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A CHEN MODEL FOR MAPPING SPACES
AND THE SURFACE PRODUCT

 G GINOT, T TRADLER
 M ZEINALIAN

A. – We develop a machinery of Chen iterated integrals for higher Hochschild complexes.
These are complexes whose differentials are modeled on an arbitrary simplicial set much in the same
way the ordinary Hochschild differential is modeled on the circle. We use these to give algebraic models
for general mapping spaces and define and study the surface product operation on the homology of
mapping spaces of surfaces of all genera into a manifold. This is an analogue of the loop product in
string topology. As an application, we show this product is homotopy invariant. We prove Hochschild-
Kostant-Rosenberg type theorems and use them to give explicit formulae for the surface product of odd
spheres and Lie groups.

R. – Dans cet article, on étend le formalisme des intégrales itérées de Chen aux complexes
de Hochschild supérieurs. Ces derniers sont des complexes de (co)chaînes modelés sur un espace
(simplicial) de la même manière que le complexe de Hochschild classique est modelé sur le cercle.
On en déduit des modèles algébriques pour les espaces fonctionnels que l’on utilise pour étudier le
produit surfacique. Ce produit, défini sur l’homologie des espaces de fonctions continues de surfaces
(de genre quelconque) dans une variété, est un analogue du produit de Chas-Sullivan sur les espaces de
lacets en topologie des cordes. En particulier, on en déduit que le produit surfacique est un invariant
homotopique. On démontre également un théorème du type Hochschild-Kostant-Rosenberg pour les
complexes de Hochschild modelés sur les surfaces qui permet d’obtenir des formules explicites pour le
produit surfacique des sphères de dimension impaire ainsi que pour les groupes de Lie.

1. Introduction

An element of the Hochschild chain complex CH•(A,A) of an associative algebra A is
by definition an element in the multiple tensor product A ⊗ · · · ⊗ A. When defining the
differential D : CH•(A,A) → CH•−1(A,A) however, it is instructive to picture this linear
sequence of tensor products in a circular configuration, because the differential multiplies
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812 G. GINOT, T. TRADLER AND M. ZEINALIAN

any two adjacent tensor factors starting from the beginning until the end and at the very end
multiplies the last factor of the sequence with the first factor, as shown below.

D ∑

multiply ai to ai+1

for all i=0,...,n,

with an+1≡a0
a0 ⊗

a1

⊗

⊗ ai ⊗

⊗
⊗

an

±

a0 ⊗
a1

⊗

⊗ ai+1 · ai⊗

⊗
⊗

an

As it turns out this is not just a mnemonic device but rather an explanation of the funda-
mental connection between the Hochschild chain complex and the circle, which, for instance
gives rise to the cyclic structure of the Hochschild chain complex and thus to cyclic homol-
ogy, see [21]. This connection is also at the heart of the relationship between the Hochschild
complex of the differential forms Ω•M on a manifoldM , and the differential forms Ω•(LM)

on the free loop space LM ofM , which is the space of smooth maps from the circle S1 to the
manifold M ; see [14]. At the core of this connection is the fact that the Hochschild complex
is the underlying complex of a simplicial module whose simplicial structure is modelled on a
particular simplicial modelS1

• of the circle. The principle behind this can be fruitfully used to
construct new complexes whose module structure and differential are combinatorially gov-
erned by a given simplicial setX•, much in the same way that the ordinary Hochschild com-
plex is governed by S1

• ; see [25]. However carrying the construction to higher dimensional
simplicial sets turns out to require associative and commutative algebras. The result of these
constructions define for any (differential graded) commutative algebra A, any A-module N ,
and any pointed simplicial set X•, the (higher) Hochschild chain complex CHX•• (A,N)

of A and N over X• as well as the Hochschild cochain complex CH•X•(A,N) over X•;
see [15, 25]. These Hochschild (co)chain complexes are functorial in all three of their
variables A, N and X•.

The analogy with the usual Hochschild complex and its connection to the free loop
space is in fact complete, because the Hochschild complex CHX•• (Ω•M,Ω•M) over a sim-
plicial set X• provides an algebraic model of the differential forms on the mapping space
MX = {f : X → M}, where X = |X•| is the geometric realisation of X•. This is one of
the main result of Section 2 of this paper; see Section 2.5. The main tool to prove this result
is a machinery of iterated integrals that we develop and use to obtain a quasi-isomorphism
I tX• : CHX

• (Ω•M,Ω•M) → Ω•(MX), for any k-dimensional simplicial set X• and
k-connected manifold M ; see Proposition 2.5.3, and Corollary 2.5.5 for the dual statement.
Further, for any simplicial set X• and (differential graded) commutative algebra A, the
Hochschild chain complex CHX•• (A,A) has a natural structure of a differential graded
commutative algebra given by the shuffle product shX• (Proposition 2.4.2). We show that
the iterated integral I tX• : (CHX

• (Ω•M,Ω•M), shX•) → (Ω•(MX),∧) is an algebra map
sending the shuffle product to the wedge product of differential forms on the mapping space;
see Proposition 2.4.6.

Two important features of Hochschild (co)chain complexes over simplicial sets are their
naturality in the simplicial setX•, and that two simplicial models of quasi-isomorphic spaces
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have naturally quasi-isomorphic Hochschild (co)chain complexes, see [25]. In particular one
(usually) obtains many different models to study CHX•• (A,N) for a given space X = |X•|.
These facts are used, in Sections 3 and 4, to carry certain geometric and topological
constructions over to the Hochschild complexes modeled on compact surfaces Σg of
genus g.

The collection of compact surfaces of any genus is naturally equipped with a product
similar to the loop product of string topology [5], also see [28]. The idea behind this product,
that we call the surface product, is shown in the following picture.

(1.1)

wedge pinch

In Section 3.1, we describe an explicit simplicial model for the string topology type operation
induced by the map

Map(Σg,M)×Map(Σh,M)
ρin←− Map(Σg ∨ Σh,M)

ρout−→ Map(Σg+h,M)

coming from the above picture (1.1). More precisely, we obtain a surface product
] : H•(Map(Σg,M)) ⊗ H•(Map(Σh,M)) → H•+dim(M)(Map(Σg+h,M)), which is
given by the composition of the umkehr map (ρin)! and the map induced by ρout,

] : H•(Map(Σg,M))⊗H•(Map(Σh,M))

(ρin)!−→ H•(Map(Σg ∨ Σh,M))
(ρout)∗−→ H•(Map(Σg+h,M)).

We prove that the surface product makes
(⊕

g

H•(Map(Σg,M)),]
)

=
(⊕

g

H•+dim(M)(Map(Σg,M)),])

into an associative bigraded (1) algebra with H•(Map(Σ0,M)) in its center; see Theo-
rem 3.2.2 and Proposition 3.2.5. The restriction of the surface product to genus zero (i.e.
spheres), H•(Map(Σ0,M)), coincides with the Brane topology product defined by Sullivan
and Voronov H•(Map(S2,M))⊗2 → H•(Map(S2,M)) see [9, 19]. In fact, in these papers
it is shown, that H•+dim(M)(M

Sn) is an algebra over H•(fDn+1), the homology of the
framed n-disc operad; see also [28] for related algebraic structures.

(1) We always use a cohomological grading convention in this paper hence the plus sign in our degree shifting.
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814 G. GINOT, T. TRADLER AND M. ZEINALIAN

In Section 3.3, we apply the machinery of (higher) Hochschild cochain complexes over
simplicial sets to give a fully algebraic description of the surface product. In fact, for positive
genera, we define an associative cup product

∪ : CH•Σg•(A,B)⊗ CH•Σh• (A,B)→ CH•
Σg+h
•

(A,B)

for the Hochschild cochains over surfaces, whereB is a differential graded commutative and
unital A-algebra, viewed as a symmetric bimodule; see Definition 3.3.2. The construction
of the cup-product is based on the fact that for any pointed simplicial sets X• and Y•, the
multiplication B ⊗B ·→ B induces a cochain map

CH•Σg•(A,B)⊗ CH•Σh• (A,B)
∨→ CH•(Σg∨Σh)•(A,B)

which can be composed with the pullback CH•(Σg∨Σh)•
(A,B)

Pinch∗g,h→ CH•Σ•
i+j

(A,B) in-

duced by a simplicial model Pinchg,h : Σg+h• → Σg• ∨ Σh• for the map pinch in Figure (1.1).

However, this product is initially only defined for surfaces of positive genera, and more
work is required to include the genus zero case of the 2-sphere in this framework. To
this end, we first recall the cup product defined in [15] for genus zero, and then define a

left and right action, ∪̃, of CHΣ0
•• (A,B) on CH

Σg•• (A,B). Taking advantage of the fact
that one can choose different simplicial models for a given space, we show that ∪̃ is after
passing to homology, equivalent to operations similar to the cup-product but defined on
different simplicial models for the sphere and surfaces of genus g; see Definition 3.3.13
and Proposition 3.3.14. Putting everything together, we obtain a well-defined cup product
∪ :

(⊕
g≥0HH

•
Σg•

(A,A)
)⊗2 → ⊕

g≥0HH
•
Σg•

(A,A) for all genera on cohomology; see
Theorem 3.3.18. More precisely, we prove that for a differential graded commutative algebra
(A, dA),

i) the cup product makes
⊕

g≥0HH
•
Σg•

(A,A) into an associative algebra that is bigraded
with respect to the total degree grading and the genus of the surfaces and has a unit
induced by the unit 1A of A.

ii) HH•
Σ0
•
(A,A) lies in the center of

⊕
g≥0HH

•
Σg•

(A,B).

The cup product is functorial with respect to both arguments A and B (see Proposi-
tion 3.3.20).

The connection to topology is precise and the cup-product models the surface
product. We prove in Theorem 3.4.2, using rational homotopy techniques as
in [11], that for a 2-connected compact manifold M , the (dualized) iterated integral
I tΣ

•
: (
⊕

g≥0 H−•(Map(Σg,M)),]) → (
⊕

g≥0HH
−•
Σg•

(Ω,Ω),∪) is an isomorphism of
algebras. As a corollary of this, it follows that the surface product ] is homotopy invariant,
meaning that if M and N are 2-connected compact manifolds with equal dimensions,
and i : M → N is a homotopy equivalence, then i∗ : (

⊕
g≥0 H•(Map(Σg,M)),]) →

(
⊕

g≥0 H•(Map(Σg, N)),]) is an isomorphism of algebras.

Section 4 is devoted to the Hochschild homology of (differential graded) symmetric alge-
bras (S(V ), d) and a Hochschild-Kostant-Rosenberg type theorem. Recall that classically,
when d = 0, this theorem states that the Hochschild homology HH•(S(V ), S(V )), thought
of as the Hochschild homology of functions on the dual space V ∗, can be identified with
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the space of Kähler differential ΩS(V ), which is the space of polynomial differential forms
ΩS(V )

∼= Ω•V ∗ = S(V ) ⊗ Λ(V ) = S(V ⊕ V [1]). This result, and its extension to the case
d 6= 0, are main tools for computing Hochschild homology in algebra and topology; see [4,
12, 13, 21] for instance. Note that there is an obvious identification ΩS(V ) = S(H•(S1)⊗V ).
Similarly, it is shown in [25] that HHS2

• (S(V ), S(V )) = S(V ⊕ V [2]) = S(H•(S2)⊗ V ).
We prove a similar kind of theorem for surfaces by showing that for a surface Σg of

genus g, there is an algebra isomorphism

H•
(
S(H•(Σ

g)⊗ V ), dΣg
) ∼−→ HHΣg•• (S(V ), S(V ))

where dΣg is a differential build out of the differential d and the coalgebra structure of
H•(Σg), see Theorem 4.3.3. Indeed, the left-hand side in the above quasi-isomorphism
coincides with the Haefliger model [3, 18]. It is worth noticing that dΣg = 0 iff d = 0.
Further, there is a commutative diagram

H•
(
S(H•(

2g∨
i=1

S1)⊗ V )
)

∼=
��

p // H•
(
S(H•(Σg)⊗ V )

)

∼=

��

q // H•
(
S(H•(S2)⊗ V )

)

∼=
��

HH

∨2g

i=1
S1

• (S(V ), S(V ))
(
∨2d

i=1
S1↪→Σg)•

// HHΣg

• (S(V ), S(V ))
(Σg�S2)•// HHS2

• (S(V ), S(V ))

where the horizontal maps p, q are the algebra homomorphisms respectively induced by the

homology maps H•(
2g∨
i=1

S1) ⊗ V ) → H•(Σg) and H•(Σg) → H•(S2) obtained by the

obvious inclusion and surjection of spaces and the lower maps are obtained by functoriality
of Hochschild homology.

The main idea that is used to prove this result is, that ifX is a space obtained by attaching
various spaces along attaching maps, then the Hochschild homology HHX

• (A,A) can be
computed by the Hochschild homology of the various pieces and the attaching maps via
derived tensor products. For instance, using the fact that a genus g surface can be ob-
tained by suitably gluing a square along its boundary to a bouquet of circles, we show that

there is an isomorphism CHΣg

• (A,N) ∼= CH

∨2g

i=1
S1

• (A,N)
L
⊗

CHS
1
• (A,A)

CHI2

• (A,A) for any

A-module N ; see Section 4.1. With this tool in hand, we reduce the proof of the main

theorem to appropriate statements about CH
∨2g

i=1
S1

• (A,M) and CHI2

• (A,A) for which the
usual Hochschild-Kostant-Rosenberg Theorem and contractibility of the square I2 can be
used. .

Furthermore, the Hochschild-Kostant-Rosenberg type theorem for surfaces allows us to
explicitly compute the surface product for odd spheres S2n+1 and a Lie group G. The idea
is that the differential graded algebras Ω•S2n+1 and Ω•G, are both quasi-isomorphic to
symmetric algebras with zero differentials; see Examples 4.4.6 and 4.4.7 in Section 4.4.
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C. – In this paper we use a cohomological grading for all our
(co)homology groups and graded spaces, even when we use subscripts to denote
the grading. In particular, all differentials are of degree +1, of the form d : Ai → Ai+1

and the homology groups Hi(X) of a space X are concentrated in non-positive degree
(unless otherwise stated).

– We follow the Koszul-Quillen sign convention: “Whenever something of degree p is
moved past something of degree q the sign (−1)pq accrues”, see [26]. In particular, we
will often write “±” in the case that the sign is obtained by a permutation of elements of
various degrees, following the Koszul-Quillen sign rule.

2. Chen iterated integrals for Hochschild complexes over simplicial sets

2.1. Higher Hochschild chain complex over simplicial sets

In this section, we define Chen iterated integral map for any simplicial set Y , and give
explicit versions of it in the three examples of the circle S1, the sphere S2 and the torus T, and
combinations of those. In the next section, we will prove that (under suitable connectivity
conditions) this gives in fact a quasi-isomorphism to the cochains of the corresponding
mapping space MY = Map(Y,M). We start by recalling the Hochschild chain complex
of a differential graded, associative, commutative algebra A over a simplicial set Y• from T.
Pirashvili, see [25].

D 2.1.1. – Denote by ∆ the category whose objects are the ordered sets
[k] = {0, 1, . . . , k}, and morphisms f : [k] → [l] are non-decreasing maps f(i) ≥ f(j) for
i > j. In particular, we have the morphisms δi : [k − 1] → [k], i = 0, . . . , k, which are
injections, that miss i, and we have surjections σj : [k + 1]→ [k], i = 0, . . . , k, which send j
and j + 1 to j.

A finite simplicial set Y• is, by definition a contravariant functor from ∆ to the category
of finite sets Sets, or written as a formula, Y• : ∆op → Sets. Denote by Yk = Y•([k]), and call
its elements simplicies. The image of δi under Y• is denoted by di := Y•(δi) : Yk → Yk−1, for
i = 0, . . . , k, and is called the ith face. Similarly, si := Y•(σi) : Yk → Yk+1, for i = 0, . . . , k,
is called the ith degeneracy. An element in Yk is called a degenerate simplex, if it is in the
image of some si, otherwise it is called non-degenerate.

We will mainly be interested in pointed finite simplicial sets. These are defined to be
contravariant functors into the category Sets∗ of pointed finite sets, Y• : ∆op → Sets∗. In
this case, each Yk = Y•([k]) has a preferred element called the basepoint, and all differentials
di and degeneracies si preserve this basepoint.

Furthermore, we may extend these definitions to define simplicial sets, respectively
pointed simplicial sets, by allowing the target of Y• to be any (not necessarily finite) set.

Now, a morphism of (finite or not, pointed or not) simplicial sets is a natural transforma-
tion of functors f• : X• → Y•. Note that f• is given by a sequence of maps fk : Xk → Yk
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(preserving the basepoint in the pointed case), which commute with the faces fkdi = difk+1,
and degeneracies fk+1si = sifk for all k ≥ 0 and i = 0, . . . , k.

D 2.1.2. – Let Y• : ∆op → Sets∗ be a finite pointed simplicial set, and for
k ≥ 0, we set yk := #Yk − 1, where #Yk denotes the cardinal of the set Yk. Furthermore,
let (A =

⊕
i∈Z A

i, d, ·) be a differential graded, associative, commutative algebra, and
(M =

⊕
i∈Z M

i, dM ) a differential graded module over A (viewed as a symmetric
bimodule). Then, the Hochschild chain complex of A with values in M over Y• is defined
as CHY•• (A,M) :=

⊕
n∈Z CH

Y•
n (A,M), where

CHY•
n (A,M) :=

⊕

k≥0

(M ⊗A⊗yk)n+k

is given by a sum of elements of total degree n + k. In order to define a differential D on
CHY•• (A,M), we define morphisms di : Yk → Yk−1, for i = 0, . . . , k as follows. First note
that for any map f : Yk → Yl of pointed sets, and for m ⊗ a1 ⊗ · · · ⊗ ayk ∈ M ⊗ A⊗yk , we
denote by f∗ : M ⊗A⊗yk →M ⊗A⊗yl ,

(2.1) f∗(m⊗ a1 ⊗ · · · ⊗ ayk) = (−1)ε · n⊗ b1 ⊗ · · · ⊗ byl ,

where bj =
∏
i∈f−1(j) ai (or bj = 1 if f−1(j) = ∅) for j = 0, . . . , yl, and

n = m ·∏i∈f−1(basepoint),i6=basepoint ai. The sign ε in Equation (2.1) is determined by the
usual Koszul sign rule of (−1)|x|·|y| whenever x moves across y. In particular, there are
induced boundaries (di)∗ : CHY•

k (A,M)→ CHY•
k−1(A,M) and degeneracies

(sj)∗ : CHY•
k (A,M) → CHY•

k+1(A,M), which we denote by abuse of notation again
by di and sj . Using these, the differential D : CHY•• (A,A) → CHY•• (A,A) is defined by
letting D(a0 ⊗ a1 ⊗ · · · ⊗ ayk) be equal to

yk∑

i=0

(−1)k+εia0 ⊗ · · · ⊗ d(ai)⊗ · · · ⊗ ayk +
k∑

i=0

(−1)idi(a0 ⊗ · · · ⊗ ayk),

where εi is again given by the Koszul sign rule, i.e., (−1)εi = (−1)|a0|+···+|ai−1|. The simplicial
conditions on di imply that D2 = 0.

More generally, if Y• : ∆op → Sets is a finite (not necessarily pointed) simplicial set,
we may still define CHY•• (A,A) :=

⊕
n∈Z CH

Y•
n (A,A) via the same formula as above,

CHY•
n (A,A) :=

⊕
k≥0(A ⊗ A⊗yk)n+k. Formula (2.1) again induces boundaries di and

degeneracies si, which produce a differential D of square zero on CHY•• (A,A) as above.

R 2.1.3. – Note that due to our grading convention, if A is non graded (that is,
concentrated in degree 0), then HHY•• (A,A) is concentrated in non positive degrees. In
particular our grading is opposite of the one in [21].

Note that the Equation (2.1) also makes sense for any map of simplicial pointed sets
f : Xk → Yk. Since A is graded commutative and M symmetric, (f ◦ g)∗ = f∗ ◦ g∗, hence
Y• 7→ CHY•(A,M) is a functor from the category of finite pointed simplicial sets to the
category of simplicial k-vector spaces, see [25]. IfM = A, CHY•(A,A) is a functor from the
category of finite simplicial sets to the category of simplicial k-vector spaces.
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818 G. GINOT, T. TRADLER AND M. ZEINALIAN

D 2.1.4. – Denote by Dk+1 the subspace of CHYk+1
• (A,M) spanned by all

degenerate objects,Dk+1 = Im((s0)∗)+ · · ·+Im((sk)∗). It is well-known ([21, 1.6.4, 1.6.5]),
that theDk+1 form an acyclic subcomplexD• of CHY•• (A,M), which therefore implies that
the projection CHY•• (A,M) → CHY•• (A,M)/D• is a quasi-isomorphism. We denote this
quotient by NHY•• (A,M), and call it the normalized Hochschild complex of A and M with
respect to Y•.

The tensor product of differential graded commutative algebras is naturally a differential
graded commutative algebra. Thus, for any finite simplicial set Y•, CHY•• (A,A) is a sim-
plicial differential graded commutative algebra, and further CHY•• (A,M) is a (simplicial)
module over CHY•• (A,A).

D 2.1.5. – Let X•, Y•, and Z• be simplicial sets, and let f• : Z• → X• and
g• : Z• → Y• be maps of simplicial sets. We define the wedge W• = X• ∪Z• Y• of X•
and Y• along Z• as the simplicial space given by Wk = (Xk ∪ Yk)/ ∼, where ∼ identifies
fk(z) = gk(z) for all z ∈ Zk. The face maps are defined as dW•i (x) = dX•i (x),
dW•i (y) = dY•i (y) and the degeneracies are sW•i (x) = sX•i (x), sW•i (y) = sY•i (y) for any
x ∈ Xk ↪→Wk and y ∈ Yk ↪→Wk. It is clear that W• is well-defined and there are simplicial

maps X•
i•→W• and Y•

j•→W•.

If X• is a pointed simplicial set, then we can make W• into a pointed simplicial set by
declaring the basepoint to be the one induced from the inclusion X• →W•. (Note that this
is in particular the case, when X•, Y•, Z•, f• and g• are in the pointed setting.)

L 2.1.6. – There is a map of Hochschild chain complexes

CHX•
• (A,M)⊗CHZ•• (A,A) CH

Y•
• (A,A)→ CHW•

• (A,M).

If Z• injects into either Z•
f•→ X• or Z•

g•→ Y•, then this map is in fact an isomorphism of
simplicial vector spaces.

The tensor product in Lemma 2.1.6 is the tensor product of (simplicial) modules over the
simplicial differential graded commutative algebra CHZ•• (A,A).

Proof. – Using the functoriality of the Hochschild chain complex [25], there is a commu-
tative diagram,

(2.2) CHZ•• (A,A)
f∗ //

g∗

��

CHX•• (A,A)

i∗

��
CHY•• (A,A)

j∗ // CHW•• (A,A)

which induces the claimed map. If Z• injects for example into X•, then the tensor product
A⊗xk+1⊗A⊗zk+1 A⊗yk+1 is isomorphic to A⊗(xk−zk)+yk+1, which gives the isomorphism of
the Hochschild complexes.
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2.2. Definition of Chen iterated integrals

Assume now, that M is a compact, oriented manifold, and denote by Ω = Ω•(M) the
space of differential forms onM . For any simplicial set Y•, we now define the space of Chen
iterated integrals Chen(MY ) of the mapping space MY = Map(Y,M), and relate it to the
Hochschild complex over Y• from the previous section.

D 2.2.1. – Denote by Y := |Y•| =
∐

∆•×Y•/ ∼ the geometric realization of
Y•. Furthermore, let S•(Y ) be the simplicial set associated to Y , i.e. Sk(Y ) := Map(∆k, Y )

is the mapping space from the standard k-simplex ∆k = {0 ≤ t1 ≤ · · · ≤ tk ≤ 1} to Y .
By adjunction, there is the canonical simplicial map η : Y• → S•(Y ), which is given for
i ∈ Yk = {0, . . . , yk} by maps η(i) : ∆k → Y in the following way,

η(i)(t1 ≤ · · · ≤ tk) := [(t1 ≤ · · · ≤ tk)× {i}] ∈
Ä∐

∆• × Y•/ ∼
ä

= Y.

Here we identify 0 with the base point of Yk.

Denote by MY = Map(Y,M) the space of continuous maps from Y to M , which are
smooth on the interior of each simplex Image(η(i)) ⊂ Y . Recall from Chen [7, Defini-
tion 1.2.1], that to give a differentiable structure on MY , we need to specify a set of plots
φ : U → MY , where U ⊂ Rn for some n, which include the constant maps, and are closed
under smooth transformations and open coverings. To this end, we denote the adjoint of a
map φ : U →MY by φ] : U × Y →M . Then, define the plots of MY to consist those maps
φ : U → MY , for which φ] : U × Y → M is continuous on U × Y , and smooth on the
restriction to the interior of each simplex of Y , i.e. φ]|U×(simplex of Y )◦ is smooth.

Following [7, Definition 1.2.2], a p-form ω ∈ Ωp(MY ) on MY is given by a p-form
ωφ ∈ Ωp(U) for each plot φ : U → MY , which is invariant with respect to smooth
transformations of the domain. Let us recall from [7] that a smooth transformation between
two plots φ : U → MY and ψ : V → MY is a smooth map θ : U → V such that the
following diagram

U × Y
φ] //

θ

��

M

V × Y
ψ]

77

commutes. The invariance of a p-form means that θ∗(ωψ) = ωφ. The differential, wedge
product and pullback of forms are all defined plotwise. We will now define certain forms on
MY , which we call (generalized) iterated integrals.

To this end, assume that φ : U → MY is a plot of MY , and we are given yk + 1 = #Yk
many forms on M , a0, . . . , ayk ∈ Ω = Ω•(M). We define ρφ := ev ◦ (φ× id),

(2.3) ρφ : U ×∆k φ×id−→ MY ×∆k ev−→Myk+1,

where ev is defined as the evaluation map,

(2.4) ev(γ : Y →M, t1 ≤ · · · ≤ tk) =
((
γ ◦ η(0)

)
(t1 ≤ · · · ≤ tk),

(
γ ◦ η(1)

)
(t1 ≤ · · · ≤ tk), . . . ,

(
γ ◦ η(yk)

)
(t1 ≤ · · · ≤ tk)

)
.
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Now, the pullback (ρφ)∗(a0 ⊗ · · · ⊗ ayk) ∈ Ω•(U ×∆k), may be integrated along the fiber
∆k, and is denoted byÅ∫

C
a0 · · · ayk

ã
φ

:=

∫

∆k

(ρφ)∗(a0 ⊗ · · · ⊗ ayk) ∈ Ω•(U).

The resulting p = (
∑
i deg(ai)− k)-form

∫
C a0 · · · ayk ∈ Ωp(MY ) is called the (generalized)

iterated integral of a0, . . . , ayk . Here, we used the symbol
∫

C instead of
∫

, since our notation
differs slightly from the usual one, where iterated integrals refer to the integration over the
interior of a path, see also Example 2.3.1 below.

