ISSN 0012-9593

quatriéme série - tome 43 Jascicule 4 juillet-aodit 2010

ANNALES

SCIENTIFIQUES
de
[/ECOLE
NORMALE

SUPERIEURE

Eric LOMBARDI & Laurent STOLOVITCH

Normal forms of analytic perturbations
of quasihomaogeneous vector frelds:
Rigidiry, imariant analytic sets

and exponentially small approximation

SOCIETE MATHEMATIQUE DE FRANCE



Ann. Scient. Ec. Norm. Sup.
4°¢ série, t. 43, 2010, p. 659 a 718

NORMAL FORMS OF ANALYTIC PERTURBATIONS
OF QUASIHOMOGENEOUS VECTOR FIELDS:
RIGIDITY, INVARIANT ANALYTIC SETS AND
EXPONENTIALLY SMALL APPROXIMATION

BY Eric LOMBARDI AND LAURENT STOLOVITCH

This article is dedicated to Bernard Malgrange on the occasion of his 80" birthday

ABSTRACT. — In this article, we study germs of holomorphic vector fields which are “higher order”
perturbations of a quasihomogeneous vector field in a neighborhood of the origin of C™, fixed point
of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S
which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically
conjugate to it. We study the normal form problem relatively to S. We give a condition on S that
ensures that there always exists an holomorphic transformation to a normal form. If this condition is
not satisfied, we also show, that under some reasonable assumptions, each perturbation of S admits
a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an
exponentially good approximation of the dynamic by a partial normal form.

REsUME. — Dans cet article, nous étudions des germes de champs de vecteurs holomorphes qui
sont des perturbations « d’ordres supérieurs » de champs de vecteurs quasi-homogenes au voisinage de
I'origine de C", point fixe des champs considérés. Nous définissons une condition « diophantienne »
sur le champ quasi-homogeéne initial S qui assure que si une telle perturbation de S est formellement
conjuguée a S alors elle ’est aussi holomorphiquement. Nous étudions le probléme de mise sous forme
normale relativement a S. Nous donnons une condition suffisante assurant I’existence d’une transfor-
mation holomorphe vers une forme normale. Lorsque cette condition n’est pas satisfaite, nous mon-
trons néanmoins, sous une condition raisonnable, I’existence d 'une normalisation formelle Gevrey vers
une forme normale Gevrey. Enfin, nous montrons I’existence d une approximation exponentiellement
bonne de la dynamique par une forme normale partielle.

1. Introduction

The aim of this article is to study germs of holomorphic vector fields in a neighborhood
of a fixed point, say 0, in C™. Lot of work is devoted to this problem mainly when the vector
field is not too degenerate, that is when not all the eigenvalues of the linear part DX (0) of X
at the origin are zero. In this situation, the aim is to compare the vector field to its linear
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660 E. LOMBARDI AND L. STOLOVITCH

part. One way to achieve this, is to transform the vector field “as close as possible”, in some
sense, to its linear part by mean of a regular change of variables.

In this article we shall focus on germs of vector fields which are degenerate and which
may not have a nonzero linear part at the origin. This problem has been widely studied in
dimension 2 mostly by mean of desingularizations (blow-ups). Unfortunately, this tool is not
available in dimension greater than 3.

We shall be given a “reference” polynomial vector field S to which we would like to
compare a suitable perturbation of it. This means that we would like to know if some of
the geometric or dynamical properties of the model can survive for the perturbation. For
instance, the models S; = ya% and Sp = ya% + 22 3% are quite different although they have
the same linear part at the origin of C2. In fact, for Sy, each point of {y = 0} is fixed whereas
the “cusp” {223 — 3y? = 0} is globally invariant by S.

In this article, we shall assume that the unperturbed vector field S is quasihomogeneous
with respect to some weight p = (p1,...,pn) € (N*)™. This means that each variable z; has
the weight p; while a%i has the weight —p;. Hence, the monomial z® is quasihomogeneous
of quasidegree (Q,p) = > i, ¢;p;. In particular, the vector field S = "1 ; S; (x)a%i is
quasihomogeneous of quasidegree s if and only if .S; is a quasthomogeneous polynomial of
degree s + p;.

We shall then consider a germ of holomorphic vector field X which is a good
perturbation of a quasihomogeneous vector field S, this means that the smallest quasidegree of
nonzero terms in the Taylor expansion of X — S is greater than s. In the homogeneous case
(» = (1,...,1)), a linear vector field S is quasihomogeneous of degree 0 and a good
perturbation is a nonlinear perturbation of S (i.e. the order at 0 of the components of X — S
is greater or equal than 2).

We shall develop an approach of these problems through normal forms. By this, we
mean that the group of germs of holomorphic diffeomorphisms (biholomorphisms)
of (C™,0) acts on the space of vector fields by conjugacy: if X (resp. ®) is a germ
of vector field (resp. biholomorphism) at 0 of C", then the conjugacy of X by @ is
o, X(y) := D®(@ 1(y))X(® '(y)). A normal form is a special representative of this
orbit which satisfies some properties. Although, the formal normal form theory of vector
fields which are non-linear perturbations of a semi-simple (resp. nilpotent, general) linear
vector field is well known [1] (resp. [3, 12, 29]), it is much more difficult to handle the problem
when the vector field does not have a nonzero linear part. It might also be useful in problems
with parameters to consider some of the parameters as a variable with a prescribed weight.

First of all, we shall define a special Hermitian product {.,.) . on each space # s of

D,
quasihomogeneous vector fields of quasidegree § (see (5)). Its main property is that the

associated norm of a product is less than or equal to the product of the norms. Let us
consider the cohomological operator:

do: Hs — Hsis
U [S,U]

where [.,.] denotes the usual Lie bracket of vector fields. We emphasize that, contrary to the
case where S is linear (s = 0), dg does not leave # 5 invariant. Let dfj : # 515 — Hs be the
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adjoint of dy with respect to the Hermitian product. An element of the kernel of this operator
will be called resonant or harmonic. The first result we have is the following:

FORMAL NORMAL FORM TRANSFORMATION (see Proposition 4.4)

There exists a formal change of coordinates tangent to Id at the origin, such that, in the new
coordinates, X — S is resonant.

This means that there exists & € (C[[zy, ... ,z,]])" such that #(0) = 0 and D®(0) = Id
and d%($,X — S) = 0. When S is linear, this corresponds to classical normal forms [1, 29].
In the homogencous case, the first result in this direction is due to G. Belitskii [3, 4] using
a renormalized scalar product. In the quasihomogeneous case, a general scheme has been
devised by H. Kokubu and al. [22] in order to obtain a unique normal form. This scheme
can be combined with our definition. For instance, a formal normal form of a nonlinear
perturbation of

(1 T=y

is of the form
2 t=y+zPi(z,u)
y =z+ ypl(xvu) + ZL‘PQ(ZL’,U)
2= zPi(z,u) + yPa(z,u) + zPs(z,u)
where u = y? — 222 and where the P;’s are formal power series [21].
One of the main novelties of this article is to consider the Box operator
|:|5 : ﬂ(s — 5‘{5
U Os(U) := dodi(U)
which is self-adjoint and whose spectrum is non-negative. Its nonzero spectrum is composed
of the (squared) small divisors of the problem. These are the numbers that we need to control.
For instance in the homogeneous case, if S = > 1, )\ixi%, then the eigenvalues of [y
are the |(Q,\) — \;|%, where Q@ e N, |Q| = kand 1 < i < n.
For each quasidegree § > s, let us set

as = min
AeSpec(Us)\{0}

Then, we shall construct inductively a sequence of positive numbers 7s from the as’s (see
(14)). We shall say that S is Diophantine if there exist positive constants M, ¢ such that
ns < Mc’. Being Diophantine is a quantitative way of saying that the sequence {as} does
not accumulate the origin too fast. Hence, we have defined a small divisors condition for
quasihomogeneous vector fields. For instance in the homogeneous case, S = 7, )‘ixia%i
is Diophantine if it satisfies Brjuno’s small divisors condition [7]:

lnwk
(w) _Z 2k < +o0,
k>1
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662 E. LOMBARDI AND L. STOLOVITCH

where
wy = inf{|(Q,\) — \| #0,Q e N",2 < |Q| < 2%,1,< i < n}.

RIGIDITY THEOREM (see Theorem 5.8). — In the general quasihomogeneous case, assume
that the quasihomogeneous vector field S is Diophantine. Let X be a good holomorphic
deformation of S. If X is formally conjugate to S then it is holomorphically conjugate to it.

For instance in the homogeneous case and if S = Y i, )\ixia%i, this is the classical
Siegel-Brjuno linearization theorem: if .S satisfies the Diophantine condition (w) and if a
holomorphic nonlinear perturbation X is formally linearizable, then X is holomorphically
linearizable. For instance, a good holomorphic perturbation of .S:

i =z2

y=zy

which is formally conjugate to it, is also holomorphically conjugate to S. This is due to the
fact that minyespec(0;)\ {0} VA > M+/5. Hence, the “small divisors” are in fact large. The
same statement holds for perturbations of (1) since minyegpec(m;)\ {0} VX is bounded away
from 0.

Assume that the ring of polynomial first integrals of S is generated by some quasihomo-
geneous polynomials Ay, ..., h,.. Let us denote by J (resp. 2) the ideal they generate in the
ring of germs of holomorphic functions at the origin (resp. formal power series). The germ
of the variety ¥ = {h; = --- = h,, = 0} at the origin is invariant by the flow of S. Does a
good perturbation of S still have an invariant variety of this kind?

INVARIANT VARIETY THEOREM (see Theorem 5.6). — In the general quasihomogeneous
case, assume that the quasihomogeneous vector field S is Diophantine. Let X be a good
holomorphic deformation of S. If X is essentially formally conjugate to S modulo J then it is
holomorphically conjugate to S modulo J.

This means that there exists a germ of holomorphic diffeomorphism & such that

o, X =5+ ;gz(m)ail, with g; € J.

Hence, in the new holomorphic coordinate system, ¥ is an invariant variety of X since
gil= = 0. The Diophantine condition can eventually be relaxed a little bit taking into account
the ideal 4. This is a first step toward the generalization to any dimension of Camacho-
Sad’s theorem [8] about the existence of a holomorphic separatrix of a two dimensional
foliation with an isolated singularity. If S = Y771 A\jz; a%i, this was proved by L. Stolovitch
[35]. Furthermore, for instance, if a formal normal form (2) of a perturbation of (1) satisfies
P;(z,0) =0, ¢ =1,2,3, then in good holomorphic coordinates, {y = z = 0} is an invariant
analytic set of the perturbation.

What happens if instead of accumulating the origin, the sequence as tends to infinity
with 6? Let us set v := max (1, 22P).
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NORMAL FORMS OF ANALYTIC PERTURBATIONS 663

POINCARE’S DOMAIN LIKE THEOREM (see Theorem 6.2). — Assume that there exists a
constant M such that for all § > s,

> M(§—s)”.

min
A€Spec(Us)\{0}

Then, any holomorphic good perturbation of S is holomorphically conjugate to a normal form.

For instance in the homogeneous case, if S = 311 A\;z; 22— belongs to Poincaré’s domain
[1] then the convex hull of the )\; in the complex plane does not contain the origin. This
implies that [(@, A)| > €|Q| from which we infer that [(Q, \) — A\;| > €'|Q| if |Q)] is large
enough.

We refer to [37, 38, 39] for recent results and overview about the problem of holomorphic
conjugacy to a normal form when S is a linear diagonal vector field.

Let f = > genn foz@ be a formal power series of C® and a > 0. We say that f is
a-Gevrey if for all Q € N, |fo| < Mcl?l(|Q])®. As we know from the linear diagonal
case, normalizing transformations (that is formal transformation to a normal form) usually
diverge. How bad can this divergence be? We show that if the spectrum of (s is of Siegel
type, then, at worst, there exists a formal Gevrey normalizing transformation:

GEVREY FORMAL NORMAL FORM THEOREM (see Theorem 6.4). — Assume that there
exist a positive constant M and nonnegative T such that for all 6 > s,
M

min e
reSpec(@s)\{0}y (079

Then any good holomorphlc perturbation of S admits a formal p(b +7)- Gevrey normalizing
transformation to ap(b + 7)-Gevrey formal normal form. Here, p = max; p; and b is a positive
number depending only on p.

In the homogeneous case with S a linear vector field, this result was proved (but not
stated!) by G. Iooss and E. Lombardi [32, Lemma 1]. This kind of result was obtained in
a very particular case. Namely, in the case ofa two dimensional saddle node (resp. resonant
saddle), X is a suitable perturbation of x = 81: +? 6 m (resp. px~ Bac —qry; +qu”+1 0 ) (these are
not quasihomogeneous), the Gevrey character with respect to y (resp. to the monomlal x9yP)
was obtained by J. Ecalle [14], J. Martinet and J.-P. Ramis [25, 27, 28] and S. Voronin [42] (see
also[19] for a general overview). In this case, there is no small divisor (i.e. 7 = 0). For general
n-dimensional 1-resonant saddle, there are usually small divisors; the results were devised by
J. Ecalle [15], by L. Stolovitch [36] and B. Braaksma and L. Stolovitch [6]. In the case of the
“cusp”, S = an% + 3:1:26% (» = (2,3)), a formal normal form of vector fields tangent
to the cusp was given by F. Loray. A very precise study of this case with sharp estimates
of the Gevrey order was done by M. Canalis-Durand and R. Schifke [9]. T. Gramchev
and M. Yoshino studied the cohomological equation (i.e. the linearized equation of the
conjugacy equation) of a pair of commuting 4-dimensional vector fields having linear part
with a Jordan block [43].

By applying a polynomial change of coordinates ¥45_, of some quasidegree § — s, one
can transform the perturbation X into a normal form S+ s up to some quasiorder §, that is
(Us_s)«X — (S + V) is of quasiorder greater than . Hence, the norm of (Us5_,).X — (S + Ns)
on a ball of radius ¢ centered at the origin is bounded by a power of €. Nevertheless, the
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664 E. LOMBARDI AND L. STOLOVITCH

formal normalizing diffeomorphism ® we obtained from the previous theorem allows us
to obtain a much better estimate, that is an exponentially small estimate. Namely, let us
consider the “twisted ball” B, = {(321; pi|z:|?/P1)1/2 < ¢}.

EXPONENTIALLY SMALL APPROXIMATION BY A PARTIAL NORMAL FORM THEOREM (sce
Theorem 6.11)

For each € > 0 sufficiently small, there exists a quasidegree 0o such that

A
||((I)6°Pt)*X o (S +W60Pf)th,E < MeXp (_g>

for some exponent b that depends on 7, the order of small divisors. Here, || X ||gn < is a “twisted

norm” of the vector field X that measures its size on the twisted ball Be.

Some of these results were announced in [23].

2. Notation

Let us set some notation which will be used throughout this article.

- /92" denotes the C-space of formal vector fields on C",

— %, denotes the C-space of germs of holomorphic vector fields on (C”,0),
- @n denotes the ring of formal power series in C”,

— 0, denotes the ring of germs at 0 of holomorphic functions in C™.

LetQ = (q1,..-,q,) € N". Let |Q| := ¢q1 + -+ + ¢y, be the length of Q. As usual, if

z = (21,...,%,), z? denotes the monomial zI* - - - 2. Let n, k € N with k& < n; we denote
by Ck .= ﬁlk), the binomial coefficients.

3. Quasihomogeneous vector fields and polynomials

3.1. Definitions and notation

Letp = (p1,...,pn) € (N*)™ be such that the largest common divisor of its components
p1 A -+ Apyisequal to 1. Let us denote by

- 0
Rp = Zpixi 57
i=1 v

the p-radial vector field C". Let @ = (¢1,...,9,) € N™. Let (Q,p) stand for 3 ¢;p;.
i=1
A polynomial will be called quasihomogeneous of degree ¢ if it can be written as a finite sum

> pgz?

