ with λ′ 6= λ, p±1λ.

3. V has Hodge-Tate weights 0, k with k a positive integer.
A pair (V, λ) satisfying the above condition will be called a benign pair. If V is a

continuous representation of GQp on a 2-dimensional E-vector space, then we say that
V is benign if there exists a finite extension E′/E and λ ∈ E′ such that (V ⊗EE′, λ) is
benign. In particular, the condition (1) implies that V admits a universal deformation
ring RV .

Fix an E-basis of V. We denote by R�
V the universal framed deformation ring of V.

That is, if ARE denotes the category of Artinian local E-algebras with residue field
E, then R�

V represents the functor which to B in ARE assigns the set of isomorphism
classes of pairs (VB , β), where VB is a deformation of VE to B and β is a B-basis of
VB lifting the chosen basis of VE . Recall that there is a natural map RV → R�

V which
is easily seen to be formally smooth of relative dimension 3.

Let (V, λ) be a benign pair. We denote by Dh,ϕ
V the functor on ARE which assigns

to B the set of isomorphism classes of deformations VB of VE to B such that, if

h : V → (B+
cris ⊗Qp E)ϕ=λ

is any non-zero E-linear, GQp -equivariant map, then h lifts to a map

h̃ : VB → (B+
cris ⊗Qp B)ϕ=λ̃

where λ̃ ∈ B× lifts λ. Note that (2) above implies that the set of maps h forms a
torsor under E×. If VB is in Dh,ϕ

V (B), then the map h̃ is determined up to a unit in
B× and λ̃ is uniquely determined by λ [12, 8.12].

Let IQp ⊂ GQp denote the inertia subgroup. We have the following

Proposition 1.1. — The functor Dh,ϕ
V is pro-represented by a quotient Rh,ϕV of RV ,

which is formally smooth over E of dimension 3. The composite

IQp → GQp → Rh,ϕ×V

given by the determinant of the universal deformation, does not factor through E×.
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DEFORMATIONS OF GQp AND GL2(Qp) REPRESENTATIONS 515

Proof. — This is [12, 10.2].

Proposition 1.2. — Let h ∈ Dcris(V
∗)ϕ=λ and h′ ∈ Dcris(V

∗)ϕ=λ′ be non-zero. Then
the closed subschemes SpecRh,ϕV and SpecRh

′,ϕ
V of SpecRV are distinct. More pre-

cisely, SpecRh,ϕV ⊗RV R
h′,ϕ
V is a smooth subscheme of SpecRV of dimension 2.

Proof. — Let B be in ARE and VB in DV (B). It is not hard to check that VB is
in Dh,ϕ

V (B) and Dh′,ϕ
V (B) if and only if VB is crystalline. For example, use [12, 8.9].

The proposition now follows from [13, Thm. 3.3.8], which shows that the preimage of
SpecRh,ϕV ⊗RV R

h′,ϕ
V in SpecR�

V is formally smooth and 5-dimensional.

1.2. — Let F be a finite field of characteristic p and VF a two dimensional F-vector
space equipped with a continuous action of GQp . We fix an F-basis of VF.

Let ARW (F) denote the category of local ArtinianW (F)-algebras with residue field
F. We denote by R�

VF
the universal framed deformation ring of VF. That is, R�

VF
is

the complete local W (F)-algebra which prorepresents the functor assigning to A in
ARW (F) the set of isomorphism classes of pairs (VA, β), where VA is a deformation of
the GQp -representation VF to A, and β is an A-basis of VA lifting the chosen F-basis
of VF. We set Z = SpecR�

VF
[1/p].

If E/W (F)[1/p] is a finite extension and x : R�
VF
→ E an E-valued point, then x

gives rise to a two dimensional E-representation of GQp , equipped with an E-basis. Let
R̂�
VF,x

denote the completion of R�
VF

[1/p] at the maximal ideal generated by the kernel
of x. Then R̂�

VF,x
⊗κ(x) E is canonically isomorphic to R�

Vx
, the framed deformation

ring of Vx [15, 2.3.5]. Here κ(x) denotes the residue field of x.
We call x benign if Vx is benign. We say that (x, λ) ∈ (Z × Gm)(E) is benign if

(Vx, λ) is a benign pair.
Let S denote the universal deformation ring of detVF, thought of as a repre-

sentation of the inertia subgroup of the maximal abelian quotient of GQp . Then S

is formally smooth over W (F) of relative dimension 1 if p > 2 and isomorphic to
W (F)[[Y,Z]]/((1 + Z)2 − 1) if p = 2. We have an obvious map

SpecR�
VF

VA 7→detVA|IQp−−−−−−−−−−→ SpecS.

In the following we will use the construction of the p-adic analytic space attached
to SpecR[1/p] where R is a complete local W (F)-algebra with finite residue field [11,
§ 7]. In particular, we write W = SpecS[1/p] and we denote by W an the associated
p-adic analytic space. (4)

Proposition 1.3. — There exists a reduced, Zariski closed, analytic subspace
Xfs ⊂ (Z ×Gm)an with the following properties.