The subspace of the space of de Rham forms Ω•(MY ) generated by all iterated integrals
is denoted by Chen(MY ). In short, we may picture an iterated integral as the pullback
composed with the integration along the fiber ∆k of a form in Myk+1,

MY ×∆k ev //

∫
∆k

��

Myk+1

MY

We now use the above definition to obtain a chain map I tY• : CHY•• (Ω,Ω)→ Chen(MY ).
In Sections 2.5 and 2.4, we will see that I tY• is in fact a quasi-isomorphism and an algebra
map. In detail, for homogeneous elements a0 ⊗ · · · ⊗ ayk ∈ CHY•• (Ω,Ω), we define

(2.5) I tY•(a0 ⊗ · · · ⊗ ayk) :=

∫

C
a0 · · · ayk .

L 2.2.2. – I tY• : CHY•• (Ω,Ω)→ Chen(MY ) is a chain map.

Proof. – Since,
∫

C a0 · · · ayk is a (
∑
i deg(ai)−k)-form, I tY• is a degree 0 linear map. We

need to show that I tY• respects the differentials. Using the definitions together with Stokes’
theorem for integration along a fiber,

d

Å∫
∆k

ω

ã
=

∫

∆k

dω ±
∫

∂∆k

ω,

we see that for some plot φ : U →MY , d
Ä
I tY•(a0 ⊗ a1 ⊗ · · · ⊗ ayk)

ä
φ

is equal to

d

∫

∆k

(ρφ)∗(a0 ⊗ a1 ⊗ · · · ⊗ ayk)

=

∫

∆k

d
(

(ρφ)∗(a0 ⊗ a1 ⊗ · · · ⊗ ayk)
)
±
∫

∂(∆k)

(ρφ)∗(a0 ⊗ a1 ⊗ · · · ⊗ ayk)

=

∫

∆k

(ρφ)∗
(

yk∑

j=0

a0 ⊗ · · · ⊗ d(aj)⊗ · · · ⊗ ayk

)
±
∫

∆k−1

(ρφ)∗
(

k∑

j=0

bj0 ⊗ · · · ⊗ bjyk−1

)
,

where, for the boundary component, with t1 ≤ · · · ≤ tj = tj+1 ≤ · · · ≤ tk,
bji is the product of all the al’s for which l satisfies di(l) = j. Thus, we recover precisely
I tY•(D(a0 ⊗ a1 ⊗ · · · ⊗ ayk)).
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Recall also from [7, Definition 1.3.2] that the space of smooth p-chains Cp(MY ) on MY

is the space generated by plots of the form σ : ∆p →MY . We set C•(MY ) =
⊕

p Cp(M
Y ),

and give it a differential in the usual way. It follows from [7, Lemma 1.3.1], that the induced
homology is the usual one,H(C•(MY )) = H•(MY ) (that is, the singular homology ofMY ).
The canonical chain map Ω•(MY )⊗C•(MY )→ R, given by < ω, σ >:=

∫
∆p ωσ, induces a

similar chain map on the space of iterated integrals, Chen(MY )⊗ C•(MY )→ R.

Finally, we remark that the construction is clearly functorial in Y•. Thus it extends by
limits to the case where Y• is non necessarily finite. In particular, this allows us to define a
Chen iterated integral map for topological spaces that are not simplicial.

D 2.2.3. – LetX be a (pointed) topological space. Then we have the (pointed)
simplicial setS•(X). By definition the Hochschild chain complex ofA overS•(X) with value
in an A-module N is, in (external) degree k, the limit

CH
Sk(X)
• (A,N) := lim

i+→Sk(X)
N ⊗A⊗i

over all i+ where i+ = {0, . . . , i}, with 0 for base point. If X = |Y•| is the realization of a
simplicial set Y•, then the natural map η : Y• → S•(|Y•|) ∼= S•(X) (see Definition 2.2.1)
induces a natural quasi-isomorphism CHY•• (A,N)

η∗−→ CH
S•(X)
• (A,N), see [25]. Let us

define I tX : CH
S•(X)
k (Ω,Ω) → Ω•(Map(X,M)). It is enough to define, for all k ≥ 0,

natural maps I tβ : Ω⊗Ω⊗i → Ω•(Map(X,M)) for all β : i+ → Sk(X). We define, for each
plot φ : U → Map(X,M), and a0, . . . , ai ∈ Ω = Ω•(M),

I tβ(a0 ⊗ · · · ⊗ ai)φ =

∫

∆k

(ρφ,β)∗(a0 ⊗ · · · ⊗ ai),

where ρφ,β = evβ ◦ (φ× id) and evβ : Map(X,M)×∆k →M i+1 is given by

evβ(γ : X →M, t1 ≤ · · · ≤ tk) :=
((
γ ◦ β(0)

)
(t1 ≤ · · · ≤ tk),

(
γ ◦ β(1)

)
(t1 ≤ · · · ≤ tk), . . . ,

(
γ ◦ β(i)

)
(t1 ≤ · · · ≤ tk)

)
.

The naturality of evβ is obvious and induces the one of I tβ . Hence we get a well defined map
I tX : CH

S•(X)
• (Ω,Ω) → Ω•(Map(X,M)). It is a chain map for the same reason as above.

The image of I tX in Ω•(Map(X,M)) is denoted by Chen(Map(X,M)).

R 2.2.4. – Note that ifX = |Y•|, then I tY• = I tX◦η∗ where η∗ : CHY•• (Ω,Ω)→
CH

S•(X)
• (Ω,Ω) is the chain map induced by η : Y• → S•(|Y•|) = S•(X).

R 2.2.5. – Definition 2.2.3 easily extends to any (infinite) pointed simplicial set
Y•, see [25].

2.3. Examples: the circle, the sphere and the torus

We will demonstrate the above definitions in three examples provided by the circle S1, the
torus T, and the 2-sphere S2. We then demonstrate how to wedge two squares along an edge,
and how to collapse an edge to a point. We start with the circle S1.
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E 2.3.1 (The circle S1). – The pointed simplicial set S1
• is defined in degree k by

S1
k = {0, . . . , k}, i.e. it has exactly k + 1 elements. We define the face maps di : S1

k → S1
k−1,

for 0 ≤ i ≤ k, and degeneracies si : S1
k → S1

k+1, for 0 ≤ i ≤ k, as follows, cf. [21, 6.4.2]. For
i = 0, . . . , k−1, let di(j) be equal to j or j−1 depending on j = 0, . . . , i or j = i+1, . . . , k.
Let dk(j) be equal to j or 0 depending on j = 0, . . . , k − 1 or j = k. For i = 0, . . . , k, let
si(j) be equal to j or j + 1 depending on j = 0, . . . , i or j = i+ 1, . . . , k.

In this case, we have (#S1
k − 1) = k, so that we obtain for the Hochschild chain complex

over S1
• , CH

S1
•• (A,A) =

⊕
k≥0A⊗A⊗k. The differential is given by

D(a0 ⊗ · · · ⊗ ak) =
k∑

i=0

±a0 ⊗ · · · ⊗ d(ai)⊗ · · · ⊗ ak

+
k−1∑

i=0

±a0 ⊗ · · · ⊗ (ai · ai+1)⊗ · · · ⊗ ak ± (ak · a0)⊗ a1 ⊗ · · · ⊗ ak−1,

(see Definition 2.1.2 for the signs) which is just the usual Hochschild chain complex
CH•(A,A) of a differential graded algebra.

Note that |S1
• | = S1, cf. [21, 7.1.2], whose only non-degenerate simplices are 0 ∈ S1

0

and 1 ∈ S1
1 . Now, if we view S1 as the interval I = [0, 1] where the endpoints 0 and 1 are

identified, then the map η(i) : S1
k → Sk(S1) = Map(∆k, S1) from Definition 2.2.1 is given

by η(i)(0 ≤ t1 ≤ · · · ≤ tk ≤ 1) = ti, where we have set t0 = 0. Thus, the evaluation
map (2.4) becomes ev(γ : S1 → M, t1 ≤ · · · ≤ tk) = (γ(0), γ(t1), . . . , γ(tk)) ∈ Mk+1.

Furthermore, we can recover the classical Chen iterated integrals I tS
1
• : CH•(A,A) →

Ω•(MS1

) as follows. For a plot φ : U →MS1

we have,

I tS
1
•(a0 ⊗ · · · ⊗ ak)φ =

Å∫
C
a0 · · · ak

ã
φ

=

∫

∆k

(ρφ)∗(a0 ⊗ · · · ⊗ ak)

= (π0)∗(a0) ∧
∫

∆k

(ρ̃φ)∗(a1 ⊗ · · · ⊗ ak) = (π0)∗(a0) ∧
∫
a1 · · · ak,

where ρ̃φ : U × ∆k φ×id−→ MS1 × ∆k ‹ev→ Mk induces the classical Chen iterated integral∫
a1 · · · ak from [7] and π0 : MS1 →M is the evaluation at the base point π0 : γ 7→ γ(0).

E 2.3.2 (The torus T). – In this case, we can take T• to be the diagonal simplicial
set associated to the bisimplicial set S1

• × S1
• , i.e. Tk = S1

k × S1
k, see [21, Appendix B.15].

Thus, Tk has (k + 1)2 elements, so that we may write Tk = {(p, q) | p, q = 0, . . . , k}
which we equipped with the lexicographical ordering. The face maps di : Tk → Tk−1 and
degeneracies si : Tk → Tk+1, for i = 0, . . . , k, are given as the products of the differentials
and degeneracies of S1

• , i.e. di(p, q) = (di(p), di(q)) and si(p, q) = (si(p), si(q)).
With this description, we obtain CHT•• (A,A) =

⊕
k≥0A⊗A⊗(k2+2k). If we index forms

in M by tuples (p, q) as above, then we obtain homogenous elements of CHT•• (A,A) as
linear combinations of tensor products a(0,0) ⊗ · · · ⊗ a(k,k) ∈ CHT•• (A,A). The differential
D(a(0,0) ⊗ · · · ⊗ a(k,k)) on CHT•• (A,A) consists of a sum

(k,k)∑

(p,q)=(0,0)

±a(0,0) ⊗ · · · ⊗ da(p,q) ⊗ · · · ⊗ a(k,k) +
k∑

i=0

±di(a(0,0) ⊗ · · · ⊗ a(k,k)).
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The face maps di can be described more explicitly, when placing a(0,0) ⊗ · · · ⊗ a(k,k) in a
(k + 1) × (k + 1) matrix. For i = 0, . . . , k − 1, we obtain di(a(0,0) ⊗ · · · ⊗ a(k,k)) by
multiplying the ith and (i+ 1)th rows and the ith and (i+ 1)th columns simultaneously, i.e.,
di(a(0,0) ⊗ · · · ⊗ a(k,k)) is equal to

a(0,0)⊗ · · · ⊗a(0,i)a(0,i+1)⊗ · · · ⊗a(0,k)

...
...

...

a(i−1,0)⊗ · · · ⊗a(i−1,i)a(i−1,i+1)⊗ · · · ⊗a(i−1,k)

a(i,0)a(i+1,0)⊗ · · · ⊗a(i,i)a(i,i+1)a(i+1,i)a(i+1,i+1)⊗ · · · ⊗a(i,k)a(i+1,k)

a(i+2,0)⊗ · · · ⊗a(i+2,i)a(i+2,i+1)⊗ · · · ⊗a(i+2,k)

...
...

...

a(k,0)⊗ · · · ⊗a(k,i)a(k,i+1)⊗ · · · ⊗a(k,k).

The differential dk is obtained by multiplying the kth and 0th rows and the kth and 0th
columns simultaneously, i.e., dk(a(0,0) ⊗ · · · ⊗ a(k,k)) equals

±

a(0,0)a(0,k)a(k,0)a(k,k)⊗ a(0,1)a(k,1)⊗ · · · ⊗a(0,k−1)a(k,k−1)

a(1,0)a(1,k)⊗ a(1,1)⊗ · · · ⊗a(1,k−1)

...
...

...

a(k−1,0)a(k−1,k)⊗ a(k−1,1)⊗ · · · ⊗a(k−1,k−1)

where the sign ± is the Koszul sign (with respect to the lexicographical order) given by
moving the kth row and lines across the matrix.

Note that |T•| = |S1
• | × |S1

• | = T, which has non-degenerate simplices (0, 0) ∈ T0,
(0, 1), (1, 0), (1, 1) ∈ T1 and (1, 2), (2, 1) ∈ T2. Now, if we view the torus T as the square
[0, 1] × [0, 1] where horizontal and vertical boundaries are identified, respectively, then the
map η(p, q) : Tk → Map(∆k,T) is given by η(p, q)(0 ≤ t1 ≤ · · · ≤ tk ≤ 1) = (tp, tq) ∈ T,
for p, q = 0, . . . , k and t0 = 0. Thus, the evaluation map in Definition 2.2.1 becomes

ev(γ : T→M, t1 ≤ · · · ≤ tk) =

(
γ(0, 0), γ(0, t1), . . . , γ(0, tk),

γ(t1, 0), γ(t1, t1), . . . , γ(t1, tk),

...

γ(tk, 0), γ(tk, t1), . . . , γ(tk, tk)
)
.

According to Definition 2.2.1, the iterated integral I tT(a(0,0) ⊗ · · · ⊗ a(k,k)) is given by a
pullback under the above map MT ×∆k ev−→M (k+1)2

, and integration along the fiber ∆k.
Note that a similar description works for any higher dimensional torus Td = S1×· · ·×S1

(d factors) by taking (Td)k = S1
k × · · · × S1

k. Its underlying Hochschild chain complex

CH
Td•• (A,A) =

⊕
k≥0A

⊗(k+1)d has the ith face map di, for i = 0, . . . , k − 1, given by
simultaneously multiplying each ith with (i + 1)th hyperplane in each dimension, and a
similar description for dk.

E 2.3.3 (The 2-sphere S2). – In this case, we define S2
• to be the simplicial set

with #S2
k = k2 + 1 elements in simplicial degree k. In order to describe the faces and
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degeneracies, we write S2
k = {(0, 0)} ∪ {(p, q) | p, q = 1, . . . , k}, and set the degeneracy

to be the same as for the torus in the previous Example 2.3.2, i.e. sS
2
•
i (p, q) = sT•

i (p, q) for
(p, q) ∈ S2

k and i = 0, . . . , k. The ith differential is also obtained from the previous examples

by setting dS
2
•
i (p, q) = (0, 0) in the case that dS

1
•
i (p) = 0 or dS

1
•
i (q) = 0, or setting otherwise

d
S2
•
i (p, q) = dT•

i (p, q) = (d
S1
•
i (p), d

S1
•
i (q)).

We thus obtain CHS2
•• (A,A) =

⊕
k≥0A ⊗ Ak

2

with a differential similar to the one in

Example 2.3.2. For example, we have for D|A⊗A22 → (A⊗A22

)⊕ (A⊗A12

)

D

Ü
a(0,0)

⊗a(1,1) ⊗a(1,2)

⊗a(2,1) ⊗a(2,2)

ê
=
∑

(p,q)

± a(0,0) ⊗ · · · ⊗ d(a(p,q))⊗ · · · ⊗ a(2,2)

+

(
a(0,0)a(1,1)a(1,2)a(2,1)

⊗a(2,2)

)
−
(
a(0,0)

⊗a(1,1)a(1,2)a(2,1)a(2,2)

)

±
(
a(0,0)a(1,2)a(2,1)a(2,2)

⊗a(1,1)

)

where the last ± sign is the Koszul sign (in the lexicographical order) given by moving
a(1,2), a(2,1), a(2,2) across a(1,1).

It can be seen that |S2
• | = S2. If we view the 2-sphere as a square [0, 1]× [0, 1] where the

boundary is identified to a point, then we obtain the evaluation map

ev(γ : S2 →M, t1 ≤ · · · ≤ tk) =
(
γ(0, 0),

(
γ(ti, tj)

)
1≤i,j≤k

)
∈M1+k2

.

This completes our three examples S1,T, and S2. Later, in Section 3.1, we will describe
a simplicial model for a surface Σg of genus g, which is built out of collapsing an edge to a
point and wedging squares along vertices or edges. The essential ideas in these constructions
will be demonstrated in the next example.

E 2.3.4 (Wedge along an edge or a vertex). – The simplicial model for the point
pt• is given by ptk = {0} for all k ≥ 0, with trivial faces and degeneracies. Next, we can
give a simplicial model for the interval I• by taking Ik = {0, . . . , k + 1} with differential
for i = 0, . . . , k, di(j) equal to j or j − 1 depending on j ≤ i or j > i. The associated
Hochschild chain complex is just the two sided bar complex, CHI•

• (A,A) =
⊕

k≥0

A⊗Ak ⊗A =

B(A,A,A). Similarly, we have the simplicial square I2
• := I• × I•, i.e. I2

k = Ik × Ik has

(k + 2)2 elements with differential dI
2
•
i = dI•i × dI•i .

We can use the pushout construction from Lemma 2.1.6 to glue two squares along an edge.
In fact, this can be easily done using the inclusion inc : I• → I2

• twice to obtain I2
• ∪I• I2

• .
Similarly, we can wedge two squares at a vertex, where we use the inclusion inc′ : pt• → I2

•
to obtain I2

• ∪pt• I
2
• . Note that in this case, we do not need to assume that the inclusion

inc′ : pt• → I2
• preserves the basepoints.

A more interesting operation may be obtained via the collapse map col : I• → pt•, which
together with the inclusion inc : I• → I2

• induces the square with one collapsed edge I2
• ∪I• pt•.
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We will use this type of construction in Subsection 3.1 to obtain our model for the surface
Σg of genus g.

There are two maps s, t : pt• → I• given by s(0) = 0 and t(0) = k + 1 in
simplicial degree k and a (unique) projection p : I• → pt•. These 3 maps induce 4 inclusions
sij : pt• → I2

• = I• × I• mapping the point to one of the corner of the square, 2 projections
pj : I2

• → I• (i, j ∈ {1, 2}) and a collapse map p× p : I2
• → pt• × pt• ∼= pt•. The following

lemma is trivial but useful.

L 2.3.5. – The maps s, t, p, sij and pj are maps of simplicial sets.

2.4. The cup product for the mapping space Map(Y,M)

We now show that there is a differential graded algebra structure on CHY•• (Ω,Ω) and
Chen(MY ), and that the iterated integral I tY• preserves this algebra structure. The alge-
bra structure on Chen(MY ) is the one induced by the wedge product in Ω•(MY ), cf. Def-
inition 2.2.1. To define the product on CHY•• (A,A), we first recall the shuffle product for
simplicial vector spaces V• and W•, see e.g. [21, Lemma 1.6.11].

D 2.4.1. – For two simplicial vector spacesV• andW•, one defines a simplicial
structure on the simplicial space (V ×W )k := Vk ⊗Wk using the boundaries dVi ⊗ dWi and
degeneracies sVi ⊗ sWi . There is a shuffle product sh : Vp ⊗Wq → (V ×W )p+q,

sh(v ⊗ w) =
∑

(µ,ν)

sgn(µ, ν)(sνq · · · sν1
(v)⊗ sµp · · · sµ1

(w)),

where (µ, ν) denotes a (p, q)-shuffle, i.e. a permutation of {0, . . . , p+ q − 1} mapping 0 ≤ j ≤ p− 1

to µj+1 and p ≤ j ≤ p + q − 1 to νj−p+1, such that µ1 < · · · < µp and ν1 < · · · < νq. In
particular, for V• = W•, this becomes sh : Vp ⊗ Vq → Vp+q ⊗ Vp+q.

Since CHY•• (A,A) is a simplicial vector space, we obtain an induced shuffle map sh on
CHY•• (A,A). Composing this with CHY•• (µ, µ), where µ : A⊗A→ A denotes the product
of A, which is an algebra map since A is graded commutative, we obtain the desired shuffle
product shY• of CHY•• (A,A),

shY• : CHY•
• (A,A)⊗ CHY•

• (A,A)
sh→ CHY•

• (A⊗A,A⊗A)
CHY•• (µ,µ)−→ CHY•

• (A,A).

P 2.4.2. – The shuffle product shY• : CHY•• (A,A)⊗2 → CHY•• (A,A) makes
CHY•• (A,A) a differential graded commutative algebra, which is natural inA. If f• : X• → Y•
is a map of simplicial sets, then the induced map f∗ : CHX•• (A,A) → CHY•• (A,A) is a map
of algebras and a quasi-isomorphism if the map H•(f•) : H•(X•)→ H•(Y•) induced by f• is
an isomorphism.

Proof. – The shuffle productV•⊗V• → (V×V )• for simplicial vector spaces is associative
and graded commutative (see [21, Section 1.6]). Further µ : A⊗A→ A is map of differential
graded algebras since A is (differential graded) commutative. Hence shY• is an associative
and graded commutative multiplication and a map of chain complexes.

That f∗ : CHX•• (A,A) → CHY•• (A,A) is a map of algebras follows by naturality of the
shuffle product and the last claim is proved in [25, Proposition 2.4].

In view of the above Proposition 2.4.2, Lemma 2.1.6 has the following counterpart.
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C 2.4.3. – Let X•, Y•, W• and Z•, f• : Z• → X•, g• : Z• → Y• be as in
Lemma 2.1.6 and Definition 2.1.5. There is a natural morphism of differential graded algebras

CHX•
• (A,A)⊗CHZ•• (A,A) CH

Y•
• (A,A)→ CHW•

• (A,A).

If Z• injects into either Z•
f•→ X• or Z•

g•→ Y•, this natural map is a quasi-isomorphism.

Proof. – Proposition 2.4.2 and the commutative diagram (2.2) imply that CHX•• (A,A)

and CHY•• (A,A) are CHZ•• (A,A)-algebras and that the maps i∗ : CHX•• (A,A)→ CHW•• (A,A),
j∗ : CHY•• (A,A)→ CHW•• (A,A) are maps of (differential graded) commutative
CHZ•• (A,A)-algebras. Since i∗ ◦ f∗ = j∗ ◦ g∗, the composition

CHX•
• (A,A)⊗ CHY•

• (A,A)
i∗⊗j∗−→ CHW•

• (A,A)⊗ CHW•
• (A,A)

shW•−→ CHW•
• (A,A)

induces a natural morphism CHX•• (A,A) ⊗CHZ•• (A,A) CH
Y•• (A,A) → CHW•• (A,A) of

CHZ•• (A,A)-algebras. The last statement follows from Lemma 2.1.6 and the fact that the
shuffle product V• ⊗W• → (V ×W )• is a natural quasi-isomorphism of simplicial vector
spaces.

By Proposition 2.4.2, for any simplicial setX• and commutative (differential graded) alge-
bra A, (CHX•• (A,A), D, shX•) is again a commutative differential graded algebra. Thus its
Hochschild chain complex CHY••

(
CHX•• (A,A), CHX•• (A,A)

)
is defined for any simplicial

set Y• and is a commutative differential graded algebra.

C 2.4.4. – There is a natural (with respect toX•, Y• andA) quasi-isomorphism
of algebras

CHX•
•
(
CHY•

• (A,A), CHY•
• (A,A)

) ∼→ CH
(X×Y )•
• (A,A)

where (X × Y )• is the diagonal of the bisimplicial set X• × Y•, that is (X × Y )n = Xn × Yn.

Proof. – The quasi-isomorphism is induced by the Eilenberg-Zilber quasi-isomorphism
(i.e. the shuffle product). In order to define it more explicitly, we need the following
definition of Hochschild chain complex CHX•(R•) over a simplicial set X• for a simplicial
algebra R•. This is a bisimplicial vector space which is given in simplicial bidegree (p, q) by

CHXp(Rq) = Rq ⊗R⊗xpq where xp + 1 = #Xp. Its face maps CHXp(Rq)
di→ CHXp−1(Rq)

are given by the usual ones for the Hochschild complex over X• as in Definition 2.1.2 and
similarly for its degeneracies along the X• direction. Thus, CHX•(Rq) = CHX•• (Rq, Rq)

is the Hochschild chain complex of the algebra Rq over X•. The simplicial face maps

CHXp(Rq)
di→ CHXp(Rq−1) along the R• direction are induced by the face maps of R•:

CHXp(Rq) = Rq ⊗R⊗xpq

d
⊗1+xp
i−→ Rq−1 ⊗R⊗xpq−1 = CHXp(Rq−1)

and similarly for the degeneracies. Thus, CHXp(R•) = (R × · · · × R)• is the (1 +

xp)-times iterated cross-product of the simplicial algebra R• (see Definition 2.4.1 above). If
R• is a simplicial commutative differential graded algebra, then CHX•(R•) is a bisimplicial
commutative differential graded algebra. Note that for the standard Hochschild chain
complex over S1

• , this definition was first introduced by Goodwillie [17].
By the (generalized) Eilenberg-Zilber theorem [16, 22], there is a natural quasi-iso-

morphism EZ : CHX•(R•) → diag(CHX•(R•))•, where diag(CHX•(R•))• is the
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diagonal simplicial set associated to the bisimplicial set CHX•(R•). Hence, in simpli-
cial degree n, diag(CHX•(R•))n = CHXn(Rn) = Rn ⊗ R⊗xnn . Note that the map
EZ : CHXp(Rq) = R

⊗1+xp
q → CHXp+q (Rp+q) = R

⊗1+xp+q

p+q is given by a formula similar
to the one in Definition 2.4.1, that is

(2.6) EZ =
∑

(µ,ν)

sgn(µ, ν)
(
sX•νq · · · sX•ν1

)
◦
Ä(
sR•µp · · · sR•µ1

)⊗1+xp
ä

where (µ, ν) denotes a (p, q)-shuffle and sX•j , sR•k are the degeneracies along the X• and R•
simplicial directions respectively.

From Definition 2.1.2, it is clear, that CHY•• (A,A) is a simplicial differential graded
commutative algebra, and, that CH(X×Y )•

• (A,A) ∼= diag(CHX•(CHY•• (A,A)))•, since
CH

(X×Y )n
• (A,A) = A⊗(1+xn)(1+yn) ∼=

(
A⊗(1+yn)

)⊗1+xn . Thus, the Eilenberg-Zilber
map (2.6) gives a quasi-isomorphism of underlying chain complexes

CHX•(CHY•
• (A,A))

EZ−→ CH
(X×Y )•
• (A,A).

Note that on the left hand side, CHY•• (A,A) is considered as a simplicial differential graded
algebra. Now we need to define a quasi-isomorphism

CHX•
• (CHY•

• (A,A), CHY•
• (A,A))→ CHX•(CHY•

• (A,A))

where on the left, CHY•• (A,A) is equipped with its structure of commutative differential
graded algebra given by the shuffle product shY• and the Hochschild differentialD. Iterating
the Eilenberg-Zilber map xp-times, we get a quasi-isomorphism

EZ(xp) : CH
Xp
• (CHY•

• (A,A), CHY•
• (A,A)) =

(
CHY•

• (A,A)
)⊗(1+xp)

sh⊗xp−→
(
CHY•

• (A,A)
)×(1+xp) ∼= CHXp(CHY•

• (A,A)),

where sh is the shuffle product as in Definition 2.4.1. Thus the composition

CHX•
• (CHY•

• (A,A), CHY•
• (A,A))

EZ◦
(
EZ(x•)

)
−→ CH

(X×Y )•
• (A,A)

is a natural quasi-isomorphism.