(Q.p)=4
with complex coefficients. It is equivalent to say that the Lie derivative R,(f) :=
S pizipl = of since R,y(z?) = (Q,p)z?. The integer § = (Q,p) is the p-degree of
i=1 ’
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NORMAL FORMS OF ANALYTIC PERTURBATIONS 665

quasihomogeneity (or p-quasidegree) of x@. When there is no possible confusion, we shall
omit the reference to p, which is fixed once for all. Let us define

D = max p; := min p;.
P 1§i§np’ P 1§i§an

Let us define A to be the totally ordered set of p-quasihomogeneity degrees of poly-
nomials; that is to say A = {41, 02, d3, ...} where §; < do < d3 < ---. Itis the set

A={deN/d=(a,p), witha € N*}.
An element of A will be called a quasidegree.

For § € A, we shall denote by &5 the complex vector space of p-quasihomogeneous
polynomials of degree d. If § € A, we set P5 := {0}. Hence, for any § € N,

Ps = {f € Clz], f(z) = Z foQ} ifd e A, Ps:={0} otherwise.
(Q:p)=4

A vector field X = Xi% is quasihomogeneous of quasidegree 6 > 0 if, for each
i=1 ‘

1 < i < n, X; belongs to ?jgﬂ,i. It is equivalent to say that [R,, X] = 6X where [., ] denotes
the Lie bracket. In other words, x; has weight p; and a%i has weight —p;.

We shall denote by A the totally ordered set of p-quasihomogeneity degrees of non zero
polynomial vector fields. As a set, we have

A={0€Z/5=6—p;,withd € A,1<i<n}.

For § € A, we shall denote by s the complex vector space of p-quasihomogeneous
polynomial vector fields of quasidegree 6. If § ¢ A, we shall set %5 := {0}.

REMARK 3.1. — Let us notice that if 6 € Z then there exists 1 < jo < n such that
Dj, + 6 € A. It may happen that for some 1 < j < n, p; +6 ¢ A. This simply means that

n
any polynomial vector field X = " Xi% belonging to H 5 has a j-th component X ; which is
i=1 ‘
equal to 0.

REMARK 3.2. — There is only a finite number of elements of A which are negative. In fact,
ifd € A, then § > —p; for some i.

In general, the sets A and A do not contain all the inte gers. However we have the following
lemma (inspired by a remark of J.-C. Yoccoz):

LEMMA 3.3. — Letp = (p1,.-.,Pn) € (N*)™ as above.

(a) There exists dy such that, for every integer, § > &g belongs to A.

(b) We have ADA.

(c) A is stable by multiplication by any nonnegative integer and by addition (this is a priori
not the case for A ).
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666 E. LOMBARDI AND L. STOLOVITCH

Proof. — The following proof of (a) is due to Marc Revesat: let N > 0 be an integer.
Then, we can write it as N = pju; + --- + ppu,, where the u;’s are integers. For all
i, there exists an integer k; such that 0 < p;u; + kip1---pn < p1---pn. Let us set
Vi = P1-c Pi—1Di+1Pn, Ui = Ui+ kv;and k = k1 +- - -+k,. Hencewe have: N+kp; ---p, =
P11+ + prOp, With 0 < p;U; < p1 - Pn.

Let us assume that N > np; - - - p,. Therefore, according to the previous computations,
we have N + kpy---p, = p101 + -+ + pp0n < np1---p,. Hence, k is negative. We
obtain the result by changing, for instance, v; into v; — kps - - - p,. Since for any § € A,
0 = (o,p) = (v +e;,p) — pj where o € N™ and e; is the j-th vector of the canonical basis
of R™, we get that A S A holds. Finally statement (c) readily follows from the definition
of A. O

PRrOPOSITION 3.4. — Let k, ¢ € 7 be two integers.

(a) Let f,g be two quasihomogeneous polynomials belonging respectively to Py and P,.
Then, fg belongs to Py
(b) Let f be a quasihomogeneous polynomial belonging to Py and let X be a
quasihomogeneous polynomial vector field belonging to 3¢y. Then,
(i) the Lie derivative X (f) belongs to Pr1s;
(ii) fX belongs to H .
(¢) Let S,U be two quasihomogeneous vector fields belonging to I, and ¢, respectively.
Then,
(i) DS.U belongs to H e,
(i) the Lie bracket [S, U] belongs to H k.

Proof. — The proof readily follows from the definition of &} and #, observing that if
f lies in &, then 887]; lies in Pj_p;. O

3.2. Decomposition of functions and vector fields as sum of homogeneous and quasihomoge-
neous components.

Let f € C[[z1,...,z,]] be a formal power series. Hence f reads
flx) = Z fo z® where fg € C.
QeNr

It admits a unique decomposition into a sum of homogeneous polynomials, f, ., of different
degree 7:

F=Y for where fo,(z) = Y fq a9

r20 QI=r
In a similar way, f admits a unique decomposition as a sum of quasihomogeneous polyno-
mials fs of different quasidegree ¢:

F=>f5 with fi(x)= > foa©.
deh (Qp)=6

We shall say that f is of p-order dy if f5, # 0 and fs5 = 0 for all quasidegree § < dyp. Let p
be a quasidegree. We shall define the p-quasijet of f (at 0) to be

T = >

SEA, 6<pu
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NORMAL FORMS OF ANALYTIC PERTURBATIONS 667

Furthermore, if f is a germ of holomorphic function at the origin of C", we will denote by
{f}u := f. the quasihomogeneous component of degree 4 in the Taylor expansion of f at
the origin.

Finally, f admits a unique decomposition as a sum of polynomials f5, which are simul-
taneously quasihomogeneous of quasidegree § and homogeneous of degree 7:

F=>> for  with fi(@)= > fqaz©.

0€A L<r<t |Q|=r
- (Q,p)=4

In the last decomposition of f, we have 6/p < = < §/p since for every Q@ € N7,
plQl < (Q,p) < DPIQ|.

Any formal vector field V' can be written as an element of (C[[z, ..., z,]])". Henceit can
be decomposed along the quasihomogeneous filtration:

V=> Vs
seA

where Vy is a quasihomogeneous vector field of quasidegree §. By definition, we have
Vs =1y Vi,ga%i with V; 5 € Ps4p,. Werecall that s, is equal to {0} when §+p; ¢ A.
Moreover, each quasihomogeneous component Vs can be decomposed into homogeneous
components Vs . of degree :

Vs= > VipwithVis. (@)= > Viga®
S.srsor |Q|=r
(Q,p)=5+p;
where
in{d i é i A ) % 0 % A
3) 5o winfotpi[0+pi €A} e max{0tpi[0+pi €A}
p p
We recall that, for any ¢ > 1 and for any homogeneous polynomial ¢ € (Clzy,...,z,])?
of degree r, there exists a unique r-linear, symmetric, operator ¢ : (C™)" — C? such that
é(x,...,z) = ¢(z) where z = (x1,...,2,). Moreover, for every z(¥) € C* with1 < £ < r,
——
N r times
¢ is given by

~ 1 1
S, a") = SD6(0).[20, e ) = S A Agnd

where Ap¢(x) = ¢(z + h) — ¢(x) and where one checks that A ) - - - Ay @(x) does not
depend on z (see for instance the book of Cartan [10, corollaire 6.3.3]).

The homogeneous and quasihomogeneous components of sums, products and derivatives
of formal power series and vector fields can be computed with the standard rules (see Lem-
mas A.1, A.2 in Appendix A). Computation of quasihomogeneous components of the com-
position of a function or a vector field by a map is given by the following lemma:

LemMA 3.5 (Components of the composition). — Let f € C[[z1,---z,]] and U,V in
(C[[wla e xn]])n Then,
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668 E. LOMBARDI AND L. STOLOVITCH

(@ {foU}s = > ForUsy, -~ Us,),

5<8, %grgg
S48+t 8=
(b) {VoU}s = > Vsr(Usy, - - Us,.), where 6, and §* are defined in (3).

6<6', 5. <r<6*
6+61+---+6,=6

The proof of this lemma is given in Appendix A.

3.3. Hermitian product for quasihomogeneous polynomials and vector fields

We shall provide on C[z, ..., z,] a Hermitian product compatible with the grading into
quasihomogeneous space. Moreover, on each Ps, this Hermitian product will induce a
submultiplicative norm, i.e. the associated norm of the product of two functions is less than
or equal to the product of the norms. There are several ways for defining an inner product
with such a property (see Appendix A Subsection A.2). In this paper, we shall choose the
following one:

— for quasihomogeneous functions f, g € 5, we define the following inner product
_ Q)P
@ (Fays= Y Tava LY where (@)= (@) (@)

QeN™
(Q:p)=9

Hence, we have

(ra)P - (rahP" e R=0Q
(5) <$R,$Q>p76 = { o!

0 otherwise

the associated norm will be denoted by |.|, 5. If p = (1,...,1) (i.e. in the homogeneous
case), this is the Fischer scalar product [13, 17, 21, 32].

— for quasihomogeneous vector field of degree delta § € A we define the associated inner
product and norm to be:

n

— . R 2 P — . 2
(6) <U7 V>p’5 T E : <Ul7 ‘/Z>P75+Pi and ||U||p,5 T E - IU’LLJS'FIH
=

i=1
where U = Z@% eHsandV = EVi% € Hs.
=1 ‘ i=1 ‘

One of the main features of these Hermitian products is their good behavior with respect
to the product. More precisely, we have

PROPOSITION 3.6 (submultiplicativity of the norms). — (a) Let f, g be p-quasihomoge-
neous polynomials of 8, 8" respectively. Then,

Fal, 5,5 <1715 1] 5

(b) Let fs5, be a polynomial which is simultaneously quasihomogeneous of degree ¢ and
homogeneous of degree r. Let f5, be the unique r-linear, symmetric form such that
for(X,...,X) = fs.0(X) where X = (z1,...,2y,). Foreachi=1,...,r, let Us, be a

——

T times
p-quasihomogeneous vector field of degree §;.
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NORMAL FORMS OF ANALYTIC PERTURBATIONS 669

Then, fg,r(Ugl, ..., Us, ) is p-quasihomogeneous of degree 6 + 61 + - - - + 0, and

™ FsaUssr- . Us) < M) 10s, |, - 1Us, L,
D.64-81+- 43, P.d1 P20
with Nl(ﬁ(;,r) =y ‘ﬁ;’r(eil, ...,€;.)| where (e1,...,ey) is the canonical basis of
lgigS’n
1<e<r
cn.

(c) Let Rs, be a vector field of C™ which is simultaneously quasihomogeneous of degree §
and homogeneous of degree r. Let R; , be the unique r-linear, symmetric operator such
that Rs(X,...,X) = Rs(X). Foreachi =1,...,r, let Us, be a p-quasihomogeneous

———

T times
vector field of degree §;.
Then, EM(U,;1 ,- -, Us, ) is p-quasihomogeneous of degree 6 + 61 + - - - + &, and we
have
(8) | B W1, Us,)| < Naa(Rs) 1Us, ;- I0s, 1] 5

P,0+01++3dr

~ n ~ 2 ~ ~
with Na 1(Rs,) := \/Z <N1(R577~7j)> where Rs . ; denotes the j-th component of Ry
j=1
in the canonical basis of C™.
(d) Let U and N be two p-quasihomogeneous vector fields of quasidegree 6 > 0 and «

respectively. Then DU.N is a p-quasihomogeneous vector field of degree § + o satisfying
. < )"
IDUN . <n(+p)* 10 IN], |
<Mm,o” ||U N
<8 U, IV

where v := max(1, 2) and M, = n sup (‘&Tﬁ)y.
seA
The proof of this proposition is given in Appendix A, Subsection A.2. In the homoge-
neous case, this result is due to G. Iooss and E. Lombardi [21, Lemma A.8].

Finally, the convergence of a formal power series is linked with the growth of the norms
of its quasihomogeneous components. More precisely we have:

ProrosiTION 3.7. — (@) For a formal power series f, the following properties are
equivalent:
(1) f is uniformly convergent in a neighborhood of the origin,
(i) There exist M, R > 0 such that for every 6 € A, |fs L»,(S < %.

(ii1) There exist M, R > 0 such that for every § € A andr > 0, Nl(}:;r) < %.
(b) For a formal vector field V, the following properties are equivalent:
(1) V is uniformly convergent in a neighborhood of the origin,

(ii) There exist M, R > 0 such that for every 6 € A, ||V5||p’6 <&

(ii1) There exist M, R > 0 such that for every § € A andr >0, N2,1(%r) < %.

The proof of this lemma is given in Appendix A, Subsection A.2. In the homogeneous
case, this result is due to H. Shapiro [32, Lemma 1].
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LEMMA 3.8. — Let f =3 5cn f6 = Y 0en anzQ be a formal power series. If there exists
a constant C such that, for all § € A, |fs|p.s < C2(8!)°, then f is a (pb)-Gevrey formal power
series. This means that there exists a positive constant D such that | fg| < C1QI(|Q|")? for all
multiindices @ € N™.

The proof of this lemma is given in Appendix A.4.

4. Normal forms for perturbation of quasihomogeneous vector fields

4.1. Good perturbations

Let n > 2 be an integer. Letp = (p1,...,pn) € (N*)™ be fixed such that the largest
common divisor of its components p; A - - - A p, is equal to 1. Let S be a quasihomogeneous
vector field of C™ of quasidegree s. We are interested in suitable holomorphic perturbations
of S.

DEFINITION 4.1. — Let X be a germ of holomorphic vector field at the origin of C™. We
shall say that X is a good perturbation of S if the Taylor expansion of X — S at the origin is
of quasiorder greater than s.

EXAMPLE 4.2. — Let us consider the germ of vector field at the origin of C?

0 0
X=_2y+ pr(:c))% - nz”_la—y

where U(0) = 1. This example was considered by Cerveau and Moussu [11]. Let us define
S = 296% —nan! 8%' Ifn = 2m is even, then it is (1, m)-quasihomogeneous of degree m — 1.
If n = 2m + 1 is odd, then it is (2, n)-quasihomogeneous of degree n — 2. In both cases X is
good perturbation of S whenever 2p > n.

4.2. Formal normal form of a good deformation

In this section, we shall define a formal normal form of a good perturbation of a quasi-
homogeneous vector field S.

Let & € A. Let us define the coboundary operator dy : # 5 — H 15 to be the linear map
do(U) = [S,U]
where ., .] denotes the Lie br~acket of vector fields.
For any quasidegree o € A such that a > s, we consider the selfadjoint operator
Oy : FH o — Ha
U~ O,U :=dodyU
where df; denotes the adjoint operator of dj relatively to the scalar product (., .)p’ s (defined

by (4)). Let spec (O,) denote its spectrum. It is included in the nonnegative real axis.

DEFINITION 4.3. — (a) We shall say that a vector field of ¥ ,, is resonant (or harmonic)
if it belongs to the kernel Ker O, of O,
(b) A formal vector field will be called resonant if all of its quasihomogeneous components
are resonant.
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(c) A good perturbation X = S + R of S is a normal form relatively to S if R is resonant.

PROPOSITION 4.4. — Let S be a p-quasihomogeneous vector field of C™. Let X :== S+ R
be a good holomorphic perturbation of S in a neighborhood of the origin of C™. Then,

(a) (Formal normal form) there exists a formal diffeomorphism & tangent to the identity
which conjugates X to a formal normal form; that is ®,X — S is resonant. Moreover,
there exists a unique normalizing diffeomorphism ® = 1d + U such that U has a zero
projection on the kernel of dy =[S, .].

(b) (Partial Normal Form) for every a € A, there exists a polynomial diffeomorphism

tangent to identity ®,' = 1d+ U, where Uo = > Us, withUs € H 5N (Ker do)*t
0<6<a—s
such that

9 () (X)) =S+ N o+ Rear,
where Vo, =3 5<o N5, Ns € Ker Us = Ker d(ﬁmé and R, is of quasiorder > .

REMARK 4.5. — We emphasize that, in the expansions of N o, and U, in (b), Us = 0 and
Ns =0foré ¢ A since 5 = {0}.

Proof. — First of all, we notice that (a) follows directly from (b). Let us prove (b). A basic
identification of the quasihomogeneous components in the conjugacy equation (9) leads to

(10) {Wa +18, fu&]}(s - {R(Id + Ua) — DUo N o+ SId + Us) — S — Ds.%}(5
where § € Aand s < § < o Hence, using Proposition 3.4, Lemma 3.5 and (20), we get the
following “hierarchy” of cohomological equations in J¢5 for § € A with s < § < o

(11) Ns +do(Us—s) = K;

where K; depends only on R, S which are given and on Ng and Ug_, for s < § < § (the
explicit formula of K5 which is useless here is given in Section 6: see (25)). So the “hierarchy”
of equations (11) for s < § < a can be solved by induction starting with the smallest § € A
greater than s.

