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HIDDEN STRUCTURES ON SEMISTABLE CURVES
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Robert Coleman & Adrian Iovita

Abstract. — Let V be the ring of integers of a finite extension of Qp and let X be
a proper curve over V with semistable special fiber and smooth generic fiber. In
this article we explicitly describe the Frobenius and monodromy operators on the
log crystalline cohomology of X with values in a regular log F -isocrystal in terms of
p-adic integration. We have a version for open curves and as an application we prove
that two differently defined L -invariants, attached to a split multiplicative at p new
elliptic eigenform, are equal.

Résumé (Structures cachées sur les courbes semi-stables). — Soit V l’anneau des entiers
d’une extension finie de Qp et soit X une courbe propre sur V à fibre spéciale se-
mistable et à fibre générique lisse. Dans cet article nous décrivons explicitement les
opérateurs de Frobenius et de monodromie sur la cohomologie log cristalline de X à
valeurs dans un log F -isocristal régulier, en termes d’intégration p-adique. Nous pro-
posons une version pour les courbes ouvertes et en guise d’application nous prouvons
que deux L -invariants définis de façon différente, attachés à une forme modulaire
nouvelle multiplicative en p, sont égaux.

1. Introduction

Let K be a finite extension of Qp and X an algebraic variety over K. As Illusie
remarked in Cohomologie de de Rham et cohomologie étale p-adique [I], “le groupe
H1
dR(X/K) se trouve muni d’une structure plus riche qu’il n’y paraît de prime abord.”

This “hidden structure” has been discussed by many people including Berthelot and
Ogus [BO] when X is proper with good reduction and more generally by Hyodo and
Kato [HK]. In this paper, we expose it in the relative situation over a curve with semi-
stable reduction using residues and p-adic integration. More precisely we study de
Rham cohomology of a semi-stable curve with coefficients in the relative cohomology
of a smooth proper family over that curve. The information on crystalline and de
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Rham cohomology of a curve with semi-stable reduction supplied by this article is
similar to that of the theory of vanishing cycles for `-adic cohomology.

Suppose K has residue field k and ring of integers V . Let W := W (k) denote the
ring of Witt-vectors with coefficients in k, K0 its fraction field and we denote by σ the
Frobenius automorphism of K0. Let CK be a smooth projective curve over K with a
semi-stable model C over V . By this we mean that locally C is smooth over Spec(V )

or étale over Spec (V [X,Y ]/(XY − π)), where π is a uniformizer of V . Denote by
C := C ×Spec(V) Spec(k), its special fiber and by Sing, the singular sub-scheme of C.

Then the vector space H1
dR(CK) has enough hidden structure so that one can

recover the corresponding representation of GK = Gal(K/K) on the étale cohomology
of CK , à la Fontaine. I.e. besides the Hodge filtration it has a K0-lattice (the log-
crystalline cohomology of C with Qp-coefficients) with linear monodromy and σ-semi-
linear Frobenius operators. One can use this to describe the representation. This is
true much more generally (see for example [18] and [39].)

Let g : Z −→ C be a flat proper morphism. Suppose P is a sub-scheme of C, finite
and étale over V whose reduction is disjoint from Sing. Let C× be the log formal
scheme over V associated to the pair (C,P ) (i.e. the formal completion of C along
its special fiber together with the log-structure associated to P ). Denote g−1(P ) by
DP and let Z× be the log formal scheme over V associated to the pair (Z,DP ). We’ll
abuse notation and also let g : Z× −→ C× denote the morphism of log formal schemes
induced by g. Then DP is a divisor of Z and we will suppose from now on that DP ∪Z
is a reduced divisor with normal crossings. Here Z is the special fiber of Z. Suppose
that the restriction of g induces a smooth proper map (Z\DP ) −→ (C\P ). Then,
under all of the assumptions above g : Z× → C× is log smooth.

For example, if C = X(N, p) := X1(N)×X(1) X0(p) where (N, p) = 1 and N > 4,
Z = E(N, p), the universal generalized elliptic curve over C with level structure and
f : Z −→ C is the natural map, then if one takes P to be the divisor of cusps on C,
the quadruple (C,Z, f, P ) satisfies the above conditions.

If h, i, j ≥ 0, Sh i j(Z/C, P ) will denote the h-th hypercohomology group of the com-

plex of sheaves, SymjGi(Z/C, P )
SymjD−→ SymjGi(Z/C, P )⊗ Ω1

CK/K
(log(PK)), where

Gi(Z/C, P ) = K ⊗V Rig∗Ω•Z×/C× = K ⊗V Hi
dR(Z×/C×)

and D is the Gauss-Manin connection.
The group Sh i j(Z/C, P ) naturally has a Hodge filtration which we call

Fh i j,•(Z/C, P ). After choosing a branch of the p-adic logarithm on K×, we
will use the rigid geometry of Z/C and p-adic integration to produce a K0-lattice
Sh i jint (Z/C, P ) in Sh i j(Z/C, P ), a linear operator N int

h on this lattice and make a
σ-semi-linear operator Φint

h on Sh i j(Z/C, P ) such that N int
h Φint

h = pΦint
h N int

h .

A four-tuple (M,F,N,F •) whereM is a finite dimensional vector space overK0, F
and N are σ-semi-linear and respectively linear operators onM such that NF = pFN

and F • is a decreasing exhaustive filtration ofMK := M⊗K0
K byK-vector subspaces

is called a filtered, Frobenius, monodromy (FFM) module over K (see [19]). The
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category of FFM-modules is an additive, tensor category with kernels, cokernels and
a notion of short exact sequences but it is not abelian. Its subcategory of weakly
admissible modules (which are now known to be admissible by [13]) is abelian, see
also [19]. To a Qp-representation of GK , Fontaine associated an FFM-module and if
this representation “comes from geometry” one can recover it from the FFM-module.

In particular, if g : Z → C is as above then

Mh i j
int (Z/C, P ) := (Sh i jint (Z/C, P ),Φint

h , N int
h ,Fh i j,•(C,P ))

is an FFM-module over K.
We will prove,

Theorem 1.1. — The FFM-module Mh i j
int (Z/C, P ) is the one associated to

V h i j(Z/C, P ) := Hh
ét((C − P )K ,Symj(Rig∗,étQp))

via Fontaine theory. In particular,

V h i j(Z/C, P ) ∼=
(
Bst⊗(Mh i j

int (Z/C, P ))
)Φ=Id,N=0∩Fil0

(
BdR⊗KMh,i,j

int (Z/C, P )K
)
.

We obtain our theorem from results of Faltings [17], which we now describe.
Let us denote by C

×
the scheme C with the inverse image log structure from C×.

Suppose E is a filtered logarithmic F-isocrystal on C
×
. Such an object associates to

the “enlargements” (thickenings) of C
×

(see [32] for the non-logarithmic case and
[16], [34],[35] in general) coherent sheaves in a compatible way. We will recall the
precise definitions in Sections 3.3 and 6. The notion of an F-isocrystal and it’s initial
development is due to Berthelot and Ogus [2], [32]. The notion of a filtered logarithmic
F-isocrystal was defined by Faltings in [16] and developed by Shiho in [34] and [35]. In
particular, one gets from E a coherent sheaf EC× on CK with an integrable connection
D with logarithmic singularities at P . Therefore, if g, Z, C and P are as above, there
is a filtered log-F isocrystal E i j

Z/C on C
×

which associates to the enlargement C×,
SymjGi(Z/C, P ).

In [17], Faltings associated étale local systems on C, L(E ) to certain (very
special) filtered log-F isocrystals, E , and made families of FFM-modules,
(Hh

deg(E ),Φdeg
h , Ndeg

h ,Fh,•
deg) (see Section 2.1 for more details). Let us very briefly

describe Hh
deg(E ). It is the log crystalline cohomology on C, with a certain log

structure C
××

, with values in E . As C is a reduced divisor with normal crossings in
C, let C×× be C with the log-structure induced by C ∪ P . Let C×× be C with the
pull back log structure. Similarly, let Spec(V )× be Spec(V ) with the log structure
given by the closed point, let Spec(k)× be Spec(k) with the pull-back log structure
and let Spec(W )× be Spec(W ) with the Teichmüller lift of the log structure on
Spec(k)×. Then E is a filtered log F-isocrystal on C

××
over Spec(W )× and we set

Hh
deg(E ) := Hh

cris(C
××
/Spec(W )×,E ) for h ≥ 0. It is proved in [17] that the étale

cohomology Hh
et((C − P )K ,L(E )) and these FFM-modules are associated to each

other via Fontaine’s theory. In the case, E = E i j
Z/C , H

h
deg(E )⊗K0

K = Sh i j(Z/C, P ),
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Fh,•
deg is the Hodge filtration and Hh

et((C − P )K ,L(E )) = V h i j(Z/C, P ). In this
paper, we will extend the definitions in [C1] of FFM-modules Hh

int(E ) to regular (see
Section 6) logarithmic F-isocrystals E on C

×
over Spec(W ) and prove

Hh
deg(E ) = Hh

int(E )

for all h ≥ 0, when all the irreducible components of C are absolutely irreducible.
We have several applications of our theorem. We first point out that our descrip-

tions of the operators Φint
h , N int

h are more explicit than those of the corresponding
operators defined by Hyodo-Kato in ([23]) and Faltings in ([17]). If C = X(N, p),
with (N, p) = 1 and N > 4 (see the notations above) and E = SymjG1(E/C,P ) then
we prove that the rank of Ndeg

1 on H1
cris(C

×,×
/Spec(W )×,E )p−new is exactly half

the dimension over K0 of this vector space (see Corollary 7.4.) As a consequence we
derive that if f is a p-new cuspidal eigenform of weight k = j + 2 on X(N, p) and Vf
denotes the p-adic GK-representation attached to f , then Vf is semi-stable but not
crystalline (Corollary 7.5). This was proved in [33] in a very indirect way, using the
local Langlands correspondence and results of Carayol on the rank of the monodromy
operator on the `-adic (` 6= p) Weil-Deligne representation attached to f .

Our main result is also used in [24] in order to give an explicit description of the
image of the p-adic Abel-Jacobi map applied to Heegner cycles on certain Shimura
curves in terms of extension classes in the category of FFM-modules. In particular a
p-adic Gross-Zagier formula for higher weight modular forms is proved in that paper.

Finally, another application of our results is to get an explicit description of the
Mazur-Tate-Teitelbaum L -invariants which we now describe.

Suppose now that k ≥ 0 is an integer and (M,F,N,F •) is a FFM-module over
K such that F iM is MK for i ≤ k and it is 0 for i ≥ k + 2. Suppose H is a
commutative Zp-algebra free of finite rank which acts on M such that F k+1M is a
rank 1 HQp := H ⊗Qp-submodule,

MK = F k+1M ⊕ (N ⊗ 1K)MK

and N ⊗ 1K : F k+1M −→ (N ⊗ 1K)MK is a non-zero HQp -isomorphism. Then, if
v ∈ M is an eigenvector for F such that (N ⊗ 1K)MK = HQp ·Nv, the L -invariant
L (M) of (M,F,N,F (D)•) is the unique element in HQp such that

v −L (M)Nv ∈ F k+1M.

The general definition of an L -invariant becomes arithmetically significant when
we attach it to a cuspidal newform on X(N, p) of weight k+ 2 (as above), with k ≥ 0

even, which is split multiplicative at p. This means precisely that ap = pk/2 (see
[29].) The quest for an L -invariant which is intimately connected to the relationship
between complex and p-adic L-functions was initiated by Mazur-Tate-Teitelbaum (86)
in [30]. There, a definition in the weight 2 case was offered. Its relationship with values
of L-functions was established by Greenberg and Stevens using Hida theory (91) in
[20]. Teitelbaum proposed the first definition in the higher weight case under some
restrictions on the level using the uniformization of Shimura curves by the p-adic
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upper half plane (90) in [38] (his definition does not involve a FFM-module but see
[24]), the first author of the present paper offered a definition using the FFM-module
M1 i j
int (E(N, p)/X(N, p),Cusps) and H is the Hecke-algebra acting on X(N, p), in [8].

Finally, Fontaine-Mazur defined an L -invariant associated to a cusp form as above
using the FFM-module Dst(V ), where V is the local Galois representation attached to
the cusp form and Dst is Fontaine’s functor (see [19]) in [29]. The algebra H is again
the Hecke algebra acting on X(N, p). K. Kato, M. Kurihara and T. Tsuji established
the connection between the L -invariant of Fontaine and Mazur and special values of
the complex and p-adic L-functions while G. Stevens has established the connection
between the L -invariant defined in [8] and special values of the complex and p-adic
L-functions using p-adic families of modular forms, see [37]. The result of Kato,
Kurihara and Tsuji has not yet been published. The present paper together with
the results in [24] establishes the equality of all the L -invariants (whenever they
are defined). Of course, the results of Kato-Kurihara-Tsuji and Stevens togeher also
imply (indirectly) the equality of the L -invariants defined in [8] and the corresponding
Fontaine-Mazur L -invariants.

We mention that P. Colmez also proved (in [12]) a formula giving the L -invariant
of Fontaine-Mazur as derivative of a family of eigenvalues of Frobenius. Together with
the result of Stevens mentioned above involving the L -invariant defined in [8], this
gives another local proof of the equality of the two L -invariants we consider.

In [21] Grosse-Klönne extended the Hyodo-Kato theory and showed that there are
natural Frobenius and monodromy operators on the de Rham cohomology of a quite
general rigid space. He has been able to explicitly compute these when the space is a
quotient of a p-adic symmetric domain.

Writing this paper we had two options, namely to present the definitions, state-
ments and proofs in the most general case (the logarithmic case), which would have
made the notations very complicated and would have obscured the ideas of the
proofs or, to first present some of the definitions, statements and proofs in the non-
logarithmic case, then to give the definitions and make the precise statements in
general and leave it to the reader to check that the same proofs go through with the
obvious adjustments. We choose to do the latter.
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2. Definitions of the operators

Let K,V, k,W,K0, CK , C, P, C, P be as in Section 1. Let us recall that we suppose
that the reduction of P , P does not meet the singular divisor of C. We endow the
formal completion of C along its special fiber with the natural log structure defined
by the divisor P and denote the resulting formal log scheme by C×. We let C

×
denote

the log scheme C with the inverse image log structure. We also denote by C×× the
formal completion of C along its special fiber with log structure given by the divisor
with normal crossings P ∪ C. We denote C

××
the scheme C with the inverse image

log structure. Let E be a filtered log F-isocrystal on C
×
. We fix a uniformizer π of K

and fix the branch, log, of the p-adic logarithm in K× such that log(π) = 0. Then, if
E is regular (see below) there are two ways to attach a family of FFM-modules to E ,
as we shall explain below.

2.1. The definition via degeneration. — We first briefly review the definition
given by G. Faltings in [17]. We give more details in later sections. By deformation
theory, the pair (C,P ) can be regarded as the fiber at the point π of S := Spf(W [[t]])

over W , of a pair (X,P) consisting of a family of curves X defined over S and a
smooth divisor P of X over S . Let X× denote the log formal scheme X with the log
structure given by the divisor P. Let f : X −→ S denote the structure morphism.
Let Y denote the fiber of this morphism at t = 0. Then P and Y are disjoint and
Y is a divisor of X with normal crossings. We denote by X×× the formal scheme X
with the log structure associated to the divisor P ∪Y . If we let X = Xrig, S = S rig

and Prig := PX denote the rigid analytic spaces over K0 associated to X, S and P
respectively and if f : X −→ S is the induced morphism then we have

i) X −→ Spec(K0) is smooth
ii) Y := f−1(0) = Y rig is a semi-stable curve over K0

iii) P0 := PX ∩ Y is disjoint from the singular divisor of Y
iv) f |X∗ : X∗ = (X − Y ) −→ S∗ = (S − {0}) is smooth.

The evaluation of E on X× is a coherent OX -module EX× , with a relative, logarithmic,
integrable connection DX/S. Let us denote by K•X/S the complex of sheaves on X

EX×
DX/S−→ EX× ⊗OX Ω1

X/S(log(Y ∪ PX)).

The relative connection DX/S is induced from the absolute connection:

EX×
DX/K0−→ EX× ⊗OX Ω1

X/K0
(log(PX))

ASTÉRISQUE 331



HIDDEN STRUCTURES ON SEMISTABLE CURVES 185

by composing with the natural map: Ω1
X/K0

(log(PX)) −→ Ω1
X/S(log(Y ∪ PX)).

See Section 3.3 and Section 6. We denote by Hi the i-th logarithmic relative de
Rham cohomology group of X/S with coefficients in EX× , i.e. the sheaf Rif∗(K•X/S)

for i = 0, 1, 2. For every i, Hi is a free OS-module with an integrable, regular-singular
connection

∇i : Hi −→ Hi ⊗OS Ω1
S/K0

(log 0).

Fix a parameter t on S, with t(0) = 0. The Frobenius on E together with the Frobenius
ϕ on S which sends t to tp and acts on the coefficients as the absolute Frobenius on
K0, endow Hi with a ϕ-semi-linear, horizontal (with respect to∇i) Frobenius operator

Φi : ϕ
∗Hi −→ Hi.

If s is a point of S, let Hi
s denote the fiber of Hi at s. The i-th logarithmic de

Rham cohomology of CK , with coefficients in EC× , Hi
dR

(
CK ,EC×

)
is canonically

isomorphic to Hi
π. (Recall, P is the fiber of PX at s = π.) We denote these groups by

Hi(C,P,E ). On the other hand, Hi
0 is canonically isomorphic to the logarithmic de

Rham cohomology of Y with coefficients in EY × , i.e. the i-th hypercohomology on Y
of the complex of sheaves

EY ×
DY /W−→ EY × ⊗OY Ω1

Y ××/Spf(W )× ,

where Y ×× is the formal scheme Y with the inverse image log structure from X××.
We denote this group by Hi(Y, P0,E ).

Now let Hi
deg(E ) denote the FFM-module (Hi(Y, P0,E ),Φdeg

i , Ndeg
i ,F •deg), where

the operators are defined as follows

the monodromy operator: Ndeg
i := Res0(∇i) : Hi(Y, P0,E ) −→ Hi(Y, P0,E ),

and

the Frobenius operator: Φdeg
i := Φi|Hi(Y,P0,E ) : Hi(Y, P0,E ) −→ Hi(Y, P0,E ).

These operators satisfy Ndeg
i Φdeg

i = pΦdeg
i Ndeg

i .

We still have to define the filtration on (Hi
deg(E ))K := Hi(Y, P0,E ) ⊗K0

K. For
this let us recall from [4] (this was also proved in [17]) that the triple (Hi,∇i,Φi) is
determined by the triple (Hi(Y, P0,E ), Ndeg

i ,Φdeg
i ). More precisely we have a natural,

horizontal, Frobenius-equivariant isomorphism of OS-modules

(Hi,∇i,Φi) ∼= (Hi(Y, P0,E )⊗K0 OS , (∇i)′,Φdeg
i ⊗ ϕ),

where the connection (∇i)′ is defined by,

(∇i)′(h⊗ x) = Ndeg
i (h)⊗ xdt

t
+ hdx, for all h ∈ Hi(Y, P0,E ), x section of OS .

Here a few comments are in order. For i = 0, 2 the pair (Hi,∇i) is very simple.
Namely, let i = 0. Then H0 = (EX×(X))DX/S =: EX/S and the connection ∇0 is the
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composition

EX/S
DX/K0−→ EX/S ⊗OS Ω1

S −→ EX/S ⊗OS Ω1
S(log(0)),

where DX/K0
is the absolute connection mentioned at the beginning of this section.

Therefore Ndeg
0 = Res0(∇0) = 0 and so applying the above we get that H0 ∼=

H0(Y, P0,E ) ⊗K0
OS and (∇0)′ (therefore also ∇0) is the trivial connection. The

same happens for i = 2 by Poincaré duality (see [17]).
∇1 is not trivial in general so let us define H1

log = H1 ⊗OS OS [`(t)], where `(t)
is a variable. We endow H1

log with the connection ∇1(log) := ∇1 ⊗ 1 + 1 ⊗ d where

d : OS [`(t)] −→ OS [`(t)]⊗OS Ω1
S/K0

(log(0)) is defined by d(`(t)) = 1⊗ dt

t
.

For all h ∈ H1(Y, P0,E ) the sections of H1
log

h⊗ 1−Ndeg
1 (h)⊗ `(t)

are horizontal for ∇1(log) hence the connection ∇1(log) is trivial.
Therefore, letting Hi

log = Hi if i = 0, 2 we have for i = 0, 1, 2 and every K-point
s 6= 0 of S natural identifications (by parallel transport, see [14])(

Hi
deg(E )

)
K

= Hi(Y, P0,E )⊗K0
K ∼= (Hi

log)s

where by (Hi
log)s we denote the pull back of Hi

log by the map OS [`(t)] −→ K send-
ing t → s and `(t) → log(s), where let us recall that the branch of the logarithm
chosen at the beginning of this section is such that log(π) = 0. In particular, for
s = π we have (Hi

log)π = Hi
π = Hi

dR(CK ,EC×(log(P )) and we define the filtration on(
Hi

deg(E )
)
K

to be the inverse image under this isomorphism of the Hodge filtration
on Hi

dR(CK ,EC×(log(P )).

Remark 2.1. — Actually Faltings does not mention the basis of horizontal sections
defined above in [17] and it seems to us that he does not identify fibers of Hi

log (see
also the remark before Lemma 2.1 in [17]).

2.2. The definition via p-adic integration. — We generalize the definition given
in [8] when E is regular. As pointed out above, the evaluation of E on C× is a co-
herent OCK -module with a regular singular (at P ) integrable connection D : EC× −→
EC× ⊗OCK

Ω1
CK/K

(log(P )). Recall that we have denoted by Hi(C,P,E ) the K-vector
spaces Hi

dR(CK ,EC×(log(P )), for i = 0, 1, 2.. The following lemma will be proved in
Section 3.3

Lemma 2.2. — The connection D has a basis of horizontal sections on every residue
class of CK .

We’ll assume that the components of C are smooth, absolutely irreducible and
there are at least two of them. Also suppose that the singular points of the reduction
are defined over k.
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For i = 0, 2 we have the K0-lattices in Hi(C,P,E ), Hi
int(E ) := Hi

cris(C
××
,E ) with

the respective Frobenii and zero monodromies. The filtrations on Hi(C,P,E ) are the
respective Hodge filtrations.

For i = 1 the situation is more complicated. For an admissible covering D of a
rigid space let G := G(D) be the graph whose vertices v(G) are the elements of D
and whose oriented edges ε(G) correspond to ordered triples e := (U, V,W ) where
U 6= V ∈ D and Ae := W is a connected component of U ∩ V . Also, if e is such
an edge then its origin a(e) is U and its end b(e) is V . We set τ(e) = (V,U,W ). If
v ∈ v(G(D)) we will denote by Uv the element of D corresponding to it. We choose
and fix a system of representatives e(G) of the quotient set ε(G)/τ .

Consider
C = {red−1Z : Z is a component of C},

where red: CK = Crig −→ C is the reduction map. Then C is an admissible open
cover of CK by wide opens (see [7]). Let G = G(C ), v(G) be the vertices of G and
ε(G), the edges of G. If v ∈ v(G), Cv will denote the corresponding component of
C. We also set C0

v = Cv −
⋃
w 6=v Cw. In this situation, for each e ∈ e(G), Ae is an

oriented wide open annulus. Given Lemma 2.2, there is a natural residue map

Rese : H1
dR(Ae,EC×) ∼= H0

dR(Ae,EC×) = (EC× |Ae)D.
We will sometimes abuse notation and allow Rese to denote the composition of Rese
with the natural map from H1(C,P,E ) to H1

dR(Ae,EC×).
Elements of H1(C,P,E ) are represented by pairs of collections

({ωv}v∈v(G), {fe}e∈e(G))

where ωv ∈ (EC ⊗ Ω1
Uv

)(logPv))(Uv) and fe ∈ E (Ae) are such that

ωa(e)|Ae − ωb(e)|Ae = Dfe

for all e ∈ e(G). We denote P ∩ Uv by Pv. From the Mayer-Vietoris exact sequence
corresponding to the covering C we get a short exact sequence
(1)

0→ (⊕e∈e(G)H
0
dR(Ae,EC×))/(⊕v∈v(G)H

0
dR(Uv,EC×(log(Pv))))

ι→ H1(C,P,E )
γ→ Ker(⊕v∈v(G)H

1
dR(Uv,EC×(log(Pv)))→ ⊕e∈e(G)H

1
dR(Ae,EC×))→ 0.

First, let us observe that the left and right terms in the exact sequence (1) have
natural K0-lattices, with Frobenii. To see this, note that H0

dR(Ae,EC×) contains a
natural K0-lattice, namely H0

cris(xe,E ), where xe is the point of C corresponding to
the edge e, and it has a natural Frobenius. Therefore we get a naturalK0-lattice with a
Frobenius on the left module of the exact sequence (1) which will be denoted H0,1(C)

and F0,cris respectively. Moreover, for v ∈ v(G), H1
dR(Uv,EC×(log(Pv))) contains a

natural K0-lattice with a Frobenius, namely the first log crystalline cohomology with
coefficients in E of the component corresponding to the vertex v, C××v where the log
structure is the one induced by the log structure on C

××
. See [16]. Therefore, the
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right module of the exact sequence (1) has a naturalK0-lattice, denotedH1,0(C), with
a Frobenius denoted F1,cris. To define a K0-lattice, H1

int(E ) of H1(C,P,E ), together
with a Frobenius operator Φint

1 and a monodromy operator N int
1 we’ll first split the

exact sequence (1) by defining a section s of ι. This can be done if the log F-isocrystal
E is regular.

Definition 2.3. — We say that the log F-isocrystal E on C
×

is regular if for every
v ∈ v(G) and x closed point of Cv −P the characteristic polynomials of Frobenius on
H0

cris(x,E ) and H1
cris(C

××
v ,E )) are relatively prime.

Remark 2.4. — It will be proved in Section 6 that the definition (2.3) is satisfied by all
log F-isocrystals on C

×
coming from a family of schemes Z −→ C as in the Section 1.

For the rest of the section we’ll assume that E is regular. Let ω ∈ H1(C,P,EC×) be
represented by the hypercocycle ({ωv}v, {fe}e) as above. If v ∈ v(G) one can define
a p-adic integral of ωv, λv, on Uv −Pv, which depends on our choice of the logarithm
and is well defined up to a rigid horizontal section of EC× |Uv (see Section 5.2). Then
s(ω) will be represented by the cocycle ({ge}e), where

ge = fe − (λa(e)|Ae − λb(e)|Ae).

Let u be the corresponding section of γ. Then define H1
int(E ) to be the FFM-mod-

ule, where the underlying K0-vector space is ι(H0,1(C)) +u(H1,0(C)) and the Frobe-
nius operator, Φint

1 (ω), is

ι(F0,cris(s(ω)) + u(F1,cris(γ(ω)).

Moreover, the monodromy operator, N int
1 , is defined to be the composition

ι ◦ ⊕e∈e(G)Rese.

The operators satisfy the relation,

N int
1 Φint

1 = pΦint
1 N int

1 .

Finally the filtration on (ι(H0,1(C))+u(H1,0(C)))⊗K0
K = H1(C,P,E ) is the Hodge

filtration.

Remark 2.5. — The same construction can be performed for every fiber Xs where
s ∈ S∗ = S−{0}, i.e., we have residue maps Res(s), monodromy operators N int

(i,s) and
Frobenii Φint

(i,s), for i = 0, 1, 2.

