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THE CUBIC SZEGŐ EQUATION

 P GÉRARD  S GRELLIER

A. – We consider the following Hamiltonian equation on the L2 Hardy space on the
circle,

i∂tu = Π(|u|2u) ,

where Π is the Szegő projector. This equation can be seen as a toy model for totally non dispersive evo-
lution equations. We display a Lax pair structure for this equation. We prove that it admits an infinite
sequence of conservation laws in involution, and that it can be approximated by a sequence of finite
dimensional completely integrable Hamiltonian systems. We establish several instability phenomena
illustrating the degeneracy of this completely integrable structure. We also classify the traveling waves
for this system.

R. – On considère l’équation hamiltonienne suivante sur l’espace de Hardy du cercle

i∂tu = Π(|u|2u) ,

où Π désigne le projecteur de Szegő. Cette équation est un cas modèle d’équation sans aucune pro-
priété dispersive. On établit qu’elle admet une paire de Lax et une infinité de lois de conservation en
involution, et qu’elle peut être approchée par une suite de systèmes hamiltoniens de dimension finie
complètement intégrables. Néanmoins, on met en évidence des phénomènes d’instabilité illustrant la
dégénérescence de cette structure complètement intégrable. Enfin, on caractérise les ondes progressives
de ce système.
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762 P. GÉRARD AND S. GRELLIER

1. Introduction

1.1. Motivation

This work can be seen as a continuation of a series of papers due to N. Burq, N. Tzvetkov
and the first author [4, 5, 6, 7] — see also [10] for a survey— , devoted to the influence of the
geometry of a Riemannian manifold M onto the qualitative properties of solutions to the
nonlinear Schrödinger equation

(1) i∂tu+ ∆u = |u|2u , (t, x) ∈ R×M .

The usual strategy for finding global solutions to the Cauchy problem for (1) is to solve it lo-
cally in time in the energy space H1 ∩L4 using a fixed point argument and then to globalize
in time, by means of conservation of energy and of L2 norm. In most of the cases, the fixed
point strategy leads to define a smooth local in time flow map, in the sense of regular well-
posedness defined in [10], Definition 2.3, and recalled in Appendix 1 (Section 10). As a corol-
lary of the work of Burq, Gérard, Tzvetkov — see [6], Remark 2.12, p. 205, or [10], sketch
of the proof of Theorem 5.2— one obtains, whatever the geometry is, the following general
result. If there exists a smooth local in time flow map on the Sobolev spaceHs(M), then the
following Strichartz–type estimate must hold

(2) ‖eit∆f‖L4([0,1]×M) . ‖f‖Hs/2(M) .

Inequality (2) is valid for instance ifM = Rd, d = 1, 2, 3, 4 and ∆ is the Euclidean Laplacian,
where s is given by the scaling formula

s = max

(
0,
d

2
− 1

)
.

In [4, 6], it is observed that, on the two-dimensional sphere, the infimum of the numbers s
such that (2) holds is 1/4, hence is larger than the regularity given by the latter formula.
This can be interpreted as a lack of dispersion properties for the spherical geometry. It
is therefore natural to ask whether there exist some geometries for which these dispersion
properties totally disappear. Such an example arises in sub-Riemannian geometry, more
precisely for radial solutions of the Schrödinger equation associated to the sub-Laplacian
on the Heisenberg group, as observed in [11], where part of the results of this paper are
announced. Here we present a more elementary example of such a situation. Let us choose
M = R2

x,y and replace the Laplacian by the Grushin operator G := ∂2
x + x2∂2

y , so that our
equation is

(3) i∂tu+ ∂2
xu+ x2∂2

yu = |u|2u .

Notice that this equation enjoys the following scaling invariance: if u(t, x, y) is a solution,
then

λu(λ2t, λx, λ2y)

is also a solution. In this context, it is natural to replace the standard Sobolev space Hs(M)

by the Grushin Sobolev spaceHs
G(M), defined as the domain of

√
(−G)s .Observe that the

above scaling transformation leaves invariant the homogeneous norm of H1/2
G (M), which
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suggests that Equation (3) is subcritical with respect to the energy regularity H1
G(M). How-

ever, we are going to see that the corresponding version of (2),

(4) ‖eitGf‖L4([0,1]×M) ≤ C‖f‖Hs/2G (M)
,

cannot hold if s < 3
2 , which means, in view of Proposition 10 proved in Appendix 1, that

no smooth flow can exist on the energy space, hence Equation (3) should rather be regarded
as supercritical with respect to the energy regularity. In fact, the critical regularity sc = 3

2 is
the regularity which corresponds to the Sobolev embedding inM , since x has homogeneity 1

and y has homogeneity 2. This is an illustration of a total lack of dispersion for Equation (3).

The justification is as follows. Notice that u = eitGf can be explicitly described by using the
Fourier transform in the y variable, and by making an expansion along the Hermite functions
hm in the x variable, leading to the representation

u(t, x, y) = (2π)−1/2
∞∑
m=0

∫
R

e−it(2m+1)|η|+iyη f̂m(η)hm(
√
|η|x) dη ,

with

‖f‖2
H
s/2
G

=

∞∑
m=0

∫
R

(1 + (2m+ 1)|η|)s/2|f̂m(η)|2 dη√
|η|
.

Let us focus onto data concentrated on modes m = 0, η ∼ N2, specifically

f(x, y) =
1√
N

∫ ∞
0

eiyη−η
x2

2 −
η

N2 dη = N
3
2F (Nx,N2y)

with

F (x, y) :=
1

1 + x2

2 − iy
.

Then the above formula for u gives

u(t, x, y) = f(x, y − t) ,

so that
‖u‖L4([0,1]×R2

x,y) = N3/4‖F‖L4 .

Since ‖f‖
H
s/2
G

' Ns/2 as N →∞, this proves the claim.

Notice that a total lack of dispersion also occurs for the — trivial— equation with G = 0,

(5) i∂tu = |u|2u , u(0, x) = u0(x) ,

for which Hs
G = L2 for every s ≥ 0, hence inequality (4) cannot hold. However, the explicit

formula
u(t, x) = e−it|u0(x)|2u0(x)

solves explicitly (5), defining a —nonsmooth— flow map on L2!

These observations invite us to study the structure of the nonlinear evolution problem (3) in
more detail. Denote by V ±m the space of functions of the form

v±m(x, y) =

∫ ∞
0

e±iηyg(η)hm(
√
ηx) dη ,

∫ ∞
0

η−1/2|g(η)|2 dη <∞ ,
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764 P. GÉRARD AND S. GRELLIER

so that we have the orthogonal decomposition

L2(M) = ⊕± ⊕∞m=0 V
±
m , G|V ±m = ±i(2m+ 1)∂y .

Denote by Π±m : L2(M)→ V ±m the orthogonal projection. Expanding the solution as

u =
∑
±

∞∑
m=0

u±m , u±m = Π±mu ,

the equation reads as a system of coupled transport equations,

(6) i(∂t ± (2m+ 1)∂y)um = Π±m(|u|2u) .

Therefore a better understanding of Equation (3) requires to study the interaction between
the nonlinearity |u|2u and the projectors Π±m. Notice that similar interactions arise in the
literature, see for instance [18] in the study of the Lowest Landau Level for Bose-Einstein
condensates, or [8] in the study of critical high frequency regimes of NLS on the sphere.
Other examples can be found in the introduction of [11]. The present paper is devoted to
a toy model for this kind of interaction.

1.2. A toy model: the cubic Szegő equation

Let

S1 = {z ∈ C, |z| = 1}
be the unit circle in the complex plane. If u is a distribution on S1, u ∈ D′(S1), then u admits
a Fourier expansion in the distributional sense

u =
∑
k∈Z

û(k)eikθ .

For every subspace E of D′(S1), we denote by E+ the subspace

E+ = {u ∈ E ; ∀k < 0, û(k) = 0} .

In particular, L2
+ is the Hardy space of L2 functions which extend to the unit disc {|z| < 1}

as holomorphic functions,

u(z) =

∞∑
k=0

û(k)zk ,

∞∑
k=0

|û(k)|2 < +∞ .

Let us endow L2(S1) with the scalar product

(u|v) :=

∫
S1

uv
dθ

2π
,

and denote by Π : L2(S1) → L2
+(S1) the orthogonal projector on L2

+(S1), the so-called
Szegő projector,

Π

(∑
k∈Z

û(k)eikθ

)
=
∑
k≥0

û(k)eikθ.

We consider the following evolution equation on L2
+(S1),

(7) i∂tu = Π(|u|2u) .
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This equation, that we decided to call the cubic Szegő equation, is the simplest one which
displays interaction between a cubic nonlinearity and a Calderón-Zygmund projector. It is
also an infinite dimensional Hamiltonian system on L2

+(S1), as we shall now see.

1.3. The Hamiltonian formalism

We endow L2
+(S1) with the symplectic form

ω(u, v) = 4 Im(u|v) .

Given a real valued function F defined on a dense subspace D of L2
+(S1), we shall say that

F admits a Hamiltonian vector field if there exists a mapping

XF : D→ L2
+(S1)

such that, for every h ∈ D,

F (u+ th)− F (u)

t
−→
t→0

ω(h,XF (u)) .

Of course, this property is often strengthened as differentiability of F for some norm on
D (see Kuksin [15] for a general setting in scales of Hilbert spaces). A Hamiltonian curve
associated to F is a solution u = u(t) of

u̇ = XF (u) ,

and, given two functions F,G on D admitting Hamiltonian vector fields, the Poisson bracket
of F,G is defined on D by

{F,G}(u) = ω(XF (u), XG(u)) .

For example, the function

E(u) =

∫
S1

|u|4 dθ
2π

,

defined on L4
+(S1), admits on Hs

+(S1), s > 1
2 , the Hamiltonian vector field

XE(u) = −iΠ(|u|2u) ,

which defines a smooth vector field on Hs
+, so that Equation (7) is the equation of Hamilto-

nian curves forE. From this structure, the equation (S) inherits the formal conservation law
E(u) = E(u(0)). The invariance by translation and by multiplication by complex numbers
of modulus 1 gives two other formal conservation laws,

Q(u) :=

∫
S1

|u|2 dθ
2π

= ‖u‖2L2 , M(u) := (Du|u), D := −i∂θ = z∂z .

Equivalently, these conservation laws mean that we have the following cancellations for the
Poisson brackets,

{E,Q} = {E,M} = 0 ,

which can be recovered in view of the explicit expressions of the Hamiltonian vector fields,

XQ(u) = − i
2
u , XM (u) = − i

2
Du .

Finally, these expressions also imply that

{Q,M} = 0 .
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766 P. GÉRARD AND S. GRELLIER

1.4. Main results

From the previous conservation laws, we shall show — see Section 2— that (7) defines a
continuous flow onH1/2

+ . The main results of this paper are based on an unexpected property
of this flow, namely that it admits a Lax pair, as the KdV flow (see Lax [16]) or the one
dimensional cubic Schrödinger flow (see Zakharov-Shabat [28]). More precisely, for every
u ∈ H1/2

+ , we define (see e.g. Peller [22], Nikolskii [19]), the Hankel operator of symbol u by

Hu(h) = Π(uh) , h ∈ L2
+ .

It is well known that Hu is a Hilbert-Schmidt operator, which is symmetric with respect to
the real part of the scalar product on L2

+. Our basic result is roughly the following — see
Section 3 for a more precise statement.

T 1.1. – There exists a mapping u 7→ Bu, valued into skew symmetric operators
on L2

+, such that u is a solution of (7) if and only if

d

dt
Hu = [Bu, Hu] .

As a consequence, if u is a solution of (7), Hu(t) is unitarily equivalent to Hu(0). From
this observation, we infer many new properties of the dynamics of (7), including an infinite
sequence (J2n)n≥1 of conservation laws in involution. We also prove the approximation
of Equation (7) by finite dimensional completely integrable Hamiltonian systems — see
Sections 4 and 8.

T 1.2. – For every positive integer D, there exists a complex submanifold W (D)

of H1/2
+ of dimension D, such that

1. W (D) is invariant by the flow of (7).
2. The flow of (7) is a completely integrable Hamiltonian flow on W (D) in the Liouville

sense.

Moreover, the union of the manifolds W (D), D ≥ 1, is dense in H1/2
+ .

In Theorem 1.2 above, complete integrability in the Liouville sense means, according to
Arnold [1], that for generic Cauchy data in W (D), the evolution is quasi-periodic on a
Lagrangian torus. In fact, W (D) is a manifold of rational functions on the complex plane,
with no poles in the unit disc. For instance, W (3) consists of functions u given by

u(z) =
az + b

1− pz
with a ∈ C \ {0}, b ∈ C, and p in the open unit disc. In this particular case, we solve (7)
explicitly in Section 6, and we deduce the following large time behavior of Hs norms of the
solutions.

T 1.3. – Every solution u of (7) on W (3) satisfies

∀s > 1

2
, sup
t∈R
‖u(t)‖Hs < +∞.
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However, there exists a family (uε0)ε>0 of Cauchy data in W (3), which converges in W (3) for
the C∞(S1) topology as ε→ 0, such that the corresponding solutions uε satisfy

∀ε > 0,∃tε > 0 : ∀s > 1

2
, ‖uε(tε)‖Hs −→

ε→0
+∞.

The second statement of Theorem 1.3 is to be compared with the recent result by Colliander-
Keel-Staffilani-Takaoka-Tao [9], who proved a similar behavior for cubic NLS on the two-
dimensional torus. Notice that, as shown by our result, this behavior does not imply the
existence of an unbounded trajectory in Hs, and that it can occur for completely integrable
systems. This phenomenon shows that the conservation laws of Equation (7) do not control
the high energy Sobolev norms. However, let us mention that the boundedness of the
trajectories in Hs is a generic property on all the manifolds W (D), as we prove in Section 7.
The boundedness in Hs of the trajectory for all data in Hs for large s, is an interesting open
problem.

Finally, in Section 9 we characterize traveling waves for (7). In view of the two-dimensional
symmetry group associated to Q and M , these traveling waves are defined as follows.