If6 —s ¢ A, then H;5_, = {0}. Hence, dgj%, , = 0so that K5 € Ker dslﬂs = Hs.
Hence, if § — s ¢ Z, we set Us_s := 0 and N; := K; € Ker dj.

If6 —s e A(and § € A), then let us decompose Hy along the direct sum

1 1
Hs =Tm dog,_, @ Ker diy 5, = Im 05 @ Ker s

where Im dy%,_, = Im [s and Ker d(";‘ Wy = Ker ;. Let ms denote the orthogonal
projection onto (Ker dj)t = (Ker Os)t. Then, the cohomological equation (11) is
equivalent to

(12) Ns = (Id — 75)(Ks) € Ker dsl.ﬁs’ do(Us—s) = ms(Ks) € Im do 5, _, -

Then since dy induces an isomorphism from Ker (dojs, ,)* onto Im dg|y,__, there exists a
unique Us_, € (Ker (dojs,_,))" such that do(Us—,) = ms(Ks) € Im dojr, .. O
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EXAMPLE 4.6. — Let S =) )\ixi% be a linear diagonal vector field. It is
i=1 ¢
(1,...,1)-quasihomogeneous of degree 0. An easy computation shows that (adg)* = adg

where S = > /_\imi%~ Hence, Ker(adg)* = Keradg. Moreover, the spectrum of s is the
i=1 §
set {|(@Q,\) —\|2,QeN"|Q=6+1,1<i<n}.

ExaMPLE4.7. — Let S = y% in C2. It is (1,1)-quasihomogeneous of degree 0. The
adjoint of the Lie derivative is £* = xa%; the adjoint of the Lie bracket with S is

x%) 9
Oy / Oy
Its formal kernel is the C[[z]]-module generated by the radial vector field R = x% + ya% and
ma%. According to [21, p. 36], the spectrum of Oy_1 is composed of the following numbers "

(adg)*v = R + (v1 -

0, k+1, (a—1D(B+1), a(B+2), a=1,....k,a+8=k.

An easy computation shows that the non-zero eigenvalues of O _1 are > k — 1.

A similar definition of normal form of perturbation of homogeneous vector fields was
given by G. Belitskii [3, 4] using a renormalized scalar product. Another definition of normal
form of perturbation of quasihomogeneous vector fields was given by Kokubu and al. [22].
It is a general scheme that provides a unique abstract normal form. This scheme can also be
combined with our techniques to provide a unique normal form as well.

The perturbation of a nilpotent linear vector field has been treated by R. Cushman and
J.A Sanders [12] using sl,-triple representation. Computational aspects with another defi-
nition of normal forms in any dimension was done by L. Stolovitch [34]. Two dimensional
aspects were initiated by R. Bogdanov and [5] and F. Takens [41]. Analytic conjugacy of per-
turbations of a nilpotent 2-dimensional to such a normal form was obtained in [40]

For very particular examples of S in dimension 2, normal forms have been obtained
by V. Basov (see [2] and references therein) without using a general framework. When the
perturbation of § = yZ + ZL’QE% is tangent to the germ of 322 = 2y at the origin, then a
formal normal form of vector fields tangent to the cusp has been devised by F. Loray [24]. It
is described in terms of a basis of the local algebra of the function 322 — 2y3. This work has
been improved by E. Paul [30].

4.3. Vector fields with symmetries

In this section, we show how to adapt our normal form scheme in order to study vector
fields that preserve a differential form or vector fields that are reversible. We shall show
that we need to consider restrictions of the cohomological operator dy to some subspace
of the space of quasihomogeneous vector fields with range in another subspace of a space
of quasihomogeneous vector fields. On these subspaces, we shall consider the induced
Hermitian product.

(M In fact, it is the spectrum of djdo that is computed there.
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Vector fields leaving a differential form invariant. — One may be interested in studying vector
fields leaving invariant a polynomial differential form w (i.e. the Lie derivative ¥xw = 0)
such as a symplectic or a volume form, for instance. First of all, we have to check that w is also
p-quasihomogeneous (with the same p as for the vector fields). This means that £r, w = dw
for some integer d. For instance, let w = >°;"; dz; A dy; be the standard symplectic form
of C?™. Let g; (resp. r;) be the weight of z; (resp. y;). If ho denotes a p-quasihomogeneous
polynomial of C2", in order that the associated Hamiltonian vector field

zn: Ohy 0O ahg 0
ayz 81}1 axz 3%

=1
be also p-quasihomogeneous, it is necessary and sufficient that g; + r; = g; + r;, for all 4, j.

In this situation, it is sufficient to work on the space # 5, := {X € #; | £x(w) =0} of
quasihomogeneous vector fields preserving the form w instead of 5. Indeed, the Lie bracket
of the two such vector fields still preserves w since L[5 y)(w) = L5Ly (w) — Ly Ls(w) =0
Moreover, the flow exp(¢X) of a vector field X that preserves w leaves w invariant:
M = exp(tX)*(£xw) = 0. Hence, we can consider the restriction maps

5‘{5 w = Hstsw, Ay + Hspsw — Hs, and the box operator Os @ K5, — Hsw.
The scheme goes as follows: assume that X is normalized up to order § — 1 and that
£xw = 0. Let us conjugate X by exp Us_, where £y, w = 0 and Us_; is quasihomoge-
neous of order § — s. As above, one has to solve the cohomological equation of the form
Ns + do(Us—s) = Ks. Since w is p-quasihomogeneous, it is easy to see that K leaves w
invariant (see [18] for a similar problem). Hence, we can apply our scheme on the spaces
H ... As a consequence, if S and its good perturbation X preserve w, then there is a for-
mal transformation (fixing w) into a normal form (an element of Ker dy*) which leaves w
invariant.

Reversible vector fields. — Let R : C* — C™ be a linear map such that R?> = Id. A
vector field Z is said to be reversible if it satisfies to Z(Rx) = —RZ(z). Let U be a germ
of holomorphic (or formal) vector field such that R.U(z) = U(Rz) at the origin (a point at
which it vanishes). Then, one can show that the transformation y = x + U(z) conjugates
a reversible vector field to a reversible vector field. As for the case of differential form, we
require a compatibility condition on R with respect to the weight p. Namely, we assume that
the linear vector field Rz is p-quasihomogeneous of quasidegree 0. This implies that a formal
vector field is reversible if and only if each of its quasihomogeneous components is reversible.
Let us consider the space of quasihomogeneous transformations

Is:={U e Hs| RU(x) =U(Rzx)}
and the spaces of quasihomogeneous reversible vector fields
Rs :={U € Hs | RU(z) = —-U(Rx)}.
If S is reversible, then dg : 5 — Rss. In fact, we have
R[S,U](z) = RDS.U — RDU.S = —DS(Rz)RU — DU (Rz)R.S
= —DS(Rz)U(Rz) + DU(Rz)S(Rz) = —[S,U](Rx).
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Hence, we will consider the operator df : Rsys — s as well as the box operator
Os : s — J5. The normal form scheme goes as in the general case except that in equation
(11), Ns + do(Us_s) = K5, we have K5, Ns € Rs and Us_, € T5_.

4.4. Spectral properties of [

LEMMA 4.8. — (a) Let f\ € Hsyq belong to the \-eigenspace of the operator O 4,
A being a nonzero eigenvalue of Og . Let vy be such that O vy = f (i.e. fx = Avy)
and let us set Uy, := dfvy € H . Then, we have

1
(13) ||U,\||p’a = 7 A2l

psta

Moreover, if X and X' are two different nonzero eigenvalues of Qs q, then Uy and Uy
are orthogonal.
(b) Let f € Hays belong to Im dyy, = Im Oy and let U € Ho be such that

Ue€lmdg, = (Kerdoy,)" and do(U) = f. Then
V], < ——— I/l
pa T miny/)\  pats
Aed 4 \{0}

where J, = spec Oqys.

Proof. — (2): In fact, we have

(Ux,Ux)

o (dgua, dgua)

P,

1
ats = ) (fxs fx)

= <d0d31}>\,'0)\>p,a+s = <f>\av>\> D, 0c+s

p

since f) = Avy. About the second point, we have

<U)\, U>\/> = (dS’U,\, dS’U,\/> = <’U>\,d0d3’l},\/> = )\/ <’U)\,’U,\/> =0

P, p,a p,a+s pats

(b): Let f € HoysNIm dojy, andlet U € H o besuchthatU € Im dg ;= (Ker dojge, )"
and do(U) = f. Then there exits v € (Ker da%wS)J— such that dj(v) = U. Hence,
Oarsv = f. Since [, 4 s 1s a self adjoint operator, we have the spectral decomposition

Hora= P Ker (Ald — Oaqs).
Aoy,

Moreover, since f € Im dgjg, = Im Ouys, v € (Ker clglﬂaﬂ)L and 0,4 5v = f, we also
have the spectral decompositions

f= @ i v= P o, Uatsvr = fa.
Aedaq s \{0} Aedaq s \{0}

Then, using (2) and setting Uy = d§ (v ), we finally obtain

2 2 2 1 2
Wi, = X o, s X 3ol < | ——% |17, O
A€y \{0} A€da s MO} AEJ 4, \ {0}
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5. Rigidity of quasihomogeneous vector fields

Let 4 be a quasihomogeneous ideal of ©,, generated by quasihomogeneous polynomials
hi,...,h, of p-quasidegree eq,...,e, respectively. We shall denote by J=J ® @n its
formal completion, that is the ideal in the ring of formal power series @n generated by the
h;’s. Let us denote by ; the operator of multiplication by h; in @n (M; will also denote
the multiplication operator, componentwise, on the space of formal vector field /9En). Let us
denote by M = My X, + - - - + M, X, (resp M= 71/11/95” + 4 mﬁcn) the submodule of
germs of holomorphic (resp. formal) vector fields at the origin whose components belong to
the ideal generated by the h;’s.

Let 6 € A, let us set M5 := M N Hs. Let Vs be the orthogonal complement of s in H s

1 —~
and let 7 . be the projection onto V5: H5 = Vs @ Ms. We shall set V := @ V5 as well

seA
as

P

W= {U € (Ker do)* | [S,U] € fT/}.

T
LEMMA 5.1. — With the notation above, we have Vs = (| KerM;y,, —where My,
i=1 i “

denotes the adjoint operator of M g, : Hs — Hsye, with respect to the family of Hermitian
products (., .)p .

Proof. — Let v e Vs. By definition, we have (v, Myw;+ -+ Mow,) =0,
for all w; € Hs5_.,. In particular, we may choose w; = M v for all i. We obtain
0= [|Miol* + - + |52 O

Let § € A such that § > s. Let us denote by 05,\s the set of nonzero eigenvalues of
s for which there exists an associated (quasihomogeneous of degree ¢) eigenvector which is
orthogonal to ;. Let us set

as = min VA,
)\GO'(;’\/
as well as
5. i— min{d + p; |_5-|—pi e A} and 5% — max{d+p; |6+ p; € A}.
p b
Let us set

A~ :=AnN (A —3), At :=An (A +35s), 0p:=max(min §,1).
ScA-

The integer d is the smallest positive integer of A~. It might happen that &, > 1 for some p.
Let us define the sequence of positive real numbers {75 }5c A - An-1 {0} 35 follows: ny = 1; for
any positive § € A~ (i.e. § > dy),

*

(14) Qs+sNs = max max Nsy * N5
s+ SS[LSS+6,[L€A S1+-+,+u=s+8 1 )
pae <r<p”
where if © = s then the maximum is taken over the r-tuples (d1,...,d,) of nonnegative

integers such that at least, two of the §;’s are positive. Moreover, the maximum is taken over
the indices d; (resp. ) which belong to (A~ N N*) U {0} (resp. A).
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REMARK 5.2. — The sequence ns is well defined by induction since the maxima only involve
terms ng’s with d < 6.

DEFINITION 5.3. — The quasihomogeneous vector field S will be called Diophantine with

respect to the ideal J if the formal power series S n5z° converges in a neighborhood of
§>0, 6eA
the origin in C; that is to say that there exist ¢, M > 0 such that ng < Mc®. We shall say that

S is Diophantine if it is Diophantine with respect to the zero ideal J = {0}.

EXAMPLE 5.4. — Let us consider Example 4.6 where S is linear and diagonal. It is known
[35, Lemma 2.3] that S is Diophantine in the above sense if and only if it satisfies Brjuno’s
condition:

(w) - Z 7111(“2)24_1) < 400
k>0
where
we =inf {|(@,A) = Ni| #0, i =1,...,n, Qe N", 2 < |Q| < 2¥}.

DEFINITION 5.5. — Let S be quasihomogeneous and let X be a good holomorphic
perturbation of S at the origin. We shall say that X is formally (holomorphically)
conjugate to S along g (resp. J) if there exists a formal (resp. germ of holomorphic)
diffeomorphism & (resp. ®) such that ®,.X — S € M (resp. . X — S € M), ie. in the new
Jormal (resp. holomorphic) coordinates, X is equal to the sum of S and a formal vector field
whose components belong to the ideal i (resp. J).

THEOREM 5.6. — Let us assume that the quasihomogeneous vector field S is Diophantine
with respect to J. Let X be a good holomorphic perturbation of S at the origin of C". We
assume that X is formally conjugated to S along g (by the mean of a formal diffeomorphism
of the formId + U, with U € /‘W ). Then, X is holomorphically conjugated to S along J.

COROLLARY 5.7. — Under the assumptions of the theorem, there exists a good
holomorphic change of coordinates in which the germ at the origin of the zero locus
Y:={x e C" hi(z) =--- = h.(x) = 0} at 0 is an invariant analytic set for X. Moreover,
in these new coordinates, the restriction X to X is equal to the restriction of S to X.

THEOREM 5.8. — If the quasihomogeneous vector field S is Diophantine and if the
holomorphic good perturbation X is formally conjugate to S, then X is holomorphically
conjugate to S.

Proof. — We apply Theorem 5.6 to the ideal = {0}. Moreover, we can assume that the
normalizing diffeomorphism reads ® := I + U with U € (Ker dg)*. In fact, if ®, X = S,
then for any V' commuting with S, we have

(expV)*S:S+[1/,S]+%[V,[V,S]]—k---:S. O
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The remainder of the section is devoted to the proof of Theorem 5.6.

First of all, let us write the conjugacy equations between the vector fields X = S + R
and X' := ®,X = S + R’ where the formal diffeomorphism is written as ®~! = Id + U
where U € @ stands for a formal vector field of positive quasiorder. Since we have
D(®)(®1)X (') = X', we have X (I + U) = D(I + U)X'. Therefore, we obtain

(15) R +[S,U] = R(Id + U) — DU.R' + S(Id + U) — S — DS.U.

For any positive integer § such that s+6& € A, let us project this equation onto the orthogonal
space V15 to Msys in H s s and let us denote by 7 4+ this projection. Assume that ®
conjugates X to S along /M. This means that R’ belongs to 1. Therefore, we have

(16) 1S,U) = 7,1 ([S,U]) = 7. (R(Id + U) + S(Id + U) — S — DS.U).

The first equality is due to the fact that U € W whereas the second is due to the fact that
DU.R' € 7M. We recall that Us denotes the quasihomogeneous component of (the Taylor
expansion at the origin of) U of quasidegree 6 of U. We emphasize that both side of the
equation are reduced to zero if § ¢ A. So, we will consider the case where s + 68 € A and
6 € A. We recall that

A= :=An(A-s), At:=ANn(A+5s).