(4) W and W an are what is usually referred to as “weight space”.
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516 M. KISIN

1. If E/W (F)[1/p] is a finite extension and (x, λ) ∈ Xfs(E), then there exists a
non-zero, E-linear, GQp-equivariant map

Vx → (B+
cris ⊗Qp E)ϕ=λ.

2. If (x, λ) ∈ (Z ×Gm)(E) is benign then (x, λ) ∈ Xfs(E).

3. If (x, λ) is benign and its image in Xfs has residue field E, then the complete
local ring ÔXfs,(x,λ) at (the image of) (x, λ) satisfies

ÔXfs,(x,λ)
∼−→ R�

Vx ⊗RVx R
h,ϕ
Vx
.

In particular ÔXfs,(x,λ) is formally smooth and the composite

Xfs → Zan → W an

is flat at (x, λ).

4. If (x, λ) ∈ Xfs then Vx has (at least) one Hodge-Tate weight equal to 0.

Proof. — The space Xfs is constructed in [12, 10.3]. It satisfies (1) (2) and (4) by
[12, 10.4] and (3) by [12, 10.6]. The final claim in (3) follows from 1.1. More precisely
the results of [12] apply with the versal deformation ring Rver

VF
in place of R�

VF
, however

the construction goes over verbatim. Alternatively, one can deduce the results for R�
VF

from the analogue for Rver
VF

by choosing a morphism Rver
VF
→ R�

VF
which induces the

universal deformation over R�
VF
.

1.2.1. — In fact using the results of Colmez [8] one can determine the local structure
of Xfs at essentially all points, and not just at potentially semi-stable points as was
done in [12]. This has been carried out by Bellaïche-Chenevier [1, § 2.3].

Corollary 1.4. — If E/Qp is finite, (x, λ) ∈ Xfs(E) and Vx has Hodge-Tate weights
0, k with k a positive integer satisfying vp(λ) < k, then Vx is potentially semi-stable.

Proof. — We first remark that since vp(λ) < k, Filk(B+
cris ⊗Qp E)ϕ=λ = 0. To see

this, suppose that s ∈ Filk(B+
cris ⊗Qp E)ϕ=λ and let r be a positive integer such

that m = rvp(λ) is an integer. Then ϕ(sr) = λrsr = pmwsr for w ∈ O×E . Choosing
u ∈ (W (F̄p) ⊗ E)× (here F̄p is the residue field of Q̄p) such that ϕ(u) = wu we see
that ϕ(sru−1) = pmsru−1 so

sru−1 ∈ Filrk(B+
cris ⊗Qp E)ϕ=pm = FilrkB+,ϕ=pm

cris ⊗Qp E = 0

since m = rvp(λ) < rk.

It follows that the non-zero GQp -equivariant map

Vx → (B+
cris ⊗Qp E)ϕ=λ

given by 1.3(1) cannot factor through FilkB+
cris ⊗Qp E. Since Vx has a Hodge-Tate

weight equal to k there exists a non-zero E-linear GQp -equivariant map Vx → Cp(k)⊗ E.
As the other Hodge-Tate weight of Vx is 0 < k, and H1(GQp ,Cp(i)) = 0 for i > 0 by a
result of Tate, this map necessarily lifts to FilkBdR⊗E (cf. [12, 2.5]). Hence Vx is de
Rham, and therefore potentially semi-stable by Berger’s theorem [2, Thm. 5.19].
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Proposition 1.5. — Let (x, λ) ∈ Xfs(E) be a benign point. Then there exists a quasi-
compact admissible open subset U ⊂ Xfs containing (x, λ), such that if (x′, λ′) ∈ U
is a closed point whose image in W an is χkcyc with k a positive integer, then (x′, λ′) is
benign.

Proof. — Choose U = SpR an affinoid neighborhood of (x, λ) such that if
(x′, λ′) ∈ U, then Vx′ satisfies 1.1(1), and if (x′, λ′) 6= (x, λ) and has image
χkcyc in W an with k a positive integer, then k > 2vp(λ

′) + 1.

Then Vx′ is potentially semistable by 1.4. The condition 1.3(1) implies that the
associated Weil group representation is reducible and of the form χ1 ⊕ χ2 with χ1

an unramified character. Since detVx′ |IQp
= χkcyc, detVx′ is crystalline so χ1χ2 is

unramified, and χ2 is unramified. It follows that Vx′ is semi-stable. The inequality
k > 2vp(λ

′) + 1 implies that Vx′ is crystalline and that (Vx′ , λ
′) satisfies 1.1(2). Hence

(x′, λ′) is benign.

Corollary 1.6. — Let Y ⊂ Xfs be the smallest Zariski closed analytic subspace which
contains all benign points (x, λ) ∈ Xfs. Then Y is a union of irreducible components
of Xfs.

