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1. The errors to be corrected

The present erratum is meant to correct two errors in the article [2]. The first
is an error in the definition of Faltings’s topology ([2], §4.2 following [4], page 214)
and was pointed out to us by Ahmed Abbes. The correction follows suggestions of
A. Abbes based on ideas behind the notion of oriented product of toposes introduced
by P. Deligne and L. Illusie. The second error is the statement and proof of Proposition
4.4.2, 6) and 7). We thank A. Abbes for discussions regarding this issue as well.

Our basic setting is the following. Let p > 0 be a prime integer, k a perfect field
of characteristic p, W := W(k) the ring of Witt vectors with coefficients in k and
K := Frac(W ) be the fraction field of W . We denote by K an algebraic closure of
K and by GK := Gal(K/K). We fix a field M such that K ⊂ M ⊂ K. Let X be a
smooth scheme of finite type or a smooth formal scheme topologically of finite type
defined over W .

2. Faltings’s topology

The algebraic case. We first suppose that X/W is a smooth scheme of finite type. We
define the category EXM as follows:

a) the objects are pairs of morphisms of schemes (g : U → X, f : W → UM ), where
g is an étale morphism and f is a finite and étale morphism. We will usually write
(U,W ) to denote this object in order to shorten the notation.

b) a morphism (U ′,W ′) → (U,W ) in EXM is a pair of morphisms (α, β) where
α : U ′ → U is a morphism of schemes over X and β : W ′ → W is a morphism of
schemes which makes the following diagram commute

W ′
β−→ W

↓ ↓
U ′M

αM−→ UM
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c) Let (U,W ) be an object of EXM and let {(Ui,Wi)→ (U,W )}i∈I be a family of
morphisms in EXM . We say that this is a covering family of type (α) if

(α): {Ui → U}i∈I is a covering in Xet, by which we denote étale site of X and
Wi
∼= W ×U Ui for every i.

and of type (β) if
(β): Ui ∼= U for every i ∈ I and {Wi → W}i∈I is a covering in (XM )et, which

denotes the étale site of XM .
We endow the category EXM with the topology TXM generated by the covering

families of type (α) and (β) and call it Faltings’s topology associated to the data
(X,M). We denote the associated site by XM and the topos of sheaves of sets on XM
by Sh(XM ).

Remark 2.1. — Our definition of the site XM and its associated topology in [2] §4.2
is the original definition from [4], page 214. Such definition is wrong in the sense that
the presheaf OXM defined in definition 5.4.1 of [2] (and in [4] page 219-221) is not a
sheaf in general and its sheafification does not have the required properties in order
to relate it to relative Fontaine’s theory (see [3] Example 2.2 for a simple counter
example). With the new definition above the presheaf OXM is a sheaf and has the
required properties. For a detailed proof see [3, Proposition 2.11]. We remark, though,
that the description of the associated topos in [4] corresponds to the definition of the
topology given above and not to the topology given in loc. cit.

Remark 2.2. — One could define the category EZ
XM

in an analogue way by replacing
the étale topology Xet with the Zariski topology XZar, i.e. an object is a pair of
morphisms (g : U → X, f : W → UM ) such that g is an open immersion and f is a
finite étale morphism. If one now endows the category EZ

XM
with the covering families

as defined in section 4.2 of [2], then the presheaf OXZ
M

would be in fact a sheaf. So in
this setting the definition of the topology given in section 4.2 of [2] is the right one.
However to prove the results of [2], namely those of GAGA type, one needs to work
with Xet.

Remark 2.3. — In the definition of the coverings of type (β) we allow {Wi →W}i∈I
to be a covering in (XM )et. However for every i ∈ I, the composition Wi → W →
UM ∼= Ui,M is a finite étale morphism and so the morphism Wi → W is finite étale.
As W has only a finite number of connected components, I contains a finite subset
I ′ such that the family {Wi →W}i∈I′ is a covering in (XM )et, i.e. it is a covering in
(XM )fet, by which we have denoted the finite étale topology on XM .

We’ll now give an alternative definition of the topology TXM and study some of
its properties supplying details which are missing from the literature.