By assumption, Us has also a zero projection on the kernel of the operator dy. Since we have

1
H 5 = Kerdy @) Imdy, Hors

then we can write Us = djvsys for some v € H 5. Moreover, we can assume that v
has a zero projection onto Kerd. The latter is nothing but the kernel of O = dod§. In
fact, if Ovgys = 0then 0 = (v, v)p,er(s = |d§vs+s|?, the converse being obvious. Let us
decompose v, s along the eigenspaces of [ 1s. Let A be an eigenvalue of (s and let )
be the projection on the associated eigenspace. We shall say that A is quasihomogeneous of
quasidegree s+ 0 if [ has a A-eigenvector in # ;5. We shall denote by 7, , \  the projection
onto the subspace of J¢ s generated by the eigenvectors of (s s which are orthogonal to

Mss. Since [S, Us| = dodivsys, then, we have

Tors)\7 O T s (dodgVsts) = Tgp5\7 0T 0 Z Avy | = Z Avy,

)\605+5,\J )\EUS+5,\J

where we have set vy := m(v). We recall that o5, \ » denotes the set of nonzero eigenvalues
of Oy s for which there exists an associated (quasihomogeneous of degree § + s) eigenvector
orthogonal s, s. We can assume that vy = 0. Therefore

S M =mgss0me (RAIA+U) + S(Id +U) — S — DS.U).

)\GasJﬂ;,\‘/

Let us set Uy := djvy and let us denote by Us the sum of the Uy’s where X ranges over
0,45, According to the first point of Lemma 4.8, we have ||Ux||* = Al|val|?>. According to
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the second point,
2

S o o= X X,

A€08+5y\/ oo )\Ea's_*_(;)\J
2
= 3 am? z( min ﬁ) AT
120 AET 50\ s p,0
A€o 5\ s

Therefore, we obtain

(17)

min |\f/\|> ||U5||p s < H7rs+5 o (RId+U)+ S(Id+U) - S — DS.U)H
A7 ’

A€o s 'p,s+6

Let us estimate the right hand side of the last inequality. First of all, we have

|mossom(RIA+U) +SAd+U) - S — DS.U)HP s

<|{R(Id+U)+ S(Id+U) - S — DS.U}p,s+5||p s

Then, let us decompose R into quasihomogeneous components R = > R,,. First of
H>s

all, for any d € N, every quasihomogeneous polynomial of quasidegree d is either 0 or
a polynomial of degree < d/p and of order > d/p. In fact, if d € A, then we have
d = a1p1 + -+ + app, for some @ = (ay,...,a,) € N*. Hence, pla|] > d > p|a|. On
the other hand, if 4 € A, the i-th coordinate of the vector field R,, is quasihom(;geneous
of quasidegree u + p;. Hence, itis 0if o + p; € A. Otherwise, it is a polynomial of
degree < (4 + p;)/p and of order > (u + p;)/p. Therefore, R, can be written as a sum
of homogeneous vector fields
R,= Y Ry,

P Sr<p*
where R,, . is a homogeneous vector field of degree r (i.e. each component is a homogeneous
polynomial of degree r or 0). We recall that we have set

i i i €A i i €A
_ min{p+p |_u+p }andu* . max{p+p;|p+p 13
P P

* .

Let an be the associated r-linear map. Therefore, the (s + §)-quasihomogeneous compo-
nent of R(Id + U) in its Taylor expansion at 0 is

pn>s

{R(Id + U)}ays = {Z R, (1d + U)}
s+4

-
S>> R, (1d+U,...,1d+U)

U>S T=[hx

T times s+6

s+6 p*

:Z Z Z Ry,r(U51v"-aU5r)

U>8T=px 8§14 +6p+p=s+8
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where the §;’s are nonnegative elements of A~ = AN (A — s), u € A is greater than s and
where we have set Uy := Id.

Moreover, according to Propositions 3.6 and 3.7, there exist positive constants M and p
such that, for all u > s belonging to A, for all u, < r < up*, we have

HRH,T(UM,...,U{; )
'p,61++ + i

.

M
=S A A

As a consequence, we obtain the following estimate:

s+6 u*

a8) RO+ Dl <DD

U>S T=px §1+-+0rtp=s5+6

M
W 1T

On the other hand, we have

5., <r<s* .
- - 7 times

where S, is an r-linear map. Therefore, we have

DS(x)U = Z rSer(x,...,x,U).
S <r<s* .
*=r= r — 1 times

Hence, the s+ §-quasihomogeneous term in the Taylor expansion of S(I+U)—S— DS (z)U
is

(19 {SU+U)-S-DS@)U}, 5= > > 8. (Us,,...,Us,)

8+ ST<8* §y4-46,=68
(517'-4767“)697'
where
(20) Q. = {((51, .oy 0p) € (K‘)r / at least, two of the indices are positive} .

Therefore, we obtain the following estimate

ST +0) =S =DS@UYpsl <M D0 30 Wall,, - 1Usl,
55 Sr<s* §14-48,.=8

(81 y-0107) €2
where M’ denotes a constant depending only on S.
Let us define the sequence {05} 5¢ & - -1 {0y Of Positive numbers defined by o := ||1d||,0
and if § € A~ is positive,
s+8 p* M
5= S Y M T g
B>S =[x 614+ +pu=s+0 5« ST<S* §14-F-6,.=6
(015,07 )EQ

where, in the first sum, the §;’s are nonnegative elements of A~ and the s are elements of A.
This sequence is well defined. In fact, since p > s, then the d,’s are all less than § in the sum.

LEMMA 5.9. — For all nonnegative § € A= N N* U {0}, we have |Us||,.s < 1505.
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Proof. — We prove it by induction on nonnegative elements of A~ U {0}. For § = 0, this
is obviously true since o = 1 and o¢ = ||Id||,0. Let us assume that the lemma is true for all
0 < ¢’ < din A™. According to estimates (17) and (18), we have

s+6 up*
(o V)il <35 X By, ol

Csts\s pu>sr=py 51+ +0r+pu= s+6'0

"y > sl 5 - IUs. Il 5

84 <r<s* §1+4--+85,.=68
(81,5004,0,)EQ,

s+6 u*

<> > > %7761061 <15, 05,

B>ST=px §14 -+ +pu=s+0

Z Z 16106, " 15,06,

5. <r<s* §1+---46,=6

(81,5004,07)EQ,
*
< max max Ns, " Ns, | 0s-
s<pu<s+68, peA 01+ +rtp=s+6
e <r<p*

The second inequality is a consequence of the induction assumption. The last one gives the
desired result. O
LEMMA 5.10. — The formal power series o(t) := > o;tt converges in a
i€ A-U{0},i>0
neighborhood of the origin of C.

Proof. — First of all, we notice that we have

%MZ* Z %051...0&:Méis{<67(25)>“*+_,.+(U(t))m}6+s_“.

p>ST=py 1+ +0r+pu=s+35 p>s P P
Let us set
w 2\7
(©3)) Pu(z):= ) <7) and F(z,t)=M Y Pu(a)t" "
= \p
Hox pEA,u>s

The power series F defines a germ of holomorphic function at the origin of C? which satisfies
F(z,0) = 0. Then, the coefficient of ¢’ is the Taylor expansion of F(o(t), t) at the origin of C
given by

(F(o(t),t)}s = M {Z Pu(cr(t))t“—S} - M {Z{PM(a(t))}é-u+st6—“+5t“—s}
) )

n>s n>s
o+s

= MZ{P }5 pts.

pn>s
On the other hand, let us set

(22) P(z):= Y (2" —of —roy (2 — 09)) .
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We have P(op) = 0 and DP(op) = 0. We then notice that
{Ple@)s=M Y Y. 0505

S« ST<s* Syt 46,=6
(81,00,60) EQ,y
where (2, is given by (20). Let us set G(z,t) = F(z,t) + P(z). Therefore, we have
o5 = {F(a(t),t) + P(o(t))}s-

As a consequence, the power series o (t) is solution of the problem G(o(t),t) = (o(t) —
o) together with o(0) = o9. Since D,G(0p,0) = 0, then, according to the implicit
function theorem, this problem has a unique holomorphic solution satisfying the same initial
condition. O

REMARK 5.11. — The order of F(z,t) att = 0 is 69 := max(ming_z - J, 1).

Therefore, according to the Diophantine property of .S, there exist M,c > 0 such that
ns < Mc® for all positive § € A. Moreover, according to the previous lemma and to
Proposition 3.7, there exist M’,d > 0 such that o5 < M’d® for all positive § € A~.
Hence, according to Lemma 5.9, we have, for all positive § € A, Usllps < M ¢ for some
positive constants M and c. Therefore, according to Proposition 3.7, U is holomorphic in a
neighborhood of the origin in C™. This concludes the proof of the main theorem.

6. Conjugacy to normal forms and approximation up to an exponentially small remainder

In this section we shall study the conjugacy problem to normal form. We shall show that if
the “small divisors” are actually big, then there is a convergent normalizing transformation.
On the other hand, we shall show that, if the “small divisors” are not too small then there
exists a formal normalizing transformation which is not worst than Gevrey. From this, we
will be able to obtain an optimal choice of the quasidegree o of normalization such that
discrepancy between the partial conjugate and the partial normal form of quasidegree « is
exponentially small in some twisted ball.

6.1. Normalization and cohomological equations

Let S be a p-quasihomogeneous vector field of C*. Let X := S + R be a good
holomorphic perturbation of S in a neighborhood of the origin of C™ (i.e. the quasiorder
of R at the origin is greater than s). Proposition 4.4 ensures that for every a € A with
a > s, there exists a polynomial diffeomorphism tangent to identity ®;' = Id + %,
where U, = Y. Us, withUs € H; such that (®,).(X) = S + ¥y + R.q, Where

0<é<a—s
No = Y Ns, Ns € Ker Oy, and where R, is of quasiorder > «. We recall that in
s<6<a

the expansions of V', and %,, Us = 0 and Ns = 0 ford ¢ A since J¢s = {0}. A basic
identification of the quasihomogeneous components for § € A with s < § < « leads to

@) {ra+ls, %]}5 - {R(Id + Us) = DUo N o+ S+ Us) — S — Ds.%}é.
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Hence, using Proposition 3.4, Lemma 3.5 and (20), we get the following hierarchy of coho-
mological equations in s for § € A with s < § < «:

(24) Ns +do(Us—s) = K5
with
' -
K5 = Z Z Z Ru,r(USU-'-aUST) - Z DUgl.N(;z
>, pEA T=Hx S14- 48, +u=5 S1402=5
(25) ;20 51>0, 83>5,00€A

+ > > Ser(Usy,.-.,Us,)
T=Sx § 4o+ 8 +5=6
(814eeey 0,)EQ,
where by convention Uy = Id and where €2, is given by (20). Moreover, if not specified, the
;s belong to A~ = AN (A — s) in the previous sums.

Then, we observe that (25) ensures that K5 depends only on R and S which are given and
on Ng and Ug_; for s < # < 6. So the “hierarchy” of Equation (24) for s < § < « can be
solved by induction starting with the smallest § € A greater than s.

Let us denote by 75 the orthogonal projection on (Ker Os)* = (Ker dg )" = Im dojy,_,-
Since N5 € Ker [y, (24) is equivalent to

(26) Ns = (Id — 75)(Ks), do(Us—s) = ms(Ks).

REMARK 6.1. — We shall point out that if 6 — s ¢ Z Us_s = 0 and N5 = K since
FHs_s = {0}.

To compute by induction upper bounds of Ng and U;_, we use the norms

v, =0, V5:||N5||p6for565,5>s,

up = ||U0||p’0 = ||Id||p’0 = \/ﬁ +oet ﬁ, us = ”U5”p,5 ford € A,6 > 0.

Wesetus =0if 6 + s & A and v, = 0. Then, since 74 is orthogonal and using Lemma 4.8,
we deduce from (26) that, for all § € A,

1
7 vs = NGl < WKl ;o wss <

— || K .
B min V) | 6”1”5
Aé€spec Us\{0}

Finally, the submultiplicativity of the norms given by Proposition 3.6 implies that there exists
M > 0 such that for every § € A with § > s,

(28) K5l . < ks
120
with
(29)
Ug, = Ug, max(1,2)
k(;:M< >y PRI S S T
s, pek  pa<r<pr P 1<6, <6—s—1 s.<r<s”
S1+e A8 tp=5 51€A7, 5-6€A 1ot ts=4

(01,044,07)EQ

where in the first and the last sums, the 8;’s belong to A~ and where Q,. is defined by (20).
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6.2. Convergent conjugacy to a normal form
Let us set
vV := max (1, g) .
THEOREM 6.2. — Assume that there exists a constant ¢ > 0 such that for all § € A+,

min VA > ¢71(6 — s).
A€spec s \{0}

Then, any good holomorphic perturbation X of S is holomorphically conjugate to a normal
form.

Proof. — Letussetyy = 1andif § € AT with§ > s

Vo—s 1=M( Z Z (f) YouYs, + Z V5,Y6—6,—s T Z 751~~-75T>-

u>s, HEZ pe <r<p® 1S~51S57571~ 5. <r<s™
S1+- A8 +p=5 51€A™, 6-6,€A 1+ +0r+5=0
(81,0507 ) EQy

Here, we have set M := max (Mcuo, I‘f—oc, Meug -1 Mcuf)*_l). We claim that

(30) Vs < U Vo—ss (0 —8)"us—s < up Ys—s-

Let us prove these inequalities by induction on § > s. This is obviously true for § = s.
According to Equations (29) and (28), we have for § > s

T
(5—8)"1&5—5§M( Y. Y. <z;0> YoVt Y, VVe-sn-st Y 'yalu-’m),

p>s, peA  paSr<p® 1<6<6—s—1 s, <r<s®
S1eF8, =0 §1€A7, 5-51€A S1t 8y +5=0
(31,0016, ) EQr
where, in the first and the last sum, we have used the fact that, if §; > s, then
us,—s < (0; — $)’us,—s < ug vs,—s as well as ug < woyg. Therefore, we obtain

(6 — 8)’us—s < ~vs5_s. In the same way, we have vs < ~5_s. Let us define the formal

power series
V)= Y, it
ieAn(A—s),i>0
Let G(z,t) := F(z,t) + P(z) be the function defined by Equations (21) and (22) where, in
these formulas, p is replaced by p/ug, M by M’ and o by 1.
Let § € A such that § > s. As we have seen above, we have

4 n* r
S % (%) s d X s = {0600}

B> T=py 614 +0p+p=0 s« <r<s”
814+ O, +s=8
(015044,0,)EQ

where, in the first sum, the §;’s are nonnegative elements of A~ and the s are elements of A.
We recall that {G(y(t),t)}s_s denotes the coefficient of t*~* in the Taylor expansion at the
origin of the formal power series G(~(t),t). Furthermore, we have,

3 avsmsis = {((E) = 1)?}s_se

1S~61§5—8—1~
61€A_, d—381€A
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Hence, ~(t) is solution of the holomorphic implicit function problem:

G(y(1), ) + (v(t) = 1)* =~(t) — 1
with initial condition v(0) = 1. Since G(1,0) = 0 and D,G(1,0) = 0, v is the unique
holomorphic solution of this problem. Therefore, for all positive § € A™, we have
us < 75 < C°. Hence, the formal power series >~ Us converges in a neighborhood of

the origin, that is to say the normalizing transformation ®~! is holomorphic in a neighbor-
hood of the origin of C". O

REMARK 6.3. — If' S is a diagonal linear vector field, then the situation described by the
previous theorem corresponds to the Poincaré domain [1]. In fact, by definition, the closed
convex hull of the eigenvalues \; in the complex plane does not contain the origin. Hence, if
Q € N" issuch that |Q| = g1+ - - + qn, is large enough, then |g1 A1+ - - - + g An — Ni| = m|Q).

6.3. Formal Gevrey conjugacy to a normal form

Assume that S satisfies the following Siegel type condition: there exist¢ > 1and 7 > 0
such that for every § € A with § > s, we have

1
(31) —— _<e¢  min VA
(5 — S)T A€spec s\ {0}
Our aim is to show that both v5 and us_, admit Gevrey estimates. Namely we prove in this
section the following result:

THEOREM 6.4. — Assume that S satisfies (31). Any good holomorphic perturbation of S
admits a formal transformation to a formal normal form both of which are ;5(% + 7)-Gevrey

power series where 5 := max(ming_z - 6,1) and a := max (1, [(157—2%1)] )
The following lemma gives such an estimate using a common majorant power series.