The main result of this paper is

Theorem 2.6. — Suppose that E is a regular filtered log F-isocrystal on C
×
. Then the

isomorphism Hi(Y, P0,E ) ⊗K0 K
∼= (Hi

log)π obtained by parallel transport yields an
isomorphism of FFM-modules Hi

deg(E ) ∼= Hi
int(E ).

Remark 2.7. — Actually regularity is only needed in order to compare the K0-lattices
and the Frobenii. We shall prove the equality of the monodromy operators (tensored
with the identity of K) without any restriction.
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Theorem 2.6 is an easy consequence of the definitions for i = 0, 2. The next sections
of the paper will be devoted to the proof of this theorem for i = 1. We’ll first prove
the theorem (2.6) in the non-logarithmic case (i.e. P is the void set) and then we’ll
provide all the necessary definitions and results so that the reader should be able to
fill in the details of the proof in the logarithmic case.

3. F-Isocrystals

3.1. Formal schemes, rigid analytic spaces and weak completions. — In this
section we review some constructions and results on formal schemes, rigid analytic
spaces and weak completions which will be used later in the paper.

3.1.1. The functor rig. — We recall a standard construction in rigid analytic geome-
try, the functor “rig” (for more details see Section 02 of [1] or [25]). This is a functor
from the category of locally noetherian formal V -schemes (or formal W -schemes) to
the category of rigid analytic spaces over K (respectively K0).

Let X be a locally noetherian formal scheme over Spf(V ) (the case where V is
replaced by W is treated in the same way) having the property that the scheme
(X,OX/I )red is locally of finite type, where I is an ideal of definition of X. To the
formal scheme X we attach a rigid analytic space X := Xrig over K as follows.

We first suppose that X is affine, X = Spf(A), let I = H0(X,I ) and fix
f1, f2, . . . , fr a set of generators of the ideal I. For every n ≥ 1 define the V -algebra

Bn := A〈T1, T2, . . . , Tr〉/(fn1 − πT1, f
n
2 − πT2, . . . , f

n
r − πTr),

where π is a uniformizer of V , and as usual, A〈T1, T2, . . . , Tr〉 denotes the p-adic
(or π-adic) completion of the polynomial ring A[T1, T2, . . . , Tr]. The conditions on X
imply that the k-algebra

Bn/πBn ∼= A/(π, fn1 , f
n
2 , . . . , f

n
r )[T1, T2, . . . , Tr]

is of finite type which implies that Bn itself is topologically of finite type. Therefore
Bn ⊗V K is a Tate-algebra over K. For m > n ≥ 1 we have canonical V -algebra
homomorphisms Bm −→ Bn sending Ti → fm−ni Ti for all 1 ≤ i ≤ r. The induced
morphism of affinoids Spm(Bn ⊗ K) −→ Spm(Bm ⊗ K) identifies the source with
the affinoid sub-domain of the target given by |fi| ≤ |π|1/n, 1 ≤ i ≤ r. We define
X := Xrig to be the inductive limit of Spm(Bn ⊗K), where these affinoids form, by
definition, an admissible covering of X. In fact one can prove that Xrig is independent
of the ideal of definition I and of the choice of generators f1, f2, . . . , fr and that it
is functorial in X.

If the ideal of definition of X is πOX, i.e. X is a p-adic formal V -scheme topologically
of finite type, then Xrig is the usual “generic fiber of X” à la Raynaud.

Let X,Xrig be as above. Then one can define a reduction (or specialization) map
red : Xrig −→ X as follows. For m > n ≥ 1 the natural V -algebra homomorphisms
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A −→ Bm −→ Bn induce the following commutative diagram:

Spm(Bm ⊗K)
red−→ Spf(Bm) −→ X

↓ ↓ ||
Spm(Bn ⊗K)

red−→ Spf(Bn) −→ X

Here the morphisms red : Spm(Bn ⊗ K) −→ Spf(Bn) are the usual reduction
maps for p-adic formal schemes and their generic fibers, i.e. defined as follows. Let
x ∈ Spm(Bn ⊗ K) be a point and let mx be the respective maximal ideal. Then
K(x) := (Bn ⊗K)/mx is a finite extension of K and we have V -algebra morphisms:
Bn −→ Bn⊗K −→ K(x). We define red(x) to be the point of Spf(Bn) corresponding
to the unique closed point of the finite, local V -algebra which is the image of Bn in
K(x).

The morphism red : Xrig −→ X is obtained by gluing the morphisms
Spm(Bn ⊗K) −→ X in the above diagram.

For a general X, we obtain Xrig and the morphism red : Xrig −→ X by taking an
affine cover {Ui}i of X and gluing U rig

i and redU rig
i

.
Under the notations and hypothesis at the beginning of the section, let Z be a

closed sub-scheme of (X,OX/I ). We denote by X/Z the formal completion of X along
Z. We have canonical morphisms X/Z −→ X and (X/Z)rig −→ Xrig. The image of
the latter morphism is an admissible open subset of Xrig which may be canonically
identified with red−1(Z) :=]Z[X (see Proposition 0.2.7 of [1]).

3.1.2. Formal models. — Let X be a p-adic formal V -scheme (or W -scheme), sepa-
rated and topologically of finite type and let X := Xrig. Assume that X is reduced
and let U be an admissible affinoid open of X.

Lemma 3.1. — There is a canonical p-adic formal scheme U over V (respectively over
W ), depending on X, with a morphism U −→ X whose generic fiber is the inclusion
U ⊂ X.

Proof. — Let, as usual X1 denote the special fiber of X and consider an affine open
covering of X1, {Vi}i. Let Ui := red−1(Vi)∩U ⊂ U , the family {Ui}i is an admissible
covering of U and let us denote by Ui := Spf(Ai) where Ai is the sub-ring of functions
of OU (Ui) bounded by 1 (we say that Ui is “the canonical formal model” of Ui). Let
Vij be the inverse image of Vi∩Vj under the map of special fibers (Ui)1 −→ X1. Then
Ui ∩ Uj = red−1

i (Vij), where redi : Ui −→ Ui is the reduction map and the canonical
model of Ui ∩Uj is the formal open sub-scheme of Ui whose support is Vij Therefore,
one can glue the formal schemes Ui along the canonical formal models of Ui ∩Uj and
obtain the required formal model of U . This is independent of the covering {Vi}i, as
one may take the covering of X1 consisting of all the affine open sub-schemes.

These formal models of affinoid opens of X have the following functorial property.
Let X,X′ be p-adic formal schemes, separated, topologically of finite type over

V (or W ) and let X = Xrig, X ′ = X′rig and assume that X,X ′ are reduced. Let
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U,U ′ be admissible affinoid opens of X respectively X ′ and assume that we are given
morphisms f : U ′ −→ U and g : (X′)1 −→ (X)1 such that the following diagram
commutes.

U ′ ⊂ X ′
red−→ (X′)1

f ↓ g ↓
U ⊂ X

red−→ (X)1

Then there exists a canonical morphism h : U′ −→ U inducing f on generic fibers and
such that h1 : (U′)1 −→ (U)1 is compatible with g.

3.1.2.1. Logarithmic structures. — In this section we’d like to recall some basic no-
tions in the theory of log schemes from [26], [23], Sections 2.8, 2.9 and [34].

Suppose A is a scheme (or a formal scheme or a rigid space). A morphism of
sheaves of monoids on the Zariski site of A, α : M → OA, will be called a pre log
structure on A. Call the pair (A,α) a pre log scheme (or formal pre log scheme) and
denote it A× and denote M , MA× . A pre log scheme (A,α) is called a log scheme
if α induces an isomorphism α−1(O∗A) ∼= O∗A. The sheaf of log one forms ωA× on A
associated to α is the quasi-coherent sheaf Ω1

A⊕OA⊗O∗
A
MA× subject to the relations

α(m) ⊗ m = dα(m), for m ∈ MA× . One has a natural derivation on the exterior
algebra of ωA× over OA such that d(1⊗m) = 0, for m ∈MA× .

If P is a divisor on A, MP is the sheaf MP (U) = OA(U) ∩ O∗A(U − P ) and
αP : MP → OA is the inclusion, then A×P =: (A,αP ) is a log-scheme which is fine
(“coherent” and “integral”). If A is noetherian and reduced and if A is a variety ωA×

P

is naturally isomorphic to Ω1
A(logP ). If P = ∅, αP is called the a trivial log structure

on A.
G. Faltings defines and uses a more restricted notion of log-structures in [16] and

[17] (see the appendix of [26] for the precise relationship between the two notions.)
Henceforth, all log structures will be fine.
Let T× be a formal log scheme. Let us denote by T0 the reduced sub-scheme of

the closed sub-scheme of T corresponding to the ideal sheaf pOT . We have a closed
immersion

ι : T0 −→ T

and we’ll let T×0 be the log scheme corresponding to the log structure on T0

ι−1(MT×) −→ ι−1(OT ) −→ OT0
.

We use, as in [26] the notation ι−1 for the inverse image of a sheaf and ι∗ for the
inverse image of a log structure.

Let now g : U× → T× be a morphism of formal log schemes, g = (f, h) :

(U,MU×)→ (T,MT×) . Here f : U → T is a morphism of formal W -schemes and we
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have a commutative diagram

f−1MT×
h−→ MU

↓ ↓
f−1OT −→ OU

and also
U

f−→ T

ι′ ↑ ↑ ι
U0

f0−→ T0

Therefore, we have a commutative diagram

f−1
0 (ι−1MT×) = (ι′)−1f−1MT× −→ (ι′)−1MU×

↓ ↓ ↓
f−1

0 (ι−1OT ) = (ι′)−1f−1OT −→ (ι′)−1OU

↓ ↓
f−1

0 (OT0) −→ OU0

which defines a morphism g0 : U×0 → T×0 .

Definition 3.2. — Let X×, Y × be schemes or formal schemes with fine log structures
and let M −→ OX (respectively N −→ OY ) denote the morphisms of monoids on X
(respectively on Y ) giving the log structures. Let f : X× −→ Y × be a morphism.

i) We say that f is a closed immersion if the underlying morphism of schemes
X −→ Y is a closed immersion and the map f∗N −→M is surjective.

ii) We say that f is an exact closed immersion if f is a closed immersion and the
map f∗N −→M is a bijection.

Definition 3.3. — Let as above X×, Y × be schemes or formal schemes with fine log
structures given by the sheaves of monoidsM respectively N and let f : X× −→ Y × be
a morphism. We say that f is smooth (respectively étale) if the underlying morphism
of schemes X −→ Y is locally of finite presentation and for any commutative diagram

T
′× s−→ X×

↓ ι ↓ f
T×

t−→ Y ×

where ι is an exact closed immersion such that the ideal of T ′ in T is nilpotent,
there exists locally on T a morphism (respectively there exists a unique morphism)
g : T× −→ X× such that gι = s and fg = t.

See [23] 2.9 for other equivalent formulations of Definition 3.3.
Moreover we have the following result from [26] 4.10:

Lemma 3.4. — If f : X× −→ Y × is a closed immersion, then there exists locally on
X a factorization of f as: X× ι−→ T×

g−→ Y × where T× is a fine log scheme, ι is
an exact closed immersion and g is an étale morphism.
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3.1.3. Fibrations and rigid analytic Poincaré lemmas
3.1.3.1. — Let us first consider a smooth affine scheme Z of finite type over k and
let ι : Z −→ T and ι : Z −→ T ′ be closed immersions of Z into smooth p-adic
formal affine schemes over W . Let us assume that we have a smooth morphism of
formal schemes u : T ′ −→ T such that u ◦ ι′ = ι. Let T ′/Z ,T/Z denote the formal
completions of T ′ respectively T along Z and let T ′ := (T ′/Z)rig and T := (T/Z)rig.
Then locally on T ′ we have integers d and natural isomorphisms T ′ ∼= T×K0

Sd, where
let us recall that S is the open unit disk over K0, such that the following diagram is
commutative

T ′ −→ T ×K0
Sd

u ↓ ↓
T = T

In the above diagram the right vertical map is the natural projection. For a proof of
the result see [1] Theorem 1.3.2. An easy consequence of this result on “fibrations” is
the following

Lemma 3.5 (Smooth Poincaré lemma). — Let the notations be as at the beginning
of this section. Let E denote an isocrystal on Z/W (see Section 3.3) and let us
consider the de Rham complexes of sheaves on T ′ and T denoted DR(T ′,E )• and
DR(T,E )• obtained by evaluating E at the enlargements T/Z and T/Z . The morphism
u : T ′ −→ T induces a morphism of complexes DR(T,E )• −→ u∗DR(T ′,E )• which
is a quasi-isomorphism.

We’d like to recall the similar result in the relative situation and with log structures
from [34],[35] and [36].

Let us now recall that we have denoted S = Spf(W [[t]]). Let us endow this formal
scheme with the fine log structure given by the divisor t = 0 and denote this log
formal scheme by S ×. The closed immersion Spec(k) −→ S given by t→ 0 endows
Spec(k) with the pull-back log structure. Let Z× be a fine, smooth, affine log scheme
over Spec(k)× and let ι : Z× −→ T × and ι′ : Z× −→ T ′× denote exact closed
immersions over S × into smooth, affine log formal schemes (we assume that T ,T ′

are endowed with the (t, p)-topology). Suppose that u : T ′× −→ T × is a morphism of
log formal schemes over S × such that u◦ ι′ = ι. Let T ′/Z ,T/Z denote the completions
of T ′ respectively T along Z and let ]Z×[T ′ := (T ′/Z)rig, ]Z×[T := (T/Z)rig denote
the tubes of Z× relative to T ′× and T respectively. We denote by ω1

]Z×[T ′
the sheaf

on ]Z×[T ′ given by: Ω1
(T ′
/Z

)×/S× ⊗W K0 and similarly for ω1
]Z×[T

. Then we have the
following log Poincaré lemma.

Proposition 3.6 (Lemma 2.2.15, [34]). — Let E be an isocrystal (without log structures)
on Z. If u is a smooth morphism of log formal schemes then the natural morphism of
de Rham complexes

DR(T,E )• := ET/Z ⊗OT/Z
ω•]Z×[T

−→ u∗
(
DR(T ′,E )• := ET/Z ⊗OT ′

/Z

ω•]Z×[T ′

)
.
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is a quasi-isomorphism.

3.1.4. Weakly Complete Algebras
3.1.4.1. Weakly complete liftings. — In this and the next sections we prove an im-
portant generalization of the “weak lifting theorem” (theorem A.1 of [5]) and give a
geometric interpretation of it (in §3.1.5).

We start with some notations which will be used as such only in this section. Let
R be a complete local ring of characteristic (0, p) with maximal ideal p. If n is a
non-negative integer set Rn := R〈T1, T2, . . . , Tn〉. Fix now k a non-negative integer.
For an Rk-algebra A, the weak completion A† of A is the smallest sub-algebra of the
p-adic completion of A which is p-adically saturated and contains the elements∑

(I1,...,in)∈Nn
ri1,...,ina

i1
1 · · · ainn ,

for any aj ∈ pA, 1 ≤ j ≤ n and ri1,...,in ∈ Rk. (When R is discretely valued this is
equivalent to the notion of weak completion of A over (R, p) in [31], §1.) The algebra A
is weakly complete over Rk if A = A†. Let Am := A[x1, x2, . . . , xm] and Rk,n = (Rk)†n.
A quotient of Rk,n for some n by a finitely generated ideal is a semi-dagger algebra
over Rk, [10]. Such algebras are weakly complete. Denote A := A/pA. If f : A −→ B

is a homomorphism of semi-dagger Rk-algebras, we say B is formally smooth over A
if B is smooth over A and

AnnB(ρ) = AnnA(ρ)B,

for all ρ ∈ R.

Theorem 3.7. — Suppose A,B,C and D are flat semi-dagger algebras over Rk and
we have a commutative diagram

A −→ C

↓ ↓
B −→ D

Suppose, in addition, C −→ D is surjective, B is formally smooth over A and there
exists an Rk-algebra homomorphism s : B −→ C which commutes with the reduction
of the above diagram. Then there exists an Rk-algebra homomorphism s : B −→ C

which lifts s and commutes with this diagram.

Sketch of proof. The proof of the less general result Theorem A.1 of [5] translates
easily. We first outline the proof.

There exists an integer n and G1, . . . , Gm ∈ A†n so that we can take B =

A†n/(G1, . . . , Gm). Let g and V be the compositions A†n −→ B −→ D and An −→
B −→ C respectively. Let I be the kernel of C −→ D. Let X := (x1, . . . , xn) ∈ Ann
and G = (G1, . . . , Gm). First one shows there exists an Rk-algebra homomorphism
V0 : A†n −→ C over Rk which lifts V such that V0 = g(modI). Now one shows there
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exists an n×m matrix N an m×m matrix Q and an m-tuple of m×m matrices M
with coefficients in A†n such that

G(X +GN) = GMGt +GQ

where Gt is the transpose of G and the coordinates of Q are in pA†. Now for a
non-negative integer s set

Vs+1 = Vs(X) +G(Vs(X))N(Vs(X)).

The Vs converge to the required V as s goes to infinity. The proof of which we now
explain:

Lemma 3.8. — Suppose f : A −→ B is a surjective map of Rk-semi-dagger algebras.
The kernel of f is a finitely generated ideal.

Proof. — Without loss of generality may suppose that A = Rk,a and B = Rk,b/J ,
where J is a finitely generated ideal of Rk,b. Let us denote by g : Rk,b −→ B the
natural map (in particular J is the kernel of g) and call the “weak” variables in Rk,a
and Rk,b by x1, . . . , xa and respectively y1, . . . , yb. Let h : Rk,b −→ Rk,a so that
f(h(x)) = g(x), h(yi) ∈ f−1(g(yi)), 1 ≤ i ≤ b. Let x′i ∈ g−1(f(xi)). The kernel of f
is generated by h(J) and the finite set {xi − h(x′i)}i=1,a.

In the notations of Theorem 3.7, because B is formally smooth over A, we may
write B = A†n/(G1, . . . , Gm). Let g and V be the compositions A†n −→ B −→ D and
An −→ B

s−→ C respectively. Let I be the kernel of the homomorphism C −→ D

and let X = (x1, . . . , xn) ∈ Ann.

Lemma 3.9. — There exists V0 : A†n −→ C over Rk which lifts V such that
V0 = g(modI).

Proof. — Let g′(X) be an element of Cn such that

g′(X) = g(X)modI

and define a homomorphism V ′ : A†n −→ C in the natural way. Similarly there is a
homomorphism V ′ : A†n −→ C which lifts V ,

V ′ = g′mod(p, I)Cn.

We can write
V ′(X)− g′(X) = a− b,

where a ∈ pCn and b ∈ ICn. Let V0 : A†n −→ C such that V0(X) = V ′(X)− a.

Let G = (G1, . . . , Gm) and X = (x1, . . . , xn). Formal smoothness implies

Lemma 3.10. — There exists a n×m matrix N an m×m matrix Q and an m-tuple
of m×m-matrices M over A†n such that

G(X +GN) = GMGt +GQ
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where Gt is the transpose of G and the coordinates of Q are in pA†n. Here we think of
each G as a row vector of functions of X and by the notation G(X +GN) we mean
the composition of functions .

For an integer s ≥ 0 set

Vs+1(X) := Vs(X) +G(Vs(X))N(Vs(X).

Suppose Q,V0(G) = 0modq, for q ∈ pR. Then for s ≥ 1,

Vs+1(X)− Vs(X) = ((GMGt +GQ)(Vs−1(X)))N(Vs(X)) = 0 mod qs+1.

This is enough to show that the sequence Vs converges p-adically. We will now give
some idea about why it “weakly converges”.

If r ∈ pQ, r > 1, let Rk,n(r) denote the sub-ring of Rk,n consisting of series which
converge on Bk[1] × Bn[r]. If f : Rk,n −→ A is a surjection and r > 1, let A(f, r)

denote the subring f(Rk,n(r)) and for F ∈ A(f, r) set

||F ||f,r = max{||G||r | G ∈ Rk,n(r), f(G) = F}.

Choose once and for all surjective homomorphisms

Rk,a −→ A, and Rk,b −→ C.

Let Rk,a+n −→ A†n be the induced surjection. If e : Rk,c −→ E is one of these
homomorphisms, let

E(r) = E(e, r) and || ||r = || ||e,r.
We can show there exist real numbers u > 1, d > 0, and L < 1 such that for 1 ≤ t ≤ u
the entries of N and G lie in A†n(u) and

(i) Vs(A†n(td)) ⊂ C(t),
(ii) ||Vs(X)− V0(X)||t < 1,
(iii) ||G(Vs(X))||t ≤ Ls||G(V0(X))||t,
(iv) L ≥ ||N(Vs(X))||t||G(V0(X))||t,
(v) Vs = V0(modI).
Now, (iii) and (iv) imply the sequences Vs|A†n(td) converge to continuous homo-

morphisms Vt : A†n(td) −→ C(t), for 1 ≤ t ≤ u, compatible with decreasing t. Let
V : A†n −→ C be the direct limit of these Vt. Condition (ii) implies that V lifts V ,
(iii) implies G(V (X)) = 0, so V factors through a a morphism B −→ C which lifts
B −→ C and finally (v) implies this morphism commutes with the diagram.

Remark 3.11. — A statement needed to prove (iv) which is analogous to a result used
but not stated explicitly in [5] is, with notation as in the proof of lemma A-8 of [5],

||h(F )||g,t ≤ ||F ||f,td .

Corollary 3.12. — Suppose R is discretely valued and B is a flat, formally smooth
semi-dagger algebra over Rk. Then B is very smooth over (Rk, pRk) in the sense of
[31], Definition 2.5.
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Corollary 3.13. — Suppose R is discretely valued and B and C are flat Rk semi-
dagger algebras, formally smooth over Rk and there exists an Rk-algebra isomorphism
s : B −→ C. Then there exists an Rk-algebra isomorphism s : B −→ C lifting s.

Proof. — This follows from the previous corollary and the proof of Theorem 3.3 of
[31].

3.1.4.2. Weak completions. — Let the notations be as in §3.1.4.1. In this section,
given a finitely generated Rk-algebra A, we give a geometric interpretation of the ring
A† ⊗R K, which will be used later in the article.

Suppose R is discretely valued.

Proposition 3.14. — Let A be a finitely generated flat Rk-algebra. Set A = A/pA,
Â = lim

←,n
A/pnA, U = Spec(A), Û = Spf(Â) and U = Spec(A). Let g : U −→ X be an

open immersion of U into a scheme X proper and flat over Rk. Let X̂ be the formal
completion of X along its special fiber and ÛK =]U [X̂ . Then A† ⊗R K ∼= lim

→,V
A(V ),

where V ranges over all affinoid strict neighborhoods of ÛK in X̂K and A(V ) denotes
the affinoid algebra of V .

Proof. — Let Z be the complement of U in X with the reduced closed sub-scheme
structure and let Z be its reduction modulo p. Let π be a uniformizer of R. Suppose
{Wi}i is an affine cover of X and suppose that fi1, . . . , fini ∈ OX̂K (]Wi[) are such
that f i1, . . . , f ini generate the ideal in OWi defining Z ∩Wi. For λ ∈ pQ, |λ| ≥ |π|, let
Vλ be the union over all i of

{x ∈]Wi[| there exists j, 1 ≤ j ≤ ni such that |fj(x)| ≥ λ}.

As in [1] §1.2, the Vλ’s are independent of the choices and form a co-final system of
strict neighborhoods of ÛK in Xrig

K . Then we see that Vλ is contained in U rig
K (⊂ Xrig

K ).
This implies that the inductive limit we consider does not depend on the choice of
the embedding U −→ X. Choose a presentation A = Rk[T1, . . . , Tn]/I, which gives a
closed immersion U −→ AnRk and let X be the closure of U in PnRk . Then we see that
A(Vλ) is isomorphic to (Rk〈T1, . . . , Tn〉λ/I)⊗RK, where Rk〈T1, . . . , Tn〉λ denotes the
ring of power series over Rk converging on the closed disk {(y, x) ∈ K

k+n | |y| ≤
1, |x| ≤ 1/λ}. Hence its inductive limit coincides with (Rk[T1, . . . , Tn]†/I) ⊗R K ∼=
A† ⊗R K.

Remark 3.15. — It is possible to improve this result. If Z ⊂ X are affinoids, set
|g|Z = sup{|g(x)| : x ∈ Z} and

AZ(X) = {f ∈ A(X) : |f |Z ≤ 1}.

Then we can show, in the above notation, A† ∼= lim
→,V

AÛK (V ), where as before V ranges

over all strict affinoid neighborhoods of ÛK in X̂K if A,A are normal, X is reduced
and U is irreducible.
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3.2. The geometry of the family. — Let us resume the notations of the intro-
duction. We’ll briefly recall from [17] how the family of curves X −→ S in Section 2
is constructed. In this section we assume that P is empty.

As C is regular, C is a reduced divisor with simple normal crossings and each
singular point is k-rational we may find a deformation of C, X → S := Spf(W [[t]])

with the following properties
• X is defined over W
• the curve C is the base change of X by the map W [[t]]→ V sending t to π.
• Zariski locally X is smooth over W [[t]] or isomorphic to W [[t]]〈x, z〉/(xz − t).
Let X := Xrig −→ S := S rig as defined in Section 3.1. In this particular case

the general construction gives the following. Let R0 := W [[t]] and for each integer
n ≥ 1 let Rn := W [[t]]〈T 〉/(tn− pT ); it turns out that Rn is the p-adic completion of
W [t, T ]/(tn − pT ) and that we have natural maps
• Rn → V defined by t→ π, T → πn/p for all n >[K : K0]
and
• Rn+1 → Rn over W [[t]] defined by T → tT . Denote by Xn, X0 ×SpfR0

SpfRn.
Let, for n ≥ 1, Xn and Sn denote the generic fibers of the p-adic formal schemes

Xn and Spf(Rn) and let

X := lim
→,n

Xn and S := lim
→,n

Sn

The rest of this section will be devoted to understanding the rigid analytic structure
of the family X/S. As Sn := Spm(Rn ⊗K0) is defined by |t| ≤ |p|1/n, it follows that
Sn is the affinoid disk centered at 0 of radius |p|1/n and therefore S is isomorphic to
the open disk of radius 1 centered at 0.

In [7] (see also [9]) a one-dimensional wide open was defined to be a rigid space
which is isomorphic to the complement in a proper curve of a “discoid subdomain.” We
now define a wide open, in general, to be the rigid space associated to a complete, flat,
topologically finitely generated, semi-local ring over W (or over V ) (see §7 of [25]).
Residue classes of affinoids are wide opens. One can show ([11]) that such spaces have
a finite number of irreducible components. We suspect, when they are smooth, that
they have finite dimensional de Rham cohomology.

First, as X is a deformation of C, the ideal tOX + pOX of OX is an ideal of def-
inition for this formal scheme and the closed sub-scheme of X defined by this ideal
is isomorphic to C as schemes over k. Therefore, by Section 3.1 we have a reduction
map red: X → C, and we define the covering of X:

C := {red−1Z : Z is an irreducible component of C}.

This is an admissible open cover of X. If v is an irreducible component of C, we
denote by Uv ∈ C the corresponding open and if e is a singular point of C we let
Ae =red−1(e). We’ll see in Section 3.5 an interpretation of these notions in terms of
graphs.
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Moreover, if s ∈ S∗, then the restriction (i.e. base change) of C to the fiber Xs

is an admissible covering Cs of Xs described in Section 2.2 for s = π. For every v

irreducible component of C let us denote by

Zv := Uv −
⋃
w
w 6=v

Uw.