D 1. – A solution u of (7) is said to be a traveling wave if there exist ω, c ∈ R
such that

u(t, z) = e−iωtu(0, e−ictz)

for every t ∈ R. We shall call ω the pulsation of u, and c the velocity of u.

Notice that the equation for traveling waves is the following nonlinear equation,

cDu+ ωu = Π(|u|2u) .

In Section 9, using the Lax pair structure and a precise spectral analysis of the corresponding
selfadjoint operators, we describe all the solutions of this equation.

T 1.4. – The initial data u0 ∈ H1/2
+ of traveling waves for (7) are given by

u0(z) =


α

N∏
j=1

z − pj
1− pjz

for α ∈ C, |pj | < 1, N ≥ 1, if c = 0 ,

α
z`

1− pNzN
, for α ∈ C, N ≥ 1, 0 ≤ ` ≤ N − 1 , if c 6= 0.

The question of orbital stability of these traveling waves, in the sense of Grillakis-Shatah-
Strauss [12], is of course very natural. We only have partial answers to this question, namely
in the case N = 1 of the above theorem:

1. For |p| < 1, the stationary wave corresponding to

u0(z) =
z − p
1− pz

is orbitally unstable — see Section 6.
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768 P. GÉRARD AND S. GRELLIER

2. For |p| < 1, the stationary wave corresponding to

u0(z) =
1

1− pz
is orbitally stable — see Section 5. In fact, we show that this data is a ground state of
the variational equation which characterizes the traveling waves.

We close this introduction by mentioning two natural open problems, on which we hope to
come back in a future work. The first one is to obtain a complete solution of Equation (7)
by solving inverse spectral problems for Hankel operators, describing explicit action angle
coordinates for (7), as it is done in [13] for the KdV equation. The second one is of course
to transfer at least part of the structure found here for attacking the open problem of global
smooth solutions to the nonlinear Schrödinger equation associated to the Grushin operator,
which was the starting point of this paper, and to other evolution problems of the same type
[11], for instance on the Heisenberg group.

2. The Cauchy problem

In this section, we solve the Cauchy problem for the cubic Szegő equation, for sufficiently
smooth data. We close the section by a remark about the smoothness of the flow map.
Further results concerning uniform continuity of this flow map for weaker topologies can
be found in Section 5, Proposition 6.

T 2.1. – Given u0 ∈ H1/2
+ (S1), there exists a unique solution u ∈ C(R, H1/2

+ (S1))

of (7) such that u(0) = u0. For every T > 0, the mapping u0 ∈ H1/2
+ 7→ u ∈ C([−T, T ], H

1/2
+ )

is continuous. Moreover, if u0 ∈ Hs
+(S1) for some s > 1

2 , then u ∈ C(R, Hs
+(S1)).

Proof. – Assume first that s > 1/2. Since the vector field XE is smooth on Hs
+, it is easy

to solve (S) locally in time . More precisely, one has to solve the integral equation

(8) u(t) = u0 − i
∫ t

0

Π(|u|2u)dt′.

The corresponding operator is well defined on Hs
+(S1) since

‖Π(|u|2u)‖Hs ≤ ‖|u|2u‖Hs ≤ C‖u‖2L∞‖u‖Hs ≤ C ′‖u‖3Hs .

This allows to use a fixed point argument on a small time interval, and yields a time interval
of existence [−T, T ] where T is bounded from below if ‖u0‖Hs is bounded.

Next we show that the Hs-norm of this unique solution remains bounded on any time
interval, so that this solution is global. To that purpose, we make use of the conservation
of Q and M , and of the following observation,

(9) M(u) +Q(u) =
∑
k≥0

(k + 1)|û(k)|2 = ‖u‖2H1/2 .

So far, we have only observed that M and Q are formally conserved. In fact, it is straight-
forward to prove this conservation for sufficiently smooth solutions, and finally we get them
for Hs solutions, s > 1/2, by approximation.
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We combine the conservation of the H1/2 norm with the following Brezis-Gallouët type
estimate (see [3]),

‖u‖L∞ ≤ Cs‖u‖H1/2

[
log

(
2 +

‖u‖Hs
‖u‖H1/2

)] 1
2

.

A proof of this estimate is recalled in Appendix 2. We infer, for t ≥ 0,

‖u‖Hs ≤ ‖u0‖Hs +

∫ t

0

‖Π(|u|2u)‖Hsdt′ ≤ ‖u0‖Hs + C

∫ t

0

‖u‖2L∞‖u‖Hsdt′

≤ ‖u0‖Hs +B

∫ t

0

‖u0‖2H1/2

[
log

(
2 +

‖u‖Hs
‖u0‖H1/2

)]
‖u‖Hsdt′ .

If we set f(t) := ‖u‖Hs/‖u0‖H1/2 , we obtain

f(t) ≤ f(0) +A

∫ t

0

[log(2 + f(t′))] f(t′)dt′

so that, by a non linear Gronwall lemma, f does not blow up in finite time ,

(10) 2 + f(t) ≤ (2 + f(0))eAt .

This completes the proof for s > 1/2.

Let us turn to the case s = 1/2. The proof of global existence of weak solutions is standard.
Let us recall it briefly. Given u0 ∈ H1/2

+ , approximate it by a sequence (un0 ) of elements in
Hs

+, s > 1/2. Consider the sequence (un) of solutions of (7) in C(R, Hs
+) corresponding to

these initial data. In view of (9), the H1/2 norm of un(t) remains bounded for any t ∈ R,
and consequently ∂tun(t) remains bounded in, say, L2. Hence there exists a subsequence
of un(t) converging weakly to u(t) in H1/2, locally uniformly in t. By the Rellich theorem,
un(t) converges strongly to u(t) in Lp for every p < ∞, and it is easy to check that such a
function u is a weak solution of (7).

Next, let us prove the uniqueness, which follows from an argument first introduced by
Yudovich [27] in the case of the 2D Euler equation and used by Vladimirov in [25], and
Ogawa in [20]. It is based on the fact that functions in H1/2(S1) satisfy the Trudinger-type
inequality,

(11) ∀p ∈ [1,∞[ , ‖u‖Lp ≤ C
√
p ‖u‖H1/2 .

We postpone the proof of this estimate to Appendix 3. Let u and ũ be two solutions of (7)
belonging to Cw(R, H1/2

+ ) with u(0) = ũ(0). Set g(t) := ‖u(t)− ũ(t)‖2L2 so that g is C1 and
vanishes at the origin. Introduce a large number p > 2 and compute

|g′(t)| = 2
∣∣Im ( (u(t)− ũ(t)) |Π(|u|2u− |ũ|2ũ)

)∣∣
≤ C1

∫
S1

|u− ũ|2(|u|2 + |ũ|2)dθ

≤ C ′1

∫
S1

|u− ũ|2(1− 1
p )(|u|2 + |ũ|2)1+ 1

p dθ

≤ C2‖u− ũ‖
2(1− 1

p )

L2 (‖u‖2(1+ 1
p )

L2(p+1) + ‖ũ‖2(1+ 1
p )

L2(p+1))

≤ B p g(t)1− 1
p .

This implies
g(t) ≤ (Bt)p .
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The right hand side of the latter inequality goes to zero as p goes to infinity for any t < 1/B.
This proves the uniqueness of the Cauchy problem.

It remains to prove that the weak solution u is strongly continuous in time with values in
H1/2, and that it depends continuously on the Cauchy data u0. First, by weak convergence,
we have ‖u(t)‖H1/2 ≤ ‖u0‖H1/2 for any t ∈ R. By reversing time and using uniqueness, one
obtains the converse inequality for any t ∈ R — solve the Cauchy problem with initial data
u(t). Hence the H1/2 norm is preserved by the flow on H1/2

+ . Since u is weakly continuous

with respect to t and since H1/2
+ is a Hilbert space, this completes the proof of the strong

continuity of u. The continuity of the flow map can be proved similarly.

R 1. – For s > 1/2, the contraction mapping argument used to construct the
solution u classically allows to prove that the flow map u0 7→ u(t) is Lipschitz continuous on
bounded subsets of Hs and that it is smooth.

On the opposite, the flow defined onH1/2
+ (S1) is not smooth in fact it is not C3 near 0. Here

is the argument. If Φt is the flow map, a simple expansion shows that, for h ∈ Hs
+, s >

1
2 ,

d3Φt(0)(h, h, h) = −6itΠ(|h|2h) .

Hence the fact that Φ1 is C3 on a neighborhood of 0 in H
1/2
+ is in contradiction with the

existence of h ∈ H1/2
+ such that Π(|h|2h) does not belong to H1/2

+ . As a simple computation
shows, an example of such a function h is given by hα = fα where f(z) = − log(1−z)

z and
1
6 < α < 1

2 .

3. A Lax pair for the cubic Szegő equation

In this section, we show that the cubic Szegő Equation (7) enjoys a very rich property,
namely it admits a Lax pair in the sense of Lax [16]. As a preliminary step, we introduce
relevant operators on the Hardy space L2

+(S1) (see Nikolskii [19] and Peller [22] for general
references).

Given u ∈ H1/2
+ (S1), the Hankel operator of symbol u is defined by

Hu(h) = Π(uh) .

Notice that Hu is C-antilinear, and is always a symmetric operator with respect to the real
scalar product Re(u|v). In fact, it satisfies the identity

(Hu(h1)|h2) = (Hu(h2)|h1) .

Consequently, H2
u is C-linear, selfadjoint and nonnegative. Moreover, Hu is given in terms

of Fourier coefficients by

Ĥu(h)(k) =
∑
`≥0

û(k + `)ĥ(`) .

Consequently, we have

Ĥ2
u(h)(k) =

∑
j≤0

ckjhj , ckj :=
∑
`≥0

û(k + `)û(j + `) .
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In particular,

(12) Tr(H2
u) =

∑
k≥0

ckk =
∑
`≥0

(`+ 1)|û(`)|2 = M(u) +Q(u) ,

hence Hu is a Hilbert-Schmidt operator.

Given b ∈ L∞(S1), the Toeplitz operator of symbol b is defined by

Tb(h) = Π(bh) .

The operator Tb is of course C -linear, and is selfadjoint for the Hermitian scalar product
(hence symmetric for the real scalar product) as soon as b is real valued.

T 3.1. – Let u ∈ C(R, Hs(S1)) for some s > 1
2 . The cubic Szegő equation

i∂tu = Π(|u|2u)

is equivalent to the fact that the Hankel operator Hu satisfies the evolution equation

(13)
d

dt
Hu = [Bu, Hu]

where

(14) Bu =
i

2
H2
u − iT|u|2

is a skew-symmetric operator. In other words, the pair (Hu, Bu) is a Lax pair for the cubic
Szegő equation.

Proof. – Firstly, we establish the following identity,

(15) HΠ(|u|2u) = T|u|2Hu +HuT|u|2 −H3
u .

Given h ∈ L2
+, we have

HΠ(|u|2u)(h) = Π(Π(|u|2u)h) = Π(|u|2uh)

since Π((1−Π)(b)h) = 0 for every b. Then

Π(|u|2uh) = Π(|u|2Π(uh)) + Π(|u|2(1−Π)(uh)),

and we observe that
Π(|u|2Π(uh)) = T|u|2Hu(h) ,

while
Π(|u|2(1−Π)(uh)) = Hu

(
u(1−Π)(uh)

)
.

It remains to notice that, since u(1−Π)(uh) ∈ L2
+,

u(1−Π)(uh) = Π
(
u(1−Π)(uh)

)
= Π(|u|2h)−Π

(
uΠ(uh)

)
= T|u|2(h)−H2

u(h) .

This completes the proof of (15). Now we just observe that (7) is equivalent to

d

dt
Hu = −iHΠ(|u|2u) = [Bu, Hu]

since Hu is antilinear.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



772 P. GÉRARD AND S. GRELLIER

As a consequence of Theorem 3.1, the cubic Szegő equation admits an infinite number
of conservation laws. Indeed, from (13), we classically observe that, denoting by U(t) the
solution of the operator equation

d

dt
U = Bu U,U(0) = I ,

the operator U(t) is unitary for every t, and

U(t)∗Hu(t)U(t) = Hu(0) .

In other words, we have the following property.

C 1. – Let u be a solution of (7) with initial value u0 ∈ Hs
+, s > 1/2. The

family of Hankel operators (Hu(t))t∈R is isospectral to Hu0
.

Let us state some consequences of this isospectrality. First, we recall some basic properties
of Hankel operators (see [19], [22] for proofs). It is well known from a theorem by Nehari
[17] that the operator norm of Hu is equivalent to ‖u‖BMO + ‖u‖L2 , which is therefore
essentially conserved by the flow. Moreover, a theorem by Peller, see [21, Theorem 2 p. 454],
[22, Theorem 1.1 p. 232, Theorem 2.1 p. 239], states that, for p < ∞, the Schatten norm
[Tr(|Hu|p)]1/p is equivalent to the norm of u in the Besov space B1/p

p,p , which is therefore
uniformly bounded for all time if it is finite at t = 0. Notice that the particular case p = 2 was
already observed in (12), giving again the conservation of M(u) + Q(u). Another example
of a conserved quantity is of course the trace norm Tr(|Hu|) , which, as stated before, is
equivalent to the Besov B1

1,1 norm of u (or to the L1-norm of u′′ with respect to the area
measure in the disc). This observation leads to a significant improvement of the large time
estimate (10) for the high Sobolev norms of the solution of (7) derived from the proof of
Theorem 2.1.

C 2. – Assume u0 ∈ Hs
+ for some s > 1. Then we have the following estimates,

sup
t∈R
‖u(t)‖L∞ ≤ C‖u0‖Hs ,

‖u(t)‖Hs ≤ C‖u0‖Hs eC‖u0‖Hs |t| .

Proof. – Since Hs ⊂ B1
1,1 as soon as s > 1, the trace norm of Hu0 is finite, hence the

B1
1,1 norm of u(t) is uniformly bounded. Since B1

1,1 ⊂ L∞, this proves the first assertion.
The second one is then a simple consequence of the standard Gronwall lemma.

