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PURITY OF LEVEL m STRATIFICATIONS

 M-H NICOLE, A VASIU
 T WEDHORN

A. – Let k be a field of characteristic p > 0. Let Dm be a BTm over k (i.e., an m-truncated
Barsotti–Tate group over k). Let S be a k-scheme and let X be a BTm over S. Let SDm(X) be the
subscheme of S which describes the locus where X is locally for the fppf topology isomorphic to Dm.
If p ≥ 5, we show that SDm(X) is pure in S, i.e. the immersion SDm(X) ↪→ S is affine. For p ∈ {2, 3},
we prove purity if Dm satisfies a certain technical property depending only on its p-torsion Dm[p]. For
p ≥ 5, we apply the developed techniques to show that all level m stratifications associated to Shimura
varieties of Hodge type are pure.

R. – Soit k un corps de caractéristique p > 0. Soit Dm un BTm sur k (i.e., un groupe de
Barsotti–Tate tronqué en échelon m sur k). Soient S un k-schéma et X un BTm sur S. Soit SDm(X) le
sous-schéma de S correspondant au lieu où X est isomorphe à Dm localement pour la topologie fppf.
Si p ≥ 5, nous montrons que SDm(X) est pur dans S, i.e. l’immersion SDm(X) ↪→ S est affine. Pour
p ∈ {2, 3}, nous prouvons la pureté pour Dm satisfaisant une certaine propriété technique dépendant
uniquement de la p-torsion Dm[p]. Pour p ≥ 5, nous utilisons les techniques développées pour montrer
que toutes les stratifications par l’échelon associées aux variétés de Shimura de type Hodge sont pures.

1. Introduction

Let p be a prime number. Let k be a field of characteristic p. Let c, d, and m be positive
integers. In this paper, a BTm is an m-truncated Barsotti–Tate group of codimension c and
dimension d. Let Dm be a fixed BTm over k.

Let S be an arbitrary k-scheme and let Xm be a BTm over S. Let SDm(Xm) be the
(necessarily unique) locally closed subscheme of S that satisfies the following property. A
morphism f : S′ → S of k-schemes factors through SDm(Xm) if and only if f∗(Xm)

and Dm ×Spec k S
′ are locally for the fppf topology isomorphic as BTm’s over S′ (see

Subsection 2.2 for the existence of SDm(Xm)). If D is either a BTm′ for some m′ ≥ m, or a
p-divisible group over k, we will also write SD(Xm) instead of SD[pm](Xm).

The following notion of purity (that has already been considered in [24], Section 2.1.1)
will be central.
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926 M.-H. NICOLE, A. VASIU AND T. WEDHORN

D 1.1. – A subscheme T of a scheme S is called pure in S if the immersion
T ↪→ S is affine.

We remark that the purity of T in a locally noetherian scheme S implies the following
weaker variant of purity: If Y is an irreducible component of the Zariski closure T̄ of T in S,
then the complement of Y ∩ T in Y is either empty or of pure codimension 1. On the other
hand, if S is separated and T is (globally) an affine scheme, then T is pure in S.

Purity results for strata defined by p-divisible groups have a long history. The earliest hints
of purity are probably the computations mentioned by Y. Manin in [15], at the bottom of
p. 44. For Newton polygon strata, J. de Jong and F. Oort have shown the above mentioned
weaker version of purity in [11] and one of us has shown in [24] that these strata are even pure
in the sense of Definition 1.1. For p-rank strata, Th. Zink proved in [29] the weaker version
of purity. Moreover, T. Itō proved in [10] the existence of generalized Hasse–Witt invariants
for PEL unitary Shimura varieties of signature (n−1, 1) at primes pwhere the unitary group
is split. This result implies in fact a stronger kind of purity (see below).