Proof. — Let (x, λ) ∈ Xfs(E) be a benign point. We have to show that the irreducible
component of Xfs passing through (x, λ) is contained in Y. Note that this irreducible
component is unique by 1.3(3).

Let U be an open admissible subspace of Xfs containing (x, λ) and satisfying the
conclusion of 1.5. We may assume that U is connected and smooth. It follows by 1.7
below, applied with T = Y ∩ U and I ⊂ W an the set of points of the form χkcyc with
k a positive integer, that U ⊂ Y. Hence Y contains the irreducible component of Xfs

passing through (x, λ).

Lemma 1.7. — Let U be a quasi-compact, irreducible, reduced rigid space over Qp,
and π : U → W an a flat morphism. Let T ⊂ U be a Zariski closed subspace and
I ⊂ π(U) an infinite set of points such that for x ∈ I, π−1(x) ⊂ T. Then T = U.

Proof. — Since T is quasi-compact the set of points of W an at which π|T is not flat
is finite. Hence there exists x ∈ I such that T is flat over W an at x, and

dimT ≥ dimπ−1(x) + 1 = dimU.

It follows that dimT = dimU, and hence T = U as U is reduced and irreducible.

1.3. — Let Γ denote the maximal pro-p quotient of Gal(Qp(µp∞)/Qp). Then Γ is
canonically a subgroup of Gal(Qp(µp∞)/Qp) and we may, for example, regard χcyc as
a character of Γ.

We denote by S0 the universal deformation ring of the trivial representation F of Γ,

and we write W0 = SpecS0[1/p]. We will denote by η0 ∈ W0 the point corresponding
to the trivial character of Γ, and by ÔW0,η0

the complete local ring at this point.
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518 M. KISIN

We call a closed point x ∈ R�
VF

[1/p] twisted benign if Vx
∼−→ V ⊗η where V is benign

and η = χkcyc with k an integer.

Lemma 1.8. — If (V, λ) is a benign pair, and h ∈ Dcris(V
∗)ϕ=λ and h′ ∈ Dcris(V

∗)ϕ=λ′

are non-zero, then
1. The map

(2) RV → Rh,ϕV “⊗W (F)[1/p]ÔW0,η0

which for B ∈ ARE induces the map (VB , η) 7→ VB⊗η on B-points, is surjective.
2. If R̃h,ϕV denotes the image of (2), then R̃h,ϕV is formally smooth over E of dimen-

sion 4. The subspaces of SpecRV corresponding to R̃h,ϕV and R̃h
′,ϕ
V are distinct.

More precisely their intersection is formally smooth of dimension 3.

Proof. — To prove (1) is enough to show that for any B in ARE (2) induces an
injection on B-points. To do this we use the theory of the Sen polynomial [12, § 2.2],
which attaches a monic polynomial Pφ(T ) ∈ B[T ] to any continuous representation
of GQp on a finite free B-module M. Let (VB , η) and (V ′B , η

′) be two B-points of
the right hand side of (2) with VB ⊗ η

∼−→ V ′B ⊗ η′. We may assume that η = η0.

The Sen polynomials of VB and V ′B have the form T (T − k + b) and T (T − k + b′)

respectively where b, b′ are in the maximal ideal of B. Fix a topological generator
γ ∈ Γ (or a topological generator of a pro-cyclic open subgroup of Γ if p = 2), and let
a = logη′(γ)/logχcyc(γ). Then the Sen polynomial of V ′B⊗η′ is (T +a)(T −k+b′+a).

Since k 6= 0, and a, b, b′ ∈ rad(B) we must have a = 0. It follows that η is trivial and
VB

∼−→ V ′B .

The first claim of (2) now follows from 1.1. Moreover the argument in the previous
paragraph shows that

R̃h,ϕV ⊗RV R̃
h′,ϕ
V

∼−→ Rh,ϕV ⊗RV R
h′,ϕ
V ⊗W (F)[1/p] ÔW0,η0

so (2) follows from 1.2.

Proposition 1.9. — Let Y ⊂ SpecR�
VF

[1/p] denote the Zariski closure of the twisted
benign points of R�

VF
. If Y 6= ∅, then dimY ≥ 8 at every point of Y.

Proof. — After replacing VF by a twist, we may assume that Y contains a benign
point. Let Ỹ be the preimage of Y under

Xfs ×W an
0 → Zan; (x, λ, η) 7→ Vx ⊗ η.