Definition 2.4. — Let {(Uij ,Wij)→ (U,W )}i∈I,j∈J be a family of morphisms in EXM .
We say this family is a strict covering family of (U,W ) if

a) For every i ∈ I there exists Ui object of Xet such that Ui ∼= Uij for every j ∈ J ;
b) The family {Ui → U}i∈I is a covering family in Xet.
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c) For every fixed i ∈ I the family {Wij →W ×U Ui}j∈J is a covering in (XM )et.

If {(Uij ,Wij)→ (U,W )}i∈I,j∈J is a strict covering family of (U,W ) and for every
i ∈ I, Ui is the object defined by a) of definition 2.4 then we will denote this family
by {(Ui,Wij)→ (U,W )}i∈I,j∈J .

Remark 2.5. — Let us observe that if {(Ui,Wij)→ (U,W )}i∈I,j∈J is a strict covering
family of (U,W ), then {(Ui,Wij)→ (U,W )}i∈I,j∈J is the composite(

{(Ui,Wij) −→ (Ui,W ×U Ui)}j∈J
)
i∈I
◦
(
{(Ui,W ×U Ui) −→ (U,W )}i∈I

)
and for every i ∈ I {(Ui,Wij) → (Ui,W ×U Ui)}j∈J is a covering of type (β) while
{(Ui,W ×U Ui)→ (U,W )}i∈I is a covering of type (α). Therefore the strict covering
families are coverings in XM .

On the other hand, clearly coverings of type (α) and (β) are strict coverings and
therefore the strict covering families also generate the topology TXM .

Proposition 2.6. — The finite projective limits are representable in EXM .

Proof. — It suffices to show that given morphisms

(U ′,W ′) −→ (U,W )←− (U ′′,W ′′)

the fiber product of (U ′,W ′) and (U ′′,W ′′) over (U,W ) exists. We define it as follows:
(U ′,W ′)×(U,W ) (U ′′,W ′′) := (U ′×U U ′′,W ′×W ,W ′′), with the map γ : W ′×WW ′′ →
(U ′ ×U U ′′)M = UM ×UM U ′′M induced by the fiber product of the maps W ′ → U ′M
and W ′′ → U ′′M .

We have to check that γ is finite and étale. For this let us remark that γ is the
composition of the natural maps

W ′ ×W W ′′ −→W ′ ×UM W ×UM W ′′ −→ U ′M ×UM U ′′M .

As W ′ → U ′M and W ′′ → U ′′M are finite étale maps, the base changes W ′ ×UM W →
U ′M ×UMW andW ′′×UMW → U ′′M ×UMW are finite and étale. Therefore the natural
map W ′×UM W ×UM W ′′ → U ′M ×UM U ′′M ×UM W is finite and étale. Now as the map
W → UM is finite and étale it follows that the natural map (U ′M ×UM U ′′M )×UM W →
U ′M ×UM U ′′M is finite étale. Let us now examine the map ρ : W ′ ×W W ′′ → W ′ ×UM
W ×UM W ′′. Let us consider the diagonal ∆W : W → W ×UM W . As W → UM is a
finite and étale map, ∆W is an open and closed morphism. Consider the diagram

W ×UM W

↓
W ′ −→ W

where the vertical arrow is the projection on the first component.
Let us observe that the map W ′ → W ′ ×UM W defined by the identity and the

map W ′ → W is the pull back of ∆W via the map W ′ → W in the above diagram.
It follows that W ′ → W ′ ×UM W is an open and closed morphism which implies
that it is finite and étale. Similarly the morphism W ′′ → W ′′ ×UM W is finite and
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étale which implies that ρ is finite and étale. Finally, the object of EXM defined
above (U ′ ×U U ′′,W ′ ×W W ′′) obviously satisfies the universal property of the fiber
product.

Remark 2.7. — The category EXM with the strict covering families does not form a
pretopology. Indeed due to proposition 2.6 the strict covering families satisfy PT0,
PT1 and PT3 of [1, Def. II.1.3], but contrary to what was stated in [2] in the formal
setting and as was pointed out to us by A. Abbes they do not satisfy PT2. However, the
covering families of the pretopology PTXM generated by the strict covering families
are composite of a finite number of strict covering families (or composite of a finite
number of covering families of type (α) and (β)).

It follows from a direct check or from [1, Cor. II.2.3] that a presheaf on EXM
is a sheaf if and only if it satisfies the exactness properties for the strict covering
families. Moreover, the next lemma 2.8 and [1, Rmk. II.3.3] show that one can use
strict coverings in order to compute the sheaf associated to a presheaf as done in [2].