LEMMA 6.5. — Let {/35—5}6«5&0(&4-5), 5>s be the sequence defined by induction with 5y = 1
and for § € K+, 6> s,

,
@ss:M'< S Y (%) BB
u>s, pEA p Sr<p”
S14 8 tpu=48

+ > 61(61—1)-- (61 —a+1)B5,85-5—5, + >, DBs, -~-/66r>
1<6;<6—s—1 s.<r<s”

51€AN(A—s), 6—6,€A S14-+0,+s=8
1EAN(A=e), 00 (600 byECL

where a is the smallest integer larger than or equal to v = max(1, 12'2) and where in the first and

last sums the §;’s belong to A~, Q,. is given by (20) and s* is defined by (3). Here, we have

set M’ := max (Mcuom, JZI—OC, Mcu(s)**l, Mcug*_l) with m = sup m. Then for
seA

every § € AT with§ > s,

(32) vs <ug ((6 —8)!)"Bs—s, us—s < ug ((6—8)1)"Bs—s-
REMARK 6.6. — § € At ifand only if § —s € A~.
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Proof. — The proof is made by induction. We first observe that (32) holds for § = s since
Bo=1and vy = 0.

Then, let § > s and assume that (32) holds for every a € A+ satisfying s < a < 4. Our
aim is now to prove that (32) holds for 6. We proceed in several steps.

Step 1.
We start with us_s. Using (28) and (29), we get
(33)
Us—s Mc(5—s)" 2 sa "
< ) Cs— o) (6 — 61 — s)!
’U,o(((s — S)!)T —ug((6—s))7 1_61367:101 1ﬂ51ﬂ5 01 (( 1) ( 1 8) )

Mec(6—s)" U r T T
+ MOy Y (1) B B (017 (6)
u>s, pEA  BxSTSp”
S14 8, +u=5

+ M= S (wo)” B, -+ B, (1) (6:)7

5. <r<s*
14+, +s=3
(61,---,6-)EQy
<Mcug m > 01(01—1)--- (6 —a+1)Bs, B5-s—5,(Ds—s,5,,6-5-6,)"
1<6,58—s—1
.
e X > (%) s e85, (Ds—ssnrns,)”

n>s, pez pr <r<p”
O1+-+8r+p=4

*— sx—1
+Mcmax((ug)® ~Yug ™) > Bsy---Bs, (Ds—ssy,.5,)"
5. <r<s*
S14 A8, +s=5
(81,080 ) EQ,

5ple8,1

where Ds—s s, ..., = [CErESE

Step 1.1

We observe that setting M’ = max (MCU(]m, Af—o“’, Mcug*_l,Mcuf)**l), we get
Mecuom < M/, ]L/j—; < M’ and Mcmax((ug)® ~1,ud* ") < M.

Step 1.2

Then, in the first sum of (33), Ds_s 5, 5-5—6, =
1<6 <d—s—1.

Step 1.3

Our aim is now to prove that for every index in the second sum of (33), Ds_5 5,,....5, < 1.
For that purpose we need to distinguish three cases.

§11(5—s—81)! _ .
1(,‘5_;'_1)}) = (‘;515 < 1 holds since

5—s

Casel:r>2andé; > 1,1 < j <r. Itis proved in [21], p. 20, that for» > 2, 6; > 1, and

014+, =dDgy,,.. 5 <1 So,in the second sum of (33) for » > 2 and 6; > 1, we have
(6—p—1)

Ds_, = Djs_ =<1

5—5,61,...,0r 5—11,61,0.,5, G_s—1) =

sinced; + -+ =0 —pands < p < 4.

Case 2. In the second sum of (33), if » = 1 (which implies §; = § — p) or if all the indices

vanish except one, then

60— u)!
Ds_s5,,....5. = _O=mt <1

(6—s—1)!~
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since p > s.

Case 3. Finally, if some indices ¢; vanish in the second sum of (33), then the computation
of the corresponding Ds_; 5, ....5, can be made by removing these indices, i.e. by decreas-
ingr.

So, for every index in the second sum of (33), Ds_55,,...5, < 1.

.....

Step 1.4

Finally, in the third sum of (33), Ds_s 5, .....s, < 1still holds for the same reasons as above,
observing that in this case there are at least two positive indices d;, i.e. Case 2 is not possible
in the third sum.

Gathering the results of substeps 1.1,- - -,1.4, we can conclude that

Us—s

—————— < M5
up((6 — s)!1)7™
where M’ = max (Mcuo, J‘f—:, Mcug**l, Mcug*_l) does not depend on 4.
Step 2
The computation of the upper bound for v is performed exactly in the same way. O

REMARK 6.7. — If the good perturbation is a formal a-Gevrey power series, then the

estimate p% 0f|Ru,T| has to be chan(gied to p%(r!)o‘. Then, the inequality (28) is changed to
||K5||p S (6*N*ks. Since 6* < ‘HT”, then according to the proof in Section A.4, we have
(6*1)* < (6 + P)'2. Hence, using Lemma 6.8, we obtain estimates of the form

o a0
£+T+ 30

5
Vs, us—s < MC°((§ — s)!)
for some positive constants M,C. According to Lemma 3.5, the formal normalizing
transformation and the normal form are both ﬁ(% + 7+ %)—Gevrey.

In the homogeneous case, p = (1,...,1), the formal normalizing transformation and the
normal form are both (o + 7 + 1)-Gevrey.

6.3.1. Gevrey estimates for the 3;’s. — Let us define the formal power series
B(t) := > Bit'.
i€AN(A—5),i>0
We recall that Gy Let §p be the order of 5 — [y at the origin. We recall that

= 1.
o := max(ming_x - 6, 1) from Remark 5.11 and a := max (1, [%ﬁ])

LEmMMA 6.8. — The formal power series (3 is a (%)—Gevrey power series. More precisely,

there exist positive constants Mg and C such that 3; < MzC*[(i — 80)!|%/%, for all integers
1 > 0g that belong to A~.

REMARK 6.9. — With no loss of generality we can assume that Mg is large enough so that
Mp > 1 and 222 > 1 hold,
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Let G(z,t) := F(z,t) + P(z) as defined by Equations (21) and (22) where, in these
formulas, p is replaced by p/ug, M by M’ and o¢ by 1.

Let & € A such that § > s. As we have seen above, we can write

s u r
u

Y30 () sam MY BB = (G0 DY
H>ST=y §1 4+ F0r+p=0 P 5. <r<s”

81+ F0,+5=06

(81,6, )EQy
where, in the first sum, the 8;’s (resp. x) are nonnegative elements of A~ (resp. A). We recall
that {G(B(t),t)}s_s denotes the coefficient of t°~* in the Taylor expansion at the origin of
the formal power series G(8(t),t). On the other hand, we have

4B
D0 =1) (01 —a+ )5 Bsams, = (SO T)
1<61<6—s 6—s
51€AN(A—s), §—8,€A

Hence, according to the definition of the sequence {85—s}5c A+ 5>, in Lemma 6.5, the formal
power series 3(t) satisfies the following differential equation

4B
(34) B(t) — o = M(B() - Bo)t* =2

Let us set

+ G(B(t),1).

B(t) = Bo + t* B(2).
We have B(0) = s, # 0 and p = 1. We have

min(a,do)

d“(t‘sd(’f(t)) = ; Cado(8o —1)--- (80 — 1+ 1)t5°_lda_dlt(alffl(t))
Then, B satisfies the following differential equation
t% B = MBtote [mirféo) CLoo(do — 1)+ (6o — 1+ 1)t5°—lda:;t(a]i(t))} + G(B(1),1).
1=0
Dividing by M B leads to the equation
(ot {migéw CLoog(8o — 1) -+ (8o — L+ 1)t501da(;;1:(t))} —
GB(1).1) = t%B — G(jl\/[;t‘SOB(t),t)

and G(z,t) is holomorphic in a neighborhood of (8s,,0). We have
G(1 +t%B(t),t) = F(1,t) + t* BD,F(1,t) + O(t*®)

since G(z,t) = F(z,t) + P(z) and D, P(1) = 0. We recall that the order of F'(1,¢) att =0
18 §p according to Remark 5.11. Let us set

oz — G(1+t%2,1)
N oo M z

G'(z,1) :
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This function is holomorphic in a neighborhood of (5s,,0). Moreover, by construction, we
have lim;_,q (1 ) = 6550. Hence, we have G (Bsy,0) = 0. Furthermore, we have
aé' 1 ( oG
—tO M (2,t) = — [t —
5z = 0z

% (t°°2(D,F(1 +t%2,t) + D,P(1 +tz)) — G(1 + t*2,1))

= (14 t%z, t)z—G(1+t5°z,t)>
z

90 G0 0) = (82 lim "0 _ (0151 0

Hence, B(t) is solutlon of the following differential equation

min(a,dp) a—
(35 @ { Z CLo(8p — 1) -+ (Jo —l+1)t50—ld;t(fl(t))} = G'(B(t),1).

Let us consider the Newton polygon of the linearized differential operator (35) at B:

min(a,dp) a—1 l
d oG
Ly | >~ Cidolfo —1):++ (B0 = 1+ D dta(jfj)} 5, BV

It is the convex hull of {0} U {(u,v) € R?|u < a,v =a+ & — 1 — (a — 1) = & }. It contains
only one positive (not infinite) slope: %0

According to the main theorem of [260] (or Theorem A.2.4.2 of [33, p. 209], which are
both nonlinear versions of Theorem 1.5.17 of [31]), then either B is holomorphic in a neigh-
borhood of the origin or B is a ( ) Gevrey power series. Therefore, B, < McF(k!)%/%
for some constants. The shift in the factorial in the bound of §; is only due to the formula
B(t) = 1+t B(t).

Therefore, we obtain an estimate of the form ||Us|,s < C%(d!)
| Ns||p,s < 05(6!)”% for some constant C' > 0. We just conclude using Lemma 3.8.

™3 and

6.4. Optimal partial normal form with exponentially small remainder

This section is devoted to the proof of Theorem 6.1 1 below which ensures that an optimal
choice of the quasiorder « of the partial normal form given by Proposition 4.4 enables
to conjugate the perturbation to the partial normal form up to an exponentially small
remainder.

To state a precise theorem, we need to introduce the following “quasinorms”: forxz € C",

let us define
n 1/2
= (me%) .
i=1

For a complex-valued function f defined in a neighborhood of the “twisted ball” d,(z) <
we shall set

|[flghe == sup [|f(z)].

dp(z)<e
If X is a vector field defined in a neighborhood of the “twisted ball” d,(x) < e, we shall set

n

1
”X”qhs = Z £2p: | Z|qhz—:

i=1
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The subscript gh stands for quasihomogeneous as these norms are adapted to quasihomo-
geneous objects.

REMARK 6.10. — We recall that Lemma 3.3-(a),(b) ensures that A contains all sufficiently
large integers. In other words, there exists 0, such that for every o € N, if o > 6, then «
belongs to A.

THEOREM 6.11. — Let S be a p-quasihomogeneous vector field of C"*. Let X := S+ R
be a good holomorphic perturbation of S in a neighborhood of the origin of C" (i.e. the
quasiorder of R at the origin is greater than s). Proposition 4.4 ensures that for every
o € A, there exists a polynomial diffeomorphism tangent to identity ®,' = Id + U, where
Uo= > Us, withUs € Hs such that

0<é<a—s

(Qa)*(X) = S +~7Va + %>a,
where /o, = Y. Ns, N5 € Ker Os, and where R, is of quasiorder > c.

s<6<a
Assume that there exist ¢ > 1 and 7 > 0 such that for every § € A with 6 > s, we have
1
36 — < c(d—3)".
(36) min VX — ( )

Xespec s\ {0}
Then, there exist 0 > 4, Moy > 0, wopy > 0 and €9 > 0 such that for every € €0, g¢], the
number aopt 1= [ﬁ} + s — 2 satisfies

(37 Qopt > 8 and Olopt > Oy,
and
(38) [R>aopillah,e < Mopte™ €

where % =74+ % and b is defined in Remark 6.10.

Proof. — The proof of this theorem is based on the following proposition which is proved
in Appendix B .

PROPOSITION 6.12. — Let K > 2 and v > 2 be fixed such that

uo MMy a (1\k
p1(K) <1 where  p1(K) = Ko Z(k+50) (z)
and k_o .
X <1 where X = <2]\/[75u0>§
7C P

The numbers a, 6y, C and Mg are defined in Lemma 6.5.
Then there exists Mg > 0, such that for every € €)0,1[ and every a € A with a > s
satisfying

(39) Ce < ;
YK (a — 5)%
we have
(40) %5 allane < M ((C2)* (@ = s+ 2)DF Aa+ (3)™)
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where A, =1 lf% >aand A, = (a— 5)1*”*% otherwise.

Let us prove Theorem 6.11 in the case % > a. The other case can be deduced from
this one by an appropriate change of the value of Mg and C. The key idea is to choose an
appropriate value a,pt for o using Stirling’s formula, which makes the right hand side of (40)
exponentially small.

Let us choose a,pt such that

1
(41) aopt — S + 2 = {W(C’g)b} .

We have apy—s < W, so (39) is satisfied. Moreover, let us observe that for ¢ sufficiently
small, (37) is satisfied. Then we compute the upper bound given by the right hand side of (40)
with this choice of . For that purpose, let us set

Dy = (Ce)** ((aope — s +2))F, Dy = (&)™

Let us set  := (Ce)® and Mg := sup H
keN k"7 Ze”

Mg < oo holds. Using (41), we have the followmg inequalities:

B < =157 e ({ [ + 4} 0 2] — (o))

==~ oo ({ [z + 3} [ | + aeior] %)
o ({[aakr] + 3} (o) + [a] m2)

- e (310 (k)
k) (1+m(vE)))

S’%(’yK)% exp(— ([33(117),,] + 1) (1 + ln(’yK)b>>

—. According to Stirling’s formula, we have that

IN

= exp [w(wK)b (1 + In(yK) )

z(vK)®
Hence
21 1+ In(vK
(42) Dy < MY (Ce)* 37K e with w = “:I;%))
Y

On the other hand, we check that

Hence, we obtain

(43) D, <
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Observing that wy > ws, we can conclude that (38) holds with wgpy = we and

Mopt = Mg max<Ks Q’M;/bm sup {(CE)S_%eW2;bWI }) -

€€]0,1]

In some problems, it might be useful to consider parameters as variables to which one
prescribes a weight. This has been done implicitly in [20] for instance.

7. Computations and examples

Letp = (p1,...,pn) € (N*)™. Let S be a quasihomogeneous vector field of quasidegree s
and let J{s be the space of quasihomogeneous vector fields of quasidegree § > s. We recall
that for each positive quasidegree k, the map dg : Hs — (54 isdefined tobe dy(U) = [S, U]
where [.,.] denotes the Lie bracket of vector fields.

7.1. Computation of d and [J
LetU e #sandV € Hs51s. WewriteU =5 1 Uia%i' We have

(44) do(U) = S (5(U) - U(5) 2

"
i=1 9z

where S(U;) := %%, S ‘3

(do(U), V) 5., = ZS(U ~U(S), Vi), 54 s,

Il
ANGER

D (U 8" (V) 5, = (050 Vg
n i n 651 *
=S8 0, - 0 (U (5) W)
=1 j=1 P,0+p;
S (s () s
i=1 j=1 v p6tp:
Hence, we can write dj in a matrix form as
sto(58) () o (5 v
_(25)" g _ (952" _ (25" ;
(V) = (3302) S <3$2) . (3902)
) —E) s/ \w

Let us set 4; := 2. The operator dodj can be viewed as a matrix (P;;)1<i,j<n Of
differential operators defined as follows:

s s () S0 (1%
Pij = 01358 S((’?xi 8333 Zaxk oxy,

where d; ; = 1if i = j and 0 otherwise.
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In the homogeneous case, that is p = (1,...,1), the adjoint operator, with respect to the
Hermitian product (., )H (see Section A.2), of the multiplication by z; is %. Hence, the

adjoint operator with respect to (., .)p) s isequal to xfl Hy = %B%i' Hence, the adjoint operator
S* of the Lie derivative along S is defined as S* : Py, — Py with

. B K L (0
S*(f) = m;%& <%> (f)-

. 5 _ el
Here, if Sz(l') = Z|Q|:8+1 Si7Q$Q, then Sz(%) = Z|Q|:S+1 S»L,Q%

7.2. A first example

In this section we shall completely treat the case where S = :UQ% + xya%, p = (1,1)
and s = 1. Since p = (1, 1) we work with standard homogeneous vector fields. Observe that
H4(CN) the space of standard homogeneous vector fields of degree d in C¥ is equal to # 4_1
which is the space of quasihomogeneous vector fields of quasidegree d — 1. More precisely,
in this section we prove the following proposition:

ProrosITION 7.1. — Let S be given by S = m2% + J;ya%, and let us set p = (1,1) and
s = 1.Then,

(a) any good perturbation of S admits a formal normal form of the type (46).
(b) There exists a positive constant M such that the spectrum of O| g, satisfies

VA > Myn

min
AeSpec(U|w,, )\ {0}

for any large enough n.
() If a third order holomorphic perturbation of S is formally conjugate to S, then it is
holomorphically conjugate to it.