Then Ỹ contains all the irreducible components of Xfs ×W an
0 which contain a point

of the form (x, λ, η) with (x, λ) a benign pair, by 1.6. Combining 1.8 and 1.3(3) one
sees that for any benign point x ∈ Z, Spf ÔY,x contains two distinct, 7-dimensional,
formally smooth subspaces of Spf ÔZ,x, namely the preimages in SpfR�

Vx

∼−→ Spf ÔZ,x
of the subspace Spf R̃h,ϕVx , Spf R̃

h′,ϕ
Vx

of SpfRVx introduced in 1.8.
Hence any irreducible component of Y has dimension at least 7, and any point

at which Y has dimension 7 is a singular point. Let Y ′ ⊂ Y be the union of the
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irreducible components of dimension 7. Then any benign point in Y ′ is a singular
point of Y. Hence, any twisted benign point of Y ′ is also a singular point, since if
VF ⊗ ωk ∼ VF then twisting by χkcyc induces an automorphism of Y ′. It follows that
the singular locus of Y ′ is equal to Y ′, which is impossible if Y ′ is non-empty. Hence
Y has dimension ≥ 8 at every point.

Corollary 1.10. — The closure of the twisted benign points in SpecR�
VF

[1/p] is non-
empty and a union of irreducible components. In particular, if R�

VF
[1/p] is irreducible

then the set of twisted benign points in SpecR�
VF

[1/p] is dense.

Proof. — A standard obstruction argument (cf. [17, Prop 2, § 1.6]) shows that R�
VF

is a quotient of a power series ring over W (F) in g generators by at most r relations,
where g− r = 8. It follows that all the irreducible components of R�

VF
[1/p] are at least

8-dimensional [16, Thm. 13.5]. On the other hand, one easily sees that the reducible
locus in SpecR�

VF
[1/p] is at most 7-dimensional. This shows that the irreducible locus

in SpecR�
VF

[1/p] is a dense subspace. The deformation theoretic description of a com-
plete local ring at a closed point x of SpecR�

VF
[1/p] such that Vx is irreducible shows

that this scheme is formally smooth and 8-dimensional at such a point. It follows
that all components of R�

VF
[1/p] are 8-dimensional. In particular, it follows from 1.9

that the closure in SpecR�
VF

[1/p] of the twisted benign points is a union of irreducible
components. It remains to show that this closure is non-empty.

The explicit description of reductions of crystalline representations of small weight
shows that, after replacing VF by VF ⊗ ωs, for some integer s, there exists a closed
point x on SpecR�

VF
[1/p] such that Vx is crystalline and satisfies (1) and (3) of 1.1.(5)

By [13, 2.5.5], the set of closed points x′ ∈ SpecR�
VF

[1/p] such that Vx′ is crystalline
with the same Hodge-Tate weights as Vx, is parameterized by a Zariski closed subspace
Zcr ⊂ Z. Moreover, Zcr is equipped with a vector bundle DZcr , together with an
automorphism ϕ of DZcr , which realizes the weakly admissible module attached to
Vx′ at every closed point x′ ∈ Zcr. It follows easily from [13, 3.3.1] that there is a
non-empty open subset U ⊂ Zcr such that Vx′ satisfies (1)-(3) for x′ ∈ U .

1.3.1. — We will write χ : GQp → F× for an arbitrary character.

Corollary 1.11. — Let p > 2. Suppose that VF is not of the form ( 1 ∗
0 ω ) ⊗ χ, and if

p = 3 assume also that VF|IQp
is not of the form

(
ω2

2 0

0 ω6
2

)
⊗χ. Then the set of twisted

benign points is dense in SpecR�
VF

[1/p].

Proof. — Under the conditions of the corollary H2(GQp , adFVF) = 0, so R�
VF

is
smooth, and SpecR�

VF
[1/p] is irreducible. The corollary follows from 1.10.

(5) In fact one can show that such an x exists without twisting, but the argument is more difficult.
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1.3.2. — The irreducibility in 1.10 should always hold. The author knows how to
prove this when VF ∼ ( 1 ∗

0 ω ) , and the extension class corresponding to ∗ is non-trivial.
The proof requires some auxiliary constructions and would take us too far afield here.

Now let O be the ring of integers in a finite extension of W (F)[1/p] and fix a
continuous character ψ : GQp → O× which lifts detVF, and such that ψ|IQp

is an
integral power of the cyclotomic character. We set R�

VF,O
= R�

VF
⊗W (F)O and we denote

by Rψ,�VF,O
the quotient of R�

VF,O
corresponding to deformations with determinant ψ.

Corollary 1.12. — The closure of the twisted benign points in SpecRψ,�VF,O
[1/p] is a

union of irreducible components. .

Proof. — Let T0 denote the universal deformation of the trivial F-representation of
GQp . Then T0 is a power series ring over W (F) in two variables unless p = 2 in which
case T0

∼−→W (F)[[X,Y, Z]]/((1 + Z)2 − 1). We have a natural map

(3) R�
VF,O → Rψ,�VF,O

“⊗W (F)T0

which for an Artinian O-algebra A with residue field F induces the map (V, η) 7→ V ⊗η
on A-valued points. One checks easily that (3) is a finite map and a surjection if p > 2.

The induced map

(4) SpecRψ,�VF,O
× SpecT0[1/p]→ SpecR�

VF,O
[1/p]; (Vx, η) 7→ Vx ⊗ η.

is finite étale, an immersion if p > 2, and a covering of its image with group
Hom(GQp ,Z/2Z) if p = 2.