Lemma 2.8. — Let (U,W ) be an object of EXM . Then the strict covering families of
(U,W ) are cofinal in the collection of all covering families of (U,W ) in PTXM .

Proof. — Consider a covering family C of (U,W ) in PTXM . By Remark 2.7 C is a
composite of n strict covering families C = Cn → Cn−1 → · · · → C1. We will prove
by induction on n that we can find a covering family of every open of C such that
the induced covering of (U,W ) is a strict covering family.

For n = 1 there is nothing to prove so let us assume that n = 2. We write C1 =

{(Ui,Wij)} and C2 = {(Uijα,Wijαβ)} such that {(Uijα,Wijαβ) → (Ui,Wij)}αβ are
strict coverings for every i, j. For fixed i, j, α we denote by Iijα the set over which the
β’s vary. For every i let us choose a finite set Mi of indices j such that the family
{Wij → Ui ×U W}j∈Mi

is a covering in Xet
M .

Now we fix i, j, α and denote Mij := Mi ∪ {j}. Let x denote a geometric point of
Uijα and let xi denote the image of x in Ui. For every j′ ∈ Mij , because {Uij′α′ →
Ui}α′ is a covering in Xet there is an α′ and a geometric point x′ of Uij′α′ mapping
to xi. We denote

Uijαx := ×UiUij′α′ where the product is over j′ ∈Mij .

Then keeping in mind that j ∈Mij , we have a natural projection map Uijαx → Uijα
such that there is a geometric point of Uijαx mapping under it to x. Therefore the
collection {Uijαx → Uijα}x is a covering in Xet.

For every i, j, α as above, for every geometric point x of Uijα, j′ ∈Mij and β ∈ Iijα
we denote by

Wijj′αβx := Wij′α′β ×Uij′α′ Uijαx.

In particular the collection {(Uijαx,Wijj′αβx)→ (Uij′α′ ,Wij′α′β)}x is a covering fam-
ily of type α), i.e. it is a strict covering family. Putting together all these covering
families for varying i, j, j′, α, β and x we obtain a refinement D → C2.
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We observe that (1) the family {Wij′α′β → Wij′ ×Ui Uij′α′}β∈Iijα is a covering in
Xet
M and (2) The family {(Wij′ ×Ui Uijαx →W ×U Uijαx}j′∈Mij

is also a covering in
Xet
M . It follows that for all i, j, α, x the family

{Wijj′αβx = Wij′αβ ×Uij′α′ Uijαx −→W ×U Uijαx}j′∈Mij ,β∈Iijα

is a covering family and hence the family {(Uijαx,Wijj′αβx) → (U,W )}ijj′αβx is a
strict covering family as claimed. This ends the case n = 2.

Suppose now that the statement of the lemma is true for a chain ofN strict covering
families and let us prove it for n = N + 1. By induction we can refine CN by a strict
covering family C ′N → CN such that the induced covering of (U,W ) is a strict covering
family. But strict covering families are stable by fiber product therefore by replacing
CN by C ′N and CN+1 by its base change C ′N+1 via C ′N → CN we are reduced again
to the case n = 2. I.e. there is a refinement C ′′ of C ′N+1, which is strict such that the
covering C ′′ → (U,W ) is strict. Therefore the covering C ′′ → CN+1 is a refinement
(it is not necessarily strict) such that the family C ′′ → (U,W ) is a strict covering
family. This proves the claim.

The formal case. — The definition of the topology is treated in detail in §2 of [3].
We notice that in the formal setting the definition given in loc. cit. is the correct one.
Contrary to 2.2 in the formal setting even if we work with the Zariski site of X instead
of the étale site, the correct topology is not the one defined originally by Faltings.
The analogues of Lemma 2.8 and of the fact that OXM is a sheaf in the formal case,
not proved in loc. cit., are similar to the ones in the algebraic case and are left to the
reader.

3. Geometric points of XM

Let us first point out that Proposition 4.4.2, 6) and 7) of [2] (both statements and
proofs) are true if M0 = K and if we use the pointed site X•M . Let us recall that
M0 is the completion of the maximal unramified extension of K in M . However, in
general, (using notations as in the Proposition 4.4.2) the scheme Spec(Osh

X,x̂ ⊗OK M)

has [M0 : K] components which have to be accounted for. It is possible to refine the
argument in [2] and repare that proof. Here we prefer to give a new and conceptually
clearer proof of Proposition 4.4.2 for the site XM based on results in [1]. We will first
refine the notion of “geometric point” of XM .