Proof. — (c): We first show that statement (c) directly follows from statement (b). Indeed,
(c) ensures that the small divisors are in fact not small. More precisely, there exists ng such
that, for every n > nyg,

(45) G = min V> 1.
/\ESpec(EHHn_*_1 )\{0}
Let us now consider the sequence of numbers 7,, given by (14) et let us set K = max 7,.

1<n<ng
Then (14) ensures that for every n > ng, 7, < K"*2 and thus S is Diophantine (see
Definition 5.3) and so Theorem 5.8 ensures that (b) holds.

(a) The resonances.

We have S}, = 1 (9388—; + yafzy) =: LA Ifv € H,_; then,

A-282 _2 v
ndé(ma%—i-vza%) = ( 0 oz M 3?/6) (Ul }
-2 g
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Let us compute the kernel of dfj. Let (v1,v2) be a couple of formal power series of
order > 3 such that dj(vy,v2) = 0. Then,

{ (A — —)vg =0
_ Ov

(A 2ax)7}1 = 87y2

First of all, for any (p, ¢) € N? with p + ¢ > 3, we have A(zPy?) = p(p + q — 1)zP~ 1y,
Hence, a formal power series f of order > 3 such that A(f) = 0 is of the form f(y). Since
(A - 3%)(:5?3/‘1) = p(p + q — 2)zP~ 'y, any formal power series f of order > 3 such that
(A= Z)(f) = 0is of the form f(y).

As a consequence, we have v; = f(y) for some power series f = > ;53 fry® and
(A-22)v, = af . Letuswrite vy = )7 | ~3v1,42Py?. Then, we have

D vipap(P+a—3)2P Y = fora(g+ 1)y?
p+q=>3 q>2
This means that vy 1,4 = g%;fqﬂ if g > 2, vy pq withp+ g = 3 or p = 0 is unspecified and
fs=0.
Finally, any holomorphic perturbation X = S + R of S of quasiorder > 1 (i.e the
components of R are of order > 2) admits a formal normal form of the type:

dz
(46) i =2+ P3(z,y) +z Yy Elfiyh+ ha(y)
k>3
dy
ik Z Frorry™

k>3

for some power series hs of order > 4, for some numbers fr and some homogeneous
polynomial P; of degree 3.

(b) “The small divisors”.

Let us consider the differential operators A;(f) := S(f) — 2z f and As(f) := S(f) —zf.
If f, € H,, we have nA}(f,) == A(f,) — 2% and nA3(f,) = A(fn) — %=, Then, if

V € J,_1 then
AjAY —Aj0 2 V;
ndodz;(V>=< " 108%) ( 1>'
—yAT A2 A5 +yg. ) \Va

For each n > 3, the 1-dimensional vector space generated by x™ 1s left invariant by dod
and we have

ndod(’;(x"a%) =n(n—2)(n —3)z" Bay
For each @ = (p,q) € N? with p > 1, the vector subspace E generated by e; o = x”yqa%
and es g = mpflyq“a% is invariant by dodg. Its restriction to it is given, in the basis
{er.@ 2,01, by

p(p—3+4q)? —(g+1)(p-3+9q) )(v)
)

ndody g, (v, w) = <_p(p —34+q) (p—-1Dp+q—2)2+(g+1
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Its smallest eigenvalue for @ = (p,n — p) is
nA—(n,p) = (p — 5)n® + 3n(1 - 2p) + (6p — 3)
—(1/2)1/9 + 72p + (31 + 12p)n? — 30n(1 — 2p) — 1003 + nt.
Since 1 < p < n, then for n large enough, we have
9+ 72p + (31 4 12p)n? — 30n(1 — 2p) — 1003 + n*
<9+ 72n+ (31 + 12n)n® — 30n + 60n* — 10n® + n* < In'.

Hence, we have

nA-(n,p) > n* (p— 3 (14 3)) + 5n(1 = 2p) + (6p — 3) =: 9(p).
Let us find the smallest value of this lower bound g(p) when p ranges from to 2 to n, n being
a large enough fixed integer. We have ¢'(p) = n%? — 5n+6 = (n — 2)(n — 3) which is positive
if n > 3. Hence, g is an increasing function of p. Finally, we have for n large enough and
n>p2>2,

47 nA_(n,p) >n?(2—3) - Bn4 (12— 3)
and
(48) nA_(n,1) = =5n + 9 + n.

Moreover, we have H, = @®p_1Epn—p ® Cx"a% ® Cy"% and dodz‘)(y"a%) = 0.

As a consequence, there exists a positive constant M such that, if n is large enough, then
min,\espec(gn)\{o} \/X Z M\/ﬁ D

7.3. A second example: the 03 resonance

In this section we shall completely treat the case where S is the linear vector field of C3
given by

010 T
(49) S(z,y,2)=| 001 |.| v
000 z

Setting p = (1,1,1), S is quasihomogeneous of degree s = 0. We prove the following result

PROPOSITION 7.2. — Let S be the linear vector field of C> given by (49). Then, we have

(a) For every n, the spectrum of O|g, contains only non negative integers. So for every
n €N,
VA>1

AeSpec(blin, )\ {0}
(b) Any nonlinear holomorphic perturbation of the linear vector field S has a formal normal
form of the type
y+ xPi(z,u)
z+yPi(z,u) + xPs(z,u)
2Py (z,u) + yPo(x,u) + Ps(z,u)

where u = y2 — 2xz. The P;’s are formal power series.
Yy [ .
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(c) If a nonlinear holomorphic perturbation of S is formally conjugate to S, then it is
holomorphically conjugated to it. If it is not the case, then there is a 1-Gevrey formal
transformation to a formal 1-Gevrey normal form.

(d) If P, = uP(x,u) for all i, then in good holomorphic coordinates, the analytic set
{y? — 22z = 0,2 = 0} = {y = z = 0} is invariant under the flow of the nonlinear
perturbation.

Proof. — Statements (a) and (b) are respectively proved in [21, Lemma 2.24] and [16,
Section 2.4.2].

Moreover as in the previous example, statement (a) and Theorem 5.8 ensure that if a non-
linear holomorphic perturbation of S is formally conjugate to S, then it is holomorphically
conjugated to it. The second half of statement (c) directly follows from Theorem 6.4.

Finally, statement (d) is a direct consequence of Theorem 5.6 and Corollary 5.7 with
the ideal generated by z and . O

Appendix A

Inner products and analyticity

A.1. Decomposition as sum of quasihomogeneous components

This subsection is devoted to the computations of homogeneous and quasihomogeneous
components of products, derivatives and composition of functions and vector fields.

LeMMA A.1 (Components of the product). — Let f,g € Cllz1, - xz,]] and U,S in
(Cllz1, - - - zn]])™. Then,

(a) {fg}O,r = Y. JferiGers {fv}‘,r = > fori Ve,

r1+re="7 r1+re="7
(b) {fg}5 = Z f51952’ {fV}5 = Z f§1‘/52'
d1+02=4 §1+062=6

LEMMA A.2 (Components of the derivatives). — Let f € C[[z1,---x,]] and U,S in
(Cllz1, - - -zx])™ Let us denote by S(f) the Lie derivative of f along S and by [S,U]
the Lie brackets of S and U. Then,

@ {S(NYer = 3 Seri(fora) ADSUker = 3, DSeiriUsra

r1+r2=r r1+re=r+1
{[U, S]}o,r :+2; -E-Slf.’”,U.’w];
®) {S(Hrs= > S5,(f5,). {DSU}ts = > DSs5,.Us,, {[U,Sl}s = > [55,,Us,].
01+02=05 §1+82=4 §1+062=06

Proof. — The proofs of the above three lemmas follow directly from the definition and
from Proposition 3.4. O

The following lemma gives a characterization of quasihomogeneous polynomial and vec-
tor fields of given quasidegree. This characterization happens to be very convenient to com-
pute the quasihomogeneous components of compositions.
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LEMMA A.3. — Let us define t?.x := (tP*xq,...,tP~x,). Then, a polynomial P is p-quasi-
homogeneous of degree § if and only if P(tP.x) = t°P(x). Furthermore, a vector field is
p-quasihomogeneous of degree § if and only if X (tP.x) = t°(t?. X (z)).

Proof. — The proof is immediate. O

LEmMA A.4 (Components of the composition). — Let f € C[[z1,---z,]] and U,V in
(Cllz1, -+ za]])™ Then,
(@) {foU}s = > fs.r(Us,, -+ Us,),
§5<6, %grgg
5+81+-F8,.=5" N
(b) {VoU}s = > Vsr(Usy, - Us,), where 6, and §* are defined in (3).
5<8, 5. <r<s*
6481+ 48, =5
Proof. — The proof is based on the characterization of the §-quasihomogeneous compo-
nentsNgiven by Lemma A.3. Indeed, using that f5 is quasthomogeneous of quasidegree ¢ and
that fs , is r-linear, we have

J(tra) =3 ﬁ;((z~ Ud(t".m)))

seA deA

= 3 55((3 #0ute)))

dbeA den

=3 0 5( 3 t0a(@))

deA deA

Y Y R S )
SeA %g % sS1EA s-eA

=y > S ittt f (Us, (@), ..., Us, ().

0€A L<r<t 5y,.5,€A

Hence,
{foU}s = Yo FsrUs,--Us).
§<8!, S<r<s
<o, E<r<d
6+01+-+5,=0
For vector fields the proof is the same. O

A.2. Inner products for quasihomogeneous polynomials and vector fields

Let us denote by Ps(C™) the space of p-quasihomogeneous polynomials from C" to C
of quasidegree ¢ and by ¢ s(C™) the space of p-quasihomogeneous vector fields of quasi-
degree 6 in C™.

In a similar way, let us denote by P;(C) the space of standard homogeneous polynomials
from CV to C of degree d and by Hy(C") the space of standard homogeneous vector fields
of degree d in CV.

The aim of this subsection is to build on 25(C™) and # 5(C™) inner products which lead
to norms such that the norm of the product is less than or equal to the product of the norms.
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In the homogeneous case for Ps(CY) and Hs(CY), the Fisher inner product (-, )y 1s given
by

(50) <wR,zQ>H = {

for monomials and by

R! if R=Q whereR! =ri!---r lif R=(r1,...,70)

0 otherwise

(51) SN

Jj=1
for polynomial vector fields U = E U; 5> —andV = E V52~ B, . This inner product leads to

multiplicative norms given by

(6.9)

Pl a6 = 51

One can check that

L 0a0)
<8$jf(w),g(x) =@t
In the homogeneous case, p = (1,...,1). Let f € Hs_;, g € Hy, then we have

(z: g>p,5 = %(xﬁ,g) <f, a$1> _ (0 g!l)! <f7 gai->p,

H 6—1

In the quasihomogeneous case, a natural idea to build inner products which lead to

multiplicative norms is based on the following proposition:

PROPOSITION A.5. — Let N be an integer and let s be a morphism of algebra from
Clz1,---,zn] to Clzy,...,xN] which is injective (i.e. Ker s = 0) and which maps Ps(C")
into Ps(CN) for every § € A. Then,

(a) the bilinear form (f, g)p = (s(f),s(9)),, is an inner product on P5(C");
(b) for every f € Ps and g € Py, the renormalized norm |fLMs =/ (f;) satisfies
(52) | f9l <|f | 5 19 |

(c) Let fs, : C™ — C be simultaneously quaszhomogeneous of degree § and homogeneous

5+5' =

of degree r.  Denote by f:;,r the unique r-linear, symmetric form such that
for(z,...,x) = fs5r(x) where z = (z1,...,2,). For 1 < £ < r, let Us, be
———
T times

a p-quasihomogeneous vector field of quasidegree 6y. Then, fs,r(Usl vy Us,) Is
p-quasihomogeneous of degree § + 61 + - - - + 6, and we have

(53) ForUs,s- -, Us,) < Ni(for) Us N -+ 1Us, |l
p75+51+"'+67‘ p’ 1 p’ T
with
n a 2 n
2 o _ 2
”UHIMS - Z Us ox; Z |Ul|1776+17i
i=1 p,5 i=1
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and
Ni(for) = 3 |Forlensoosei)
ISZ’(S'IL
1<e<r
where (e1, ..., e,) is the canonical basis of C™.

(d) Let Rs, be a vector field of C*. We assume that Rs , is simultaneously quasihomo-
geneous of degree § and homogeneous of degree r. Denote by Rs , the unique r-linear,
symmetric operator of C™ such that Rs (z,...,z) = Rs.(x) where x = (x1,...,Tp).

——

T times

For 1 < ¢ < r, let Us, be a p-quasihomogeneous vector field of degree ;. Then,
Rs - (Us,,...,Us,) is p-quasihomogeneous of degree § + 61 + - - - + &, and we have

D,6+61+ 46,

"

(54) ||}~25,T(U51,...,U5 )

< Naa(Bsr) 1Usi | 5 - 105, 0L 5
with

N2,1(§6,T) =

where ngr’j is the j-th components of R;,,ﬁ in the canonical basis of C".

Proof. — (a) Property (a) directly follows from the fact that s is linear and injective.

(b) Using that s is a morphism of algebra and that the renormalized norm for homogeneous

polynomials |¢|g s = <¢’5¢:>H is multiplicative we get

159 550 = 5Dy 5p = DS, 4 o0 IS 5 150, 5 = 7L, 1]

Hence the renormalized norm for a quasihomogeneous polynomial is multiplicative.

(c) The proof is made in three steps.

Step c-1: Explicit formula for ﬁ;,r. For1 < ¢ < n, let 2 be a vector of C* with

z® = (:cge), _ ,ng)). Then denoting by (e;)1<i<n the canonical basis of C", we get
For@W,ay = 3wl filen, o ei,):
1<ig<n
1<e<r
since fN'(;m is r-linear. Hence, for z = (x1,...,2,),
f&’“(a:) = f(syr(x’ ce 71:) = Z Tjy - 'mirféf(ein T ’ei'r‘)'
lgigg’n
1<¢<r

Then since the quasidegree of x;, - - - x;, 1S ps; + -+ + p;, and since fs . is of quasidegree &
we get that for every 2(¥) € C", we have

~ 1 1 ~
f&,r(l’( )’“.’x(T‘)): Z xz(‘l)'”xf;:)fts,’r‘(eila"' aeir)-
1<ip<n, 1<e<r
piy - +Dpi, =0
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Step c-2: Quasidegree of f5,(Us,,...,Us,. ). For1l < £ < r, let Us, be in #5,. Denote by
Us, i the i-th coordinate of Uy, in the canonical basis of C™. Then, Us, ; belongs to Ps,+p,
and Uy, ;, - - - Us, ;, belongs to 951+-~+6T+m1+~-+pu- Hence since

(55) for(Usyy...,Us,) = E Us, iy - Us, i, fsr(€is -, ei,),
1<ip<n, 1<l<r
Piy kD=3

f(;,T(U(;l, ...,Us. ) belongs to Ps: with §’ := 61 + - -+ + 6, + 0.