Let Yψ ⊂ SpecRψ,�VF,O
[1/p] denote the closure of the twisted benign points. If

x ∈ SpecR�
VF,O

is a twisted benign point, such that detVx · ψ−1|IQp
∼ χ

j(p−1)
cyc with j

an even integer, then x is in the image of

(5) Yψ × SpecT0[1/p]→ SpecR�
VF,O

[1/p]; (Vx, η) 7→ Vx ⊗ η.

If p > 2, then by 1.3(3) any twisted benign point can be approximated (even in the
naive p-adic topology on the Q̄p-points of SpecR�

VF,O
[1/p]) by twisted benign points

with this property. Hence the image of (5) is a union of irreducible components of
SpecR�

VF,O
[1/p] by 1.10, so Yψ is a union of components of SpecRψ,�VF,O

[1/p].

If p = 2, then the image of IQ2
→ Gab

Q2
is isomorphic to Z×2 , and the character

detVx · ψ−1|±1 is locally constant on SpecR�
VF,O

. In particular if a twisted benign
point x satisfies detVx · ψ−1|IQ2

∼ χjcyc with j an even integer, then every twisted
benign point in the same component of x has this property. This shows that the
image of (5) is a union of irreducible components in this case also, which implies the
corollary, as before.

Corollary 1.13. — Let p > 2. Suppose VF � ( 1 ∗
0 ω ) ⊗ χ and VF|IQp

�
(
ω2

2 0

0 ω6
2

)
⊗ χ if

p = 3. Then the set of twisted benign points in SpecRψ,�VF,O
[1/p] is dense.
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Proof. — Under the conditions of the corollary, both sides of (3) are formally smooth
of the same dimension. Hence this map is an isomorphism and the corollary follows
from 1.12

2. Deformation theory

2.1. — Let E/Qp be a finite extension, as in the previous section, O the ring of
integers of E, and F its residue field. As above, we denote by χcyc : GQp → O× the
p-adic cyclotomic character. We will regard characters of GQp as character of Q×p via
class field theory, normalized to take uniformisers to geometric Frobenii.

We set G = GL2(Qp) and we denote (6) by RepOG the category of representations
of G on torsion O-modules, which are smooth, admissible, finite length and admit an
O×-valued central character. Recall that admissibility means that the invariants under
any compact open subgroup of GL2(Qp) are a finite O-module. An O-representation
which admits a central character satisfies these conditions if and only if it is a suc-
cessive extension of a finite number of smooth, irreducible F-representations of G.
This may be seen using the classification of smooth irreducible F-representations, ad-
mitting a central character, due to Bartel-Livné and Breuil, from which one easily
deduces that any such representation is admissible.

We denote by RepOGQp the category of representations of GQp on finite length
O-modules. The following summarizes some of the main results of [9].

Theorem 2.1 (Colmez). — There is an exact functor

V : RepOG→ RepOGQp

with the following properties:
If π ∈ RepOG then V(π) = 0 if and only if π is a finite O-module.
If ψ : GQp → O× is a continuous character then

V(Π⊗ ψ ◦ det)
∼−→ V(Π)⊗ ψ.

If VF is a two dimensional F-representation in RepOGQp with VF � ( 1 ∗
0 ω )⊗χ then

there exists π̄ in RepOG, with the following properties.

1. V(π̄)
∼−→ VF and π̄ has central character (detVF)χ−1

cyc.

2. The natural map
Ext1G(π̄, π̄)→ Ext1GQp

(VF, VF)

is an injection. Here the left hand side means extensions in the category of
F-representations having a (F×-valued) central character.

3. π̄SL2(Qp) = 0.

(6) In the final version of [9] this category is denoted ReptorsG, while RepOG denotes the category
of admissible O-lattices—see 2.3 below. Here we retain the notation of earlier versions of [9].
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Proof. — The first claim is [9, Thm. IV.2.14], while the second can be seen directly
from the definition of V. The properties in (1) follow from [9, § VII.4], while (2) is [9,
Thm. VII.5.2].

Lemma 2.2. — Let VF and π̄ be as above. The canonical map

(6) HomG(π̄, π̄)
∼−→ HomGQp

(VF, VF)

is an isomorphism.

Proof. — To see that the map is injective suppose that f : π̄ → π̄ satisfies
V(f) = 0. Then V(Im(f)) = 0, which implies that Im (f) is finite dimensional. Hence
Im (f) ⊂ π̄SL2(Qp) = 0, so f = 0.

For the surjectivity there is nothing to show if HomGQp
(VF, VF) = F. If VF is a sum

of two distinct (resp. equal) characters then π̄ is a sum of two distinct (resp. equal)
representations [9, § VII.4], so in this case both sides of (6) are two dimensional.
Similarly if VF is a self extension of a character, then π̄ is a self extension of an
G-representation, and π̄ is a split extension if and only if VF is a split extension.