We will return to the large time behavior of solutions of (7) in Sections 6 and 7. At this
stage, it is natural to find a way to recover other known conservation laws, namely Q and
E. In fact, we are going to find them as two particular cases of an infinite sequence of
conservation laws, which will play an important role in the sequel.

C 3. – For every u ∈ H1/2
+ , for every positive integer n, set

Jn(u) = (Hn
u (1)|1) .

If u ∈ C(R, H1/2
+ ) solves (7), we have, for every positive integer k,

d

dt
J2k(u) = 0 , i

d

dt
J2k−1(u) = J2k+1(u) .

4 e SÉRIE – TOME 43 – 2010 – No 5



THE CUBIC SZEGŐ EQUATION 773

Proof. – We may assume that u0 ∈ Hs for s > 1/2, since the general case follows by
density and the continuity properties of the flow map on H1/2

+ . Coming back to (13), we
observe that

Bu(1) =
i

2
H2
u(1)− iT|u|2(1) = − i

2
H2
u(1) .

Consequently, since H2k
u is C-linear and Bu is skew symmetric,

d

dt
(H2k

u (1)|1) = ([Bu, H
2k
u ](1), |1)

= −(H2k
u (1)|Bu(1))− (H2k

u Bu(1)|1)

= − i
2

(H2k+2
u (1)|1) +

i

2
(H2k+2

u (1)|1) = 0 .

The second identity is obtained similarly, observing that H2k−1
u is C -antilinear,

i
d

dt
(H2k−1

u (1)|1) = i([Bu, H
2k−1
u ](1), |1)

= −i(H2k−1
u (1)|Bu(1))− i(H2k−1

u Bu(1)|1)

=
1

2
(H2k+1

u (1)|1) +
1

2
(H2k+1

u (1)|1) = J2k+1(u) .

The conservation of Q and E is recovered by observing that

J2(u) = (H2
u(1)|1)L2 = ‖u‖2L2 = Q(u) ,

J4(u) = (H4
u(1)|1)L2 = ‖H2

u(1)‖2L2 = ‖Π(|u|2)‖2L2 =
E(u) +Q(u)2

2
.

In Section 8, we will prove that the conservation laws J2k are in involution, and that their
differentials satisfy some generic independence.

4. Invariant finite dimensional submanifolds

In this section, we introduce finite dimensional submanifolds of L2
+ which are invariant

by the flow of the cubic Szegő equation. Elements of these manifolds turn out to be rational
functions of the variable z, with no poles in the unit disc. In what follows, CD[z] denotes
the class of complex polynomials of degree at most D, and d(A) denotes the degree of a
polynomial A.

4.1. The manifold M(N)

D 2. – Let N be a positive integer. We denote by M(N) the set of rational
functions u of the form

u(z) =
A(z)

B(z)
,

with A ∈ CN−1[z], B ∈ CN [z], B(0) = 1, d(A) = N − 1 or d(B) = N , A and B have no
common factors, and B(z) 6= 0 if |z| ≤ 1.
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Notice that M(N) is included in Hs
+ for every s. It is elementary to check that M(N) is a

2N -dimensional complex submanifold of L2
+, and that its tangent space at u = A/B is

TuM(N) =
C2N−1[z]

B2
.

A theorem by Kronecker [14] states that M(N) is exactly the set of symbols u such that Hu

is of rank N . For the convenience of the reader, we give an elementary proof of this result in
Appendix 4. In view of Corollary 1, we infer the following result, which can also be checked
directly, using some elementary linear algebra.

T 4.1. – Let u0 ∈ M(N) and u be the solution of (7) with u(0) = u0. Then, for
every t ∈ R, u(t) belongs to M(N). In other words, the submanifolds M(N) are invariant
under the flow of the cubic Szegő equation.

In the notation of Theorem 1.2 of the introduction, the manifold M(N) is W (2N). Since
M(N) is finite dimensional, Equation (7) on M(N) is reduced to a system of ordinary
differential equations, which we now describe in the main coordinate patch of M(N). A
generic point in M(N) is given by

u =

N∑
j=1

αj
1− pjz

,

where the pj ’s are pairwise distinct and belong to the unit disc. Then, in the coordinates
(αj , pj)1≤j≤N , (7) readsiα̇j =

∑
k

α2
jαk

(1−pjpk)2 + 2
∑
k

∑
6̀=j

αjαkα`pj
(pj−p`)(1−pjpk) ,

iṗj =
∑
k

αjαk
1−pjpk pj .

(16)

In particular, the conservation laws Q, M , E read

Q =
∑
j,k

αjαk
1− pjpk

, M =
∑
j,k

αjpjαkpk
(1− pjpk)2

,

E =
∑
j,k,l,m

αjαkαlαm(1− pjpkplpm)

(1− pjpk)(1− pjpm)(1− plpk)(1− plpm)
.

In view of the second part of system (16), we notice an additional conservation law,

(17) S = |p1 · · · pN |2 .

In the next subsection, we give an intrinsic interpretation of S and we establish further
properties which will be useful in the sequel.

4.2. The Blaschke product associated to u ∈ M(N)

Given u ∈ H1/2
+ , it is elementary to check from

Hu(h) = Π(uh)

that kerHu is a closed subspace of Hu invariant by the shift h 7→ zh. According to the
Beurling Theorem [23], there exists ϕ ∈ L2

+, such that |ϕ|2 = 1 on S1 and

kerHu = ϕL2
+ .
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Let us characterize such a generator ϕ if u = A/B ∈ M(N). Set

B(z) =

N∏
j=1

(1− pjz) ,

where the pj ’s are complex numbers in the open unit disc, with possible repetitions. We define
the Blaschke product associated to u by

b(z) =

N∏
j=1

z − pj
1− pjz

.

and we claim that

(18) kerHu = bL2
+ .

Indeed, if u = A/B as in Definition 4, the equation Π(uh) = 0 means exactly that there
exists g ∈ L2

+ such that

zN−1A

(
1

z

)
h(z) = g(z)

N∏
j=1

(z − pj) .

On the other hand, the assumptions on A, B imply that the polynomials zN−1A
(

1
z

)
and∏N

j=1(z−pj) have no common factor. Consequently, kerHu consists of those h ∈ L2
+ which

are divisible by
∏N
j=1(z − pj), which is equivalent to h ∈ bL2

+.

Let us make the connection with the distinguished vector 1. Since Im(Hu) is finite dimen-
sional and since Hu is symmetric, we have

Im(Hu) = (ker(Hu))⊥ .

In particular, Im(Hu) is a space of rational functions, whose general description is provided
in Appendix 4. We denote by Pu the orthogonal projector on Im(Hu).

P 1. – We have

1− Pu(1) = (−1)Np1 · · · pN b .

Proof. – Set v = 1− Pu(1). From Appendix 4, 1 ∈ Im(Hu) if and only if one of the pj ’s
is 0. Since the claimed identity is trivial in this case, we may assume that pj 6= 0 for every j.
Then, from Appendix 4, all the functions in Im(Hu) tend to 0 at infinity, hence v(z) tends
to 1 at infinity. Since

v(z) = h(z)b(z) ,

where h is a polynomial, we conclude that

h(z) = (−1)Np1 · · · pN .

As a consequence, we obtain the following interpretation of the conservation law S intro-
duced in the previous subsection,

S := |p1 · · · pN |2 = dist(u, kerHu)2 .
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Indeed, dist(u, kerHu)2 = ‖1 − Pu(1)‖2L2 and |b|2 = 1 on S1, hence we even have
|1 − Pu(1)|2 = S on S1. In fact, we can derive a more general evolution law for the whole
quantity v = 1− Pu(1).

P 2. – Let u be a solution of (7) on M(N). Then v := 1 − Pu(1) satisfies,
on S1,

i∂tv = |u|2v .

Proof. – Notice that v is the orthogonal projection of 1 onto kerHu, which reads, in
terms of the functional calculus of the selfadjoint operator H2

u,

v = 1{0}(H
2
u)(1) .

Consequently, by Theorem 3.1,

∂tv = [Bu,1{0}(H
2
u)](1) .

Since

Bu = −iT|u|2 +
i

2
H2
u , Bu(1) = − i

2
H2
u(1) ,

we get
i∂tv = T|u|2v .

The following lemma implies that T|u|2v = |u|2v and therefore completes the proof.

L 1. – If u ∈ L∞+ ∩H
1/2
+ and h ∈ kerHu, then uh ∈ zL2

+.

Indeed, for every k ≥ 0, we have , in L2(S1),

(uh|zk) = (zk|uh) = (zk|Π(uh)) = (zk|Hu(h)) = 0 .

As a consequence of the above proposition, let us deduce an evolution law for the Blaschke
product b if S 6= 0. In this case, v does not vanish on the circle, and we can write, at each
point of S1,

|u|2 = i
∂tv

v
= i

∂t(p1 · · · pN )

p1 · · · pN
+ i

∂tb

b
.

Let us take the average of both sides on S1. Since

∂tb

b
=

N∑
j=1

(
−

∂tpj
z − pj

+
z∂tpj

1− pjz

)
,

a direct calculation yields ∫
S1

∂tb

b

dz

2iπz
= 0 ,

and therefore

(19) Q = i
∂t(p1 · · · pN )

p1 · · · pN
.

Coming back to Proposition 2, we infer

(20) i∂tb = (|u|2 −Q)b .

Equation (20) in fact holds without assuming S 6= 0. This can be shown by approximation
in M(N). However, we shall give a different proof in the next subsection, which is devoted
to the flow on the subset {S = 0} of M(N).
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4.3. The manifold M̃(N − 1)

Denote by M̃(N − 1) the subset of M(N) defined by the equation S = 0. The rational
functions in M̃(N − 1) are the elements of M(N) with a numerator of degree exactly equal
to N − 1 and a denominator of degree at most N − 1, therefore M̃(N − 1) is a complex
hypersurface of M(N), and its tangent space at u = A/B is

Tu M̃(N − 1) =
C2N−2[z]

B2
.

As S is invariant under the flow, we get that M̃(N − 1) is invariant under the flow. In the
notation of Theorem 1.2 of the introduction, M̃(N−1) isW (2N−1). On this submanifold,
generic points are described as

u =

N−1∑
j=1

αj
1− pjz

+ αN ,

where the pj ’s are as before in the open unit disc, pairwise distinct and different from 0. The
generic evolution is system (16) with pN = 0. From this explicit system, we notice that the
trivial conservation law S is replaced by

S̃ =

∣∣∣∣∣∣αN
N−1∏
j=1

pj

∣∣∣∣∣∣
2

.

As in the previous section, we shall now give a more intrinsic interpretation of the new
conservation law S̃.

Since 1 ∈ Im(Hu) = Im(H2
u), there exists a unique w ∈ Im(Hu) such that

Hu(w) = 1 .

Write

u =
A

B
, B(z) =

N−1∏
j=1

(1− pjz) , A(z) = azN−1 +
∑

j<N−1

ajz
j ,

with a 6= 0. The associated Blaschke product now reads

b(z) = z

N−1∏
j=1

z − pj
1− pjz

:= zb̃(z) .

Notice that, from the description of Im(Hu) provided in Appendix 4, b̃ ∈ Im(Hu). From the
elementary identity

Hu(zh) = z(Hu(h)− (u|h)) ,

we infer
Hu(b̃) = (u|b̃) .

Then an explicit calculation gives

(b̃|u) =

∫
S1

zN−1A(1/z)∏
j(1− pjz)

dz

2iπz
= a .

Therefore we have proved
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P 3. –

w(z) =
b̃(z)

a
=
b(z)

az
.

We conclude this subsection by deriving an evolution law for w.

P 4. – Let u be a solution of (7) on M̃(N − 1). Then the preimage w of 1 in
Im(Hu) satisfies, on S1,

i∂tw = |u|2w .

Proof. – The proof is very similar to the one of Proposition 2. Firstly, we express w by
means of the functional calculus of the selfadjoint operator H2

u,

w = f(H2
u)Hu(1) , f(λ) :=

1]0,∞[(λ)

λ
.

Consequently, by Theorem 3.1,

∂tw = [Bu, f(H2
u)Hu](1) .

Since

Bu = −iT|u|2 +
i

2
H2
u , Bu(1) = − i

2
H2
u(1) ,

we get
i∂tw = T|u|2w .

The following lemma implies that T|u|2w = |u|2w and therefore completes the proof.

L 2. – If u ∈ M̃(N − 1), then uw ∈ L2
+.

Indeed, for every k ≥ 1, we have , in L2(S1),

(uw|zk) = (zk|uw) = (zk|Π(uw)) = (zk|Hu(w)) = (zk|1) = 0 .

As a consequence of Proposition 4, we infer that ‖w‖2L2 is a conservation law. In the case
of a generic element of M(N − 1),

u =

N−1∑
j=1

αj
1− pjz

+ αN ,

we have
a = (−1)N−1p1 · · · pN−1αN ,

thus we get the interpretation of S̃ as

S̃ = |a|2 =
1

‖w‖2L2

.

Finally, as in the previous subsection, Proposition 4 leads to an evolution law for the coeffi-
cient a itself and for b. Indeed, taking the average on S1 of

|u|2 = i
∂tw

w
= −i∂t(a)

a
+ i

∂tb̃

b̃
= −i∂t(a)

a
+ i

∂tb

b
,

we obtain

(21) i∂ta = Qa ,
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and, coming back to the equation on w, we eventually deduce the evolution of b (20), in the
whole generality.

In the next two sections, we study the particular cases of M(1) and of M̃(1) in more detail.

5. The case of M(1)

Elements of M(1) are

(22) ϕα,p(z) =
α

1− pz
, α 6= 0 , |p| < 1 .

In this particular case, the system (16) reads

iα̇ =
|α|2

(1− |p|2)2
α , iṗ =

|α|2

1− |p|2
p ,

which is solved as

α(t) = α(0) e−iωt , p(t) = p(0) e−ict , ω =
|α(0)|2

(1− |p(0)|2)2
c =

|α(0)|2

1− |p(0)|2
.