Step c-3: Upper bound for ‘%,T(Ugl, ceey U(;T)‘ . Using (55), (52) and observing that for a
P,

polynomial vector field U = ];1 Uj% € 5 we have |U; |p75+pj < ”U”p,a’ we get

IN

o |U6T77:T |I))6’r‘+p7‘

Z |f57r(6i17"'76ir)| |U61’i1|p,61+p1
1<ie<n, 1<l<r
Piy t+ - +Pi,. =0

S Varlene e MU, 1051,
1<ip<n, 1<l<r
piy T i =6

= Ni(fs) WU, 5+ 10, -

Fo.rUs,, ... ,UaT)L
5

IN

(d): For a polynomial vector field Rs, :== > Rsj %, (d) ensures that forevery 1 < j < n,
=1 ’
Rs.,;(Us,,...,Us, ) belongs to Ps, y...45.454+p, and that

’Eé,r,j(Uéu ey U&«)‘

,6'+p;

< Ni(Rsg) 1031, , WU,

where ¢’ = 6 +--- + 6, + J. Hence, ﬁg’r(Ugl ,...,Us ) belongs to # s and we have

~ 2 2
HRM(U&,...,U(; )’

s

= 3| R Uss - Us)
j=1

p,6’ 'p,6'+p;

n
<30 NE(Roys) WUs I, 5, 105,

j=1

= No1(Bosr) Usill 5 - IUs, I, 5 - O

The following lemma and corollary give four examples of morphism of algebra from
Ps(C™) into P5(C") which lead to four different inner products on Ps(C™). The first example
is the one used throughout this paper (see (4), Lemma A.5 and (56)).
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LEMMA A.6. — Let us define
51 : P5(CM) — Ps(ClPh
fresi(f)(@i1, - Tipyse -3 Tnly Trp,)
= f((:cl,l e Tpy )y (@p1 e -xn,pn));
s2: P5(C") — P5(C™)
fesa(f)(@,. . an) = fa', .. 20);
s3 : P5(C™) — P5(C?™)
Fross(f) @y znym, o) = ez
sq 0 P5(C") — Ps(C™*)
fesa(f) (@, @n,e) = flmel ™ zpeln™h).
Then,

(a) for 1 < k < 4, si is an injective morphism of algebra. So it induces on Ps an inner

product given by (f, gy, = (5(),(9))y
(b) forevery Q = (q1,...,qn) and R = (r1,...,7p),

(56) (29,27 =0bq,r (@) -+ (ga!)"
(22,2%), i=0bq,r (1@1)!- - (Pngn)!
(29,2%), = dq.r (@) (gn)! (P1r = @) (P — 1)an)!
(29,2%), =0dq,r (01)!--+ (@) ((Q,p) — Q)
where 0g r :=1if Q = R and g, r = 0 otherwise.

The proof of this lemma follows directly from Proposition A.5. The details are left to the
reader.

LEMMA A.7. — Assume that Ps is endowed with the scalar product (-, -) := (-,-), , defined
in Lemma A.6 and that Ps and H s are normed with the two corresponding norms.
(@) Let f bein Ps and N in H . Then Df.N belongs to Ps. o and

IDfU| < my6m=CR g U where m, =n.

b) Let U bein #s and N in ¥ . Then DU.N lie in H 5o and
( +
= max(l,g)
IDUNI, ., <my (6+5™CD U IN|,

Proof. — (a) Proposition 3.4 ensures that Df.N lic in #5.4. Moreover denoting by
Nj := m;(N) the j-th component of U in C", we have

"\ of of
2 5, o,

528

j=1

|Df N|P75+oc

p,0+a
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Then setting f = 3. fox?, we have

(a,p)=8
- of 2 Z Z 2 QP |fQ| (Q' - |QJ| 4!
dola- Falla;l*; = > Z
= ng.M =T J ) (0 — p]) (0,p)=5 =1 (JJ )i (6 — pj)

Moreover, we check that

n

2 @ 6 —p) = Z(q]) lg;*.

j=1
Then, using that for (@, p) = ¢, we have p ¢; < p|Q| < § < |Q|p, we get that
2
for p; =1, (&) ;> = dlg;l < & < &2,

for p; =2, ( ) |qj|2—52
for p; >3, (2) g, < P

J

< 6P,

Hence, we get _
IDSN| |, <nem B U]

(b) Proposition 3.4 ensures that D f.N lie in # 54,. Moreover denoting by S; := 7,;(S) the
j-th component of S in C" and using (b), we get

|DUN|; 'p,6+ax _Z|DU N|p S+a+tp;

K}
(-1
L

< n2 (5 )2 max(1,2) U2 N2
> ( +pJ) | J|p75+pj [ ||p7a

1

2 72max(1,E) 2 2
) 2) ||U N
<n? (54+7) 1012, INI2,

<.
Il

Hence B
] < — max(l,%) )
IDNU|| | <n(6+7) Wi, IV, =

A.3. Quasihomogeneous decomposition and analyticity

In Subsection 3.2 we introduced several decompositions of a formal power series
f € Cl[z1,...,z,]] as the sum of homogeneous and quasihomogeneous components. We
now prove that f converges uniformly in a neighborhood of the origin if and only if its ho-
mogeneous or quasihomogeneous components grow at most geometrically. In this subsec-

tion, we use the normalized norm | f L} s =V % (see Proposition A.5 and Lemma
A.6). More precisely we have 7
PROPOSITION A.8. — For a formal power series , f = 5. for% € Cl[z1,...,2,]], the

QEnn
following properties are equivalent:

(a) f is uniformly convergent in a neighborhood of the origin;
(b) there exist M, R > 0 such that for every Q € N", |fq| < R%

(c) there exist M, R > 0 such that for every @Q € N, |f"TL) = sup % < %;
o zeCn
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fo.r(@®,..z™)]

(d) there exist M, R > 0 such that for every Q € N, f.r||| F=Sup SIS < %;
z() eCn

(e) there exist M, R > 0 such that for every § € A, |fs |p76 < %;
(£) there exist M, R > 0 such that for every § € Aandr >0, Ni(f5,) < %.

We have a similar proposition for vector fields. Statements (a), (b), (c), (d) are still
equivalent for vector fields. Statements (¢) and (f) should be modified with appropriate
norms for vector fields. More precisely we have

PROPOSITION A.9. — For a formal vector field V. € (Clz1,...,z,]])", the following
properties are equivalent:

(a) V is uniformly convergent in a neighborhood of the origin;
(b) there exist M, R > 0 such that for every § € A, ||V5||p 5 < %’.

(¢c) there exist M, R > 0 such that for every § € A andr >0, Ngl(VM) < %.

A.3.1. Proofof Proposition A.§. — The proof of the equivalence of statements (a),(b),(c),(d)
of Proposition A.8 which correspond to the homogeneous decompositions is due to
H. Shapiro [32, Lemma 1]. The equivalence of (c) and (d) relies on the equivalence of
the norms |~L] . and || - ||| which can be found in the book of Cartan [10]. More precisely we

have

LEMMA A.10. — For a homogeneous polynomial v of degree r, let us denote by {lj the
unique r-linear symmetric form such that for every x € C", ¢(z,...,x) = ¢¥(x). Then there
exists M > 0 such that for every r > 0 and every homogeneous polynomial ) of degree r

9, < 91 < M) 1),

The prof of the equivalence of statements (a) and (¢) of Proposition A.8 is based on the
following lemma:

LeEmMA A.11. — Let f be in Cl[z1, ..., x,]]. The following properties are equivalent

(a) f is uniformly convergent in a neighborhood of the origin;
(b) F := s1(f) € Cllz1,1,- - ,Z1pys--+sTn,1y- -+ Tnp,) IS uniformly convergent in a
neighborhood of the origin,

(c) There exist M, R > 0 such that for every 6 € A, |fs |p,5 < %.

Proof. — The proof is performed in three steps.

Step 1. We prove that (a) < (b).

Let us decompose f and F' = s;(f) as a sum of monomials. We have

f= Z fo z@, F= Z Fol@r)® - (1) 0 -+ (Tp1)™ - (w1, )0 = ZFAXA

QENn QeNn
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with
X = ($1,1, ey Tlpyye ey T dy e 7x1,pn)a
A — (ql7 ...... 7ql, ...... 7qn’ ...... ’qn)7
pitimes pntimes
Fa = fo.

Hence, we have |[A| = p1g1 + -+ - pngn = (Q,p). Thus p |Q| < [4] <P Q).

Thus, on one hand if f is uniformly convergent in a neighborhood of the origin, then there
exist M, R > 0 such that for every @ € N"

|A]
1 1
|FA|=|fQ|§MR|Q|§M(R;) :
Hence, F' is uniformly convergent in a neighborhood of the origin.

On the other hand, if F' is uniformly convergent in a neighborhood of the origin, then
there exist M’, R’ > 0 such that for every A € N”

(Fo| = |fal < M’ (;,)'A' <M ((;,)p)'Q'.

Hence, f is uniformly convergent in a neighborhood of the origin.

Step 2. We prove that (b) = (c). Proposition A.8-(b) applied to F' = s;(f) ensures that if F
is uniformly convergent in a neighborhood of the origin, then there exist My, Ry > 0 such

that for every 4,
Mo

RS’
where Fas is the homogeneous component of F' of degree §. Moreover it is proved in [21,

Lemma A.5] that
(Foss Fos) —
|F.5|H,5 = TH <V |F“5L),5

(6+n—1)! (5+n—1)---(6—|—1)'

|F.6£,6 S

where

n—1 _
Csn-1= (n—1)1s (n—1)!

Hence, there exists M’ > 0 such that for every 6,

. M, 1
|Fos|, < M'6% =2 < M—,
.5 RSV RS

n 6
where R is any number in ]0, Ro[ and where M = M'M, sup [65 (R%) ] So we can
§>0

conclude that if F' is uniformly convergent in a neighborhood of the origin, then there exist
M, R > 0 such that for every 6,

(s1(fs),51(fs))y 1
sl s =\ 5 = Fesly ;== Mzs-
Step 3. We prove that (c) = (b). Assume that there exist M, R > 0 such that for every ¢,
1
| fs Lné < Mﬁ'
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Then, F' = sq(f) satisfies
1
| Fasly 5 = o], 5 < M55

Moreoveritis proved in[21, Lemma A.3] that |F.5h < |F.5| . Hence, Proposition A .8-(b)
applied to F' ensures that F' is uniformly convergent in a ne1ghborhood of the origin. O

To prove statement (f) of Proposition A.8, we first need a technical lemma giving the
equivalence of the norms ||| - ||| and Ny (+).

LeEmmA A.12. -
(a) For every r-linear form ¢ : C™ — C, we have el < N1 (@) < n"[l[2]ll-
(b) For every r-linear operator R : C* — C™, we have IRl < Ny(R) < n"||R]|.

Proof. — (a) For (¥ = D xz(.é) e; where (e;)1<i<n 1 the canonical basis of R™ we have
i=1

~ r ~ 1 T
cp(sc(l),...,x( )): Z D(€iys---,€5,) 51) . ET).

1<0<r
1§ie Sn

Using that 2] < 20| we get that [5(z®,...,2™)| < |2®].--|z(| N1(F). Hence
1]l < N1().

Reciprocally,
M(@) = Y [Blei,--ne ) < D Nl 1=n"(I@])-
1<e<r 1<e<r
1Si,g§n 1Sig§’n

(b) Let us set R(z™,..., 2™ := S Ri(z®,...,2(") e;. Then using (2) we have

=1
n n
[R@®,.. e =3 |Ri(eD, .z <Y IR (P P
=1 =1

< |x(1)|2 . |$(r)|2 Z Nf(ﬁi).

i=1

Hence ||R||| < Nai(R). Conversely, using the Cauchy-Schwartz inequality we get

n n 2
221 = 12 i) = j\€i1s i
N3 (R) Ni(R;) =D D IRi(e e, )|
(X ) (T Benrenr)
J=1 1<e<r 1<e<r
1<iy<n 1<ip<n
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=n Z Z i (€iyyeeerei)]?

=1 1<e<r
1<i,<n

=n" Z |R(eiys .- e:)|
1<e<r
1<iy<n
<n® ||R|*.
Hence, Ny (R) < n” || R]. -

Finally, the equivalence of statements (a) and (f) of Proposition A.§ directly follows from

LEMMA A.13. — Let f = 3 foz® € C[lzy,...,z,]] Then,
QENn

(a) forevery @ € N", |fo| <n? Nl(fN(;,,.) where r = |Q| and § = (Q,p);
(b) there exist M, R > 0 such that for every r > 0 and 6 € A,

Ny (fsr) < Mr™(2en?)" | f.y,ﬂhr

Proof. — (2) Using Cauchy’s formula, for @ = (q1,- - , gn), We get

2 2
1 ™ ™

i6 0\ ,—igq16 —ignbn
fQ:27r7" f(s,?«(ell,...,el )e ML eTH dgl--'dgn.
0 0

I3

Hence, using that | f5 (71, ..., Z,)| < |f5,% <x%+ . +a:,2l) and using Lemmas A.10 and
A.12, we get ’

27 27 r
i01]2 1 ... i0n |2
ol < 5o [ oo [ sl (VIR 1% R) doy -,

<n |fap], <ol < 0N (Fs),

(b) Using Lemmas A.10 and A.12, we get that for every §,r > 0
Ni(fsr) < 0"l forlll < Mn"(20)" | £,

Moreover we have,

farly, = sup B2 < sup Z P T ST ]

zeCn x|"
" = = IQl=r IQl=r

(Q,p) (Q,p)=r
Since using Cauchy’s formula we get for any @ such that |Q| = r, |fo| < n"|fe.r L , and
since #{Q/|Q| = r} = C,, +n 1 (see [21, Lemma A.2], we obtain that there exists M’ > 0
such that for every r > 0

n—1 z ron, =

|f5,rhr <Ot n? |f.,rhr < M'r"n2 |f.’TL)7T

So, we finally obtain that for every 4, > 0, Nl(f’i;’r) < Mr™(2en?)"| |f"’"L K O
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A.3.2. Proof of Proposition A.9. — The proof of the equivalence of statements (a), (c) is
exactly the same as for functions. The equivalence of statements (a) and (b) directly follows
from the case of functions. Indeed,

V= Z m;(V)5— is uniformly convergent in a neighborhood of the origin,

< for all 1<j<n, 7rj(V) is uniformly convergent in a neighborhood of the origin,

. M
& forall 1 < j < n, there exist M;, R; > 0, such that V6, |{m;(V)}s4p, | - < ij, )
Pj R
J

. M
& there exist M, R > 0, such that for every § and all 1 < j < n, [{m;(V)}s4p, | ot < i
b,0TD;

M
& there exist M, R > 0, such that for every j and all 1 < j < n, ||V§;|| 5 S R5’

since {m;(V)}s4p, = 7;(Vs) and ||V6||p i | (V)2

D,6+p;

A.4. Proof of Lemma 3.8

First of all, using Stirling’s formula, it is easy to show that there exists a positive constant C
(depending on p) such that, for all multiindices Q € N,

(pl@D! < C19l(QI”

Hence, we have

(Q,p)! < colel (Q,p)!
QP - (P1q1)! -+ (Pngn)!

