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FAMILIES OF AUTOMORPHIC FORMS
ON DEFINITE QUATERNION ALGEBRAS

AND TEITELBAUM’S CONJECTURE

by

Massimo Bertolini, Henri Darmon & Adrian Iovita

Abstract. — The main goal of this note is to describe a new proof of the “exceptional
zero conjecture” of Mazur, Tate and Teitelbaum. This proof relies on Teitelbaum’s
approach to the L -invariant based on the Cerednik-Drinfeld theory of p-adic uni-
formisation of Shimura curves.
Résumé (Familles de formes automorphes sur les algèbres quaternioniques et conjecture de Tei-
telbaum)

Cet article fournit une nouvelle démonstration de la conjecture de Mazur, Tate
et Teitelbaum sur les « zéros exceptionnels » des fonctions L p-adiques. Cette dé-
monstration repose sur une définition de l’invariant L proposée par Teitelbaum, qui
repose sur la théorie de l’uniformisation p-adique des courbes de Shimura.

Introduction

Let f =
∑
anq

n be a newform of even weight k0 +2 ≥ 2 on Γ0(Np), where N ≥ 4 is
a positive integer and p is a prime which does not divide N . We denote by L(f, s) the
complex L-function attached to f , and by L(f, χ, s) its twist by a Dirichlet character
χ. A theorem of Shimura asserts the existence of a complex period Ωf such that the
special values

L(f, χ, j)/Ωf with 1 ≤ j ≤ k0 + 1

belong to the subfield Kf of C generated by the Fourier coefficients of f , and even to
its ring of integers. These special values (when χ ranges over the Dirichlet characters
of p-power conductor) can be interpolated p-adically, yielding the Mazur-Swinnerton-
Dyer p-adic L-function Lp(f, s), a p-adic analytic function whose definition depends
on the choice of Ωf . Denote by

L∗(f, χ, 1 + k0/2) := L(f, χ, 1 + k0/2)/Ωf ,

the algebraic part of L(f, χ, s) at the central critical point s = 1 + k0/2.
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The modular form f is said to be split multiplicative if

f |Up = pk0/2f.

In that case, Lp(f, s) has a so-called exceptional zero at s = 1+k0/2 arising from the p-
adic interpolation process. In fact, like its classical counterpart, the p-adic L-function
Lp(f, s) has a functional equation of the form

(1) Lp(f, k0 + 2− s) = εp(f)〈N〉s−1−k0/2Lp(f, s),

and the sign εp(f) = ±1 that appears in this equation is related to the the sign ε∞(f)

in the classical functional equation for L(f, s) by the rule

εp(f) =

{
−ε∞(f) if f is split multiplicative;
ε∞(f) otherwise.

In the case where f is a split multiplicative newform, Mazur, Tate and Teitelbaum
made the following conjecture in [18]:

Conjecture 1. — There exists a constant L (f) ∈ Cp, which depends only on the re-
striction of the Galois representation attached to f to a decomposition group at p, and
such that

(2) L′p(f, χ, 1 + k0/2) = L (f)L∗(f, χ, 1 + k0/2),

for all χ with χ(−1) = χ(p) = 1.

The constant L (f), which Mazur, Tate and Teitelbaum called the L-invariant,
was only defined in [18] in the weight two case k0 = 0. In the higher weight case
k0 > 0, several a priori inequivalent definitions of L (f) were subsequently proposed.

1. In [23], Teitelbaum offered the first definition for L (f). This invariant, denoted
LT (f), is based on the Cerednik-Drinfeld theory of p-adic uniformisation of
Shimura curves and is only defined for modular forms which are the Jacquet-
Langlands lift of a modular form on a Shimura curve uniformized by Drinfeld’s
p-adic upper half plane. This occurs, for example, when the conductor of f can
be written as a product of three pairwise relatively prime integers of the form

pN = pN+N−,

where N− is the square-free product of an odd number of prime factors. A modu-
lar form which satisfies this condition will be said to be p-adically uniformisable.

2. Coleman [5] then proposed an analogous but more general invariant LC(f) by
working directly with p-adic integration on the modular curve attached to the
group Γ0(p) ∩ Γ1(N).

3. Fontaine and Mazur [17] gave a definition for the so-called Fontaine-Mazur
L -invariant LFM (f) in terms of the filtered, Frobenius monodromy module of
the p-adic Galois representation attached to f .
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4. In [19], Orton has introduced yet a further L -invariant LO(f), based on the
group cohomology of arithmetic subgroups of GL2(Z[1/p]), extending to forms
of higher weight the approach taken in [12] for k0 = 0.

5. Finally Breuil defined in [2] the L -invariant LBr(f) in terms of the p-adic
representation of GL2(Qp) attached by him to f .

We now know that all the above L -invariants are equal (when they are defined) as
result of work of many people, which we briefly list below (see [9] for a more detailed
account of these various articles and preprints).

The equality of the L -invariants LC(f) and LFM (f) was proved in [7] by making
explicit the comparison isomorphism between the p-adic étale cohomology and log-
crystalline cohomology of the modular curve X0(Np) with respective coefficients. The
equality of LT (f) and LC(f) (when they are both defined) was proved in [16] by
interpreting LT (f) as the L -invariant of a filtered, Frobenius monodromy module.
Breuil proved in [2] the equality LBr(f) = LO(f), which is a manifestation of the
local-global compatibility for the p-adic Langlands correspondence.

It was first observed by Greenberg and Stevens for weight two (in [15]) and by
Stevens in general (in [22]) that p-adic deformations of f , i.e. p-adic families of mod-
ular eigenforms are relevant for conjecture (1). To describe these objects precisely,
let

W := Homcont(Z×p ,Q×p )

denote the weight space, viewed as the Qp-points of a rigid analytic space. There is
a natural inclusion Z ⊂ W by sending k to the function x 7→ xk. Write A(U) for the
ring of rigid analytic functions on U , for any affinoid disk U ⊂ W .

A p-adic family of eigenforms interpolating f is the data of a disk U with k0 ∈ U ,
and of a formal q-expansion

(3) f∞ =
∞∑
n=1

anq
n,

with coefficients in A(U) satisfying:
1. For every k ∈ U ∩ Z≥0,

fk :=
∞∑
n=1

an(k)qn

is the q-expansion of a normalized eigenform of weight k+ 2 on the congruence
group Γ1(p) ∩ Γ0(N);

2. fk0
= f .

The existence and essential uniqueness of the family f∞ interpolating f is proved in
[6].

Greenberg and Stevens for weight two and Stevens in general first proved that
LC(f) = −2(dlogap)κ=k0 . Colmez generalized the Galois cohomology calculations
in [15] by working inside Fontaine’s rings and proved the equality LFM (f) =

−2(dlogap)κ=k0
in [11]. He also proved the equality LBr(f) = −2(dlogap)κ=k0

in
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[10] by using the p-adic local Langlands correspondence for trianguline represen-
tations. Let us remark that in fact the quantity L (f)NoName := −2(dlogap)κ=k0

behaves like an L -invariant: it satisfies the equation (2) of conjecture 1 (see [22]) and
it is a local invariant of f in the sense that it is invariant to twists of f by Dirichlet
characters trivial at p (in fact it is invariant to all twists by Dirichlet characters.)

Conjecture (1) was first proved in [15] for weight two, and several different proofs
have been announced in the higher weight case:

1. By Kato-Kurihara-Tsuji, working with the invariant LFM (f);
2. By Glenn Stevens, working with LC(f);
3. By Orton, working with LO(f) in [19];
4. By Emerton working with LBr(f) in [14].

The first two proofs are still unpublished but an account of the approach of Kato-
Kurihara-Tsuji can be found in [8] while Stevens gave a series of lectures on his
theory during the Automorphic Forms semester in Paris, 1998. Notes to these lectures,
to which we will refer as [22], although not yet published circulated widely in the
mathematical community and greatly influenced articles like [3], [4] and the present
note. As these notes have not been published we will sketch proofs of all the results
quoted from them.

The main goal of this note is to describe a new proof of Conjecture 1 which applies
to forms which are p-adically uniformisable.

Theorem 2. — Assume that f is p-adically uniformisable. Then

(4) L′p(f, χ, 1 + k0/2) = LT (f)L∗(f, χ, 1 + k0/2),

for all Dirichlet characters χ satisfying χ(−1) = χ(p) = 1.

Our proof of Theorem 2 is based on Teitelbaum’s definition of the L-invariant: this
is why it needs to be assumed that f is p-adically uniformisable. Thus the Cerednik-
Drinfeld theory of p-adic uniformisation of Shimura curves and the Jacquet-Langlands
correspondence, which play no role in the earlier proofs of Stevens and Kato-Kurihara-
Tsuji, are key ingredients in our approach. Section 1 supplies the necessary definitions
concerning automorphic forms on definite quaternion algebras, and Section 2 recalls
a few basic facts concerning p-adic integration on Shimura curves, including Teitel-
baum’s theory of the “p-adic Poisson kernel" and his definition of the invariant LT (f).

Guided by the Jacquet-Langlands correspondence between classical modular forms
and automorphic forms on quaternion algebras, Section 3 describes a theory of
p-adic families of automorphic forms on definite quaternion algebras, based on ideas
of Stevens, Buzzard and Chenevier. The resulting structures are used to prove
the following theorem in Section 4, which relates Teitelbaum’s L-invariant to the
derivative of the Fourier coefficient ap(k) with respect to k.

Theorem 3. — Suppose that f is p-adically uniformisable. Then

(5) LT (f) = −2dlog(ap)κ=k0
.
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The ideas of Orton in [19], which are recalled in Section 5, make it apparent that
the definition of the invariants LT (f) and LO(f) are very similar in flavour. The
calculations of Sections 1 to 4, when transposed to the context of a modular form
on GL2(Q), with the “integration on Hp ×H " defined in terms of modular symbols
playing the role of the p-adic line integrals on Drinfeld’s upper half-plane, leads to
the proof of the following analogue of Theorem 3, which is described in Section 6:

Theorem 4. — Let f be a modular form of weight k on Γ0(N) which is split multi-
plicative at p. Then

(6) LO(f) = −2dlog(ap)κ=k0
.

Theorem 2 now follows directly from Theorems 3 and 4, in light of Orton’s proof
of Conjecture (1).