Equivalently, the solution u of (7) with u(0) = ϕα,p is given by

u(t, z) = e−iωt ϕα,p(e
−ictz),

which means that u is a traveling wave according to Definition 1. In Section 9, we will classify
all such solutions. Notice that, apart from the trivial case of constants — p = 0 —, the tra-
jectory lies in the two-dimensional torus {|α| = cst , |p| = cst}. We are going to prove that
this two-dimensional torus can also be seen as the solution of a variational problem in H1/2

+ .
We first state the following lemma which is an easy consequence of the Cauchy-Schwarz
inequality.

L 3. – Let A be a positive operator on a separable Hilbert space H and e be an
element of H so that Ae 6= 0. Then, the following inequality holds

‖Ae‖2 ≤ (Ae|e)Tr(A).

Furthermore, equality holds if and only if A is of rank one.

Applying this lemma to A = H2
u on H = L2

+ with e = 1, and using the formulae for J2

and J4 derived in Section 3, we get the following characterization of the elements of M(1),
which can be seen as an analogue of M. Weinstein’s sharp Gagliardo-Nirenberg inequality
[26].

P 5. – For every u ∈ H1/2
+ ,

E(u) ≤ Q(u)(Q(u) + 2M(u)),

with equality if and only if u ∈ M(1).

Let us mention that a more direct proof of Proposition 5 can be found in [11]. As a
consequence of Proposition 5, we obtain the following large time stability of M(1) in H1/2

+ .
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C 4. – Let a > 0 , 0 < r < 1, and

T (a, r) = {ϕα,p : |α| = a , |p| = r} .

For every ε > 0, there exists δ > 0 such that, if u0 ∈ H1/2
+ satisfies

inf
ϕ∈T (a,r)

‖u0 − ϕ‖H1/2 ≤ δ

then the solution u of (7) with u(0) = u0 satisfies

sup
t∈R

inf
ϕ∈T (a,r)

‖u(t)− ϕ‖H1/2 ≤ ε .

Proof. – By Proposition 5 and a simple calculation of Q(ϕα,p) and E(ϕα,p), T (a, r) is
the set of minimizers of the problem

inf{M(u) , u ∈ H1/2
+ , Q(u) = q(a, r) , E(u) = e(a, r)} = m(a, r) ,

where

q(a, r) :=
a2

1− r2
, e(a, r) :=

a4(1 + r2)

(1− r2)3
.

Let un0 be a sequence of H1/2
+ such that

inf
ϕ∈T (a,r)

‖un0 − ϕ‖H1/2 → 0 .

Then

Q(un0 )→ q(a, r) , E(un0 )→ e(a, r) , M(un0 )→ m(a, r)

and by the conservation laws,

Q(un(t))→ q(a, r) , E(un(t))→ e(a, r) , M(un(t))→ m(a, r)

uniformly in t. Given any sequence (tn) of real numbers, the sequence (un(tn)) is bounded
inH1/2

+ , hence has a subsequence which converges weakly to some u inH1/2
+ , and we get, by

the weak continuity of Q,E and the weak semi-continuity of M ,

Q(u) = q(a, r) , E(u) = e(a, r) , M(u) ≤ m(a, r),

hence finally, as m(a, r) is the infimum, M(u) = m(a, r), which implies from Proposition 5
that u ∈ T (a, r) and that un(tn) converges strongly to u. The proof is complete.

The explicit evolution of (7) on M(1) also allows to prove the following high frequency
instability result in Hs

+ for every s < 1/2. This result means that, given a time t 6= 0, the
flow map at time t does not extend as a uniformly continuous map on bounded subsets of
Hs

+, s < 1
2 , or L4

+ (see Tzvetkov [24] for a general discussion).

P 6. – Let s < 1
2 . There exist uε0, ũε0 bounded sequences in Hs

+ such that

‖uε0 − ũε0‖Hs → 0 but ∀t 6= 0, lim inf
ε→0

‖uε(t)− ũε(t)‖Hs > 0 .

The same holds for Hs
+ replaced by L4

+.
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Proof. – The principle of the proof follows Birnir-Kenig-Ponce-Svansted-Vega [2]. As
|p| → 1, one has

‖ϕα,p‖2Hs =

∥∥∥∥ α

1− pz

∥∥∥∥2

Hs
∼ |α|2

(1− |p|2)1+2s
.

Choose
uε0 = ϕ

εs+
1
2 ,
√

1−ε
, ũε0 = ϕ

εs+
1
2 (1+δ),

√
1−ε

,

with δ → 0 so that ‖uε0 − ũε0‖Hs → 0. By the previous computations, we get
u(t, eiθ) = e−iωtu0(ei(θ−ct)) and ũ(t, eiθ) = e−iω̃tũ0(ei(θ−c̃t)) where c̃ − c = ε2sδ(2 + δ).

Choose ε→ 0 so that δε2s−1 →∞. It implies in particular that
c̃− c
ε
→∞.

We claim that, for any t > 0,

‖uε(t)− ũε(t)‖2Hs = ‖uε(t)‖2Hs + ‖ũε(t)‖2Hs + o(1)

as ε goes to zero. In other words, the scalar product in Hs of uε(t) and ũε(t) is o(1). The
result will follow since ‖uε(t)‖Hs ' ‖ũε(t)‖Hs ' 1.

We have

|〈uε(t), ũε(t)〉Hs | =

∣∣∣∣∣∑
k

(1 + |k|2)sûε(t, k) · ̂̃uε(t, k)

∣∣∣∣∣
=

∣∣∣∣∣∑
k

(1 + |k|2)se−ik(c−c̃)tûε0(k) · ̂̃uε0(k)

∣∣∣∣∣
= ε2s+1(1 + δ)|

∑
k

(1 + |k|2)se−ik(c−c̃)t(1− ε)k|

' ε2s+1

|1− (1− ε)e−i(c−c̃)t|1+2s

'
(

ε

|c− c̃|t

)1+2s

= o(1)t−(1+2s) .

The proof for L4
+ is similar, observing that

‖ϕα,p‖4L4 =
|α|4(1 + |p|2)

(1− |p|2)3
.

Choose the same functions uε0 and ũε0 as above, with s = 1
4 , and δ going to 0 such that

δε−1/2 →∞. In view of the explicit expression,

|uε0(eiθ)|4 =
ε3

(2− ε− 2
√

1− ε cos θ)2
,

one easily checks that, if Rε →∞,∫
Rεε<|θ−ct|<π

|uε(t, eiθ)|4 dθ → 0 ,

∫
Rεε<|θ−c̃t|<π

|ũε(t, eiθ)|4 dθ → 0 .

Let us choose Rε such that

Rε � c̃− c
ε

.

Then we claim that, for t 6= 0,

‖uε(t)− ũε(t)‖4L4 = ‖uε(t)‖4L4 + ‖ũε(t)‖4L4 + o(1) .
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Indeed, if a+ b = 4 and a, b ≥ 1, by the Hölder inequality, we have∫
S1

|uε(t)|a|ũε(t)|b dθ =

∫
Eε
|uε(t)|a|ũε(t)|b dθ + o(1) ,

where
Eε = {θ ∈ (−π, π) |θ − ct| < Rεε , |θ − c̃t| < Rεε} .

In view of the assumption on Rε, this set is empty for ε small enough. This completes the
proof.

6. The case of M̃(1)

The manifold M̃(1) is a three-dimensional Kähler manifold, on which (7) admits three
conservation laws in involution, which are Q,M,E. As we will see later, these conserva-
tion laws are generically independent on M̃(1), therefore the equation (S) is completely inte-
grable on this manifold. We are going to solve this system explicitly, by introducing coordi-
nates which are close to the action-angle coordinates provided by the Liouville theorem (see
Arnold [1]). Then we will establish some instability phenomena for large time.

6.1. The evolution on M̃(1)

Let us make some preliminary calculations. Since the rank of H2
u is 2 if u ∈ M̃(1), the

Cayley-Hamilton theorem reads

(23) H4
u − σ1H

2
u + σ2Pu = 0 .

Here, σ1 is the trace of H2
u so it equals Q + M . Let us compute σ2. Applying the above

formula to the preimage w ∈ Im(Hu) of 1 introduced in Subsection 4.3, we get

(24) H3
u(1)− (M +Q)u+ σ2w = 0 .

Taking the scalar product of (24) with w, and using that (u|w) = (Hu(1)|w) = (Hu(w)|1) = 1,
we infer

σ2 = MS̃ .

We now apply (23) to 1 ∈ Im(Hu), and take the scalar product with 1. This yields

J4 = (M +Q)Q−MS̃

or
E = Q2 + 2M(Q− S̃) .

Consequently, we can use M,Q, S̃ rather than M,Q,E as our three conservation laws. For
future reference, we introduce the solutions r± of the characteristic equation,

r2 − σ1r + σ2 = 0 ,

given by

r± =
1

2

(
Q+M ± ((Q+M)2 − 4MS̃)1/2

)
,

and we set
Ω = r+ − r− = ((M +Q)2 − 4MS̃)1/2 .
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P 7. – Let u0 ∈ M̃(1), and let u =
az + b

1− pz
be the corresponding solution of

(7). One of the following two cases occurs:

– Either Q = S̃, and

(25) u0(z) = a0
z − p
1− pz

, u(t, z) = e−iQtu0(z) .

– Or Q > S̃, and the evolution of a, b, p is given by

(26) iȧ = Qa , iḟ± = r±f± ,

with
f± := r±b+Map .

In particular, |p|2 satisfies

|p|2 = A+B cos(Ωt+ ϕ)

for some constants A,B,ϕ, and |p| oscillates between the following values,

(27) ρmax =
M1/2 + S̃1/2

(M +Q+ 2
√
MS̃)1/2

, ρmin =
|M1/2 − S̃1/2|

(M +Q− 2
√
MS̃)1/2

.

R 2. – In the case (25), the solution u is called a stationary wave. We will classify
such solutions in Section 9.

Proof. – We already know that
iȧ = Qa .

By Corollary 3, we also know that J1 = b and J3 satisfy

iJ̇1 = J3 , iJ̇3 = J5 ,

and J5 = σ1J3 − σ2J1 in view of (23). Finally, J3 is easily obtained by taking the scalar
product of (24) with 1 and using Proposition 3,

J3 = (M +Q)J1 −MS̃(w|1) = (M +Q)b+Map .

Setting
f± := J3 − r∓J1 = r±b+Map ,

we finally obtain the system of linear ODE (26). Let us first investigate the particular case
r+ = r−, which is equivalent to

(Q+M)2 − 4MS̃ = 0 .

Since Q ≥ S̃ by the Cauchy-Schwarz inequality applied to u and w, we conclude that
r+ = r− is equivalent to

M = Q = S̃ .

Using the Cauchy-Schwarz equality case, it is easy to check that Q = S̃ is equivalent to the
collinearity of u0 and w0, namely

u0(z) = a0
z − p
1− pz

.
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Finally, from this expression of u0, a simple computation givesM = Q, hence r+ = r−, and,
since |u0|2 = Q on S1, we get

u(t) = u0e−iQt .

In the case r+ 6= r−, we can recover (a(t), b(t), p(t)) from the variables (a(t), f±(t)) and the
conservation laws (M,Q, S̃). In particular,

(28) Map =
r+f− − r−f+

r+ − r−
.

Taking the modulus of both sides of (28), we conclude, in view of the differential equations
satisfied by f±, that

|p|2 = A+B cos(Ωt+ ϕ)

for some constantsA,B, ϕ. Consequently, in view of (28), |p| oscillates between the following
values,

ρmax =
r+|f−|+ r−|f+|

MΩS̃1/2
, ρmin =

| r+|f−| − r−|f+| |
MΩS̃1/2

.

Let us compute |f±| in terms ofM,Q, S̃. Denote by (e+, e−) an orthonormal basis of ImHu

such that Ce± = ker(H2
u − r±). Up to multiplying e± by a suitable complex number of

modulus 1, we may assume, using the C-antilinearity of Hu, that

Hue± =
√
r±e± .

Then

1 = ζ+e+ + ζ−e− , ζ± := (e±|1) , u = Hu(1) =
√
r+ζ+e+ +

√
r−ζ−e− .

From

1 = |ζ+|2 + |ζ−|2 , Q = r+|ζ+|2 + r−|ζ−|2 ,
J1 =

√
r+ζ

2
+ +
√
r−ζ

2
− , J3 = r+

√
r+ζ

2
+ + r−

√
r−ζ

2
− ,

we obtain
|f+| =

√
r+(Q− r−) , |f−| =

√
r−(r+ −Q) ,

and finally (27), by a straightforward but tedious calculation.

In the next subsections, we shall take advantage of the oscillations of |p| in establishing
instability results.

6.2. Large time estimates of Hs norms

Our first instability result concerns large time behavior of Hs norms along trajectories of
the cubic Szegő equation on M̃(1).

C 5. – For every u0 ∈ M̃(1), the solution u of (7) with u(0) = u0 satisfies, for
every s > 1/2,

(29) lim sup
t→∞

‖u(t)‖Hs < +∞ .

However, there exists a family (uε0)ε>0 of Cauchy data in M̃(1), which converges in M̃(1) for
the C∞(S1) topology as ε→ 0, and K > 0 such that the corresponding solutions uε satisfy

(30) ∀ε > 0,∃tε > 0 : tε →∞ , ∀s > 1

2
, ‖uε(tε)‖Hs ≥ K(tε)2s−1 .
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Proof. – Writing as before

u(t) =
a(t)z + b(t)

1− p(t)z
,

we already know that a(t) and b(t) are bounded because of the conservation of Q(u(t)),
so the blow up of the Hs norm for large |t| would only come from the fact that |p(t)|
approaches 1. But this cannot happen since, by formula (27),

max
t
|p(t)| = ρmax < 1

if Q > S̃. The other case Q = S̃ corresponds to (25), for which p(t) = p(0).

Let us turn to the second assertion. Consider the family of Cauchy data {uε0}0<ε<1 given by

uε0(z) = z + ε

and let us look at the regime ε→ 0. Then a simple computation from the previous formulae
shows that

|p(t)|2 =
2

4 + ε2
(1− cos(εt

√
4 + ε2)).