Then Zv is a rigid space over S such that all of its fibers are affinoids for all v. Let e
be a fixed singular point of C. Then we have

Lemma 3.16. — There are functions xe and xτ(e) on Ae = Aτ(e) such that xexτ(e) = t,
|xe(u)| → 1 as u approaches Za(e). Moreover, the map α → (xe(α), xτ(e)(α)) maps
Ae isomorphically to the open unit ball in A2

K0
, i.e. the rigid subspace of A2

K0
defined

by
{(x, z) : |x| < 1 and |z| < 1}.

Proof. — This follows easily from the fact that the singularities of X/S are given by
local equations of the form xz = t.

Let us recall that Y is the fiber of X/S above 0 ∈ S. Let L be a finite, non-trivial,
totally ramified extension of K0 and πL a uniformizer of L. Let also B := Spf(OL〈y〉)
denote the formal scheme whose generic fiber is the closed disk centered at 0 of radius
|πL|. If n > [L : K0] we have a natural morphism φ : B −→ Spf(Rn) −→ S induced
by the morphisms R0 −→ Rn −→ OL〈y〉 given by t → πLy and T → (πnL/p)y

n,
whose generic fiber induces B := BL ⊂ S. We denote by XB := Xn ×Spf(Rn) B,
which is independent of n > [L : K0]. Let us remark that by [25] 7.2.4, we have
(XB)rig = X ×S B which will be denoted XB .

Lemma 3.17. — In the notations above there is a natural isomorphism

ξL : C × A1
k −→ (XB)1 as schemes over A1

k

where let us recall, k is the residue field of K and if Z is a formal scheme over OL,
Z1 denotes the closed formal sub-scheme of Z of ideal πLOZ .

Proof. — The special fiber of the map φ defined above, φ1 : B1 = A1
k −→ S1 =

Spf(k[[t]]) is the constant map, induced by the map sending t to 0.
Then (XB)1 = (Y )1 × A1

k = C × A1
k, where let us recall Y is the fiber at 0 of

X −→ S .

Proposition 3.18. — Let L, πL, B, B be as in Lemma 3.17. Then, for every vertex v
of G there is an admissible wide-open strict neighborhood Wv of Zv,B := Zv ×S B in
Uv,B := Uv ×S B, and for every s ∈ B an isomorphism

αv,s := αL,v,s : Wv,s ×B ∼= Wv over B,

lifting the isomorphism
ξL : C

0

v × A1
k
∼= (Zv)1
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given by Lemma 3.17. We have denoted by Wv,s the fiber of Wv at s and by C
0

v the
complement of singular points of C in the component Cv corresponding to v.

Proof. — Let ZB,v denote the formal model of ZB,v in XB, which is the formal
spectrum of the ring of integral valued rigid functions on ZB,v. As the special fiber of
Zv,B with respect to the ideal generated by (t, πL) is the affine scheme C

0

v of finite type
over k, Zv,B is an affinoid over B. By Lemma 3.17 we have (ZB,v)1

∼= C
0

v × A1
k. We

also have an isomorphism βv,s : (Zv,s×B)1
∼= C

0

v×A1
k, where Zv,s is the fiber of ZB,v

at s ∈ B. Now using Theorem 3.7 the isomorphism between (ZB,v)1 and (Zv,s×B)1

lifts to an isomorphism over B of Z †B,v and (Zv,s ×B)†. From Proposition 3.14 and
Theorem 3.3 of [31] we deduce βv,s lifts to an isomorphism over B of strict affinoid
neighborhoods T of ZB,v in UB,v and Ts×B of Zv,s×B in Uv,s×B, over B, where Ts
denotes as usual the fiber of T at s. By Lemma 3.1, Ts has a canonical, p-adic formal
model Ts over OF (F being the residue field of s) with a morphism Ts −→ Xs which
induces the inclusion Ts ⊂ Uv,s ⊂ Xs. This morphism induces a morphism between
the special fiber T of Ts and C. (In fact this morphism identifies T with a certain
blow-up of the component Cv of C corresponding to v.) Let T v denote the component
of T isomorphic to Cv under this morphism.

Now, let T := Ts×̂B, then T rig ∼= Ts × B ∼= T . We define Wv to be the inverse
image under the reduction T

red−→ T of the component T v of T , i.e. Wv :=]T v[T .
Similarly, let Wv,s be the inverse image under the reduction Ts

red−→ T of T v, i.e.
Wv,s :=]T v[Ts . Then both Wv and Wv,s ×B are wide open spaces over B containing
Zv,B and contained in T ⊂ Uv,B , respectively Ts×B ⊂ Uv,s×B, which are isomorphic
under the restriction of the above isomorphism between T and Ts ×B.

We have the following very easy consequence of the proof of Proposition 3.18, which
we record for later use.

Lemma 3.19. — There are canonical, isomorphic formal models Wv,Wv,s ×B of the
wide opens Wv, Wv,s × B in Proposition 3.18, which are wide open enlargements of
Cv (and so of C). Moreover, there is a (non canonical) morphism of formal schemes
Wv −→ XB over B whose generic fiber is the inclusion Wv ⊂ XB and whose special
fiber is the morphism Cv ⊂ C.

Proof. — Let us consider the formal scheme Wv := T/Tv
i.e. the formal comple-

tion of the formal scheme T defined in the proof of Proposition 3.18 along the
closed sub-scheme T v. Then W rig

v
∼= Wv as rigid spaces over B. Let us remark that

Wv
∼= Wv,s × B, where Wv,s := Ts/Tv

is the formal completion of Ts along T v.
The composition T v ∼= Cv −→ C makes the formal schemes Wv and Wv,s wide open
enlargements of Cv and of C such that Wv

∼= Wv,s×B as formal schemes over B.
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Remark 3.20. — In the notations of Proposition 3.18 where now s = 0, the following
diagram commutes

Wv −→ XB
modπL−→ C × A1

k

β ↓ ↓
Wv,0 −→ YL

modπL−→ C.

Proof. — The commutativity of the diagram follows from the fact that if we denote
by ι0 : YL −→ XB the map induced by the the embedding of Y into X as its fiber
at 0, the following diagram commutes

XB −→ C × A1
k

ι0 ↑ ↓
YL −→ C.

Remark 3.21. — Let B be as in Proposition 3.18. Then we have,

HB
∼= H1

dR(XB/B,
(
EX× |XB

)
(log Y )).

3.3. Isocrystals. — Our main references for F-isocrystals are [32], [17], [16], [1]
and [34]. Let us briefly recall the definitions, in the cases in which we need them.
Suppose that Z is a scheme over k and fix L a finite, totally ramified (possibly trivial)
extension of K0 and let OL denote its ring of integers. Let us recall that if L = K0,
OL = W and if L = K then OL = V .

We begin by recalling the category of OL-enlargements of Z, on which the F-iso-
crystals take their values. First if T is a p-adic formal scheme over OL we denote by
T0 the reduced closed sub-scheme of the closed sub-scheme of T defined by the ideal
pOT .

Definition 3.22. — A OL-enlargement of Z is a pair (T , zT ) consisting of a flat
p-adic formal OL-scheme T (i.e., each open affine is isomorphic to SpfR where R is
a quotient of OL〈X1, . . . , Xn〉 for some n) together with a OL-morphism zT : T0 −→
Z. A morphism of OL-enlargements (T ′, zT ′) −→ (T , zT ) is an OL-morphism
g : T ′ −→ T such that zT ◦ g0 = zT ′ .

Let, more generally, T be a locally noethering formal scheme over OL. We de-
note by T0 the reduced sub-scheme of the closed sub-scheme defined by an ideal of
definition of T . Let as above Z be a scheme over k.

Definition 3.23. — By a wide open OL-enlargement of Z, we mean a pair (T , zT )

where T is a formal scheme such that the affine open sets are isomorphic to SpfR
where R is a quotient of OL〈X1, . . . , Xm〉[[V1, . . . , Vn]] for some m and n and zY :

T0 −→ Z is a morphism of OL-schemes. The morphism of wide open enlargements
is defined as in Definition 3.22.
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As in Section 3.1 one can attach a rigid analytic space over L, T rig, to a formal
OL-scheme as in the Definition 3.23. It satisfies the following universal property: if
T is an affine formal scheme, say T = SpfR, there is a unique pair (ιT ,T rig) which
is the final element in the category of pairs (h,X) where X is rigid space over OL
and h is a continuous OL-homomorphism from R into H0(X,OX). A morphism in
this category (X,h) → (Y, g) is a morphism f : X → Y such that h = f∗ ◦ g. See
Proposition 0.2.3 of [1] for a discussion of this when n = 0. The tubes of Berthelot
(see ibid.) are examples of these spaces.

Examples i) Let X,S ,Xn be as in Section 3.2. Fix n ≥ 1. As t generates the
nilradical of Rn/pRn, we have that (Xn)0 is the closed sub-scheme of Xn defined by
the ideal generated by p and t. As a consequence we have a natural W -morphism
zn : (Xn)0 −→ C. Therefore the pairs (Xn, zn) are W -enlargements of C for all n ≥ 1

and the morphisms Xn+1 −→ Xn induce morphisms of W -enlargements of C.
ii) On the other hand (S , zS ) is a wide open enlargement of Spec(k), where

zS : S0 = Spec(W [[t]]/tW [[t]]) ∼= Spec(k).
iii) As π generates the nilradical of V/pV , C0 is the closed sub-scheme of C

corresponding to the ideal πOC . As a consequence we have a natural isomorphism
zC : C0

∼= C, which makes (C, zC) into a W -enlargement of C.
iv) We can make the fibered product of two wide open enlargements (S , s) and

(T , t) of Z, S ×̂T . It equals (U, u) where U is the completion of S × T along
(s, t)∗∆(Z) and u is the composition

U0 = (s, t)∗∆(Z)→ S0 ×T0
π1−→ S0

s−→ Z.

The existence of this fibered product is the main reason we consider wide open en-
largements.

Definition 3.24. — An isocrystal E on Z/OL is the following set of data:
(i) For every OL-enlargement (T , zT ) of Z a coherent sheaf of L⊗OL OT -modules

E(T ,zT ). In general and if there is no ambiguity this module will be denoted by ET .
(ii) For every OL-morphism of enlargements of Z, g : (T ′, zT ′) −→ (T , zT ) an

isomorphism of L ⊗OL OT -modules: θg : g∗ET −→ ET ′ . The collection of isomor-
phisms {θg} is required to satisfy the cocycle condition.

A morphism of isocrystals α : E ′ −→ E is a collection of homomorphisms
αT : E ′T −→ ET compatible with the isomorphisms θg, for all g.

For example, there is a natural isocrystal on Z/W denoted OZ/K0
whose value on

an enlargement (T , zT ) is OT ⊗W K0. We call a direct sum of such isocrystals a free
isocrystal on Z/W . Because every enlargement of Spec k factors through SpfW , every
isocrystal on a point is free.

Because the rigid space attached to a wide open enlargement may be admissibly
covered by the rigid spaces attached to enlargements, the cocycle condition allows
us to evaluate an isocrystal on a wide open enlargements (T , zT ) to get a coherent
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sheaf E(T ,zT ) on T rig. (See Remark 2.3.4 of [1] for a discussion of this in the case of
tubes.)

We’ll now define F-isocrystals.

Definition 3.25. — An F-isocrystal on Z/W is an isocrystal E on Z/W together with
an isomorphism of isocrystals F : F

∗
E −→ E .

Let us recall what F
∗
means (see [32]). First we will recall a familiar notation, if

M −→ Spf(W ) is a formal scheme and τ : W −→ W is an automorphism we define
α(τ) : Mτ −→M by the Cartesian diagram

Mτ α(τ)−→ M

↓ ↓
Spf(W )

τ−→ Spf(W ).

where we also use τ to denote the corresponding endomorphism of SpecW . If f :

M −→M ′ is a morphism of formal schemes over Spf(W ) we also define fτ : Mτ −→
(M ′)τ by functoriality.

Let now σ : W −→ W be the Frobenius automorphism and F : Z −→ Zσ be the
absolute Frobenius. For every enlargement (T , zT ) of Z, (T , F◦zT ) is an enlargement
of Zσ and (T σ−1

, (F ◦ zT )σ
−1

) is again an enlargement of Z. Then F
∗
(E ) is the

isocrystal on Z whose value on (T , zT ) is α(σ)∗E(T σ−1 ,(F◦zT )σ−1 ).

Remark 3.26. — (a) Clearly the map of sections, a⊗α→ aασ, defines an F -isocrystal
structure on OZ/K0

.
(b) If f : U → Z is a morphism of schemes over k and E is an F -isocrystal on

Z/W , there is a natural F -isocrystal on U/W , f∗E , whose value on an enlargement
(T , zT ) is E(T ,f◦zT ).

(c) In [32] and [17] the object defined in Definition 5.4 is called “convergent isocrys-
tal” and the object defined in Definition 3.25 is called “convergent F-isocrystal”.

(d) In Section 2.1 we have used a filtered F-isocrystal E on Z. As we don’t need
to prove anything about the filtration in this paper we will not define this notion here.
For the appropriate definition see [17] or [24].

(e) Let E be an F-isocrystal on C/W . For each n ≥ 0, EXn can be seen as a
sheaf on the nilpotent site of Xn, or what is the same thing, as a K0 ⊗W OXn-module
with an integrable, convergent connection Dn. The F -structure gives, for each open
affine formal sub-scheme U of Xn with a lift of Frobenius φU, a horizontal Frobe-
nius Φn(φU) : φ∗Dn → Dn on Urig. Moreover the morphisms of W -enlargements
(Xn+1, zn+1) −→ (Xn, zn) induce isomorphisms θn : (EXn+1

, Dn+1) ∼= (En, Dn), there-
fore we obtain in the limit a coherent sheaf of OX-modules EX, together with an
integrable connection DX/K0

: EX −→ EX ⊗ Ω1
X/K0

, which is compatible with Frobenii
associated to local lifts of Frobenius. We will denote by the same symbol the composi-
tion

DX/K0
: EX −→ EX ⊗ Ω1

X/K0
−→ EX ⊗ Ω1

X/K0
(log Y ).
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We also get a relative connection by composing

DX/S : EX
DX/K0−→ EX ⊗ Ω1

X/K0
(log Y ) −→ EX ⊗ Ω1

X/S(log Y ).

If E = OZ/K0
, we will denote DX/K0

and DX/S by dX/K0
and dX/S respectively.

(f) EC , by the same arguments as above can be thought of as a coherent sheaf
of OCK -modules with a convergent, in the sense of [32], integrable connection D.
Moreover, the closed immersion g : C −→ X identifying C with the fiber at π of X and
which is a morphism of enlargements, induces an isomorphism θg : g∗EX ∼= EC . 2.2.)

Because every isocrystal on a point is free we have,

Proposition 3.27. — Let E be an isocrystal on C. Then (EX ,DX/K0
) has the property

that for every residue class M = red−1
X (x), with x ∈ C, of X, the OM -module with

connection (EX|M ,DX/K0
) has a basis of horizontal sections.

Lemma 2.2 of Section 2.2 follows.

3.4. Cohomology of an F -isocrystal. — We will recall here some constructions
from [1] and [34],[35] and [36] which will be used later.

3.4.1. — Let Z be a smooth, proper scheme of finite type over k and E an isocrystal
on Z/W . We will recall the definition of Hi

cris(Z/W,E ), for i ≥ 0.
We choose an affine open covering {Ui}1≤i≤s of Z, and for each Ui a closed immer-

sion into a smooth affine formal W -scheme Ti. For each subset J of {1, 2, . . . , s} we
denote by TJ the completion of the fiber product of the Tj ’s for j ∈ J along ∩j∈JUj .
For each J consider the de Rham complex H0(T rig

J ,ETJ ⊗ Ω•
T rig
J
/K0

) and connect

them by the Čech differentials to make a double complex. We define Hi
cris(Z/W,E )

to be the i-th cohomology group of this double complex. To show that this is in-
dependent of the choices of a covering {Ui}i and the formal schemes {Ti}i, we take
another pair of such {U ′k}1≤k≤t and closed immersions of the U ′k into smooth, affine
formal W -schemes T ′k. To compare the constructions for the two choices consider
the third, {U ′′i,k := Ui ×Z U ′k}i,k and T ′′i,k := Ti × T ′k. If, say J ⊂ {1, 2, . . . , s} and
K ⊂ {1, 2, . . . , t} we have smooth morphisms of formal W -schemes u : T ′′J×K −→ TJ
and v : T ′′J×K −→ T ′K and by the Poincaré lemma recorded in Section 3.1, the pairs of
de Rham complexes of sheaves DR(TJ ,E )• := ETJ ⊗Ω•T rig/K0

, and urig
∗ DR(T ′′J×K ,E )•

and DR(T ′K ,E )• := ET ′
K
⊗ Ω•(T ′

K
)rig/K0

and vrig
∗ DR(T ′′J×K ,E )• are quasi-isomorphic

and so finally the cohomology of the double complexes constructed from them are all
quasi-isomorphic.

3.4.2. — We will now recall the definition of log crystalline cohomology over a (cer-
tain) base. Let S × denote the formal scheme Spf(W [[t]]) with the log structure given
by the smooth divisor t = 0. Let Spec(k)× be the scheme Spec(k) with the inverse
image log structure under the map induced by the natural morphism W [[t]] −→ k

sending t to 0. Let Z× be a fine, log smooth, log proper scheme over Spec(k)×, which
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we’ll regard as a log smooth scheme over S ×. Let E be an F-isocrystal on Z/W

(without log structure). We’ll recall the definition of Hi
cris(Z

×/S ×,E ). It is a sheaf
of OS-modules on S, where let us recall S = S rig. In fact Hi

cris(Z
×/Spec(k)×,E ) is

an F-isocrystal on Spec(k) and Hi
cris(Z

×/S ×,E ) is its evaluation on the wide open
enlargement S of Spec(k).

Let now {Ui}1≤i≤s be an affine covering of Z such that U×i is a log smooth, fine,
log affine scheme over Spec(k)×, where the log-structures are the induced ones. For
each 1 ≤ i ≤ s choose closed S ×-immersions U×i −→ Ti into log smooth, fine,
log affine formal schemes over S ×. For each J ⊂ {1, 2, . . . , s} let TJ denote the log-
formal scheme which is the log-completion along UJ := ∩j∈JU×j of the fibered product
over S × of the T×j ’s, j ∈ J . For every admissible affinoid B ⊂ S, let DR(T rig

J ×S
B,E )• denote the relative (to S×) log-de Rham complex of sheaves on T rig

J ×SB with
coefficients in ETJ . We define the log rigid (or analytic) cohomology Hi

cris(Z
×/S ×,E )

to be the sheaf on S associated to the pre-sheaf B −→ Hi((U•)Zar, red∗DR(T rig
• ×S

B,E )•).
It is shown in [34] and [35] (using Proposition 3.6) that the definition is indepen-

dent of choices.
Let us now assume that Z× has a log smooth, exact global lifting X× over S ×

and we write as usually X := Xrig, S := S rig.

Lemma 3.28. — We have a natural isomorphism of sheaves on S, Hi
cris(Z

×/S ×,E ) ∼=
Hi

dR(X×/S×,EX). Here EX is the evaluation of E at the enlargement X of Z, seen as
a coherent sheaf on X := Xrig with an integrable connection.

Proof. — Let {Ui}1≤i≤s be an affine open covering of Z, let Ti be the open log-formal
sub-schemes of X× whose underlying topological space is the same as Ui. For each
J ⊂ {1, 2, . . . , s} define UJ and TJ as above. We also define T ′J to be the open log
formal sub-scheme of X× with underlying topological space UJ . The diagonal induces
a log-smooth morphism ∆J : T ′J −→ TJ compatible with the embeddings of UJ and
for each admissible affinoid open B ⊂ S, we get quasi-isomorphisms for the relative,
log de Rham complexes of sheaves

red∗DR(T rig
J ×S B,E ) −→ red∗DR((T ′J)rig ×S B,E ).

The Čech complex of the latter complex computes Hi
dR(X×/S ×,EX)(B), as

Hi
dR(X/S,EX) is a coherent sheaf and B is affinoid. Therefore the association

B −→ Hi((U•)Zar, red∗DR(T rig
J ×S B,E ))

is already a coherent sheaf and we have an isomorphism Hi
dR(X×/S×,EX) ∼=

Hi
cris(Z

×/S ×,E ).

3.4.3. — In the assumptions of Lemma 3.28 and for i = 1 let us give an explicit de-
scription of the inverse of the isomorphism α : H1

cris(Z
×/S ×,E ) ∼= H1

dR(X×/S×,EX)

in that lemma in terms of hyper-cocycles. Let, as in the proof of Lemma 3.28,
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{Ui}1≤i≤s be an affine cover of Z and let B ⊂ S be an admissible affinoid open. An ele-
ment x of H1

dR(X×/S×,E )(B) is then represented by a 1-hypercocycle (ωi, fij) where
ωi ∈ H0((T ′i )

rig×S B,ET ′
i
⊗Ω1

(T ′
i
)rig/S×) for 1 ≤ i ≤ s and fij ∈ H0((T ′ij)

rig×S B,EX)

for 1 ≤ i < j ≤ s such that ∇(ωi) = 0 for all 1 ≤ i ≤ s, ωi|(T ′
ij

)rig −ωj |(T ′
ij

)rig = ∇(fij)

and for all 1 ≤ i < j < k ≤ s we have fij |(T ′
ijk

)rig + fjk|(T ′
ijk

)rig − fik|(T ′
ijk

)rig = 0.
Let as in the proof of Lemma 3.28, for every 1 ≤ i ≤ s, Ti = T ′i and

Tij := (T ′i ×S× T
′
j)/Uij i.e. Tij is the formal completion of T ′i ×S× T ′j along Uij .

We have a natural commutative diagram

(T ′ij)
rig ∆−→ T rig

ij

↓ πi ↓
(T ′i )

rig = T rig
i

and a similar one replacing i by j. Here πi is induced by the natural projection
T ′i ×S× T

′
j −→ T ′i = Ti which factors naturally through the formal completion of

T ′i ×S× T
′
j along Uij .

Lemma 3.29. — In the notations above, for each 1 ≤ i < j ≤ s there is a unique
hij ∈ H0(T rig

ij ×S B,ETij ) such that
a) ∆∗(hij) = 0

and
b) π∗i (ωi|(T ′

ij
)rig)− π∗j (ωi|(T ′

ij
)rig) = ∇ij(hij). Here ∇ij is the connection on ETij .

Proof. — As ∆ is log-smooth we may apply Proposition 3.6. Namely, let
η := π∗i (ωi|(T ′

ij
)rig) − π∗j (ωi|(T ′

ij
)rig). Then ∇ij(η) = 0 and moreover the above

commutative diagram implies that ∆∗(η) = 0. Therefore, locally on T rig
ij , there exist

aij ’s sections of ETij such that ∇ij(aij) = η. As 0 = ∆∗(∇ij(aij)) = ∇(∆∗(aij)), aij
can be chosen such that ∆∗(aij) = 0. For example replace aij by aij − π∗1(∆∗(aij)).
The conditions ∇ij(aij) = η and ∆∗(aij) = 0 determine the aij ’s uniquely, so they
glue to give a section hij of ETij over T rig

ij satisfying the right properties.

Now back to our original problem: to explicitly describe the isomorphism
H1

dR(X×/S×,EX) −→ H1
cris(Z

×/S ×,E ). We have started with an element x of the
first group represented by the 1-hyper-cocycle (ωi, fij)(i,i<j). For each 1 ≤ i < j ≤ s

we determined the sections hij as in Lemma 3.29. Let us remark that for each i < j

we have the following calculation:

π∗i (ωi)− π∗j (ωj) = π∗i (ωi)− π∗j (ωi|(T ′
ij

)rig) + π∗j (ωi|(T ′
ij

)rig)− πj(ωj) = ∇ij(hij) + π∗j (∇(fij).

Moreover, for 1 ≤ i < j < k ≤ s the section hijk ∈ H0(T rig
ijk,ETijk) defined by

hijk := π∗ij(hij) + π∗jk(hjk) − π∗ik(hik) satisfies: ∆∗(hijk) = 0 and ∇ijk(hijk) = 0.
Therefore hijk = 0 and so finally (ωi, hij + πj(fij))(i,i<j) is a 1-hyper-cocycle for the
complex DR(T•,E )• whose image in H1

cris(Z
×/S ×,E ) is α−1(x).
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3.4.4. — In the notations and assumptions at §3.4.3 above let us assume that for each
1 ≤ i ≤ s we have a lifting of Frobenius on Ui, Fi : Ti −→ Ti compatible with the
lifting of Frobenius FS : S −→ S . FS is defined as the arithmetic Frobenius σ on
W and by FS (t) = tp. Since Ti is affine and log smooth such liftings Fi always exist.
Let us now assume that E is an F-isocrystal on Z/W . Then one defines a natural
homomorphism, Frobenius,

Φ : F ∗SH
i
cris(Z

×/S ×,E ) −→ Hi
cris(Z

×/S ×,E ),

which is independent of all the choices. Let i = 1 and assume that Z× has a log-
smooth global lifting X×/S ×. We’ll describe Φ on H1

dR(X×/S×,EX) under the iden-
tification α : H1

cris(Z
×/S ×,E ) ∼= H1

dR(X×/S×,EX). Let B ⊂ S be the affinoid
disk centered at 0 of radius r and let B′ = FS (B) ⊂ S be the affinoid of radius
rp. x ∈ H1

dR(X×/S×,EX)(B′), then we’d like to express Φ(x) := α(Φ(α−1(x))) ∈
H1

dR(X×/S×,EX)(B). Suppose we fix an affine cover {Ui}1≤i≤s of Z and use all the
notations at b) above. If x is represented by the hypercocycle (ωi, fij)(i,i<j) cor-
responding to B′ let hij be as in Lemma 3.29. Then Φ(x) is represented by the
hypercocycle

((F rig
i )∗(ωi), (F

rig
j )∗(fij) + ∆∗(F rig

ij )∗(hij))

corresponding to B.

3.4.5. — Finally, let us recall the notations of Section 3.2. We have the morphism of
formal schemes f : X −→ S and we denote by Y = X ×S Spf(W ), where the map
Spf(W ) −→ S is induced by the W -algebra homomorphism W [[t]] −→ W sending t
to 0. In other words Y is the fiber of f at the point “0” of S . Given the description of
f in Section 3.2, Y is a divisor of X with normal crossings (the irreducible components
of Y are smooth and the singular points defined over W ). Let us fix on X the log
structure corresponding to the divisor Y and denote this log formal W -scheme X×.
Let us endow Y with the pull-back log structure and denote it Y ×. Let us remark
that C is a divisor with normal crossings of C, endow C with the log structure defined
by this divisor and by C

×
the log scheme C with the inverse image log structure.

Then: f is a log smooth morphism X× −→ S ×, which is a log smooth lifting of C
×

over S × as at 2) b) above. Finally Y × is a log smooth lifting of C
×

over Spf(W )×

(this last log structure is given by the smooth divisor p = 0). Therefore, 1) and 2)
above imply that if E is an F-isocrystal on Z then we have natural isomorphisms

H1
cris(Z

×/Spec(k)×,E ) ∼= H1
cris(Y

×/Spf(W )×,E ) ∼= H1
dR(Y ×/K0,EY ).

and

H1
cris(Z

×/S ×,E ) ∼= H1
dR(X×/S×,EX) = H1

dR(X/S,EX(log(Y )).

Moreover if we give ourselves local liftings of Frobenius as in 2) c) above all the
isomorphisms are compatible with the Frobenii.
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3.5. Hypercocycles and Mayer-Vietoris exact sequences. — In this section
we collect a number of technical results showing how to relate Mayer-Vietoris exact
sequences and representatives of de Rham cohomology classes for different admissible
coverings.