Since the algebra structure on CHX•• (CHY•• (A,A), CHY•• (A,A)) is the composition of
the shuffle product

sh : CH
Xp1• (CHY•

• (A,A), CHY•
• (A,A))⊗ CHXp2• (CHY•

• (A,A), CHY•
• (A,A))

→ CH
Xp1+p2•

(
CHY•

• (A,A)⊗2, CHY•
• (A,A)⊗2

)

with the mapCHX•• (shY•) (also induced by the shuffle product see Definition 2.4.1), the fact
that the natural map CHX•• (CHY•• (A,A), CHY•• (A,A)) → CH

(X×Y )•
• (A,A) is a map of

algebras follows from the associativity and commutativity of the shuffle product.

E 2.4.5. – If T• is the simplicial model for the torus given in Example 2.3.2, then,
by Corollary 2.4.4 above, CHT•• (A,A) is quasi-isomorphic, as an algebra, to

CH
S1
••
(
CH

S1
•• (A,A), CH

S1
•• (A,A)), that is to the standard Hochschild complex of the

standard Hochschild complex of the algebra A.
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Using a decomposition of the product ∆k × ∆l into a union of (k + l)-simplices ∆k+l,
which is indexed by the set of all shuffles, we obtain the following proposition.

P 2.4.6. – For any compact, oriented manifold M , the iterated integral map
I tY• : (CHY•• (Ω,Ω), shY•)→ (Ω•(MY ),∧) is a map of algebras.

Proof. – We need to show, that for a0 ⊗ · · · ⊗ ayk , b0 ⊗ · · · ⊗ byl ∈ CHY•• (Ω,Ω),

(2.7) I tY•(a0⊗· · ·⊗ayk)∧ I tY•(b0⊗· · ·⊗byl) = I tY•(shY•(a0⊗· · ·⊗ayk , b0⊗· · ·⊗byl)).

Let φ : U →MY be a plot, and ρk+l
φ : U ×∆k+l →Myk+l+1 the map from (2.3). Note that

each degeneracy si : Yr → Yr+1 induces a map Msi : Myr+1+1 → Myr+1, which in turn
induces the degeneracy si : Ω⊗yr+1 → Ω⊗yr+1+1 on CHY•• (Ω,Ω). Since the multiplication
µ : Ω⊗2 → Ω is obtained by pullback along the diagonal δ : M →M ×M , the term on the
right side of (2.7) becomes

∑

(µ,ν)

±
∫

∆k+l

(ρk+l
φ )∗ ◦ (δyk+l+1)∗

(
sνl · · · sν1(a0⊗ · · · ⊗ ayk)⊗ sµk · · · sµ1(b0⊗ · · · ⊗ byl)

)

=
∑

(µ,ν)

±
∫

∆k+l

(ρk+l
φ )∗ ◦ α∗

(
a0 ⊗ · · · ⊗ ayk ⊗ b0 ⊗ · · · ⊗ byl

)
,

where α : Myk+l+1 → Myk+l+1 ×Myk+l+1 → Myk+1 ×Myl+1 is the composition of the
diagonal of Myk+l+1 with the map (Msνl · · ·Msν1 )× (Msµk · · ·Msµ1 ).

Recall the degeneracies σi : ∆r+1 → ∆r, (0 ≤ t1 ≤ · · · ≤ tr+1 ≤ 1) 7→
(0 ≤ t1 ≤ · · · ≤ t̂i ≤ · · · ≤ tr+1 ≤ 1), which removes the ith coordinate from the standard
simplex, cf. [21, Appendix B.6]. Then for any γ ∈ MY , the map ev from (2.4) makes the
following diagram commutative

∆r+1
ev(γ,−) //

σi

��

Myr+1+1

Msi

��
∆r

ev(γ,−) // Myr+1

Thus, for any shuffle (µ, ν), we obtain the commutative diagram,

U ×∆k+l

id×β(µ,ν)

��

φ×id // MY ×∆k+l ev //

=

��

Myk+l+1

��
MY ×∆k+l

(ev,ev)//

id×β(µ,ν)

��

Myk+l+1 ×Myk+l+1

��
U ×∆k ×∆l

φ×id×id // MY ×∆k ×∆l
(ev,ev) // Myk+1 ×Myl+1

where the right vertical map is α, and β(µ,ν) = (σνl · · ·σν1
, σµk · · ·σµ1

) : ∆k+l → ∆k ×∆l.
Thus, α ◦ ρk+l

φ = ρΦ ◦ (id × β(µ,ν)), where ρΦ denotes the bottom map. Using the decom-
position of ∆k × ∆l = q(µ,ν)β

(µ,ν)(∆k+l), we can simplify the right hand side of (2.7)
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to ∫

q(µ,ν)β(µ,ν)(∆k+l)

(ρΦ)∗(a0 ⊗ · · · ⊗ ayk ⊗ b0 ⊗ · · · ⊗ byl)

=

∫

∆k

(ρφ)∗(a0 ⊗ · · · ⊗ ayk) ∧
∫

∆l

(ρφ)∗(b0 ⊗ · · · ⊗ byl)

= I tY•(a0 ⊗ · · · ⊗ ayk) ∧ I tY•(b0 ⊗ · · · ⊗ byl),

which is the claim.

The previous proposition shows, that the wedge product of two iterated integrals is again
an iterated integral, so that “∧” preserves Chen(MY ) ⊂ Ω•(MY ). We thus have the following
corollary.

C 2.4.7. – I tY• : (CHY•• (Ω,Ω), shY•)→ ( Chen(MY ),∧) is a map of algebras.

R 2.4.8. – The proof of Proposition 2.4.6 is essentially the same as the proof
given by Patras and Thomas in [24, Proposition 2], and could have been deduced from [24].
We will use the relationship with [24] in the next subsection.

2.5. Chen iterated integrals as a quasi-isomorphism

In this subsection, we show that the iterated integral map I tY• : CHY•
• (Ω,Ω) −→ Ω•(MY ) is

a quasi-isomorphism under suitable connectivity conditions on M , where we set as usual
Ω = Ω•(M). For the proof we will apply a related result by Patras and Thomas [24], which
uses a simplicial description of cochains of MY . We start with a slight generalization of the
simplicial cochain model used in [24].

D 2.5.1. – Let Y• be a simplicial space, and M a compact manifold.
Denote by C• a cochain functor, such as simplicial cochains, singular cochains, or de Rham
forms. We define the simplicial chain complex C••(MY ) by letting C•k(MY ) = ( C•(MYk) =⊕

p≥0 Cp(MYk), ∂k), where ∂k is the differential on MYk induced by C•. The face maps di
and degeneracies si of Y• induce face mapsDi := C•(Mdi) and degeneraciesSi := C•(Msi)

on C••(MY ).

The total complex C(MY )• is defined by C(MY )p =
⊕

k≥0 Cp+k(MYk), and has

the differential D : C(MY )p → C(MY )p+1, which on Cp+k(MYk) is a sum of the
differentials (−1)k∂k : Cp+k(MYk) → Cp+k+1(MYk) and

∑k
i=0(−1)iDi : Cp+k(MYk) →

Cp+k(MYk−1).

The normalized complex N C(MY )• is defined as the quotient of C(MY )• by the sub-
space generated by the images of the degeneracies Si. It is well-known, that the projection
C(MY )• → N C(MY )• is a quasi-isomorphism of chain complexes, see e.g. [22].

L 2.5.2. – Assume that Y = |Y•| is n-dimensional, i.e. the highest degree of any
non-degenerate simplex is n, and assume that M is n-connected. Then any two cochain
functors C• and D• induce quasi-isomorphic complexes C(MY )• and D(MY )•.
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Proof. – It is enough to show that N C(MY )• and N D(MY )• are quasi-isomorphic.
For N C(MY )•, we define the filtration by simplicial degree F kC =

⊕
0≤l≤k N C•(MYl).

The E1 term for this filtration is computed as the reduced homology
⊕

k≥0H
∗
(MYk).

Using the assumptions on the connectivity of M , it is easy to see that the E1 page is
first quadrant, and thus the filtration converges to the homology H( N C(MY )•). Similar
arguments give a spectral sequence converging to the homology H( N D(MY )•). Now any
natural equivalence F : C• → D• induces a map of spectral sequences, which is an
isomorphism on the E1 level. Since any two cochain models C• and D• can be connected
by a sequence of natural equivalences, the claim follows.

P 2.5.3. – Under the assumption from Lemma 2.5.2, the iterated integral
map I tY• : CHY•• (Ω,Ω)→ Ω•(MY ) ∼= C•(MY ) is a quasi-isomorphism.

Proof. – First, notice that I tY• : CHY•• (Ω,Ω)→ Ω•(MY ) factors through Ω(MY )• =⊕
k≥0 Ω•(MYk) via

Ω⊗ Ω⊗yk
Z→ Ω•(MYk)

ev∗→ Ω•(MY ×∆k)

∫
∆k−−−→ Ω•(MY ),

where Z is the natural quasi-isomorphism obtained as the wedge of the pullbacks of the
yk + 1 = #Yk projections MYk → M , ev : MY × ∆k → MYk is the map in (2.4), and∫

∆k denotes integration along the fiber. An argument similar to Lemma 2.5.2 shows that Z
induces a quasi-isomorphism CHY•• (Ω,Ω)→ Ω(MY )•.

Denote by S• the singular cochain functor, and denote by /[∆k] : S•(MY × ∆k) →
S•(MY ) the slant product with the fundamental cycle of ∆k. Consider the diagram

Ω(MY )•
ev∗ //

��

Ω•(MY ×∆k)

∫
∆k //

��

Ω•(MY )

��
S(MY )•

ev∗ // S•(MY ×∆k)
/[∆k] // S•(MY )

which commutes after taking homology. Since Ω• and S• are naturally equivalent, and using
Lemma 2.5.2, we see furthermore that the vertical maps are isomorphisms on homology. Re-
calling from [24, Corollary 2], that the bottom line is a quasi-isomorphism, we conclude that
the iterated integral also induces a quasi-isomorphism, which is the claim of the proposi-
tion.

R 2.5.4. – An alternative proof of the above proposition may be obtained by
following the ideas of Getzler Jones Petrack [14, Theorem 3.1], via induction on the simplicial
skeletal degree (cf. [16, p. 8]).

Let A∗ = Hom(A, k) be the (graded) dual of A. If we denote the graded dual of
CHY•• (A,A) by CH•Y•(A,A

∗) :=
∏
k≥0(A∗ ⊗ (A∗)⊗yk), then we also have the following

dual statement to Proposition 2.5.3.

C 2.5.5. – Under the assumptions from Lemma 2.5.2, we have a quasi-
isomorphism ( I tY•)∗ : C•(Map(Y,M))→ CH•Y•(Ω,Ω

∗).
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R 2.5.6. – In the above discussion, we did not include the Chen space Chen(MY ),
which, by definition, is given by the image of the iterated integral map Chen(MY ) =

Im( I tY• : CHY•• (Ω,Ω) → Ω•(MY )) ⊂ Ω•(MY ). Chen showed in the case of the circle
Y• = S1

• (cf. [6]), that Chen(MS1

) is in fact quasi-isomorphic to Ω•(MY ) by showing

that its kernel Ker( I tS
1
•) is acyclic. In case of a general simplicial set Y•, this task turns

out to become quite more elaborate, as the kernel Ker( I tY•) contains many non-trivial
combinatorial restrictions, coming from the combinatorics induced by Y•.

Let us illustrate this by the example of a simplicial graphG•, having v vertices and e edges
as its only non-degenerate simplices. Combining the models for the interval and the point
as in Example 2.3.4, we may assume that #Gk = v + e · k. Then for given functions
f1, . . . , fv, g1, . . . , ge : M → R, which we associate to the vertices and edges of G•, we can
define a degree 0 element x ∈ CHG1

0 (Ω,Ω) ∼= Ω⊗v ⊗ Ω⊗e[1], by setting

x = f1 ⊗ · · · ⊗ fv ⊗ dDR(g1 ⊗ · · · ⊗ ge) ∈ (Ω⊗v)0 ⊗ (Ω⊗e)1[1]

where dDR is the de Rham differential. A computation then shows that x ∈ Ker( I tG•)
exactly when for every vertex w of G•, the product of the functions on the incoming edges
gi1w , . . . , gi

rw
w

atw is equal to the product of the functions on the outgoing edges gj1w , . . . , gjsww
at w up to a constant cw, and these constants multiply to 1,

∀w :
∏

k

gikw = cw ·
∏

k

gjkw , and
∏

w

cw = 1.

The conclusion is, that the explicit identification of the kernel Ker( I tY•) for a general
simplicial set Y•, as well as the proof of its acyclicity, require considerably more effort.
However, we conjecture that the kernel is acyclic.

3. String topology product for surfaces mapping spaces

Beside the cup product on the cohomology of the mapping space, there is also a “string
topology” type product on the homology of certain mapping spaces. We now demonstrate
how this string topology product may be modeled via the generalized Hochschild cohomol-
ogy. In particular, we look at the case of surfaces Σg of various genus g. The string topology
product for this is then expressed as a map H•(MΣg1 )⊗H•(MΣg2 )→ H•(MΣg1+g2

).

3.1. A Hochschild model for the surface of genus g

We start by giving a Hochschild model of the mapping space Map(Σg,M) from the
surface of genus g to a 2-connected, compact, and oriented manifold M .

Recall that the surface Σg of genus g ≥ 1 can be represented as a 4g-gon, where the
boundary is identified via the word

a1b1a2b2 · · · agbga−1
g b−1

g · · · a−1
2 b−1

2 a−1
1 b−1

1 .

We choose a subdivision of this polygon that fits with the string topology product. For this,
we use a subdivision into g2 squares, and further subdivide the off diagonal squares further
into two triangles, so that for instance for g = 3 we obtain
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(3.1)

a1

b1

a2

b2 a3 b3

a−1
3

b−1
3

a−1
2

b−1
2a−1

1b−1
1

Each of the diagonal squares is represented via the simplicial model of the square I2
• , with

|I2
k | = k2 +4k+4. Also, for the square build out of two triangles, we glue two squares along

an edge and collapse the opposite sides to a point,

=⇒
collapse =

This is a model which has in simplicial degree k exactly 2k2 + 5k + 4 elements. Gluing all
these squares together by identifying the corresponding edges and identifying all vertices, we
obtain a simplicial model (Σg)• for the surface of genus g, with

(3.2) #(Σg)k = (2g2 − g) · k2 + (3g2 − g) · k + 1 + (g − 1)2.

We set σgk = #(Σg)k − 1.

N 3.1.1. – We write T• = I2
•/ ∼ for the simplicial model of a triangle obtained

as a quotient of a square where a side is collapsed to a point.

For genus g = 0, we use the simplicial model (Σ0)• = S2
• of the sphere introduced

in Example 2.3.3. If M is a 2-connected, compact, oriented manifold, then Propo-
sition 2.5.3 and Corollary 2.5.5 imply that I t(Σ

g)• : CH
(Σg)•
• (Ω,Ω)→ C•(MΣg ) and

( I t(Σ
g)•)∗ : C•(MΣg )→ CH•(Σg)•

(Ω,Ω∗) induce isomorphisms on (co)homology.

The reason for studying this particular model of a surface of genus g is that it comes with
a simplicial description of pinching maps. Pinching maps are obtained by collapsing to a
point a circle, which contains the basepoint, on a surface Σn yielding a wedge Σg ∨ Σh (for
any decomposition n = g + h).
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Pinch21

This is realized on our simplicial model as follows. For n = g + h, we can consider
4 different regions in the model for Σg+h, namely we can consider the top left square build
out of g2-squares (labelled a1, b1, a2, . . . on the left and b−1

1 , a−1
1 , . . . on the top), the lower

right square build out of h2-squares (labelled . . . , ag+h, bg+h on the bottom and a−1
g+h, b

−1
g+g..

on the right), and the two off diagonals rectangles denoted Rb, Rt. Note that all squares in
the off diagonals regions Rb, Rt are subdivided into triangles. Let

(3.3) Pinchg,h : Σg+h• → Σg• ∨ Σh•

be the map defined by identifying all the points in all triangles inRb andRt which belongs to a
same parallel to the hypothenuse of the triangle (that is the edge parallel to the one which has
been collapsed in the model). In other words, Pinchg,h collapses, along the anti-diagonal, the
two off diagonal regions Rb and Rt to the boundary of the top left and bottom right square.
For instance Pinch2,1 : Σ3

• → Σ2
• ∨ Σ1

• is given by the diagram

Rb

Rt

a1

b1

a2

b2 a3 b3

a−1
3

b−1
3

a−1
2

b−1
2a−1

1b−1
1

=⇒
collapse

a1

b1

a2 b2

a3

b3

a−1
3

b−1
3

a−1
2

b−1
2

a−1
1b−1

1

where all elements in the same dashed line are identified, i.e. collapsed to the same point.

L 3.1.2. – The map Pinchg,h : Σg+h• → Σg• ∨ Σh• is simplicial.

Proof. – The map Pinchg,h is obtained by wedging along an edge, or a vertex, maps such
as the identity id : I2

• → I2
• , id : T• → T• and collapse T• → pt• of a triangle onto a

point or collapse T• ∼= I2
•/ ∼

pj→ I• of a triangle onto one edge (which has not been identified
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to a point). Now it follows from Example 2.3.4 and Lemma 2.3.5 that Pinchg,h is a map of
(pointed) simplicial sets.

R 3.1.3. – It is crucial to use the simplicial model Σg• described in Lemma 3.1.2.
For instance, if one uses a model where the off diagonal squares are not subdivided, the
Lemma 3.1.2 above is no longer true.

The following lemma is straightforward.

L 3.1.4. – The simplicial pinching map is associative, i.e. the following diagram is
commutative

Σg+h+k
•

Pinchg+h,k //

Pinchg,h+k

��

Σg+h• ∨ Σk•

Pinchg,h∨id
Σk•

��
Σg• ∨ Σh+k

•

id
Σk•
∨Pinchh,k

// Σg• ∨ Σh• ∨ Σk•

3.2. The “string topology” product for surfaces

In this section, we recall the “string topology” type operation adapted for surfaces, and
then apply this to the model for the surface mapping space given in the previous subsection.
We start by recalling this operation, which was originally given for the mapping space of a
circle by Moira Chas and Dennis Sullivan in [5], see also the description of the Cohen-Jones
map generalized to surfaces as given in [9, Section 5.2] for the k-sphere.

In this section, we use the model Σg (= |Σg•|) for a (compact oriented) surface of genus g
introduced in Section 3.1 with its basepoint {∗}.

Denote by Map(Σg,M) the space of (continuous, non pointed) maps from a surface Σg

to the manifold M , which we assume to be compact and oriented. For two such surfaces
Σg and Σh, denote by Σg ∨ Σh their wedge product, i.e. their disjoint union modulo the
identification of the two basepoints. The space Map(Σg∨Σh,M) denotes the corresponding
mapping space from Σg ∨ Σh to M . Then there are induced maps

Map(Σg,M)×Map(Σh,M)
ρin← Map(Σg ∨ Σh,M)

ρout→ Map(Σg+h,M),

where ρin is given by including to the first and second component in Σg ∨ Σh. For surfaces
with positive genus, ρout is induced by the pinching map Pinchg,h : Σg+h → Σg ∨ Σh given
by the geometric realization of the simplicial map (3.3) Pinchg,h : Σg+h• → Σg•∨Σh• . If g = 0,
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another model for Σh is given by gluing 4 squares

(3.4)

•

•

••

a1
b1

...

· · · ah bh

a−1
h

b−1
h

...

b−1
1 a−1

1 · · ·

where the bulleted edges are collapsed to a point and the other boundary edges are identified
with the word a1b1a2b2 · · · ahbha−1

h b−1
h · · · a−1

2 b−1
2 a−1

1 b−1
1 as for the model (3.1). The pinch-

ing map Pinch0,h : Σh → Σ0 ∨ Σh = Σ0 ∨ Σh is given by

(3.5)

•

•

••

a1
b1

...

· · · ah bh

a−1
h

b−1
h

...

b−1
1 a−1

1 · · ·

=⇒
collapse

•

•

••

a1
b1

...

· · · ah bh

a−1
h

b−1
h

...

b−1
1 a−1

1 · · ·

where all elements in the same dashed line are identified, i.e. collapsed to the same point.

There is a similar pinching map Pinch0,h : Σh → Σh ∨ Σ0 given by

(3.6)

•

•

••

a1

b1

...

· · · ah bh

a−1
h

b−1
h

...

b−1
1 a−1

1 · · ·

=⇒
collapse

•

•

••

a1

b1

...

· · · ah bh

a−1
h

b−1
h

...

b−1
1 a−1

1 · · ·

By collapsing all boundary edges to a point in the model (3.4) and in definition of the map
Pinch0,h (3.5) yields the usual pinching map Pinch0,0 : Σ0 → Σ0 ∨ Σ0 for the dimension 2
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sphere S2 = Σ0. The pinching maps Pinch0,•, Pinch•,0 above induce ρout when one of the
surfaces has genus zero.

Note that the map ρin is given as a pullback of diagrams

Map(Σg ∨ Σh,M)
ρin //

��

Map(Σg,M)×Map(Σh,M)

��
M

diagonal // M ×M
In particular, ρin is an embedding of infinite dimensional manifolds with finite codimension
equal to the dimension of M , codim(ρin) = dim(M) and the associated normal bundle is of
dimension dim(M) and oriented (since M is). Thus, if we denote by Map(Σg ∨Σh,M)−TM

the Thom space of this embedding, there is a Thom class in Hm(Map(Σg ∨ Σh,M)−TM )

inducing the Thom isomorphism

t : H•(Map(Σg ∨ Σh,M)−TM )
∼=→ H•−m(Map(Σg ∨ Σh,M)),

where m = dim(M). Together with the Thom collapse map

τ : Map(Σg,M)×Map(Σh,M)→ Map(Σg ∨ Σh,M)−TM ,

we obtain the following umkehr map,

(ρin)! : H•(Map(Σg,M))⊗H•(Map(Σh,M)) ∼= H•(Map(Σg,M)×Map(Σh,M))

τ∗−→ H•(Map(Σg ∨ Σh,M)−TM )
t−→ H•−m(Map(Σg ∨ Σh,M)).

D 3.2.1. – With this, we define the product ] := (ρout)∗ ◦ (ρin)!,

] : H•(Map(Σg,M))⊗H•(Map(Σh,M))

(ρin)!−→ H•(Map(Σg ∨ Σh,M))
(ρout)∗−→ H•(Map(Σg+h,M))

that we call the surface product.

We denote by H•(Map(Σg,M)) the shifted homology groups H•+dim(M)(Map(Σg,M)).
This shifting makes the surface product a degree zero map.

T 3.2.2. – Let M be a compact oriented manifold. Then the surface product
] : H•(Map(Σg,M))⊗H•(Map(Σh,M))→ H•(Map(Σg+h,M)) is associative.

Proof. – It is well-known that Pinch0,0 : Σ0 → Σ0 ∨ Σ0 is homotopy associative.

From there and Lemma 3.1.2 it follows that (ρout)∗ : H•(Map(Σg ∨ Σh,M))
(ρout)∗−→

H•(Map(Σg+h,M)) is associative. Now the theorem follows from naturality property of
umkehr maps: (ρout)∗ ◦ (ρin)! = (ρin)! ◦ (ρout)∗ as in the usual string topology case (see [1, 8]
for details).

R 3.2.3. – Note that the surface product gives a structure of associative graded
(with respect to the genus) algebra with unit (see Proposition 3.2.5) to

H•
( ⊔

g≥0

Map
(
Σg,M

)) ∼=
⊕

g≥0

H•(Map(Σg,M)).
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There is an obvious embedding ig of M into Map(Σg,M) as constant functions. Thus,
for any g ≥ 0, the fundamental class of M yields a class

[M ]g = ig([M ]) ∈ H0(Map(Σg,M)).

Also note that for genus zero, Σ0 ∼= S2, the surface product restricts to a product
H•(Map(Σ0,M)) ⊗ H•(Map(Σ0,M)) → H•(Map(Σ0,M)). This product is the usual
(dimension 2) Brane Topology product:

P 3.2.4. – The restriction of the surface product (see Definition 3.2.1)
to H•(Map(Σ0,M)) coincides with the Brane topology product H•(Map(S2,M))⊗2 →
H•(Map(S2,M)) see [9, 19]. In particular it is graded commutative with [M ]0 as a unit.

Proof. – The Brane Topology product (for dimension 2-spheres) as defined in [9, Section
5] is induced by a structure of algebra over the homology H•(Cac) of the (2-dimensional)
cactus operad Cac on H•(Map(Σ0,M)). By definition, an element c ∈ Cac(2) is a map
c : S2 → S2 ∨ S2. Thus it induces a map ρin(c) : Map(S2 ∨ S2,M) → Map(S2,M).
The Brane Topology product [9, Section 5.2] is then given by the composition ρout ◦ (ρin(c))!

for any cactus c ∈ Cac(2). The result follows by choosing c = Pinch0,0.

By Theorem 3.2.2, H•(Map(Σg,M)) inherits a left H•(Map(Σ0,M))-module structure
H•(Map(Σ0,M)) ⊗ H•(Map(Σg,M))

]→ H•(Map(Σg,M)) as well as a right module
structure.

P 3.2.5. – H•(Map(Σg,M)) is a (graded) symmetric H•(Map(Σ0,M))-bi-
module, i.e. for any x ∈ H•(Map(Σg,M)), y ∈ H•(Map(Σ0,M)), one has

[M ]0 ] x = x and x ] y = (−1)|y|·|x|y ] x.

Proof. – Note that there is a commutative diagram of pullbacks

MΣg
(ev,id) //

i∨

��

ev

  

M ×MΣg
i0×id

��

id×ev

##

MS2∨Σg
ρin //

q

dd

ev

��

MS2 ×MΣg

ev×ev

��

ev×id

gg

M
diagonal

// M ×M

where q is induced by the inclusion Σg ↪→ S2∨Σg and i∨ is induced by S2∨Σg → Σg, which
collapses the S2 component to a point. Since [M ]0 = i0([M ]), it follows that (ρin)!([M ]0 × x) =

i∨∗
(
(ev, id)!([M ]× x)

)
= i∨(x) and the identity [M ]0 ] x = x follows, since Pinch0,g ◦ i∨ is

homotopic to the identity.

It remains to show that Pinch0,g and Pinchg,0 are homotopic maps Σg → Σ0 ∨ Σg. For
each t ∈ [0, 1], there is a parametrization of Σg obtained by attaching standard squares and
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rectangles and identifying some boundary components as in the following figure:

(3.7)

a1
b1

...