Geometric points of XM . — According to [1] a point of XM is simply a morphism
of toposes Sets → Sh(XM ). In this section we will give an explicit description of a
particular class of points of XM arising from morphisms of sites XM → Sets, which
we call geometric points. We show that they are enough to separate sheaves (this will
correct the proof in [2] in the algebraic setting.)

Definition 3.1. — We define a geometric point of XM to be a pair (x, y) where
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a) x is a geometric point of X. We denote by Xx := Spec(Osh
X,x) i.e. the spectrum of

the strict henselization of the local ring of X at x and by Xx,M := Spec(Osh
X,x⊗OKM).

b) y is a geometric point of Xx,M . We may think of y as a geometric point of XM

which specializes to x in other words y : Spec(Ω) → Xx where Ω is an algebraically
closed field containing M .

Given a geometric point (x, y) as above we denote by G(x,y) := π1(Xx,M ; y). The
site of the finite and étale coverings of the connected component of Xx,M containing
y is equivalent via a functor which we denote ρ(x,y) to the site of finite G(x,y)-sets,
which we denote by FSetsG(x,y)

.
We consider the functor ι(x,y) : EXM −→ FSetsG(x,y)

defined by

ι(x,y)(U,W ) := ρ(x,y)

(
(Xx,M ×XM W )y

)
,

where the index y denotes the inverse image in Xx,M×XMW of the connected compo-
nent of Xx,M containing y. This functor (or rather its composition with the forgetful
functor FSetsG(x,y)

−→ Sets) sends covering families to covering families, final ob-
jects to final objects and commutes with finite projective limits therefore defines a
morphism of sites and so it induces a morphism of toposes from Sets to the topos
associated to XM i. e., it defines a point.

Definition 3.2. — Let F be a presheaf on EXM , we denote by F(x,y) := ι∗(x,y)(F ) and
call it the stalk of F at (x, y).

We’d like now to explicitly describe F(x,y). Let Ix denote the category of pointed
étale neighbourhoods of x in X i. e., the category of pairs (U, x′) where U → X is an
étale morphism and x′ is a geometric point of U over x. We define J(x,y) to be the
category of pairs

(
(U, x′), (W, y′)

)
where

a) i := (U, x′) is an object of Ix,
b) (U,W ) is an object of EXM ,
c) y′ is a geometric point of W lifting the point Spec(Ω)

y−→ Xx,M −→ UM , where
the last map above is the base change to M of the map Xx −→ U induced by x′.

For every i = (U, x′) ∈ Ix we let Ji,y ⊂ J(x,y) denote the full subcategory of
pairs of the form

(
(U, x′), (W, y′)

)
, i.e. with constant (U, x′) first component. Given a

morphism i′′ = (U ′′, x′′)→ (U, x′) = i we have a natural functor Ji → Ji′′ given by(
(U, x′), (W, y′)

)
−→

(
(U ′′, x′′), (U ′′ ×U W, (x′′, y′))

)
.

In this way J(x,y) → Ix becomes a fibred category. For a presheaf F on EXM and
i = (U, x′) ∈ Ix we denote by Fi,y the limit of F (U,W ) for

(
(U, x′), (W, y′)

)
∈ Ji,y and

let us observe ([1, IV.6.8.3]), that as a set F(x,y) is the limit of Fi,y for i ∈ Ix. Then,
Fi,y considered as a set with the discrete topology is endowed with a continuous action
of π1(UM ; y) (where we think of y as a geometric point of UM via the composition

Spec(Ω)
y−→ Xx,M

x′
M−→ UM ). Given a morphism i′′ = (U ′′, x′′)→ (U, x′) = i in Ix we

have a morphism Fi,y → Fi′′,y compatible with the continuous group homomorphism
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π1(U ′′M ; y)→ π1(UM ; y) and therefore F(x,y) is canonically endowed with a continuous
action of G(x,y). We have used here that G(x,y)

∼= lim
←,i

π1(UM ; y), where i = (U, x′) ∈
Ix. In fact more is true namely if G is any finite group we have

(∗) Hom(G(x,y), G) ∼= lim
→,i

Hom(π1(UM ; y), G).