3.5.1. 3.5.1Coverings and Graphs. — Let T be a rigid analytic space over K and let
D = {Uα}α∈I be an admissible covering of T . We will suppose that all our coverings
satisfy the assumption:

(∗) Uα ∩ Uβ ∩ Uγ is void for all α 6= β 6= γ 6= α ∈ I.
We attach to D a graph G = G(D) whose vertices v(G) are the elements of D

and whose oriented edges ε(G) correspond to triples e = (U, V,W ) where U 6= V ∈ D
and Ae := W is a connected component of U ∩ V . If v is a vertex of G we denote
Uv the element of D corresponding to it and also if e = (U, V,W ) is an edge then its
origin a(e) is U and its end b(e) is V . If U ∩ V is connected we denote the edge e by
[a(e), b(e)].

We denote τ : ε(G) −→ ε(G) by τ(e = (U, V,W )) = (V,U,W ) and we choose once
for all a system of representatives e(G) of the quotient set ε(G)/τ .

Let G be a graph. A local system F on G is the following collection of data:
a) for each vertex v ∈ v(G), an abelian group Fv,
b) for each oriented edge e ∈ e(G), an abelian group Fe,
c) if e ∈ e(G), group homomorphisms ϕa(e) : Fa(e) −→ Fe and ϕb(e) : Fb(e) −→ Fe.
To a local system F on the graph G we associate the complex of abelian groups

C•(G,F ) : C0(G,F ) = ⊕v∈v(G)Fv
d−→ C1(G,F ) = ⊕e∈e(G)Fe,

where (d(xv)v∈v(G))e := ϕa(e)(xa(e)) − ϕb(e)(xb(e)) for e ∈ e(G). Let Hi
Betti(G,F ) :=

Hi(C•(G,F )) for i ≥ 0.
Let us now suppose that the graph G is the graph associated to an admissible cover

D of the rigid space T and that (F ,∇) is a pair consisting of a coherent sheaf F of
OT -modules with an integrable connection ∇, then we have a natural family of local
systems Fj on G and Betti cohomology groups Hi,j(D , (F ,∇)), for i ≥ 0, j ≥ 0, as
follows:

a) for v ∈ v(G) set Fj,v := Hj
dR(Uv,F |Uv ),

b) for e ∈ e(G) set Fj,e := Hj
dR(Ae,F |Ae),

c) for e ∈ e(G) ϕa(e), ϕb(e) are pull-backs induced by the open immersions
Ae ⊂ Ua(e) and Ae ⊂ Ub(e).

Then Hi,j(D , (F ,∇)) := Hi
Betti(G,Fj).

Remark 3.30. — We have the following variant of the definitions above. Suppose that
T × := (T ,M) is a log formal scheme over Spf(V )× such that T rig ∼= T as rigid
spaces over K. Suppose that (G ,∇log) is a pair consisting of a coherent sheaf G of
OT -modules and a logarithmic integrable connection ∇log on it. Then one denotes
F = G rig,∇ = (∇log)rig and one has, for each i ≥ 0 the local systems Fi,log obtained
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by taking the logarithmic de Rham cohomology with coefficients in (F ,∇) and the
Betti cohomology groups Hi,j(D ,F ) := Hi

Betti(G,Fi,log).

Remark 3.31. — If the assumption (∗) is not satisfied by the covering D but the cov-
ering is finite (i.e. the index set I is finite) one may attach to it a finite dimensional
simplex, local systems on the simplex and the corresponding Betti cohomology groups.

3.5.2. Hypercocycles and Mayer-Vietoris exact sequences attached to a covering. —
Let T be a rigid analytic space over K and D := {Uα}α∈I an admissible covering
of it which satisfies the assumption (∗) above. Let (F ,∇) be a pair consisting of a
coherent sheaf F of OT -modules which is locally free and an integrable connection ∇
on it.

Consider the diagram of rigid spaces and maps:

Tv(G) = qv∈v(G)Uv
f−→ T

g←− Te(G) := qe∈e(G)Ae.

We have then an exact sequence of sheaves on T :

0 −→ F −→ f∗f
∗F −→ g∗g

∗F −→ 0.

If for v ∈ v(G) and e ∈ e(G) we denote by F v := F |Uv respectively F e := F |Ae
then the exact sequence above becomes

0 −→ F −→ f∗
(
⊕v∈v(G)F

v
)
−→ g∗

(
⊕e∈e(G)F

e
)
−→ 0.

This induces an exact sequence of de Rham complexes and therefore an exact sequence
of cohomology groups (the Mayer-Vietoris exact sequence):

0 −→ H0
dR(T,F ) −→ ⊕v∈v(G)H

0
dR(Uv,F ) −→ ⊕e∈e(G)H

0
dR(Ae,F ) −→

−→ H1
dR(T,F ) −→ ⊕v∈v(G)H

1
dR(Uv,F ) −→ ⊕e∈e(G)H

1
dR(Ae,F ) −→ · · ·

Using the graph and Betti cohomology notations in §3.5.1 we can re-write the Mayer-
Vietoris exact sequence as the following short exact sequence

0 −→ H1,0(D ,F ) −→ H1
dR(T,F ) −→ H0,1(D ,F ) −→ 0.

Let us keep the notations T,D , (F ,∇) as at the beginning of this section. In order
to explicitly calculate the cohomology groups Hi

dR(T,F ) we use the following double
complex:

⊕e∈e(G)Fe
∇−→ ⊕e∈e(G)Fe ⊗ Ω1

Ae

∇−→ ⊕e∈e(G)Fe ⊗ Ω2
Ae

∇−→
C•,• : ↑ δ ↑ δ ↑ δ

⊕v∈v(G)Fv
∇−→ ⊕v∈v(G)Fv ⊗ Ω1

Uv

∇−→ ⊕v∈v(G)Fv ⊗ Ω2
Uv

∇−→

where Fe, respectively Fv denote H0(Ae,F ) respectively H0(Uv,F ) for e ∈ e(G)

and v ∈ v(G). Moreover the Čech differentials δ are defined by: δ((xv)v∈v(G))e =

xa(e)|Ae − xb(e)|Ae , for e ∈ e(G). The single complex

K•(T, (F ,∇)) : K0 D0−→ K1 D1−→ K2 D2−→ · · ·
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attached to the double complex C•,• is defined by: K0 := ⊕v∈v(G)Fv, K1 :=(
⊕v∈v(G)Fv⊗Ω1

Uv

)
⊕
(
⊕e∈e(G)Fe

)
andK2 :=

(
⊕v∈v(G)Fv⊗Ω2

Uv

)
⊕
(
⊕e∈e(G)Fe⊗Ω1

Ae

)
etc. and

D0((xv)v∈v(G) =
(
(∇(xv))v∈v(G), (xa(e)|Ae − xb(e)|Ae)e∈e(G)

)
D1

(
(ωv)v∈v(G), (fe)e∈e(G)

)
=
(
(∇(ωv))v∈v(G), (ωa(e)|Ae − ωb(e)|Ae −∇(fe))e∈e(G)

)
D2

(
(ηv)v∈v(G), (ωe)e∈e(G)

)
=
(
(∇(ηv))v∈v(G), (ηa(e)|Ae − ηb(e)|Ae −∇(ωe))e∈e(G)

)
.

Then we have Hi
dR(T,F ) = Ker(Di)/Im(Di−1), for i ≥ 0, where we set K−1 = 0,

D−1 = 0. In particular, cohomology classes in H1
dR(T,F ) are represented by 1-hyper-

cocycles, i.e. families of elements
(
(ωv)v∈v(G), (fe)e∈e(G)

)
where

ωv ∈ Fv⊗Ω1
Uv

, fv ∈ Fe, for v ∈ v(G), e ∈ e(G), which satisfy ∇(ωv) = 0 for all v and
ωa(e)|Ae − ωb(e)|Ae = ∇(fe) for all e.

Remark 3.32. — With the notations above, let us assume that the open sets Uα and
Ae are acyclic for coherent sheaf cohomology. Then the maps f : H1,0(D ,F ) −→
H1
dR(Z,F ) and g : H1

dR(Z,F ) −→ H0,1(D ,F ) defining the Mayer-Vietoris sequence
are given in terms of hypercocycles as follows.

a) If the cocycle (xe)e∈e(G) ∈ ⊕e∈e(G)H
0
dR(Ae,F ) represents the cohomology class

x ∈ H1,0(D ,F ), let us remark that by the assumptions above the xe ∈ Fe such that
∇(xe) = 0. Therefore f(x) is the class of the 1-hypercocycle

(
(0v)v∈v(G), (xe)e∈e(G)

)
.

b) If
(
(ωv)v∈v(G), (fe)e∈e(G)

)
is a 1-hypercocycle representing the class y in

H1
dR(Z,F ) then g(y) is the image of (ωv)v∈v(G) in the group ⊕v∈v(G)H

1
dR(Uv,F ),

which is actually in H0,1(D ,F ).

Remark 3.33. — We have variants of these constructions for the logarithmic situation
described in Remark 3.30. We need only replace the sheaves and modules of differen-
tials ΩiUv ,Ω

i
Ae

by the sheaves and modules of logarithmic differentials.

3.5.3. Examples of coverings in our setting
3.5.3.1. First example. — Let us now recall our geometric situation from §3.2. Let
red : X −→ C and for all s ∈ S−{0}, reds : Xs = X×S s −→ C denote the reduction
maps. Let C (and for every s ∈ S−{0}, Cs) denote the admissible covering of X (re-
spectively of Xs) defined by C := {red−1(Z) where Z is an irreducible component of C}
(respectively Cs := {red−1

s (Z) where Z is an irreducible component of C}). Then we
have G := G(C ) = G(Cs) for all s ∈ S − {0}. We fix once for all a choice of a system
of representatives e(G) of ε(G)/τ , see §3.5.1. Let us also remark that as C is a semi-
stable curve C and Cs satisfy the condition (∗) of section §3.5.1. We use the following
notations: for all v ∈ v(G) we denote by Uv ⊂ X the corresponding open set of C
and for every s by Uv,s = Uv ×S s = Uv ∩ Xs ⊂ Xs the respective open set of Cs.
Similarly, if e ∈ ε(G) we denote by Ae = Ua(e)∩Ub(e) and for every s ∈ S−{0} we let
Ae,s := Ae ×S s = Ae ∩Xs = Ua(e),s ∩Ub(e),s. We’d like to recall that these coverings
have already been defined in Section 3.2 and although the language of graphs was not
used there, the definitions are the same.
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3.5.3.2. Second example. — We keep the notations of section §3.5.3.1. For each v ∈
v(G) let as in section §3.2,

Zv := Uv −
⋃
w
w 6=v

Uw.

Now, for each v ∈ v(G) consider a strict neighborhood Tv of Zv in Uv, which is
wide open and such that Tv ∩ Tw = φ if v 6= w. Let us recall that Tv is a “strict
neighborhood” of Zv in Uv means that the pair {Tv, Uv − Zv} is an admissible cover
of Uv.

Such T ’s exist and let C ′ := {Tv, Ae}v,e where v ranges over v(G) and e over e(G).
Then C ′ is an admissible covering of X by wide open sets. This cover is a refinement
of C and is appropriate for computing de Rham cohomology as the open sets are
acyclic for coherent sheaf cohomology. We denote G(C ′) by G′ and let us remark
that: v(G′) = v(G) q e(G) and ε(G′) = ε(G) q ε(G). We choose e(G′) = e(G) q e(G)

as follows. If e ∈ e(G) then (a(e), e) and (e, b(e)) belong to e(G′).
Moreover, as in section §3.5.3.1 if s ∈ S (here s may be 0) we denote by C ′s :=

{Tv,s, Ae,s}v,e, where Tv,s := Tv ×S s = Tv ∩ Xs for all v ∈ v(G). Then C ′s is an
admissible covering of Xs and G(Cs) = G(C ) = G′.

3.5.3.3. Third example. — Let L be a totally ramified, non-trivial extension of K,
as in section §3.2 and let B = BL ⊂ S denote the affinoid disk of centre 0 and radius
|πL| as in Lemma 3.17. By Proposition 3.18, for every v ∈ v(G) there exists a wide
open neighborhood Wv of Zv,B := Zv ×S B in Uv,B := Uv ×S B and for all s ∈ S an
isomorphism over B:

αv,s : Wv
∼= Wv,s ×B.

Set C ′′B := {Wv, Ae,B}v,e, where v and e run over v(G) and e(G) respectively and
Ae,B := Ae ×S B. Then C ′′B is an admissible covering of XB and if s ∈ S, C ′′s :=

{Wv,s, Ae,s}v,e is an admissible covering of Xs. Then G(C ′′B) = G(C ′′s ) = G′.

3.5.4. Changing coverings. — Let us fix E a W -isocrystal on C. Let us also fix a
closed point s ∈ S − {0} defined over the finite extension F of K0. Then one can see
s as a W -algebra homomorphism W [[t]] −→ OF . If we denote by Xs := X ×S s and
by Xs := X×Spf(W [[t]] s, then Xs is the generic fiber of Xs. We denote by (Es, Ds) the
evaluation of E at the enlargement Xs of C, seen as a coherent sheaf Es on Xs with
an integrable connection Ds. Fix the coverings Cs := {Uv,s}v as in section §3.5.3.1
and C ′s := {Tv,s, Ae,s}v,e as in section §3.5.3.2 of graphs G and G′ respectively. To
simplify, for the next lemma we omit s from the notation i.e. we will use Uv, Ae, Tv to
denote Uv,s, Ae,s, Tv,s. For i ≥ 0, let Ei,E ′i denote the local systems on G respectively
G′ associated as in section §3.5.1 to (Es, Ds). We define the maps of abelian groups

f0
i : C0(G,Ei) −→ C0(G′,E ′i )

f1
i : C1(G,Ei) −→ C1(G′,E ′i )
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by f0
i (((xv)v) =

(
(xv|Tv )v, (

xa(e)|Ae + xb(e)|Ae
2

)e
)
and f1

i ((ye)e) =
(ye|Ta(e)∩Ae

2
,
ye|Tb(e)∩Ae

2

)
e
,

where everywhere v and e run over v(G) and respectively e(G).

Lemma 3.34. — a) f0
i , f

1
i define morphisms of complexes f•i : C•(G,Ei) −→

C•(G′,E ′i ).
b) For i = 0, 1 f•i induce isomorphisms H1,0(Cs,Es) ∼= H1,0(C ′s,Es) and

H0,1(Cs,Es) ∼= H0,1(C ′s,Es) (the notations being as in section §3.5.1).
c) If

(
(ωv)v, (fe)e

)
is a 1-hypercocycle for the complex Es ⊗OXs Ω•Xs/F corre-

sponding to the covering Cs, then the co-chain
(
(ωv|Tv )v,

(ωa(e)|Ae + ωb(e)|Ae
2

)
e
,( fe|Ta(e)∩Ae

2 ,
fe|Tb(e)∩Ae

2

)
e

)
is a 1-hypercocycle for the same complex associated to the

covering C ′s, which represents the same cohomology class in H1
dR(Xs/F,Es).

d) The isomorphisms at b) make the following diagram of Mayer-Vietoris sequences
commute.

0 −→ H1,0(Cs,Es) −→ H1
dR(Xs/F,Es) −→ H0,1(Cs,Es) −→ 0

↓ || ↓
0 −→ H1,0(C ′s,Es) −→ H1

dR(Xs/F,Es) −→ H0,1(C ′s,Es) −→ 0

Proof. — We’ll only sketch the prove of the fact that the morphism of complexes f•1
induces an isomorphism f : H0,1(Cs,Es) ∼= H0,1(C ′s,Es). The main observation is that
as Uv,Tv,Ae are wide opens, they are acyclic for coherent sheaf cohomology and so
Hi
dR(Uv,Es|Uv ), Hi

dR(Tv,Es|Tv ), Hi
dR(Ae,Es|Ae) can be calculated as hypercohomol-

ogy of the de Rham complex relative to the admissible covering {Uv} respectively
{Tv}, respectively {Ae}. Moreover the first groups could also be calculated relative
to the admissible covering {Tv, Uv − Tv = qe∈e(G),v=a(e),v=b(e)Ae} of Uv.

Let us show the injectivity of f . Suppose that (xv)v ∈ C0(G,E1) = ⊕vH1
dR(Uv,Es|Uv )

is such that
a) d((xv)v) = 0

and
b) f((xv)v) = 0 in C0(G′,E ′1).
Let ωv ∈ H0(Uv,Es ⊗ Ω1

Uv/F
) be a representative of xv ∈ H1

dR(Uv,Es|Uv ). Con-
dition a) implies that for all e ∈ e(G) there is a section ue ∈ H0(Ae,Es|Ae) such
that ωa(e)|Ae − ωb(e)|Ae = D(ue). From condition b) we deduce there exist sections
uv ∈ H0(Tv,Es), we ∈ H0(Ae,Es) such that Ds(uv) = ωv|Tv , Ds(we) = ωa(e)|Ae +

ωb(e)|Ae , for all v ∈ v(G), e ∈ e(G). This implies that the hypercochain(
Ds(uv), Ds((we + ue)/2), Ds((ue − we)/2), (uv|Ae∩Ta(e) − ((we + ue)/2)|Ae∩Ta(e)),

(ue − we)/2)|Ae∩Ta(e) − uv|Ae∩Ta(e)
)
e∈e(G),e=a(e),e=b(e)

is a hypercocycle for the covering {Tv,qe∈e(G),v=a(e),v=b(e)Ae} of Uv representing the
class xv. Therefore xv = 0 for all v ∈ v(G).
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For the surjectivity of f one makes similar calculations which we leave, together
with the rest of the proof, to the reader.

Let us now fix L,B as in section §3.5.3.3. Let us also fix an isocrystal E on C and
denote EB its evaluation on the enlargement XB (for notations see the section §3.2).
Let us recall (see ibid.) that we have an absolute connection, DB and a relative one
DXB/B on EB . For i ≥ 0 let us denote by Eiabs (respectively E

i
rel) the local system on

G′ defined by:
a) if v ∈ v(G) then Eiabs;v := Hi

dR(Wv/L,EB |Wv
(log(Y ∩Wv))) and if e ∈ e(G)

then Eiabs;e := Hi
dR(Ae,B/L,EB |Ae,B (log(Y ∩Ae,B))),

b) if e ∈ e(G) then Eiabs;a(e),e := Hi
dR(Wa(e) ∩Ae,B/L,EB(log(Y ∩Wa(e) ∩Ae,B)))

and Eabs;e,b(e) := Hi
dR(Wb(e) ∩Ae,B/L,EB(log(Y ∩Wb(e) ∩Ae,B))).

c) the maps are induced by the obvious restrictions.
We have similar definitions, using relative de Rham cohomology over B, for the

local system Eirel.
We denote the the cohomology groups Hj,i(C ′′B , E∗) := Hj

Betti(G
′, Ei∗), for

∗ ∈ {abs, rel} and remark that Hi,j(C ′′B , Erel) are OB-modules.

Proposition 3.35. — a) Hi,j(C ′′B , Erel) are free OB-modules of finite rank for all 0 ≤
i, j ≤ 1, i 6= j. Moreover if s ∈ B then we have Hi,j(C ′′B , Erel) ∼= Hi,j(C ′′s ,Es)⊗L OB
for i, j as above.

b) Let us denote by ∇i,j the natural connection over K0 of the modules
Hi,j(C ′′B , Erel) whose space of horizontal sections is Hi,j(C ′′0 ,E0) for 0 ≤ i, j ≤ 1,
i 6= j. Then for every s ∈ B − {0} we have parallel transport isomorphisms
Hi,j(Cs,Es) ∼= Hi,j(C ′′s ,Es)

∼= Hi,j(C ′′0 ,E0)⊗K0
Fs, where Fs is the residue field of s

and i, j are as above.
c) The natural morphisms in the “relative Mayer-Vietoris” exact sequence

0 −→ H1,0(C ′′B , Erel) −→ H1
dR(XB/B,EB(log(Y ))) −→ H1,0(C ′′B , Erel) −→ 0

are horizontal. Here the connection ∇B on the HB = H1
dR(XB/B,EB(log(Y ))) is the

Gauss-Manin connection.

Proof. — a) Fix s ∈ B. Let us recall from Lemma 3.19 that the rigid spaces Wv,Wv,s

have canonical formal models Wv,Wv,s with an isomorphism Wv
∼= Wv,s × B and

natural morphisms
Cv −→ Wv −→ XB

|| ∪ ∪
Cv −→ Wv,s −→ Xs

The first vertical maps are closed immersions and the last two vertical maps are
the natural inclusions into Wv and XB of their fibers at s. Thus Wv and Wv,s are
wide open enlargements of C. As E is a W -isocrystal on C, we may evaluate it at
Wv and Wv,s to obtain pairs (Ev, Dv) and (Es, Ds) consisting of coherent sheaves of
OWv

-modules, respectively OWv,s
-modules, with convergent integrable connections.
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From the diagram above and its image under the functor “rig” we obtain: (Ev, Dv) ∼=
(EB , DB)|Wv

and (Es, Ds) ∼= (EXs , DXs)|Wv,s
.

Moreover, if we denote by β : Wv −→ Wv,s the natural projection, the commutative
diagram in Remark 3.20 implies that β∗(Es, Ds) ∼= (Ev, Dv). Thus for all connected
affinoid B′ ⊂ B we have Hi

dR(Wv/B,Ev)(B′) ∼= Hi
dR(Wv,s,Es) ⊗L OB′ for i = 0, 1.

Since for all e ∈ e(G) Ae,B is contained in a residue class, Ee := EB |Ae,B has a
basis of horizontal sections for the absolute connection DB . Hence similarly, for all
connected affinoid B′ ⊂ B we have Hi

dR(Ae,B/B,Ee)(B′) ∼= Hi
dR(Ae,s,Es)⊗ OB′ , for

i = 0, 1. Finally as Ae,B ∩Wa(e) and Ae,B ∩Wb(e) are contained in Ae,B the same
result holds for the cohomology of these spaces with values in Ee. We deduce that
Hi,j(C ′′B , Erel) ∼= Hi,j(C ′′s ,Es)⊗ OB for 0 ≤ i, j ≤ 1, i 6= j.

b) is now clear and in order to prove c) let us first recall the definition of the
Gauss-Manin connection in our setting.

We have a natural exact sequence of de Rham complexes of sheaves on XB

0 −→ f∗(Ω1
B/L(log 0)⊗ ΩXB/B(log Y )•−1 ⊗ EB −→

Ω•XB/K0
(log Y )⊗ EB −→ Ω•XB/B(log Y )⊗ EB −→ 0

where we have denoted f : XB −→ B the structure morphism. Then the Gauss-Manin
connection

∇B : H1
dR(XB/B,EB(log(Y ))) −→ H1

dR(XB/B,EB(log(Y )))⊗ Ω1
B/L(log 0)

is the connecting homomorphism in the long exact sequence for hypercohomology.
Let us calculate the connection explicitly in terms of hypercocycles. For this

let t denote a parameter of B at 0 and let x ∈ H1(dR)(XB/B,EB(log(Y )))(B).
Let us suppose that x is represented by the following hypercocycle for the cov-
ering C ′′B :

(
(ωv)v, (ωe)e, (fe, fe)e

)
, where v runs over v(G) and e over e(G). Here

ωv ∈ H0(Wv,ΩWv/B(logWv,0) ⊗ EB), ωe ∈ H0(Ae,B ,ΩAe,B/B(logAe,0) ⊗ EB),
fe ∈ H0(Ae,B ∩Wa(e),EB) and fe ∈ H0(Ae,B ∩Wb(e),EB) satisfying the relations:

a) DXB/B(ωv) = DXB/B(ωe) = 0 for all v, e.
b) ωa(e)|Wa(e)∩Ae,B − ωe|Wa(e)∩Ae.B = DXB/B(fe) and

ωe|Wb(e)∩Ae,B − ωb(e)|Wb(e)∩Ae.B = DXB/B(fe) for all e.
Now we choose lifts of ωv and ωe to absolute forms, i.e. we choose

ω̃v ∈ H0(Wv,Ω
1
Wv/K0

(logWv,0)⊗ EB) and respectively ω̃e ∈ H0(Ae,B ,Ω
1
Ae/K0

(log(Ae,0)⊗ EB)
which project to ωv and respectively ωe and define the sections
ηv ∈ H0(Wv,Ω

1
Wv/B

(logWv,0) ⊗ EB), ηe ∈ H0(Ae,B ,Ω
1
Ae,B/B

(logAe,0) ⊗ EB),
ge ∈ H0(Wa(e) ∩Ae,B ,EB), ge ∈ H0(Wb(e) ∩Ae,B ,EB) by the relations.

i) DB(ω̃v) = ηv ∧ dy/y, DB(ω̃e) = ηe ∧ dy/y for all v, e. Here y is a parameter at 0

on B.
ii) ω̃a(e)|Wa(e)∩Ae,B − ω̃e|Wa(e)∩Ae,B −DB(fe) = gedy/y for all e.
iii) ω̃e|Wb(e)∩Ae,B − ω̃b(e)|Wb(e)∩Ae,B −DB(fe) = gedy/y for all e.
Then the hyper-cochain

(
(ηv)v, (ηe)e, (ge, ge)e

)
is a hypercocycle and its cohomol-

ogy class ⊗dy/y represents ∇B(x).
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Using this the proof of c) is a simple calculation which we leave to the reader.

We have the following easy consequence of Proposition 3.35.

Lemma 3.36. — Suppose we have two choices {Wv}v∈v(G) and {W ′v}v∈v(G) as in
Proposition 3.18. Let C := {Wv, Ae,B}v,e and C ′ := {W ′v, Ae,B}v,e, where v, e run
over v(G) and respectively e(G), be the corresponding admissible covers of XB. Then
we have natural isomorphisms of OB-modules:

Hi,j(C , Erel) ∼= Hi,j(C ′, Erel) for 0 ≤ i, j ≤ 1, i 6= j.

Proof. — Let 0 6= s ∈ B. Then we have natural isomorphisms of OB-modules.

Hi,j(C , Erel) ∼= Hi,j(Cs,Es)⊗ OB and Hi,j(C ′, Erel) ∼= Hi,j(C ′s,Es)⊗ OB ,

for 0 ≤ i, j ≤ 1, i 6= j.
Therefore it is enough to compare the groups Hi,j(Cs,Es) and Hi,j(C ′s,Es) and we

may suppose that W ′v,s ⊂Wv,s for all v (if not take the intersections).
For the rest of the proof, in order to ease the notations we’ll drop s from the

notations everywhere, i.e. rename E = Es,Wv = Wv,s,W
′
v = W ′v,s, Ae = Ae,s,

C = Cs,C ′ = C ′s, D = Ds etc. The natural inclusions W ′v ⊂ Wv induce by pull-back
maps Hi,j(C ,E ) −→ Hi,j(C ′,E ) which make the following diagram commutative.

0 −→ H1,0(C ,E ) −→ H1
dR(Xs,E ) −→ H0,1(C ,E ) −→ 0

α ↓ || ↓ γ
0 −→ H1,0(C ′,E ) −→ H1

dR(Xs,E ) −→ H0,1(C ′,E ) −→ 0

So it is enough to prove that α is an isomorphism. Let us remark that asW ′v is a strict
neighborhood of Zv in Uv (recall that we suppressed “s” from the notation), the set
{W ′v,qv=a(e),v=b(e)Ae} is an admissible covering of Uv. As Wv is an admissible open
of Uv, the set {W ′v,qv=a(e),v=b(e)Ae ∩Wv} is an admissible covering of Wv. But E
has a basis of horizontal sections on Ae∩Wv for all e ∈ e(G), therefore the restriction
H0(Wv,E )D −→ H0(W ′v,E )D is an isomorphism for all v ∈ v(G). It follows that α is
an isomorphism.