The remainder of the text will focus on explaining the proofs of Theorems 3 and
4, which are independent (both in their statement, and their formulation) of the
existence and basic properties of either the p-adic L-function or the p-adic Galois
representation attached to f and the Coleman family interpolating it.

We emphasize that the proof of Theorem 2 owes much to the ideas that are already
present in the earlier (although still unpublished) approaches of Stevens and Kato-
Kurihara-Tsuji. The main virtues (and drawbacks) of our method are inherently the
same as those in Teitelbaum’s approach to defining the L -invariant: a gain in simplic-
ity (because the method involves p-adic integration on a Mumford curve rather than
a modular curve, and requires no information about Galois representations) offset
by a certain loss of generality (since the method only applies to automorphic forms
that can be obtained as the Jacquet-Langlands lift of a modular form on a p-adically
uniformized Shimura curve). A second, less immediately apparent advantage of our
approach lies in the insights arising from the connection that is drawn between the
two-variable p-adic L-function Lp(k, s) attached to f∞ and the p-adic uniformisation
of Shimura curves. In particular, the new ideas introduced in this article form the
basis for the proof of the main result of [1], which, in the case where f corresponds to
a modular elliptic curve E over Q and ε∞(f) = −εp(f) = −1, relates the leading term
of Lp(k, s) at the central critical point (k, s) = (2, 1) to the formal group logarithm
of a global point on E(Q).

1. Automorphic forms on quaternion algebras

Suppose from now on that f is p-adically uniformisable, so that its level pN can
be factored as

(7) pN = pN+N−, where gcd(N+, N−) = 1,

and where N− is square-free and has an odd number of prime factors. Let B denote
the quaternion algebra over Q ramified exactly at N−∞, and let R denote a maximal
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order in B. For each ` not dividing N− we fix an isomorphism

ι` : B ⊗Q`
∼= M2(Q`), with ι`(R ⊗ Z`) = M2(Z`).

Let Ẑ denote the profinite completion of Z and let B̂ := B ⊗Z Ẑ.
Let Σ =

∏
` Σ` be any compact open subgroup of B̂×, and let V be any Qp-vector

space equipped with a right action by Σp. The following definition is taken from
Section 4 of [3].

Definition 1.1. — A V -valued automorphic form on B of level Σ is a function

(8) ϕ : B̂× −→ V satisfying ϕ(bsσ) = ϕ(s)σp,

for all b ∈ B×, s ∈ B̂×, and σ ∈ Σ, where σp denotes the component of σ at p.

The space of all V -valued automorphic forms on B of level Σ will be denoted
S(Σ, V ). It is equipped with the action of Hecke operators T` with ` 6 |N as well as
the operator Up, defined as in [3], section 4.

Let

Γ̃ = ιp

Ñ
R[1/p]× ∩

∏
` 6=p

Σ`

é
,

and let Γ denote the subgroup of Γ̃ of elements of determinant 1. The strong approx-
imation theorem for B asserts that

B̂× = B×GL2(Qp)Σ,

so that we may write

(9) S(Σ, V ) = {ϕ : GL2(Qp) −→ V | ϕ(γgu) = ϕ(g)u}

for all γ ∈ Γ̃, g ∈ GL2(Qp), and u ∈ Σp.
We will be mostly interested in a specific choice of level structure Σ. Let Σ(N, p) :=∏
` Σ` ⊂ B̂× be the compact open subgroup defined by
– Σp = ι−1

p (Γ0(pZp));
– Σ` = (R ⊗ Z`)×, if ` divides N−;
– Σ` = ι−1

` (Γ1(NZ`)) if ` divides N+;
– Σ` = (R ⊗ Z`)×, otherwise.

The group Σ(N, 1) is defined in a similar way, with Γ0(pZp) replaced by GL2(Zp) in
the definition of Σp.
Weights. If k is a positive integer, let Pk := Qp[z]

deg≤k be the space of polynomials
of degree ≤ k, equipped with the right action of GL2(Qp) given by

(Pβ)(z) = (cz + d)kP

Å
az + b

cz + d

ã
, for β =

(
a b

c d

)
∈ GL2(Qp).

Let Vk = HomQp(Pk,Qp) denote its Qp-dual, equipped with the left action given by

(βh)(P ) = h(Pβ) for P ∈Pk and h ∈ Vk.
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We may also make Vk into a right GL2(Qp)-module by the rule

hβ = β−1h, for h ∈ Vk and β ∈ GL2(Qp).

The module Vk is isomorphic to Pk as a GL2(Qp)-module, and hence the following
definition of the space of (classical) automorphic forms on B of weight k+ 2 and level
Σ(N, p) is equivalent to the one given in Section 4 of [3]:

Sk+2(N, p) := S(Σ(N, p), Vk).

Of crucial importance for our arguments is the Hecke operator Up acting on the
space Sk+2(N, p), whose precise definition we now describe. Let α1 be the matrix(

1 0

0 p

)
and decompose the double coset space Σpα1Σp as a disjoint union of left

cosets:
Σpα1Σp = ∪pj=1αjΣp.

Then
(Upϕ)(g) = det(α1)k/2

∑
j

ϕ(gαj)α
−1
j .

It is useful to have a geometric interpretation of automorphic forms in terms of
certain functions on the edges of the Bruhat-Tits tree T of PGL2(Qp). Recall that
T denotes the tree whose vertices are in bijection with the homothety classes of
Zp-lattices in Q2

p, two vertices being joined by an (unordered) edge if they admit
representatives which are contained one in the other with index p. Let T0 and T1

denote the set of vertices and edges of T respectively, and let E (T ) denote the set of
ordered edges of T , i.e., the set of ordered pairs of adjacent vertices. If e = (vs, vt) is
such an ordered edge, we will call the vertex s(e) := vs the source of e, and t(e) := vt
its target. The edge ē := (vt, vs) obtained from e by interchanging its source and
target is called the edge opposite to e.

Let v∗ be the vertex associated to the homothety class of the standard lattice Z2
p.

The index p sublattices of Z2
p are naturally in bijection with P1(Fp) by setting

Lj := {(x, y) ∈ Z2
p such that [x : y] ≡ j (mod p)}, j = 0, 1, . . . , p− 1,∞.

Let vj be the vertex associated to the homothety class of Lj , and let

ej = (v∗, vj) ∈ E (T ).

A vertex in T0 is said to be even or odd if its distance from v∗ is even or odd. Likewise,
an ordered edge in E (T ) is even (resp. odd) if its source is even (resp. odd).

The groups GL2(Qp) and PGL2(Qp) act naturally on T via their left action on Q2
p,

viewed as column vectors. The resulting actions of these groups on T0, T1, and E (T )

are transitive, while the subgroup PSL2(Qp) preserves the even and odd elements in
T0 and E (T ). The stabilizer of v∗ in PGL2(Qp) is the group PGL2(Zp), while the
stabilizer of the ordered edge e∞ is the projective image of the group Γ0(pZp). Hence
the assignment g 7→ ge∞ identifies the quotient PGL2(Qp)/Γ0(pZp) with E (T ).
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If g ∈ GL2(Qp) we denote by |g| := pordp(det(g)). To each η ∈ Sk+2(N, p), viewed
as a function on GL2(Qp) via the description (9), is attached a Vk-valued, Γ-invariant
function cη on E (T ) by setting, for all e = ge∞ with g ∈ GL2(Qp), and for all
P ∈Pk,

(10) cη(e)(P ) := |g|−k/2(gη(g))(P ).

It is easy to see that the expression on the right of equation (10) depends only on the
class of g in PGL2(Qp)/Γ0(pZp), so that the value of cη is well-defined. Moreover, if
γ is any element of Γ, and e = ge∞ is any edge in E (T ), we have

cη(γe)(P ) = |γg|−k/2(γgη(γg))(P ) = γ(|g|−k/2gη(g))(P )

= (γcη(e))(P ) = cη(e)(Pγ).

Since η can be recovered from the datum of cη, the assignment η 7→ cη identifies
η ∈ Sk+2(N, p) with an element cη in the space C (E , Vk)Γ of Γ-invariant Vk-valued
functions on E (T ). Let us spell out the action of the Hecke operator Up which is
deduced from this identification.

Lemma 1.2. — For all η ∈ Sk+2(N, p), we have

(cUpη)(e) = pk/2
∑

s(e′)=t(e)
e′ 6=e

cη(e′).

Proof. — This follows from a direct calculation.

2. Teitelbaum’s L-invariant

Let f be the normalized eigenform of weight k0 + 2 on Γ0(N) that was discussed
in the introduction. The definition of Teitelbaum’s invariant LT (f) rests crucially on
the Jacquet-Langlands correspondence which associates to f an automorphic form on
a definite quaternion algebra in the sense of the previous section.

Theorem 2.1. — There exists an automorphic form φ ∈ Sk0+2(N, p) which is an eigen-
form for the Hecke operators and satisfies

φ|T` = a`(k0)φ, for all ` 6 |Np, φ|Up = pk0/2φ.

This φ is unique up to multiplication by a non-zero scalar in C×p .

Let φ ∈ Sk0+2(N, p) be the modular form obtained from f via Theorem 2.1, and
recall the Γ-equivariant Vk-valued function cφ on E (T ) that was associated to it in
the previous section. A function c on E is called a harmonic cocycle if

c(ē) = −c(e),
∑
s(e)=v

c(e) = 0, for all v ∈ T0.

Lemma 2.2. — The function cφ attached to φ is a Vk0
-valued harmonic cocycle on T .
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Proof. — The fact that cφ(ē) = −cφ(e) follows directly from the fact that the Atkin-
Lehner involution Wp acts as multiplication by −1 on cφ. Let v be any vertex of E
and let e be an ordered edge of T satisfying t(e) = v. Since cφ|Up = pk0/2cφ, it follows
from the description of Up given in Lemma 1.2 that

pk0/2cφ(e) = (cφ|Up)(e) = pk0/2
∑

s(e′)=v
e′ 6=e

cφ(e′),

so that ∑
s(e′)=v

cφ(e′) = 0

for all e ∈ E (T ) and v = t(e).

We now explain how the cocycle cφ gives rise to a locally analytic distribution on
P1(Qp), denoted µφ. To do this, let W := Q2

p − {0}, equipped with its natural p-adic
topology. There is a natural continuous projection

π : W −→ P1(Qp), π((x, y)) = x/y.