Furthermore, since 2¥ = (14 1)F = Z Oy, we have (2t < 2045 We have

(Q,p)! _q1p1 + (gep2 + - 4 @upn)! (g2p2 + - - + @upn)!
(prg)! - (Pngn)!  (P161)!(g2p2 + - - + gnpn)! (pzqz)- -+ (Pngn)!
< 2(Qn) (qep2 + -+ + ann)!'
(p2Q2) ~(Pnan)!
Hence, by applying the same argument by induction, we obtain that there exists a constant C
such that for all multiindices @) € N, % < ClQl Let f = > sen fs be a formal power
series. Let § € A and let Q € N such that (@, p) = 0. By definition of the norm and using
the previous argument, we have

|fQ| < |f6|p, \/ Q'p —_ C|Q||f5| )6

Hence, if | f5|,,s < D°(3!)® then

|fol < C19l(a® < DIRI(QP)* < EI?|Q1P*

for some constants C, D, E.
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Appendix B
Proof of Proposition 6.12

Let S be a p-quasihomogeneous vector field of C™. Let X := S 4+ R be a good holomor-
phic perturbation of S in a neighborhood of the origin of C" (i.e. the quasiorder of R at the
origin is greater than s). Proposition 4.4 ensures that for every a € A, there exists a poly-

nomial diffeomorphism tangent to identity &' = Id + %, where %, = Y.  Us, with
0<é<a—s
Us € # s such that

(®a)(X) = 85+ Na+ Reas

where /', = 5. Ns, N5 € Ker Os, and where R, is of quasiorder > «. The aim of
s<6<a

this appendix is to prove Proposition 6.12 which gives a kind of “Gevrey estimates” of the
remainder & . We first check that the remainder is explicitly given by

LeEmMA B.1. — We have
1 2 3
Z)ozge>o¢ = Q>a + Q>a + Q>a7

with
Lo=1d+ DU, =1d+ Y DUj,
0<d<a—s
and
(57) Q= > DUj,.Ns,,
S1+62>a _
0<d1<a—s, 61EA™
s<dz<a, 52€Z
2 M* =~
(58) Po= > > > R, (Us,,...,Us),
u>s, MGZ =M Si4e Ao tp>a
0<§;<a—s, §;EA™
(59) Pa=> > 84:(Us,,....Us,).
r=s. 14+ ts>a
0<4;<a—s
(81,504,601 )EQ,

Then to compute upper bounds of f;l Qia we introduce the following family of norms
and Banach spaces:

DEFINITION B.2. — For ¢ > 0, let us denote by B. the Banach space of all formal vector
Sields V-="%" s x Vs of C" such that

N(V):=> & IVal], ; < +oo.
seA

REMARK B.3. — Statement (c) of Proposition A.9 ensures that any analytic vector field of
C™ belongs to B. for e sufficiently small.

We first prove the following lemma which compares the different norms
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LEmMMA B.4. — Let € be fixed in ]0,1].

(@) Let f(z1,...,2,) € Ps be a quasihomogeneous polynomial of degree §.  Let
F € P5(CIPl) be given by F( X114, , X1 prseeos Xnty--or Xnp,) = s1(f) as defined
in Lemma A.6. Then, we have

(60) |flgh,e == sup |f(z)] < sup |F(X)].
dp(z)<e 1X]|<e

(b) Forevery f € Ps,  |flqne < €° |fL,5 holds.
(c) ForeveryV € Hs, 7

n

(61) Ve =3 Vil < IV
holds.
(d) ForeveryV € B,
(62) VG < Ne(V)
holds.

REMARK B.5. — In fact it is possible to prove more accurate results for statements (2), (b),
(). Indeed, for f € Ps andV € H 5, we have

|flane = sup |[F(X)],
IX1i<e

| flane < 1], < V/OR par |flanes
1Vllane < VI, < /R s ppin 1V lahe-

Proof of Lemma B.4. — Let f(z1,...,%,) € P be a quasihomogeneous polynomial of
degree d. Let F' € Pg(C'p‘) be given by F(X11, - , X1pys-- s Xn1s .o, Xnp,) :=51(f) as
defined in Lemma A.6.

Proofof(a). —Letx = (x1,...,2,) bein C® and let us set x, = re'%* where 74, 05, € R.

.0
Then, setting Xy ; = (rk)iezi, we get

f(:l?l,...,.’l?n) = F(Xl,h"'aXl,pla'")Xn,l""vXn,pn)'

Moreover,
n

n Pn
2
(dp(2))? =Y prlarl?e = > 1 Xl = I1X1%.
k=1

k=1j=1
Thus, if d,,(z) < ¢, then || X|| < € and

|f(l']_,...,$")| = |F(X1,l7"'7X1,p1a"‘7Xn,17~-~7Xn,pn)| S HSlﬁp |F(X)|
X|<e

Hence,
|flgn,e = sup [f(z)| < sup |F(X)|.

dp(z)<e [ X]|I<e
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Proof of (b). — Let f be in P5 and let us set F' := s;1(f). The homogeneous polynomial
F € P5(Cl?l) is a homogeneous polynomial of degree §. It is proved in [21]-Lemma A.3 that

|F(X)]

1 Fllo,s == Sup < || F|l .-
1 x11°

. s1(f),s1(f .
Then since || F|| g5 := ||s1(f)|| a6 := V/ % = |fL) 5> using (a) we finally get

| Flgn,e < S IFX)I < IFllose® < IFllas e = If] 5 ¢

X|<e

Proof of (¢). — Let V be in J{5. Using the previous result, we directly get

— 26 2
V120 =" 5! Vilhe <X SR, =V,

i=1
Proof of (d). — Let V be in B.. Writing V as the sum of its quasihomogeneous

components, V = > Vs, we get
seA

1Vllane < 3 [Vallane < 32 VI, ;= Ne(V). 0
dEA sEA

Then we prove that #,, is invertible and we compute the operator norm of its inverse.

PROPOSITION B.6. — Let K > 2 be fixed such that

M
(63) p(KY<1  with  pi(K) =2 ﬂ ”Zk+60 (1)

where a, dg and Mg are defined in Lemma 6.6.
Then for every € €]0, 1] and every « € A witha > s satisfying
1
(64) Ce<——,
K(a—s)?

we have:

(a) The operator T ,, given by I .V = DU,.V maps B. into B. and for every V € B, we
have

Ne(Ta.V) < pr(K) Ne(V);
(b) the operator Lo = Id + T, is invertible and for every V € B,,

125 Vllgne < Ne(£5'V) < oy Ne(V).

Proof. — Statement (b) directly follows from (a) since it ensures that [[|Ta|¢5.) <

pi(K) < landso ;' = (Id + T4)" ! = io: (=T o)™ holds. We now prove statement
n=0
(a). Observing that
TV = > DUs, .Vs,,

0<6 1 <a-—s, 01 Ez_
doEA

recalling that a := max ( 1, [@] ) and using Proposition 3.6-(d) we get
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N.(To.V) = > > DUy, Vs, | €,
0<51S0¢—s’,v51€Z_ 01+02=4 .8
d2EA
a 61 62
=L D D A LA
0<d1<a—s, 61EA™
62»5&
(65) <n N(V)
where
p=M, Y U,

0<d:1<a—s, 51€Z*

Using (32) and Lemma 6.8 and recalling that % =7+ 5 we get

n< MMgug Y 5¢(Ce)® (5:)7 (61 — 60)!) % < 9, Mpug > sp(Ce) (ar)7.
50<81<a—s, 51EA- §0<81<a—s, §1EA-

Then for every K > 2 and every ¢, « satisfying (64), we obtain

L1\ 8!
v w3 ot () (G2)

d0<81<a—s, ;1 617

1\*
M, Mpug Y 5g<K>

o=

<
60<61<a—s, 5163_
M, Maug <= ., [ 1)" 7%
< T 2 %ilg
61:60
M, Mauo <= (1"
< TZ(k‘f‘do) 3
k=0
(66) — p1(K).

In conclusion, gathering (65) and (66) we get that for every V € B, every K > 2 and
every €, « satisfying (64),
Ne(ga-v) SPI(K) NE(V) O

Before computing upper bounds of Z’;l Q. o, we prove a last lemma giving an estimate of
the norm of Id + %,:

LEMMA B.7. — Let K > 2 be fixed such that (63) is satisfied. Then for every € €]0,1[ and
every a € A such that o > s satisfying (64), we have
N.(Id + U,) = > eus < 2Mgug.

0<6<a—s, €A~

REMARK B.8. — The key point in the above estimate is that the upper bound does not
depend on o nor on €.
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Proof. — Using (32) and Lemma 6.8 and recalling that % =T+ 5 and that Mg > 1, we
get that for every K > 2, every € €]0, 1{ and every « € Awitha > s satisfying (64), we have

N+ %)= Y,  us

0<6<a—s, €A

< ug + Maug 3 (Ce)* (817 ((6 — 8p)!) %

§o<é<a-s, 56&*

< Mgug > (Cey (st

0<6<a—s, SEA—

e Y 0 ()

0<6<a—s, EA—

< Mgug > (%)5

0<8<a—s, 6€A—

< Mpup ¥ (2)° = 2Mpug. O
6=0

We have now enough material to be able to compute an upper bound for Z’;l Qia. We
estimate each of them separately in the three following lemmas.

LemMa B.9. — Let K > 2 be fixed suc;/l that (63) is satisfied. Then, there exists My > 0
such that for every € €]0,1] and every o € A with a > s, satisfying (64), we have

(a) when ; =7+ £ >a,
1221 QL allgn.e < My(Ce)*H((a+2 - 5)!)7;
(b) when%:T—F% <a,

12510 ollgne < Mi(Ce)*F ((a+2 — 8))F (a — s)i+a i,

Proof. — Proposition B.6-(b) ensures that
-1 1 1
(67) ”804 Q>a||(1ha€ < ﬁl(K)NE(Q>a)'
So to get the desired result we only need to compute an upper bound of NS(Qia).
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Recalling that a := max (1, [(ﬁ ;1)] ) and using Proposition 3.6-(d), (32) and Lemma 6.8
we get

N(QLo) < MMEug > 53(Ce)’%2(811)7((81 = 80)!) * (82 — 8)!)7 (82 — s — do)!) *0
d1+d2>a
0<d1<a—s, 51€Z_
s<63<a, 52€Z

<M Mzud Y 87(Ce) 2 (5,1(82 — 8)1)7 ((61)!(02 — s)!)
d1+82>a
0<61<a—s, 61€Z7
s<d2<a, 62€Z
<SM,MZud > §5(Ce) 2 (5,1(85 — s)N)F.
d1+022>a+1

1<61<a—s
s+1<62<a

In the above estimate, one can obtain a sharper result using a smaller set of indices in the
last sum, i.e. {(01,02) € N2/§; +62 > at, 07 <6 <a—s, st <6 < a} (ot is the small
integer of A greater than o). However, it leads to far more intricate computations, for a not
so better estimate. This is why we have chosen this more rough estimate corresponding to a
larger set of indices.

So now, performing the change of indices (41, d2) — (91,8 = d1 +J2) we get that for every
K > 2, every € €]0,1] and every a € A with a > s satisfying (64), we have

N a—s 01+a
2 2_2 D 85(Ce) (8115 — 6y — s)1)?
mp M, Y 51 s—at1
a—s 51+a
< (Ce)et N apEnE Y (Ce) A5 -8y — s))P
51=1 d=a+1
a—s d1ta (6 51 3)' %
a a + 1\6—(a+1 —01—35)
S (CS) +1 Z 61 (61') Z (}31() (t1) ((a_ 8)5_(a+1)) .
51=1 d=a+1

Then observing that for0 < §; <a—s,a+1<§ <6 +a,wehaved —d; —s < a— s and

((5 51 - S)
(a _ 5)6 (a+1)

(a+2—-01—5)---(6 - 61— 5)
(a — s)—(a+D)

=(a+1-104,—3)! <(a+1-6 —3)!

we get
Ng(Ql ) a—s % d1+o 1 s
el < < (Ce)* ) (Gl (a 41— 8y — s)! (=)0~ (e+D)
M, M, ﬁuo 512::1 1< ) 5:%;1 2
<o(Ce)tt Y gt (51!(a+ 1-6 — s)!)g.
51=1
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When 1 > a, we obtain

1 a—s
% <2(Ce) Y (G + Dia+1- 61— 5)!)

61=1
1
1 a—s ( b
b
d1+1 )
Ca+2 s
1

o=

(Cs)o‘+1< a+2—s)!

2(06)a+1

((
= 2(05)0‘“( a+2-—s)!
Z(Cs)““(

since ¢ > a > 1. Hence, when } > a,

o=

NL(QLa) < 290, M3ud (Co)** ((a +2 - 5)!)
On the other hand, when < a we get

N.(2L.)
M, Miul

o=

a— S

e (2 oot S

S

< 2(Ce)ott ((a y2- s)!) (o — 5)2t1- %,

This achieves the proof of Lemma B.9 with

200, M 212
el i 0
1-pi(K)
LEMMA B.10. — Let K > 2 be fixed such that (63) holds. Let v > 2 be fixed such that
(68) a=2X <1 with x= (Wﬂ>*
7C p

where C and Mg are defined in Lemma 6.6.
Then there exists My > 0, such that for every € €]0,1[ and every o € A with a > s
satisfying
1

© = Ka-at

S

we have
—1 2 a+1
”*Z)a Q>a||qh,s S M2 (%) .

Proof. — Like for £, Q" .,
(70) 122" @ allane < Ty Ne(@20)-

So, to get the desired result we only need to compute an upper bound of N, (Q>a)

Proposition B.6-(b) ensures that
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714
According to Proposition 3.6 and Proposition 3.7, there exist positive constants Mg and p
such that, for all u > s belonging to A, for all u, < r < u*, we have
~ Mg
71 HR Us.,....U ‘ | = BB s s
(71 wor (Usy 5.) bsrsrs s s, - MU 5 S U,
Hence, using (32), we get
M S14+8ptp

R
_ u61 ...UJTE

NA2D< > > > -

s<p pEA T=Hx S1+- o tu>a
0<d;<a—s, §;EA™

w T
MR up
< X > X e [l s
s<p, pEA TTHx SitetSrtpu>a P Jj=1
0<d;<a—s, §;EA™

Then Lemma 6.8 and Remark 6.9 ensure that for every § > 0 lyingin 6 € A~, we have
Bs < MsC?(81)%
S1d-tdrtp T L
116H»

e X5 F (M) CREE

Thus, for every € €]0, 1] and every a € Awitha > s satisfying (69), we have

NE(Q>0¢
s<p, pEA T=Hx  Si1teFdtu>a
0<é;<a—s, §; GA_
" o r S14- A8ty T )
1 B%o 1 i
Y X () X (o) 160
s<p, pEA T=Hx S+ tp>a j=1
0<d;<a—s, §;EA™
M ( 1 )M & M, r 1 5j
< TR ( BUO) (5 ' £ ( )
= Ko+l Z B ,Yc(a_s)% Z p Z H (o S)b
s<p, pEA T=Hx (81,...,6,)EN" J=1
0<d;<a—s
©w B r oS S\T
< Mg (1) Mpuo it (——)] .
- K _ \yCla—s)? Z ( 3 ) (Do B
s<p, pEA T={he §=0
Then, we observe that, v > 2
a—S S a—sS 1 a—sS l
%o b 1 1
Z(a.)b<'y(a s%) Z((a 3)5) 5§1+Z’Y§§1_l§2
6=0 6=0 =1 y
So, we can conclude
2 M 1 n oM T
N.(Q2,) < Mn (7> )
(@) S et D ~ \1C(a-s) Z (%5
s<p, pEA T=H
M 1 \# 2Mpuo \"
(72) S Kaﬁl Z (,yic) Z ( P )
s<p, pEA T=Hx
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Now, observe that (3) ensures that

Eilop and w<®y 2
p p p p
Then, since according to Remark 6.9, we can assume that ZMTWO > 1, we get
H* ZMBUO T * QMBUO P‘*
(73) o (Pet) < (e +1) (222)" < (Ap+ Byt

=[x

where  is given by (68) and where

A:(l—l) x? and B:(p—p+1> xP.
p P p

Finally, (68), (72) and (73) ensure that for every ¢ €]0,1[ and every a € Awitha > s
satisfying (69), we have

NAQ) < e Y (%) (Au+B)

3

s<p, pEA
< > (%) ut D)
p=s+1
(74) — Mp ¢~ (13%(1 + (1Q_f:)2) #
This achieves the proof of Lemma B.10 with
M, = mMR ¢ (12 + 0 - H

LemMa B.11. — Let K > 2 and v > 2 be fixed such that (63) and (68) hold.

Then there exists M3 > 0, such that for every e €]0,1[ and every o € A with o > s
satisfying (69), we have

—-1,3 +1
”fa Q>a||qh,e S M3 (%)0‘ .

Proof. — The proof is very similar to the one of Lemma B.10 and we get an estimate
analogous to (72) which reads

* *

S . T ° r 1
NA@20) < 25 ()7 30 () < Ms (3)° ) (Pe)

~C a+1"
r=5, r=5, K

The details are left to the reader. This achieves the proof of Lemma B.11 with

*
S

My =Ms (8)" 3 (#2)" -

=S5k

Considering Lemma B.1, Proposition 6.12 directly follows from Lemmas B.9, B.10, B.11.
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