On the other hand, using Fourier expansion, we have, as |p| approaches 1,

‖u‖2Hs '
|a+ bp|2

(1− |p|2)2s+1
= M

1

(1− |p|2)2s−1

since

M(u) =
|bp+ a|2

(1− |p|2)2
.

In our particular case, M(u) = 1 and we get, for tε =
π

ε
√

4 + ε2
,

‖u(tε)‖2Hs '
1

(1− |p(tε)|2)2s−1
' C(tε)2(2s−1).

This completes the proof.

R 3. – Property (30) can be seen as a quantitative version of an instability property
proved in [9] for NLS on the two dimensional torus: bounded data in C∞ may yield large
solutions in Hs for large time. However, as shown by (29), this may happen even if the Hs

norms stay bounded on each individual trajectory, and moreover in the case of a completely
integrable system. Notice that this phenomenon can occur with arbitrarily small data, since
multiplying the Cauchy data by a parameter δ amounts to replace the solution u(t) of (7) by
δu(δ2t).

6.3. Orbital instability of stationary waves

Our next instability result concerns the stationary waves in M̃(1).

C 6. – For each stationary wave u0 of M̃(1), there exists a sequence uε0 which
converges to u0 in C∞ such that, for every r ∈ (0, 1), there exists tε such that the limit points
in H1/2

+ of uε(tε) are of the form

v = α
z − q
1− qz

, |α| = ‖u0‖L2 , |q| = r.
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Proof. – First recall that if v =
az + b

1− pz
then the conservation laws are given by

M =
|bp+ a|2

(1− |p|2)2
, Q =

|bp+ a|2

(1− |p|2)
+ |b|2 and S̃ = |a|2.

Let u0 = a
z − p
1− pz

be a stationary wave of M̃(1). Define, for 0 < ε < 1,

uε0 = a
(1− ε)z − p(1− ε/2)

1− p(1 + ε/2)z
.

It is clear that such a sequence converges to u0 in C∞. By Proposition 7, for any fixed ε, the

corresponding solution uε may be written as
aεz + bε

1− pεz
where |pε| oscillates between ρεmin and

ρεmax given by (27). Computing these two bounds in terms of ε, it is easy to show that ρεmax

tends to 1 and ρεmin tends to 0 as ε goes to 0. Precisely, we have,

M = |a|2 |(1− ε)− |p|
2(1− ε2/4)|2

(1− |p|2(1 + ε/2)2)2

= |a|2 (1− 2ε) + O(ε2)

Q = |a|2
(
|(1− ε)− |p|2(1− ε2/4)|2

(1− |p|2(1 + ε/2)2)
+ |p|2(1− ε/2)2

)
= |a|2(1− 2ε) + O(ε2)

S̃ = |a|2(1− ε)2 = |a|2(1− 2ε) + O(ε2).

From these estimates, we get Ω = O(ε),
√
M −

√
S̃ = O(ε2) and

ρεmax = 1 + O(ε2) , ρεmin = O(ε) .

In particular, for every r ∈ (0, 1), one can choose tε such that |pε(tε)| = r. As the
H1/2-norms of uε(t) are bounded, uε(tε) has limit points in the weakH1/2-topology. Let v∞
be such a limit point. Since pε(tε) stays on the circle of radius r, the convergence is strong and
v∞ belongs to M̃(1). Moreover,Q(v∞) = S̃(v∞), hence v∞ is given by (25). This completes
the proof.

We will pursue our study of large time behavior in Section 7.

7. Large time behavior on M(N)

By Corollary 5, every solution on M̃(1) satisfies

sup
t∈R
‖u(t)‖Hs < +∞

for s ≥ 0. We prove that it is a generic situation on M(N). A similar statement holds on
M̃(N − 1).

T 7.1. – For every integer N , define

VN = {u0 ∈ M(N); det(J2(m+n)(u0))1≤m,n≤N = 0} .
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Then VN is a proper real analytic subvariety of M(N) and, for every u0 ∈ M(N) \ VN , for
every s ≥ 0,

(31) sup
t∈R
‖u(t)‖Hs < +∞.

In particular, (31) holds for every u0 outside a closed subset of measure 0. A similar statement
holds on M̃(N − 1), with

ṼN−1 := VN ∩ M̃(N − 1).

Proof. – For every u ∈ H1/2
+ , we consider the polynomial expression

FN (u) = det(J2(m+n)(u))1≤m,n≤N .

Notice that FN (u) = 0 if and only if the vectors H2k
u (1) , k = 1, . . . , N are linearly

dependent. In particular, FN is identically 0 on M(J) for J < N . On the other hand, we
shall see that FN is not identically 0 on M(N). In fact, one can prove the following slightly
stronger result, which we state as a lemma for further references.

L 4. – The vectors H2k
u (1), k = 1, . . . , N, are generically independent on M̃(N − 1)

and on M(N).

Proof. – Indeed, if

u(z) = zN−1 + zN−2 ,

u ∈ M̃(N − 1) and a simple computation shows that the matrix of the system
1, H2

u(1), H4
u(1), . . . ,H

2(N−1)
u (1), in the basis (zj)0≤j≤N−1 is triangular, hence these

vectors are independent. Applying H2
u, which is one to one on Im(Hu), the vectors

H2k
u (1), k = 1, . . . , N, are independent as well, and FN (u) 6= 0. Since M̃(N − 1) and

M(N) are connected, this completes the proof.

Theorem 7.1 is then a consequence of the following lemma.

L 5. – If u0 ∈ M(N) \ VN , the level set

LN (u0) := {u ∈ M(N) : J2n(u) = J2n(u0), 1 ≤ n ≤ 2N}

is a compact subset of M(N).

If u0 ∈ M̃(N − 1) \ VN , the level set

L̃N−1(u0) := {u ∈ M̃(N − 1) : J2n(u) = J2n(u0), 1 ≤ n ≤ 2N − 1}

is a compact subset of M̃(N − 1).

Proof. – We just prove the statement for M(N). Let u0 ∈ M(N) \ VN and u ∈ LN (u0).
Let us first prove that M(u) = M(u0). By the Cayley-Hamilton theorem applied to H2

u on
Im(Hu),

H2N
u =

N∑
j=1

(−1)j−1σj(u)H2(N−j)
u .
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Applying this identity to H2p
u (1) for p = 1, . . . , N and taking the scalar product with 1, we

obtain a system of N linear equations in the σj ’s,

J2(N+p)(u) =

N∑
j=1

(−1)j−1σj(u)J2(N+p−j) , 1 ≤ p ≤ N.

The determinant of this system is det(J2(m+n)(u))0≤m≤N−1,1≤n≤N , which, by the above
identity, is (−1)N−1FN (u)/σN (u), hence is not zero — notice that σN (u) 6= 0, since H2

u

is one to one on Im(Hu). Solving this system, we conclude that each σj(u) is a universal
function of (J2n(u))1≤n≤2N . Since σ1 = M + J2, this proves the claim. We infer that
every sequence of LN (u0) is bounded in H1/2, hence has limit points for the weak topology
of H1/2. Let v be such a limit point. As a limit point of a sequence of M(N), v belongs
to ∪J≤N M(J). On the other hand, since each J2n is continuous for the weak topology of
H1/2, J2n(v) = J2n(u0) for n = 1, . . . , 2N . In particular, FN (v) = FN (u0) 6= 0, whence
v ∈ M(N) and finally v ∈ LN (u0).

The proof of Theorem 7.1 is completed by observing that the flow of (7) conserves the level
sets LN , and that the zeroes of the denominator of elements of a compact subset of M(N)

do not approach the unit circle.

C 7. – For every u0 ∈ M(2), s ≥ 0, (31) holds.

Proof. – In view of Theorem 7.1, it is enough to consider the case F2(u) = 0, which is
equivalent to the collinearity of H2

u(1) and of Pu(1),

H2
u(1) =

Q

1− S
Pu(1) .

If Pu(1) = 1 ∈ Im(Hu), then |u|2 = Q and u is a stationary wave by Proposition 8. If
Pu(1) 6= 1, by Proposition 2, the function v = 1− Pu(1) satisfies

i∂tv = |u|2v =
Q(1 + S)

1− S
v − Q

1− S
v2 − QS

1− S
.

Notice that S = (v|1) is a particular solution of this Riccati equation. Hence we can
solve it explicitly and observe that v is a periodic function of t with period 2π/Q. Since, by
Proposition 1,

v(t, z) = p1(t)p2(t)
(z − p1(t))(z − p2(t))

(1− p1(t)z)(1− p2(t)z)
,

we conclude that p1, p2 are periodic as well, hence cannot approach the unit circle.

8. The Szegő hierarchy

In this section, we show that the conservation laws J2n satisfy the Poisson commutation
relations

{J2n, J2p} = 0 ,

and that J2n defines a global Hamiltonian flow for everyn. In fact, we prove that, for everyn,
there exists a skew symmetric operator Bu,n such that the pair (Hu, Bu,n) is a Lax pair
for this Hamiltonian flow. The last part of the section is devoted to proving that functions
(J2n)1≤n≤2N are generically independent on M(N), and that functions (J2n)1≤n≤2N+1 are
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generically independent on M̃(N). This will complete the proof of Theorem 1.2 in the
introduction.

T 8.1. – Let s > 1
2 . The map u 7→ J2n(u) is smooth on Hs

+ and its Hamiltonian
vector field is given by

(32) XJ2n(u) =
1

2i

n−1∑
j=0

H2j
u (1)H2n−2j−1

u (1) .

Moreover,

HiXJ2n (u) = HuAu,n +Au,nHu

where Au,n is the self adjoint operator

Au,n(h) =
1

4

2n−2∑
j=0

Hj
u(1)Π(H2n−2−j

u (1)h)−
n−1∑
k=1

(h|H2k−1
u (1))H2n−2k−1

u (1)

 .

Proof. – Introduce, for x real and |x| small enough, the generating functions,

w(x) = (1− xH2
u)−1(1) =

∞∑
n=0

xnH2n
u (1)

and

J(x, u) = (w(x)|1) =

∞∑
n=0

xnJ2n(u) .

We have

duJ(x, u).h = ((1− xH2
u)−1x(HuHh +HhHu)(1− xH2

u)−1(1)|1)

= x[(HuHhw(x)|w(x)) + (HhHuw(x)|w(x))] = 2xRe(h|w(x)Huw(x))

= ω(h|X(x))

with

X(x) =
x

2i
w(x)Huw(x) .

Identifying the coefficients of xn, we get formula (32). The second part of the proof relies on
the following lemma.

L 6. – We have the following identity,

HaHu(a)(h) = Hu(a)Ha(h) +Hu(aΠ(ah)− (h|a)a) .

Proof. –

HaHu(a)(h) = Π(aHu(a)h) = Hu(a)Ha(h) + Π(Hu(a)(1−Π)(ah)) .

On the other hand,

(1−Π)(ah) = Π(ah)− (a|h) .

The lemma follows by plugging the latter formula into the former one.
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Let us complete the proof. Using the identity

w(x) = 1 + xH2
uw(x),

and Lemma 6 with a = Hu(w), we get

HwHu(w)(h) = HHu(w)(h) + xHHu(w)H2
u(w)(h)

= HHu(w)(h) + xH2
u(w)HHu(w)(h)+

+ xHu

(
Hu(w)Π(Hu(w)h)− (h|Hu(w))Hu(w)

)
= wHHu(w)(h) + xHu

(
Hu(w)Π(Hu(w)h)− (h|Hu(w))Hu(w)

)
= wΠ(wHuh) + xHu

(
Hu(w)Π(Hu(w)h)− (h|Hu(w))Hu(w)

)
.

We therefore have obtained

HwHu(w) = GuHu +HuDu

where Gu and Du are the following self adjoint operators,

Gu(h) = wΠ(wh) , Du(h) = x
(
Hu(w)Π(Hu(w)h)− (h|Hu(w))Hu(w)

)
.

Consequently, since HwHu(w) is self adjoint,

HwHu(w) = CuHu +HuCu

with

Cu =
1

2
(Gu +Du) .

Identifying the coefficients of xn in

HiX(x) =
x

2
Hw(x)Huw(x) ,

we infer the desired formula for Au,n.

C 8. – Let s > 1. For every u0 ∈ Hs
+, there exists a unique solution

u ∈ C(R, Hs
+) of the Cauchy problem

(33) ∂tu = XJ2n
(u) , u(0) = u0 .

Moreover, u satisfies

(34) ∂tHu = [Bu,n, Hu] ,

with

Bu,n(h) =
−i
4

2n−2∑
j=0

Hj
u(1)Π(H2n−2−j

u (1)h)−
n−1∑
k=1

(h|H2k−1
u (1))H2n−2k−1

u (1)

 .

Finally, we have the commutation identity

(35) {J2n, J2p} = 0 .
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Proof. – The local-in-time solvability of the Cauchy problem is an easy consequence of
the fact that Hs is an algebra. Moreover, to prove global existence, it is enough to establish
that the L∞ norm of u does not blow up in finite time. In view of Theorem 8.1, u satisfies
Equation (34) on its interval of existence. Since Bu,n is skew symmetric, this implies that
Tr(|Hu|) is conserved, and consequently, by Peller’s theorem, see [21, Theorem 1 p. 451],
[22, Theorem 1.1 p. 232], [19] [Theorem 8.1.1 p. 352], that the norm of u in B1

1,1 is bounded,
and so is the L∞ norm, whence the global existence, by an elementary Gronwall argument.

It remains to prove the commutation identity (35). This is equivalent to the fact that J2p is
a conservation law of the Hamiltonian flow of J2n. The latter fact is a consequence, as in
Section 3, of Equation (34), and of the formula

Bu,n(1) =
−i
4

n−1∑
`=0

J2n−2`−2H
2`
u (1).

We conclude this section with a complete integrability result.

C 9. – Let N ≥ 1. The following properties hold.

1. The functions J2k , k = 1, . . . , 2N are independent in the complement of a closed subset
of measure 0 of M(N).

2. The functions J2k , k = 1, . . . , 2N + 1 are independent in the complement of a closed
subset of measure 0 of M̃(N).

Consequently, for generic Cauchy data in M(N) and in M̃(N), the solution of (7) is
quasi-periodic.