If L is any Zp-lattice in Q2
p, let L′ := L − pL be the compact open subset of W

consisting of the primitive vectors in L. If e = (s, t) ∈ E (T ) is an ordered edge of T ,
let Ls and Lt denote Zp-lattices whose homothety classes correspond to the source
and the target of e respectively, chosen in such a way that Ls contains Lt with index
p. To the edge e are associated the subset We ⊂ W and the compact open subset
Ue ⊂ P1(Qp) by the rules

We = L′s ∩ L′t, Ue = π(We).

Note that the set We depends on the choice of Ls and Lt, so that We is only well-
defined (as a function of e) up to multiplication by elements of Q×p . The subset Ue,
on the other hand, depends only on e and not on the choices of representative lattices
Ls and Lt that were made to define it.

Let us now briefly recall some of the theory of locally analytic distributions. Let X
be a compact open subset of W ⊂ Q2

p. For each integer n ≥ 0, denote by B[X, p−n]

the affinoid subdomain of C2
p given by

B[X, p−n] := {z ∈ C2
p | there exists x ∈ X with |z − x| ≤ p−n}.

The region B[X, p−n] is a finite disjoint union of closed polydisks of radius p−n de-
fined over Qp. Therefore B[X, p−n] is also defined over Qp. Let An(X) denote the
Qp-affinoid algebra of B[X, p−n]. It is a Banach algebra over Qp under the spectral
norm,

||h||An(X) := sup
z∈B[X,p−n]

|h(z)|.

If m ≥ n ≥ 0, restriction defines a continuous map

An(X) −→ Am(X).
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The direct limit
A (X,Qp) := lim

→,n
An(X)

is called the space of locally analytic functions on X. It is endowed with the inductive
limit of the Banach topologies on each of the An(X)’s. Let

Dn(X) := Homcont(An(X),Qp)

denote the Qp-Banach-dual to An(X) and let

D(X,Qp) := lim
←,n

Dn(X) = Homcont(A (X,Qp),Qp).

This space, endowed with the projective limit of the Banach topologies of theDn(X)’s,
is called the space of locally analytic distributions on X. It is a Fréchet space over Qp.

These definitions can be extended without difficulty to the case where X is a
compact open subset of the projective space P1(Qp). (see [22].)

Following the approach described in [23], the harmonic cocycle cφ can be used to
define a locally analytic distribution µφ on P1(Qp), determined by the property:

(11)
∫
Ue

P (t)µφ(t) = cφ(e)(P ),

for all e ∈ E (T ) and P ∈Pk0
.

Let Hp := P1(Cp)−P1(Qp) denote the p-adic upper half-plane. In [23], the distri-
bution µφ is used to define a rigid analytic function

ψ = ψf : Hp −→ Cp
by the rule

(12) ψ(z) =

∫
P1(Qp)

Å
1

t− z

ã
dµφ(t).

By Theorem 3 of [23], the function ψ is a rigid analytic modular form on Γ\Hp of
weight k0 + 2, i.e., it satisfies the relation

ψ(γz) = (cz + d)k0+2ψ(z), for all γ =

(
a b

c d

)
∈ Γ.

The p-adic Coleman line integral attached to ψ, a polynomial P ∈ Vk0 , and two
endpoints τ1 and τ2 ∈Hp is defined in terms of the distribution µφ by the rule

(13)
∫ τ2

τ1

ψ(z)P (z)dz :=

∫
P1(Qp)

log

Å
t− τ2
t− τ1

ã
P (t)µφ(t).

This formula can be used as a definition for the Coleman line integral in this setting,
in light of Teitelbaum’s theory of the “p-adic Poisson kernel". (See [23] for a more
complete discussion.) In particular, it satisfies the additivity properties suggested by
the line integral notation.
Let us now fix base points v0 ∈ T0 and z0 ∈Hp. (For example, one could take v0 = v∗,
but this is not necessary.) The harmonic cocycle cφ gives rise (after extending scalars
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from Vk0 to Vk0 ⊗Cp) to a Vk0 ⊗Cp-valued one-cocycle on Γ (where Vk0 is viewed as
a left Γ-module) defined by the rule:

(14) κord
φ (γ)(P ) =

∑
e:v0→γv0

cφ(e)(P ),

where the sum is taken over the ordered edges in the path joining v0 to γv0. Likewise,
the associated rigid analytic modular form ψ gives rise to the Vk0

⊗ Cp-valued one-
cocycle on Γ defined by

(15) κlog
φ (γ)(P ) =

∫ γz0

z0

ψ(z)P (z)dz.

The images [κord
φ ] and [κlog

φ ] of κord
φ and κlog

φ in H1(Γ, Vk0
⊗ Cp) are independent

of the choices of v0 and z0 that were made to define them. These classes lie in the
one-dimensional f -isotypic component of H1(Γ, Vk0 ⊗Cp) for the action of the Hecke
operators. Furthermore, Theorem 1 of [23] shows that the class of κord

φ is non-zero.
We are now in a position to recall the definition of LT (f) given in [23].

Definition 2.3. — The Teitelbaum L-invariant attached to f is the unique scalar
LT (f) ∈ Cp such that

[κlog
φ ] = LT (f)[κord

φ ].

Note that multiplying φ, and the resulting cocycle and locally analytic distribution,
by a non-zero scalar multiplies both κord and κlog by that same scalar and hence does
not affect the value of LT (f), which is therefore a genuine invariant of f (once the
factorisation (7) has been fixed) in light of the uniqueness of φ described in Theorem
2.1.

3. Families of automorphic forms on B

The group GL2(Qp) acts naturally on W := Q2
p − {0} on the left, by viewing

elements ofW as non-zero column vectors. Of considerable importance is the resulting
action of the scalar matrices in Z×p , which commutes with the GL2(Qp) action, and
preserves L′ for any Zp-lattice L ⊂ Q2

p. This latter action is denoted by

λ · (x, y) := (λx, λy).

Recall the standard lattice L∗ = Z2
p, and let A (L′∗,Qp) denote as above the space

of locally analytic Qp-valued functions on L′∗. It is equipped with a right action by
GL2(Zp) given by:

(f |u)(x, y) = f(ax+ by, cx+ dy) for u =

(
a b

c d

)
∈ GL2(Zp).

Let
D := D(L′∗,Qp)
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be the space of locally analytic distributions on L′∗. The natural, continuous left action
of GL2(Zp) can be turned into a right action by the rule:

µ · u := u−1µ, for u ∈ GL2(Zp), µ ∈ D.

Let R := D(Z×p ,Qp) be the Qp-algebra of locally analytic distributions on Z×p .
The Z×p -action on L′∗ equips D with a natural R-module structure

R× D −→ D sending (α, µ) to α · µ,

where α · µ is defined by the rule:∫
L′∗

F (x, y)(α · µ)(x, y) :=

∫
Z×p ×L′∗

F (tx, ty)α(t)µ(x, y),

where F (x, y) belongs to A (L′∗,Qp) and the variables of integration t and (x, y) range
over Z×p and L′∗ respectively.

Let us now fix an integer k0 ≥ 0 and let U be an affinoid disk defined over the finite
extension K of Qp such that k0 ∈ U ⊂ W . Let A(U) denote the K-affinoid algebra of
U . Then we have a natural Qp-algebra homomorphism R −→ A(U) defined by rule

(16) α→ (κ→
∫

Z×p
κ(t)α(t)), for all α ∈ R, κ ∈ U.

Remark 3.1. — Let κ ∈ U(K), then κ can be uniquely written κ = ε(t)χ(t)〈t〉c for
ε : Z×p −→ K× a character of order dividing p−1, χ : Z×p −→ K× a character of order
a power of p and c ∈ OK . So we may think of κ as determined by the pair (εχ, c). Let
us remark that if K is fixed and the radius r of U is small enough the associated pair

(εχ, c) is characterized by: ε(t) = (
t

〈t〉
)k0 , χ(t) = 1 and |c− k0| ≤ r. In other words κ

is entirely determined by c.

Denote by DU := A(U)⊗̂RD and let GL2(Qp) act on the right on DU via its action
on D.

A natural R-module structure on S(N, p) is obtained by setting

(α · Φ)(g) := α · Φ(g), for α ∈ R, Φ ∈ S(N, p), and g ∈ GL2(Qp).

Definition 3.2. — Fix k0 and U as above. The space

SU (N, p) := S(Σ(N, 1),DU )

is called the space of p-adic families of automorphic forms on B of level Σ(N, p)

parametrized by weights in U .

Remark 3.3. — Note that the space SU (N, p) is defined using a level structure Σ(N, 1)

in which the prime p has been removed. In other words, these functions satisfy an
equivariance property, on the right, by the full group GL2(Zp) and not just Γ0(pZp).
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The terminology introduced in Definition 3.2 is justified by the fact that SU (N, p)

is equipped with natural Hecke-equivariant specialization maps ρk to Sk+2(N, p) for
every even integer k ≥ 0 in U . In order to define ρk, it is convenient to introduce

W∞ := L′∗ ∩ L′∞ = Z×p ⊕ pZp ⊂W,

where L∞ = Zp ⊕ pZp, as before. If P ∈Pk is a polynomial (of degree ≤ k), let

P̃ (x, y) = ykP (x/y)

denote the corresponding homogeneous polynomial in x and y of degree k. More
generally let κ ∈ U and let k ≥ 0 be an integer and define for X = L′∗ or W :

A (κ)(X) := {f : L′∗ −→ K locally analytic | f(tx, ty) = κ(t)f(x, y)

for all t ∈ Z×p , (x, y) ∈ X}

and

A
(κ)
k (W ) := {f : W −→ K locally analytic | f(tx, ty) = κ(t)f(x, y)

and f(px, py) = pkf(x, y) for all t ∈ Z×p , (x, y) ∈W}

Let us fix κ ∈ U(K) and define

Bκ : A(U)× D −→ Homcont,Qp(A κ(L′∗),K)

by

Bκ(α, µ)(f) := α(κ)

∫
L′∗

f(x, y)µ(x, y),

where f ∈ A (κ)(L′∗), α ∈ A(U), and µ ∈ D. Moreover we have

|Bκ(α, µ)(f)|K = |α(κ)|K · |
∫
L′∗

fµ|Qp ≤ ||κ|| · ||α||A(U) · ||f || · ||µ||D

= ||κ|| · ||f || · ||(α, µ)||.