Let F be a presheaf of abelian groups on EXM and (x, y) a geometric point of XM .

Lemma 3.3. — The group Hn
cont(G(x,y),F(x,y)) coincides with the direct limit over

i = (U, x′) ∈ Ix of Hn(π1(UM ; y),Fi,y).

Proof. — For every i = (U, x′) ∈ Ix we have natural maps Hn(π1(UM ; y),Fi,y) →
Hn

cont(G(x,y),F(x,y)) compatible with the transition maps, therefore we have a natural
map

ϕ : lim
→,i∈Ix

Hn(π1(UM ; y),Fi,y) −→ Hn
cont(G(x,y),F(x,y)).

a) injectivity of ϕ. Let i = (U, x′) ∈ Ix and g ∈ Hn(π1(UM ; y),Fi,y) such that
ϕ(g) = 0. Then g is represented by a continuous cocycle G : π1(UM ; y)n → Fi,y and
ϕ(g) is represented by the composition G′:

Gn(x,y) −→ π1(UM ; y)n
G−→ Fi,y −→ F(x,y).

As ϕ(g) = 0, there is a continuous cochain F : Gn−1
(x,y) → F(x,y) such that dF = G′. As

F is continuous, it factors via Hn−1, for H a finite quotient of G(x,y) and as the image
F (Hn−1) is finite it ends up in the image of Fi′,y for a certain i′′ = (U ′′, x′′) ∈ Ix.
Shrinking U ′′ if necessary we may suppose that H is also a quotient of π1(U ′′M ; y). We
obtain a continuous cochain F ′ : π1(U ′′M ; y)n−1 → Fi′′,y such that dF ′ = G|i′′,y and
therefore the image of g in the inductive limit is 0.

b) surjectivity of ϕ. Let f ∈ Hn
cont(G(x,y),F(x,y)) and let F : Gn(x,y) → F(x,y)

denote a continuous cocycle defining it. As F is continuous, it factors via a fi-
nite quotient of G(x,y) and so it factors via a continuous cocycle F ′ : π1(U ′′M ; y) →
Fi′′,y, where i′′ = (U ′′, x′′) ∈ Ix. The image f ′ of the cohomology class of F ′ in

lim
→,i∈Ix

Hn(π1(UM ; y),Fi,y) has the property ϕ(f ′) = f .

Proposition 3.4. — Let F ,G be sheaves on XM and let α, β : F −→ G be two mor-
phisms of sheaves. Suppose that for all geometric points (x, y) of XM we have α(x,y) =

β(x,y). Then α = β.

In other words the proposition states that the geometric points are “enough” points
of XM .

Proof. — Let (U,W ) be an object of EXM and s ∈ F (U,W ). We’d like to show that
there is a covering {(Ui,Wi) → (U,W )}i such that α(s)|(Ui,Wi) = β(s)|(Ui,Wi) for
every i.

First if W is not irreducible and {Wa}a are its irreducible components the family
{(U,Wa) → (U,W )}a is a covering and we have F (U,W ) ∼=

∏
a F (U,Wa) as F
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is a sheaf. So it is enough to prove the above property for every component sa of
s, in other words we may suppose that W is irreducible. Similarly we may assume
without loss of generality that U is irreducible. Choose a geometric point x of U
and a geometric point y′ of W whose image y in UM specializes to x (i.e. such that
(x, y) is a geometric point of XM ). Then

(
(U, x), (W, y′)

)
∈ J(x,y) and this induces

a morphism F (U,W ) → F(x,y). By hypothesis the images of α(s) and β(s) via this
morphism coincide, thus there exists

(
(U(x,y′), x), (W(x,y′), y

′)
)
∈ J(x,y) such that the

restrictions of α(s), β(s) to (U(x,y′),W(x,y′)) are equal. In fact using the finite family
{(U(x,y′),W(x,y′)}y′ one can manufacture a pair

(
(U (x), x′), (W (x), y′)

)
such that

i) (U (x),W (x)) ∈ EXM and we have a morphism (U (x),W (x))→ (U,W );
ii) U (x) and W (x) are connected, x′ maps to x and y′ maps to y.
iii) the images of α(s) and β(s) in G (U (x),W (x)) are equal.