Let us fix a collection {Wv}v∈v(G) as in Proposition 3.18 and let s ∈ B (s may
be 0). We consider again the admissible coverings C ′′B of XB and C ′′s and the respec-
tive Mayer-Vietoris exact sequences. Pull back by the closed immersion Xs −→ XB

provide vertical maps in the following diagram:

0 −→ H1,0(C ′′B/B,E ) −→ H1
dR(XB/B,EB(log(Y ))) −→ H0,1(C ′′B/B,E ) −→ 0

↓ ↓ ↓
0 −→ H1,0(C ′′s ,Es) −→ H1

dR(Xs,Es(log(Y ∩Xs))) −→ H0,1(C ′′s ,Es) −→ 0

If s 6= 0 the log structure on Xs is trivial.

Lemma 3.37. — The above diagram of Mayer-Vietoris exact sequences is commuta-
tive.
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Proof. — The proof follows immediately from the definitions and we leave it to the
reader.

4. The Monodromy Operators

4.1. The global residue. — Let us fix the covering C ′ = {Tv, Ae}v∈v(G(X)),e∈e(G(X))

as in section §3.5.3.2, G′ denote the graph of this cover and assume that E is an
isocrystal on C i.e we assume that P and hence the log structure induced by it is trivial
in this chapter (notations as in section §1.) We denote (EX, DX/K0

) its evaluation on
the wide open enlargement X and by DX/S the associated relative connection. Let
us also recall that we defined on X the log structure given by the normal crossing
divisor Y := X0, on Y itself the inverse image log structure defined by the closed
immersion Y = X0 −→ X, and on S the log structure given by the divisor t = 0.
The log schemes thus defined are denoted X××,Y ××,S ×. We denote ΩiX××/S× :=

(ΩiX××/S×)rig = ΩiX/S(log(Y )) and ΩiY ××/K0
:= (ΩiY ××/W×)rig = ΩiY ××/W× ⊗W K0,

for i ≥ 0.
Let us first fix e ∈ e(G) and recall that the sheaf EX|Ae has a basis of horizontal

sections for DX/S . We denote such a basis by {ε1, . . . , εα}. Then using Lemma 3.16
every element ω ∈ H0(Ae,EX ⊗ Ω1

X/S(log(Y ))) can be written

ω =
( α∑
i=1

εi ⊗
∑
n,m≥0

ai,n,mx
n
ex

m
τ(e)

)dX/Sxe

xe
,

where ai,n,m ∈ K0 are such that the power series converge on Ae. We recall that the
variables xe, xτ(e), defined in Lemma 3.16 satisfy xexτ(e) = t. Thus we define

Rese(ωe) :=
(1

2
(
α∑
i=1

εi|Ta(e)∩Ae
∑
n≥0

ai,n,nt
n)),

1

2
(
α∑
i=1

εi|Tb(e)∩Ae
∑
n≥0

ai,n,nt
n))
)

∈ H0
dR((Ta(e) ∩Ae)/S,EX)⊕H0

dR((Tb(e) ∩Ae)/S,EX).

Therefore, for every e ∈ e(G), Rese can be seen as an OS-linear homomorphism

H1
dR(Ae/S,EX(log(Y ))) −→ H0

dR((Ae ∩ Ta(e))/S,EX)⊕H0
dR(Ae ∩ Tb(e)/S,EX).

Similarly, let C ′0 = {Tv,0, Ae,0} be the intersection of the covering C ′ with Y . It is
an admissible cover of Y by acyclic wide opens. Let us fix e ∈ e(G) and x, y be the
restrictions of xe and xτ(e) to Ae,0 respectively. Denote by E0 the evaluation of E at
Y and let ω ∈ H0(Ae,0,E0 ⊗ Ω1

Y ××/K0
). Then

ω =
α∑
a=1

ε0a ⊗
(
(
∑
n≥0

αa,nx
n)
dx

x
+ (
∑
n≥0

βa,ny
n)
dy

y

)
,
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where {ε0a}1≤a≤s is a basis of horizontal sections of E0|Ae,0 . As xy = 0 on Ae,0,
dx/x = −dy/y and we define

Rese(ω) =
(1

2

s∑
a=1

ε0a(αa,0 − βa,0)|Ae,0∩Ta(e),0 ,
1

2

s∑
a=1

ε0a(αa,0 − βa,0)|Ae,0∩Tb(e),0
)

∈ H0
dR(Ae,0 ∩ Ta(e),0/K0,E0)⊕H0

dR(Ae,0 ∩ Tb(e),0/K0,E0).

Thus we defined a K0-linear homomorphism

Rese : H1
dR(A××e,0 /K0,E0) −→ H0

dR(Ae,0 ∩ Ta(e)/K0,E0)⊕H0
dR(Ae,0 ∩ Tb(e),0/K0,E0)

for every e ∈ e(G).
Now we define residue maps Res and respectively Res(0) by the compositions:

H = H1
dR(X/S,EX(log(Y ))) −→ ⊕e∈e(G)

(
H1
dR(Ae/S,EX(log(Y ∩Ae)))

⊕eRese−→ H1,0(C ′, Erel),

and

H1(Y,E ) := H1
dR(Y ××/K0,E0) −→ ⊕e∈e(G)H

1
dR(A××e,0 /K0,E0)

⊕eRese−→ H1,0(C ′0,E0).

In the above sequences, the first arrows are restrictions.

Remark 4.1. — Let L,B be as in section §3.2. Then we immediately obtain an
OB-linear residue map ResB := Res⊗OS OB : HB −→ H1,0(C ′′B , Erel).

Remark 4.2. — Let

(2)
(
(ωv)v, (ωe)e, (fe, fe)e

)
be a hypercocycle for the complex of sheaves EX ⊗ Ω•X/S(log(Y )) with respect to the
covering C ′, representing a cohomology class x ∈ H. Here ωv ∈ EX(Tv) ⊗ Ω1

Tv/S
,

ωe ∈ EX(Ae) ⊗ Ω1
Ae/S

(log Y ), fe ∈ EX(Ta(e) ∩ Ae) and fe ∈ EX(Tb(e) ∩ Ae) and they
satisfy the cocycle conditions.

We may express Res defined above explicitly in terms of cocycles as follows: Res(x)

is the image in H1,0(C ′, Erel) of the cocycle (Rese(ωe))e∈e(G).

Next we would like to describe the fibers of Res. Let s ∈ S−{0} and C ′s the covering
of the fiber Xs obtained by intersecting the open sets of C ′ with Xs. Let also Cs be
the intersection of the covering C (defined in Section 3.5.3.1) with Xs. Both C ′s,Cs
are admissible covers of Xs by acyclic wide open subsets and C ′s is a refinement of
Cs. Let us consider the graphs associated to these covers, i.e., G′ and G respectively.
We have (see Remark 2.5)

Lemma 4.3. — Let s ∈ S − {0}. Then under the identification between H1,0(Cs,Es)

and H1,0(C ′s,Es) in Lemma 3.34 (Res)s = Res(s), where (Res)s is the fiber of Res at
s and for the notation Res(s) see Remark 2.5.

Proof. — This follows from the definitions and the explicit description of the isomor-
phism in Lemma 3.34 and we leave the details to the reader.
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Now let us concentrate on describing the fiber (Res)0 of Res at s = 0. Let us
first remark that from the definition of an isocrystal and the definitions of the log
structures on X,Y ,S we have natural isomorphisms(

EX ⊗OX ΩiX××/S×
)
⊗OX OY ∼= E0 ⊗OY ΩiY ××/K0

,

for i ≥ 0. Let j : Y ⊂ X be the natural inclusion.

Lemma 4.4. — (Res)0(x) = Res(0)(j∗x) for all x section of H.

Proof. — The inclusion j induces an isomorphism H/tH
j∗∼= H1(Y,E ) therefore it is

enough to prove: if x ∈ H then we have j∗(Res(x)) = Res(0)(j∗x). Let x be represented
by a hypercocycle as in formula (2) above. Then for each e ∈ e(G) we have

ωe =
α∑
i=1

ε
(e)
i ⊗

( ∑
n,m≥0

a
(e)
i,n,mx

n
ex

m
τ(e)

)dX/S(xe)

xe
,

where {ε(e)i } is a basis of horizontal sections of EX|Ae for all e and a
(e)
i,n,m ∈ K0 are

such that the power series converge on Ae. With these notations we have Rese(ωe) =

( 1
2

∑α
i=1 ε

(e)
i |Ta(e)∩Ae

∑
n≥0 ai,n,nt

n, 1
2

∑α
i=1 ε

(e)
i |Tb(e)∩Ae

∑
n≥0 ai,n,nt

n). Now

j∗(Res(ω)) = Image(Rese(ωe))e∈e(G(X))(mod tH1,0(C ′, Erel))

= (
1

2
(
α∑
i=1

j∗(ε
(e)
i )|Ae,0∩Ta(e),0a

(e)
i,0,0,

1

2
(
α∑
i=1

j∗(ε
(e)
i )|Ae,0∩Tb(e),0a

(e)
i,0,0)e.

On the other hand, j∗(x) is represented by the hypercocycle
{(j∗(ωv))v, (j∗(ωe))e, (j∗(fe), j∗(fe)e}. In particular, for every e ∈ e(G) let us
denote by ye, yτ(e) the images j∗(xe) and respectively j∗(xτ(e)). With these notations
yeyτ(e) = 0 and we have

j∗(ωe) =
α∑
i=1

j∗(ε
(e)
i )⊗

(
a

(e)
i,0,0 +

∑
n≥1

a
(e)
i,n,0y

n
e +

∑
m≥1

a
(e)
i,0,my

m
τ(e)

)d(ye)

ye
,

so

Res(0)
e (j∗(x)) = (

1

2
(
α∑
i=1

j∗(ε
(e)
i )|Ae,0∩Ta(e),0a

(e)
i,0,0,

1

2
(
α∑
i=1

j∗(ε
(e)
i )|Ae,0∩Tb(e),0a

(e)
i,0,0) = j∗(Rese(ωe)).

Let us define by N0 : H1(Y,E ) −→ H1(Y,E ) the composition (Res)0 ◦ ι0 where

ι0 : H1,0(C ′0,E0) −→ H1(Y,E )

is the map induced from the Mayer-Vietoris exact sequence for Y and the covering
C ′0.

We have the following

Proposition 4.5. — The OS-linear map Res is horizontal with respect to the connec-
tions, i.e. Res: (H,∇) −→ (H1,0(C ′, Erel)),∇1,0) satisfies Res ◦ ∇1,0 = ∇ ◦ Res.
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Proof. — Let x ∈ H be represented by a hypercocycle as in formula (2). We have
∇(x) = y ⊗ dlog(t), where y is represented by a hypercocycle

(
(ηv)v, (ηe)e, (ge, ge)e

)
as in the proof of Proposition 3.35. To calculate Res(y) we only need to look at the
ηe’s. To start with, we may write

ωe =
α∑
i=1

εi ⊗ ri(t)
dX/S(xe)

xe
+DX/S(Ge),

where {εi}i=1,α is as before a basis of horizontal sections of EX over Ae, ri(t) ∈ OS(S)

and Ge ∈ EX(Ae). Then, let us denote by

ω̃e : =
α∑
i=1

εi ⊗ ri(t)
dX/K0

(xe)

xe
+DX/K0

(Ge).

It is a lift of ωe to “absolute differentials”, i.e., to EX(Ae) ⊗ Ω1
Ae/K0

(log Y ). Then ηe
may be chosen such that

ηe ∧ dlog(t) = DX/K0
(ω̃e) =

α∑
i=1

εi ⊗ tr′i(t)
dX/K0

(xe)

xe
∧ dlog(t),

therefore

Rese(ηe) = (
1

2

α∑
i=1

εi|Ae∩Ta(e)tr
′
i(t),

1

2

α∑
i=1

εi|Ae∩Tb(e)tr
′
i(t)).

On the other hand

∇(ι◦Res(ω)) = ∇[
(
(0v)v, (0e)e, (

1

2

α∑
i=1

εi|Ae∩Ta(e) ⊗ ri(t),
1

2

α∑
i=1

εi|Ae∩Tb(e) ⊗ ri(t))e
)
]

= [
(
(0v)v, (0e)e, (

1

2

α∑
1

εi|Ae∩Ta(e) ⊗ tr
′
i(t),

1

2

α∑
i=1

εi|Ae∩Tb(e) ⊗ tr
′
i(t))e

)
]⊗ dlog(t).

This proves the proposition.

Proposition 4.6. — Under the parallel transport isomorphism of Theorem 2.6, N0 ⊗
idK is identified with Nint.

Proof. — Let N : H −→ H be the composition H Res−→ H1,0(C ′, Erel) −→ H where
the second morphism is the one coming from the Mayer-Vietoris sequence (see section
§3.5.2). Then by Proposition 4.5N is horizontal and hence it induces a homomorphism
N : (Hlog)∇ −→ (Hlog)∇. By Lemma 4.3 and Lemma 4.4 the following diagram is
commutative

H1(Y,E ) ∼= (Hlog)∇ −→ H1(CK ,Eπ)

N0 ↓ N ↓ Nint ↓
H1(Y,E ) ∼= (Hlog)∇ −→ H1(CK ,Eπ).
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4.2. The proof of the equality of the monodromy operators. — The main
result of this section is

Theorem 4.7. — Under the notations of section §4.1 we have N0 = Ndeg.

Proof. — We will extend scalars to a finite, non-trivial, totally ramified extension L of
K0 and let B = BL ⊂ S be the affinoid disk as in Lemma 3.17. Recall Proposition 3.18
i.e., for all v ∈ v(G) there is a wide open neighborhood Wv of Zv,B in Uv,B and an
isomorphism over B

αv = αv,0 : Wv
∼= B ×Wv,0,

where Wv,0 = Wv ∩ Y . Let pri, i = 1, 2 be the i-th projection composed with αv, i.e.,
pr1 : Wv → B, pr2 : Wv →Wv,0. As αv is an isomorphism over B, pr1 is the structure
morphism of Wv over B.

Let us now fix v and let U = α−1
v (U0 × B) where U0 ⊂ Wv ∩ Y is any admissible

open subset. We have

Lemma 4.8. — a) The canonical isomorphism

Ω1
U∗/L

∼= pr∗1Ω1
B∗/L ⊕ pr∗2Ω1

U0/L
,

where U∗ = U − U0 and B∗ = B − 0, induces an isomorphism of sheaves on U :

Ω1
U/L(log Y ) ∼= pr∗1Ω1

B/L(log 0)⊕ pr∗2Ω1
U0/L

.

b) The isomorphism at a) induces an isomorphism of sheaves:

Ω1
U/B(log Y ) ∼= pr∗2Ω1

U0/L
,

and an isomorphism of OB(B)-modules

Ω1
U/B(log Y )(U) ∼= OB(B)⊗̂Ω1

U0/L
(U0)

where ⊗̂ denotes completed tensor product.

Proof. — For a) it is enough to see that we have an isomorphism of “pairs”

(U,U0) ∼= (B, {0})× (U0, φ),

where φ is the void set, i.e., that U ∼= B × U0 and under the above isomorphism
U0
∼= ({0} × U0) ∪ (B × φ).
For b) let us notice that we have an isomorphism of sheaves on U :

Ω1
U/B(log Y ) ∼= Ω1

U/L(log Y )/pr∗1Ω1
B(log 0) ∼= pr∗2ΩU0/L(log Y ).

Now the lemma follows easily.

Let us recall from section §3.5.3.3 that the set C ′′B := {Wv, Ae,B}v∈v(G),e∈e(G) is an
admissible cover of XB := X ×S B. From Lemma 4.8 it follows that for all v ∈ v(G)

and U ⊂Wv as above, the canonical projection:

Ω1
Wv/L

(log Y )(U) −→ Ω1
Wv/B

(log Y )(U)
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has a natural section, call it sv with the property that its image is a submodule of
Ω1
Wv/L

(U). Therefore for every section ω of Ω1
Wv/B

(log Y ) we have a lift of it sv(ω)

to absolute 1-forms, which is a regular absolute one-form by the remark above.
Moreover, if say e ∈ e(G) then we also have a natural choice of a lift to abso-

lute forms as follows. Let us recall that we have OB(B) = L〈y〉 with the restriction
OS(S) −→ OB(B) given by: t −→ πLy. Let c := |πL| < 1.

Lemma 4.9. — Let ω ∈ Ω1
Ae,B/B

(log Y )(Ae,B), then we can write ω = r(y)
dX/S(xe)

xe
+

dX/S(ue) where r(y) is a global section of OB and ue ∈ OXB (Ae,B).

Proof. — For this proof let us denote U := Ae,B and A(U) := OXB (U), x = xe and
z = xτ(e). By Lemma 3.16, the natural functions x, z ∈ A(U) satisfy xz = πLy and if
f ∈ A(U) then f may be written

f =
∞∑
n=0

anx
n +

∞∑
m=1

bmz
m,

with an, bm ∈ OB(B) and such that, for every r such that c < r < 1 the sequences
|an|Brn −→ 0 and |bn|B(c/r)n −→ 0 as n −→∞.

Therefore ω = fdU/B(x)/x = dU/B(g) + a0dU/B(x)/x, where

g =
∞∑
n=1

an
n
xn +

∞∑
m=1

bm
m
zm ∈ A(U).

This proves the lemma.

A lift to absolute 1-forms of ω as in Lemma 4.9 is then defined by:

ω̃e : = r(y)
dX/K0

(xe)

xe
+ dX/K0

(ue).

Proof of Theorem 4.7. Let x ∈ HB be represented by the hypercocycle(
(ωv)v, (ωe)e, (fe, f)e

)
with respect to C ′′B (as in in Formula 3.3.2). Let us recall

that v runs over v(G) and e over e(G). Then ωe can be written as

ωe =
α∑
i=1

εi ⊗ (re,i(y))
dX/S(xe)

xe
+DX/S(Ei)) = −

α∑
i=1

εi ⊗ (re,i(y))
dX/S(xτ(e)

xτ(e)
+DX/S(Ei)),

where {εi}1≤i≤α is a horizontal basis of EB |Ae,B , Ei ∈ EB(Ae,B) for all i and re,i(y)

are global sections of OB . The variables xe and xτ(e) have been defined in Lemma 3.16
and their restrictions to Ae,B satisfy xexτ(e) = πLy.

We want to calculate ∇(x) and its residue. ∇(x) is represented by the hypercocycle(
(ηv)v, (ηe)e, (ge, ge)e

)
, where

DX/K0
(sv(ω)v) = ηv ∧ dlog(y) and DX/S(ω̃e) = ηe ∧ dlog(y),

for v ∈ v(G) and e ∈ e(G). Also

sa(e)(ωa(e))|Ae,B∩Wa(e)
− ω̃e|Ae,B∩Wa(e)

−DX/S(fe) = gedlog(y),
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and
ω̃e|Ae,B∩Wb(e)

− sb(e)(ωb(e))|Ae,B∩Wb(e)
−DX/S(fe) = gedlog(y).

Let us recall that sv(ωv) is always a regular 1-form. Also,

ω̃e|Ae,B∩Wa(e)
:= r(y)

dX/K0
(xe)

xe
+ dX/K0

(ue)

is also regular as xe is invertible on Ae,B ∩Wa(e). On the other hand we have

ω̃e|Ae,B∩Wb(e)
= r(y)

dX/K0
(xe)

xe
+ dX/K0

(ue) = r(y)
d(y)

y
− r(y)

dX/K0
(xτ(e))

xτ(e)
+ dX/K0

(ue),

and the form −r(y)
dX/K0

(xτ(e))

xτ(e)
+ dX/K0

(ue) is regular on Wb(e) ∩ Ae,B because the
function xτ(e) is invertible on this open set.

Therefore we have: Resy=0(ηv) = Resy=0(ηe) = 0 for all v ∈ v(G), e ∈ e(G),
Resy=0(ge) = 0 and Resy=0(ge) =

∑α
i=1 re,i(0)εi|Ae,B∩Wb(e)

for e ∈ e(G). Thus, we
have that Resy=0(∇(x)) is represented by the hypercocycle(

(0v)v, (0e)e, (0e,
α∑
i=1

re,i(0)εi|Ae,B∩Wb(e)
)e
)

whose cohomology class in H1(Y,E )⊗K0
L is the same as the class of(

(0v)v, (0e)e, (
1

2

α∑
i=1

re,i(0)εi|Ae,B∩Wa(e)
,

1

2

α∑
i=1

re,i(0)εi|Ae,B∩Wb(e)
)e
)

which is
Res(x) (mod yHB).

This proves that Ndeg⊗K0
idL = N0⊗K0

idL. As Ndeg and N0 are both endomorphisms
over K0 of the finite dimensional K0 vector space H1(Y,E ), and as they become equal
after base change to the extension L of K0, they are equal. This ends the proof of
Theorem 4.7.

5. Frobenii

5.1. Frobenius and K0-structures on Hi,j(Cs,Es). — In this section we supply
a number of details needed in section §2.2. Namely let us resume the notations of
section §3.2. Let X −→ S be our family of curves, C = {Uv}v∈v(G) be the admissible
covering of X defined there. Fix s ∈ S a point such that s 6= 0 and for an object M
over S Ms will be the fiber of M over s. Let Cs := {Uv,s}v∈v(G) and if e = [u, v] ∈
e(G) then Ae,s = Ae ×S s = Uu,s ∩ Uv,s. Let us also denote by s the image under
red : S −→ S = Spf(W [[t]]) of the point s ∈ S and by Xs := X ⊗S s. In particular
if s = π, then Xs = CK and Xs = C in section §2.2. Let E denote an F -isocrystal on
C and let Es denote the evaluation of E on the enlargement Xs.

We will define the canonical K0-structures and Frobenii on H1,0(Cs,Es) and
H1,0(Cs,Es) needed in section §2.2.
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For the rest of this section we fix s and denote Uv,s, Ae,s simply by Uv, Ae.

Lemma 5.1. — Suppose that the residue field of s is L. For every e ∈ e(G) we have a
canonical isomorphism of L-vector spaces

H0
cris(e/W,E )⊗K0 L

∼= H0
dR(Ae,Es|Ae),

where above e denotes the singular point of C corresponding to the edge e.

Proof. — As mentioned before, Ae is a wide open enlargement of e ∈ C, i.e. let us
consider the formal completion of Xs along e, (Xs)/e. It is a formal scheme such that
(Xs)

rig
/e
∼= Ae. Therefore Es|Ae ∼= E(Xs)/e and H0

cris(e/W,E )⊗K0
L ∼= H0

dR(Ae,Es|Ae).

Let us remark that the isomorphism of lemma 5.1 endows H0
dR(Ae,Es|Ae) with a

canonical K0-structure and a Frobenius, namely H0
cris(e/W,E ) with its Frobenius, φ0

e.
Let us fix v ∈ v(G) and Cv the component of C corresponding to v. Let is denote

by C
××
v the log scheme Cv with log structure given by the smooth divisor of the

singular points in C belonging to Cv.

Lemma 5.2. — In this lemma s may be 0. For i = 0, 1 we have natural isomorphisms
of L-vector spaces

Hi
cris(C

××
v /W,E )⊗K0

L ∼= Hi
dR(Uv,Es|Uv ).

Proof. — Let red : Xs −→ C denote the reduction map and let Zv = red−1(C
0

v),
where C

0

v is the complement in Cv of the singular points in C. Then Zv is an un-
derlying affinoid of Uv with good reduction (its reduction is C

0

v). Let us denote by
Singv := Cv −C

0

v. As Cv is a smooth proper curve over k, there exists a pair (C ′, Q)

consisting of a smooth proper curve C ′ over OL and an étale divisor Q on C ′ such the
special fiber of (C ′, Q) is (Cv,Singv). Let us denote “C ′ := C ′

/Cv
the formal completion

of C ′ along its special fiber, let C ′L := (“C ′)rig and red : C ′L −→ Cv be the reduction
map. If we denote Z ′v := red−1(C

0

v) then Zv ∼= Z ′v and we’ll identify the two. We claim
that we may choose the pair (C ′, Q) such that the isomorphism Zv ∼= Z ′v extends to an
open immersion Uv ↪→ C ′L. This can be seen as follows: let us “add the affinoid disks
to Uv to close the holes”. We obtain a smooth proper rigid curve with a smooth proper
formal model whose special fiber is Cv. This formal model is algebrizable, i.e. it is the
formal completion along reduction of a smooth proper curve over OL, which may be
taken to be C ′. In any case, the open immersion Uv ↪→ C ′L has the property that its
complement is a disjoint union of affinoid disks, containing Q and each contained in
the residue class of the points e ∈ Singv.

We have the natural morphisms of formal schemes over OL:

C ←↩ Cv ↪→ “C ′,
which make “C ′ an enlargement of C. Let us denote by EC′ the evaluation of E on this
enlargement. It is a coherent sheaf with connection on C ′L.
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Claim 1. — EC′ |Uv is isomorphic to Es|Uv as coherent sheaves with connections.
To see this let us first recall that we have open immersions Uv ↪→ Xs and Uv ↪→ C ′L

and Xs, C
′
L have formal models Xs, “C ′ respectively. Moreover, by the description of

the embedding Uv ↪→ C ′L given above the following diagram commutes

Uv ↪→ Xs
red−→ C

|| ∪
Uv ↪→ C ′L

red−→ Cv

Let now V ⊂ Uv be an admissible open. By applying lemma 3.1 we obtain canonical
formal models V ′ −→ “C ′ and V −→ Xs and by the diagram above and section 3.1.2
we obtain a natural morphism V ′ −→ V inducing the identity on generic fibers and
such that the following diagram of special fibers commutes

V
′ −→ V

↓ ↓
Cv ↪→ C

Thus we obtain a diagram of enlargements

(V
′
↪→ V ′) −→ (V ↪→ V )

↓ ↓
(Cv ↪→ “C ′) (C ↪→ Xs)

which shows that EC′ and Es coincide on V . This proves the claim.
Let C

××
v and “C ′×× denote the scheme Cv, respectively formal scheme “C ′ with log

structures given by the divisor Singv, respectively by the divisor Q. Now let us see
that we have natural morphisms

Hi
cris(C

××
v /W,E )⊗K0

L ∼= Hi
cris(C

××
v /OL,E ) ∼= Hi

dR(C ′L,EC′(log(Q)) −→ Hi
dR(Uv,Es|Uv ),

the first two being naturally isomorphisms.
In order to prove the lemma let us remark that we have natural isomorphisms of

L-vector spaces Hi
dR(C ′L−Q,EC′ |C′L−Q) ∼= Hi

dR(C ′L,EC′(log(Q))) for i = 0, 1. We will
prove

Claim 2. — Restrictions induce isomorphisms between Hi
dR(C ′L − Q,EC′ |C′

L
−Q) ∼=

Hi
dR(Uv,Es|Uv ) for all i ≥ 0.
For i = 0 the statement of the claim is clear. The proof of the claim for i = 1 is

by an excision argument presented in theorem 4.2 of [7] for the case of trivial E . The
main idea is for a rigid analytic space M to find good definitions of “closed subsets”
and their “admissible open neighbourhoods” and to use the Gysin long exact sequence
as in [22].

We say that a subset Z ofM is closed if it is the complement inM of an admissible
open subset. Given such a Z, we say that U is an admissible neighbourhood of Z if

ASTÉRISQUE 331



HIDDEN STRUCTURES ON SEMISTABLE CURVES 225

U is a strict neighbourhood of Z in M . Let us recall that this means Z ⊂ U , U is an
admissible open of M and the family {U,M − Z} is an admissible covering of M .