Therefore, for every (α, µ) ∈ A(U)×D, Bκ(α, µ) is continuous and Qp-linear, therefore
an element of Homcont,Qp(A (κ)(L′∗),K), and Bκ is a continuous, Qp-bilinear map.
Moreover if r ∈ R, α ∈ A(U), µ ∈ D we have

Bκ(α, rµ)(f) = α(κ

∫
L′∗

f(rµ) =

∫
Z×p ×L′∗

f(tx, ty)r(t)µ(x, y)

= α(κ)r(κ)

∫
L′∗

f(x, y)µ(x, y) = Bκ(rα, µ)(f).

By the universal property of completed tensor product, there is a unique continuous,
Qp-linear map Lκ : A(U)⊗̂RD −→ Homcont,Qp(A κ(L′∗),K) such that the following
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diagram is commutative

A(U)× D Bκ−→ Homcont,Qp(A (κ)(L′∗),K)

↓ ||

A(U)⊗̂RD Lκ−→ Homcont,Qp(A (κ)(L′∗),K)

Finally, if µ ∈ DU = A(U)⊗̂RD and f ∈ A (κ)(L′∗) we denote

Lκ(µ)(f) =

∫
L′∗

fµ.

Let now k ≥ 0 be an integer such that k ∈ U and P ∈Pk. Let us remark that as the
Z×p -action on L′∗ preserves W∞, the function P̃χW∞ ∈ A (k)(L′∗) where χW∞ is the
characteristic function of W∞ in L′∗. Let Φ ∈ SU (N, p).

Definition 3.4. — The specialization map in weight k + 2 is the map

ρk : SU (N, p) −→ Sk+2(N, p)

defined by

ρk(Φ)(g)(P ) =

∫
W∞

P̃ (x, y)Φ(g)(x, y),

for g ∈ GL2(Qp) and P ∈Pk.

Remark 3.5. — Note that the stabilizer of the ordered edge e∞ := ([L∗], [L∞]) in
PGL2(Zp), and therefore of W∞, is the image of Γ0(pZp). This is why the prime
p arises in the level of the specialization ρk(Φ), even though Φ was taken to be
equivariant under the larger group Σ(N, 1).

The group B̂× can be written as a finite disjoint union of double cosets

B̂× = ∪qi=1B
×diΣ(N, p),

for elements di, i = 1, ..., q in B̂×. The condition N ≥ 4 insures that the groups
d−1
i B×di ∩ Σ(N, p) are trivial, so that there is a natural identification

S(N, p) −→ Dq, given by ϕ −→ (ϕ(di))1≤i≤q.

The spaces R and D with their natural topologies are Fréchet spaces. Thus S(N, p)

inherits from D a topology under which it becomes a Fréchet space (just like R and
D). Moreover SU (N, p) = S(Σ(N, 1),DU ) ∼= S(N, p)⊗̂RA(U). See Section 4 of [3] for
more details.

Definition 3.6. — Let M be a Fréchet space which is an R-module. We’ll say that
M is an orthonormalizable R-module if, for each n ≥ 0 there are orthonormalizable
Rn = Dn(Z×p )-Banach modules Mn such that M ∼= lim

←,n
Mn as R-modules.

Theorem 3.7. — The Fréchet spaces D and S(N, p) are orthonormalizable R-modules.
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Proof. — We have a natural projection π : W∞ −→ Zp given by (x, y) −→ y/x, whose
fibers are isomorphic to Z×p . Moreover π is equipped with a natural continuous section
s defined as follows. For each i = 0, 1, ..., p−1,∞ ∈ P1(Fp) let Ci ⊂ P1(Qp) denote the
residue class of i. The we can write L′∗ as the disjoint union (Z×p ⊕ pZp) ∪ (Zp ⊕ Z×p )

such that π(Z×p ⊕ pZp) = C∞ and π(Zp ⊕ Z×p ) = P1(Qp) − C∞ = ∪p−1
i=0Ci. Define

s : P1(Qp) −→ L′∗ by s(z) = (1, 1/z) if z ∈ C∞ and s(z) = (z, 1) else. Then both π, s
are locally analytic functions and they induce locally analytic isomorphisms:

u : L′∗ −→ Z×p ⊕ P1(Qp) and v : Z×p ⊕ P1(Qp) −→ L′∗

by: (u(x, y) = (x, π(x, y)) and v(a, z) = as(z).
Moreover we have actions of L′∗ and Z×p ⊕ P1(Qp) as follows: if α ∈ Z×p , (x, y) ∈

L′∗, (a, z) ∈ Z×p ⊕ P1(Qp) then α(x, y) = (αx, αy) and α(a, z) = (αa, z). Then both
u, v are equivariant with respect to these actions and they induce, for each n ≥ 1

natural isomorphisms as Banach spaces

An(L′∗)
∼= An(Z×p )⊗̂An(P1(Qp)).

By duality they induce Dn(Z×p )-linear isomorphisms

Dn(L′∗) = Homcont,Qp(An(L′∗),Qp)

∼= Homcont(An(Z×p )⊗̂An(P1(Qp)),Qp)

∼= Homcont(An(P1(Qp)), Dn(Z×p )).

The last term in the sequence naturally contains Dn(P1(Qp))⊗̂Dn(Z×p ) as the sub-
space of completely continuous (or compact) Qp-linear maps from An(P1(Qp)) to
Dn(Z×p ). (See [20] section 4.) Since Dn(P1(Qp)) is a Banach space over Qp, it is
orthonormalizable and therefore Dn(P1(Qp))⊗̂Dn(Z×p ) is an orthonormalizable Ba-
nach module over Dn(Z×p ). Now we claim that the natural inclusions above induce
isomorphisms

lim
←,n

Dn(P1(Qp))⊗̂Dn(Z×p ) −→ lim
←,n

Homcont,Qp(An(P1(Qp)), Dn(Z×p )).

The map above is clearly injective. Let us show that it is surjective. Let

(fn)n ∈ lim
←,n

Homcont(An(P1(Qp)), Dn(Z×p )).

We have the following commutative diagram:

An(P1(Qp))
fn−→ Dn(Z×p )

↓ rn ↑ sn
An+1(P1(Qp))

fn+1−→ Dn+1(Z×p ),

where rn is the restriction and sn is dual to restriction. Therefore,

fn = snfn+1rn,

and because rn is the restriction induced by the inclusion

B[P1(Qp), p
−n−1] ⊂ B[P1(Qp), p

−n],
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it is completely continuous. (See [20], Section 8.) Therefore fn is completely
continuous for all n ≥ 0. So we have an isomorphism as R-modules D ∼=
lim
→,n

Dn(P1(Qp)⊗̂Dn(Z×p ) which implies that D is an orthonormalizable R-module. As

S(N, p) ∼= Dq it is an orthonormalizable R-module as well.

Corollary 3.8. — Let U be an affinoid disk contained in the weight space W . Then
DU and SU (N, p) are orthonormalizable A(U)-modules.

Theorem 3.7 can be used to define actions of Hecke operators T` for ` not dividing
Np and Up, as in Sections 6 and 8 of [3]. The following theorem now follows from a
standard argument.

Theorem 3.9. — Let U be an affinoid disk contained in the weight space W . The op-
erator Up : SU (N, p) −→ SU (N, p) is a compact A(U)-linear operator.

Proof. — See [22] and [3].

Recall the Coleman family f∞ of eigenforms on Γ1(N) ∩ Γ0(p) interpolating f

that is given in equation (3) of the introduction. The Fourier coefficients an(k) of
f∞ correspond to elements of A(U) for some rigid analytic disk U containing k0 and
contained in the weight space W . We will be making crucial use of the following
“Jacquet-Langlands correspondence" applied to the family f∞.

Theorem 3.10 (G.Chenevier, [4]). — To the expense of possibly shrinking U , there exists
an eigenfamily Φ ∈ SU (N, p) such that

Φ|T` = a`Φ for (`,Np) = 1 and Φ|Up = apΦ.

4. A geometric interpretation of p-adic
families of automorphic forms

In this section, we attach to any family Φ ∈ SU (N, p) a collection of locally analytic
distributions (µL)L⊂Q2

p
on W , indexed by the Zp-lattices in Q2

p.

Definition 4.1. — Let us first fix a weight κ ∈ U . Let L = gL∗ be a Zp-lattice in Q2
p,

for some g ∈ GL2(Qp). The distribution µL on A (κ)(W ) is defined by∫
W

F (z)µL(z) =

∫
L′
F (z)µL(z) :=

∫
L′∗

(F |g)(z)Φ(g) =

∫
L′∗

F (gz)Φ(g),

where F : W −→ Qp is any function in A (κ)(W ).

Note that if F ∈ A (κ)(W ) then (F |g) ∈ A (κ)(W ) for any g ∈ GL2(Qp) and that
µL is supported, by definition, on the compact subset L′ of W .

Here are some elementary properties of the collection {µL}.
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1. The distribution µL is well defined, i.e. it does not depend on the choice of g.
Indeed, let g1, g2 ∈ GL2(Qp) be such that g1L∗ = g2L∗ = L. Then g1 = g2u with
u ∈ GL2(Zp) and we have∫

L′∗

(F |g1)(z)Φ(g1) =

∫
L′∗

(F |g2u)(z)Φ(g2u) =

∫
L′∗

(F |g2u)(z)(u−1Φ(g2))

=

∫
L′∗

(F |g2uu
−1)(z)Φ(g2) =

∫
L′∗

(F |g2)(z)Φ(g2),

for all functions F ∈ A (κ)(W ).
2. Let γ be any element of Γ̃. Then∫

(γL)′
F (z)µγL(z) =

∫
L′

(F |γ)(z)µL(z)

for all locally analytic functions F in the space A (κ)(W ). In particular for

γ =

(
p 0

0 p

)
∈ Γ̃ we have

∫
(pL)′

F (z)µpL(z) =

∫
L′
F (pz)µL(z).

3. For any α ∈ A(U) and any lattice L ⊂ Q2
p, there is a natural multiplication α · µL,

such that α · µL is a locally analytic distribution on L′, and the family (α · µL)L⊂Q2
p

is associated to αΦ ∈ S(N, p) by the procedure described above.