· · · ag bg

a−1
g

b−1
g

...

b−1
1 a−1

1 · · ·
β

α

β−1

α−1

•

•
•

•

S

St

More precisely, the big central square S in Figure (3.7) is a standard square [0, 1]2 while the
small central square St has edges of length t (thus St = [0, t]2). The edges labelled by ais,
bjs and their inverses are identified just in the usual model for Σg, see Figures (3.4) and (3.1).
The edges α and β are of length (1− t)/2. The two bulleted edges are identified to the base
point and the (top right and bottom left) bulleted rectangles are entirely collapsed to the base
point as well. Overall, the parametrization pictured by Figure (3.7) is the square [0, 2]2 with
some boundary elements identified and two sub-rectangles collapsed to the base point.

We now define a pinching map Pinch(t,−) from Σg to Σ0 ∨ Σg. Similar to the pinching
maps Pinch0,g and Pinchg,0, Pinch(t,−) is obtained by collapsing some elements in the
above parametrization (3.7) of Σg to the base point, as shown in the following picture:

a1
b1

...

· · · ag bg

a−1
g

b−1
g

...

b−1
1 a−1

1 · · ·
β

α

β−1

α−1

•

•
•

•

P inch(t,−)
=⇒

collapse

a1
b1

...

· · · ag bg

a−1
g

b−1
g

...

b−1
1 a−1

1 · · ·β

α

β−1

α−1

•
•

•

•

•

•

Here all elements in the same dashed line get identified by the pinching map Pinch(t,−), i.e.
they get collapsed to the same point, and all bulleted rectangles and egdes get collapsed to a
point.

Note that Pinch(1,−) = Pinchg,0. Thus the map Pinch(−,−) : [0, 1] × Σg → Σ0 ∨ Σg

is a homotopy between Pinchg,0 and Pinch(0,−) which is the collapse map given by the
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following figure :

a1
b1

...

· · · ag bg

a−1
g

b−1
g

...

b−1
1 a−1

1 · · ·
β

α

β−1

α−1•

•

P inch(0,−)
=⇒

collapse

a1
b1

...

· · · ag bg

a−1
g

b−1
g

...

b−1
1 a−1

1 · · ·
β

α

β−1

α−1

•
•

•
•

There is a similar homotopy flPinch(−,−) : [0, 1] × Σg → Σ0 ∨ Σg with flPinch(0,−) =

Pinch(0,−) and flPinch(1,−) = Pinch0,g, which is obtained by taking a parametrization
similar to (3.7) but with the small center square above and on the left of the big center
square, i.e, a parametrization “symmetric” to (3.7) with respect to the anti-diagonal. The
composition of the homotopies Pinch(−,−) and flPinch(−,−) yields the desired homotopy
between Pinch0,g and Pinchg,0.

R 3.2.6. – Note that the surface product is not (graded) commutative
in general. For instance if M = S3, the 3-dimensional sphere, then the center of(⊕

g≥0 H•(Map(Σg, S3)),]
)

is H•(Map(Σ0, S3)), see Example 4.4.6.

For any genus g > 0-surface, there is a map πg : Σg → Σ0 ∼= S2 obtained by collapsing
all edges a1, b1, . . . of the 4g-gon to a point. By pullback it yields a map πg : Map(S2,M)→
Map(Σg,M). Hence, a linear morphism πg∗ : H•(Map(S2,M))→ H•(Map(Σg,M)).

P 3.2.7. – Let M be a compact oriented manifold. Then, for g > 0 and
h > 0,

i) the map πg∗ : H•(Map(S2,M)) → H•(Map(Σg,M)) is an H•(Map(S2,M))-module
morphism and satisfies

πg∗(x) ] πh∗ (y) = πg+h∗ (x ] y);

ii) πg∗(x) = x ] [M ]g for any x ∈ H•(Map(S2,M)).

Proof. – From the definitions of Pinchg,h for g, h > 0 (see Lemma 3.1.2 and the ar-
rows (3.5) and (3.6) we easily get that the two maps (πg∨πh)◦Pinchg,h and Pinch0,0◦(πg+h)

are homotopic and further that three maps (πg ∨ id) ◦ Pinchg,0, (id ∨ πg) ◦ Pinch0,g and
Pinch0,0 ◦ (πg) are homotopic to each other. Now the claim i) follows from the naturality
of umkehr maps:

((πg ∨ πh)′)∗ ◦ (ρin)! = (ρin)! ◦ (πg × πh)∗

where (πg ∨ πh)′ : Map(Σ0 ∨ Σ0,M) → Map(Σg ∨ Σh,M) is the natural map induced by
πg ∨ πh : Σg ∨ Σh → Σ0 ∨ Σ0.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



840 G. GINOT, T. TRADLER AND M. ZEINALIAN

By i) and Proposition 3.2.5, it is sufficient to prove claim ii) for x = [M ]0 the unit of
H•(Map(S2,M)). That is to prove that πg∗([M ]0) = [M ]g which follows since πg ◦ i0 = ig
where ig : M ↪→ Map(Σg,M) is the canonical embedding of M as constant maps.

E 3.2.8. – By Proposition 3.2.7 applied to the unit [M ]0, we get, for any g, h > 0

[M ]g ] [M ]h = πg∗([M ]0) ] πh∗ ([M ]0) = πg+h∗ ([M ]0) = [M ]g+h.

In particular, [M ]g and [M ]h commute.

3.3. Surface Hochschild cup product

In this section we give an analogue of the surface product defined in higher Hochschild
cohomology over surfaces. Similarly to the Hochschild homology over a simplicial set,
there are Hochschild cochain complexes associated to any pointed simplicial set Y• (see [15])
defined as follows. Let (A, d) be a differential graded commutative algebra and (M,d) an
A-module viewed as a symmetric bimodule. We define

CHn
Y•(A,M) := Homk

(⊕

k≥0

A⊗yk ,M
)n−k

where the upper index n− k is the total degree of a map A⊗yk → A. A map of pointed sets
γ : Yk → Yl and a linear map f : A⊗yl → M , yield a map γ∗f : A⊗yk → M given, for
a1 ⊗ · · · ⊗ ayk ∈ A⊗yk , by

γ∗f(a1 ⊗ · · · ⊗ ayk) = ±b0 · f(b1 ⊗ · · · ⊗ byl)
where bj≥1 =

∏
i∈f−1(j) ai and b0 =

∏
06=i∈f−1(0) ai. The sign ± is the total Koszul sign

obtained as the sum of (−1)|x|·|y| whenever y moves across x as in Definition 2.1.2. Note
that CH•Y•(A,M) is thus a cosimplicial vector space, with cosimplicial structure induced by
the boundaries di and degeneracies sj of Y•. The differential on CH•Y•(A,M) is given, for
f : A⊗yk → M , by the sum D(f) = (−1)kdf + bf , where df : A⊗yk → M is given, for
a1 ⊗ · · · ⊗ ayk ∈ A⊗yk , by

df (a1 ⊗ · · · ⊗ ayk) = d
(
f(a1 ⊗ · · · ⊗ ayk)

)
+

yk∑

i=1

±f(a1 ⊗ · · · ⊗ d(ai)⊗ · · · ⊗ ayk)

and bf : A⊗yk+1 →M is given, for a1 ⊗ · · · ⊗ ayk+1
∈ A⊗yk+1 , by

bf (a1 ⊗ · · · ⊗ ayk+1
) =

k+1∑

i=0

(−1)i(d∗i f)(a1 ⊗ · · · ⊗ ayk+1
).

Again the ± sign is the Koszul sign as in Definition 2.1.2.

As for homology, the cosimplicial identities imply D2 = 0. We call CH•Y•(A,M) the
Hochschild cochain complex for Y• of A with value in M . We denote by HHn

Y•(A,M) its

cohomology groups. LetX•
f→ Y• be a morphism of pointed simplicial sets. Then, for any k,

we have a map fk : Xk → Yk, thus a map f∗k : Hom(A⊗yk ,M)→ Hom(A⊗xk ,M). Since f is
simplicial, the map f∗k combines to give a cochain complex morphism
f∗ :

(
CH•Y•(A,M), D

)
→
(
CH•X•(A,M), D

)
. The following lemma follows from [15, 25]:
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L 3.3.1. – The higher Hochschild cochain complex CH•Y•(A,M) is covariant in
M , contravariant with respect to A and Y• and preserves homology equivalences, namely, if
f : A → A′, g : M → M ′ are quasi-isomorphisms and γ : X• → Y• induces an isomorphism
in homology , then f∗, g∗ and γ∗ are all quasi-isomorphisms.

3.3.1. The cup product. – We now define a cup product

∪ : HH•Σg•(A,B)⊗HH•Σh• (A,B)→ HH•
Σg+h
•

(A,B)

for the Hochschild cohomology over surfaces, where B is a differential graded commutative
and unital A-algebra, viewed as a symmetric bimodule. We are particularly interested in the
case B = A. Henceforth, we use the simplicial model Σg• of a surface Σg of Section 3.1.

We first consider the case g, h ≥ 1. Since CH•
Σg•

(A,B) is a cosimplicial complex, the
tensor product CH•

Σg•
(A,B) ⊗ CH•

Σh•
(A,B) is bicosimplicial and we have the Alexander-

Whitney quasi-isomorphisms

CH•Σg
i
(A,B)⊗ CH•Σh

j
(A,B)

AW−→ CH•Σg
i+j

(A,B)⊗ CH•Σh
i+j

(A,B)

where the right hand side is equipped with the diagonal cosimplicial structure. Recall that
the Alexander-Whitney map is explicitly given by AW = AW ∗(1) ⊗ AW ∗(2) where AW(1) is

the map [i]
δi+1→ [i+ 1]

δi+2→ · · · δi+j→ [i+ j] (in the category ∆ see Definition 2.1.1) and AW(2)

is the map [j]
δ0→ [1 + j]

δ0→ · · · δ0→ [i+ j].

Let f ⊗ g be in CH•
Σgn

(A,B)⊗ CH•Σhn(A,B), then we define the “wedge”
f ∨ g ∈ CH•(Σg∨Σh)n

(A,B) of f and g by the formula

f ∨ g(a1⊗ · · ·⊗ aσgn ⊗ aσgn+1⊗ · · ·⊗ aσgn+σhn
) = f(a1⊗ · · ·⊗ aσgn) · g(aσgn+1⊗ · · ·⊗ aσgn+σhn

)

where · in the right hand side is the multiplication in the algebra B.

In Section 3.1 we defined the pinching map Pinchg,h : (Σg∨Σh)• → Σg+h• (3.3), which is a
map of pointed simplicial sets. Composing the pinching map with the wedge and Alexander-
Whitney maps, we make the following definition.

D 3.3.2. – For g, h ≥ 1, the cup-product is the composition

∪ : CH•Σg
i
(A,B)⊗ CH•Σh

j
(A,B)

AW→ CH•Σg
i+j

(A,B)⊗ CH•Σh
i+j

(A,B)

∨→ CH•(Σg∨Σh)i+j
(A,B)

Pinch∗g,h→ CH•
Σg+h
i+j

(A,B)

P 3.3.3. – Let B be a (differential graded) commutative A-algebra. The cup
product ∪ : CH•

Σg•
(A,B) ⊗ CH•

Σh•
(A,B) → CH•

Σg+h
•

(A,B) is a map of cochain complexes
and is associative.

Proof. – It is straightforward to check that the wedge map (f, g) 7→ f ∨ g is a morphism
of simplicial modules. Since Pinchg,h is a simplicial morphism and AW a map of chain
complexes, ∪ is a map of cochain complexes. Now the result follows from Lemma 3.1.2 and
the associativity of B.
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We now turn to the genus zero case. Similarly to Section 3.2, there is a HH•
Σ0
•
(A,B)-

module structure on
⊕

g≥1HH
•
Σg•

(A,B). However the module structure is a little bit more
subtle since the standard model for the sphere is slightly different from the other genus
models (we still assume thatB is anA-algebra). Note thatCH•

Σ0
•
(A,B) ∼= CH•

S2
•
(A,B) with

simplicial structure described in Example 2.3.3. Thus, CH•
S2
k

(A,B) = {f : A⊗k
2 → B}.

Let f ∈ CH•S2
p
(A,B) and g ∈ CH•S2

q
(A,B). Then we define f ∪ g ∈ CH•

S2
p+q

(A,B) by the

formula

(3.8) f ∪ g
(
(xi,j)

)
= ±f

(
(xi,j)i,j≤p

)
· g
(
(xi,j)p+1≤i,j

)
·
∏

i ≥ p+ 1

j ≤ p

xi,j ·
∏

i ≤ p
j ≥ p+ 1

xi,j

where (xij) stands for a tensor x1,1 ⊗ · · · ⊗ xp+q,p+q. It is straightforward to check that
(CH•

S2
•
(A,B),∪, D) is a differential graded associative algebra. In fact,

P 3.3.4 ([15] Proposition 3.2 and Remark 1). – The cup-product makes
HH•S2(A,B) a graded commutative algebra.

We now define the cup-product ∪ : CH•
Σ0
•
(A,B) ⊗ CH•

Σg•
(A,B) → CH•

Σg•
(A,B).

Later on, using the edgewise subdivision we will give another model for the cup-product in
Section 3.3.2 (see Definition 3.3.13) which will allow us to define equivalent cup-products for
Hochschild cohomology over different simplicial models for the surfaces.

D 3.3.5. – Let f ∈ CH•
Σ0
k

(A,B) and g ∈ CH•
Σg
l
(A,B), i.e. f : A⊗k

2 → B

and g : A⊗σ
g
l → B, where σgl = #Σgl − 1. We will define f ∪ g ∈ CH•

Σg
k+l

(A,B) and

g ∪ f ∈ CH•
Σg
k+l

(A,B). The idea is to use the Alexander-Whitney diagonal in a slightly

different way. Applying AW(2) : [l]→ [k + l] from above induces a map Σgk+l → Σgl for the
simplicial model described in (3.1), which is given by collapsing certain elements in Σgk+l,

k

k

k

k k k

k

k

k

kkk

l

l

l

l l l

l

l

l

lll

(aij)i,j=1...k

(a′
ij)i,j=k+1...k+l

→

l

l

l

l l l

l

l

l

lll

In particular, all the elements of coordinates (i, j)i,j=1···k in the top left square of Σgk+l are
collapsed to the basepoint in Σgl .
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Let a be a homogeneous element inA⊗σ
g
k+l , and denote by a0j , ai0, ai,j (i, j = 1 · · · k+ l)

the (k+ l)2 +2(k+ l) tensor factors of a corresponding to the top left square in the simplicial
model Σgk+l. Then, in particular, the elements (aij)i,j=1···k get multiplied to the basepoint
under the induced AW(2), but there are also other elements, whose product we denote by∏
c. Then, we may express AW ∗(2)(g)(a) as

AW ∗(2)(g)(a) = ±
( ∏

i,j=1···k
(aij)

)
· g(b) ·

∏
c,

where b, c are certain (products of) subtensors of a ∈ A⊗σ
g
k+l , determined by the mapping

AW(2). With this notation, we define f ∪ g ∈ CH•
Σg
k+l

(A,B) by

f ∪ g (a) = ±f((aij)i,j=1···k) · g(b) ·
∏

c.

Similarly,AW(1) : [k]→ [k+l] induces a map Σgk+l → Σgk, which on the Hochschild cochain
level may be expressed as

AW ∗(1)(g)(a) = ±g(b′) ·
( ∏

i,j=k+1···k+l

(a′ij)
)
·
∏

c′,

where a′i,j (i, j = 1 · · · k + l) are the tensor factors of a corresponding to the lower
right square of Σgk+l, and b′, c′ are determined by AW(1) similarly to the above. Define
g ∪ f ∈ CH•

Σg
k+l

(A,B) by

g ∪ f (a) = ±g(b′) · f((a′ij)i,j=k+1···k+l) ·
∏

c′.

E 3.3.6. – Assume the genus is 1, and g ∈ CH•
Σ1
l

(A,B). We denote by

(ai,j) i, j = 0 · · · l
ij 6= 0

∈ CH
Σ1
k+l
• (A,B) a generic element, i.e. a0,0 ⊗ · · · ⊗ al,l ∈ A⊗(l2+2l+1).

Then, for any f ∈ CH•
Σ0
k

(A,B), one has

f ∪ g(ai,j) = ±f
(
(ai,j)i,j=1···k

)
· g
(
(bi,j) i, j = k · · · k + l

ij 6= k2

)
·
k∏

i=1

c0i · ci,0

where bk,j = a0,j · · · ak,j , bi,k = ai,0 · · · ai,k and bi,j = ai,j for i, j > k, and
c0,i = a0,i, ci,0 = ai,0.

R 3.3.7. – For g = 0, Definition 3.3.5 coincides with Formula (3.8).

Definition 3.3.5 induces a right and a left action of CH•
Σ0
•
(A,B) on CH•

Σg•
(A,B).

L 3.3.8. – The cup product makes CH•
Σg•

(A,B) a differential graded
CH•

Σ0
•
(A,B)-bimodule.

Proof. – It follows from the associativity of A, the fact that B is an A-algebra and from
Formula (3.8) that the cup-product makesCH•

Σ0
•
(A,B) a unital associative algebra with unit
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1B ∈ B ∼= CH0
Σ0

0
(A,B) which is bigraded with respect to both simplicial degree and internal

degree (of A and B). Further, for f ∈ CH•S2
p
(A,B) and g ∈ CH•S2

q
(A,B), note that

d∗p+1(f) ∪ g
(
(ai,j)

)
= ±f

(
(ai,j)i,j≤p

)
·
∏

i,j≤p+1
i or j=p+1

ai,j · g
(
(ai,j)p+2≤i,j

)
·
∏

i≥p+2
j≤p+1

ai,j ·
∏

i≤p+1
j≥p+2

ai,j

= −f ∪ d∗0(g)
(
(ai,j)

)
.

since the total degree |d∗p+1(f)| = 1 + |f |. Hence

b(f)∪ g+ (−1)|f |f ∪ b(g) =

p∑

i=0

(d∗i f) + d∗p+1(f)∪ g+ f ∪ d∗0(g) +

q+1∑

i=1

f ∪ (d∗i g) = b(f ∪ g).

It follows that CH•
Σ0
•
(A,B) is a unital differential graded associative algebra. Similarly, one

proves D(f ∪ g) = D(f) ∪ g ± f ∪D(g).

Now, for any f ∈ CH•Σ0
p
(A,B), g ∈ CH•Σ0

q
(A,B), and h ∈ CH•Σkr (A,B), we may use

Definition 3.3.5 and the fact that AW(2) : [r] → [r + p + q] is equal to the composition

[r]
AW(2)→ [r + q]

AW(2)→ [r + p+ q], to see that

((f ∪ g) ∪ h)(a) = ±(f ∪ g)((aij)i,j=1···p+q) · h(b) ·
∏

c

= f((aij)i,j=1···p) · g((aij)i,j=p+1···p+q) ·∏

1≤i≤p
p+1≤j≤p+q

ai,j ·
∏

p+1≤i≤p+q
1≤j≤p

ai,j · h(b) ·
∏

c

= (f ∪ (g ∪ h))(a)

This is exactly the left module identity. Similarly, the right module identity is obtained by

using the equality of AW(1) : [r]→ [r + p+ q] with the composition [r]
AW(1)→ [r + p]

AW(1)→
[r + p + q], whereas the compatibility of left and right module structure is obtained via the

equality of [r]
AW(1)→ [r + p]

AW(2)→ [r + p+ q] and [r]
AW(2)→ [r + q]

AW(1)→ [r + p+ q].

This bimodule structure is not symmetric at the chain level but as we will discuss it will
induce a symmetric bimodule structure after passing to homology.

3.3.2. Subdivision. – We now give another description of the bimodule structure of
CH•

Σg•
(A,B), by means of the edgewise subdivision. Recall the notations of Definition 2.1.1.

The edgewise subdivision [2, 23] is an endofunctor of the simplicial category ∆ which asso-
ciates, to any simplicial set X•, a simplicial set sd2(X•) whose realization is homeomorphic
to the one of X•. One of its main properties is that the realization of the edgewise subdi-
vision |sd2(∆n

• )| of the standard n-simplex ∆n is a triangulation of |∆n
• | by 2n standard

simplexes. The functor sd2 : ∆→ ∆ is defined by sd2([n− 1]) = [2n− 1], and, for any map,
f : [n− 1]→ [m− 1], by sd2(f) : [2n− 1]→ [2m− 1], sd2(f) : i+ nj 7→ f(i) +mj where
0 6 i 6 n − 1 and j ∈ {0, 1}, see [2]. The edgewise subdivision sd2(X•) of a simplicial set
X• is the composition X• ◦ sd2.

There is a natural homeomorphism D : |sd2(X•)| ∼→ |X•|(see [2, Lemma 1.1]) induced
by the maps ∆n−1 ×X2n−1 → ∆2n−1 ×X2n−1 defined by (u, x) 7→ ((u/2⊕ u/2), x) where
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u = (u0, . . . , un−1) ∈ Rn is such that u0 + · · ·+ un−1 = 1. In [23, Definition 3.3] a natural
chain map D•(2) : C(X•) → C(sd2(X•)) is defined, where C(Y•) is the chain complex
associated to a simplicial set Y•. More precisely, for any x ∈ Xn,

(3.9) D•(2)(x) =
∑

(σ,η)∈ S(2,n)

(−1)σX•(ε(σ,η))(x)

where S(2, n) is the set

S(2, n) = {(σ, η) ∈ Sn ×Hom∆([n− 1], [1]) |σ(i) > σ(i+ 1)⇒ η(i− 1) < η(i)}

and ε(σ,η) : [2n+ 1]→ [n] is defined by

(3.10) ε−1
(σ,η)({j}) = {η(j − 1) · (n+ 1) + σ(j), . . . , η(j) · (n+ 1) + σ(j + 1)− 1}.

McCarthy [23, Proposition 3.4 and Corollary 3.7] proved that D•(2) is a quasi-isomorphism
realizing D−1 in homology and passes to normalized chain complexes.

The following lemma is straightforward.

L 3.3.9. – With the same notation as in Definition 2.1.5, one has a natural
isomorphism sd2(X• ∪Z• Y•) ∼= sd2(X•) ∪sd2(Z•) sd2(Y•).

E 3.3.10. – Recall from Examples 2.3.1 and 2.3.4 the pointed simplicial sets S1
• ,

pt• and I• for the circle, point and interval. Then sd2(S1
n) = {0, . . . , 2n+1}, sd2(ptn) = {0}

and sd2(In) = {0, . . . , 2n+ 2} and it is easy to see that CHsd2(I•)
• (A,M) = B(M,A,A)⊗A

B(A,A,A) where B(M,A,N) is the two sided bar construction and the tensor product
uses the right (resp. left) A-module structure on B(M,A,N) (resp. B(A,A,A)). In fact,
sd2(I•) = I• ∪pt• I•. Further sd2(S1

•) = sd2(I•)∪sd2(pt•) sd2(pt•) where the two endpoints
0 and 2n + 2 of sd2(In) = {0, 2n + 2} get collapsed. In particular the Hochschild chain

complex is CHsd2(S1
n)

• (A,M) = M ⊗A⊗n ⊗A⊗A⊗n with differential

D(a0 ⊗ · · · ⊗ an ⊗ an+1 ⊗ an+2 · · · ⊗ a2n+1) =
2n+1∑

i=0

±a0 ⊗ · · · ⊗ d(ai)⊗ · · · ⊗ a2n+1

+
n−1∑

i=0

(
± a0 ⊗ · · · ⊗ (ai · ai+1)⊗ · · · ⊗ a2n+1 ± a0 ⊗ · · · ⊗ (an+1+i · an+i+2)⊗ · · · ⊗ a2n+1

)

± (a2n+1 · a0)⊗ a1 ⊗ · · · ⊗ a2n ± a0 ⊗ · · · ⊗ (an · an+1)⊗ an+2 ⊗ · · · ⊗ a2n+1.

Similarly, the edgewise subdivision sd2(I2
• ) of a square is canonically identified with the

wedge

of four standard squares I2
• .
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Using Section 3.1 and Lemma 3.3.9, we obtain that sd2(Σg•) is a wedge of 4g2 squares and
4g(g− 1) triangles (where a model for a triangle is given by a square with an edge collapsed
to a point). For instance, for a surface of genus 3, we obtain the following model

(3.11)

a′1

b′1

a′2

b′2 a′3 b′3

a′3
−1

b′3
−1

a′2
−1

b′2
−1

a′1
−1

b′1
−1

a1

b1

a2

b2 a3 b3

a−1
3

b−1
3

a−1
2

b−1
2a−1

1b−1
1

3.3.3. Cup product via subdivision. – The reason for introducing the edgewise subdivison is
that, for any positive genus surface Σg, there is a pinching map P0,g : sd2(Σg•) → Σ0

• ∨ Σg•,
which is a simplicial. The map P0,3 : sd2(Σ3

•)→ Σ0
• ∨ Σ3

• is given by the following picture:

(3.12)

•
•

a1

b1

a2

b2 a3 b3

a−1
3

b−1
3

a−1
2

b−1
2a−1

1b−1
1

••

•

••

•

••

•

•• •

•• • •• •

•

•

P0,3−→

a1

b1

a2

b2 a3 b3

a−1
3

b−1
3

a−1
2

b−1
2a−1

1b−1
1

•
•
•

•

Here, the bulleted squares and triangles are all collapsed to a point, and all elements in the
same dashed line are identified, i.e. they are collapsed to the same point. Note that all
the squares above the diagonal that are obtained by gluing two triangles, are collapsed by
P0,3 in the same way. Similarly, all squares below the diagonal that are obtained by gluing
two triangles are collapsed by P0,3 in the same way, which is symmetric (with respect to the
diagonal) to the one above the diagonal.

For general g > 0, the map P0,g : sd2(Σg•)→ Σ0 ∨Σg• is defined similarly, using the same
identifications for the diagonal squares and off-diagonal squares as for P0,3.

L 3.3.11. – P0,g : sd2(Σg•)→ Σ0 ∨ Σg• is a map of pointed simplicial sets.
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Proof. – As in the proof of Lemma 3.1.2, this follows from the fact that P0,g is obtained
as a wedge along an edge or a vertex of collapse maps T• → pt• of a triangle to a point or
of a triangle to an edge T• → I•.

R 3.3.12. – The induced map P0,g∗ : CH
sd2(Σgn)
• (A,M) → CH

Σ0
n∨Σgn• (A,M)

can be seen as follows. Recall from Examples 2.3.2 and 2.3.3 that each square in the model
for sd2(Σg•) contributes to (n+ 2)2-tensors in CHsd2(Σgn)

• (A,M), which can be indexed as a
(n+ 2)× (n+ 2)-matrix. Similarly, each triangle contributes (n+ 1)(n+ 2) + 1 tensors in
CH

sd2(Σgn)
• (A,M), which can be indexed as a⊗M , where M is an (n+ 2)× (n+ 1)-matrix.