2.2. — Now fix VF and π̄ as in 2.1. We will denote by ARO the category of finite local
Artinian O-algebras. Let A be in ARO . A deformation of π̄ to A is a representation
of G on a flat A-module πA having an O-valued central character, together with an
F-linear isomorphism of G-modules πA ⊗A F

∼−→ π̄.

Lemma 2.3. — Let πA be a deformation of π̄ to A. Then

1. πA is a free A-module.
2. As an O-representation of G, πA is in RepOG.

Proof. — For (1), pick a (countable) basis for π̄ indexed by a set I, and lift it to πA.
Let K be the kernel of AI → πA, and C the cokernel. If mA denotes the radical of A,
then we have C/mAC = 0, and since πA is A-flat, K/mAK = 0. Since mA is nilpotent
this implies K = C = 0.

In particular, (1) shows that πA is a successive extension of copies of π̄ which shows
(2).

Lemma 2.4. — Let A→ A′ be a morphism in ARO and πA a deformation of π̄ to A.
Then V(πA) is a flat A-module and there is a canonical isomorphism

V(πA)⊗A A′
∼−→ V(πA ⊗A A′).

In particular, V(πA)⊗A F
∼−→ V(π̄)

∼−→ VF, and V(πA) is a finite free A-module of
rank 2.

Proof. — This is a formal consequence of the exactness of the functor V (cf. [15,
1.2.7]).
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2.2.1. — Fix a character ψ : GQp → O×, such that (the reduction of) ψ is equal to
the central character of π̄.

We define two groupoids over ARO . (See the appendix in [15] for basic notions
involving groupoids). Denote by DVF the groupoid such that DVF(A) is the category
of deformations of VF to a representation of GQp on a finite free A-module. Let Dπ̄,ψ

be the groupoid such that Dπ̄,ψ(A) is the category of deformations of π̄ to A with
central character ψ.

Lemma 2.5. — The functor V induces a morphism of groupoids

D(V) : Dπ̄,ψ → DVF ; πA 7→ V(πA)

which is fully faithful.

Proof. — That V induces a morphism of groupoids follows from 2.4.
To show that D(V) is fully faithful, let A be in ARO with radical mA. Let πA

and π′A be in Dπ̄,ψ(A). First we remark that πA and π′A are isomorphic if V(πA) and
V(π′A) are isomorphic. To see this, we proceed by induction on the length of A.When
A = F, there is nothing to prove. Let I ⊂ A be a non-zero ideal with mA · I = 0.

By induction, we may assume that πA/I = πA ⊗A A/I and π′A/I = π′A ⊗A A/I are
isomorphic. A standard argument shows that the set of isomorphism classes of objects
of Dπ̄(A) (resp. DVF(A)) lifting πA/I (resp. V(πA/I)) is a torsor under Ext1G(π̄, π̄)⊗ I
(resp. Ext1GQp

(V(π̄),V(π̄))⊗ I). Hence the induction step follows from 2.1(2).
It follows that to prove full faithfulness it suffices to show that the map

HomG(πA, πA)→ HomGQp
(V(πA),V(πA))

is an isomorphism. Again, we prove this by induction on the length of A. When
A = F this is 2.2. In general let I be as above. Then the set of endomorphisms in
HomG(πA, πA) (resp. HomGQp

(V(πA),V(πA))) lifting a fixed endomorphism of πA/I
(resp. V(πA/I)) is a torsor under HomG(π̄, π̄)⊗ I (resp. HomGQp

(VF, VF)⊗ I). Hence
the induction step follows from 2.2.

2.2.2. — Let A be in ARO and VA in DVF(A). We will denote by ξ the groupoid on
ARO corresponding to VA. An object of ξ consists of an A-algebra A′ in ARO and an
object VA′ of DVF(A′) together with an isomorphism VA′

∼−→ VA ⊗A A′ in DVF(A′).

Set
Dπ̄,ξ = Dπ̄,ψ ×DVF

ξ.

An object of Dπ̄,ξ consists of an A-algebra A′ in ARO together with a pair (πA′ , ιA′),

where πA′ is in Dπ̄,ψ(A′) and ιA′ is an isomorphism ιA′ : V(πA′)
∼−→ VA ⊗A A′ in

DVF(A′).

For any groupoid D over ARO we denote by |D|(A) the set of isomorphism classes
of D(A).

Lemma 2.6. — The morphism D(V) : Dπ̄,ψ → DVF is relatively representable. That
is for any ξ as above, the functor |Dπ̄,ξ| is representable.
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Proof. — Let B,B′, B′′ be in ARO equipped with maps B → B′ and B → B′′. By
Schlessinger’s criterion |Dπ̄,ξ| is representable if and only if for any such B,B′, B′′

with B → B′′ surjective(7), the natural map

(7) |Dπ̄,ξ|(B ×B′′ B′)→ |Dπ̄,ξ|(B)×|Dπ̄,ξ|(B′′) |Dπ̄,ξ|(B′)
is a bijection. Set C = B ×B′′ B′.