Proof. – First notice thatXJ2n is tangent to M(N) and to M̃(N). This can be seen either
from the explicit expression (32) of XJ2n compared to the explicit description of the tangent
spaces of M(N) and M̃(N) in Section 4, or as a consequence of the Kronecker theorem,

M(N) = {u : rk(Hu) = N} , M̃(N) = {u ∈ M(N + 1) : 1 ∈ Im(Hu) } ,

compared with the Lax pair property for the flow of XJ2n
proved in Corollary 8. Conse-

quently, the functions J2k restricted to the symplectic manifolds M(N) and to M̃(N) are in
involution. Therefore complete integrability is reduced to properties (1) and (2). Notice that
property (1) holds for N = 1. Indeed, the linear dependence of J2 and J4 at u is equivalent
to the fact that u is a stationary wave, which, on M(1), means that u is a constant. We shall
prove that, for allN , property (1) implies property (2) and that property (2) implies property
(1) for N + 1. This will complete the proof by induction.

We first prove that property (2) forN implies property (1) forN+1. We represent the current
generic point u ∈ M(N + 1) as

u(z) =
A(z)

B(z)
, A ∈ CN [z], d(A) = N ,
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with B(z) = bzN+1 + B̃(z), B̃ ∈ CN [z]. In this representation, M̃(N) is characterized by
the cancellation of the holomorphic coordinate b. Notice that S = |b|2. Fix u0 ∈ M̃(N)

such that the differential form

α :=

2N+1∧
k=1

dJ2k

satisfiesα(u0) 6= 0 on Tu0
M̃(N) = ker db(u0). In a small neighborhoodU of u0 in M(N+1),

define 2N+1 vector fieldsYk, k = 1, . . . , 2N+1, such that, for every u ∈ U , (Yk(u))1≤k≤2N+1

is a basis of ker(db(u)). Since

α(u0)(Y1(u0), . . . , Y2N+1(u0)) 6= 0,

this is still true near u0. On the other hand, since S = |b|2, dS.Yj = 0 by construction. Hence

(dS ∧ α)

(
b
∂

∂b
, Y1, . . . , Y2N+1

)
= dS

(
b
∂

∂b

)
α(Y1, . . . , Y2N+1)

= 2S α(Y1, . . . , Y2N+1) ,

which does not cancel on U \ M̃(N). This shows that the functions S, J2k, k = 1, . . . , 2N+1

are generically independent on M(N +1). In view of Lemma 4, we also know that theN +1

vectors H2k
u (1), k = 1, . . . , N + 1 are generically linearly independent. Since Hu is one to

one on Im(Hu), this is true as well for the vectors H2k+1
u (1), k = 0, . . . , N , in other words

det(J2(m+n+1))0≤m,n≤N 6= 0

generically on M(N + 1). Now apply the Cayley-Hamilton Theorem to H2
u, as we did for

the proof of Lemma 5. For every p = 1, . . . , N + 1,, we obtain

(36) J2(N+1+p) =

N+1∑
j=1

(−1)j−1σjJ2(N+1−j+p) .

Solving this linear system, we infer that, locally at generic points,

σj = Fj(J2k, k = 1, . . . , 2N + 2)

where Fj is real analytic. Applying again (36) for p = 0, and observing that J0 = 1− S and
σN 6= 0 since Hu is one to one on Im(Hu), we obtain, locally at generic points,

S = G(J2k, k = 1, . . . , 2N + 2)

where G is real analytic. This implies that the functions J2k, k = 1, . . . , 2N + 2, are
generically independent on M(N + 1), which is property (2) for N + 1.

The proof that property (1) implies property (2) is quite similar, so we just sketch it. First we
enlarge M̃(N) as a connected holomorphic manifold of the same dimension, which contains
a dense open subset of M(N) as a hypersurface. This can be realized by considering the
manifold M̃

′
(N) = M̃(N) ∪ M(N) \ M̃(N − 1) which consists of rational functions u of

the form

u(z) =
A(z)

B(z)
,

with A ∈ CN [z], B ∈ CN [z], B(0) = 1, d(A) = N or d(B) = N , A and B have no common
factors, and B(z) 6= 0 if |z| ≤ 1. The coefficient a of zN in the numerator A defines a
holomorphic coordinate on M̃

′
(N), and M(N) is defined by the equation a = 0. Moreover,
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S̃ = |a|2 is a conservation law. Starting from a generic point u0 ∈ M(N), we prove similarly
that the functions S̃, J2k, k = 1, . . . , 2N, are generically independent on M̃

′
(N). Then we

infer the generic independence of J2k, k = 1, . . . , 2N+1, by using again the Cayley-Hamilton
theorem for H2

u.

It is now easy to conclude, generically on the data in M(N) or M̃(N), that the solution of
Equation (7) is quasiperiodic. Let us sketch the argument for M(N), for instance. By Lemma
5, for generic u0 in M(N), the level set

LN (u0) := {u ∈ M(N) : J2n(u) = J2n(u0), 1 ≤ n ≤ 2N}

is compact. Moreover, from the generic independence of the functions J2n combined with
the Sard theorem, for generic u0 ∈ M(N), the vector (J2n(u0))1≤n≤2N is a regular value of
the mapping

u 7→ (J2n(u))1≤n≤2N .

We conclude from standard arguments — see for instance [1], that, generically on
u0 ∈ M(N), the level set L(u0) is a finite union of 2N dimensional Lagrangian tori,
on which the evolution defined by (7) is quasiperiodic.

9. Traveling waves

We start with some basic definitions. General definitions can be found in [12], for example.

D 3. – A solution u of (7) is said to be a traveling wave if there exist ω, c ∈ R
such that

u(t, z) = e−iωtu(0, e−ictz)

for every t ∈ R. We shall call ω the pulsation of u, and c the velocity of u.

Equivalently, u is a traveling wave with pulsation ω and velocity c if and only if it satisfies
at time t = 0 — hence at every time— the following equation,

(37) cDu+ ωu = Π(|u|2u) .

In the sequel, a solution u ∈ H
1/2
+ of Equation (37) will be called as well a traveling wave

of pulsation ω and of velocity c. Notice that Equation (37) is variational: traveling waves of
pulsation ω and velocity c are the critical points of the functional

u ∈ H1/2
+ 7→ cM(u) + ωQ(u)− 1

2
E(u) .

For example, from Proposition 5, we know that elements of M(1) are characterized as
minimizers of

u ∈ H1/2
+ 7→ Q(u)2 + 2M(u)Q(u)− E(u) ,

so that we recover that they are traveling waves with

ω = Q(u) +M(u) , c = Q(u) .
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9.1. Characterization of stationary waves

Stationary waves are traveling waves with velocity c equal to 0. They are particularly easy
to characterize.

P 8. – Let u0 ∈ H
1
2
+ \ {0}. Then u(t) = e−iωtu0 solves (7) if and only if

|u0|2 = ω a.e. on S1 ,

or equivalently

u0(z) = α

N∏
j=1

z − pj
1− pjz

for some p1, . . . , pN in the unit disc, and α is a complex number such that |α|2 = ω.

Proof. – Indeed, Π(|u0|2u0) = ωu0 means

|u0|2u0 − ωu0 ⊥ L2
+

which implies |u0|4 − ω|u0|2 = 0, or |u0|2 = ω. In other words, ϕ := ω−1/2u0 is an inner
function in the sense of Beurling. Since ϕ ∈ H

1/2
+ , we know that Hϕ is Hilbert-Schmidt,

hence is compact. Therefore the proof is completed by the following lemma.

L 7. – Let ϕ be an inner function such that H2
ϕ is a compact operator on L2

+. Then
ϕ is a finite Blaschke product.

Let us prove the lemma. In order to prove that ϕ is a rational function, it is enough to
establish that Hϕ is finite rank — by Kronecker’s theorem, see Proposition 11 in Appendix
4 below. Applying the identity (15) to u = ϕ, we obtain Hϕ = 2Hϕ −H3

ϕ, or

(38) Hϕ = H3
ϕ .

Since H2
ϕ is a self adjoint compact operator, there exists an orthonormal basis of L2

+ made
with eigenfunctions of H2

ϕ, associated with a sequence of eigenvalues tending to 0. Plugging

H2
ϕ(ψj) = λjψj

into (38), we obtain

Hϕψj = λjHϕψj .

Since λj tends to 0, we get thatHϕψj = 0 for large j, henceHϕ is of finite rank. We conclude
by the elementary fact that a rational function which is an inner function is a finite Blaschke
product.

As it is well known (see e.g. [23], Chapter 17), any inner function may be written as a
product of a Blaschke product and of

exp

(
−
∫ 2π

0

eit + z

eit − z
dµ(t)

)
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where µ is a singular measure with respect to the Lebesgue measure. The simplest cases are

u0(z) =

∞∏
j=1

z − pj
1− pjz

, |pj | < 1,

∞∑
j=1

(1− |pj |) <∞,

u0(z) = exp

(
−1 + z

1− z

)
.

Let us emphasize that these particular solutions do not belong to H
1/2
+ . Hence, these

examples show that there exists a larger family of non smooth solutions of (7), which does
not fit with the existence result of Theorem 2.1 and therefore calls for the construction of a
flow map on a wider phase space. In view of the BMO conservation law derived from the
Lax pair and of Nehari’s Theorem [17], a natural candidate for this phase space is BMO+.
However, we do not know if there exists a flow map for (7) defined on BMO+.

9.2. Characterization of traveling waves

We now focus on the case of a non zero velocity. The main result of this section is the
following.

T 9.1. – A function u ∈ H1/2
+ is a traveling wave with a velocity c ∈ R∗ and with

a pulsation ω ∈ R if and only if there exist non negative integers N , ` ∈ {0, 1, . . . , N − 1}, and
complex numbers p ∈ C with 0 < |p| < 1 and α ∈ C, such that

u(z) =
αz`

1− pNzN
.

Proof. – We first reformulate the soliton Equation (37) in terms of the Hankel operator
Hu. Introducing the operator

A = D − 1

c
T|u|2

we observe from (15) that (37) is equivalent to

(39) AHu +HuA+
ω

c
Hu +

1

c
H3
u = 0 .

The operator Ã = A + 1
2cH

2
u is selfadjoint on L2

+, bounded from below and with a
compact resolvent. Therefore it admits an orthonormal basis of eigenfunctions associated
to a sequence of real eigenvalues tending to +∞. Since (39) is equivalent to

ÃHu +HuÃ = −ω
c
Hu ,

we observe that
Ãϕ = λϕ

yields

ÃHuϕ = −(
ω

c
+ λ)Huϕ

and the boundedness of Ã from below implies Huϕ = 0 for λ large enough. Consequently,
Hu has finite rank, and therefore u is a rational function by the Kronecker theorem (see
Appendix 4 for an elementary proof). The main step is now to prove the following result.

P 9. – There exists λ ∈ R so that H2
u(u) = λu.
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Assume this proposition is proved, and let us show how to complete the proof of Theorem
9.1. We may assume that 1 6∈ ImHu, otherwise Proposition 9 would lead toH2

u(1) = λwhich
implies that |u|2 = λ and hence that u is a stationary wave. Denote by N the rank of Hu.
Notice that (39) implies

(40) [A,H2
u] = 0

therefore the range of H2
u — which is also the range of Hu-– is invariant through the action

of A.
As 1 6∈ ImHu, Proposition 9 readsH2

u(1) = λPu(1) with λ = Q
1−S . Setting v = 1−Pu(1)

as in Subsection 4.2, we have

|u|2 = H2
u(1) +H2

u(1)−Q =
Q

1− S
(2− v − v)−Q .

On the other hand, as v belongs to the kernel of Hu, we have from (39),

HuA(v) = 0 .

But

A(v) = −1

c
H2
u(1)−APu(1) ∈ Im(Hu).

We conclude that A(v) = 0, which reads, since uv is holomorphic from Lemma 1,

Dv =
1

c
|u|2v .

From Rouché ’s theorem, we infer
Q = Nc.

Eventually, we get

Dv =
N

1− S
(2− v − v)v −Nv =

N(1 + S)

1− S
v − N

1− S
v2 − NS

1− S
since |v|2 = S. Notice that the constant S is a particular solution of this Riccati equation.
Solving this equation, we get, for some constant B,

v = 1− (1− S)B

B + zN
.

From this formula, we have

H2
u(1) =

Q

1− S
(1− v) =

Q

1− pNzN

for some constant p which is necessarily of modulus less than 1 since H2
u(1) is holomorphic

in the unit disc. It remains to use that u is solution to the equation

cDu+ ωu = H3
u(1) + uH2

u(1)−Qu

to get that

cDu+ ωu = u

(
QS

1− S
+

Q

1− pNzN

)
.

This is an ordinary first order differential equation, which can be rewritten as

D log(u) = D log(1− pNzN )−1 +N

(
1

1− S
− ω

Q

)
D log z .
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By Rouché’s theorem, since u is a rational function with no poles in the unit disc and at most
N − 1 zeroes, we have

N

(
1

1− S
− ω

Q

)
= ` ∈ {0, 1, . . . , N − 1} .

Coming back to the equation on u, this proves the claim.

9.2.1. Proof of Proposition 9. – We now turn to the main step of the proof. Because of (40),
there exists an orthonormal basis of Im(Hu) which consists of common eigenvectors to A
and to H2

u. Our strategy is to describe precisely the corresponding joint spectrum. Let us
introduce some notation. For γ > 0, set

Eλ,γ = ker(A− λ) ∩ ker(H2
u − γ),

and define
Σ = {(λ, γ) ∈ R× R∗+ : Eλ,γ 6= {0} } .

The following two lemmas give important information about Σ. The first one takes advan-
tage of the relationship with the shift.

L 8. – 1. Assume Aϕ = λϕ.

If (ϕ|1) = 0, then ϕ = zψ with Aψ = (λ− 1)ψ.
If (zϕ|H2

u(1)) = 0, then A(zϕ) = (λ+ 1)zϕ.
2. Assume H2

uϕ = γϕ.
If (ϕ|1) = 0 and (ϕ|zu) = 0, then ϕ = zψ with H2

u(ψ) = γψ.
If (zϕ|H2

u(1)) = 0 and (ϕ|u) = 0, then H2
u(zϕ) = γzϕ.