By construction, sd2(Σg) is obtained by gluing subdivided squares sd2(I2
• ) and triangles

sd2(T•) = sd2(I•)/ ∼ along edges and vertices. Then P0,g∗ : CH
sd2(Σgn)
• (A,M) →

CH
Σ0
n∨Σgn• (A,M) is the map which multiplies together the first n + 1 columns and the first

n + 1 rows of the matrix corresponding to each subdivided square (except for the top left
square) or triangle. In other words, it is obtained by applying the (n + 1)-th power (d0)◦n

of the face map d0 to each subdivided triangle or square (except for the top left square) in
sd2(Σgn).

We now define a left action of CH•
Σ0
•
(A,B) on CH•

Σg•
(A,B) which we will show to be

equivalent to the one given in Definition 3.3.5 above.

D 3.3.13. – For g ≥ 1, we define a cup-product ∪̃ as the composition

∪̃ : CH•Σ0
i
(A,B)⊗ CH•Σg

j
(A,B)

AW→ CH•Σ0
i+j

(A,B)⊗ CH•Σg
i+j

(A,B)

∨→ CH•(Σ0∨Σg)i+j
(A,B)

P∗0,g→ CH•sd2(Σg
i+j

)(A,B)
D•(2)∗→ CH•Σg

i+j
(A,B).

P 3.3.14. – The cup-product ∪̃ : CH•Σ0
•
(A,B)⊗ CH•Σg•(A,B)→ CH•Σg•(A,B)

is a cochain map. Furthermore, if f ∈ CH•
Σ0
•
(A,B) and α ∈ CH•

Σg•
(A,B) are normalized

cochains, then f ∪ α = f ∪̃ α.

In particular, Definitions 3.3.13 and 3.3.5 coincide on normalized cochains and thus in
cohomology.

Proof. – By Lemma 3.3.11, P0,g
∗ is a morphism of cochain complexes. SinceAW ,∨, and

D•(2) are also chain maps, it follows that ∪̃ is a cochain map, too.
Now, assume f ∈ CH•Σ0

p
(A,B) and α ∈ CH•

Σgq
(A,B) are normalized cochains, and

set n = p + q. Recall from Definition 2.1.4, that “normalized” means that we divide the
Hochschild chains CHY•• (A,M) by the degeneracies, and dually we take the subcomplex of
CH•Y•(A,M) vanishing on these degeneracies. In particular f

(
(aij)1≤i,j≤p)

)
= 0 whenever

there exists an i such that ai,j = aj,i = 1 for all j, i.e. if the matrix of the (aij) has only ones
in the i-th column and the i-th row.

By definition of the edgewise subdivision functor, a cochain inCH•
sd2(Σgn)

(A,B) is a linear

mapA⊗σ
g
2n+1 → B, where σg2n+1 = #Σg2n+1−1. For any x ∈ A⊗σ

g
2n+1 , note that (f ∪̃α)(x)

is given by the composition,

(f ∪̃ α)(x) = (AW(1)(f) ∨AW(2)(α))((P0,g)∗ ◦ D•(2)∗(x)).
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Here, AW(1)(f) ∨ AW(2)(α) : A⊗#(Σ0∨Σg)n−1 ∼= A⊗σ
0
n ⊗ A⊗σgn → B is given by mapping

x′ ⊗ x′′ ∈ A⊗σ0
n ⊗ A⊗σgn to the product AW(1)(f)(x′) · AW(2)(α)(x′′) in B. Furthermore,

by Formula (3.9), (P0,g)∗ ◦ D•(2)∗(x) ∈ A⊗σ0
n ⊗ A⊗σgn is given by a sum of terms indexed

by (σ, η) ∈ S(2, n),

(P0,g)∗ ◦ D•(2)∗(x) =
∑

(σ,η)

x̃(σ,η) ∈ A⊗σ
0
n ⊗A⊗σgn .

We claim thatAW(1)(f)∨AW(2)(α) applied to x̃(σ,η) vanishes for all (σ, η) except in one case

(σ̄, η̄), where σ̄ = id{1,...,p+q} and η̄(i) =

{
0, for i ≤ p
1, for i > p.

In fact, x̃(σ,η) = (P0,g)∗◦ε∗(σ,η)(x),

where the map ε(σ,η) : ∆→ ∆ is defined by Formula (3.10). From Formulas (3.9) and (3.10)
we see that when σ(1) 6= 1 or η(1) 6= 0, we need to apply a degeneracy (s0)∗ to x, so
that the first row and the first column of the A⊗σ

0
n factor of x̃(σ,η) are ones, and thus the

normalized cochain AW(1)(f) is applied to a generate element, making the term vanishing.
Similar arguments apply to σ(i) 6= 2 or η(i) 6= 0, for i = 2, . . . , p. For i > p, and σ(i) 6= i or
η(i) 6= 1, we obtain a degenerate element in A⊗σ

g
q , vanishing on the AW(2)(α) factor.

It is now straightforward to check, that (AW(1)(f) ∨ AW(2)(α))((P(0,g))∗(x̃(σ̄,η̄))) mul-
tiplies the tensor factors of x exactly as in Definition 3.3.5, showing that this is equal to
(f ∪ g)(x).

In order to give a similar right action of CH•
Σ0
•
(A,B) on CH•

Σg•
(A,B), we define a

pinching map Pg,0 : sd2(Σg•) → Σ0
• ∨ Σg•. The map P3,0 : sd2(Σ3

•) → Σ0
• ∨ Σ3

• is given
by the following picture:

(3.13)

•
•

a′1

b′1

a′2

b′2 a′3 b′3

a′3
−1

b′3
−1

a′2
−1

b′2
−1

a′1
−1

b′1
−1

•
• •

•
• •

•
• •• •

•

• •

•

• •

•

•

•
P3,0−→

a′1

b′1

a′2

b′2 a′3 b′3

a′3
−1

b′3
−1

a′2
−1

b′2
−1

a′1
−1

b′1
−1

•
•
•

•

Again, the bulleted squares and triangles are all collapsed to a point, and all elements in the
same dashed line are identified, i.e. they are collapsed to the same point. Note that all the
squares above the diagonal that are obtained by gluing two triangles are collapsed by P3,0 in
the same way. And similarly all the squares below the diagonal that are obtained by gluing
two triangles are collapsed by P3,0 in the same way, which is symmetric (with respect to the
diagonal) to the one above the diagonal.
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For general g > 0, the map Pg,0 : sd2(Σg•)→ Σ0
• ∨Σg• is defined similarly, using the same

identifications for the diagonal squares and off-diagonal squares as for P3,0. Note that the
identifications on the squares describing Pg,0 are symmetric to those describing P0,g.

D 3.3.15. – For g ≥ 1, we define a right action by ∪̃ as the composition

∪̃ : CH•Σg
i
(A,B)⊗ CH•Σ0

j
(A,B)

AW→ CH•Σg
i+j

(A,B)⊗ CH•Σ0
i+j

(A,B)

∨→ CH•(Σg∨Σ0)i+j
(A,B)

P∗g,0→ CH•sd2(Σg
i+j

)(A,B)
D•(2)∗→ CH•Σg

i+j
(A,B).

An argument similar to the one of Proposition 3.3.14 shows that

P 3.3.16. – The cup-product ∪̃ : CH•
Σg•

(A,B) ⊗ CH•
Σ0
•
(A,B) →

CH•
Σg•

(A,B) is a cochain map. Furthermore, if f ∈ CH•
Σ0
•
(A,B) and α ∈ CH•

Σg•
(A,B) are

normalized cochains, then α ∪ f = α ∪̃ f .

In particular, Definition 3.3.15 and Definition 3.3.5 coincide on normalized cochains and
therefore also in cohomology.

3.3.4. Properties of the cup product. – The cup product is not symmetric on cochains.
However, for B = A, and passing to cohomology, we obtain

P 3.3.17. – HH•
Σg•

(A,A) is a (graded) symmetric HH•
Σ0
•
(A,A) ∼=

HH•S2(A,A)-bimodule.

Proof. – By Lemma 3.3.8 and Proposition 3.3.4, we only need to prove that
f ∪ α = α ∪ f ∈ HH•

Σg•
(A,A) for any f ∈ HH•

Σ0
•
(A,A) and α ∈ HH•

Σg•
(A,A). We

are going to use an argument similar to the one from Proposition 3.2.5. To do so, we use the
Hochschild cochain complexes CH•

S•(|Σh• |)
(A,A) of A over the simplicial set S•(|Σh• |) (see

Definitions 2.2.1 and 2.2.3). The natural map η : Σh• → S•(|Σh• |) induces the cochain map

η∗ : CH•S•(|Σh• |)(A,A)→ CH•Σh• (A,A)

which is a quasi-isomorphism by Lemma 3.3.1. Similarly the natural inclusion

S•(|Σh• |) ∨ S•(|Σg•|)
i
↪→ S•(|Σh• | ∨ |Σg•|) induced by the canonical maps Σg ↪→ Σg ∨ Σh and

Σh ↪→ Σg ∨ Σh yields a quasi-isomorphism

CH•S•(|Σh• |∨|Σg•|)(A,A)
i∗→ CH•S•(|Σh• |)∨S•(|Σg•|)(A,A).

We define the map µ0,h : HH•
S•(|Σ0

•|)(A,A)⊗HH•
S•(|Σh• |)

(A,A)→ HH•
S•(|Σh• |)

(A,A) to be
the composition

µ0,h : HH•S•(|Σ0
•|)(A,A)⊗HH•S•(|Σh• |)(A,A)

∨◦AW−→ HH•S•(|Σ0
•|∨|Σh• |)(A,A)

(i∗)−1

−→ HH•S•(|Σ0
•|)∨S•(|Σh• |)(A,A)

Pinch∗0,h−→ HH•S•(|Σh• |)(A,A)
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where the wedge map ∨ and Alexander-Whitney map AW are defined as in Defini-
tion 3.3.2 and Pinch0,h is the map (3.5) defined in Section 3.1. Similarly we define the map
µh,0 : HH•

S•(|Σh• |)
(A,A)⊗HH•

S•(|Σ0
•|)(A,A)→ HH•

S•(|Σh• |)
(A,A) as the composition

µh,0 : HH•S•(|Σh• |)(A,A)⊗HH•S•(|Σ0
•|)(A,A)

∨◦AW−→ HH•S•(|Σh• |∨|Σ0
•|)(A,A)

(i∗)−1

−→ HH•S•(|Σh• |)∨S•(|Σ0
•|)(A,A)

Pinch∗h,0−→ HH•S•(|Σh• |)(A,A).

Since η : X• → S•(|X•|) is the natural map which sends any element x ∈ Xn to the map

η(x) : ∆n id×x−→ ∐
i∈N ∆i ×Xi → |X| (see Definition 2.2.1), there is a natural factorization

X• ∨ Y•
η∨ //

η
**

S•(|X•|) ∨ S•(|Y•|)

i

��
S•(|X•| ∨ |Y•|)

and furthermore the following diagrams are commutative

CH•
S•(|Σ0

•|)∨S•(|Σh• |)
(A,A)

η∗∨
��

CH•
S•(|Σ0

•|∨|Σh• |)
(A,A)

η∗

��

i∗oo |P0,h|∗ // CH•
S•(|sd2(Σh• )|)(A,A)

η∗

��
CH•(Σ0∨Σh)•

(A,A) CH•(Σ0∨Σh)•
(A,A)idoo

P∗0,h // CH•
sd2(Σh• )

(A,A),

CH•
S•(|Σ0

•|)(A,A)⊗ CH•
S•(|Σh• |)

(A,A)

η∗⊗η∗
��

∨◦AW // CH•
S•(|Σ0

•|)∨S•(|Σh• |)
(A,A)

η∗∨
��

CH•
Σ0
•
(A,A)⊗ CH•

Σh•
(A,A)

∨◦AW
// CH•(Σ0∨Σh)•

(A,A).

Now it follows from Proposition 3.3.14 and the fact that |P0,h| ◦ D−1 : Σh → Σ0 ∨ Σh is
homotopic to Pinch∗0,h that, for any f ∈ HH•

S•(|Σ0
•|)(A,A) and α ∈ HH•

S•(|Σh• |)
(A,A) one

has

(3.14) η∗(f) ∪ η∗(α) = η∗(µ0,h(f, α)) in HH•Σh• (A,A).

In other words, η is a map of left modules. Similarly, using Proposition 3.3.16 and the
Pinching map Ph,0 (3.13) instead of P0,h, one proves that

(3.15) η∗(α) ∪ η∗(f) = η∗(µh,0(α, f)) in HH•Σh• (A,A).

Thus η is also a map of right modules and it is sufficient to prove thatµ0,h = µh,0 which easily
follows from the fact that Pinch0,h and Pinchh,0 are homotopic as in Proposition 3.2.5.

We can now state the main result of this section.

T 3.3.18. – Let (A, dA) be a differential graded commutative algebra.

i) The cup product (Definitions 3.3.2 and 3.3.5) makes
⊕

g≥0HH
•
Σg•

(A,A) into an
associative algebra which is bigraded with respect to the total degree grading and the
genus of the surfaces. Furthermore,

⊕
g≥0HH

•
Σg•

(A,A) is unital with unit being the
cohomology class [1A] ∈ HH0

Σ0
•
(A,A) ∼= H0(A, dA).
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ii) HH•
Σ0
•
(A,A) lies in the center of

⊕
g≥0HH

•
Σg•

(A,B).

Note that, by construction,
⊕

g≥0HH
•
Σg•

(A,B) is also graded with respect to the cosim-
plicial degree and thus is in fact trigraded.

Proof. – i) By Proposition 3.3.3 and Lemma 3.3.8 we are left to prove that for any
α, β ∈ HH•

Σ•>0
•

(A,A) and f ∈ HH•
Σ0
•
(A,A) one has

α ∪ (β ∪ f) =
(
α ∪ β

)
∪ f,(3.16)

(f ∪ α) ∪ β = f ∪
(
α ∪ β

)
and(3.17)

(
α ∪ f

)
∪ β = α ∪

(
f ∪ β

)
.(3.18)

It is straightforward to check that the first two identities (3.17) and (3.16) hold already for
cochains. It follows from Proposition 3.3.17 and identities (3.16) and (3.17) that

(
α ∪ f

)
∪ β =

(
f ∪ α

)
∪ β = f ∪

(
α ∪ β

)
=
(
α ∪ β

)
∪ f = α ∪

(
f ∪ β

)

hence identity (3.18) holds.

According to its definition, the cup-product is graded with respect to the cosimplicial
degree, total degree and genus degree on cochains, and hence in cohomology. Let a ∈
CH•

Σ0
0
(A,A) ∼= A. Then for any α ∈ CH•

Σgn
(A,A) (with g, n ≥ 0), one has a ∪ α = a · α

(where · is the multiplication in A). Similarly α ∪ a = α · a. In particular, [1A] is a unit for
the cup-product and statement i) follows.

ii) is an obvious corollary of Proposition 3.3.17.

R 3.3.19. – Neither Theorem 3.3.18 (i) nor part (ii) hold at the cochain complex
level:

⊕
g≥0 CH

•
Σg•

(A,B) is not associative. In fact for any f ∈ CH•
Σ0
k≥1

, β ∈ CH•
Σ
g≥1

l≥1

,

γ ∈ CH•
Σ
h≥1

m≥1

, a straightforward inspection shows that

(β ∪ f) ∪ γ 6= ±β ∪ (f ∪ γ), and β ∪ f 6= ±f ∪ β.
Also note that Theorem 3.3.18 (i) can be proved by an argument similar to the one of
Proposition 3.3.17, namely by using the homotopy associativity of the maps Pinchh,0 and
Pinch0,g and the singular model CH•

S•(|Σg•|)(A,A) for the Hochschild cohomology modeled
on a surface of genus g.

The cup product is natural and homotopy invariant.

P 3.3.20. – Let B be a commutative A-algebra.

– If B
f→ B′ is a quasi-isomorphism of A-algebras, then f∗ :

⊕
g≥0HH

•
Σg•

(A,B) →⊕
g≥0HH

•
Σg•

(A,B′) is an isomorphism of algebras.

– If A′
g→ A is a quasi-isomorphism of algebras, then g∗ :

⊕
g≥0HH

•
Σg•

(A,B) →⊕
g≥0HH

•
Σg•

(A′, B) is an isomorphism of algebras.

Proof. – This follows from Lemma 3.3.1.

Since quasi-isomorphic differential graded commutative algebras are connected by a
zigzag of quasi-isomorphism of algebras, Proposition 3.3.20 has an immediate corollary.
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C 3.3.21. – Let A and A′ be quasi-isomorphic differential graded commutative
algebras. Then

⊕
g≥0HH

•
Σg•

(A,A) and
⊕

g≥0HH
•
Σg•

(A′, A′) are naturally isomorphic as
algebras.

There is a (pointed) simplicial map πg• : Σg• → S2
• obtained by collapsing all but the top

left square in the simplicial model Σg• (see picture (3.1)) to a point. Note that in particular it
collapses the boundary of this top left square to a point. Similarly to the topological situation

(Proposition 3.2.7), this yields a map HH•
Σ0
•
(A,B)

(πg•)
∗

−→ HH•
Σg•

(A,B).

P 3.3.22. – Let B be a commutative A-algebra. Then

– The map (πg•)∗ is an HH•
Σ0
•
(A,B)-module morphism.

– If B is unital, then (πg•)∗(α) = α∪ [1B ]g where [1B ]g ∈ HH0
Σg•

(A,B) is the class of 1B .

Proof. – Let α ∈ CH•Σ0
p
(A,B) and β ∈ CH•Σ0

q
(A,B) and x ∈ A⊗σ

g
p+q be a homogeneous

element, where σgp+q = #Σgp+q − 1. We can write x =
(⊗

i,j≤p+q ai,j
)
⊗ y, where the ai,j ’s

are the tensor factors of x corresponding to the top left square of Σgp+q. Furthermore, y can
be written as a tensor y = y1⊗· · ·⊗ ysg

p+q
where sgp+q = σgp+q− (p+ q)2. Formula (3.8) and

Definition 3.3.5 imply that

(πg•)
∗(α ∪ β)(x) = (α ∪ β) ((ai,j)i,j=1···p+q) ·

sg
p+q∏

k=1

yk

= α
(
(ai,j)i,j≤p

)
· β
(
(ai,j)i,j≥p+1

)
·
∏

i ≤ p
j ≤ q

ai,p+j · aj+p,i ·
sg
p+q∏

k=1

yk

= α ∪ (πg•)
∗(β)(x).

Note that 1B ∈ CH0
Σg0

(A,B) has cosimplicial degree 0. SinceAW(2) : [p]→ [0] is the unique

map to {0}, we get from Definition 3.3.5 that for any x =
( ⊗
i,j≤p

ai,j
)
⊗ y ∈ A⊗σgp , one has

α ∪ [1B ]g(x) = α
(
(ai,j)i,j≤p

)
·
sgp∏

k=1

yk = (πg•)
∗(α ∪ 1B)(x).

R 3.3.23. – Note that there is a simplicial inclusion inc• : pt• → Σg• and
projection proj• : Σg• → pt• between the point and the surface, with proj• ◦ inc• = idpt• .
SinceB ∼= CH•P0

(A,B), we see thatB becomes a subcomplex ofCH•
Σg•

(A,B) with a natural
splitting induced by inc• and proj•. Thus, H•(B) is a direct summand of HH0

Σg•
(A,B).

R 3.3.24. – Let M be a differential graded A-module. Since the pinching maps
are pointed, one can extend Definition 3.3.2, Definition 3.3.5, the results of
Theorem 3.3.18, and Proposition 3.3.20 to give to

⊕
g≥0HH

•
Σg•

(A,M) the structure of
a
⊕

g≥0HH
•
Σg•

(A,A)-bimodule, which is natural and homotopy invariant.
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3.4. Topological identification of the cup product

Let M be a simply connected compact manifold and denote by Ω = Ω•M its de Rham
cochain algebra and Ω∗ = Hom(Ω, k) its dual. By Theorem 3.2.2, (H•(Map(Σ•,M)),]) is
an associative bigraded algebra. So is (HH•Σ••(Ω,Ω),∪) by Theorem 3.3.18. In this section,
we show that, similarly to the situation in string topology [8, 11, 13], the algebraic and
topological constructions coincide. First notice that

L 3.4.1. – There are natural “Poincaré duality” isomorphisms

P : HH
•−dim(M)

Σg•
(Ω,Ω∗)

'→ HH•Σg•(Ω,Ω), P : HHΣg•• (Ω,Ω)
'→ HH

Σg•
•−dim(M)(Ω,Ω

∗)

which are functorial with respect to smooth oriented maps between manifolds of the same
dimension.

Proof. – The lemma follows since the natural map
∫

: Ω → Ω∗, ω 7→
∫
ω ∧ − is a bi-

module quasi-isomorphism.

Using Section 2.2, we have the Chen iterated integral morphism

( I tΣ
g
•)∗ : H•(Map(Σg,M))→ HH−•

Σg•
(Ω,Ω∗)

which is an isomorphism if M is 2-connected, see Corollary 2.5.5. Composing the iterated
integral map with Poincaré duality from Lemma 3.4.1, yields a linear map
(3.19)

I tΣ
•

:
⊕

g≥0

H•(Map(Σg,M))
⊕( I tΣ

g
• )∗−→
⊕

g≥0

HH
−•− dim(M)

Σg•
(Ω,Ω∗)

⊕ P−→
⊕

g≥0

HH−•
Σg•

(Ω,Ω)

that we call the dualized iterated integral.

T 3.4.2. – Let M be a 2-connected compact manifold. The dualized iterated
integral I tΣ

•
: (
⊕

g≥0 H•(Map(Σg,M)),]) → (
⊕

g≥0HH
−•
Σg•

(Ω,Ω),∪) is an isomorphism
of algebras.

The proof of Theorem 3.4.2 is given in Section 3.5 below.

C 3.4.3. – LetM,N be 2-connected compact manifolds with equal dimensions,
and let i : M → N be a homotopy equivalence. Then

i∗ :
(⊕

g≥0

H•(Map(Σg,M)),]
)
→
(⊕

g≥0

H•(Map(Σg, N)),]
)

is an isomorphism of algebras.

In particular, the surface product is homotopy invariant for 2-connected manifolds.

R 3.4.4. – The evaluation map eg : Map(Σg,M)→M has a section
ig : M → Map(Σg,M) given by the constant surfaces at a point. It follows that
H•(Map(Σg,M)) contains M as a direct summand. It is easy to check that this direct
summand coincides with the summand H•(CH•pt•

(Ω,Ω)) from Remark 3.3.23 under the

isomorphism I tΣ
•
. In particular, I tΣ

•
([1Ω]) = [M ]0 and it follows from Proposition 3.2.7

and Proposition 3.3.22, that πg coincides with πg• under the dualized iterated integral map.
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3.5. Proof of Theorem 3.4.2

We follow an idea of Félix-Thomas [11], using rational homotopy theory techniques. To
do so, we need to consider dual analogues of the surface product and cup product.

The construction of the surface product is easily dualized. Similarly to Section 3.2, the
embedding ρin : Map(Σg∨Σh,M)→ Map(Σg,M)×Map(Σh,M) of codimension dim(M)

induces an umkehr map in cohomology

(ρin)! : H•(Map(Σg ∨ Σh,M)→H•+m(Map(Σg,M)⊗Map(Σh,M))

∼=
(
H•(Map(Σg,M))⊗H•(Map(Σh,M))

)•+m
,

dual to (ρin)!. Thus, for k = g + h, we can define a linear map

δg,h : H•−dim(M)(Map(Σk,M))→ H•(Map(Σg,M))⊗H•(Map(Σh,M))

as the composition

δg,h : H•−dim(M)(Map(Σk,M))
(ρout)

∗
−→ H•−dim(M)(Map(Σg ∨ Σh,M))

(ρin)!

−→ H•(Map(Σg,M))⊗H•(Map(Σh,M)).

L 3.5.1. – The surface product ] : H•(Map(Σg,M)) ⊗ H•(Map(Σh,M)) →
H•−dim(M)(Map(Σk,M)) is the dual of the map δg,h.

We now want to dualize the Hochschild cup product for surfaces. Since M is a Poincaré
duality space, by the main result of [20], there exists a differential graded commutative alge-
bra (A, d), weakly equivalent to (Ω•M,ddR), which is simply connected, finite dimensional
and is equipped with a trace Adim(M) ε→ R such that:

– the pairingsAi⊗Adim(M)−i ·→ Adim(M) ε→ R are non degenerate (where the first map
is the multiplication in A);

– ε ◦ d = 0;
– the induced pairing on cohomology 〈· , ·〉 : H•(A) ⊗ Hdim(M)−•(A) → R coin-

cides with the Poincaré duality pairing of H•(Ω•M) ∼= H•(M) through the weak-
equivalence between A and Ω.

It follows that the map a 7→ 〈a, ·〉 is a linear isomorphism of symmetric A-bimodules
Ξ : A• → (A∗)•−dim(M) and furthermore the composition

(3.20) µ : A∗ ⊗A∗ Ξ−1⊗Ξ−1

−→ A⊗A ·−→ A
Ξ−→ A∗

is a degree + dim(M) graded commutative and associative multiplication on (A∗, d∗). Note

that µ is a model for the umkehr mapH•(M)⊗H•(M) ∼= H•(M×M)
diag!

−→ H•+dim(M)(M)

of the diagonal M
diag−→ M ×M . By Proposition 3.3.20, there is a natural isomorphism of

algebras
(
⊕

g≥0

HH•Σg•(A,A),∪) ∼= (
⊕

g≥0

HH•Σg•(Ω,Ω),∪).

The map µ from (3.20) has the composition

(3.21) ∇ : A
Ξ−→ A∗

·∗=(µ∗)∗−→ A∗ ⊗A∗ Ξ−1⊗Ξ−1

−→ A⊗A
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as a dual map. Clearly, ∇ is a model for the umkehr map H•+dim(M)(M)
diag!−→

H•(M ×M) ∼= H•(M) ⊗ H•(M). Since Ξ : A → A∗ is an isomorphism of A-bimodules
(of degree −dim(M)), Ξ∗ : HH•

Σg•
(A,A)→ HH

•−dim(M)

Σg•
(A,A∗) is an isomorphism, hence

there is a duality isomorphism

(3.22) Θ : HH
•+dim(M)

Σg•
(A,A) ∼= HH•Σg•(A,A

∗) ∼=
(
HHΣg•• (A,A)

)∗
.

Further, sinceA is commutative, the multiplicationA⊗A ·→ AmakesA anA⊗A-module
and, since Ξ is an isomorphism of A-bimodules, the map ∇ : A → A ⊗ A above (3.21) is a
map of A⊗A-modules. For any k ∈ ∆,∇ induces a linear map

(3.23)

∇̃ : CH
(Σg∨Σh)k
•+dim(M)(A,A)

∇∗→ CH
(Σg∨Σh)k
• (A,A⊗A) ∼= CH

Σg
k• (A,A) ⊗ CH

Σhk• (A,A)

where the last isomorphism follows as in Example 2.3.4 and ∇∗ is the result of applying ∇
to the sole module in the Hochschild complex (not the algebra).