The specialization map
ρk : SU (N, p) −→ Sk+2(N, p)

can be reinterpreted geometrically as a map assigning a Vk-valued cocycle on T to a
family of distributions (µL)L indexed by lattices in Q2

p and satisfying properties 1 to
3 above. More precisely, for all P ∈Pk, let

P̃ (x, y) := ykP (x/y)

denote the homogeneous polynomial in x and y, satisfying P̃ (z, 1) = P (z). Let us also
denote |L| := pordp(det(B)), for B any Zp-basis of L.

Lemma 4.2. — For each even integer k ≥ 0, the Γ-invariant cocycle on T attached
to the specialisation ρk(Φ),

cΦ,k : E (T ) −→ Vk

is expressed in terms of the system of distributions (µL)L associated to Φ by the rule:

cΦ,k(e)(P ) = |L|−k/2
∫
We

P̃ (x, y)µL(x, y).

where the lattice L above is any representative of the origin of e.

Proof. — The proof is a direct consequence of the definitions.
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Let k ≥ 0 be an even integer and let κ ∈ U . Let us recall that we have defined the
space A

(κ)
k (W ) of locally analytic functions on W , homogeneous of degree κ for the

action of Z×p and homogeneous of degree k for the action of p onW . Let us remark that
if P is a locally meromorphic function on P1(Qp) with at worst a pole of order k at∞
then P̃ (x, y) := ykP (x/y) ∈ A

(k)
k (W ). In particular if P ∈Pk then P̃ ∈ A

(k)
k (W ).

Suppose now that Φ ∈ SU (N, p) is an eigenvector for the operator Up, so that

Φ|Up = apΦ, with ap ∈ A(U).

Lemma 4.3. — Suppose that L2 ⊂ L1 are Zp-lattices in Q2
p with [L1 : L2] = p. Let

ε = ([L1], [L2]) ∈ E (T ) be the corresponding edge. Then∫
Wε

F (x, y)µL2(x, y) =

∫
Wε

F (x, y)(apµL1)(x, y),

for every locally analytic function F in A
(κ)
k (W ), where k ≥ 0 is an even integer and

κ ∈ U .

Proof. — Let D(κ)
k (W ) be the continuous dual of A

(κ)
k (W ). We will extend the def-

inition in 4.2 and will attach to Φ a D(κ)
k (W )-valued cocycle on T as follows: let

CΦ,κ,k : E (T ) −→ D
(κ)
k (W ) be defined by

CΦ,κ,k(e)(F ) := |L|−k/2
∫
We

F (x, y)µL(x, y),

where e = [L,L′] with L,L′ lattices in Q2
p such that L′ ⊂ L has index p and

F ∈ A
(κ)
k (W ). Let us remark that due to the homogeneity of F with respect to the

action of p, the definition is independent of the choice of L,L′. Then CΦ,κ,k enjoys
the same formal properties as cΦ,k, in particular we have

CUpΦ,κ,k(e) = pk
∑

s(e′)=t(e),e′ 6=e

CΦ,κ,k(e′),

for all e ∈ E (T ).
Let us now prove the lemma. We have

|L1|−k/2
∫
Wε

F (x, y)(apµL)(x, y) = CUpΦ,κ,k(ε)(F )

= pk
∑

s(ε′)=t(ε),ε′ 6=ε

CΦ,κ,k(ε′)(F ).

For every ε′ in the above sum let us choose lattices ε′ = ([L2], [Lε′ ]), then we have

|L1|−k/2
∫
Wε

F (x, y)(apµL1
)(x, y) = |L1|−k/2pk

∑
ε′

∫
Wε′

F (x, y)µL2
(x, y) =(17)

= |L1|−k/2
∫
Wε

F (x, y)µL2
(x, y).
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For every Zp-lattice L ⊂ Q2
p we define a distribution π∗(µL) on P1(Qp) by the formula∫

P1(Qp)

P (t)π∗(µL)(t) := |L|−k0/2

∫
W

P̃ (x, y)µL(x, y),

where P is any locally meromorphic function on P1(Qp), with at worst a pole of order
k0 at ∞.

Assume now that ρk0(Φ) = φ, where φ ∈ Sk0+2(N, p) is the automorphic form on
B attached to f via Theorem 2.1. In particular, Φ is an eigenvector for Up whose
associated eigenvalue ap(k) satisfies

ap(k0) = pk0/2.

Recall the distribution µφ attached to φ that was defined in Section 2.

Proposition 4.4. — For all Zp-lattices L in Q2
p,

π∗(µL) = µφ.

Proof. — First note that the function (x, y) −→ P̃ (x, y) is a locally analytic homo-
geneous function of degree k0 with respect to the action of Q×p on W , in particular
P̃ ∈ A

(k0)
k0

(W ). The relationship between µpL and µL described after Definition 4.1
implies that π∗(µL) only depends on the homothety class of L. Moreover, let L1 and
L2 be any two Zp-lattices in Q2

p. Suppose without loss of generality that L2 is con-
tained in L1 with index p, and that |L1| = 1, and |L2| = p. Let e = ([L1], [L2]) be the
corresponding edge. Using Lemma 4.3 we have∫

Ue

P (t)π∗(µL2
)(t) = |L2|−k0/2

∫
We

P̃ (x, y)µL2
(x, y)

= p−k0/2

∫
We

P̃ (x, y)(apµL1)(x, y)

= p−k0/2ap(k0)

∫
We

P̃ (x, y)µL1
(x, y)

=

∫
Ue

P (t)π∗(µL1
)(t).

Arguing in the same way for e = ([(1/p)L2], [L1]), one finds that∫
Ue

P (t)π∗(µL2)(t) =

∫
Ue

P (t)π∗(µL1)(t),

for all locally meromorphic functions P on P1(Qp) with at worst a pole of order k0 at
∞. Because P1(Qp) = Ue∪Ue, we conclude that the distribution π∗(µL) is independent
of the lattice L.
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On the other hand, for all P as above we have∫
Ue

P (t)µφ(t) = CΦ,k0,k0(e)(P̃ ) = |L1|−k0/2

∫
We

P̃ (x, y)µL1(x, y)

=

∫
Ue

P (t)π∗(µL1
)(t).

Similarly, it follows that∫
Ue

P (t)µφ(t) =

∫
Ue

P (t)π∗(µL2)(t),

which allows us to conclude.

Given τ ∈ P1(Cp), let τ̄ denote the natural image of τ in P1(F̄p) obtained by
reducing τ modulo the maximal ideal of the ring of integers of Cp. Let Hp(Qur

p )

denote the unramified p-adic upper half-plane, consisting of elements in Qur
p − Qp.

Finally, let
r : Hp(Qur

p ) −→ T0

denote the so-called reduction map which is determined by the rules
1. r(τ) = v∗ if and only if τ̄ /∈ P1(Fp);
2. r(γτ) = γr(τ) for all γ ∈ PGL2(Qp).

(See Chapter 5 of [13], for example, for more details.)
We will now extend the definition to a more general class of functions. Let us fix

τ ∈ Hp(Qur
p ), k0 ≥ 0 an integer and let U be an affinoid disk containing k0 and

contained in the weight space W . Let P ∈ A (k0)(L′∗) and µ ∈ DU . We’d like to define∫
L′∗

log(x− τy)P (x, y)µ,

where the branch of log in the above formula and to the end of this article is such
that log(p) = 0.
Let F : U(K)× L′∗ −→ Cp be defined by:

F (κ, (x, y)) = P (x, y)(x− τy)κ−k0 .

By the above expression we mean the following. Suppose first that the radius r of U
is small enough and let κ be determined by the pair (ε, c) as in remark 3.1. Here ε is

the character t −→ (
t

〈t〉
)k0 and c ∈ OK such that |c− k0| ≤ r. Then by (x− τy)κ−k0

we mean (x− τy)c−k0 = exp((c− k0) log(x− τy)).
Let us remark that if t ∈ Z×p , we have F (κ, (tx, ty)) = κ(t)F (κ, (x, y)), i.e.

F (κ,−) ∈ A (κ)(L′∗).

Lemma 4.5. — Let µ ∈ DU . The function U(K) −→ Cp defined by

κ −→
∫
L′∗

F (κ, (x, y))µ(x, y),

is analytic near k0.
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Proof. — Let us remark that we have the following expansion

F (κ, (x, y)) = P (x, y)
∞∑
n=0

(κ− k0)n

n!
logn(x− τy),

which converges for all (x, y) ∈ L′∗ as log(x − τy) ∈ pOQurp . Moreover, for all
n ≥ 0 the function (x, y) → P (x, y) logn(x − τy) is locally analytic, more precisely
P (x, y) logn(x − τy) ∈ Am(L′∗) with m depending only on τ and P . Let us fix
an orthonormal basis {µi}∞i=0 of Dm(L′∗), so that the m-th component of µ in
A(U)⊗̂RmDm(L′∗), µ(m) can be uniquely written

µ(m) =
∞∑
i=0

αi ⊗ µi, where αi ∈ A(U) with ||αi|| −→ 0.

We have, according to our definition∫
L′∗

F (κ, (x, y))µ =

∫
L′∗

F (κ, (x, y))µ(m) =
∞∑
i=0

αi(κ)

∫
L′∗

F (κ, (x, y))µi

=
∞∑
i=0

αi(κ)
∞∑
n=0

(κ− k0)n

n!

∫
L′∗

P (x, y) logn(x− τy)µi(x, y).

The lemma now follows from the fact that αi(κ) is analytic around k0 for all i ≥ 0.

Let notations be as above, i.e. let µ ∈ DU and P ∈ A (k0)(L′∗).

Definition 4.6. — We define
∫
L′∗

P (x, y) log(x− τy)µ(x, y) to beÇ
d

dκ

∫
L′∗

F (κ, (x, y))µ

å
κ=k0

.

Remark 4.7. — Let us give an explicit formula for
∫
L′∗

P (x, y) log(x− τy)µ(x, y). Let

us suppose that P (x, y) logn(x−τy) ∈ Am(L′∗) for somem independent of n and let us

fix an orthonormal basis {µi}∞i=0 as in the proof of lemma 4.5. We write µ =
∞∑
i=0

αi⊗µi,

with αi ∈ A(U) such that ||αi|| −→ 0. Then we have∫
L′∗

P (x, y) log(x− τy)µ(x, y) =
∞∑
i=0

(
d

dκ
αi)κ=k0

∫
L′∗

P (x, y)µi(x, y) +

+
∞∑
i=0

αi(k0)

∫
L′∗

P (x, y) log(x− τy)µi(x, y).
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Let now Φ ∈ SU (N, p) and let {µL}L⊂Q2
p
be the family of distributions attached to it.