It follows that the family {U (x) → U}x is a covering in Xet. Let us denote by A′

(respectively B′) the integral closure of OK in U (respectively in U (x)). In particular,
U ⊗A′ K (resp. U (x)⊗B′ K) is irreducible. Moreover, A′ ⊂ B′ is an extension of finite
extensions of OK . Possibly replacing U (x) with a connected component of the base
change of U (x) to the normalization of OK in a Galois closure of A′K ⊂ B′K , we may
assume that B′K/A

′
K is finite and Galois with group denoted by G′. Let A (resp. B) be

the subfield of the residue field of y (resp. y′) defined as the composite of A′ (resp. B′)
and M . Note that G′ is the Galois group of B′ ⊗OK M over A′ ⊗OK M and A and B
are direct factors of A′ ⊗OK M (resp. B′ ⊗OK M). Then, A ⊂ B is still Galois with
group G which is the subgroup of G′ fixing the direct factor B ⊂ B′ ⊗OK M . Choose
H := {1, σ1, . . . , σn} ⊂ G′ so that

(
B′ ⊗OK M)⊗A′⊗OK

M A ∼=
∏
h∈H h(B). Let U1,M

(resp. U (x)
1,M ) be the connected component of UM (resp. U (x)

M ) containing y (resp. y′).

Then, U1,M = UK ⊗K M ⊗A′⊗M A and U (x)
1,M = U

(x)
K ⊗K M ⊗B′⊗M B. In particular,

the connected components of U (x)
M over U1,M are

U
(x)
M ×UM U1,M

∼= qh∈HU (x)
M ⊗B′⊗KM h(B).

By construction U (x)
1,M is the image of W (x). For every h ∈ H let ρh : U

(x)
h,M
∼= U

(x)
1,M be

the isomorphism as U1,M -schemes defined by h. Then ρ∗h(W (x)) → W ×UM U
(x)
h,M is

surjective, so if we define W(x) := qh∈Hρ∗h(W (x)), then W(x) covers W ×U U (x), i.e.
the pair (U (x),W(x)) is an object of EXM for every x and the family {(U (x),W(x))→
(U,W )}x is a strict covering. Moreover, the images of α(s) and β(s) in G (U (x),W (x))

are equal. It follows that the images of α(s) and β(s) in G (U (x),W(x)) are equal for
every x, and therefore we have α(s) = β(s). This ends the proof of the proposition.

Morphisms of topoi. — Let us recall the functors defined in section §4.3 of [2] and add
a few new details. We work in the algebraic setting, i.e. assume that X is a smooth
scheme of finite type over OK .

a) v = vX,M : Xet −→ EXM defined by v(U) := (U,UK). It sends covering families
to covering families, final objects to final objects and commutes with fiber projects
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(hence with finite projective limits). In particular it defines a morphism of sites
v : Xet −→ XM and we denote by v∗, v∗ the direct and inverse image functors on
the respective topoi.

b) ρ = ρX,M : X fet
M −→ EXM defined by w(W ) := (X,W ). This functor sends

covering families to covering families, final objects to final objects and commutes
with finite projective limits. It induces therefore a morphism of sites ρ : X fet

M −→ XM .
c) Let U be an open in Xet and let us denote by UM Faltings’s site associated to

the pair (U,M). Then UM = XM |(U,UM ). Let ρU : U fet
M −→ UM be the morphism of

sites as above. Denote buy ρ∗U and ρU,∗ the induced morphism of toposes.
d) Using the same notations as at d) above we also have a natural morphism of

sites
jU : XM −→ UM , defined by jU.M (V,W ) := (V ×X U,W ×X U).

Then j∗U : Sh(XM ) −→ Sh(UM ) admits an exact left adjoint given by the functor
jU,! : Sh(UM ) −→ Sh(XM ) defined by extension by zero, i.e. more precisely

jU !(F )(V,W ) :=
∏
ξ

F (ξ(V,W )), where ξ ∈ Hom
(
(V,W ), (U,UM )

)
.

It follows that j∗U sends injective sheaves to injective sheaves.