L 3.5.2. – The map ∇̃ : CH(Σg∨Σh)•(A,A)→ CH
Σg•• (A,A)×CHΣh•• (A,A), where

the right hand side is the tensor product equipped with the diagonal simplicial structure (cf.
Definition 2.4.1), is a morphism of the underlying chain complexes.

Proof. – Note that there is a canonical identification CH
Σg•• (A,A) × CH

Σh•• (A,A) ∼=
CH

(ΣgtΣh)•
• (A,A) and furthermore thatCHpt•• (A,A) andCH

(pt
∐

pt)•
• (A,A) are the con-

stant simplicial algebras A and A⊗A respectively, see Example 2.3.4. Hence it follows from
Lemma 2.1.6 that ∇̃ is the composition

CH
(Σg∨Σh)•
• (A,A) ∼= A ⊗

A⊗A
CH

(ΣgtΣh)•
• (A,A)

∇ ⊗
A⊗A

id

−→ (A⊗A) ⊗
A⊗A

CH
(ΣgtΣh)•
• (A,A) ∼= CHΣg•• (A,A)× CHΣh•• (A,A).

Since∇ is a map of A⊗A-modules, the result follows.

3.5.1. Positive genus surfaces. – We first consider the case of surfaces of positive genus.

Since ∆ is the dual (through the duality isomorphism Ξ) of the multiplicationA⊗A ·→ A,
we deduce from Lemma 3.5.2 and the Definition (3.22) of Θ the following lemma.

L 3.5.3. – For g, h > 0, the duality isomorphism Θ (given by (3.22)) identifies the
cup product HH•

Σg•
(A,A)⊗HH•

Σh•
(A,A)

∪→ HH•
Σg+h
•

(A,A) with the composition

∆g,h : HH
Σg+h
•
•+dim(M)(A,A)

(Pinchg,h)∗−→ HH
(Σg∨Σh)•
•+dim(M)(A,A)

∇̃−→ H•
(
CHΣg•• (A,A)× CHΣh•• (A,A)

) AW−→ HHΣg•• (A,A)⊗HHΣh•• (A,A).

By [25], there is a natural weak equivalence CHΣg

• (A,A) ∼= CHΣg

• (Ω,Ω) (for any
genus g). SinceCHΣg•• (A,A) is a semi-free model (see [10, Section 7]) ofA as anA-bimodule,
and I tΣ

g

: CH
Σg•• (Ω,Ω)→ C•(MΣg ) is a quasi-isomorphism (Proposition 2.5.3), it follows

that CHΣg

• (A,A) is a cochain model for Map(Σg,M).
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P 3.5.4. – If g, h > 0, then the map ∆g,h : HH
Σg+h
•
•+dim(M)(A,A) →

HH
Σg•• (A,A) ⊗ HH

Σh•• (A,A) (defined in Lemma 3.5.3) is a cochain model for the map
δg,h : H•−dim(M)(Map(Σk,M))→ H•(Map(Σg,M))⊗H•(Map(Σh,M)).

Proof. – The Alexander-Whitney map of simplicial modules and Künneth formula yield

an isomorphism H•
(
CH

Σg•• (A,A) × CHΣh•• (A,A)
) ∼= HH

Σg•• (A,A) ⊗HHΣh•• (A,A). Since
CHΣg

• (A,A), CHΣg

• (A,A) are models for Map(Σh,M)) and Map(Σh,M), we are left to
prove that the maps (Pinchg,h)∗ and ∇̃ in Lemma 3.5.3 are respectively cochain models of
(ρout)

∗ and (ρin)!. Thus, the result follows from Lemma 3.5.6 and Lemma 3.5.7 below.

The next lemma gives a model for the evaluation map ev : Map(Σg,M)→M . There is a
canonical quasi-isomorphism of differential graded algebras (A, dA) = (CH

pt0• (A,A), dA) ↪→
(CH

pt•• (A,A), D), see Example 2.3.4. By composition with the unique pointed map
pt• → Σg•, it yields the map e : (A, dA) → (CH

Σg•• (A,A), D) which is a map of differential
graded algebras and thus a map of A-modules. Clearly the action of A on CHΣg•• (A,A) is
by multiplication on the module tensor of the Hochschild complex.

L 3.5.5. – The map e : A→ CH
Σg•• (A,A) (for any g) is a semi-free model (see [10])

for the evaluation map. The same holds with Σg ∨ Σh in place of Σg.

Proof. – It is immediate that CHΣg•• (A,A) isA-semi-free (sinceA is free over R) and that
e is A-linear. Then, by functoriality of the iterated Chen integral, we have a commutative
diagram

H•(A) ∼= HH
pt•• (A,A)

(pt•↪→Σg•)∗)

��

' // HHpt•• (Ω,Ω)

(pt•↪→Σg•)∗)

��

I tpt• // H∗(M)

ev∗

��
HH

Σg•• (A,A)
' // HHΣg•• (Ω,Ω)

I tΣ
g
• // H•(Map(Σg,M))

and the result follows. The argument for Σg ∨ Σh is the same.

We now need the following fact from rational homotopy theory [10, Section 7]: given a
pullback diagram

X ×Z Y i //

��

Y

p

��
X

j // Z

where p : Y → Z is a fibration,AZ a cochain algebra model for Z andBX ,BY twoAZ-semi
free models for X,Y , then a model for the (homotopy) pullback X ×Z Y is given by the
pushout AX ⊗AZ AY . Furthermore, if j̃ : AZ → BX is a (AZ-linear) model for j : X → Y ,
then j̃ ⊗AZ idBY : BY ∼= AZ ⊗AZ BY → AX ⊗AZ AY is a model for i : X → Y .
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L 3.5.6. – For g, h > 0, the following diagram is commutative:

HH
Σg+h
•• (A,A)

(Pinchg,h)∗//

'
��

HH
(Σg∨Σh)•
• (A,A)

'
��

H•(Map(Σg+h,M))
(ρout)

∗
// H•(Map(Σg ∨ Σh,M))

Proof. – Since the pinching map Pinchg,h is simplicial and Hochschild homology over
simplicial sets is a covariant functor on the algebras and on the simplicial sets, it is sufficient
to prove the result with Ω•M in place of A. Now the result follows from the functoriality of
the iterated Chen integral I tY• : HHY•• (Ω•M,Ω•M)→ C•(MY ) with respect to Y .

L 3.5.7. – For any g, h, ∇̃ : CH
(Σg∨Σh)•
•+dim(M)(A,A) → CH

Σg•• (A,A) × CHΣh•• (A,A)

is a semi-free model for the umkehr map (ρin)! : H•−dim(M)(Map(Σg ∨ Σh,M)) →
H•(Map(Σg,M)×Map(Σh,M)) i.e. the following diagram commutes

HH
(Σg∨Σh)•
•−dim(M)(A,A)

∇̃ //

'
��

H•
(
CH

Σg•• (A,A)× CHΣh•• (A,A)
)

'
��

H•−dim(M)(Map(Σg ∨ Σh,M))
(ρin)!

// H•(Map(Σg,M)×Map(Σh,M))

Proof. – We can assume that M is equipped with a Riemannian metric and the mapping
spaces Map(Σg,M) (g ≥ 0) are equipped with a Fréchet manifold structure. We have a
cartesian square of fibrations

Map(Σg ∨ Σh,M)
ρin //

��

Map(Σg,M)×Map(Σh,M)

ev×ev

��
M

diagonal // M ×M
where the evaluation maps on the right are furthermore submersions. A tubular neigh-
borhood Tub(M) ⊂ M × M of the diagonal of M can be identified to the normal bun-
dle of the diagonal. The pullback (ev × ev)−1(Tub(M)) by the submersion ev × ev :

Map(Σg,M) × Map(Σh,M) → M × M can be identified with a tubular neighborhood
Tub(Map(Σg ∨ Σh,M)) of ρin and thus with a normal bundle of ρin. The corresponding
Thom spaces M−TM and Map(Σg ∨ Σh,M)−TM are obtained by collapsing all the com-
plements of the tubular neighborhood to a point. They are disk bundles over, respectively
M , and Map(Σg ∨ Σh,M). Hence, we have a diagram of pullback squares

Map(Σg,M)×Map(Σh,M)
collapse//

ev×ev

��

Map(Σg ∨ Σh,M)−TM
π //

ev×ev

��

Map(Σg ∨ Σh,M)

ev

��
M ×M collapse // M−TM

π // M

where the vertical arrows are fibrations. In particular, the Thom class of ρin is the pullback
(ev × ev∗)(th(M)) ∈ Hdim(M)(Map(Σg ∨ Σh,M)−TM ) of the Thom class th(M) ∈
Hdim(M)(M−TM ) of M → M × M . Since the Gysin map (ρin)! is the composition
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(collapse)∗ ◦ (−∩ ev∗(th(M))) ◦π∗, it follows from Lemma 3.5.5, and the discussion above,
that the Gysin map (ρin)! can be modeled by the tensor product

d! ⊗
A⊗A

id : A ⊗
A⊗A

(
CHΣg•• (A,A)⊗ CHΣh•• (A,A)

) ∼= CH
(Σg∨Σh)•
• (A,A)

−→ CHΣg•• (A,A)⊗ CHΣh•• (A,A)

where the A⊗A-bimodule structure on A is given by the multiplication and d! : A→ A⊗A
is a model for the Gysin morphism. Since Ξ : A → A∗ is a model for the Poincaré duality
isomorphism, we can choose the composition∇ = d! where∇ is defined in (3.21).

For the case of positive genus, Theorem 3.4.2 follows from Lemma 3.5.3, Lemma 3.5.1
and Proposition 3.5.4.

3.5.2. Genus zero surfaces. – Now, if one of the surfaces has genus zero, we need to modify
the previous arguments. First we need to define the dual of the cup product HH•

Σ0
•
(A,A)⊗

HH•
Σg•

(A,A)→ HH•
Σg•

(A,A).

We denote by a00 ⊗ (aij)i,j=1···k a homogeneous element in CHΣ0
k• (A,A) ∼= A⊗(k2+1).

There is also a decompositionCH
Σg
k• (A,A) ∼= A⊗(k2+2k+3)⊗Bgk(A) whereA⊗(k2+2k+3) are

the tensors corresponding to the top left square in the simplicial set Σg• (without the bottom
and right open edges, see diagram (3.1)) and Bgk(A) is the tensor power of other factors. Let
(aij)i,j=0···k be a generic (homogeneous) element inA⊗(k2+2k+3), and let (bs) be an element

inBgk(A). Note that there is an obvious isomorphism of vector spacesCH(Σ0∨Σg)k
• (A,A) ∼=

CH
Σ0
k• (A,A)⊗ACHΣg

k• (A,A) whereA acts on the module factorsA ∼= (s0)k(CH
Σ•0• (A,A))

of CHΣ•k• (A,A), i.e., the action is induced by the canonical map A ↪→ CH
pt•• (A,A) →

CH
Σg•• (A,A).

Let pchp : CH
Σg
k• (A,A) → CH

Σ0
k• (A,A) ⊗A CH

Σg
k• (A,A) be the map given, for

(aij) ∈ A⊗(k2+2k+3), (bs) ∈ Bgk(A), by

(3.24)

pchp((aij)⊗ (bs)) =

Å ∏

i=0,j≤p
j=0,i≤p

aij ⊗ (aij)i,j≤p ⊗ (1)

ã
⊗A

((
(1)⊗ (ai,j)i or j>p

)
⊗ (bs)

)

where (1) stands for the tensor products 1⊗ 1⊗ · · · . The formula is displayed for genus 2 in
the following diagram:

(ai,j)

(bs)

pchp7−→

(ai,j)

(1)

(1)

(ai,j)

(bs)

0 p k
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D 3.5.8. – We define (Pinch0,g)∗ : CH
Σg
k• (A,A)→ CH

Σ0
k• (A,A)⊗A CHΣg

k• (A,A)

to be the map
∑k
p=0AW

p
(1) ⊗A AW

p
(2) ◦ pchp.

Roughly speaking, the morphism (Pinch0,g)∗ consists of removing the first p2 tensors in
(ai,j) and tensoring them with the result of applying the second component of the Alexander-

Whitney map AW(2) to CHΣg•• (A,A), where the removed tensors have been replaced by 1s.

L 3.5.9. – The map (Pinch0,g)∗ : CH
Σg
k• (A,A) → CH

Σ0
k• (A,A) ⊗A CHΣg

k• (A,A)

is a chain map of complexes. Furthermore, the composition

∆0,g : HH
Σg•
•+dim(M)(A,A)

(Pinch0,g)∗−→ H•(CHΣ0
•• (A,A)⊗A CHΣg•• (A,A))

∇̃−→ H•
(
CH

Σ0
•• (A,A)⊗ CHΣg•• (A,A)

) ∼= HH
Σ0
•• (A,A)⊗HHΣg•• (A,A)

is transfered to the cup product HH•
Σ0
•
(A,A)⊗HH•

Σg•
(A,A)

∪→ HH•
Σg•

(A,A) by the duality
isomorphism Θ.

Proof. – The compatibility with the differential follows from an argument similar to the
proof of Lemma 3.3.8. As for Lemma 3.5.3, the result now follows from the definition of Θ

since ∆ is the dual (through the duality isomorphism Ξ) of the multiplicationA⊗A ·→ A.

L 3.5.10. – The map (Pinch0,g)∗ : CH
Σg
k• (A,A)→ CH

Σ0
k• (A,A)⊗ACHΣg

k• (A,A)

is a cochain model of Map(Σ0 ∨ Σg,M)→ Map(Σg,M).

Proof. – Consider the following commutative diagram

(3.25) MS2∨Σg

Pinch0,g

uu

��

p // M I2 ×M M I2

��

c
xx

MΣg
p̃ //

��

M I2

��

Map(
∨2g
i=1 S

1,M) // MS1 ×M MS1

c̃
xx

Map(
∨2g
i=1 S

1,M) // MS1

where the left vertical arrows are induced by the inclusion into Σg of the boundary
∂Σg ∼= ∨2g

i=1 S
1 of the 4g-gon defining Σg, the map p̃ by projection of a square onto Σg

identifying the boundary of the square with the boundary of the 4g-gon as in diagram 3.4,
p is the product of p̃ and the collapsing of ∂I to a point, c̃ is the composition of loops, c is
induced by pinching a square (in the middle of each edge), and the right vertical arrows are
induced by the inclusion of S1 ∼= ∂I2 into I2.

Note that the top face, front and back face of the cube are pullback diagrams. The idea is
to find a semi-free model for c, which, by pullback along a model for Map(

∨2g
i=1 S

1,M)→MS1

,

gives rise to a model for Pinch0,g that coincides with CHΣg•• (A,A)
(Pinch0,g)∗−→ CH

(Σ0∨Σg)•
• (A,A).
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Recall from Example 2.3.4 that the point pt has a simplicial model pt• which is the
constant simplicial set ptk = pt. Then CH

ptk• (A,A) ∼= A with constant simplicial
structure. Using the invariance of the Hochschild chain complex under quasi-isomorphisms
of simplicial sets X• → Y• [25], it follows that CHX•• (A,A) is an A-semi-free model for
M I2

for any pointed simplicial set X• whose realization is I2. The simplicial set Σg• is, by
Definition (3.1), defined as a quotient of a simplicial set model for I2 that we denote by
(I2
g )•. That is (I2

g )• is obtained by gluing g2 squares, where the off diagonal squares are
subdivided into triangles. The boundary ∂(I2

g )• is a simplicial set realizing the circle S1.

By Proposition 2.5.3, CH
∂(I2

g )•
• (A,A) and CH

∂I2
•∨∂(I2

g )•
• (A,A) are CH

∂(I2
g )•

• (A,A)-semi
free models of MS1

and MS1∨S1

, respectively, and the inclusion of pointed simplicial sets
∂(I2

g )• ↪→ (I2
g )•, ∂I2

• ∨ ∂(I2
g )• ↪→ I2

• ∨ (I2
g )• induces semi-free models for the right vertical

maps by functoriality of Hochschild chains.

Similarly to Σgk, there is a decomposition CH
(I2
g )k
• (A,A) ∼= A⊗(k2+2k+3) ⊗ B̃gk(A) where

A⊗(k2+2k+3) are the tensor factors corresponding to the top left square in Σg• (without the
bottom and right open edges) and B̃gk(A) is the tensor power of other factors. We write

(bs) for an element in B̃gk(A). Clearly, this decomposition restricts to CH
∂(I2

g )k
• (A,A) ∼=

A⊗(2k+3) ⊗ ˜̃Bgk(A). Let ρc : CH
(I2
g )k
• (A,A) → CH

I2
k∨(I2

g )k
• (A,A) be the map given, for

(aij) ∈ A⊗(k2+2k+3), (bs) ∈ Bgk(A), by

(3.26) ρc((aij) ⊗ (bs)) =
k∑

p=0

((aij)i,j≤p ⊗ (1)) ⊗
((

(1)⊗ (ai,j)i or j>p
)
⊗ (bs)

)
,

where (1) stands for the tensor products 1 ⊗ 1 ⊗ · · · . We also define a linear map

ρc̃ : CH
∂(I2

g )k
• (A,A) → CH

∂I2
k∨∂(I2

g )k
• (A,A) by the same formula, but restricted to the

tensors lying in CH
∂(I2

g )k
• (A,A) ∼= A⊗(2k+3)⊗ ˜̃Bgk(A). Note that this formula is indeed very

close to Formula (3.24) and can be described by a similar diagram.

Since CHpt•• (A,A) → CH
∂(I2

g )•
• (A,A) is an A-semi-free quasi-isomorphism, the com-

mutative diagram

CH
ptk• (A,A)

qis
��

CH
ptk• (A,A)

qis
��

CH
(I2
g )k
• (A,A)

ρc //
CH

I2
k∨(I2

g )k
• (A,A)

implies that ρc is a cochain model for M I2 ×M M I2 → M I2

. Note also that there are
simplicial morphisms ∂(I2

g )• → S1
• , and ∂I2

• → S1
• obtained by collapsing all edges but

the top left one to the basepoint. Recall that CHS1
k• (A,A) ∼= A ⊗ Ak. A straightforward

computation shows that the following square

CH
∂(I2

g )k
• (A,A)

��

ρc̃ //
CH

∂I2
k∨∂(I2

g )k
• (A,A)

��

CH
S1
•• (A,A)

Φ // CH
S1
•• (A,A)⊗A CHS1

•• (A,A)
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is commutative, where Φ is given by

Φ(a0 ⊗ · · · ⊗ ak) =

p∑

i=0

(a0 ⊗ a1 ⊗ · · · ai)⊗A (1⊗ ai+1 ⊗ · · · ⊗ ak).

Thus, by [11, Lemma 2], ρc̃ is a cochain model for MS1∨S1 → MS1

. Hence, ρc and ρc̃ give

a CH
∂(I2

g )•
• (A,A)-semi free cochain model for the right face. It follows that

(3.27) CH
(I2
g )•
• (A,A)⊗

CH
∂(I2g)•
• (A,A)

CH

∨2g

i=1
S1
•

• (A,A)

ρc⊗id−→ CH
I2
•∨(I2

g )•
• (A,A)⊗

CH
∂(I2g)•
• (A,A)

CH

∨2g

i=1
S1
•

• (A,A)

is a cochain model for MS2∨Σg → MΣg . Note that, by Corollary 2.4.3, there are isomor-
phisms of chain complexes

CH
(I2
g )•
• (A,A)⊗

CH
∂(I2g)•
• (A,A)

CH

∨2g

i=1
S1
•

• (A,A) ∼= CHΣg•• (A,A),

CH
I2
•∨(I2

g )•
• (A,A)⊗

CH
∂(I2g)•
• (A,A)

CH

∨2g

i=1
S1
•

• (A,A) ∼= CHΣ0
k(A,A)⊗A CHΣg

k• (A,A).

Under these isomorphisms, it is straightforward to check that ρc transfers to (Pinch0,g)∗.

3.5.3. End of the proof of Theorem 3.4.2. – For g, h > 0, Proposition 3.5.4 and
Lemma 3.5.3, Lemma 3.5.1 imply the result. If either g = 0 or h = 0, the result follows
from Lemma 3.5.10, Lemma 3.5.1, Lemma 3.5.7, and Lemma 3.5.9. Lemma 3.5.7 and
Lemma 3.5.10 have obvious analogues for the cases g 6= 0, h = 0 and g = h = 0, which
can be proved similarly.

4. Surface Hochschild (co)homology of symmetric algebras

In this section we compute the surface product of symmetric algebras and use it as a tool
for explicit computations.

4.1. Reduction to Hochschild complexes over a square and a wedge of circles

To any topological spaceX one can associate a Hochschild chain complex CHS•(X)
• (A,M)

(see Definition 2.2.3). According to [25, Theorem 2.4], if f : X• → Y• is a map of
(pointed) simplicial sets inducing an isomorphism in homology, then the induced map
f∗ : HHX•• (A,M) → HHY•• (A,M) is a quasi-isomorphism. In particular, the adjunction
map η : X• → S•(|X•|) (Definition 2.2.1) induces, for any space X and any simplicial
model X• of X (that is |X•| ∼= X) a natural quasi-isomorphism η : CHX•• (A,M) →
CH

S•(X)
• (A,M). It follows from this that, to any space X, and any differential graded

commutative algebra (A, d) and A-module (M,d), one can associate a natural object
CHX

• (A,M) := CH
S•(X)
• (A,M) in the derived category of chain complexes which is

functorial in X, A and M . Furthermore, Proposition 2.4.2 implies that, if M = A equipped
with its canonical A-module structure by multiplication, then CHX

• (A,M) is a well-defined
object in the homotopy category of differential graded commutative algebras (over a field
of characteristic zero). If X• is a simplicial model for X, then CHX•• (A,M) is naturally
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isomorphic to CHX
• (A,M) in the derived category of chain complexes, respectively in the

homotopy category of differential graded commutative algebras if M = A. For details
on the rational homotopy theory for commutative differential graded algebras and their
module, see [10, 26, 27].

We denote by S
L
⊗
R
T the derived tensor product of differential graded modules S and T

over a differential graded algebra R.

L 4.1.1. – Let (A, d) be a differential graded commutative algebra and (M,d) an
A-module.

i) There is a natural isomorphism

(4.1) CHΣg (A,M) ∼= CH
∨2g

i=1
S1

(A,M)
L
⊗

CHS1 (A,A)

CHI2

(A,A)

where the module structures are induced by the inclusion S1 ∼= ∂I2 ↪→ I2 and the map
S1 → Σg given by the boundary of the model for Σg.

ii) If furthermoreM = A with its canonicalA-module structure, then the isomorphism (4.1)
is an isomorphism of differential graded commutative algebras.

Proof. – Note that Σg ∼= ∨2g
i=1 S

1⋃
S1 I2 where the maps S1 → I2 and S1 → ∨2g

i=1 S
1

are given as in Lemma 4.1.1.i). Consider the standard simplicial model S1
• for S1 and the

induced model for
∨2g
i=1 S

1
• (see Definition 2.1.5). We consider a model (I2

g )• for I2 obtained
by taking the simplicial model for Σg• (see Section 3.1) without identifying the boundary
edges, i.e. (I2

g )• consists of g2-squares glued together along edges or vertices with the
standard simplicial model I2

• for the g-diagonal squares and off diagonal squares subdivided
into two triangles (with model T•) identified along an edge. Then ∂(I2

g )• is a simplicial model
for S1 and moreover one has an isomorphism of simplicial sets Σg• ∼=

∨2g
i=1 S

1
• ∪∂(I2

g )• (I2
g )•.

Thus, by Corollary 2.4.3, there are natural quasi-isomorphisms

CHΣg•(A,M) ∼= CH
∨2g

i=1
S1
•(A,M) ⊗

CH
∂(I2g)• (A,A)

CH(I2
g )•(A,A)

∼= CH
∨2g

i=1
S1
•(A,M)

L
⊗

CH
∂(I2g)• (A,A)

CH(I2
g )•(A,A)

where the last line follows because CH(I2
g )•(A,A) is a free differential graded module over

CH∂(I2
g )•(A,A). Furthermore, if M = A, the above isomorphism is an isomorphism of

differential graded commutative algebras. Since a homology isomorphism of simplicial sets
induces a quasi-isomorphism of algebras, the result follows.

Note that, since I2 is contractible, given any commutative differential graded algebra
(A, d), we have a sequence of quasi-isomorphisms

(4.2) (A, d)
∼
↪→ CH

pt•• (A,A)
∼→ CHI2

• (A,A).
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We now want to give a model for computing HHΣg

• (A,M) when (A, d) = (S(V ), d) is a
free commutative differential graded algebra (2). In view of the isomorphism (4.1), we first

compute HH
∨2g

i=1
S1

• (S(V ),M).

4.2. HKR type theorem for wedges of circles

N 4.2.1. – We denote by a1, b1, . . . , ag, bg the fundamental loops in
∨2g
i=1 S

1

(one for each of the 2g-circles) whose homology classes are the generators ofH1(
∨2g
i=1 S

1,Z)

(and vanish on all but one circle).

Let S1
• be the standard simplicial model for the circle (see Example 2.3.1). Then a model

for the wedges of 2g-circles is given by
∨2g
i=1 S

1
• which, in simplicial degree n, is the finite

pointed set
∨2g
i=1 S

1
n
∼= [2gn] = {0, 1, 2, . . . , 2gn}. In particular, CH

∨2g

i=1
S1
•

• (A,M) ∼= M ⊗(
A⊗n

)⊗2g
. We writem⊗(xji⊗yji )j=1···g

i=1···n for a homogeneous tensorm⊗x1
1⊗y1

1⊗x2
2⊗· · ·⊗ygn

in M ⊗
(
A⊗n

)⊗2g
.

The homology H•(
∨2g
i=1 S

1) can be identified canonically with k ⊕ (
⊕g

i=1 k[ai]⊕ k[bi]),
where [ai], [bj ] (of homological degree 1) are the fundamental classes of the circle factors
ai, bj in the wedge

∨2g
i=1 S

1.

The linear maps V 3 v 7→ [ai]v and V 3 v 7→ [bi]v uniquely extend to (degree −1)
derivations sia : S(V )→ S(H•(

∨2g
i=1 S

1)⊗ V ) and sib : S(V )→ S(H•(
∨2g
i=1 S

1)⊗ V )

(with S(V )-module structure given by multiplication on the factor k ⊗ S(V ) ∼=
S(H0(

∨2g
i=1 S

1) ⊗ V )). We also extend sia and sib as derivations of S(H•(
∨2g
i=1 S

1) ⊗ V ) by
setting sia(H1(

∨2g
i=1 S

1) ⊗ V ) = 0 and sib(H1(
∨2g
i=1 S

1) ⊗ V ) = 0. It follows, since sia, sjb
are degree −1 derivations, that (sia)2 = 0 and (sjb)

2 = 0. Similarly a differential d on S(V )

naturally extends to a differential d∨ on S(H•(
∨2g
i=1 S

1)⊗ V ) by the formula d∨(v) = d(v),
d∨([ai]v) = −sia(d(v)) and d∨([bj ]v) = −sjb(d(v)).