Let as above τ ∈ Hp(Qur
p ), P ∈ A (k0)(W ) and define f(x, y) := P (x, y) log(x− τy).

Let L ⊂ Q2
p be a lattice and let g ∈ GL2(Qp) be such that L = gL∗. For z = (x, y) ∈

W , (f |g)(z) can be written

(f |g)(z) = f(gz) = C(g, τ)(P |g)(x, y) + (P |g)(x, y) log(x− τ ′y),

where C(g, τ) is independent of (x, y) and τ ′ ∈Hp(Qur
p ). Therefore it makes sense to

define ∫
W

P (x, y) log(x− τy)µL := C(g, τ)

∫
L′∗

(P |g)(x, y)µL∗(x, y) +

+

∫
L′∗

(P |g)(x, y) log(x− τ ′y)µL∗(x, y).

We are now ready to define the main object of this section. Given τ ∈ Hp(Qur
p ), let

vτ = r(τ) ∈ T0 and let Lτ be any Zp-lattice in the homothety class of vτ . Recall the
rigid analytic modular form ψ defined in equation (12) of Section 2.

Definition 4.8. — For all P ∈ Pk0
, the indefinite integral attached to τ and ψ is

defined by the formula

(18)
∫ τ

ψ(z)P (z)dz := |Lτ |−k0/2

∫
W

log(x− τy)P̃ (x, y)µLτ (x, y),

where the branch of the p-adic log used above is the one satisfying log(p) = 0.

Note that because

log(px− pτy)P̃ (px, py) = pk0 log(x− τy)P̃ (x, y),

formula (18) only depends on the homothety class of Lτ , so that the indefinite integral
is well-defined.

The main properties of the indefinite integral of Definition 4.8 are summarized in
the following two propositions.

Proposition 4.9. — For all γ ∈ Γ and P ∈Pk0 ,∫ γτ

ψ(z)P (z)dz =

∫ τ

ψ(z)(Pγ)(z)dz.

Proof. — Let

γ =

(
a b

c d

)
∈ Γ.

Then ∫ γτ

ψ(z)P (z)dz = |γLτ |−k0/2

∫
W

log(x− (γτ)y)P̃ (x, y)µγLτ (x, y).
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Performing the change of variables(
u

v

)
= γ−1

(
x

y

)
=

(
dx− by
−cx+ ay

)
,

we obtain∫ γτ

ψ(z)P (z)dz = |Lτ |−k0/2

∫
W

log

Å
u− τv
cτ + d

ã
(›Pγ)(u, v)µLτ (u, v)

=

∫ τ

ψ(z)(Pγ)(z)dz

− log(cτ + d)|Lτ |−k0/2

∫
W

(›Pγ)(u, v)µLτ (u, v).

On the other hand by proposition 4.4 we have

|Lτ |−k0/2

∫
W

(›Pγ)(u, v)µLτ (u, v) =

∫
P1(Qp)

(Pγ)(t)µφ(t) = 0.

Proposition 4.9 follows.

The next proposition relates the indefinite integral to the p-adic line integral of
equation (13).

Proposition 4.10. — Let τ1, τ2 ∈ Hp(Qur
p ) and let vi = r(τi) = [Li] ∈ T0 be the

corresponding vertices. For all P ∈Pk0
,∫ τ2

ψ(z)P (z)dz −
∫ τ1

ψ(z)P (z)dz

=

∫ τ2

τ1

ψ(z)P (z)dz + 2p−k0/2a′p(k0)
∑

e:v1→v2

cφ(e)(P ).

Proof. — Suppose without loss of generality that L2 ⊂ L1 and [L1 : L2] = p. Let
e = ([L1], [L2]) ∈ E (T ). Then∫ τ2

ψ(z)P (z)dz −
∫ τ1

ψ(z)P (z)dz(19)

= |L2|−k0/2

∫
W

log(x− τ2y)P̃ (x, y)µL2
(x, y)(20)

− |L1|−k0/2

∫
W

log(x− τ1y)P̃ (x, y)µL1
(x, y)(21)

= |L2|−k0/2

∫
W

log

Å
x− τ2y
x− τ1y

ã
P̃ (x, y)µL2(x, y)(22)

+

∫
W

log(x− τ1y)P̃ (x, y)
Ä
|L2|−k0/2µL2

− |L1|−k0/2µL1

ä
.(23)
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By proposition 4.4, the first integral (22) appearing in the last expression is equal to∫
P1(Qp)

log

Å
t− τ2
t− τ1

ã
P (t)µφ(t) =

∫ τ2

τ1

ψ(z)P (z)dz.

In order to calculate the second integral (23), we will need the following describing
the distribution α · µL for α ∈ A(U).

Lemma 4.11. — Let α be an element of A(U). For all e ∈ E (T ), τ ∈ Hp, and
P ∈Pk0

, ∫
We

log(x− τy)P̃ (x, y)(αµL)(x, y) = α′(k0)|L|k0/2cφ(e)(P )

+α(k0)

∫
We

log(x− τy)P̃ (x, y)µL(x, y).

Proof of Lemma 4.11: This proof is a consequence of the following calculation:∫
We

log(x− τy)P̃ (x, y)(αµL)(x, y)

=
d

dκ

Ç
(α(κ)(

∫
We

P̃ (x, y)(x− τy)κ−k0µL(x, y)

å
κ=k0

= α′(k0)

∫
We

P̃ (x, y)µL(x, y)

+α(k0)

∫
We

log(x− τy)P̃ (x, y)µL(x, y)

= α′(k0)|L|k0/2

∫
Ue

P (z)µφ(z) + α(k0)

∫
We

log(x− τy)P̃ (x, y)µL(x, y).

This proves the lemma.

End of proof of Proposition 4.10: We return to the evaluation of the integral

J :=

∫
W

log(x− τ1y)P̃ (x, y)
Ä
|L2|−k0/2µL2

− |L1|−k0/2µL1

ä
appearing in (23). It is useful to express J as a sum of two contributions Je and Jē
obtained by integrating over the disjoint subsets We and Wē of W associated to the
ordered edge e = ([L1], [L2]) of T . By Lemma 4.3,

Je =

∫
We

log(x− τ1y)P̃ (x, y)
Ä
|L2|−k0/2ap − |L1|−k0/2

ä
µL1

(x, y)

= |L1|−k0/2

∫
We

log(x− τ1y)P̃ (x, y)
Ä
(p−k0/2ap − 1)µL1

ä
(x, y).

Now applying Lemma 4.11 with α = p−k0/2ap−1, and noting that α(k0) = 0, we find

(24) Je = p−k0/2a′p(k0)cφ(e)(P ).
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On the other hand, e = ([(1/p)L2], [L1]) and [(1/p)L2 : L1] = p so we have
µL1
|We

= apµ(1/p)L2
|We

and the same computation gives:

Je :=

∫
We

log(x− τ1y)P̃ (x, y)
Ä
|L2|−k0/2µL2

− |L1|−k0/2µL1

ä
= −p−k0/2a′p(k0)cφ(e)(P ) = p−k0/2a′p(k0)cφ(e)(P ).

Therefore
J = Je + Je = 2p−k0/2a′p(k0)cφ(e)(P ).

This concludes the proof of Proposition 4.10.

We are now able to prove Theorem 3 of the introduction:

Theorem 4.12. — Let LT (f) denote Teitelbaum’s L-invariant attached to f . Then

−2p−k0/2a′p(k0) = LT (f).

Proof. — Let Φ be the family of automorphic forms associated to f∞ by Theorem
3.10. Fix τ ∈ Hp(Qur

p ) and let vτ = [Lτ ] ∈ T0 be the corresponding vertex. Let
hτ ∈ Vk0

⊗ Cp be the map sending P ∈Pk0
to

hτ (P ) :=

∫ τ

ψ(z)P (z)dz.

For all γ ∈ Γ and P ∈Pk0
, Proposition 4.10 gives

hγτ (P )− hτ (P ) =

∫ γτ

τ

ψ(z)P (z)dz + 2p−k0/2a′p(k0)
∑

e:vτ→γ(vτ )

cφ(e)(P ).

In the notations of Section 2 this formula can be rewritten as

hγτ − hτ = κlog
φ (γ) + 2p−k0/2a′p(k0)κord

φ (γ).

On the other hand, Proposition 4.9 implies that

hγτ − hτ = γhτ − hτ
is a Vk0 ⊗ Cp-valued coboundary for Γ. It follows that

[κlog
φ ] = −2p−k0/2a′p(k0)[κord

φ ].

Theorem 4.12 now follows from Definition 2.3 of LT (f).

5. Orton’s L -invariant

This section recalls the definition of Orton’s L -invariant, which involves the theory
of modular symbols. The reader is referred to [19] for more details.

Write ∆ for the group Div0(P1(Q)) of degree zero divisors supported on the rational
cusps of the Poincaré upper half plane. For any unitary commutative ring A of C, let
Pk(A) denote the A-algebra of polynomials of degree ≤ k with coefficients in A, and
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let Vk(A) be the A-dual of Pk(A). When A is a subfield of C, the group GL2(Q) acts
on the right on Pk(A) by the rule

(Pγ)(z) = (cz + d)kP (γz), γ =

(
a b

c d

)
.

This induces a right action of GL2(Q) on Vk(A) by setting

(φγ)(P ) = φ(Pγ−1).

A modular symbol with values in a GL2(Q)-module V is a homomorphism from
∆ to V . The space of all such modular symbols is denoted

MS(V ) := hom(∆,V ).

It is equipped with a right GL2(Q)-action by the rule

(mγ)(δ) = m(γδ)γ,

for m ∈ MS(V ), δ ∈ ∆, and γ ∈ GL2(Q). If the divisor δ is of the form (s) − (r),
write m{r → s} for m(δ).

A modular eigenform g of weight k+ 2 on Γ0(Np) gives rise to a Γ0(Np)-invariant
Vk(C)-valued modular symbol

Ψg : ∆ −→ Vk(C)

by the rule

Ψg(δ)(P ) = 2πi

∫
δ

g(z)P (z)dz,

with δ ∈ ∆ and P ∈ Pk(C). Write Ψ±g for the projection of Ψg to the ±-eigenspace
of Hom(∆, Vk(C)) for the action of the involution

c =

(
−1 0

0 1

)
.