Lemma 8 is a straightforward consequence of the following basic identities:
A(zh) = zA(h) + zh− 1

c
(zh|H2

u(1)) ,

(A(h)|1) = −1

c
(h|H2

u(1)) ,

H2
u(zh) = zH2

u(h) + (zh|H2
u(1))− (h|u)zu .

(41)

The second lemma specifies the action of Hu on eigenfunctions of A.

L 9. – Assume Aϕ = λϕ and H2
uϕ = γϕ. Then

AHuϕ = −
(
λ+

ω + γ

c

)
Huϕ.

If, moreover, (ϕ|1) 6= 0, then γ = −cλ and

AHuϕ = −ω
c
Huϕ .

The first part of Lemma 9 is a simple consequence of Equation (39). The second part
follows from the second identity in (41), which yields

λ = − (ϕ|H2
u(1))

c(ϕ|1)
= − (H2

uϕ|1)

c(ϕ|1)
= −γ

c
.

Now we gather the important facts deduced from the above two lemmas.

L 10. – The following properties hold.
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1. Hu(Eλ,γ) = E−(λ+ω+γ
c ),γ .

2. If Eλ,γ 6⊂ 1⊥ then γ = −cλ.
3. If λ 6= 1− ω

c and γ 6= −cλ , then Eλ,γ ⊂ zEλ−1,γ .
4. If λ 6= 1− ω

c and dim(Eλ,γ) ≥ 2, then (λ− 1, γ) ∈ Σ .

Proof. Lemma 9 gives that Hu(Eλ,γ) ⊂ E−(λ+ω+γ
c ),γ . For the converse inclusion, we use

the fact that, since ker(H2
u − γ) ⊂ ImH2

u for γ > 0, any ϕ ∈ E−(λ+ω+γ
c ),γ may be written

as ϕ = Hu(ψ) with ψ ∈ Im(Hu). Since H2
u(ϕ) = γϕ and Hu is one to one on ImHu, we get

Hu(ϕ) = γψ so that A(ψ) = 1
γA(Hu(ϕ)). We then use Equation (39) to get A(ψ) = λψ.

The second assertion is a direct consequence of Lemma 9.
Let us prove the third assertion. Assume γ 6= −cλ . Given ϕ ∈ Eλ,γ , assertion 2

gives (ϕ|1) = 0, and Lemma 8 yields ϕ = zψ with Aψ = (λ − 1)ψ. On the other hand,
(ϕ|zu) = (zψ|zu) = (ψ|u) = 0 since u ∈ ker(A − ω

c ) and λ − 1 6= −ω
c . Hence, by Lemma

8, we have H2
u(ψ) = γψ as it is expected.

The proof of the fourth assertion is a modification of the latter, based on the following
observation: if dim(Eλ,γ) ≥ 2, thenEλ,γ∩1⊥ 6= {0}. The rest of the proof is unchanged.

A consequence is the following description of the joint spectrum.

L 11. – Given γ > 0, define Σγ = {λ ∈ R (λ, γ) ∈ Σ} . If Σγ is not empty, then
there exists a nonnegative integer ` such that one of the following situations occurs:

1. Either γ = ω − (`+ 2)c and

Σγ =
{

1− ω

c
+ j , j = 0, . . . , `

}
with the following equalities,

E−ωc +`+1,ω−(`+2)c = zE−ωc +`,ω−(`+2)c = · · · = z`E1−ωc ,ω−(`+2)c .

2. Or γ = ω + `c and
Σγ =

{
−ω
c
− j , j = 0, . . . , `

}
with the following equalities,

E−ωc ,ω+`c = zE−ωc −1,ω+`c = · · · = z`E−ωc −`,ω+`c

each of the spaces being of dimension 1.

Proof. – By the third assertion of Lemma 10, if (λ, γ) ∈ Σ, then

1. either λ+ ω
c is an integer ≥ 1,

2. or λ+ γ
c is an integer ≥ 0 .

Indeed, otherwise there would exist an infinite sequence of non trivial eigenspaces

Eλ,γ ⊂ zEλ−1,γ ⊂ · · · ⊂ zjEλ−j,γ ⊂ . . .

since for any j 6= 0, λ−j 6= 1− ω
c and γ 6= −c(λ−j). This would contradict the boundedness

of A from below.

Applying assertion 1 of Lemma 10, these constraints also apply to the pair (λ′, γ) with

λ′ = −λ− γ + ω

c
.
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This implies

1. either λ+ γ
c is an integer ≤ −1 ,

2. or λ+ ω
c is an integer ≤ 0 .

In other words, there exists some nonnegative integer ` such that

1. either γ = ω − (`+ 2)c and

Σγ ⊂
{

1− ω

c
+ j , j = 0, . . . , `

}
,

2. or γ = ω + `c and

Σγ ⊂
{
−ω
c
− j , j = 0, . . . , `

}
.

Assume now that, say γ = ω − (`+ 2)c. Applying assertion 3 of Lemma 10, we obtain, for
some k ∈ {0, . . . , `},

{0} 6= E−ωc +k+1,ω−(`+2)c ⊂ zE−ωc +k,ω−(`+2)c ⊂ · · · ⊂ zkE1−ωc ,ω−(`+2)c .

Applying assertion 1 of Lemma 10, and again assertion 3, we also have

Hu(E1−ωc ,ω−(`+2)c) = E−ωc +`+1,ω−(`+2)c ⊂ · · · ⊂ z`−kE−ωc +k+1,ω−(`+2)c .

Consequently, we have the claimed equality by a dimension argument.

The same procedure applies to the case γ = ω + `c. Moreover, by assertion 4 of Lemma 10,
we know that the dimension of E−ωc −`,ω+`c is at most 1, hence exactly 1, which completes
the proof.

Proof. – We now turn to the proof of Proposition 9 itself. We argue by contradiction
and assume that H2

u(u) and u are independent so that the eigenvalue −ωc of A is not sim-
ple. As a first consequence of the fourth assertion of Lemma 10, the minimal eigenvalue of
A on Im(Hu) is necessarily simple. By Lemma 11, since −ωc is an eigenvalue of multiplicity
at least 2, this minimal eigenvalue is necessarily of the form λmin = −ωc −j for some positive
integer j. Again, by Lemma 11, we therefore have ker(A + ω

c ) ∩ ImHu = ⊕k∈KE−ωc ,ω+kc

where K is a finite subset of {0, . . . , j} containing at least j and another integer. Further-
more, all the spaces E−ωc ,ω+kc , k ∈ K, have dimension 1.

We are going to prove thatK has exactly two elements. Then we will get a contradiction. Our
strategy is based on the following observation, which is a direct consequence of Lemma 8: if
ϕ ∈ ker(A+ ω

c ) satisfies (zϕ|H2
u(1)) = 0, then zϕ belongs to ker(A− 1 + ω

c ). Consequently,

|K| = dim
(

ker(A+
ω

c
) ∩ Im(Hu)

)
≤ 1 + dim( N ) ,

where
N := ker(A+

ω

c
− 1) ∩ z

(
ker(A+

ω

c
) ∩ Im(Hu)

)
and, if we prove that N is at most one dimensional, we will conclude that |K| = 2.

As a first step, we are going to study the auxiliary space ker(A−1+ ω
c )∩Im(Hu). By Lemma

11, this space is the direct sum of spaces E1−ωc ,γ , where γ describes a set of positive values
included in {ω − (` + 2)c, ` = 0, 1, . . .}. In view of assertion 2 of Lemma 10, elements ψ
of E1−ωc ,γ satisfy (ψ|1) = 0, hence we can write ψ = zϕ with ϕ ∈ ker(A + ω

c ), because of
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assertion 1 of Lemma 8. Moreover, using the third formula of (41), the equation H2
uψ = γψ

reads (zϕ|Hu(u)) = 0 and

(42) H2
uϕ = γϕ+ (ϕ|u)u,

hence ϕ ∈ Im(Hu) ∩ ker(A + ω
c ) . Let us compute the characteristic polynomial of the

eigenvalue problem (42) on Im(Hu)∩ker(A+ ω
c ). Let {ϕk}k∈K be an orthonormal basis of

ker(A+ ω
c ) ∩ ImHu = ⊕k∈KE−ωc ,ω+kc, with ϕk ∈ E−ωc ,ω+kc for any k ∈ K. We write

ϕ =
∑
k∈K

αkϕk, u =
∑
k∈K

βkϕk.

Computing both sides of (42) in coordinates, we get∑
k∈K

αk(ω + ck)ϕk =
∑
k∈K

(γαk + βk(
∑
k′∈K

αk′βk′))ϕk

so that the αk’s have to satisfy the following system

αk(ω + ck − γ) = βk
∑
k′∈K

αk′βk′ .

The characteristic polynomial is the determinant of this system, namely

(43) P (γ) =
∏
k∈K

(ω + kc− γ)

(
1−

∑
k∈K

|βk|2

ω + kc− γ

)
.

Plugging the additional information γ = ω − (` + 2)c for some nonnegative integer `, the
equation is then equivalent to

(44)
∑
k∈K

|βk|2

(k + `+ 2)c
= 1 ,

which admits a unique simple solution in ` if c > 0, and no solution if c < 0. Hence
ker(A− 1 + ω

c ) ∩ Im(Hu) is {0} if c < 0, and is at most one dimensional if c > 0.

Next we distinguish two cases.

First case: 1 /∈ ImHu. Then the kernel of Hu is bL2
+, where b is a finite Blaschke product

with b(0) 6= 0. We infer that

zIm(Hu) ∩ kerHu = {0}.

Indeed, if zHu(ϕ) = bh, then h is divisible by z and thus Hu(ϕ) ∈ bL2
+ = kerHu, hence

Hu(ϕ) = 0. Now we consider the orthogonal projection onto ImHu restricted to N . The
kernel of this linear mapping is contained in zIm(Hu) ∩ kerHu, therefore this mapping is
one to one. Since its image is contained in ker(A − 1 + ω

c ) ∩ Im(Hu), which is at most one
dimensional, N is at most one dimensional. We conclude that |K| = 2. We notice that, in
this case, we have proved that ker(A− 1 + ω

c ) ∩ Im(Hu) is exactly one -dimensional.

Second case: 1 ∈ ImHu. In this case, we shall determine ker(A− 1 + ω
c ) itself. Let us make

some preliminary remarks. Recall from Proposition 3 that the solution w ∈ ImHu of

Hu(w) = 1
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satisfies zw = Cb for some constant C where b is a Blaschke product of degree N , the
Beurling generator of kerHu. From (39),

A(w) +
ω

c
w = 0

or, since uw is holomorphic by Lemma 2,

Dw +
ω

c
w =

1

c
|u|2w , Db+

(ω
c
− 1
)
b =

1

c
|u|2b

whence, again by Rouché’s theorem,

(45) Q = (N − 1)c+ ω.

Observe that the above equation on b means that

b ∈ ker(A− 1 +
ω

c
) .

Moreover, ker(A− 1 + ω
c ) ∩ kerHu consists of functions bh satisfying

D(bh)− 1

c
|u|2bh+

(ω
c
− 1
)
bh = 0 ,

or Dh = 0. Hence
ker(A− 1 +

ω

c
) ∩ kerHu = Cb .

It remains to describe ker(A − 1 + ω
c ) ∩ Im(Hu). We already know that this space is {0} if

c < 0. To study the case c > 0, we return to Equation (42). We observe that ϕ = w is a so-
lution of this equation with γ = 0, since H2

u(w) = u = (w|u)u. Moreover, the characteristic
polynomial P (γ) given by (43) admits a unique zero in the interval (−∞,mink∈K(ω+ kc)).
Since this interval contains all the values ω − (` + 2)c , ` = 0, 1, . . . , and 0 — indeed
ω + kc, k ∈ K, is an eigenvalue of H2

u on Im(Hu), hence is positive — we conclude that

ker(A− 1 +
ω

c
) ∩ Im(Hu) = {0} .

Therefore ker(A− 1 + ω
c ) = Cb, so that N is at most one dimensional and |K| = 2.

We can finally write

ker
(
A+

ω

c

)
∩ ImHu = E−ωc ,ω+jc ⊕ E−ωc ,ω+kc

with 0 ≤ k < j.

As a final step, we are going to get a contradiction implied by this two-dimensionality.

We first consider the case when 1 ∈ Im(Hu). Let us apply the Cayley-Hamilton theorem to
H2
u on the two-dimensional space ker(A+ ω

c ). We obtain

H4
u(u)− (2ω + (j + k)c)H2

u(u) + (ω + jc)(ω + kc)u = 0 .

Since 1 ∈ Im(Hu), this implies

H4
u(1)− (2ω + (j + k)c)H2

u(1) + (ω + jc)(ω + kc) = 0 ,

and, taking the scalar product with 1,

J4 − (2ω + (j + k)c)Q+ (ω + jc)(ω + kc) = 0 .
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Using that Q = (N − 1)c+ ω by (45), we get

J4 −Q2 = (2ω + (j + k)c− (N − 1)c− ω)((N − 1)c+ ω)− (ω + jc)(ω + kc)

= −c2(N − 1 + jk) < 0 .

This fact is in contradiction with the Cauchy-Schwarz inequality,

Q2 = |(H2
u(1)|1)|2 ≤ ‖H2

u(1)‖2 = (H4
u(1)|1) = J4 .

It remains to consider the case 1 /∈ Im(Hu). Again, we are going to contradict the Cauchy-
Schwarz inequality. First, we use the Cayley-Hamilton theorem as before,

H4
u(1)− (2ω + (j + k)c)H2

u(1) + (ω + jc)(ω + kc)Pu(1) = 0 ,

which yields to

J4 − (2ω + (j + k)c)Q+ (ω + jc)(ω + kc)(1− S) = 0

and

(46) J4(1− S)−Q2 = − (J4 −Q(ω + jc))(J4 −Q(ω + kc))

(ω + jc)(ω + kc)
.