3.1. Explicit description of Riv∗. — Let F be a sheaf of abelian groups on XM .

Lemma 3.5. — For every U object of Xet and n ≥ 0 there is a functorial homo-
morphism fn,U : Hn(U fet

M , ρU,∗(F )) −→ H0(U,Rnv∗(F )). Moreover, if we denote by
H n

Gal(F ) the sheaf on Xet associated to the presheaf U 7→ Hn(U fet
M , ρU,∗(F )), then

the family of morphisms {fn,U}U defines a morphism of sheaves fn : H n
Gal(F ) −→

Rnv∗(F ).

Proof. — We have the following obvious equalities:

H0(U fet
M , ρU,∗(F )) = H0(U, v∗(F )) = H0(UM , j

∗
U (F )).

Using the fact that j∗U is an exact functor we obtain a Leray spectral sequence

Hi(U fet
M ,RjρU,∗(F )) =⇒ Hi+j(UM , j

∗
U (F ))

which induces for every n ≥ 0 a morphism gn,U : Hn(U fet
M , ρU,∗(F )) −→ Hn(UM , j

∗
U (F )).

Let us denote by Tn(F ) the sheaf associated to the presheaf on Xet, U 7→
Hn(UM , j

∗
U (F )). Then the family of functors {Tn}n is a family of delta-functors

which is universal. The property of the family being delta-functors follows from the
fact that j∗U is exact. The universality of the family follows from the fact that if G
is an injective sheaf on XM then j∗U (G ) is an injective sheaf on UM and therefore
Tn(G ) = 0 for all n ≥ 1.

For every sheaf F of abelian groups on XM we also have a natural isomorphism
v∗(F ) ∼= T 0(F ) and because the family of functors {Rnv∗}n is a universal family of
delta-functors, we have canonical isomorphisms Rnv∗(F ) ∼= Tn(F ) for every n ≥ 0.
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So finally we define fn,U by the composition

Hn(U fet
M , ρU,∗(F ))

gn,U−→ Hn(UM , j
∗
U (F )) −→ H0(U, Tn(F )) ∼= H0(U,Rnv∗(F )).

Theorem 3.6. — For every sheaf of abelian groups F on XM the morphism of sheaves

fn : H n
Gal(F ) −→ Rnv∗(F )

defined in lemma 3.5 is an isomorphism of abelian sheaves on Xet for every n ≥ 0.

Proof. — Let x be a geometric point of X. We will prove that fn induces an iso-
morphism of stalks:

(
H n

Gal(F )
)
x
∼=
(
Rnv∗(F )

)
x
. For this let Ix denote the filtered

category of pointed étale neighbourhoods (U, x′) of x in Xet which as schemes are
affine. Let us remark that Ix is a co-filtering direct system. We will define three
coherent, filtered sites and toposes over Ix and consider their projective limit (see
chapter VI of [1] for the definitions and main properties of these notions).

• The fibred site Et −→ Ix (see §VI.7.2.1 of [1]). For every (U, x′) ∈ Ix we define
ET|(U,x′) := U et to be the étale site of U . If h : (U, x′) → (V, x′′) is a morphism in
Ix then define the functor h∗ : ET|(V,x′′) −→ ET(U,x′) to be the base change functor,
i.e. h∗(Z → V ) := (Z ×V U → U). This functor sends covering families to covering
families, commutes with finite projective limits and sends final objects to final objects.
In particular it defines a morphism of sites [1, IV.4.9.2]. One checks that it induces a
fibred topos which we denote by Sh(ET).

• The fibred site FETM −→ Ix. For every (U, x′) in Ix we define FETM |(U,x′) := U fet
M

finite étale site of UM . If h : (U, x′)→ (V, x′′) is a morphism in Ix we define the functor
h∗ : FETM |(V,x′′) −→ FETM |(U,x′) to be the base change induced by hM : UM → VM ,
i.e. h∗(W → VM ) := (W ×V U → UM ). This functor sends covering families to
covering families, commutes with finite projective limits and sends final objects to
final objects. In particular it defines a morphism of sites. It defines a fibred topos
denoted Sh(FETM ).

• The fibred site XM −→ Ix. For every (U, x′) is Ix we define XM |(U,x′) :=

XM |(U,UM ) = UM , i.e. Faltings’s site associated to U . If h : (U, x′) → (V, x′′) is a
morphism in Ix we define the functor h∗ : XM |(V,x′′) −→ XM |(U,x′) by base change,
i.e. h∗

(
(Z,W )→ (V, VM )

)
:=
(
Z ×V U,W ×V U)→ (U.UM )

)
. As before h∗ defines a

morphism of sites and we denote by Sh(XM ) the associated fibred topos.