Let Kg be the extension of Q generated by the Hecke eigenvalues of g. By a result of
Shimura, there exist complex periods Ω±g such that

Φ±g = Ψ±g /Ω
±
g

takes values in Vk(Kg). Note that the modular symbols Ψg and Φ±g are all
Γ0(Np)-invariant.

Let f be the newform on Γ0(Np) considered in the introduction. Fix a choice of
sign w∞ ∈ {−1, 1} and let

Φf =

{
Φ+
f if w∞ = 1;

Φ−f if w∞ = −1.

be the modular symbol in MS(Vk0
(Kf )) attached to f . Define

Γ̃ =
{
γ =

(
a b

c d

)
∈M2(Z[1/p]) : N | c and det(γ) = p2h, for h ∈ Z

}
.
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Write Γ for the group of elements in Γ̃ having determinant one. For (s) − (r) ∈ ∆,
define a harmonic cocycle

cf{r → s} : E (T ) −→ Vk0(Q̄p)

by the rule
cf{r → s}(e)(P ) = Φf ((γs)− (γr))(Pγ−1),

where γ ∈ Γ is such that γe = e∞. This definition is independent of the choice of γ
such that γe = e∞: for if γ′ is another such element, the element γ′γ−1 belongs to
Γ0(Np), the stabiliser of e∞. The claim then follows from the Γ0(Np)-invariance of
Φf .

The cocycle cf{r → s} gives rise to a locally analytic distribution on P1(Qp),
denoted µf{r → s}, and determined by setting∫

Ue

P (t)µf{r → s}(t) = cf{r → s}(e)(P )

for all e ∈ E (T ) and P ∈ Pk0
(Q̄p), and extending to functions on P1(Qp) which

are locally analytic on Qp and have a pole of order at most k0 at infinity. Note the
analogy between this definition and the definition of the locally analytic distribution
µφ in equation (11) of Section 2.

The following definition is modelled on the description of the Coleman line integral
given in equation (13) of Section 2.

Definition 5.1. — For τ1, τ2 ∈ Hp and r, s ∈ P1(Q), the definite double integral is
defined by ∫ τ2

τ1

∫ s

r

ωfP =

∫
P1(Qp)

log
( t− τ2
t− τ1

)
P (t)µf{r → s}(t).

The notation ωf in Definition 5.1 is meant to suggest that the definite double integral
should be thought of as the integration of a form of parallel weight (k0 + 2, k0 + 2) on
Hp ×H associated to f . This point of view is explained in detail in [13], Chapter 9
and [19], Chapter 2.

Set Pk = Pk(Q̄p), Vk = Vk(Q̄p) and write

Mk := MS(Vk) = Hom(∆, Vk).

The following definitions are motivated by the definition of the 1-cocycles κord
φ and

κlog
φ given in equations (14) and (15) respectively.

Definition 5.2. —

1. The 1-cocycle κord
f ∈ Z1(Γ,Mk0) is defined by choosing v ∈ T0 and setting

κord
f (γ){r → s}(P ) =

∑
e:v→γv

cf{r → s}(P )(e).
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2. The 1-cocycle κlog
f ∈ Z1(Γ,Mk0) is defined by choosing τ ∈Hp and setting

κlog
f (γ){r → s}(P ) =

∫ γτ

τ

∫ s

r

ωfP.

Lemma 5.3. —

1. The image [κord
f ] of κord

f in H1(Γ,Mk0
) is independent of the choice of base

vertex v.
2. The image [κlog

f ] of κlog
f in H1(Γ,Mk0) is independent of the choice of base point

τ ∈Hp.

Proof. — See [19], Lemma 5.1 and 5.2. Note that the one-cocycles κord
f and κlog

f are
denoted ‹ocf,v and l̃cf,τ respectively in [19].

Proposition 5.4. — The class [κord
f ] is non-zero.

Proof. — Proposition 13 of Section II.2.8 of [21], applied to the case M = Mk0
and

G = Γ acting on T , yields a linear transformation

θ : H0(Γ0(Np),Mk0)
θ−→ H1(Γ,Mk0)

whose kernel is identified with the p-old subspace of the space of modular symbols on
Γ0(Np). The map θ is described explicitly in Section 3.1 of [12], where it is shown
that θ(Φf ) = [κord

f ]. (Although [12] assumes k0 = 0, the treatment of the general case
is no different.) Proposition 5.4 follows from the fact that the form f is new at p.

Let

H1(Γ,Mk0)f , H1(Γ,Mk0)f,w∞ ⊂ H1(Γ,Mk0)

denote, respectively, the f -isotypic subspace and its w∞-eigenspace for the action of
the involution c defined at the beginning of this section. The classes [κord

f ] and [κlog
f ]

both belong to H1(Γ,Mk0
)f,w∞ . In [19], Proposition 7.1, it is shown that this space is

one-dimensional over Cp. This makes it possible to define Orton’s L -invariant LO(f)

in a way which parallels closely Definition 2.3 of Teitelbaum’s L -invariant.

Definition 5.5. — The Orton L-invariant attached to f is the unique scalar
LO(f) ∈ Cp such that

[κlog
f ] = LO(f)[κord

f ].

Remark 5.6. — Note that LO(f) depends a priori on the choice of sign w∞ which
determines whether Φf is taken to be the even or odd modular symbol attached to f .
Hence there are two a priori distinct Orton L -invariants attached to f , which could
be denoted L +

O (f) and L −O (f). A by-product of our study of LO(f) is a direct proof
that these two invariants are in fact equal. (Cf. Theorem 6.8.)
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Recall the Shimura period Ωf (depending on the choice of sign w∞) that was used
to define the modular symbol attached to f . Let Lp(f, χ, s) denote the Mazur-Tate-
Teitelbaum p-adic L-function attached to f and χ, which is constructed in terms of
the modular symbol of f and hence depends on the choice of Ωf . Set w = 1 if f is split
multiplicative at p, and w = −1 if f is non-split multiplicative at p. The following
theorem of Orton is crucial for the proof of Theorem 2 of the Introduction.

Theorem 5.7 (Orton). — For all Dirichlet characters χ satisfying χ(p) = w and
χ(−1) = w∞,

L′p(f, χ, 1 + k0/2) = LO(f)L∗(f, χ, 1 + k0/2).

It is worth noting that it is at this stage, and this stage only, that a connection is
made between the cohomologically-defined L -invariants and special values of L-series.

Let us briefly recall some of the ideas that go in Orton’s proof of Theorem 5.7.
Fix a positive integer c prime to Np. For any positive integer ν prime to c, define an
embedding Ψν : Q×Q→M2(Q) by setting

Ψν(a, a) =

(
a 0

0 a

)
, Ψν(c, 0) =

(
c ν

0 0

)
.

When ν varies in a full set of representatives for (Z/cZ)×, Ψν describes the set of all
Γ-conjugacy classes of oriented optimal embeddings of conductor c: see [12], Section
2. Set

rΨν =∞, sΨν = −ν/c, γΨν = Ψν(pu, p−u) =

(
pu (pu − p−u)ν/c

0 p−u

)
,

where u denotes the order of p2 in (Z/cZ)×. The element γΨν is a generator for the
image of Ψ(Q× × Q×) ∩ Γ in PGL2(Q). Moreover, rΨν , resp., sΨν is the repulsive,
resp., attractive fixed point for the action of Ψ(γΨν ) on P1(Q). Define the polynomial

PΨν (z) = (cz + ν)k0/2 ∈Pk0 .

Note that PΨν is invariant under the weight k0 + 2 action of γΨν .
The one-cocycles κord

f and κlog
f can be used to associate to the embedding Ψν the

following numerical invariants:

(25) Jord
Ψν = κord

f (γΨν ){rΨν → sΨν}(PΨν ) =
∑

e:v→γΨν v

cf{rΨν → sΨν}(PΨν )(e);

(26) J log
Ψν

= κlog
f (γΨν ){rΨν → sΨν}(PΨν ) =

∫ γτΨν

τΨν

∫ sΨν

rΨν

ωfPΨν .

Remark 5.8. — Note that

b(γΨν ){rΨν → sΨν}(PΨν ) = 0
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for any coboundary b ∈ B1(Γ,Mk0). This implies that the quantities Jord
Ψν

and J log
Ψν

do
not depend on the choice of cocycles representing the cohomology classes [κord

f ] and
[κlog
f ] respectively, and hence, by the definitiono f LO(f), that

(27) J log
Ψν

= LO(f)Jord
Ψν .

Let χ be a Dirichlet character of conductor c, such that χ(p) = w and χ(−1) = w∞.
The following formula of Orton relates the numerical invariants Jord

Ψν
and J log

Ψν
defined

in (25) and (26) to special values of L-series, and derivatives of the corresponding
p-adic L-functions, respectively:∑

ν∈(Z/cZ)×

χ(ν)Jord
Ψν = (2u)L∗(f, χ, 1 + k0/2);(28)

∑
ν∈(Z/cZ)×

χ(ν)J log
Ψν

= (2u)L′p(f, χ, 1 + k0/2).(29)

The first formula is Corollary 6.1 of [19], while the second formula is Corollary 6.2 of
[19].

Theorem 5.7 now follows directly from these formulae and equation (27).

6. Distribution-valued modular symbols

Recall from the introduction the p-adic family of eigenforms

f∞ =
∞∑
n=1

anq
n, with an ∈ A(U)

interpolating the given newform f =
∑∞
n=1 anq

n of weight k0 + 2 on Γ0(Np). This
means that

fk =
∞∑
n=1

a(k)qn

is a normalised eigenform of weight k + 2 on Γ1(N) ∩ Γ0(p), for all k ∈ U ∩ Z≥0,
and that fk0

= f . Let Φfk be the modular symbol in MS(Vk) defined in section 5,
associated to the choice of sign w∞. Note that Φfk also depends on a choice of complex
period Ωfk , and thus is only really well-defined up to multiplication by a non-zero
scalar. Two modular symbols m1 and m2 in MS(Vk) are said to be equivalent if there
exists a non-zero scalar λ ∈ C×p such that m1 = λm2; one then writes m1 ∼ m2.

Assume throughout this section that f = fk0
is split multiplicative at p, so that

w = +1, ap(k0) = pk0/2.