Now if F is a sheaf of abelian groups on M we define ΓZ(M,F ) to be the sections
s ∈ F (U) supported in Z for any strict neighbourhood U of Z. The functor F −→
ΓZ(M,F ) is left exact and therefore if F • is a complex of sheaves on M we define
the hypercohomology groups with supports, Hi

Z(M,F •) to be the hyper-right derived
functors of ΓZ(M, −). By corollary 1.9 of [22] if F • is a complex of sheaves on M
we have a long exact sequence (the Gysin sequence):

0 −→ H0
Z(M,F •) −→ H0(M,F •) −→ H0(X − Z,F •) −→ H1

Z(M,F •) −→ · · ·

Moreover, if U is a strict neighbourhood of Z in M we have excision, i.e. canonical
isomorphisms

Hi
Z(M,F •) ∼= Hi

Z(U,F •) for all i ≥ 0.

Let us now apply this theory to: M = C ′L −Q, Z = (C ′L −Uv)−Q. Let us remark
that C ′L − Uv is a disjoint union of closed disks contained each in the residue class
of one point of Singv and containing exactly one point of Q. So in fact Z = M − Uv
is closed in M . Let us denote by (E,D) = (EC′ |M , D|M ) the restriction to M of the
coherent sheaf with connection (EC′ , D) and let F • := E⊗OM Ω•M/L. The interesting
part of the Gysin sequence reads:

H1
Z(M,R⊗OM Ω•M/L) −→ H1

dR(C ′L −Q,E) −→ H1
dR(Uv, E|Uv ) −→ H2

Z(M,E ⊗OM Ω•M/L).

Let us now explicitly calculate Hi
Z(M,E ⊗OM Ω•M/L). Let U ′ denote a disjoint union

of wide open disks in C ′L containing C ′L−Uv and contained in the union of the residue
disks of the points of Singv. Then U ′ − Q is a strict neighbourhood of Z in M and
excision implies

Hi
Z(M,E ⊗OM Ω•M/L) ∼= Hi

Z(U ′ −Q,E|U ′−Q ⊗OU′−Q Ω•(U ′−Q)/L) for all i ≥ 0.

The Gysin sequence for the pair (U ′−Q,Z) and the restriction of E to U ′−Q which
we denote by E′ gives

0 −→ H0
Z(U ′ −Q,E′ ⊗ Ω•(U ′−Q)/L) −→ H0

dR(U ′ −Q,E′) −→ H0
dR(U ′ − Z,E′) −→

−→ H1
Z(U ′ −Q,E′ ⊗ Ω•(U ′−Q)/L) −→ H1

dR(U ′ −Q,E′) −→ H1
dR(U ′ − Z,E′) . . .

First let us remark that as U ′ is contained in a union of residue classes, (E|U ′ , D|U ′)
has a basis of horizontal sections. Let us denote by ED := H0

dR(U ′, EU ′). Second let is
remark that U ′−Q is a disjoint union of punctured disks containing the disjoint union
of wide open annuli U ′ − Z. Therefore we have the following commutative diagram
where the horizontal arrows are induced by restrictions and the last vertical ones are
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residue maps.

H1
dR(U ′ −Q,E′) −→ H1

dR(U ′ − Z,E′)
↓∼= ↓∼=

H1
dR(U ′ −Q)⊗L ED −→ H1

dR(U ′ − Z)⊗L ED

↓ ↓
H0
dR(U ′ −Q,E′) = ED = H0

dR(U ′ − Z,E′)

As the residue maps for punctured disks and annuli are isomorphisms the first hori-
zontal arrow is an isomorphism and the Gysin sequence for (U ′−Q,Z) above implies
that Hi

Z(M,E ⊗OM Ω•M/L) = 0 for all i ≥ 0. This proves the claim.

Claim 3. — We claim that for i = 0, 1 the composed isomorphism

Hi
cris(C

××
v /OL,E ) ∼= H1

dR(Uv,Es|Uv )

is independent of the choice of C ′ and the choice of embedding Uv ↪→ C ′L.
The proof of this claim is standard: suppose (C ′′, Q′′) is another such pair defined

over OL, with an embedding Uv ↪→ C ′′L. We let “C1 to be the formal completion along
Cv of the fiber product C ′ × C ′′. By the Poincaré lemma we have isomorphisms

Hi
dR(C ′L,EC′ log(Q)) −→ Hi

dR((C1)rig,EC1
(log(Q ∪Q′′))←− Hi

dR(C ′′L,EC′′(log(Q′′)),

compatible with the homomorphisms from Hi
dR(Uv,Es|Uv ) induced by the immersions

Uv ↪→ C ′L, Uv ↪→ C ′′L and the diagonal immersion Uv ↪→ (C1)rig.

As before the isomorphisms in lemma 5.2 endow the L-vector spacesHi
dR(Uv,Es|Uv )

with naturalK0-structures with Frobenii, namelyHi
cris(C

××
v ,E ) for i = 0, 1 with their

Frobenii.
For e ∈ e(G) let us denote by Ee := Es|Ae and let us now concentrate on the

L-vector space H1
dR(Ae,Ee). These spaces do not have an interpretation as crystalline

cohomology groups, nevertheless we have residue isomorphisms

Rese : H1
dR(Ae,Ee) ∼= H0(Ae,Ee),

and may define the K0-structure of the domain to be the inverse image of the
K0-structure of the target, i.e. to be Res−1(H0

cris(e/W,E )). Moreover let us endow
this K0-structure with a Frobenius φ1

e defined by φ1
e = pRes−1

e ◦ φ0
e ◦ Rese. We have

Lemma 5.3. — Let e ∈ e(G) and suppose the vertex v ∈ v(G) is the origin or the end
of e. Then, for i = 0, 1 the natural restriction maps: Hi

dR(Uv,Es|Uv ) −→ Hi
dR(Ae,Ee)

respect the K0-structures and the Frobenii.

Proof. — For i = 0 this follows from the commutativity of the diagram

H0
dR(Uv,Es|Uv ) −→ H0

dR(Ae,Ee)

↓∼= ↓∼=
H0

cris(C
××
v /W,E )⊗K0

L −→ H0
cris(e/W,E )⊗K0

L
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where the lower horizontal map is the restriction H0
cris(C

××
v /W,E ) −→ H0

cris(e/W,E )

tensored with L over K0.
For i = 1 we’ll use residues. First we have a natural residue map Res which makes

the following sequence exact:

0 −→ H1
cris(Cv/W,E ) −→ H1

cris(C
××
v /W,E )

Res−→ ⊕e∈Singv
H0

cris(e/W,E )(1).

Here the twist by 1 refers to a twist as filtered, Frobenius modules. Moreover, the
following diagram of L-vector spaces with exact rows is commutative

0 −→ H1
cris(Cv/OL,E ) −→ H1

cris(C
××
v /OL,E )

Res−→ ⊕e∈SingvH
0
cris(e/OL,E )

↓∼= ↓∼= ↓∼=
0 −→ H1

dR(C ′L,EC′) −→ H1
dR(C ′L,EC′(log(Q)))

Res−→ ⊕P∈Q(EC′)P

↓∼= ↓∼= ↓∼=
0 −→ H1

dR(Cv/OL,EC′) −→ H1
dR(Uv,Es|Uv )

Res−→ ⊕e∈SingvH
0
dR(Ae,Es|Ae)

where:
• The map Res : H1

dR(Uv,Es|Uv ) −→ ⊕e∈SingvH
0
dR(Ae,Ee) in that diagram is the

composition of the restriction H1
dR(Uv,Es|Uv ) −→ ⊕e∈SingvH

1
dR(Ae,Ee) and the direct

sum of the residue maps Rese : H1
dR(Ae,Ee) −→ H0

dR(Ae,Ee).
and
• If we denote by φ0, φ1 the natural Frobenii onH0

cris(e/W,E ) andH1
cris(C

××
v /W,E )

respectively and by Rese : H1
cris(C

××
v /W,E ) −→ H0

cris(e/W,E ) then we have:
Reseφ

1 = pφ0Rese.
These facts prove the lemma for i = 1.

5.2. F-isocrystals. — Let us go back to our notations of section 5.1: X −→ S is
our family of curves over the wide open unit disk, s ∈ S − {0} is a point defined over
L, Xs the fiber of X over s, Xs the canonical formal model of Xs over OL (defined in
section 5.1) and C the special fiber of Xs. For v ∈ v(G) let Cv denote the component
of C corresponding to v and C

0

v the complement in Cv of the singular points of C.
Then the composition Cv ↪→ C ↪→ Xs is a closed immersion of formal schemes

over OL and C
0

v ↪→ Cv is an affine open, therefore we denote U = Uv = red−1(Cv) =(
Xs)/Cv

)rig and Z = Zv = red−1(C
0

v). Then U is a one-dimensional wide open of Xs

and Z ⊂ U is a an underlying affinoid with good reduction.
Let U −→ U×Spm(L)U be the diagonal embedding. It is locally a closed immersion

so let us denote by ∆U the formal neighbourhood of the diagonal i.e. the completion
of U ×Spm(L) U along the diagonal morphism. Let π1, π2 : U ×Spm(L) U −→ U denote
the two projections.

If M is a locally free, coherent sheaf of OU -modules on U with an integrable
connection D there is a unique horizontal isomorphism

h : π∗1M |∆U
→ π∗2M∆U
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which restricts to the identity on U . Locally on U we may assume that Ω1
U/L is a

free OU -module generated by dt, let ∂ denote the derivation dual to dt and also by
∂ = D∂ : M −→ M the induced morphism. Let us denote by u = π∗1(t) − π∗2(t) seen
as a rigid function on ∆U . With these notations, h is given (locally) by formulae

h(π∗1m) =
∞∑
n=0

un

n!
π∗2(∂nm),

for m (local) section of M .
Now let us look at the sequence of morphisms:

Cv
∆−→ Cv ×Spec(k) Cv ↪→ X2

s := Xs ×Spf(OL) Xs.

The composition is a closed immersion so let us define‹∆U :=]Cv[X2
s
=
(
(X2

s)/Cv
)rig

.

Let us remark that ‹∆U is a tubular neighbourhood of the image under diagonal of U
in Xs ×Spm(L) Xs.

Definition 5.4. — We say the pair (M,D) is a convergent isocrystal on (U,Z) if h
extends to ‹∆U (the extension is unique if it exists).

Here are a few easy but very useful consequences of the definition. Suppose that
(M,D) is a convergent isocrystal on (U,Z). If f, g : T → U are two morphisms from a
rigid space T into U such that (f, g)(T ×T ) ⊆ ‹∆U , let χf ,g = (f, g)∗h : f∗M → g∗M .
As h is an isomorphism χf ,g is an isomorphism of sheaves.

Lemma 5.5. — The restriction of (M,D) to any residue class of (W,X) is trivial.

Proof. — Let U be a residue class of (W,X). If there exists a point P ∈ U(K),
let f, g : U → W be the morphisms, the identity and x → P , respectively. Then
f∗M = M |U , g∗M is trivial and χf g is an isomorphism.

In general, base change to a Galois extension L of K such that U(L) 6= ∅, proceed
as above for each irreducible component of UL and then take invariants.

Let us recall that C
0

v is a smooth affine curve over k contained in the smooth
projective curve Cv; therefore there is a smooth affine scheme of finite type over OL,
Spec(A) lifting C

0

v. The πL-adic completion of A is isomorphic (non-canonically) to
the ring of rigid functions on Z bounded by 1. Fix such an isomorphism and identify
the two. Via this identification, proposition 3.14 (where Rk is been replaced by OL)
gives

Spm(A† ⊗OL L) = lim
→,T

H0(T,OU )

where T ranges over all strict affinoid neighbourhoods of Z in U . We have natural
restriction maps OU (U) −→ H0(T,OU ) which induce an OL-algebra homomorphism
OU (U) −→ A† ⊗OL L.
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Therefore if (M,D) is a locally free coherent sheaf of OU -modules on U with an
integrable connection we denote

M† := H0(U,M)⊗OU (A† ⊗ L).

It is a projective A† ⊗ L-module with an integrable connection

D† : M† −→M† ⊗A†⊗L Ω1
(A†⊗L)/L,

induced by D. We have a description of Ω1
(A†⊗L)/L as lim

→,T
H0(T,Ω1

T/L), where T runs

over the strict affinoid neighbourhoods of Z in U (see [1], section §2.5.)
Let u0 : C

0

v −→ C
0

v be a morphism of schemes over k, let A,A′ be smooth OL-al-
gebras of finite type such that Spec(A) and Spec(A′) lift C

0

v and let u : A† −→ A
′†

be a OL-algebra homomorphism lifting the k-algebra homomorphism corresponding
to u0 (see for example theorem 3.7.)

Define the category MicA†⊗L to be the category of finitely generated projective A†⊗
L-modules with integrable convergent connections. Then the OL-algebra morphism u

defines a functor which preserves convergence u∗ : MicA′†⊗L −→ MicA†⊗L and which
is an equivalence of categories if u0 is a isomorphism.

In particular for u0 = id
C

0

v
, we see that (M†, D†) is independent of the choice of

the lifting A.
Also, let us first fix σ : OL −→ OL an automorphism which lifts Frobenius of k.

Let f := [k : Fp] and denote by F = Frobf : Cv −→ Cv. Then F (C
0

v) ⊂ C
0

v and let
φ : A† −→ A† be a lift of F over σ.

Definition 5.6. — A convergent F -isocrystal on (U,Z) is the following family of data
• A convergent isocrystal (M,D) on (U,Z)

and
• a horizontal isomorphism Fφ : φ∗(M†, D†) −→ (M†, D†) for every morphism

φ : A† −→ A† which is a lifting of F .

Let us remark that if φ1, φ2 are two liftings as in definition 5.6 we have Fφ2
=

Fφ1
◦ χφ1 ,φ2

.
Let now E be an F -isocrystal on C. Let us recall that the formal completion of

Xs along the closed sub-scheme Cv, Uv := (Xs)/Cv is a smooth formal scheme over
OL such that Urig

v = Uv = U . Let us denote by (Ev, Dv) the evaluation of E on Uv,
which is a wide open enlargement of C. Here (Ev, Dv) is a pair consisting of a locally
free, coherent OU -module with integral convergent connectionDv (convergence follows
from [1] 2.2.2 and 2.3.4.) Moreover by definition 3.4 it follows that if φv : Uv −→ Uv
is a lifting of F then we have an isomorphism Fφv : φ∗v(Ev, Dv) −→ (Ev, Dv).

We therefore clearly have

Lemma 5.7. — The pair (Ev, Dv) is a convergent F-isocrystal on (U,Z).

In fact by [1] corollary 2.5.8 the data of the F -isocrystal (Ev, Dv) is equivalent
to the data: (M,D) where M is a finitely generated projective A† ⊗ L-module, D :
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M −→M ⊗A†⊗L Ω1
(A†⊗L)/L is an integrable connection such that if φ : A† −→ A† is

a lifting of F , there is a horizontal isomorphism Φ : φ∗M −→M. The convergence of
the connection is a consequence of the existence of Φ.

We need to consider one example of a relative convergent isocrystal. Let as above Z
be our affinoid over L and f ∈ OZ(Z)∗, |f | < 1. Let An be the rigid analytic space
over L in Z × B1

L whose Cp-points are {(z, b) : |f(z)| < |b| < 1}. This is a family of
annuli over Z. Let T be the rigid function on An defined by T (z, b) = b and ∆̃An/Z be
the neighbourhood of the relative diagonal ∆An/Z in An×Z An over Z whose points
are

{(x, y) ∈ An×Z An : |T (x)

T (y)
− 1| < 1}.

The diagonal morphism An −→ An ×Z An is a closed immersion. We denote
by “∆An/Z the formal completion of An ×Z An along its image. Let π1, π2 denote
the natural projection from An ×Z An to An. Suppose M is a coherent sheaf of
OAn-modules, D : M −→ M ⊗OAn Ω1

An/Z a (relative) integrable connection over Z
and such that the formal horizontal isomorphism h : π∗1M |∆̂An/Z

→ π∗2M |∆̂An/Z
which

is the identity when restricted to ∆An/Z extends to ∆̃An/Z (i.e. (M,D) is a convergent
isocrystal.)

Then we have

Lemma 5.8. — Suppose that (M,D) is a locally free sheaf of OAn-modules on An with
a relative, integrable convergent connection D as above. We use h to identify π∗1M
and π∗2M on ∆̃An/Z . Let ω be a section of M ⊗OAn Ω1

An/Z . Then there is a unique
section ε of π∗1(M) on ∆̃An/Z such that

π∗1D(ε) = π∗1(ω)|∆̃An/Z
− π∗2(ω)|∆̃An/Z

,

and such that ε|∆An/Z
= 0.

Proof. — For simplicity let us denote for this proof U := ∆̃An/Z . We claim that we
have a natural isomorphism φ : U ∼= An ×Sp(L) SL as rigid spaces over Z, where
let us recall SL is the wide open unit disk over L. The isomorphism and its inverse
ψ : An×Sp(L) SL −→ U are defined as follows

φ
(
(z, b), (z, b′)

)
:=
(
(z, b), b′b−1

)
and ψ

(
(z, b), a

)
=
(
z, b), (z, (1 + a)b

)
.

This implies (see lemma 3.5 in section §3.1.3) that for any admissible affinoid open V
of An the morphism of complexes

(M ⊗ Ω•An/Z)(V ) −→ (π∗1(M)⊗ Ω•U/Z)(π−1
1 (V ) ∩ U)

is a quasi isomorphism and hence pull-back by the diagonal immersion

∆∗ : (π∗1(M)⊗ Ω•U/Z)(π−1
1 (V ) ∩ U) −→ (M ⊗ Ω1

An/Z)(V )

is a quasi-isomorphism. In degree 0, 1 this implies that for any section η ∈ (π∗1(M)⊗
Ω1
U/Z)(π−1

1 (V ) ∩U) such that D(η) = 0 and ∆∗(η) = 0, there exists a unique section
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ε ∈ π∗1(M)(π−1
1 (V ) ∩ U) such that D(ε) = η and ∆∗(ε) = 0. Now we apply this

to the case π−1
1 (V ) ∩ U = π−1

2 (V ) ∩ U and η = π∗1(ω) − π∗2(ω) for a section ω ∈
(M ⊗ Ω1

An/Z)(V ).

Remark 5.9. — In the notations of lemma 5.8 M has a basis of horizontal sections
on An.

Proof. — Let L′ be a finite Galois extension of L such there exists a section s :

ZL′ −→ AnL′ of the structure morphism g : AnL′ −→ ZL′ (the subscript L′ denotes
extension of scalars to L′). For example, suppose there is a b0 ∈ B1

L(L′) such that
|f | < |b0| < 1. We may define s by s(z) = (z, b0) and thus we have a morphism
u =: (idAn, s) : An = An ×Z Z −→ U . Then u∗h gives a horizontal isomorphism of
ML′ to the module with trivial relative connection g∗s∗ML′ , defined over L′. Now
take Gal(L′/L) invariants to get a basis of horizontal sections of M .

Let us also notice that remark 5.9 implies that in lemma 5.8 one could reduced to
the case where (M,D) is trivial and then prove the lemma by elementary calculations.

5.3. Lifts of Frobenius. — Recall X −→ S is a family of curves over the wide
open unit disk and E is an F-isocrystal on C. We have defined a Frobenius ϕ : S −→ S

over the absolute Frobenius σ on Spec(K0) in section 2.1 and E comes equipped with
an isomorphism of isocrystals on C

F : F
∗
(E ) −→ E

where F is the Frobenius on C over the absolute Frobenius σ on Spf(W ).
Using F we have defined a Frobenius operator Φ1 : ϕ∗H1 −→ H1 in section 2.1.

Let f := [k : Fp]. We will give an explicit description of the “linearized Frobenius",
Φf1 using “local lifts of Frobenius” to X.

Recall, from section 3.2, the admissible cover of X, C ′ = {Tv, Ae}v∈v(G),e∈e(G). We
intend to construct local lifts of F , so we will need to refine this cover in two ways. First
let L be a finite, non-trivial, totally ramified extension ofK0 and B1 = BL the affinoid
disk around 0 of radius |πL|, where πL is some uniformizer of L. Let B2 be the affinoid
disk around 0 of radius |πp

f

L |, where f = [k : F]. Then ψ = ϕf⊗K0
idL, maps B1 to B2.

Similarly, let F
∗
k(E ) denote the isocrystal on C defined by: F

∗
k(E )(T,zT ) = E(T,Fk◦zT ),

where let us recall that F k = F
f
is the Frobenius endomorphism over k of C, and by

Fk : (F k)∗(E ) −→ E the f -iterate of F .
For the rest of this chapter we use the following notations: for every v ∈ v(G), i =

1, 2 let Ziv := Zv ×S Bi, UBi,v := Uv ×S Bi, Aie := Ae ×S Bi.
We have

Proposition 5.10. — a) For every v ∈ v(G) there exist wide open strict neighbourhoods
U iv ⊂ UBi,v of Ziv over Bi and a rigid morphism φv : U1

v −→ U2
v over ψ, i.e. such
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that the following diagram commutes

U1
v

φv−→ U2
v

↓ ↓
B1 ψ−→ B2

b) The morphism φv at a) is a lift of Frobenius i.e. the following diagram commutes

U1
v ↪→ X

red−→ C

φv ↓ F
f ↓

U2
v ↪→ X

red−→ C

Proof. — For i = 1, 2 let W i
v denote wide open strict neighbourhoods of Ziv in UBi,v

such that there exist isomorphisms of rigid spaces over Bi (see proposition 3.18)

αiv : W i
v
∼= W i

v,0 ×Bi,

where W i
v,0 is the fiber at s = 0 ∈ Bi of W i

v. Then W i
v,0 is a wide open strict

neighbourhood of Zv,0 in Uv,0. As Zv,0 =]C
0

v[X0
, as in the discussion after the proof

of lemma 5.5 let A be a smooth OL-algebra of finite type such that Spec(A) is a
lifting of C

0

v. We identify A† with a sub OL-algebra of the ring of rigid functions on
Zv,0 and let Φv : A† −→ A† be a lifting of F

f
: Cv −→ Cv. We may choose strict

affinoid neighbourhoods T i of Zv,0 in W i
v,0 such that Φv(T

1) ⊂ T 2
v . As in the proof of

proposition 3.18 define wide open neighbourhoods U iv,0 of Ziv,0 in W i
v,0 over Bi such

that Φv(U
1
v,0) ⊂ U2

v,0. For later use let us remark that we may choose U2
v,0 such that

U2
v,0 − Zv,0 is a disjoint union of wide open annuli. Let now U iv := (αiv)

−1(U iv,0 ×Bi)
and φv : U1

v −→ U2
v the morphism φv = α2

v ◦ (Φv, ψ) ◦ (α1
v)
−1. By definition we have

the commutative diagram

U1
v

φv−→ U2
v

α1 ↓ ↓ α2

U1
v,0 ×B1 (Φv,ψ)−→ U2

v,0 ×B2

compatible with the projections to B1 respectively B2. The conclusion follows.

We now give a general definition of a “lifting of Frobenius” and some of its proper-
ties.

(1) For two admissible opens U i ⊂ XBi , i = 1, 2, we say that an L-morphism
φ : U1 −→ U2 is a lifting of Frobenius over ψ : B1 −→ B2 if the following two natural
diagrams commute

U1 φ−→ U2

↓ ↓
B1 ψ−→ B2
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and
U1 ↪→ XB1

red−→ (XB1)1 = C × A1
k

φ ↓ F f ↓
U2 ↪→ XB2

red−→ (XB2)1 = C × A1
k

Let us recall that in the second diagram Bi denote the natural formal models of Bi

defined in section 3.2 and (XBi)1 the closed sub-schemes of XBi defined by the ideals
πLOXBi

, for i = 1, 2. F denotes the absolute Frobenius of C × A1
k.

The commutativity of the above two diagrams is equivalent to the commutativity
of the diagram:

U1 ↪→ X
red−→ C

φ ↓ F
f ↓

U2 ↪→ X
red−→ C

(2) For any lifting of Frobenius φ : U1 −→ U2, we have a canonical horizontal iso-
morphism Fφ : φ∗(EX|U1) ∼= EX|U2 . Here EX denotes the evaluation of the F -isocrystal
E on the (wide open) enlargement X of C.

Proof. — First let us assume that U1, U2 are affinoids. Let U 1,U 2 be the canonical
formal models of of U1, U2 constructed as in lemma 3.1 using the p-adic formal models
XB1 ,XB2 over OL. Moreover the commutative diagram in (1) above and the remarks
after the proof of lemma 3.1 provide a morphism ϕ : U 1 −→ U 2 whose generic
fiber is φ and which induces F

f
in the special fiber. Now EX|U1 , φ∗(EX|U2) are in fact

isomorphic to the evaluations of E , respectively of (F
f
)∗(E ) on the enlargement U 1.

Now the definition of the F -isocrystal E provides the Fφ.
In general, choose an admissible affinoid covering of U2 and an admissible affinoid

covering of U1 which refines the inverse image under φ of the covering of U2. The
functorially of the construction in lemma 3.1 imply that the local Fφ’s glue.

(3) If φ, φ′ : U1 −→ U2 are two liftings of Frobenius there is a canonical horizontal
isomorphism χφ ,φ′ : φ∗(EX|U2) −→ φ

′∗(EX|U2) compatible with Fφ, Fφ′ . For three
liftings, they satisfy the cocycle condition.

Proof. — This follows from the fact that φ∗(EX|U2) is canonically isomorphic to the
evaluation of (F

f
)∗(E ) on the enlargement U 1 defined in the proof of (2) above and

again from the properties of F -isocrystals.

Let U iv, i = 1, 2, v ∈ v(G) denote admissible open subsets of XBi over Bi whose
properties were proved in proposition 5.10. In fact we will choose the U iv’s as in
the proof of proposition 5.10 i.e. such that for every v ∈ v(G), i = 1, 2 there are
isomorphisms of rigid spaces over Bi: αiv : U iv

∼= U iv,0×Bi where U iv,0 are the fibers of
U iv at s = 0 and they are wide open strict neighbourhoods of Zv,0 in W i

v,0. Moreover,
U2
v,0 − Zv,0 is a disjoint union of wide open annuli.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010



234 R. COLEMAN & A. IOVITA

Let us note that C i = {U iv, Aie}v∈v(G),e∈e(G) where i = 1, 2 are admissible covers
of XBi by acyclic, admissible open subsets. For every e ∈ e(G) we have morphisms
φe : A1

e −→ A2
e, over ψ : B1 −→ B2 defined by φe(xe) = xp

f

e and φe(xτ(e)) = xp
f

τ(e).

Let Fv, Fe denote the Frobenii provided by (2) above.

Fv : φ∗v(EX |U2
v
) −→ EX |U1

v
for all v

and respectively
Fe : φ∗e(EX |A2

e
) −→ EX |A1

e
for all e.

The description of the Frobenius Φf1 : ψ∗HB2 −→ HB1 . — We can now give
the description of the Frobenius operator. Let C i = {U iv, Aie}v∈v(G),e∈e(G) be the
respective open covers of XBi .

Recall, E is an F-isocrystal on C and let Fv, Fe be as above. Let ω ∈ HB2 =

H1
dR(XB2/B2,EX(log(Y ))) be represented by the hypercocycle with respect to C 2:(

(ωv)v∈v(G), (ωe)e∈e(G), (fe)e∈e(G), (fe)e∈e(G)

)
.

Now we define a hypercocycle of the relative de Rham complex of EX with respect to
C 1 whose cohomology class in HB1 represents Φf1 (ψ∗ω).