Since Dπ̄,ξ → ξ is fully faithful, the injectivity of (7) follows from the corresponding
property for |ξ|. To check surjectivity, let (πB , ιB) (resp. (πB′ , ιB′)) be in Dπ̄,ξ(B)

(resp. Dπ̄,ξ(B
′)) with image in Dπ̄,ξ(B

′′) isomorphic to some object (πB′′ , ιB′′). Fix
such an isomorphism and set

πC = πB ×πB′′ πB′ .
Then πC is a free C-module. To produce a C-basis, choose a basis for πB′ , take its im-
age in πB′′ and lift the resulting B′′-basis to a πB′ . Hence πC is in Dπ̄,ψ(C).Moreover,
using the exactness of V, one sees that the maps ιB , ιB′ induce an isomorphism

ιC : V(πC)
∼−→ V(πB)×V(πB′′ )

V(πB′)
∼−→ VA ⊗A C.

This produces the required element in the left hand side of (7)

2.3. — By an admissible O-lattice we mean a representation of GL2(Qp) on a p-
adically separated and complete, p-torsion free O-module Π, such that Π has an
O-valued central character and Π/pnΠ is a smooth finite length representation of
GL2(Qp). We extend the functor V to O-lattices by setting

V(Π) = lim←−nV(Π/pnΠ).

We denote by πO a uniformiser for O.

Lemma 2.7. — Let VF and π̄ be as in 2.1. Suppose that V is a deformation of VF to
a representation of GQp on a finite free O-module. Let Π′ be an admissible O-lattice
such that π̄ and Π′/πOΠ′ have isomorphic semi-simplifications, and suppose that there
exists an injective GQp-equivariant map V → V(Π′) with finite cokernel.

Then there is an admissible O-sublattice Π ⊂ Π′ such that V(Π) ⊂ V(Π′) is
identified with V. Moreover Π/πOΠ is isomorphic to π̄.

Proof. — We begin by proving the first claim. Let Π ⊂ Π′ be a minimal ad-
missible O-sublattice, such that V ⊂ V(Π). Then V ( πOV(Π), so the image
WF ⊂ V(Π)/πOV(Π) of V is non-zero. If this image is two dimensional then
V = V(Π) and we are done. Thus we may assume that WF is 1-dimensional and, in
particular, that VF is reducible.

It will suffice to show that there exists a subrepresentation σ ⊂ Π/πOΠ such
that V(σ) is identified with WF, for if Σ ⊂ Π denotes the preimage of σ, then
V ⊂ V(Σ) which contradicts the minimality of Π. If V(Π)/πOV(Π) is not a di-
rect sum of two characters then we may take for σ any submodule of Π/πOΠ which

(7) In fact Schlessinger’s criterion involves an even more restricted class of triples (B,B′, B′′) but the
surjectivity of B → B′ is all we will need.
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has infinite dimension and codimension. Thus we may assume V(Π)/πOV(Π) is a
sum of two characters. If VF � ( ω ∗0 1 )⊗ χ, then π̄ has two Jordan-Hölder factors, and
by [9, Prop. VII.4.16] Π/πOΠ is a sum of two infinite dimensional representations, so
we are done in this case also.

It remains to consider the case VF ∼ ( ω ∗0 1 ) ⊗ χ, with ∗ a non-trivial extension
class,(8) and after twisting, we may assume χ = 1. Then using the notation of [9], the
Jordan-Hölder factors of π̄ consist of one copy of the trivial representation 1, and two
infinite dimensional representations St and B(1, ω) with image under V equal to ω
and 1 respectively. If Π/πOΠ contains a subrepresentation of infinite dimension and
codimension, which has B(1, ω) as a Jordan-Hölder factor, then we are done. Suppose
no such subrepresentation exists. Since there are no non-trivial extensions of B(1, ω)

by St [9, Prop. VII.4.25], Π/πOΠ must have socle St and cosocle B(1, ω). But then
V(Π/πOΠ) is a non-trivial extension of 1 by ω, by [9, Thm. VII.4.21], so VF admits
ω as a quotient, contradicting our assumptions.

It remains to show that Π/πOΠ is isomorphic to π̄. Since these two representations
have the same Jordan-Hölder factors, this follows from the results of Colmez cited
above.

2.3.1. — Suppose now that R is a complete local O-algebra with residue field F, and
radical mR. Let VR be a deformation to R of the GQp -representation VF. For n ≥ 1,

let ξn denote the groupoid associated to VR ⊗R R/mnR. Then 2.6 produces a quotient
Rπ̄,n for R/mnR which represents Dπ̄,ξn . Passing to the limit we obtains a quotient Rπ̄
of R.

In particular, applying this construction with R = R�
VF,O

, we obtain a quotient
R�
π̄,ψ of R�

VF,O
.