As in section 3, let D be the space of locally analytic distributions on L′∗, with
L∗ = Z2

p. Recall that the Qp-algebra R of locally analytic distributions on Z×p acts on
D. The space MSΓ0(N)(D) of Γ0(N)-invariant D-valued modular symbols is equipped
with a natural action of the Hecke operators Tn with p 6 |n, as well as an action of R
arising from the R-module structure on D. Let us fix as in the previous sections an
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affinoid disk U , defined over K, containing k0 and contained in the weight space W
and let DU := D⊗̂RA(U).

Proposition 6.1. — There exists a distribution-valued modular symbol Φf∞ ∈MS(DU )

satisfying the following properties:
1. (Γ1(N)-invariance) Φf∞ is Γ0(N)-invariant, that is,

Φf∞(γδ) · γ = Φf∞(δ)

for all γ ∈ Γ1(N).
2. (Weight specialisation) Following the notations of Definition 3.4, for k ∈ U(K)∩

Z≥0 and P ∈Pk, define a Vk-valued modular symbol

ρk(Φf∞) : ∆ −→ Vk

by the rule

ρk(Φf∞)(δ)(P ) =

∫
W∞

P̃ (x, y)Φf∞(δ)(x, y).

Then,
ρk(Φf∞) ∼ Φfk , and ρk0

(Φf∞) = Φf .

Proof. — When f has weight 2 (i.e., k0 = 0), the existence of a modular symbol with
values in the module of bounded distributions on L∗ is proved in [15]. In general, it
follows from results of Stevens in [22].

For a divisor δ = (s)− (r) in ∆, write µL∗{r → s} for the locally analytic distribution
Φf∞(δ). It will be viewed as a distribution on W , supported on L′∗.

Definition 6.2. — For any lattice L in Q2
p, the locally analytic distribution µL{r → s}

on W is defined by the rule∫
W

F (x, y)µL{r → s}(x, y) =

∫
L′∗

F (g−1(x, y))µL∗{gr → gs}(x, y),

where F : W −→ Qp is any locally analytic function, and g ∈ Γ̃ is any element such
that gL = L∗.

Note that the above definition does not depend on the choice of g ∈ Γ̃ such that
gL = L∗: if g′ is another element of Γ̃ such that g′L = L∗, it follows that g′g−1

belongs to the stabiliser of L∗ in Γ̃, which is the group Γ0(N). The claim then follows
from the Γ0(N)-invariance of Φf∞ , stated in part 1 of Proposition 6.1.

The system of distributions µL{r → s} satisfies similar properties to those of
the system µL introduced in section 4. Since the proofs of these new properties are
analogous to those presented in section 4, details are usually omitted.

Lemma 6.3. — Let κ ∈ U(K), L2 ⊂ L1 be Zp-lattices in Q2
p with [L1 : L2] = p, and

let e = ([L1], [L2]) ∈ E (T ) be the corresponding edge. Then

µL2{r → s}|We = apµL1{r → s}|We ,
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so that ∫
We

F (x, y)µL2{r → s}(x, y) =

∫
We

F (x, y)(apµL1{r → s})(x, y),

for every locally analytic function F ∈ A (κ)(W ).

Proof. — The proof is identical to that of lemma 4.3.

Let π be as before the projection of W onto P1(Qp). For every Zp-lattice L ⊂ Q2
p,

define a locally analytic distribution π∗(µL{r → s}) on P1(Qp) by the formula∫
P1(Qp)

P (t)π∗(µL{r → s})(t) = |L|−k0/2

∫
W

ηk0P (x/y)µL{r → s}(x, y),

where P is any locally meromorphic function on P1(Qp) with a pole of order at most
k0 at ∞.

Proposition 6.4. — For all Zp-lattices L in Q2
p,

π∗(µL{r → s}) = µf{r → s},

where µf is the locally analytic distribution on P1(Qp) defined in section 5.

Proof. — The proof is similar to that of Proposition 4.4. It uses lemma 6.3 instead
of lemma 4.3, and part 3 of Proposition 6.1, which guarantees that the specialisation
at k0 of Φf∞ is the modular symbol attached to f .

Let τ ∈Hp(Qur
p ) and let vτ = [Lτ ] ∈ T0 be the vertex corresponding to τ under the

reduction map. The following definition is modelled on that of the indefinite integral
of Definition 4.8:

Definition 6.5. — For all P ∈ Pk0
, the indefinite integral attached to τ ∈ Hp, to

r, s ∈ P1(Q), and to f is defined by the formula

(30)
∫ τ∫ s

r

ωfP = |Lτ |−k0/2

∫
W

log(x− τy)P̃ (x, y)µLτ {r → s}(x, y).

Since
log(px− pτy)P̃ (px, py) = pk0 log(x− τy)P̃ (x, y),

formula (30) depends only on the homothety class of Lτ , and hence only on τ . The
main properties of the indefinite double integral of Definition 6.5 are summarized in
the following two propositions.

Proposition 6.6. — For all γ ∈ Γ and P ∈Pk0
,∫ γτ∫ γs

γr

ωfP =

∫ τ∫ s

r

ωfP γ.

Proof. — It is identical to the proof of Proposition 4.9.
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Proposition 6.7. — Let τ1, τ2 ∈ Hp(Qur
p ), and let v1 = [L1], v2 = [L2] ∈ T0 be the

corresponding vertices under the reduction map. For all P ∈Pk0
,∫ τ2∫ s

r

ωfP −
∫ τ1∫ s

r

ωfP

=

∫ τ2

τ1

∫ s

r

ωfP + 2p−k0/2a′p(k0)
∑

e:v1→v2

cf{r → s}(e)(P ).

Proof. — Assume without loss of generality that L2 ⊂ L1 and [L1 : L2] = p. Set
e = ([L1], [L2]) ∈ E (T ). Then∫ τ2∫ s

r

ωfP −
∫ τ1∫ s

r

ωfP

= |L2|−k0/2

∫
W

log(x− τ2y)P̃ (x, y)µL2
{r → s}(x, y)

− |L1|−k0/2

∫
W

log(x− τ1y)P̃ (x, y)µL1
{r → s}(x, y)

= Ilog + Iord,

where
Ilog = |L2|−k0/2

∫
W

log

Å
x− τ2y
x− τ1y

ã
P̃ (x, y)µL2

{r → s}(x, y),

and

Iord =

∫
W

log(x− τ1y)P̃ (x, y)
Ä
|L2|−k0/2µL2

{r → s} − |L1|−k0/2µL1
{r → s}

ä
.

Using Proposition 6.4, and the fact that the function involved in the integral defining
Ilog is constant along the fibers of π, one finds that

Ilog =

∫
P1(Qp)

log

Å
t− τ2
t− τ1

ã
P (t)µf{r → s}(t) =

∫ τ2

τ1

∫ s

r

ωfP.

Now, write the integral defining Iord as the sum of two contributions Je and Jē,
obtained by integrating over the disjoint subsets We and Wē. By Lemma 6.3,

Je =

∫
We

log(x− τ1y)P̃ (x, y)
Ä
|L2|−k0/2µL2

− |L1|−k0/2µL1

ä
{r → s}(x, y)

=

∫
We

log(x− τ1y)P̃ (x, y)
Ä
|L2|−k0/2ap − |L1|−k0/2

ä
µL1{r → s}(x, y)

= |L1|−k0/2

∫
We

log(x− τ1y)P̃ (x, y)
Ä
(p−k0/2ap − 1)µL1

{r → s}
ä

(x, y).

The formula

(31)
∫
We

log(x− τy)P̃ (x, y)(αµL{r → s})(x, y) =

α′(k0)|L|k0/2cf{r → s}(e)(P ) + α(k0)

∫
We

log(x− τy)P̃ (x, y)µL{r → s}(x, y)
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(e ∈ E (T ), α ∈ A(U), τ ∈ Hp, and P ∈Pk0) is obtained by adapting the approach
that is followed in the proof of lemma 4.11. By applying (31) with α = p−k0/2ap − 1,
the above expression for Je becomes

Je = p−k0/2a′p(k0)cf{r → s}(e)(P ).

Moreover, a similar argument proves that

Jē = −p−k0/2a′p(k0)cf{r → s}(ē)(P ) = p−k0/2a′p(k0)cf{r → s}(e)(P ).

Hence,
Jord = Je + Jē = 2p−k0/2a′p(k0)cf{r → s}(e)(P ),

as was to be shown.

We are now ready to prove the main result of this section.

Theorem 6.8. — The equality

−2p−k0/2a′p(k0) = LO(f)

holds. In particular, Orton’s L -invariant LO(f) is independent of the choice of sign
w∞ that was made in defining it.

Proof. — Let τ be a point in Hp(Qur
p ), and let vτ = [Lτ ] ∈ T0 be the corresponding

vertex. Fix a divisor (s)−(r) in ∆. Given τ ∈Hp, one defines an P∨
k0
-valued modular

symbol hτ by the rule

hτ{r → s}(P ) =

∫ τ∫ s

r

ωfP.

Proposition 6.7 gives

hτ{γ−1r → γ−1s}(γ−1P )− hτ{r → s}(P ) = hγτ{r → s}(P )− hτ{r → s}(P )

(32) =

∫ γτ

τ

∫ s

r

ωfP + 2p−k0/2a′p(k0)
∑

e:vτ→γ(vτ )

cf{r → s}(e)(P ),

for all γ ∈ Γ. In the notations of Definition 5.2 of Section 5, this relation can be
rewritten as

(33) hτ{γ−1r → γ−1s}(γ−1P )− hτ{r → s}(P )

= κlog
f (γ){r → s}+ 2p−k0/2a′p(k0)κord

f (γ){r → s}.
Since the expression on the left of (33) is a Mk0-valued one-coboundary, it follows
upon projecting this equation to H1(Γ,Mk0) that

[κlog
f ] = −2p−k0/2a′p(k0)[κord

f ].

Theorem 6.8 is now a direct consequence of Definition 5.5 of LO(f).

Corollary 6.9. —
1. The equality LT (f) = L0(f) holds.
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2. For all Dirichlet characters χ satisfying χ(p) = 1,

L′p(f, χ, 1 + k0/2) = LT (f)L∗(f, χ, 1 + k0/2).

Proof. — Part 1 follows by combining theorem 6.8 with theorem 4.12. Part 2 follows
by combining part 1 of this corollary with theorem 5.7.
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