Let us remark that for e ∈ e(G) we have (see the proof of proposition 5.10)

U2
a(e) ∩A

2
e = (U2

v,0 ∩A2
e,0)×B2 = {|a| < |xe,0| < 1} ×B2,

where xe,0 is the restriction of xe to Ae,0 and a ∈ L is such that |πp
f

L | < |a| < 1. Thus
the rigid space An := U2

a(e) ∩ A
2
e is a family of annuli over the affinoid Z = B2 and

we may apply lemma 5.8 to the sheaf with relative connection (EX|An, DXB2/B2). We
let ∆̃(U2

a(e)
∩A2

e)/B
2 denote the neighbourhood of the relative diagonal in An ×B2 An

defined in that lemma. There exists a unique section εe ∈ EX(∆̃(U2
a(e)
∩A2

e)/B
2) such

that
π∗1DXB2/B2(εe) = π∗1(ωa(e)|∆̃

U2
a(e)
∩A2

e/B
2
)− π∗2(ωa(e)|∆̃

U2
a(e)
∩A2

e/B
2
),

and whose restriction to the diagonal vanishes.
Let us define

νv = Fv(φ
∗
v(ωv)), νe = Fe(φ

∗
e(ωe)) he = ∆∗(Fa(e) ◦φ∗a(e), Fe ◦φ

∗
e)(εe) +Fe(φ

∗
e(fe)),

he := ∆∗(Fb(e) ◦ φ∗(
¯
e)
, Fe ◦ φ∗e)(εe) + Fe(φ

∗
e(fe)).

Then the collection
(
(νv)v∈v(G), (νe)e∈e(G), (he)e∈e(G), (he)e∈e(G)

)
is a hypercocycle

for the relative logarithmic de Rham complex of EX on XB1/B1 with respect to the
covering C 1. Its cohomology class depends only on ω and is equal to Φf1 (ω).

To see this let us recall the notations and results of section 3.4.3. Namely let us
recall that we denoted X×× the formal scheme X with log structures on Y , let S ×

denote the formal scheme S = Spf(W [[t]]) with log structures at t = 0 and let C
××
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denote the scheme C with inverse image log structure from X××. If for e ∈ e(G)

we denote also by e the singular point of C corresponding to the edge e we have(
(X××)/e

)rig
= Ae and(

(X×× ×S× X
××)/e

)rig ×S B2 ∼= ∆̃(U2
a(e)
∩A2

e)/B
2 .

Clearly, under the identification of

H1
dR(X/S,EX(log(Y )) ∼= H1

cris(C
××
/S×,E ),

in section 3.4.3, after restricting to B1, B2 respectively, the image of the linearized
crystalline Frobenius Φf is exactly the one defined above in terms of hypercocycles.

Remark 5.11. — Let us recall from section 2.1 that Φ induces Φdeg on H1(Y,E ) and
that it is horizontal with respect to the connection, i.e. we have

(Φ ◦ ϕ∗) ◦ ∇ = ∇ ◦ Φ.

Here we have dropped the index (respectively upper index) 1 from the notation. There-
fore we also have

(Φf ◦ φ∗) ◦ ∇ = ∇ ◦ Φf .

5.4. Integration. — The theory of p-adic integration of convergent F-isocrystals
on curves is the generalization of that developed by the first author in [8] (see also
[6].) For the convenience of the reader we will briefly review the theory in what follows
and prove the necessary generalizations.

Let us go back to the notations of section §5.2, i.e. let s ∈ S, Xs is the fiber of X
over s defined over L and let us fix v ∈ v(G). Let us consider the pair (U,Z), where
U = Uv,s, Z = Zv,s. Let us recall that Z is an affinoid over L with good reduction
and U is a wide open neighbourhood of Z in Xs such that U − Z is a disjoint union
of wide open annuli.

Let (M,D) be a convergent F -isocrystal on (U,Z). An admissible open subset T
of U will be called a residue class of (U,Z) if T is a residue class of Z or a connected
component of U−Z. Lemma 5.5 implies that the restriction of (M,D) to every residue
class of (U,Z) is trivial. We now define the sheaf Mflog with connection Dflog on U ,
as follows: we choose a branch log of the p-adic logarithm on L∗ and define for an
admissible open V of U

Mflog(V ) =
∏
T

M(VT )⊗OVT
OU (VT )[log(f)]f∈OU (VT )×

where T runs over the residue classes of (U,Z) and VT = V ∩ T . Here, for every V
and T as above OU (VT )[log(f)]f∈OU (VT )× is the sub-ring of the ring of locally analytic
functions on VT generated by OU (VT ) and the functions log(f) for f ∈ OU (V )×. The
connection extends naturally to this sheaf. Let Ω•U (M◦) be the naturally induced de
Rham complex of sheaves on U , where ◦ = nothing or flog. Here we have denoted
by ΩiU (M◦) := ΩiU ⊗OU M

◦ for i = 0, 1. Let (M◦)† denote the pullback of M◦ to
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Z† and let Hi(M◦, D) := Hi(Ω•U ((M◦)†)). Suppose φ is a lifting of Frobenius to Z†

as in section 5.2. Then as explained in [C1, §7] φ induces endomorphisms (ϕi)◦ of
Hi(M◦, D) (morally, (φi)◦ = Fφ ◦ φ∗).

Note that H1(Mflog, Dflog) = 0. We have

Theorem 5.12. — Let ω ∈ Ω1
U (M)(U). We denote by [ω] its image in H1(M,D).

Suppose that there is a polynomial G(t) with coefficients in L such that
(a) G(φ1)([ω]) = 0 and (b) G((φ0)flog) is an isomorphism.
Then there exists a section u of Mflog(U), unique up to a horizontal section of M on
U such that
i) D(u) = ω

ii) G(Fφ ◦ φ∗)(u|X†) is overconvergent on X.
Moreover, u does not depend on the choice of φ or G(t).

The existence and uniqueness is, up to notation, Theorem 7.4 of [C1] (the notion of
regular singular annuli is subsumed by Lemma 5.1). The independence follows from
the fact that the map (φi)◦ does not depend on the choice of φ and we may choose
for G(t) the minimal polynomial of φ1 acting on the finite dimensional space spanned
by the classes of the images of ω, Fφ ◦ φ∗ω, (Fφ ◦ φ∗)2ω, . . . in H1(M,D).

5.5. The Frobenius Operators

Definition 5.13. — We say that the F-isocrystal E on C is regular if for every vertex
v ∈ v(G) the characteristic polynomials of Frobenius on H0

cris(x,E ) and H1
cris(C

××
v ,E )

are relatively prime for all closed points ix : x −→ Cv. We have denoted, as in section
§5.1 by Cv the irreducible component of C corresponding to v and by C

××
v the log

scheme Cv with log structures given by the divisor Singv

We have

Lemma 5.14. — Let C be the curve over V with semi-stable reduction introduced in
the introduction, let g : T −→ C be a smooth proper morphism and let us consider the
F -isocrystal on C, H i := Rig∗,cris(OT ). Then Symj(H i) is a regular F -isocrystal
for i, j ≥ 0.

Proof. — Let T̄ denote the special fiber of T , T̄v the pull back of T̄ −→ C by
Cv ⊂ C

The Leray spectral sequence for log crystalline cohomology in the relative situation
gv : T̄v −→ Cv for log structures on Cv given by Singv and on T̄v given by the fiber
above Singv, reads

Ei,j2 = Hi(C
××
, Rjgv,cris,∗(OT̄v )) => Hi+j

cris (T̄ ××v ,Qp).

Let us first remark that H j
v = Rjgv,cris,∗(OT̄v ) is the pull back of H j by the inclusion

Cv ↪→ C.
As Cv is a smooth proper curve over k let us also remark that Ei,j2 = 0 unless

0 ≤ i ≤ 2. This implies that the differential d2 : E1,j
2 −→ E3,j−1

2 vanishes as well as
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the differential d2 whose target is E1,j
2 for all j ≥ 0. Therefore E1,j

3 = E1,j
2 for all

j ≥ 0 and the spectral sequence collapses at E3. Therefore, for n ≥ 0 the K0-vector
space with Frobenius Hn+1 = Hn+1

cris (T̄ ××v ,Qp) has a filtration 0 ⊂ F 1 ⊂ F 2 ⊂ Hn+1

where F1, F
2 have the property that F 2/F 1 ∼= E1,n

3 . By the comment above it follows
that H1

cris(C
××
v ,H n) is a quotient, as K0-vector space with Frobenius, of a subspace,

F2 of Hn+1.
By the main result of [28] Hn+1

cris (Z
××
v ,Qp) ∼= Hn+1

rig (Zv − Singv,Qp) and by [3]
the weights of Frobenius on the last K0-vector space are larger or equal to (n+ 1)/2.
It follows that the weights of Frobenius on H1

cris(C
××
v ,H n)) are also larger or equal

to (n+ 1)/2. On the other hand, since Zx is smooth and H0(H n
x ) ∼= K ⊗Hi

cris(Zx)

for any point x of Cv, using the Riemann hypothesis, the weights of Frobenius on
H0(H n

x ) ∼= H0
cris(x, i

∗
xH

n) are all equal to n/2. Thus the characteristic polynomials
of Frobenius on H1

cris(C
××
v ,H n)) and H0(x,H n) are relatively prime for all closed

points x of C. The statement for Symj(H i) follows by the same type of arguments.

For the rest of this chapter we assume E is regular. Let us now, as in the previous
section, extend scalars to a finite, non-trivial, totally ramified extension L of K and
let B = BL ⊂ S be the affinoid disk of lemma 3.17. Let us recall proposition 3.18
which asserts that for all v ∈ v(G) there is a wide open neighbourhood Wv of Zv,B in
Uv,B over B and an isomorphism over B

αv,0 : Wv −→ B ×Wv,0,

whereWv,0 is the fiber ofWv at 0 ∈ B. Let us denote by fB : XB −→ B the restriction
of our family of curves to B. Let us now fix v and denote α := αv,0, W0 := Wv,0. Let
β : Wv −→ W0 be π2 ◦ α and j : W0 −→ Wv be defined by j(w) = α−1(0, w). Let
EX and EY ,denote the evaluations of E on X and Y , where let us recall that Y :=

X×S Spf(W ) where the morphism Spf(W ) −→ S is given by t −→ 0. EX and EY are
coherent sheaves with connections on X = Xrig and respectively Y = Y rig. Denote
also by (Ev, Dv), (E0, D0) the restrictions of the sheaves with connections (EX, DX/S)

and (EY , DY ) to Wv and respectively W0. The isomorphism α induces the vertical
isomorphisms in the following commutative diagram

Ev
Dv−→ Ev ⊗OWv Ω1

Wv/B

↓∼= ↓∼=
E0 ⊗L OB

D0⊗idB−→ E0 ⊗OW0
Ω1
W0/L

This implies

Lemma 5.15. — a) The L-vector space H1
dR(W0/L,E0) is finitely generated.

b) We have a natural isomorphism of sheaves on B induced by α: H1
dR(Wv/B,Ev) ∼=

H1
dR(W0/L,E0)⊗L OB.
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Proof. — a) is a consequence of lemma 5.2 and b) follows from the above commutative
diagram.

Let us fix ω1, ω2, . . . , ωn global sections of E0⊗OW0
Ω1
W0/L

whose cohomology classes
[ω1], . . . , [ωn] form an L-basis of H1

dR(W0/L,E0). Let now ω be a global section of
Ev ⊗OWv Ω1

Wv/B
and denote by [ω] ∈ H1

dR(Wv/B,Ev)(B) its cohomology class. Then
[ω] =

∑n
i=1 ai[ωi] for ai ∈ OB(B), i = 1, n and therefore we have

ω =
n∑
i=1

aiωi +Dv(f) for some f ∈ Ev(Wv).

Let us fix λ1, λ2, . . . , λn ∈ E flog
0 (W0) p-adic integrals of ω1, . . . , ωn (see section 5.4.)

We denote by λω :=
∑n
i=1 aiλi+f ∈ (E flog

0 ⊗LOB)(Wv) and call it a p-adic integral
of ω. It is well defined up to an element of Ev(Wv)

Dv .
We have the following,

Lemma 5.16. — a) With the notations above, λω is a family of p-adic integrals of ω,
i.e.

i) Dv(λω) = ω

and
ii) for every s ∈ B, λω|Wv,s

is a p-adic integral of ω|Wv,s
.

b) If ω is the natural lift of ω to Ev ⊗OWv Ω1
Wv/L

(log(W0)) defined in section 4.2, and
η is defined by the equality DWv/L(ω) = η ∧ dy, then

ω −DWv/L(λω) = ληdy.

Proof. — a) is clear and for b) let us write

ω =
n∑
i=1

ai(y)ωi +Dv(f),

where ai(y) ∈ OB(B), f ∈ Ev(Wv) and the ωi’s have been defined above. Then we
have

ω =
n∑
i=1

ai(y)ωi +DWv/L(f)

and therefore η = −
∑n
i=1 a

′
i(y)ωi and

ω −DWv/L(λω) = −(
n∑
i=1

a′i(y)λi)dy = ληdy.

Let us choose now for the rest of this section the branch of the logarithm on C×p
such that log(πL) = 0.

We will give a general definition: let Z be a rigid space over L and let α : M −→ OZ
be an integral log structure, where M is a sheaf of monoids.

Then ifW ⊂ Z is a admissible open subspace which is Stein we define OZ(W )log to
be the polynomial ring OZ(W )[`(m)]m∈M(W ), where `(m) are independent variables,
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divided by the relations: `(m1m2) = `(m1) + `(m2) and `(m) = log(α(m)) if α(m) ∈
OZ(W )×.

The natural derivation d : OZ(W ) −→ Ω1
W/L extends canonically to a derivation d :

OZ(W )log −→ Ω1
W/L(log(M)) by defining d(`(m)) = d(α(m))/α(m) for m ∈M(W ).

In particular, let us consider the log structure on B given by the divisor 0 ∈ B

and choose a parameter y ∈ OB(B) at 0. Then it is easy to see that OB(B)log =

OB(B)[`(y)] and we have d(`(y)) = dy/y.
Let e ∈ e(G) and we denote in this section by Ae := Ae,B and by A0 := Ae,0 the

fiber of Ae at 0 ∈ B. If we consider on Ae the log structure given by the divisor over
B with normal crossings A0, we see that OAe(Ae)log = OAe(Ae)[`(xe), `(xτ(e))] with
unique relation `(xe) + `(xτ(e)) = `(y). We have dAe/B(`(xe)) = dAe/B(xe)/xe and
dAe/B(`(xτ(e))) = dAe/B(xτ(e))/xτ(e).

We also denote by (Ee, De) the restriction of the sheaf with connection (EX, DX/S)

to Ae. Let ω be a global section of the sheaf Ee ⊗OAe Ω1
Ae/B

(logA0)) and denote by
ε1, . . . , εα a basis of horizontal sections of (Ee, De). Then using lemma 4.8 we can write

(∗) ω =
α∑
i=1

εi ⊗ ri(y)
dAe/B(xe)

xe
+De(ue),

where ri(y) ∈ OB(B) and ue ∈ Ee(Ae).
We set

λω :=
α∑
i=1

εi ⊗ ri(y)`(xe) + ue ∈ Ee,log := Ee(Ae)⊗OAe (Ae) OAe(Ae)log.

Lemma 5.17. — We have,
a) With the notations above λω is a family of p-adic integrals of ω in the sense that

i) De(λω) = ω

and
ii) λω is an element of Ee,log well defined up to an element of of Ee(Ae)De [`(y)] :=

E (Ae)
De ⊗OB(B) OB(B)[`(y)].

b) Let ω̃ denote the lift of ω to absolute one-forms as in section 4.2 and let η be
defined by the equality DAe/L(ω̃) = η ∧ dy. Then ω̃ −DAe/L(λω) = ληdy.

Proof. — Part i) of a) is clear and for part ii) let us remark that (Ee,log)De =

E (Ae)
De [`(y)]. For b) let us notice that

DAe/L(ω̃) = −
α∑
i=1

εi ⊗ r′i(y)
dAe/L(xe)

xe
∧ dy,

and clearly

ω̃ −DAe/L(λω) = −(
α∑
i=1

εi ⊗ r′(y)`(xe))dy = ληdy.
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Now we will use the p-adic integration discussed above in order to describe the
Frobenius operator on HB . Let us remark that the collection C ′′B = {Wv, Ae}v∈v(G),e∈e(G)

is an admissible cover of XB by admissible, acyclic, wide open subsets over B. We
will define an OB-linear map,

sB : HB −→ H1,0(C ′′B ,E )log := H1,0(C ′′B ,E )⊗OB(B) OB(B)[`(y)]

as follows: let ω ∈ HB be represented by the hypercocycle with respect to the covering
C ′′B (

(ωv)v∈v(G), (ωe)e∈e(G), (fe)e∈e(G), (fe)e∈e(G)

)
.

where let us recall: ωv ∈ (Ev ⊗OWv Ω1
Wv/B

)(Wv), ωe ∈ (Ee ⊗OAe Ω1
Ae/B

(log(A0))(Ae),
fe ∈ Ee(Wa(e) ∩Ae) and fe ∈ Ee(Wb(e) ∩Ae) satisfying the usual cocycle conditions.

For every e ∈ e(G), let sB(ω)e be the section:

fe − (λωa(e) |Wa(e)∩Ae − λωe |Wa(e)∩Ae),

and similarly let (sB(ω))e be the section

fe − (λωb(e) |Wb(e)∩Ae − λωe |Wb(e)∩Ae).

Lemma 5.18. — For every e ∈ e(G) and ω ∈ HB,
(
sB(ω)e, (sB(ω))e

)
∈ E De

e (Wa(e) ∩
Ae)[`(y)]⊕ E De

e (Wb(e) ∩Ae)[`(y)].

Proof. — We will only prove that sB(ω) ∈ E De(Wa(e) ∩ Ae)[`(y)], and leave the
remaining similar argument to the reader. The isomorphism αa(e),0 induces an iso-
morphism

α : Wa(e) ∩Ae ∼= B × U0,

where U0 is the annulus Wa(e),0∩Ae,0. Let πi for i = 1, 2 be the projections of B×U0

composed with α and denote by x0 := π∗2(xe|Wa(e)∩Ae). Then x0 is a parameter of
U0 (see the beginning of section 4.) If we write ωe as in formula (*) before lemma
(5.17) and use the isomorphism α above, we may integrate ωe|Wa(e)∩Ae by the recipe
outlined in lemma 5.16. Let us denote this integral by λ. We have

sB(ω)e = fe − (λωa(e) |Wa(e)∩Ae − λ+ λ− λωe |Wa(e)∩Ae).

First let us first remark that x0 ∈ OU0
(U0)× therefore `(x0) = log(x0) and that

OU0 [log(f)]f∈O×
U0

= OU0 [log(x0)]. Indeed every element f ∈ OU0(U0)× can be written

f = axn0 g, with a ∈ L×, n ∈ Z and g ∈ OU0
(U0) is such that |g − 1| < 1. Therefore

log(f) = log(a) + n log(x0) + log(g), where log(g) ∈ OU0(U0).
As Wa(e) ∩ Ae is contained in the residue class Ae of XB , (Ee, De) has a basis of

horizontal sections on Wa(e) ∩Ae and so we have(
Ee((Wa(e) ∩Ae))[log(x0)]

)De
= Ee((Wa(e) ∩Ae))De .

This implies that fe − λωa(e) |Wa(e)∩Ae + λ ∈ EAe(Wa(e) ∩Ae)[`(y)].
Let us remark that x0 = uxe, where u ∈ OAe(Wa(e) ∩ Ae)∗ such that log(u) is an

analytic function on Wa(e) ∩Ae. Therefore lemma 5.17 shows that λ−λωe |Wa(e)∩Ae ∈
Ee(Wa(e) ∩Ae)[`(y)]. Now the fact that De(sB(ω)e) = 0 implies the lemma.
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For every ω ∈ HB denote by sB(ω) the class of the cocycle (sB(ω)e, sB(ω)e)e∈e(G)

in H1,0(C ′′B ,E )log and by sB : HB −→ H1,0(C ′′B ,E )log the respective OB-linear ho-
momorphism. Composing sB with the inclusion H1,0(C ′′B ,E )log −→ HB,log obtained
from (2), we may think of sB as an OB-linear map from HB to HB,log. We have,

Theorem 5.19. — a) sB : HB −→ H1,0(C ′′B ,E )log is a section of the inclusion.
b) For every u ∈ B∗ = B − {0}, the fiber sB,u of sB at u coincides with the map su
defined in section 2.2.
c) We have (sB ⊗ 1) ◦ ∇ = ∇ ◦ sB .
d) Let B1 and B2 as in section 5.3. We have Φf ◦ sB1 = sB2 ◦ Φf .

Proof. — a) Let x ∈ H1,0(C ′′B ,E ) be represented by the cocycle
(
(fe), (fe)

)
e∈e(G)

.
Then the image of x in HB is the class of the hypercocycle:(
(0v)v∈v(G), (0e)e∈e(G), (fe)e∈e(G), (fe)e∈e(G)

)
and clearly the image of this class under

sB is x.
For b) if u ∈ B∗ we denote C ′′u = {Wv,u, Ae,u} the intersection of the cover C ′′B

with the fiber Xu. Let Cu = {Uv,u}v∈v(G) denote the wide open cover of Xu described
in section 2.2. We denote by Eu the restriction of EX to the fiber Xu. We have the
following diagram

H1
dR(Xu,Eu)

sB,u−→ H1,0(C ′′u ,Eu)

|| ↓∼=
H1
dR(Xu,Eu)

su−→ H1,0(Cu,Eu)

where the right vertical isomorphism is the one defined in section §3.5.4. Lemma 3.34
implies that the diagram is commutative and this proves b).

Let us now prove c). Let ω ∈ HB and let(
(ωv)v∈v(G), (ωe)e∈e(G), (fe)e∈e(G), (fe)e∈e(G)

)
be a hypercocycle with respect to the covering C ′′B representing the class ω. Let ωv and
ω̃e be the lifts of ωv and ωe respectively to absolute one-forms defined in section §4.2.
LetDXB/Lωv = ηv∧dy,DXB/Lω̃e = ηe∧dy, ωa(e)|Wa(e)∩Ae−ω̃e|Wa(e)∩Ae−DXB/L(fe) =

gedy and ωb(e)|Wb(e)∩Ae − ω̃e|Wb(e)−Ae) − DXB/L(fe) = gedy for ηv, ηe, ge and ge
global sections of Ev⊗Ω1

Wv/B
(logW0), Ee⊗Ω1

Ae/B
(logA0), Ea(e)|Wa(e)∩Ae Eb(e)|Wb(e)∩Ae

respectively. Then (sB ⊗ 1)(∇ω), as an element of HB,log ⊗ dy, is represented by the
hypercocycle(

(0v)v∈v(G), (0e)e∈e(G), (ge − (ληa(e) |Wa(e)∩Ae − ληe |Wa(e)∩Ae))e∈e(G),

(ge − (ληb(e) |Wb(e)∩Ae − ληe |Wb(e)∩Ae))e∈e(G)

)
⊗ dy.

On the other hand ∇(sB(ω)) is represented by the hypercocycle(
(0v)v∈v(G), (0e)e∈e(G), (−DXB/L(fe) +DXB/Lλωa(e) |Wa(e)∩Ae −DXB/Lλωe |Wa(e)∩Ae)e∈e(G),

(−DXB/L(fe) +DXB/Lλωb(e) |Wb(e)∩Ae −DXB/Lλωe |Wb(e)∩Ae)e∈e(G)

)
⊗ dy.
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A calculation using the lemmas 5.16 and 5.17 shows that the two hypercocycles are
cohomologous.

Now we prove d). For this let us recall the notations B1, B2 and the expression of
Φf at the end of section 5.3. Let U iv, i = 1, 2 and v ∈ v(G) denote admissible wide
open subsets of XBi satisfying the properties of proposition 5.10 and the additional
property that there are isomorphisms αv,i : U iv

∼= U iv,0 × Bi. As in section §5.3 we
consider the admissible covers C i = {U iv, Aie} of XBi . Let the class ω ∈ HB2 be
represented by the hypercocycle for the covering C 2(

(ωv)v∈v(G), (ωe)e∈e(G), (fe)e∈e(G), (fe)e∈e(G)

)
.

Then sB2(ω) is represented by the hypercocycle(
(0v)v∈v(G), (0e)e∈e(G), (ge)e∈e(G), (ge)e∈e(G)

)
where ge = fe − (λωa(e) |U2

a(e)
∩A2

e
− λωe |U2

a(e)
∩A2

e
) and ge = fe − (λωb(e) |U2

b(e)
∩A2

e
−

λωe |U2
b(e)
∩A2

e
).

Then Φf (sB2(ω)) is represented by(
(0v)v∈v(G), (0e)e∈e(G), (Fe(φ

∗
e(ge)))e∈e(G), (Fe(φ

∗
e(ge)))e∈e(G)

)
.

Let us recall from the end of the section §5.3 that Φf (ω) is represented by the hyper-
cocycle (

(νv)v∈v(G), (νe)e∈e(G), (he)e∈e(G), (he)e∈e(G)

)
where νv, νe, he, he are defined there.

Therefore, sB1(Φf (ω)) is represented by(
(0v)v∈v(G), (0e)e∈e(G), (xe)e∈e(G), (xe)e∈e(G)

)
with (see the end of section §5.3)

xe = he − (λνa(e) |U1
a(e)
∩A1

e
− λνe |U1

a(e)
∩A1

e
) =

= ∆∗(Fa(e) ◦ φ∗a(e), Fe ◦ φe)(εe) + Fe(φ
∗
e(fe))− (Fa(e)(φ

∗
a(e)(λωa(e)))|U1

a(e)
∩A1

e
− Fe(φ∗e(λωe))|U1

a(e)
∩A1

e
).

Now we use the fact that εe = π∗1(λωa(e) |U2
a(e)
∩A2

e
)− π∗2(λωe |U2

a(e)
∩Ae) and obtain

xe = Fe(φ
∗
e(fe − λωa(e) |U2

a(e)
∩A2

e
+ λωe |U2

a(e)
∩A2

e
)).

Similarly
xe = ge − (λνb(e) |U1

b(e)
∩A1

e
− λνe |U1

b(e)
∩A1

e
) =

= Fe(φ
∗
e(fe − λωb(e) |U2

b(e)
∩A2

e
+ λωe |U2

b(e)
∩A2

e
)).

This ends the proof of Theorem 5.19.

Now we can finish the proof of Theorem 2.6. To prove that Φdeg and Φint get
identified by parallel transport. We have exact sequences

0 −→ H1,0(C)⊗K0
L −→ H1(C,E )⊗K L −→ H0,1(C)⊗K0

L −→ 0
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and
0 −→ H1,0(C ′′0 ,E0) −→ H1(Y,E0) −→ H0,1(C ′′0 ,E0) −→ 0.

Proposition 3.35 implies that under the parallel transport isomorphism H1(Y,E0)⊗K0

L ∼= H1(C,E ) ⊗K L, H1,0(C) gets identified with H1,0(C ′′0 ,E0) and H0,1(C) gets
identified with H0,1(C ′′0 ,E0). Moreover these last two isomorphisms commute with
the respective Frobenii. We’ll first show that Φfdeg corresponds to Φfint. Let us parallel
transport Φfdeg to H1(C,E )⊗K0 L and let us denote by Φπdeg this endomorphism, i.e.,
if ω ∈ (Hlog)∇, we have seen that (Φf (ω))0 = Φfdeg(ω0) and as Φ(ω) ∈ (Hlog)∇ we set
Φπdeg(ωπ) = (Φf (ω))π. We have to show that Φπdeg = Φfint and so far we know that
Φfint and Φπdeg coincide both on the image of H1,0(C) and on the quotient H0,1(C)

and sπ ◦ Φfint = F f0,cris ◦ sπ. Using Theorem 5.19 we have

sπ ◦ Φπdeg = (sB2 ◦ Φf )π = (Φf ◦ sB1)π = F f0,cris ◦ sπ.