Let π
∨2g

i=1
S1

: CH

∨2g

i=1
S1
•

• (S(V ),M)→M⊗S(V )S(H•(
∨2g
i=1 S

1)⊗V ) be the map, which

for m⊗ (xji ⊗ yji ) ∈ CH
∨2g

i=1
S1
n

• (S(V ),M), is given by

π
∨2g

i=1
S1(

m⊗ (xji ⊗ yji )
)

=
∑

p1+q1+···+pg+qg=n

±m ·
g∏

i=1

1

pi!
xi1 · · ·

· · ·xip1+···+pi−1
·
(
sia(xip1+···+pi−1+1) · · · · · · sia(xip1+···+pi)

)
· xip1+···+pi+1 · · ·

· · ·xin ·
g∏

i=1

1

qi!
yi1 · · · yiq1+···+qi−1

(
sib(b

i
q1+···+qi−1+1) · · · sib(biq1+···+qi)

)
· yiq1+···+qi+1 · · · yin.

R 4.2.2. – Iterating the Alexander-Whitney diagonal yields a quasi-isomorphism

CH

∨2g

i=1
S1
•

• (S(V ),M) → M ⊗S(V )

(
CH

S1
•• (S(V ), S(V ))

)⊗S(V )2g where the right hand side

(2) Note that any differential graded commutative algebra is quasi-isomorphic to a free commutative differential
graded algebra.
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is a tensor-product of chain complexes. Then it is easy to check that π
∨2g

i=1
S1

is the compo-
sition

CH

∨2g

i=1
S1
•

• (S(V ),M)→M ⊗
S(V )

(
CH

S1
•• (S(V ), S(V ))

)⊗S(V )2g

id⊗(π)⊗2g

−→ M ⊗
S(V )

S(V ⊕ V [1])⊗S(V )2g ∼= M ⊗
S(V )

S(H•(∨2g
i=1S

1)⊗ V )

where π : CH
S1
•• (S(V ), S(V )) → Ω•S(V )

∼= S(V ⊕ V [1]) is the usual Hochschild-Kostant-

Rosenberg map x0 ⊗ · · · ⊗ xn 7→
1

n!
x0d(x1) · · · d(xn) (here Ω•S(V ) is the module of Kähler

differentials), see [21]. In particular there is a canonical isomorphism of differential graded
algebras

Ä
S
(
H•(∨2g

i=1S
1)⊗ V

)
, d∨

ä ∼= Ω•S(V ) ⊗
S(V )
· · · ⊗

S(V )
Ω•S(V ) (here Ω•S(V ) is equipped

with its usual internal differential induced by the one on S(V )).

There is also a morphism of graded algebras (3)

ε
∨2g

i=1
S1

: S

(
H•

(
2g∨

i=1

S1

)
⊗ V

)
→ CH

∨2g

i=1
S1
•

• (S(V ), S(V ))(4.3)

(the algebra structure on CH

∨2g

i=1
S1
•

• (S(V ), S(V )) is given by the shuffle product) which

maps an element m ⊗ ([ai]v) to m ⊗ (δi,j(v) ⊗ 1)j=1···g ∈ CH

∨2g

i=1
S1

1
• (S(V ),M)

(where δi,j(v) = 1 if i 6= j and δi,i(v) = v) and maps an element m ⊗ ([bi]v) to

m ⊗ (1 ⊗ δi,j(v))j=1···g ∈ CH

∨2g

i=1
S1

1
• (S(V ),M). In other words, ε

∨2g

i=1
S1

sends an

element [ai]v to the elements 1 ⊗ · · · 1 ⊗ v ⊗ 1 · · · ⊗ 1 ∈ CH

∨2g

i=1
S1
•

1 (S(V ), S(V )) where
v is the tensor indexed by the circle in the wedge

∨2g
i=1 S

1 with fundamental class [ai] (and

similarly for [bi]v). Clearly, ε
∨2g

i=1
S1

is a morphism of (S(V ), d)-algebras. Hence, it induces
a morphism of (S(H•(

∨2g
i=1 S

1)⊗ V ), d∨)-modules:

ε
∨2g

i=1
S1

: (M ⊗
S(V )

S(H•(∨2g
i=1S

1)⊗ V ), d∨)→ CH
∨2g

i=1
S1
•(S(V ),M).

R 4.2.3. – The map ε
∨2g

i=1
S1

is the composition

M ⊗
S(V )

S(H•(∨2g
i=1S

1)⊗ V ) ∼= M ⊗
S(V )

S(V + V [1])⊗S(V )2g

id⊗(ε)2g

−→ M ⊗
S(V )

(
CH

S1
•• (S(V ), S(V ))

)⊗S(V )2g → CH

∨2g

i=1
S1
•

• (S(V ),M)

where the last map is the iterated Eilenberg-Zilber map and ε : S(V + V [1]) ∼= Ω•(S(V ))→
CH

S1
•• (S(V ), S(V )) is the classical inverse of the Hochschild-Kostant-Rosenberg mor-

phism, namely, the unique algebra morphism defined by v[1] 7→ 1 ⊗ v ∈ S(V )⊗2 =

CH
S1

1• (S(V ), S(V )), see [21, Section 3].

L 4.2.4. – Let V be a graded vector space.

(3) (But not of differential graded algebras.)
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1. The maps

π
∨2g

i=1
S1

: CH

∨2g

i=1
S1
•

• (S(V ),M)�M ⊗S(V ) S(H•(
2g∨

i=1

S1)⊗ V ) : ε
∨2g

i=1
S1

are quasi-isomorphisms (of algebras if M = S(V )).
2. Let (S(V ), d) be a differential graded free commutative algebra. The map

π
∨2g

i=1
S1

: CH

∨2g

i=1
S1
•

• (S(V ),M) → M ⊗S(V )

(
S(H•(

∨2g
i=1 S

1) ⊗ V ), d
)

is a quasi-
isomorphism of differential graded algebras.

3. π
∨2g

i=1
S1 ◦ ε

∨2g

i=1
S1

= id.

Proof. – By the same argument as in the proof of Lemma 4.1.1,there are isomorphisms
of S(V )-modules

CH

∨2g

i=1
S1
•

• (S(V ),M) ∼= M ⊗
S(V )

CH
S1
•• (S(V ), S(V )) ⊗

S(V )
· · · ⊗

S(V )
CH

S1
•• (S(V ), S(V ))

∼= M
L
⊗
S(V )

CH
S1
•• (S(V ), S(V ))

L
⊗
S(V )
· · ·

L
⊗
S(V )

CH
S1
•• (S(V ), S(V )).

Thus, according to Remark 4.2.2, the map π
∨2g

i=1
S1

is identified with

M
L
⊗
S(V )

CH
S1
•• (S(V ), S(V ))

L
⊗
S(V )
· · ·

L
⊗
S(V )

CH
S1
•• (S(V ), S(V ))

id
L
⊗π

L
⊗

S(V )

2g

−→ M ⊗
S(V )

S(V + V [1])
⊗
S(V )

2g ∼=
Ç
M ⊗

S(V )
S(H•(∨2g

i=1S
1)⊗ V ), d∨

å
,

where π : CH
S1
•• (S(V ), S(V ))→ Ω•(S(V )) ∼= S(V ⊕V [1]) is the usual Hochschild-Kostant-

Rosenberg map x0 ⊗ · · ·xn 7→ 1/n! x0d(x1) · · · d(xn). Since π is a quasi-isomorphism

of algebras, (2) and the first part of (1) follows. Since π
∨2g

i=1
S1

and ε
∨2g

i=1
S1

are maps of
algebras, it is sufficient to prove (3) for elements of the form [ai]v, [bj ]v for which the result

holds trivially. We now prove the last part of the claim (1). By construction, ε
∨2g

i=1
S1

is a
morphism of algebras. Again, it is sufficient to check that ε

∨2g

i=1
S1

takes value in cocycles
for elements of the form [ai]v, [bj ]v, for which the result is straightforward. Thus ε

∨2g

i=1
S1

is
a chain map and (3) and the first part of (1) imply that it is a quasi-isomorphism.

R 4.2.5. – There is an obvious generalization of Lemma 4.2.4 for arbitrary wedge∨k
i=1 S

1. For instance, there is a natural quasi-isomorphism

π
∨k

i=1
S1

: CH

∨2g

i=1
S1
•

• (S(V ), S(V ))→
(
S(H•(

k∨

i=1

S1)⊗ V ), d∨
)

of differential graded algebras. All statements and proofs for arbitrary wedges of circles are
similar to those of even wedges

∨2
i=1 gS

1 and left to the reader.
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Let pinch : S1 → S1 ∨ S1 be the standard (k-times iterated) pinching map. By
Example 3.3.10, the edgewise subdivision sd2(S1

•) is the simplicial set sd2(S1
n) = [2n + 1]

and it satisfies

sd2(S1
•) =

(
I• ∪

pt•
I•
)

∪
pt•
∐

pt•
pt•

where the wedge I•∪pt• I• is with respect to the maps t and s respectively (see Example 2.3.4).

Identifying the two 0-simplices of sd2(S1
•) yields a simplicial map flpinch• : sd2(S1

•)→ S1
• ∨ S1

• .
Explicitly, for any n, one has flpinchn(a(n + 1) + i) = a(n) + i if 1 ≤ i ≤ n, a = 0, 1 andflpinchn(a(n+ 1)) = 0.

L 4.2.6. – The following diagram is commutative

CHS1

• (A,M)
pinch∗ // CHS1∨S1

• (A,M)

CH
S1
•• (A,M)

η

OO

D•(2)// CH
sd2(S1

•)• (A,M)
fipinch∗ // CH

S1
•∨S1

•• (A,M).

η

OO

Proof. – Note that |sd2(S1
• |) ∼= (I∨I)/∼ where∼ identifies the two (non glued) boundary

points (0, 1) and (1, 1) of I ∨ I. Then |flpinch•| : |sd2(S1
• |)→ S1 ∨ S1 is the map identifying

all boundary points of each interval I in (I ∨ I)/∼. Thus pinch : S1 → S1 ∨ S1 is the
composition

S1 ∼= |S1
• |

D−1

−→ |sd2(S1
•)|
|fipinch•|−→ |S1

• ∨ S1
• | ∼= S1 ∨ S1.

Now the result follows by naturality of η and the fact that D•(2) realizes D−1, see [23,
Proposition 3.4].

Let c1, . . . , ck be fundamental loops in S1, i.e. [ci] = [S1] ∈ H1(S1), and f : S1 → ∨k
i=1 S

1

be the map obtained by gluing the paths c1, c2, . . . , ck in this order. The map f induces a

map f∗ : CHS1

• (A,M) → CH

∨k

i=1
S1

• (A,M) in the derived category of chain complexes.
We identify S(V ⊕ V [1]) ∼= S(H•(S1)⊗ V ).

L 4.2.7. – Let (S(V ), d) be a differential graded free commutative algebra andM an
(S(V ), d)-module. The following diagram is commutative in the derived category (respectively
in the homotopy category of CDG algebras if M = S(V ))

CHS1

• (A,M)
f∗ //

π ∼

��

CH

∨k

i=1
S1

• (A,M)

π

∨k

i=1
S1∼

��(
S(V ⊕ V [1], d)

) f̃ //
(
M ⊗

S(V )
S(H•(

∨k
i=1)⊗ V ), d∨

)

where f̃ is the unique map of S(V )-algebras given, for any v ∈ V , by

[S1]v 7→ c1v + c2v · · ·+ ckv.
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Proof. – By functoriality and homotopy invariance of η and of the Hochschild chain
complex with respect to simplicial sets, there is a natural commutative diagram

CHS1

• (A,M)
f∗ //

∼
��

CH

∨k

i=1
S1

• (A,M)

∼
��

CHS1

• (A,M)
pinchk//

CH

∨k

i=1
S1

• (A,M)

k∨
i=1

id

//
CH

∨k

i=1
S1

• (A,M)

where pinchk : S1 → ∨k
i=1 S

1 is the (k − 1)-times iterated pinching map

S1 pinch→ S1 ∨ S1 id∨pinch→ S1 ∨ S1 ∨ S1 · · · id∨pinch→
k∨

i=1

S1.

Since CHS1
•• (A,M) ∼= M ⊗A CHS1

•• (A,A), it is sufficient to prove the result for M = S(V ).

Note that there is a natural isomorphism (in the derived category) of differential graded
algebras

CH

∨k

i=1
S1
•

• (S(V ), S(V )) ∼= CH
S1
•• (S(V ), S(V ))⊗S(V ) · · · ⊗S(V ) CH

S1
•• (S(V ), S(V ))

by Corollary 2.4.3. Hence, by homotopy associativity of pinch, it is sufficient to prove the
result for k = 2.

By Lemma 4.2.6, the result follows once we proved that the following diagram.

(4.4) CH
S1
•• (S(V ), S(V ))

π

��

D•(2)// CH
sd2(S1

•)• (S(V ), S(V ))
fipinch∗ // CH

S1
•∨S1

•• (S(V ), S(V ))

π

∨2

i=1
S1

��(
S(V ⊕ V [1], d)

) f̃ // (S(H•(
∨k
i=1)⊗ V ), d∨

)

is commutative (up to homotopy). By Lemma 4.2.4, the vertical maps in diagram (4.4) are
quasi-isomorphisms of algebras. Note that f∗ : CHS1

• (S(V ), S(V ))→ CHS1∨S1

• (S(V ), S(V ))

is also an algebra morphism, and that S(V ⊕ V [1]) is free. Hence it is sufficient to prove
that diagram (4.4) is commutative in simplicial degrees 0 and 1, since the generators (as an

algebra) of S(V ⊕V [1]) lies in the subspace π(CH
S1

61
• (S(V ), S(V ))). In simplicial degree 0,

all the maps in diagram (4.4) are the identity map. Recall (see Formula (3.9)) that

D1(2) : CH
S1

1• (A,A) ∼= A⊗2 →: CH
sd2(S1

1)
• (A,A) ∼= A⊗4

is given by the formula D1(2)(x⊗ y) =
∑

(σ,δ)∈ S(2,1)

(−1)σS1
•(ε(σ,δ))(x⊗ y). By definition of

S(2, 1), σ is the identity and δ ∈ Hom∆([0], [1]). From identity (3.10) defining ε(σ,δ), we get
that D1(2)(x⊗ y) = x⊗ y⊗ 1⊗ 1 +x⊗ 1⊗ 1⊗ y. Now, the commutativity of diagram (4.4)
easily follows.
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4.3. HKR type theorem for surfaces

For the sphere S2 ∼= Σ0, there is also a Hochschild-Kostant-Rosenberg type theorem.
More precisely, given a differential graded free commutative algebra (S(V ), d) and an
(S(V ), d)-module M , there is a natural isomorphism

(4.5) πS
2

: HHS2

• (S(V ),M)
∼−→ H•

(
M ⊗

S(V )
S(H•(S

2)⊗ V ), dS
2)
.

Here, the graded commutative algebra S(H•(S2)⊗ V ) is equipped with the differential dS
2

which is defined as the unique degree 1 derivation satisfying dS
2

(v) = v and dS
2

(σv) = sσd(v)

where σ = [S2] ∈ H2(S2) is the fundamental class of S2 and sσ is the unique degre -2 deriva-
tion defined by sσ(v) = σv and sσ(σw) = 0. Note that S(H•(S2)⊗ V ) ∼= S(V ⊕ V [2]).

Furthermore, if M ∼= S(V ), πS
2

is an isomorphism of algebras. See [15, 25] for details.

For positive genus surfaces, we have the following Hochschild-Kostant-Rosenberg type re-
sult. We write σ = [Σg] ∈ H2(Σg) for the fundamental class of Σg and [a1], [b1], . . . , [ag], [bg]

for the generators ofH1(Σg). The degree -1 derivations sia and sjb on S(H•(Σg)⊗V ) are de-
fined by sia(H≥1(Σg)⊗V ) = 0 = sjb(H≥1(Σg)⊗V ) and sia(v) = [ai]v, sjb(v) = [bj ]v for any
v ∈ V and i, j = 1 · · · g. Similarly the degree -2 derivation sσ is defined by sσ(v) = σv and
sσ(H≥1(Σg)⊗ V ) = 0. The differential dΣg is the unique degree 1 derivation defined by

dΣg ([ai]v) = −sia(d(v)), dΣg ([bj ]v) = −sjb(d(v))(4.6)

dΣg (v) = d(v), dΣg (σv) = sσ(d(v)) +

g∑

i=1

sia(sib(d(v))).(4.7)

R 4.3.1. – Note that the differential dΣg is based on the coalgebra struc-
ture of H•(Σg). That is, if x ∈ H•(Σg), then, for any v ∈ V , the differential is given by
dΣg (xv) =

∑
(−1)|x(1)|+|x(2)| sx(1)

(
sx(2)

(d(v))
)

where the coproduct is given by
∆(x) =

∑
x(1) ⊗ x(2), and s1 = id.

R 4.3.2. – WhenX is a space with Sullivan model (S(V ), d), the cochain algebra(
S(H•(Σg) ⊗ V ), dΣg

)
coincides with the Haefliger model [18] of the sections of the trivial

bundle Σg → Σg ×X where one takes H•(Σg) as a cochain model for Σg (which is possible
since surfaces are formal spaces). This model also has been carefully described by Brown and
Szczarba [3]. Of course, the same remark holds for (wedges) of circles in place of surfaces. It
would be interesting to find a proof of this algebras quasi-isomorphism using the universal
property of the Haefliger model [18] and the functor homology techniques introduced in [25].

T 4.3.3. – Let (S(V ), d) be a differential free graded commutative algebra and
M a differential graded (S(V ), d)-module.

1. There is a natural isomorphism

εΣg : H•
(
M ⊗S(V ) S(H•(Σ

g)⊗ V ), dΣg
) ∼−→ HHΣg•• (S(V ),M),

which is an isomorphism of algebras if M = S(V ).
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2. The following diagram is commutative

H•
(
M ⊗

S(V )
S(H•(

2g∨
i=1

S1)⊗ V )
)

ε

∨2g

i=1
S1

��

p // H•
(
M ⊗

S(V )
S(H•(Σg)⊗ V )

)

εΣ
g

��

q // H•
(
M ⊗

S(V )
S(H•(S2)⊗ V )

)

εS
2

��

HH

∨2g

i=1
S1

• (S(V ),M)
(
∨2d

i=1
S1↪→Σg)•

// HHΣg•• (S(V ),M)
(Σg�S2)• // HHS2

• (S(V ),M)

where the horizontal maps p and q are the algebra homomorphisms, respectively induced

by the homology maps H•(
2g∨
i=1

S1) ⊗ V → H•(Σg), and H•(Σg) → H•(S2), obtained

by the obvious inclusion and surjection of spaces.

To prove Theorem 4.3.3, we want to use the computation in Lemma 4.2.4 and ap-
ply Lemma 4.1.1. Hence, we first need a semi-free model of CHI2

• (S(V ), S(V )) as a
CHS1

• (S(V ), S(V ))-module.

Proof. – (a) Note that H•(S1) ∼= k[ξ] (with |ξ| = −1) and that the standard
Hochschild-Kostant-Rosenberg theorem yields a natural isomorphism

εS
1

: H•
(
M ⊗

S(V )
S(H•(S

1)⊗ V )
) ∼−→ HHS1

• (S(V ),M).

(b) Since I2 is contractible, for any (DG commutative) algebra A, there are natural iso-
morphisms HHI2

• (A,A) ∼= HHpt
• (A,A) ∼= H•(A). Further, the canonical map

CH
(I2
g )•
• (A,A)→ CH

(I2
g )0

• (A,A) ∼= A⊗g
2 → A,

where (I2
g )• is the simplicial model for the square described in the proof of Lemma 4.1.1

and the right map A⊗g
2 → A is induced by the map of pointed sets (I2

g )0 → {0}, is a
quasi-isomorphism of algebras.

(c) The algebra morphism (coming from (a) and (b))

H•(S(k[ξ]⊗ V )) ∼= HHS1

• (S(V ), S(V ))→ HHI2

• (S(V ), S(V )) ∼= H•(S(V ))

is induced by the unique (differential graded) commutative algebra morphism
S(k[ξ] ⊗ V ) → S(V ) satisfying ξ ⊗ v 7→ 0, 1 ⊗ v 7→ v for any v ∈ V . This
follows since the image of ξ ⊗ v in CHS1

•(S(V ), S(V )) lies in simplicial degree 1.

By Lemma 4.1.1, Lemma 4.2.4, and (a), (b), and (c) above, there is a natural isomorphism

(4.8) S(H•(
2g∨

i=1

S1)⊗ V ) ⊗
S(k[ξ]⊗V )

KI2

(S(V ))
∼−→ HHΣg

• (S(V ),M)

for any (S(k[ξ]⊗V ), d)-semifree resolutionKI2

(S(V )) of (S(V ), d). Further, ifKI2

(S(V ))

is also a resolution as an algebra and M ∼= S(V ), then the isomorphism (4.8) is an isomor-
phism of algebras. We now construct an explicit resolution KI2

(S(V )).

We first recall aS(V ⊕V )-semifree resolution of (S(V ), d), which we denote byKI(S(V )).
(Note that S(V ⊕ V ) ↪→ CH∂I•• (S(V ), S(V )) and S(V ) ↪→ CHI•• (S(V ), S(V )) are quasi-
isomorphisms.) We identify S(V ⊕V [1]⊕V ) ∼= S(k[x0]⊕k[ξ]⊕k[x1])⊗V where [x0], [x1] are
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of degree 0 and [ξ] is of degree -1. Let s be the unique degree -1 derivation of S(V ⊕V [1]⊕V )

given by s([xi]v) = [ξ]v and s([ξ]v) = 0. Then, by [10, Section 15.(c), Example 1],

KI(S(V )) := (S(V ⊕ V [1]⊕ V ), dI)

is an S(V ⊕ V )-semifree resolution of (S(V ), d) where dI is the unique degree 1 derivation
defined by dI([xi]v) = [xi]d(v) and

(4.9) dI([ξ]v) = [x0]v − [x1]v −
∞∑

i=1

(sdI)n

n!
([x0]v).

Hence there is an isomorphism KI(S(V )) = (S(V ⊕ V [1]⊕ V ), dI) ∼= CHI•(S(V ), S(V ))

in the homotopy category of commutative differential graded algebras and a commutative
diagram

CHpt•(S(V ), S(V ))
s∗ //

∼
��

CHI•(S(V ), S(V ))

∼
��

CHpt•(S(V ), S(V ))
t∗oo

∼
��

(S(V ), d)
v 7→[x0]v // (KI(S(V ), dI) (S(V ), d)

v 7→[x1]voo

where s, t are the two inclusions pt• → I• defined in Example 2.3.4. Note that, by
Corollary 2.4.4, for any differential graded algebra (A, d), there is a natural isomorphism

(4.10) CH
I2
•• (A,A) ∼= CHI•

• (CHI•
• (A,A), CHI•

• (A,A))

where CHI•• (A,A) is equipped with the Hochschild total differential and the algebra
structure given by the shuffle product. Note that since I•, I2

• are contractible, one can
simply notice that the canonical inclusion A ↪→ CHI•• (CHI•• (A,A), CHI•• (A,A)) is a
quasi-isomorphism instead of using Corollary 2.4.4. Thus, there is an isomorphism

(4.11) KI(KI(S(V ))) ∼= CH
I2
•• (S(V ), S(V ))

in the homotopy category of commutative differential graded algebras. We set
KI2

(S(V )) := KI(KI(S(V ))) and write dI
2

for its differential. By construction

KI2

(S(V )) ∼= S(V ⊕4 ⊕ V [1]⊕4 ⊕ V [2]) ∼= S

(
( ⊕

i,j=1,2

k[xij ]⊕
1⊕

i=0

(k[ξi]⊕ k[ξ′i])⊕ k[σ]
)
⊗ V

)

where |xij | = 0, |ξi| = |ξ′j | = −1 and |σ| = −2. One may think of xij as points, ξi as a path
from xi0 to xi1, ξ′j as a path from x0j to x1j as in the following picture:

ξ0

ξ1

ξ′
0 ξ′

1σ

x00 x01

x10 x11
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In particular the subalgebra Kξ0(V ) := S((k[x00] ⊕ k[ξ0] ⊕ k[x01]) ⊗ V ) ⊂ KI2

(S(V ))

is a differential graded subalgebra which is canonically isomorphic to KI(S(V )). The
same holds for the 3 other subalgebras: Kξ1(V ) := S((k[x10] ⊕ k[ξ1] ⊕ k[x11]) ⊗ V ),
Kξ′0(V ) := S((k[x00]⊕k[ξ′0]⊕k[x10])⊗V ) andKξ′1(V ) := S((k[x01]⊕ k[ξ′1]⊕ k[x11])⊗ V ).
The differential dI

2

is the degree 1 derivation defined by dI
2

([xij ]v) = [xij ]d(v),
dI

2

([ξi]v) = dI([xi0]v), dI
2

([ξ′j ]v) = dI([x0j ]v) and

dI
2

([σ]v) = [ξ′0]v − [ξ′1]v −
∞∑

n=1

(s̃dI
2

)n

n!
([ξ0]v)

where s̃ is the degree -1 derivation defined by s̃([xij ]v) = [ξj ]v, s̃([ξi]v) = [σ]v = s̃([ξ′j ]v)

and s̃([σ]v) = 0.

Since the boundary of I2
• is the wedge

(
I• t ∪s I•

)
∪pt•

∐
pt•

(
I• t ∪s I•

)
, the natural

isomorphism (4.10) induces a natural isomorphism

CH∂I2
• (S(V ), S(V )) ∼= K∂I2

(S(V )),(4.12)

where K∂I2

(S(V )) denotes the differential graded commutative algebra

K∂I2

(S(V )) :=
(
Kξ0(V ) ⊗

S([x01]V )
Kξ′1(V )

)
⊗

S([x00]V⊕[x11]V )

(
Kξ′0(V ) ⊗

S([x10]V )
Kξ1(V )

)
.

We now need to identify the induced map ∂I2 → ∨2g
i=1 S

1. We first consider the genus 1
case. We still identify ∂I2 with (I ∨ I) ∪{∗}∐{∗} (I ∨ I) where the endpoints of the two

(length 2) intervals are identified. For a surface of genus g = 1, given as a quotient of (I2
1 )

by the path a1b1a
−1
1 b−1

1 , the boundary map ∂I2 → S1 ∨ S1 factors as the composition

∂I2 ∼= (I ∨ I) ∪{∗}∐{∗} (I ∨ I)

∨4

i=1
col

−→ (S1 ∨ S1) ∨ (S1 ∨ S1)
(a1∨b1)∨(a1∨b1)−→ S1 ∨ S1

where the first map
∨4
i=1 col collapses each interval to a circle.