Proposition 2.8. — Suppose VF � ( 1 ∗
0 ω )⊗ χ. Then

SpecRψχcyc,�
VF,O

∩ SpecR�
π̄,ψ ⊂ SpecR�

VF,O .

contains every irreducible component of SpecRψχcyc,�
VF

[1/p] which contains a twisted
benign point.

Proof. — Let ψ′ : GQp → O× be a character such that ψ′|IQp
is an integral power

of χcyc and ψ′ has the same reduction as ψ. Suppose also that ψ′ψ−1 admits an
O×-valued square root ε whose reduction is trivial (a condition which is automatic
unless p = 2). Twisting by ε induces an automorphism of R�

VF
. Hence by the second

claim in 2.1, we may replace ψ by ψ′ and assume that ψ|IQp
is a power of the cyclotomic

character.
Let x ∈ SpecRψχcyc,�

VF,O
be a twisted benign point. We will show that x is in

SpecR�
π̄,ψ ⊂ SpecR�

VF,O
. To prove this we may extend the base ring O, and assume

that x has residue field E. Let V = Vx be the deformation of VF to O corresponding
to x.

(8) Note in particular, that this implies p ≥ 5 since we are assuming VF �
(

1 ∗
0 ω

)
⊗ χ.
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The results of Colmez [8], Berger-Breuil [4] and Breuil-Emerton [6] imply that there
exists an admissible O-lattice Π′ with central character ψ, such that V(Π′)⊗ZpQp

∼−→
V ⊗Zp Qp as GQp -representations (see [14, 1.2.8]). Moreover, by a result of Berger [3],
Π′/πOΠ′ and π̄ have the same Jordan-Hölder factors. Dividing this map by a power of
πO we may assume that V ⊂ V(Π′). Applying 2.7, there is an admissible O-sublattice
Π ⊂ Π′ such that V(Π) ⊂ V(Π′) is identified with V, and Π/πOΠ

∼−→ π̄. Hence Π

corresponds to an O-valued point of SpecR�
π̄,ψ which maps to x.

It follows that any element in ker (R�
VF,O

→ R�
π̄,ψ) vanishes at a twisted benign

point of Rψχcyc,�
VF,O

. Hence the lemma follows from 1.12.

Corollary 2.9. — Suppose p > 2, VF � ( 1 ∗
0 ω ) ⊗ χ and V̄ |IQp

�
(
ω2

2 0

0 ω6
2

)
⊗ χ if p = 3.

Then the image of
SpecR�

π̄,ψ ↪→ SpecR�
VF,O

contains SpecRψχcyc,�
VF,O

.

Proof. — This follows from 2.8 and 1.13.

2.3.2. — Note that 2.9 produces a map

(8) R�
π̄,ψ → R

ψχcyc,�
VF,O

.

If one assumes that for any A in ARO and πA in Dπ̄(A) with central character ψ, one
has detAV(πA) = ψχcyc, one finds that (8) is an isomorphism.

As mentioned in the introduction, by bounding the dimension of the tangent space
of R�

π̄,ψ, Paskunas has shown that (8) is an isomorphism when π̄ is supersingular.
Hence in this case one does have detAV(πA) = ψχcyc. On the other hand the formula
detAV(πA) = ψχcyc does not always hold. For example it fails, in general, if VF is
unipotent. We are grateful to Paskunas for pointing this out to us.

For V a finite dimension E-representation of GQp , let L ⊂ V be a GQp -stable
lattice. We denote by V̄ the semi-simplification of L/πOL. This does not depend on
the choice of L.

Corollary 2.10. — Suppose p > 2. Let L be a representation of GQp on a free O-module

of rank 2, and suppose that L/πOL � ( 1 ∗
0 ω ) ⊗ χ and L/πOL|IQp

�
(
ω2

2 0

0 ω6
2

)
⊗ χ if

p = 3. Then there exists an admissible O-lattice Π with central character detL · χ−1
cyc,

such that V(Π) is isomorphic to L.

Proof. — This is an immediate consequence of 2.9.

Corollary 2.11. — Suppose p > 2. Let V be an irreducible, 2-dimensional E-repre-
sentation of GQp . If p = 3 assume that V̄ � ( 1 0

0 ω )⊗χ and V̄ |IQp
�

(
ω2

2 0

0 ω6
2

)
⊗χ. Then

there exists an admissible O-lattice Π with central character detV · χ−1
cyc, such that

V(Π)⊗Zp Qp
∼−→ V.
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Proof. — Let L ⊂ V be a GQp -stable lattice. Our assumptions on V̄ imply that L
satisfies the conditions of 2.10, expect possibly when p ≥ 5, and V̄ ∼ ( 1 0

0 ω ) ⊗ χ. In
this case, since V is irreducible L can be chosen so that L/πOL ∼ ( ω ∗0 1 ) ⊗ χ with ∗
a non-trivial extension class. In particular, such an L satisfies the conditions of 2.10,
and the corollary follows.
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