The main properties of these fibred sites and toposes are summarized in the next
lemma.

Lemma 3.7. — a) The toposes Sh(ET), Sh(FETM ) and Sh(XM ) are coherent.
b) There are natural coherent morphisms of fibred sites v∗ : ET −→ XM and

ρ∗ : FETM −→ XM .

Proof. — a) Let us observe that for every (U, x′) in Ix given an object of either
ET|(U,x′), FETM |(U,x′) or XM |(U,x′) we can extract for a covering family of that object
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a finite subfamily which is still a covering. Moreover all sites admit final objects,
therefore following [1, VI.2.4.1] the associated toposes are coherent.

b) We define the morphism v∗ : ET −→ XM as follows (see [1, VI.7.2.2] ). For
every (U, x′) in Ix define v∗|(U,x′) : ET(U,x′) −→ XM |(U,x′) by v∗|(U,x′)(V → U) :=

((V, VM ) → (U,UM )). This is a morphism of sites and in fact a morphism of fibred
sites as if h is a morphism in Ix then v∗◦h∗ = h∗. In particular, v∗ induces a morphism
of fibred toposes which is coherent.

We also define a morphism ρ∗ : FETM −→ XM of fibred sites as follows. Let
(U, x′) be an object of Ix, then ρ∗|(U,x′) : FETM |(U,x′) −→ XM |(U,x′) is defined by
ρ∗|(U,x′)(W → UM ) := ((U,W )→ (U,UM )). It induces a morphism of sites and so ρ∗

is a morphism of fibred sites which induces a coherent morphism of fibred toposes.

Now, by [1, Thm. VI.8.2.3], since Ix is a co-filtering direct system, the projective
limits of toposes lim

←
Sh(XM ), lim

←
Sh(ET), lim

←
Sh(FETM ) exist. Moreover, as Ix con-

sists of affine schemes, by [1, Thm. VII.5.2] it follows that lim
←

Sh(ET) is the étale
topos associated to the scheme lim

U∈Ix
U = Xx, (the spectrum of the strict henselization

of X at x). In particular the associated topos is the topos of the point x. Let

lim
←
v : lim

←
Sh(XM ) −→ lim

←
Sh(ET) and lim

←
ρ : lim

←
Sh(XM ) −→ lim

←
Sh(FETM )

be the induced morphisms on the projective limits of toposes [1, VI.8.1.4]. Let F ∈
Sh(XM ) be our abelian sheaf. Then for every U in Ix we denote j∗U (F ) its restriction
to UM . The family of these define a sheaf F ′ ∈ Sh(XM ) [1, VI.7.4.4]. From the lemma
3.7, [1, VI.8.7.1, VI.8.7.3] we deduce that we have

Rn(lim
←
v)(F ′) ∼= lim

←
Rn(v|U )∗(j

∗
U (F )) =

(
Rnv∗(F )

)
x
.

We deduce from the Leray spectral sequence [1, Cor. VI.8.7.7] that Rn(lim
←
v)(F ′) =

Hn(lim
←

Sh(XM ),F ′). It follows from [1, VII.5.4] arguing as in [1, Lemma VII.5.6]

that both lim
←

Sh(XM ) and lim
←

Sh(FETM ) coincide with the topos associated to the
finite étale site of Xx,M so that lim

←
ρ is an equivalence. In particular, Rn(lim

←
ρ) = 0

if n ≥ 1. Therefore,(
Rnv∗(F )

)
x

= Rn(lim
←

)v(F ′) = Hn(lim
←

Sh(XM ),F ′) = lim
←

Hn
(
(UM )fet, j∗U (F )) =

(
H n

Gal(F )
)
x
.

This implies the following description of
(
Rnv∗(F )

)
x
:

Corollary 3.8. — We have a natural isomorphism
(
Rnv∗(F )

)
x
∼= Hn

(
(Xx,M )fet,F |Xx,M

)
.

Assume that K is totally ramified in M so that M0 = K. Let (x, y) be a geometric
point of XM . Thanks to 3.3 we have

(
Rnv∗(F )

)
x
∼= Hn

cont(G(x,y),F(x,y)) which is
what was claimed in [2].
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