The map s∗ ⊗ t∗ : S(V ) ⊗ S(V ) ∼= CH
pt•
∐

pt•
• (S(V ), S(V )) → CHI•• (A,A) induces a

quasi-isomorphism of algebras

CH
S1
•• (S(V ), S(V )) ∼= CHI•

• (S(V ), S(V )) ⊗
S(V )⊗S(V )

S(V ) ∼= KI(S(V )) ⊗
S(V )⊗S(V )

S(V )

since CHI•• (S(V ), S(V )) is a semi-free S(V ) ⊗ S(V )-algebra. Thus the algebra quasi-
isomorphism (4.12) transfers the algebra homomorphism

CH
S1
•• (S(V ), S(V )) ∼= CH

∂I2
•• (S(V ), S(V ))→ CHS1∨S1

• (S(V ), S(V ))

to the algebra homomorphism

ϕ1 : K∂I2

(S(V )) −→ S(H•(S
1 ∨ S1)⊗ V )

defined by ϕ1([xij ]v) = v, ϕ1([ξi]v) = [a1]v and ϕ1([ξ′j ]v) = [b1]v. Now, since s, s̃ are
degree−1 derivations, and furthermore since sia, sjb are degree−1 derivations with square 0,
a straightforward computation gives an algebra isomorphism

S(H•(
2∨

i=1

S1)⊗ V )
)

⊗
S(k[ξ]⊗V )

KI2

(S(V )) ∼= (S(H•(Σ
1)⊗ V ), dΣ1

).
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For a surface of genus g > 1, our model Σg (see Section 3.1) is also obtained as a quotient
of a square. Now the the boundary map ∂I2 → ∨2g

i=1 S
1 factors as the composition

∂I2 ∼= (I ∨ I) ∪{∗}∐{∗} (I ∨ I)

∨4

i=1
col

−→ (S1 ∨ S1) ∨ (S1 ∨ S1)
(f1∨f2)∨(f3∨f4)−→ S1 ∨ S1

where the first map
∨4
i=1 col still collapses each interval to a circle and the maps

fi : S1 → ∨g
i=1 S

1 are the loops given by

f1 = a1b1 · · · ag/2bg/2, f2 = ag/2+1bg/2+1 · · · agbg, f3 = b1a1 · · · bg/2ag/2

and f4 = bg/2+1ag/2+1 · · · bgag when g is even, and by

f1 = a1b1 · · · am, f2 = bmam+1 · · · agbg, f3 = b1a1 · · · bm

and f4 = ambm+1 · · · bgag when g = 2m − 1 is odd. Now by the argument for g = 1

and Lemma 4.2.7, it follows that the algebra quasi-isomorphism (4.12) transfers the algebra

homomorphism CH
S1
•• (S(V ), S(V )) ∼= CH

∂I2
•• (S(V ), S(V )) → CH

∨2g

i=1
S1

• (S(V ), S(V ))

to the algebra homomorphism

ϕg : K∂I2

(S(V )) −→ S(H•(
2g∨

i=1

S1)⊗ V )

defined by ϕg([xij ]v) = v, and, for g even by

ϕg([ξ
′
0]v) = [a1]v + [b1]v + · · ·+ [bg/2]v, ϕg([ξ1]v) = [ag/2+1]v + · · · [ag]v + [bg]v,

ϕg([ξ0]v) = [b1]v + [a1]v + · · · [ag/2]v, ϕg([ξ
′
1]v) = [bg/2+1]v + · · ·+ [bg]v + [ag]v,

and, for g = 2m− 1 odd by

ϕg([ξ
′
0]v) = [a1]v + [b1]v + · · ·+ [am]v, ϕg([ξ1]v) = [bm]v + · · · [ag]v + [bg]v,

ϕg([ξ0]v) = [b1]v + [a1]v + · · · [bm]v, ϕg([ξ
′
1]v) = [am]v + · · ·+ [bg]v + [ag]v.

Again, a straightforward computation gives an algebra isomorphism

S(H•(
2g∨

i=1

S1)⊗ V )
)

⊗
S(k[ξ]⊗V )

KI2

(S(V )) ∼= (S(H•(Σ
g)⊗ V ), dΣ1

).

This proves claim (1) of Theorem 4.3.3. The commutativity of the left square in claim (2)
follows from the isomorphism (4.8) and the computation above. Note that

CH
S2
•• (A,M) ∼= CH

pt•• (A,M) ⊗
CH

∂I2•
• (A,A)

CH
I2
•• (A,A)

∼= CH
pt•• (A,M)

L
⊗

CH
∂I2•
• (A,A)

CH
I2
•• (A,A).
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Hence there is a commutative diagram

CH
Σg•• (A,M)

∼
��

Σg•→S2
• // CH

S2
•• (A,M)

∼
��

CH

∨2g

i=1
S1
•

• (A,M) ⊗
CH

∂I2•
• (A,A)

CH
I2
•• (A,A) p∗⊗id // CH

pt•• (A,M) ⊗
CH

∂I2•
• (A,A)

CH
I2
•• (A,A)

where p :
∨2g
i=1 S

1
• → pt• is the canonical map. Let p̃ : KI(S(V )) → S(V ) be the algebra

map defined by p̃([xi]v) = v and p̃([ξ]v) = 0. This is a map of differential graded algebras

and, furthermore, since the composition S(V ) ↪→ KI(S(V ))
p̃→ S(V ) is the identity, p̃ is a

quasi-isomorphism and the following diagram is commutative

CHI•• (S(V ), S(V )
p∗ // CHpt•• (S(V ), S(V ))

KI(S(V ))

∼
OO

p̃ // S(V )

∼
OO

in the homotopy category of differential graded commutative algebras. Since

p∗ : CH

∨2g

i=1
S1
•

• (S(V ), S(V ))→ H
pt•• (S(V ), S(V )) is the composition

CH

∨2g

i=1
S1
•

• (S(V ), S(V )) ∼= CH
S1
•• (S(V ), S(V )) ⊗

S(V )
· · · ⊗

S(V )
CH

S1
•• (S(V ), S(V ))

∼=
Ç
CHI•

• (S(V ), S(V )) ⊗
S(V⊕V )

S(V )

å
⊗
S(V )
· · · ⊗

S(V )

Ç
CHI•

• (S(V ), S(V )) ⊗
S(V⊕V )

S(V )

å
p∗⊗S(V⊕V ) id−→ S(V )

it follows that the isomorphism of Theorem 4.3.3 claim (1) transfers

(Σg• → S2
•)∗ : CHΣg•• (S(V ), S(V ))→ CH

S2
•• (S(V ), S(V ))

to the map

(p̃⊗ id)⊗2g ⊗ id :

Ç
(KI(S(V )) ⊗

S(V⊕V )
S(V )

å⊗2g

⊗
K∂I(S(V ))

KI2

(S(V ))

→ S(V ) ⊗
K∂I(S(V ))

KI2

(S(V )) ∼= S(H•(S
2)⊗ V ),

which proves the commutativity of the right square in claim (2).

The importance of Theorem 4.3.3 folllows from the fact that any differential graded
commutative algebra is quasi-isomorphic, as an algebra, to a graded symmetric one.

C 4.3.4. – There is a natural isomorphism

εΣg∗ : HH•Σg•(S(V ),M)
∼−→ H•

Ä
HomS(V )

(
S(H•(Σ

g)⊗ V ), S(V )
)
, dΣg∗

ä
.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



874 G. GINOT, T. TRADLER AND M. ZEINALIAN

Proof. – Let X• be any pointed simplicial set and let A be a differential graded com-
mutative algebra. There is a map of differential graded algebras A = CH

pt0• (A,A) →
CH

pt•• (A,A) → CHX•• (A,A) where the last map is the unique pointed map. It follows
that the Hochschild complex (CHX•• (A,A), D) is a chain complex of semi-free A-modules.
More explicitly, the A-module structure is given by multiplication on the tensor A corre-
sponding to the base point in CHX•• (A,A) ∼= A⊗A⊗x• . Now letM be anA-module. Then
there is an isomorphism of cochain complexes

(CH•X•(A,M), D) ∼=
(
HomA(CHX•

• (A,A),M), D∗
)
,

where the differential D∗ is the dual of the differential D on the Hochschild chain complex
CHX•• (A,A). Since

(
S(H•(Σg)⊗V ), dΣg

)
is also semi-free, the result follows from the first

statement in Theorem 4.3.3.

4.4. The surface product for Lie groups

In this section, we apply Theorem 4.3.3 and Lemma 3.5.3 to compute the Hochschild sur-
face product for odd spheres and Lie groups. The idea is that in both cases, the commutative
differential graded algebra of the forms Ω•M (where M = S2n+1 or M = G is a Lie group)
is quasi-isomorphic as a differential graded algebra to a symmetric algebra S(V ) with zero
differential.

Let A = (S(V ), 0) be a free graded commutative algebra (with zero differential). Then
the identities (4.6) and (4.7) immediately imply that the differential dΣg = 0 for any genus g.
Similarly, the differentials d∨ and dS

2

vanish, too. Hence, for any S(V )-module M , by
Theorem 4.3.3, there is a commutative diagram (natural in M and V ),
(4.13)

M ⊗
S(V )

S(H•(
2g∨
i=1

S1)⊗ V )

ε

∨2g

i=1
S1

��

p // M ⊗
S(V )

S(H•(Σg)⊗ V )

εΣ
g

��

q // M ⊗
S(V )

S(H•(S2)⊗ V )

εS
2

��

HH

∨2g

i=1
S1

• (S(V ),M)
(
∨2d

i=1
S1↪→Σg)•

// HHΣg•• (S(V ),M)
(Σg�S2)• // HHS2

• (S(V ),M)

with the vertical arrows being isomorphisms (of algebras if M = S(V )). Note that

S(H•(Σg) ⊗ V ) splits as a tensor product S(H•(Σg) ⊗ V ) ∼= S(H•(
2g∨
i=1

S1) ⊗ V ) ⊗S(V ))

S(H•(S2)⊗ V ). By Lemma 4.2.4 and Formula (4.3), we already have an explicit morphism

of algebras at the chain level for the restriction S(H•(
2g∨
i=1

S1) ⊗ V ) → CH
Σg•• (S(V ), S(V ))

of εΣg to S(H•(
2g∨
i=1

S1)⊗ V ). It is easy to check that the formula

εS
2

(σv) =

Ü
1

⊗1 ⊗ v
⊗1 ⊗1

ê
−

Ü
1

⊗1 ⊗1

⊗ v ⊗1

ê
(4.14)
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(where we use the notation

Ü
a(0,0)

⊗a(1,1) ⊗a(1,2)

⊗a(2,1) ⊗a(2,2)

ê
for a homogeneous element in

CH
S2

2• (S(V ), S(V )) as in Example 2.3.3) defines a cocycle in CH
S2

2• (S(V ), S(V )) and
induces a quasi-isomorphism of algebras S(H•(S2) ⊗ V ) → CHS2

• (S(V ), S(V )) (see
the proof of Theorem 4.3.3 and [15]). For any v ∈ V , choose any cocycle εΣg (σv) ∈
CH

Σg2• (S(V ), S(V )) such that εΣg (σv) is mapped to εS
2

(σv) by the map (Σg � S2)•
in diagram (4.13). We have thus defined an explicit quasi-isomorphism of algebras
εΣg : S(H•(Σg) ⊗ V ) → CH

Σg•• (S(V ), S(V )) which, by abuse of notation, could

be rewritten as the tensor product εΣg = ε

2g∨
i=1

S1

⊗S(V ) ε
S2

through the isomorphism
S(H•(Σg)⊗ V ) ∼= S(H•(

∨2g
i=1S

1)⊗ V )⊗S(V )) S(H•(S2)⊗ V ).

R 4.4.1. – There is a standard choice for εΣg (σv), given as follows. Recall, that
Σg• is obtained by gluing g standard models for the square I2

• , and g(g−1) models for triangles
T•. In particular any element in I2

2 or T2 is a sum of tensors which can be written in the

form

Ü
boundary terms

⊗a(1,1) ⊗a(1,2)

⊗a(2,1) ⊗a(2,2)

ê
where the boundary terms are tensor powers of

elements lying in the boundary (∂I2)• (∂T )2. Thus, for v ∈ V , and any square or triangle
C• ⊂ Σg• we can define the element

εC•(v) =

Ü
1s

⊗1 ⊗ v
⊗1 ⊗1

ê
−

Ü
1s

⊗1 ⊗1

⊗ v ⊗1

ê
∈ CHΣg2• (S(V ), S(V ))

where the 1s in the top left corner means that any tensor in the boundary ofC2 or in Σg2−C2

is 1.

It is straightforward to check that, in the normalized chain complex, a possible choice for
εΣg (σv) ∈ CHΣg2• (S(V ), S(V )) is given by

εΣg (σv) =
1

g2

∑

C•⊂Σg•

εC•(v)

where the sum is over all triangles and squares in the simplicial model for Σg.

We now define a multiplication on
⊕

g≥0 HomS(V )

(
S(H•(Σg)⊗ V ), S(V )

)
.

Consider the natural surjective map H•(Σg)
⊕
H•(Σh) → H•(Σg ∨ Σh) (whose kernel

is isomorphic to H0(pt)), tensor both sides with V over the ground field and apply the free
graded commutative algebra functor S. Dualizing as S(V )-modules (4), the multiplication

(4) When X is an arcwise connected space, we endow S(H•(X) ⊗ V ) with its natural S(V ) ∼= S(H0(X) ⊗ V )-
module structure.
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µ : S(V )⊗ S(V )→ S(V ) induces a linear map

HomS(V )

(
S(H•(Σ

g)⊗ V ), S(V )
)
⊗HomS(V )

(
S(H•(Σ

h)⊗ V ), S(V )
)

µ∗−→ HomS(V )

(
S(H•(Σ

g ∨ Σh)⊗ V ), S(V )
)

for any g, h > 0. Furthermore, the pinching map Pinchg,h yields a linear map
H•(Σg+h)→ H•(Σg ∨ Σh) and thus an S(V )-algebra map

(4.15) pg,h : S(H•(Σ
g+h)⊗ V )→ S(H•(Σ

g ∨ Σh)⊗ V ).

D 4.4.2. – The multiplication ∪ on
⊕

g≥0 HomS(V )

(
S(H•(Σg) ⊗ V ), S(V )

)

is induced by the composition

HomS(V )

(
S(H•(Σ

g)⊗ V ), S(V )
)
⊗HomS(V )

(
S(H•(Σ

h)⊗ V ), S(V )
)

µ∗→ HomS(V )

(
S(H•(Σ

g ∨ Σh)⊗ V ), S(V )
) p∗g,h→ HomS(V )

(
S(H•(Σ

g+h)⊗ V ), S(V )
)
.

It is immediate to check that ∪ makes
⊕

g≥0 HomS(V )

(
S(H•(Σg) ⊗ V ), S(V )

)
into an

associative unital algebra.

R 4.4.3. – Let (S(V ), d) be a free graded commutative algebra with non-zero
differential. It is easy to check that Definition 4.4.2 indeed yields a differential graded
unital algebra structure for

⊕
g≥0

Ä
HomS(V )

(
S(H•(Σg)⊗ V ), S(V )

)
, dΣg∗

ä
. That is, the

differential dΣg∗ is a derivation for the multiplication ∪.

The following theorem expresses that the surface product for S(V ) (with zero differential)
corresponds to the multiplication ∪ in Definition 4.4.2.

T 4.4.4. – Let S(V ) be a free graded commutative algebra (with no differential).

1. There is an isomorphism (natural in V ),

ε∗ =
⊕

g≥0

εΣg∗ :
⊕

g≥0

HH•Σg (S(V ), S(V ))
∼→
⊕

g≥0

HomS(V ) (S(H•(Σ
g)⊗ V ), S(V ))

2. The following diagram is commutativeÇ
⊕
g≥0

HH•Σg (S(V ), S(V ))

å⊗2
∪ //

∼(ε∗)⊗2

��

⊕
g≥0

HH•Σg (S(V ), S(V ))

∼ε∗

��Ç
⊕
g≥0

HomS(V ) (S(H•(Σg)⊗ V ), S(V ))

å⊗2
∪ //

⊕
g≥0

HomS(V ) (S(H•(Σg)⊗ V ), S(V )) .

Proof. – Since dΣg = 0, the first statement follows from Corollary 4.3.4 and the definition
of εΣg .

By Corollary 2.4.3, there is a quasi-isomorphism of differential graded algebras

CHΣg•• (S(V ), S(V )) ⊗
S(V )

CH
Σh•• (S(V ), S(V )) ∼= CH

(Σg∨Σh)•
• (S(V ), S(V )).
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Since the maps εΣg and εΣh coincide on S(V ), the map

εΣg∨Σh : S(H•(Σ
g ∨ Σh)⊗ V ) ∼= S(H•(Σ

g)⊗ V ) ⊗
S(V )

S(H•(Σ
g)⊗ V )

εΣ
g ⊗
S(V )

εΣ
h

−→ CH
(Σg∨Σh)•
• (S(V ), S(V ))

is well defined and an algebra quasi-isomorphism by Theorem 4.3.3. Similarly, Corol-
lary 2.4.3 yields a natural quasi-isomorphism of algebras

CHΣg•• (S(V ), S(V ))⊗ CHΣh•• (S(V ), S(V ))
'−→ CH

(Σg
∐

Σh)•
• (S(V ), S(V ))

and thus

εΣg
∐

Σh = εΣg ⊗ εΣh : S(H•(Σ
g
∐

Σh)⊗ V )→ CH
(Σg
∐

Σh)•
• (S(V ), S(V ))

is a quasi-isomorphism of algebras. Note that, for any algebra A and module M there is a
natural isomorphism of cosimplicial modules

CH
(Σg
∐

Σh)n
• (A,M) ∼= CH

Σgn• (A,M)× CHΣhn• (A,A)

with the diagonal simplicial structure on the right hand side, cf. Definition 2.4.1. Further

the pointed maps jg : pt• → Σg• and jh : pt• → Σh• yield a simplicial map pt•
∐

pt•
jg
∐

jh−→
Σg•
∐

Σh• which in turn gives a structure of A ⊗ A
∼
↪→ CH

pt•
∐

pt•
• (A,A)-module to

CH
(Σg
∐

Σh)•
• (A,A). There is an isomorphism of simplicial modules

CH•Σg•(A,A)× CH•Σh• (A,A) ∼= HomA⊗A
(
CH

(Σg
∐

Σh)•
• (A,A), A⊗A

)

under which the map ∨ : CH•
Σg•

(A,A) × CH•
Σh•

(A,A) → CH•(Σg∨Σh)•
(A,A) from Defini-

tion 3.3.2 identifies with the composition

HomA⊗A
(
CH

(Σg
∐

Σh)•
• (A,A), A⊗A

) µ∗→ HomA⊗A
(
CH

(Σg
∐

Σh)•
• (A,A), A

)

∼= HomA

(
CH•(Σg∨Σh)•(A,A), A

)
= CH•(Σg∨Σh)•(A,A)

It is now straightforward to check that the following diagram is commutative:
(4.16)

CH•
Σg•

(S(V ), S(V ))× CH•
Σh•

(S(V ), S(V )) ∨ //

(
ε
Σg
∐

Σh
)∗

��

CHΣg∨Σh

• (S(V ), S(V ))
(
εΣ
g∨Σh

)∗
��

HomS(V )⊗2

(
S(H•(Σg

∐
Σh)⊗ V ), S(V )⊗ S(V )

) µ∗ // HomS(V )

(
S(H•(Σg ∨ Σh)⊗ V ), S(V )

)
.

Let x be any element in S(H•(Σg) ⊗ V ) and y be any element in S(H•(Σh) ⊗ V ). Then,
by definition εΣg

∐
Σh(x · y) = sh(εΣg (x), εΣh(y)) where sh is the shuffle product (see Sec-

tion 2.4). Since the Alexander-Whitney map is inverse to the shuffle product on normalized
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chains, it follows that the following diagram of S(V )⊗ S(V )-linear maps

(4.17) CHΣg

• (S(V ), S(V ))⊗ CHΣh

• (S(V ), S(V )) CH
Σg
∐

Σh

• (S(V ), S(V ))
AWoo

S(H•(Σg)⊗ V )⊗ S(H•(Σh)⊗ V )

εΣ
g⊗εΣh

OO

∼ // S(H•(Σg
∐

Σh)⊗ V ).

ε
Σg
∐

Σh

OO

is commutative on normalized chains. Diagrams (4.16) and (4.17) imply that the following
diagram is commutative,
(4.18) Ç

⊕
g≥0

HH•Σg (S(V ), S(V ))

å⊗2
∨◦AW //

ε∗⊗ε∗
��

⊕
g,h≥0

HH•Σg∨Σh(S(V ), S(V ))

⊕
g,h≥0

εΣ
g∨Σh

∗

��Ç
⊕
g≥0

HomS(V )(S(H•(Σg)⊗ V ), S(V ))

å⊗2
µ∗ //

⊕
g,h≥0

HomS(V )(S(H•(Σg ∨ Σh)⊗ V ), S(V ))

Statement (2) in Theorem 4.4.4 now follows from the commutativity of diagram (4.18)
and of the following diagram

S(H•(Σg+h)⊗ V )
pg,h //

εΣ
g+h

��

S(H•(Σg ∨ Σh)⊗ V )

εΣ
g∨Σh

��

CH
Σg+h
•• (S(V ), S(V ))

Pinchg,h∗// CH(Σg∨Σh)•
• (S(V ), S(V ))

(4.19)

where pg,h is the map (4.15) from Definition 4.4.2. Since S(H•(Σg+h)⊗ V ) is a free graded
commutative algebra, and all the maps involved in Diagram (4.19) are maps of algebras, it
is enough to check the commutativity of Diagram (4.19) on the generators. This is obvious
for the generators lying in H•61(Σg+h) ⊗ V since they are of simplicial degree 1. As for
the generators lying in H2(Σg+h) ⊗ V , by functoriality and the definition of εΣg (σv), it is
sufficient to prove that the following diagram is commutative

S(H•(S2)⊗ V )
p //

εS
2

��

S(H•(S2 ∨ S2)⊗ V )

εS
2∨S2

��

CH
S2
•• (S(V ), S(V ))

D•(2)// CH
sd2(S2

•)• (S(V ), S(V ))
Pinch0,0∗// CH(S2∨S2)•

• (S(V ), S(V ))

(on the normalized chains). Here, p is the algebra map defined on the generators by the
pinching map on homology

H•(S
2)⊗ V Pinch0,0∗⊗idV−→ H•(S

2 ∨ S2)⊗ V.

Now the result follows from a straightforward computation.
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If (S(V ), d) is a free model of a differential graded algebra (A, dA), then by Proposi-
tion 3.3.20, there exists an algebra isomorphism

⊕

g≥0

HH•Σg (A,A) ∼=
⊕

g≥0

HH•Σg (S(V ), S(V )).

Further, CH•
Σg•

(S(V ), S(V )) is a filtered differential graded algebra with respect to the
filtration induced by the internal degree. This yields a spectral sequence of algebras whose
(E•,•0 , d0) page is the Hochschild cochain complex CH•

Σg•
(S(V ), S(V )) of S(V ) equipped

with the zero differential. From Theorem 4.4.4, we easily deduce

C 4.4.5. – Let (S(V ), d) be any free model of (A, dA). The E1-term of the
above spectral sequence is

Ep,q1 =
⊕

g≥0

HomS(V )

(
S(q)(H•(Σ

g)⊗ V ), S(V )
)

where the right hand side is equipped with the multiplication of Definition 4.4.2, and
S(q)(H•(Σg)⊗V ) consists of those polynomial of total external (homological) degree q (that
is the total degree coming from H•(Σg) is q); in particular q ≥ 0.

E 4.4.6 (Odd spheres). – Since spheres are formal, there is a (chain of) quasi-
isomorphism of differential graded commutative algebras between the forms Ω•S2n+1 and
S(x) ∼= H•(S2n+1), where x is of degree |x| = 2n + 1. Applying Proposition 3.3.20 and
Theorem 4.4.4 we get that

HH•Σg (Ω•S2n+1,Ω•S2n+1) ∼= S(xg, αg1, . . . α
g
g, β

g
1 , . . . β

g
g , ω

g)

where |xg| = 2n+ 1, |αg1| = · · · = |αgg| = |βg1 | = · · · = |βgg | = −2n, and |ωg| = 1− 2n. The
cup-product is given, for any polynomial P = P (xg, αgi , β

g
j , ω

g) ∈ S(xg, αg1, . . . α
g
g, β

g
1 , . . . β

g
g , ω

g),
by the formulae:

P (xg, αgi , β
g
j , ω

g) ∪ xh = P (xg+h, αg+hi , βg+hj , ωg+h)xg+h,

P (xg, αgi , β
g
j , ω

g) ∪ ωh = P (xg+h, αg+hi , βg+hj , ωg+h)ωg+h,

P (xg, αgi , β
g
j , ω

g) ∪ αhi = P (xg+h, αg+hi , βg+hj , ωg+h)αg+hg+i ,

P (xg, αgi , β
g
j , ω

g) ∪ βhj = P (xg+h, αg+hi , βg+hj , ωg+h)βg+hg+j ,

where the products on the right hand side are taken in the free graded commutative
algebra S(xg+h, αg+h1 , . . . αg+hg , βg+h1 , . . . βg+hg , ωg+h). Note that the center of⊕

g≥0HH
•
Σg (Ω•S2n+1,Ω•S2n+1) is exactly HH•Σ0(Ω•S2n+1,Ω•S2n+1) ∼= S(x0, ω0).

By Theorem 3.4.2, if n ≥ 1, then (5) H•(Map(Σg,M)) ∼= HH•Σg (Ω•S2n+1,Ω•S2n+1) and
the surface product agrees with the cup product.

E 4.4.7 (Lie groups). – It is well-known that if G is a Lie group, then G is ratio-
nally homotopy equivalent to a product S2d1+1× · · ·×S2de+1 of odd spheres where e is the
exponent of the group. Thus, by Proposition 3.3.20, Theorem 4.4.4, and Example 4.4.6, we
find that

HH•Σg (Ω•G,Ω•G) ∼= S(xgk, α
g
k,i, β

g
k,j , ω

g
k),

(5) Where, by convention, degrees are intended to be of cohomological type.
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where k = 1, . . . , e, and i, j = 1, . . . , g, and the degrees of the generators are given by
|xgk| = 2dk + 1, |αgk,i| = |βgk,j | = −2dk, and |ωgk| = 1 − 2dk. The formulae for the cup
product are similar to those in Example 4.4.6 (except for the additional subscript k).

IfG is simply connected, then it is automatically 2-connected, and, by Theorem 3.4.2, the
surface product agrees with the cup product through the isomorphism
H•(Map(Σg, G)) ∼= HH•Σg (Ω•G,Ω•G).
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