The Cauchy–Schwarz inequality

Q2 = |(H2
u(1)|Pu(1))|2 ≤ ‖H2

u(1)‖2‖Pu(1)‖2 = J4(1− S)

implies that the left hand side of (46) is nonnegative. Therefore, remembering that ω + jc

and ω + kc are positive as eigenvalues of H2
u on Im(Hu), we shall obtain a contradiction if

we show that

(47) J4 > Q(ω + jc) .

Let us prove (47). Recall that c > 0, since Q = Nc. Apply Lemma 11. If γ > 0 is an
eigenvalue ofH2

u, either γ = ω+`cwith ` ≥ 0, andE−ωc ,γ 6= {0}, and this implies ` ∈ {j, k};
or γ = ω − (` + 2)c, ` ≥ 0, and E1−ωc ,γ 6= {0}. In this case, we have already seen that
ker(A − 1 + ω

c ) ∩ Im(Hu) is one dimensional, which means that ` is uniquely determined
and E1−ωc ,γ is one-dimensional. We infer the following decomposition, where all the spaces
Eλ,γ are one–dimensional,

Im(Hu) = E1 ⊕ E2 ⊕ E3 ,

E1 = ⊕jj′=0E−ωc −j′,ω+jc ,

E2 = ⊕kk′=0E−ωc −k′,ω+kc ,

E3 = ⊕``′=0E1−ωc +`′,ω−(`+2)c .

Consequently, N = j + k + `+ 3 and

Tr(H2
u) = (j + 1)(ω + jc) + (k + 1)(ω + kc) + (`+ 1)(ω − (`+ 2)c)

= Nω + c[j(j + 1) + k(k + 1)− (`+ 1)(`+ 2)].

On the other hand, Tr(H2
u) = M +Q = M +Nc, and, taking the scalar product of u with

both sides of the soliton Equation (37), we have,

M +
ω

c
Q =

1

c
(2J4 −Q2) .
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THE CUBIC SZEGŐ EQUATION 803

Using the identity Q = Nc, we infer

2J4 = Mc+Nωc+N2c2 ,

and, using the above expression of M provided by the trace of H2
u,

2J4 = 2Nωc+ c2(N2 + j(j + 1) + k(k + 1)− (`+ 1)(`+ 2)−N) .

Consequently,

2(J4 −Q(ω + jc)) = 2J4 − 2Nωc− 2Njc2

= c2(N2 + j(j + 1) + k(k + 1)− (`+ 1)(`+ 2)−N(2j + 1))

= 2c2(k + 1)(k + `+ 2) > 0

as can be shown by a straightforward calculation. This proves (47) and yields the contradic-
tion, completing the proof of Theorem 9.1.

10. Appendices

10.1. Appendix 1: A necessary condition for regular wellposedness

In this appendix, we extend the notion of regular wellposedness defined in [10] to the case
of nonlinear Schrödinger equations with a general operator G, and we prove a weak version
of estimate (2) in this general case, in the spirit of Burq–Gérard–Tzvetkov [6], Remark 2.12,
p. 205.

Let M be a smooth manifold endowed with a smooth Lebesgue density µ, and let G be an
essentially selfadjoint differential operator of order m on L2(M,µ). For s ≥ 0, we denote
by Hs

G(M) the domain of |G|s/m, and we assume that there exists s0 such that , for s ≥ s0,
Hs
G(M) is an algebra, with the tame estimate

(48) ‖uv‖HsG ≤ C(‖u‖Hs0G ‖v‖HsG + ‖u‖HsG‖v‖Hs0G ) .

Notice that this is the case for instance if G is the Grushin operator ∂2
x + x2∂2

y on R2

considered in the introduction, due to subelliptic estimates forG. We now consider the cubic
nonlinear Schrödinger equation for G,

(49) i∂tu+Gu = |u|2u .

The following definition is borrowed from Section 2 of [10].

D 4. – Let s ≥ 0. We shall say that Equation (49) is regularly wellposed on
Hs
G(M) if, for every bounded open subset B of Hs

G(M), there exist T > 0 and a Banach space
XT continuously contained in C([−T, T ], Hs

G(M)), such that:

1. For every Cauchy data u0 ∈ B, Equation (49) has a unique solution u ∈ XT such that
u(0) = u0.

2. If u0 ∈ Hσ
G(M) for some σ > s, then u ∈ C([−T, T ], Hσ

G(M)).
3. The map

u0 ∈ B 7→ u ∈ XT

is smooth.
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In view of the tame estimate (48), a standard fixed point argument applied to the Duhamel
formulation

u(t) = eitGu0 − i
∫ t

0

ei(t−τ)G(|u(τ)|2u(τ)) dτ

easily shows that (49) is regularly wellposed on Hs
G(M) for s ≥ s0, with

XT = C([−T, T ], Hs
G(M)). The main result of this appendix is

P 10. – If Equation (49) is regularly wellposed on Hs
G(M) for some s ≥ 0,

then, for every r > s,

‖eitGf‖L4([0,1]×M) ≤ Cr‖f‖Hr/2G (M)
.

Proof. – LetB be a small neighborhood of 0 inHs
G(M) and T be the corresponding time

given by regular wellposedness. Combining the propagation of regularity contained in the
definition of regular wellposedness with the existence of smooth solutions obtained above by
iterating the Duhamel formula, one easily proves that the third differential at 0 of the flow
map

ΦT : u0 ∈ Hs
G(M) 7→ u(T ) ∈ Hs

G(M)

acting on f ∈ Hσ
G(M) for σ > max(s0, s), is necessarily given by the following first iteration

of the Duhamel formula,

D3ΦT (0)(f, f, f) = −6i

∫ T

0

ei(T−t)G(|eitGf |2eitGf) dt .

We now compute the scalar product of both members of the above identity with eiTGf , and
we use the assumed continuity of the trilinear mapD3ΦT (0) from (Hs

G)3 toHs
G. This yields

‖eitGf‖4L4([0,T ]×M) ≤ C‖f‖
3
HsG
‖f‖H−sG ,

where H−sG is the dual of Hs
G. Assume first that f is spectrally supported, namely that

f = 1[N,2N ](|G|1/m)f

for some dyadic number N . Then

‖f‖H±sG ' N
±s‖f‖L2

and we infer
‖eitGf‖L4([0,T ]×M) ≤ C Ns/2‖f‖L2 .

The claimed estimate for a general function f follows from expanding f into dyadic blocks
fN , and using the trivial geometric estimate

(50)
∑
N

Ns/2‖fN‖L2 ≤ Cr‖f‖Hr/2G

for every r > s.

R 4. – It is likely that the estimate of Proposition 10 can be strengthened to r = s

by replacing estimate (50) by some kind of Littlewood-Paley estimate for operator G, but we
shall not elaborate on this, since it does not change our discussion of the critical regularity
threshold.
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10.2. Appendix 2: The Brezis-Gallouët estimate

We recall a simple proof of the estimate

‖u‖L∞ ≤ Cs‖u‖H1/2

[
log

(
2 +

‖u‖Hs
‖u‖H1/2

)] 1
2

.

By Fourier expansion, one has, for any N ∈ N

‖u‖L∞ ≤
∑
|û(k)|

=
∑
|k|≤N

(1 + |k|)1/2 |û(k)|
(1 + |k|)1/2

+
∑

|k|≥N+1

(1 + |k|)s |û(k)|
(1 + |k|)s

≤ ‖u‖H1/2 ×

 ∑
|k|≤N

1

1 + |k|

1/2

+ ‖u‖Hs ×

 ∑
|k|≥N+1

1

(1 + |k|)2s

1/2

≤ C
(
‖u‖H1/2 log(N + 1)1/2 + ‖u‖HsN−s+1/2

)
.

The result follows by taking the minimum over N .

10.3. Appendix 3: A Trudinger-type estimate.

Let us prove the estimate

(51) ∀p <∞ , ‖u‖Lp ≤ C
√
p ‖u‖H1/2 .

It follows from a Marcinkiewicz type argument. Assume ‖u‖H1/2 = 1. Write, for any p > 2,

‖u‖pLp = p

∫ ∞
0

tp−1σ({x, |u(x)| ≥ t})dt

and decompose u = u>λ + u<λ where u<λ =
∑
|k|≤λ û(k)eikθ. Choose λ = λt so that

‖u<λ‖∞ ≤ t/2. More precisely, since

‖u<λ‖∞ ≤
∑
|k|≤λ

|û(k)|

.

∑
|k|≤λ

(|k|2 + 1)1/2|û(k)|2
1/2

× [log(λ+ 1)]1/2

. ‖u‖H1/2 [log(λ+ 1)]1/2 = c[log(λ+ 1)]1/2,

we can choose λ so that c[log(λ+ 1)]1/2 = t
2 . With this choice, we get

‖u‖pLp ≤ p

∫ ∞
0

tp−1σ({x, |u>λt(x)| ≥ t/2})dt

≤ p

∫ ∞
0

tp−3‖u>λt‖22dt ≤ p
∫ ∞

0

tp−3
∑
|k|≥λt

|û(k)|2dt

≤ p
∑
k

(∫ 2 log(|k|+1)1/2

0

tp−3dt

)
|û(k)|2

≤ p

p− 2

∑
k

(log(|k|+ 1))(p−2)/2|û(k)|2.
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Eventually, we use that (log(|k|+1))` . `!(|k|+1) . ``(|k|2 +1)1/2. It gives the expected
constant proportional to p1/2 in (51).

10.4. Appendix 4: An elementary proof of the Kronecker Theorem.

Let u ∈ BMO+(S1) so that the Hankel operatorHu is well defined as a bounded operator
on L2

+(S1) (see [17]). Since Hu is C -antilinear, the range of Hu is a complex vector space.

P 11. – The function u belongs to M(N) if and only if the Hankel operator
Hu has (complex) rank N . Moreover, if

B(z) =

N∏
j=1

(1− pjz)

is the denominator of u, the image of Hu is the vector space generated by
1

(1− pz)m

for 0 < |p| < 1, 1 ≤ m ≤ mp, or of the form

zm, 0 ≤ m ≤ m0 − 1 ,

where mp is the number of occurrences of p in the list p1, . . . , pN .

Proof. – The proof is based on the following two observations.
i) If u ∈ M(N), then rk(Hu) ≤ N .
ii) If rk(Hu) = N , then u ∈ M(N).
Let us first prove i). If u ∈ M(N), then one can write u as a linear combination of

functions of the form
1

(1− pz)m
for 0 < |p| < 1, 1 ≤ m ≤ mp, or of the form

zm, 0 ≤ m ≤ m0 − 1 ,

which we shall associate to p = 0, with the following degree condition,∑
p

mp = N .

Indeed, either the denominator of u is of degree N , and this corresponds to the fact that all
the p’s are different from 0, and the above identity reflects the degree of the denominator; or
the denominator has degree< N , and then the numerator should be of degree exactlyN−1;
therefore the decomposition of u into elementary fractions involves a polynomial function
of degree m0 − 1 ≥ 0, and the above identity reflects the degree of the numerator +1. Now
we recall that

Ĥu(h)(k) =
∑
`≥0

û(k + `)ĥ(`) .

In view of the decomposition of u, we observe that the sequence (û(k))k≥0 is a linear
combination of the following sequences,

km−1pk, 1 ≤ m ≤ mp ,
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for p 6= 0, and
δkm, 0 ≤ m ≤ m0 − 1 ,

for p = 0. This implies that all the sequences (Ĥu(h)(k))k≥0 have the same property, and
therefore the range of Hu is included into the space V of linear combinations of

1

(1− pz)m
, 1 ≤ m ≤ mp, 0 < |p| < 1 zm, 0 ≤ m ≤ m0 − 1 .

This implies that rk(Hu) ≤ N .
We now proceed to the proof of property ii). We know thatHu is a symmetric operator of

real rank 2N . Restricting Hu to its range, which is a complex vector space of dimension N
and is the orthogonal of Ker(Hu) (for both real scalar product and hermitian scalar product),
we can find a real orthonormal basis of eigenvectors ofHu. Moreover, sinceHu is antilinear,
we observe that, if Hu(v) = λv, then Hu(iv) = −iλv. Therefore we may assume that the
above real orthonormal basis of Im(Hu) has the special form

v1, iv1, v2, iv2, . . . , vN , ivN ,

and that Hu(vj) = λjvj with some λj > 0. Defining wj :=
√
λjvj , we obtain the following

expression for Hu,

Hu(h) =

N∑
j=1

(wj |h)L2 wj ,

or equivalently,

û(k + `) =

N∑
j=1

ŵj(k)ŵj(`) ,

for all k ≥ 0, ` ≥ 0. Now the matrix (ŵj(`))1≤j≤N,0≤`≤N has rank at most N , therefore
there exists (c0, c1, . . . , cN ) 6= (0, . . . , 0) in CN+1 such that

N∑
`=0

c` ŵj(`) = 0

for every j = 1, . . . , N . This implies that
N∑
`=0

c` û(k + `) = 0 ,

for every k ≥ 0. We then introduce the polynomial

P (X) =

N∑
`=0

c`X
` .

Let
P = {p ∈ C, P (p) = 0}

andmp ≥ 1 denotes the multiplicity of p ∈ P. Then the theory of linear recurrent sequences
implies that the sequence (û(k))k≥0 is a linear combination of the following sequences,

km−1pk, 1 ≤ m ≤ mp ,

for p 6= 0, and
δkm, 0 ≤ m ≤ m0 − 1 ,
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for p = 0. In other words, u is a linear combination of the following functions,
1

(1− pz)m
, 1 ≤ m ≤ mp , 0 < |p| < 1 zm, 0 ≤ m ≤ m0 − 1 .

Since
∑
pmp ≤ N , this implies that u ∈ M(N ′) for some N ′ ≤ N . However, if N ′ < N ,

assertion i) would imply rk(Hu) ≤ N ′, which contradicts the assumption. Therefore
N ′ = N , and ii) is proved.

Finally, in view of ii), i) is strengthened into
i′) If u ∈ M(N), then rk(Hu) = N .

Moreover, the inclusion of the range of Hu into the space V becomes an equality, which is
the claim.

This completes the proof.
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