This proves that Φπdeg = Φfint. Moreover, since E is regular it follows that the char-
acteristic polynomials of F0,cris on H0,1(C) and of F1,cris on H1,0(C) are relatively
prime. Thus both exact sequences above have natural Frobenii equivariant splittings
and as Φπdeg = Φfint, the splittings coincide under parallel transport. But the split-
ting produced by Φfint is sπ, therefore we immediately deduce that H1(C,E )int and
H1(Y,E0) become identified by parallel transport and the same is true for Φint and
Φdeg. This completes the proof of Theorem 2.6.

6. Logarithmic F-isocrystals

We start by defining the main objects of this section, the log F-isocrystals.
Let C be our semi-stable curve over V , let P be a finite set of smooth sections

of C and C× the corresponding log scheme. Let P be the special fiber of P . Then
P is a smooth divisor of C and we denote, to the end of this section, by C

×
the

corresponding log scheme.

Definition 6.1. — A logarithmic enlargement of C
×
is a pair (T×, zT ) consisting of a

formal log scheme T× and a morphism of log schemes zT : T×0 → C
×
. If (U×, zU )

and (T×, zT ) are two log enlargements of C
×

then a morphism of log enlargements
g : (U×, zU )→ (T×, zT ) is a morphism of formal log schemes g : U× → T× such that
zT ◦ g0 = zU .

Definition 6.2. — A log isocrystal E on C
×

is the following set of data
i) for every log enlargement (T×, zT ) of C

×
a coherent K0⊗W OT -module E(T×,zT )

(sometimes in what follows we will use the shorthand notation ET× .)
ii) for every morphism of enlargements g = (f, h) : (U×, zU ) −→ (T×, zT ) an

isomorphism of K0⊗UOW -modules θg : f−1ET −→ EU . The collection {θg} is required
to satisfy the cocycle condition.
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Remark 6.3. — If E is a log isocrystal on C
×
and (T×, zT ) is a log enlargement of C

×

such that the formal scheme T is locally Noetherian then one may interpret ET× as
a coherent sheaf on T rig, the rigid analytic space associated to T . Moreover, applying
the results in §6 of [26] one sees that ET is endowed with an integrable connection

DT : ET× −→ E×T ⊗OT ωT×/W× ,

where T× = (T,MT×) and W× is the formal scheme Spf(W ) with the trivial log
structure.

Let now k× denote the scheme Spec(k) with trivial log-structure and let W×

be the formal log scheme Spf(W ) with trivial log structure. We denote by σ be
the absolute Frobenius on k× and on W×, respectively. Let us recall that σ is the
absolute Frobenius on the respective schemes and multiplication by p on the respective
monoids. Let now f : A× −→ B× be a morphism of fine log schemes (or fine formal
log schemes), where B× is either k× or W×. We’ll denote by (A×)σ the fiber product
in the category of log schemes of the diagram

A×

↓
B×

σ−→ B×.

Let now B× be k×, then we denote by F = F(A×,k×) : A× −→ (A×)σ the morphism
induced by the pair of maps: f : A× −→ k× and the map form A× to itself which is
the identity on the underlying topological space, is s→ sp on OA and is multiplication
by p on MA. If now, (T×, zT ) is a log enlargement of C

×
then (T×, F ◦ zT ) is a log

enlargement of (C
×

)σ and ((T×)σ
−1

, (F ◦ zT )σ
−1

) is again a log enlargement of C
×
.

If E is a log isocrystal on C
×

then we will denote by F
∗
E the log isocrystal on C

×

such that
F
∗
E(T×,zT ) = E((T×)σ−1 ,(F◦zT )σ−1 ).

Definition 6.4. — A log F-isocrystal on C
×
is a log isocrystal on C

×
, E , together with

an isomorphism of log isocrystals

F : F
∗
E −→ E .

Let C be a curve over V as in Section 2.1 and let P denote a finite collection
of smooth sections of C over V , such that their image in C is the collection P . By
deformation theory the pair (C,P ) may be regarded as the fiber at the point π of the
formal model of the open unit disk S over W , of a pair (X,P) consisting of a family
of curves X→ S as in Section 2.1 and a smooth divisor P of X. We have a natural
morphism of log schemes zX : (X×P)0 → (C×P )0 = C

×
so may regard (X×, zX) (and

any of its fibers above points of S ) as a log enlargement of C
×
. Let now E be a log

F-isocrystal on C
×
. Denote by X = Xrig the rigid analytic space attached to X and

by PX the intersection of the divisor P with X. Let us denote by EX× the evaluation
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of the log F-isocrystal E on (X×PX
, zX). It is a coherent sheaf of OX -modules with an

integrable connection

DX/K0
: EX× −→ EX× ⊗OX Ω1

X/K0
(logPX).

Composing DX/K0
with the natural projections

EX× ⊗OX Ω1
X/K0

(logPX) −→ EX× ⊗OX Ω1
X/K0

(log(PX ∪ Y )) −→ EX× ⊗OX Ω1
X/S(log(PX ∪ Y ))

we get a relative integrable connection over S

DX/S : EX× −→ EX× ⊗OX Ω1
X/S(log(PX ∪ Y )).

Remark 6.5. — PX ∪Y is a divisor of X with normal crossings and PX ∩Y is a finite
set of smooth points of Y .

Let us consider now, as in Section 2.1, Hi
P = Hi

dR(X/S,EX×(log(PX ∪ Y ))), for
i = 0, 1, 2 with its logarithmic connection

∇i : Hi
P −→ Hi

P ⊗OS Ω1
S(log 0),

and its Frobenius Φi : ϕ
∗Hi

P → Hi
P . For every point s ∈ S let us denote by Ps the

fiber of PX above s and by Es = EX× |Xs . Then we have
a) if s ∈ S − {0} then Hi(Cs, Ps,E ) := Hi

P,s
∼= Hi

dR(Xs,Es(log(Ps)))

b) if s = 0 then Hi(Y, P0,E ) := Hi
P,0
∼= Hi

dR(Y ××/K0,E0), where let us recall
Y ×× is the log rigid space Y with inverse image log structure from the one on X

induced by the divisor PX ∪ Y .

Lemma 6.6. — Let E be a log isocrystal on C
×
. Then (EX× ,DX/K0

) has the property
that for every residue class M = red−1(x), with x ∈ C − P , of X, the OM -module
with connection (EX× |M ,DX/K0

) has a basis of horizontal sections.

Definition 6.7. — Let E be a log F-isocrystal on C
×
, and P a smooth divisor on C. We

say E is regular outside of P if for every vertex v ∈ v(G) and for every closed point
x ∈ Cv−P the characteristic polynomials of Frobenii on H0

cris(x,E ) and H1
cris(C

××
v ,E )

are relatively prime. Here Cv is the irreducible component of C corresponding to v
and the log structure on C

××
v is the one induced by the divisor (P ∩ Cv) ∪ Singv.

We have, similarly to Lemma 5.14,

Lemma 6.8. — Let g : Z× −→ C× be a log smooth, flat and proper morphism, where
the log structure on Z× is given by the fibers of g at the points in P . If H i :=

Rig∗,log−cris(OZ×), the log F-isocrystal Symj(H i) is regular outside of P , for i, j ≥ 0.

Proof. — The proof is very similar to the proof of Lemma 5.14.
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6.1. Convergent log F-isocrystals. — Fix a smooth divisor P of C. Suppose
from now on that the log F-isocrystal E on C

×
is regular outside of P . We define

FFM-modules Hi
deg(E ) via degeneration, as in Section 2.1 and Hi

int(E ) via integration
as in Section 2.2, for i = 0, 1, 2. We only need to explain how the “integration splitting”
s : H1(C,P,E ) −→ H1(C,P,E ) is defined. Recall that this splitting is defined in
Section 2.2 in the case P is the void set.

We first need the notion of a convergent log F-isocrystal on a pair (U,Z) consisting
of a one dimensional wide open rigid space and an underlying affinoid with good
reduction. We fix s ∈ S − {0} with residue field L as in section §5.1 and 5.2, and let
U = Uv,s, Z = Zv,s be the admissible open subsets of Xs defined in those sections for
some v ∈ v(G). Let U×, Z× denote the log rigid spaces with log structures induced
by Ps ∩ U and respectively Ps ∩ Z. Let us denote by ∆U× = U× ×Spm(L) U

× the
product in the category of log spaces and let πi : ∆U× −→ U×, i = 1, 2 be the natural
projections. Let (M,D) be a pair consisting of a coherent sheaf of OU -modules M
and an integrable connection D : M −→M ⊗OU Ω1

U×/L.
We say that (M,D) is a convergent log isocrystal on U× if the natural isomorphism

π∗1(M) ∼= π∗2(M) over the diagonal of U× extends to an isomorphism over a tube of
the diagonal of the reduction of U× in ∆U× (see Definition 5.4 for the case when P
is void.)

A convergent log F isocrystal on (U×, Z×) is a convergent log isocrystal (M,D)

on U× with the assignment of a horizontal isomorphism Fφ : φ∗(M |Z†) −→M |Z† for
every morphism of log spaces φ : Z×,† −→ X×,† which is a lift of Frobenius over k
(see also Definition 5.6 for the case when P is void.) For two such lifts the respective
isomorphisms should satisfy the cocycle relation.

Lemma 6.9. — Let v be a vertex of G and (U×, Z×) be the pair fixed above. Then
Es|U is a convergent log F-isocrystal on (U×, Z×).

Proof. — The proof is similar to the proof of Lemma 5.7.

Let us denote by R = reds
−1(P ) ∩ U .

Lemma 6.10. — Let the notations be as in Lemma 6.9 and denote by (E,D) the con-
vergent log F-isocrystal on (U×, Z×) defined there. Then the restriction of (E,D) to
(U −R,Z −R) is a convergent F-isocrystal in the usual sense.

Proof. — Let us first notice that U − R and Z − R are admissible open subsets of
U and Z respectively. Z −R is actually an affinoid. We may endow both Z −R and
U −R with the induced log structures from U× and denote by (Z −R)×, (U −R)×

the respective log spaces. Then we have
1) The restriction of (E,D) to ((U−R)×, (Z−R)×) is a convergent log F-isocrystal

Let us remark that U−R is not a wide-open subset of Xs, but the pair (U−R,Z−R)

functions as a wide open and an underlying affinoid, i.e. (U−R)−(Z−R) is a disjoint
union of annuli, each contained in a residue class of Xs. Therefore the definition of a
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convergent log F-isocrystal given above can be extended to the notion of a convergent
log F-isocrystal on ((U −R)×, (Z −R)×).

2) The log structures on U −R and Z −R induced by U× are trivial.
3) A convergent log F-isocrystal on a pair (U×, Z×), where the log structures on

U× and Z× are trivial is a (usual) convergent F-isocrystal on (U,Z).
The combination of 1), 2) and 3) above proves the lemma.

Let (E,D) be the convergent log F-isocrystal on the pair (U×, Z×) as in the
Lemma 6.10, then the Theorem 5.12 of Section 5.4 applies to the convergent F-
isocrystal (E,D) on (U − R,Z − R) (here, as we have mentioned above, U − R is
not a wide-open anymore but the theorem works the same way.) More precisely, let
ω ∈ Ω1

U×/L(E)(U) and denote by [ω] its image in H1(E,D). Using the notations of
Theorem 5.12 we have:

There exists a section α of Eflog(U−R), unique up to a global section of (E|U−R)D,
such that

i) D(α) = ω

ii) G(ϕ)(α) ∈ E(U −R).
Having said this let us go back to the splitting s : H1(C,P,E ) −→ H1(C,P,E )

and let us recall how it is defined: we take a cohomology class in H1(C,P,E ) and a
hypercocycle representing it ((ωv)v, (fe)e) as in Section 2.2. Then the image of this
class under s is obtained by integrating the differential forms ωv on Uv − Rv, for
every v ∈ v(G), and taking differences on their restrictions to Ae’s for e ∈ e(G).
Such integrals by the above are defined a priori up to horizontal sections of Eπ on
Uv − Rv (recall that C is the fiber of the family X −→ S at the point s = π and
Eπ = EC× = EX× |CK .) According to the definition in Section 2.2 we need to show that
such a section extends to a horizontal section of Eπ on Uv. In other words, we need

Proposition 6.11. — Let E be a log F-isocrystal on C
×

and fix a vertex v ∈ v(G).
Then the natural map (restriction) H0

cris(Cv,E ) −→ H0
cris(Cv − P ,E ) is surjective.

Proof. — Now let again for this proof denote U = Uv and Z = Zv and let (E†, D†) be
the overconvergent F-isocrystal on U−R defined by Eπ|U . Let (E,D) be the underlying
convergent F-isocrystal. It follows that ED is finite dimensional and preserved by Fφ
for any lifting φ of Frobenius. Let

M = (ED ⊗L OU−R, 1⊗ d) and M† = (ED ⊗L O†U−R, 1⊗ d).

ThenM† has a natural structure of an overconvergent F-isocrystal on U−R andM is
its associated convergent F-isocrystal. It follows from the main theorem of [27] that
the natural map HomF−iso(M†, E†) −→ HomF−iso(M,E) is a bijection. Therefore
the natural inclusion M ↪→ E extends uniquely to a morphism M† −→ E†, i.e. every
section of ED is overconvergent.

Suppose Q is an absolutely irreducible point of P . Let T be the corresponding
residue disk and Q = T ∩ P . Then Q is a regular singular point for the connection
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D and is the unique singular point for D in T . In fact, the log-monodromy matrix
for (E|T , D) at Q is nilpotent. Moreover (E|T , D) has a Frobenius structure. Let t be
a parameter on T which vanishes at Q. The main result of [4] implies that (E|T , D)

has a basis BT of horizontal sections over OU (T )log = OU (T )[`(t)] (for the notations
see section §5.5, the discussion after the proof of Lemma 5.16.)

Lemma 6.12. — Let W be any annulus in T centered at Q. As the restriction of t
to W is a unit of OU (W ), the restriction of `(t) to W is log(t|W ). Then log(t|W ) is
transcendental over OU (W ).

Proof. — Let u = t|W . Suppose F (X) =
∑n
i=1 ai(u)Xi is a polynomial of minimal de-

gree over OU (W ) so that F (log(u)) = 0. We may suppose n > 0 and (a0, a1, . . . , an) =

1. We use the equation F (log(u)) = 0 and
n∑
i=1

a′i(u) log(u)i +
∑
i=1n

iai(u) log(u)i−1/u = 0

and cancel the terms containing log(u)n. We must have

aia
′
n − (i+ 1)ai+1an/u− a′ian = 0.

It follows that an is a unit which may be supposed to be 1. Thus a′n−1 = −n/u which
is impossible.

Lemma 6.13. — Let W be any annulus in T centered at Q. Then if f(X) ∈ OU (W )[X],
f(log(t|W )) does not vanish on any non-empty open set of W unless f = 0.

Corollary 6.14. — With notations as above (BT )|W is a basis for the horizontal sec-
tions of (E|W , D) over OU (W )log.

We can now finish the proof of Proposition 6.11. Suppose g is a horizontal section
of (E,D) over U −R. We know that g is overconvergent i.e. it extends into U by the
above. Thus it restricts to a horizontal section of D onW for an annulusW in T close
to the boundary. By the above corollary it must be a linear combination of BT |W .
Since it is analytic on W the above lemma implies it extends to a horizontal section
across T . We can base extend and assume that P is a union of such points and see
that g extends across U .

Now we need to compare the FFM-modules Hi
deg(E ) and Hi

int(E ) for i = 0, 1, 2.

Let us remark that the same arguments as in Section 2.1 show that ∇i is the trivial
connection on Hi

P , for i = 0, 2. For i = 1, as H1
P is a locally free coherent sheaf of

OS-modules (see [16]), with a connection, whose only singularity (at 0) is regular,
and a Frobenius endomorphism Φdeg

1 , the main result of [4] referred to above applies.
This, combined with arguments similar to those used in Section 2.1, implies that the
connection ∇1 extended to (H1

P )log is trivial.
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Theorem 6.15. — Suppose the filtered, log F-isocrystal E on C
×

is regular then the
parallel transport isomorphism between (Hi

P )0 ⊗K0
K and (Hi

P )π yields an isomor-
phism of FFM-modules

Hi(E )deg
∼= Hi(E )int for i = 0, 1, 2.

The proof follows using arguments similar to those in the proof of Theorem 2.6.

7. Applications

7.1. The proof of Theorem 1.1. — We will apply the results of the previous
sections to the following situation: Let K,V, k, π,K0,W be as in Section 1. Let C be
a proper curve over V with smooth generic fiber CK and semi-stable special fiber C
over k. Let g : Z −→ C be a flat proper morphism and P a reduced flat sub-scheme
of C of dimension 0 over V such that P̄ ∩Sing = ∅. Let C× be the log formal scheme
over V associated to the pair (C,P ) (i.e., the formal completion of C along the special
fiber together with the log structure associated to P as in Section 6.) Let C

×
be the

log scheme over k which is the special fiber of C× and denote by DP := g−1(P ). Then
DP is a divisor of Z and we will suppose from now on that it is a reduced divisor with
simple normal crossings and that the restriction of g induces a smooth proper map
(Z−DP ) −→ (C−P ). Let Z× denote the log formal scheme over V associated to the
pair (Z,DP ) and we’ll denote by g : Z× −→ C× the morphism of log formal schemes
induced by g and also by g : Z

× −→ C
×
its special fiber. From the assumptions made

it follows that g and g are log smooth maps of fine formal log schemes over V (with
trivial log structure.)

Some important examples to keep in mind are:
0) Z = C, g the identity and P = ∅.
1) C is the complete modular curve classifying semi-stable elliptic curves with

suitable level structure as in Section 1, P is the set of cusps, Z is the generalized
universal elliptic curve.

2) C is the Shimura curve classifying abelian surfaces with quaternionic multipli-
cation and full level structure, P is any finite set of sections which reduce to distinct,
smooth points of C (P may be void), and Z is the universal abelian scheme.

We have the following,

Theorem 7.1. — For i ≥ 0 there exists a log F-isocrystal E i := K0⊗WRigcris,∗OZ×/C×

on C
×

whose evaluation on (C×, zcan), E i
C× , is

K ⊗V Rig∗Ω•Z×/C× = Hi
dR(ZK/CK ,Ω

•
ZK/CK

(logDP )),

and the connection is the Gauss-Manin connection. Here zcan is the canonical mor-
phism (C×)0 −→ C

×
.

In case (0) above, E 0
C×
∼= OC .
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Proof. — The log crystalline site on C
×
, log crystals and the higher direct images

of gcris are defined in [26], Section 6. These objects satisfy enough of the formal
properties of the corresponding classical objects (i.e., without log structures) so that
the proof follows the proof in [32], Section 3, formally. We will content ourselves to
point out the main steps. In order to simplify the notations for the rest of this proof
we’ll drop the × from the symbols denoting log schemes.

1) If T is a log formal scheme over Spf(W ) and let us denote by T1 the closed log
sub-schemes of T of ideal pOT . Let z′T : T1 −→ C be a morphism of log schemes then
we have the following Cartesian diagram

ZT1
−→ Z

gT ↓ g ↓

T1
z′T−→ C

As T1 and C are log schemes in characteristic p and the ideal pOT has natural divided
powers, we define

ET := K0 ⊗W R1gT,cris,∗OZT1
/T1

.

2) Now we’ll define Frobenius. Let F denote the absolute Frobenius of the log-
scheme C over the absolute Frobenius σ of k, as in Section 6. Consider the Cartesian
diagram

Z
′ −→ Z

g′ ↓ g ↓
C

FC−→ C

and one can see that the evaluation of the pullback by Frobenius F
∗
E on (T, z′T ) is

given by
(F
∗
E )(T,z′

T
) := E(T,FC◦z′T )

∼= K0 ⊗ g′T,cris,∗OZ′T1
/T1

.

The relative Frobenius FZ/T1
: Z −→ Z

′
induces an isomorphism

FZ/T1
: (F

∗
E )(T,z′

T
) = K0 ⊗W Rig′T,cris,∗OZ′T1

/T1

∼= K0 ⊗W RigT,cris,∗OZT1
= E(T,z′

T
).

3) Now we will use 1) and 2) above to define the evaluation of E on log enlargements.
Let (T, zT ) be a log enlargement of C, i.e., T is a log formal scheme and zT : T0 −→ C,
where T0 is the closed reduced sub-scheme of T1. Let ιT : T0 −→ T1 be the canonical
morphism. For n >> 0 we have a natural morphism ρ(n) : T1 −→ T0 such that
ιT ◦ ρ(n) = FnT1

and ρ(n) ◦ ιT = FnT0
. Then we define

E(T,zT ) := E(T,zT ◦ρ(n)),

where the right-hand side was defined at 1). If n′ > n, say n′ = n+ d we have

E(T,zT ◦ρ(n′)) = ((F d
Z/T1

)∗E )(T,zT ◦ρ(n))
∼= E(T,zT ◦ρ(n)),

so the definition is independent of n.
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4) Now, if we consider (C, zcan) as a log enlargement of C as g : Z −→ C is a lift of
g : Z −→ C, the evaluation of E on it is the relative de Rham cohomology of ZK/CK ,
with its Gauss-Manin connection.

We will leave it to the reader to check the various compatibilities required in the
definition of a log F-isocrystal.

Now, let j ≥ 0 be an integer and let Ej :=SymjE , where E is the log-F-isocrystal
defined in the above mentioned theorem. Let Lj := Symj(Rig∗Qp)(j+1) be the p-adic
étale local system on C − P associated by the theory in [16] to Ej .

Then Theorem 3.2 of [17] and Theorem 6.15 of the present article imply:

Theorem 7.2. — Let C, Ej be as at the beginning of the section. Then we have that
the FFM-modules Dst(H

1
et((C − P )K ,Lj)) and H1

int(C,Ej) are naturally isomorphic.

Applying this to example (0) above gives a new proof of the main result in [CI]
and applying it to the example in the introduction (i.e. C = X(N, p) etc.) we get,

Corollary 7.3. — If f is a weight j + 2, where j ≥ 0 is an even integer, cuspidal
eigenform for X(N, p) with (N, p) = 1 (see Section 1) which is split multiplicative at
p then all the L -invariants attached to f are equal whenever they are defined. (See
Section 1 for a brief discussion of these L -invariants.)

Corollary 7.4. — Let C = X(N, p), with (N, p) = 1 and for every j ≥ 0 let Ej be
the log F-isocrystal on C

×
as in the introduction. The the rank of Ndeg

1 acting on

H1
cris(C

×
,Ej)p−new equals

1

2
dimK0

H1
cris(C

×
,Ej)

p−new.

Proof. — It is enough to calculate the rank overK ofN int
1 ⊗1K onH1

cris(C
×
,Ej)p−new

and this follows from the study of the residue map on H1
dR(CK ,Ej)p−new in [C1].

As Hint(C,Ej) has an explicit description, Theorem 7.2 gives an explicit description
of H1

et((C − P )K ,Lj) as a Galois representation. In particular if C is a modular
curve or Shimura curve, we get explicit descriptions of the restriction of the Galois
representation attached to a weight j + 2 eigenforms F to a decomposition group at
p. Corollary 7.4 implies

Corollary 7.5. — If f is a cuspidal eigenform of weight j+2 ≥ 2 on X(N, p) which is
p-new, the p-adic local Galois representation Vf attached to it is semi-stable but not
crystalline.

7.2. Gysin sequences. — Finally, we have another application to our theory,
namely the compatibility of the comparison maps with respect to the p-adic étale,
respectively crystalline Gysin sequences. More precisely, let the notations be as at
the beginning of this section with the difference that K = K0 is unramified over Qp.
Moreover let L be an étale local system and E a regular filtered, F-isocrystal on C,
which are associated as in [16]. Then we have
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Proposition 7.6. — The comparison isomorphisms determine a commutative diagram
of FFM-modules with GK-action

0 −→ H1
et(CK ,L)⊗Bst −→ H1

et((C − P )K ,L)⊗Bst −→ ⊕x∈PLx(−1)⊗Qp Bst

↓ ↓ ↓
0 −→ H1

int(E )⊗Bst −→ H1
int(P,E )⊗Bst −→ ⊕x∈PKEC,x[1]⊗K Bst

Proof. — Let us first notice that we have an exact sequence of FFM-modules

0 −→ H1
int(E ) −→ H1

int(P,E )
ResP−→ ⊕x∈PKEC,x[1],

where ResP is the residue map with respect to the points in PK (let us recall from
the Section 2.2 that H1

int(P,E ) = H1
dR(CK ,EC(log(PK)) as K-vector spaces.) This

follows from the fact that the following diagram commutes

H1,0(G,E ) = H1,0(G,E )

u ↑ v ↑
0 −→ H1

dR(CK ,EC) −→ H1
dR(CK ,EC(log(PK))

ResP−→ ⊕x∈PKEC,x[1]

where u, v are either the residues with respect to the family of annuli {Ae}e∈e(G) or
the integration splittings.

The proposition will follow from the following two facts:
a) We have a commutative diagram of FFM-modules with exact rows (notations

as in Section 2)

0 −→ H1
deg(E ) −→ H1

deg(P,E ) −→ ⊕y∈P0
EY,y[1]

↓ ↓ ↓
0 −→ H1

int(E ) −→ H1
int(P,E ) −→ ⊕x∈PEC,x[1]

and
b) We have a commutative diagram of FFM-modules with GK-action

0 −→ H1
et(CK ,L)⊗Bst −→ H1

et((C − P )K ,L)⊗Bst −→ ⊕x∈PLx(−1)⊗Qp Bst

↓ ↓ ↓
0 −→ H1

deg(E )⊗Bst −→ H1
deg(P,E )⊗Bst −→ ⊕y∈P0EY,y[1]⊗K Bst

To prove a) above let us recall the notations of Section 2, i.e. let X be our family
of curves over S, PX the divisor corresponding to P and H1,H1

P the respective
cohomology sheaves. Then we have a horizontal exact sequence of OS-modules which
is Frobenius equivariant:

(1) 0 −→ H1 −→ H1
P

ResPX−→ E(PX ,zcan)[1],

where let us recall zcan is the map identifying the reduction of PX with P . As
(PX , zcan) is a log-enlargement of P , the crystal E(PX ,zcan) is trivial. Therefore after
adjoining `(t), we get parallel isomorphisms between the fibers at 0 and π of the exact
sequence (1) (let’s recall that H1 is free over OS) i.e. we get a).
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For b) let us first notice that the left square is commutative as it arises from the
embedding U := C − P ⊂ C. Let us prove that the right square is commutative (this
is more or less explicitly contained in Faltings’ papers [17], [16], [15]). U = C − P is
an affine curve over V . Let us fix a geometric generic point η of C and let G denote
the quotient of the Galois group of the maximal cover of C étale over UK , for which
the inertia at the points in P is p-adic. Let ∆ ⊂ G denote the geometric Galois group.
Then H1

et(UK ,L) ∼= H1(∆,Lη) and the Gysin map H1
et(UK ,L) −→ ⊕x∈PLx(−1) is

the specialization map:

H1(∆,Lη) −→ ⊕x∈PH1(Ix,Lx) ∼= ⊕x∈PLx(−1),

where Ix ∼= Zp(1) is the inertia at x. Now under the comparison map relating the étale
cohomology of UK with values in L to the de Rham cohomology of UK with values
in E , the specialization to inertia at the points in P corresponds to the residue of the
logarithmic differentials at the points with the same reduction in P0 (see [15]).
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