The weak version of purity is an important tool to estimate and compute the dimensions
of strata in the locally noetherian case. Purity itself is an important step towards determining
whether a (quasi-affine) stratum is in fact affine, or whether a cohomological sheaf is in
fact zero. For instance, a genuine (cohomological) application of purity (and not of global
affineness!) to some simple Shimura varieties can be found in [21], Proposition 6.2.

The goal of this paper is to show that SDm(Xm) is pure for all schemes S and all BTm’s
Xm ifDm satisfies a certain condition (C) introduced in Subsection 4.2. Here we remark that
condition (C) depends only onDm[p] and it can be checked easily. Condition (C) is satisfied
if any one of the three conditions below holds (cf. Lemma 4.3 (c) and (d) and Example 4.4):

(i) We have p ≥ 5.
(ii) We have p = 3 and min(c, d) ≤ 6.

(iii) There exists an integer a ≥ 2 such that we have a ring monomorphism
Fpa ↪→ End(Dm[p]) with the property that Fpa acts on the tangent space of Dm[p] via
scalar endomorphisms.

For the remainder of the introduction, we will assume that condition (C) holds for Dm.
The main result of the paper is the following theorem.

T 1.2. – The locally closed subscheme SDm(Xm) is pure in S.

We obtain the following corollary.

C 1.3. – Let S be locally noetherian and let Y be an irreducible component
of SDm(Xm). Then the complement of SDm(Xm) ∩ Y in Y is either empty or of pure
codimension 1.

Now let D be a p-divisible group over k such that D[pm] = Dm. For every reduced
k-scheme S and every p-divisible group X over S denote by nD(X) the (necessarily unique)
reduced locally closed subscheme of S such that for each field extension K of k we have

nD(X)(K) = { s ∈ S(K) | D and s∗(X) have equal Newton polygons }.
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Thus nD(X) is the Newton polygon stratum of S defined by X that corresponds to the
Newton polygon ofD. The locally closed subscheme nD(X) is pure inS by [24], Theorem 1.6.
Thus we get another purity result:

C 1.4. – For each m ∈ N∗, the locally closed subscheme nD(X) ∩ SD(X[pm])

is pure in S.

Moreover, we can use the well known fact that there exists an integer nD ≥ 1 with
the following property. If C is a p-divisible group over an algebraic closure k̄ of k such
that C[pnD ] is isomorphic to D[pnD ]k̄, then C is isomorphic to Dk̄ (for instance, see [22],
Theorem 1 or [24], Corollary 1.3). We assume that nD is chosen minimal. Then there exists
a (necessarily unique) reduced locally closed subscheme uD(X) of S such that for every
algebraically closed field extension K of k we have

uD(X)(K) = { s ∈ S(K) | DK
∼= s∗(X) }.

Indeed, we have uD(X) = SD(X[pnD ])red. From Theorem 1.2, we obtain the following
purity result:

C 1.5. – The locally closed subscheme uD(X) is pure in S.

For special fibres of good integral models in unramified mixed characteristic (0, p) of
Shimura varieties of Hodge type (or more generally, for quasi Shimura p-varieties of Hodge
type), there exists a levelm stratification that parametrizes BTm’s with additional structures
(see Subsection 6.2). The proof of Theorem 1.2 can be adapted to show that all level m
stratifications are pure (see Theorem 6.3), provided they are either in characteristic p ≥ 5

or are in characteristic p ∈ {2, 3} and an additional condition holds.
In this introduction, we will only state the Siegel modular varieties variant of Theorem 1.2

(see Example 6.5). Let N ≥ 3 be an integer prime to p. Let Ad,1,N be the Mumford moduli
scheme that parameterizes principally polarized abelian schemes over Fp-schemes of rela-
tive dimension d and equipped with a symplectic similitude level N structure (cf. [18], The-
orems 7.9 and 7.10). Let (U ,Λ) be the principally quasi-polarized p-divisible group of the
universal principally polarized abelian scheme over Ad,1,N . If k is algebraically closed and if
(D,λ) is a principally quasi-polarized p-divisible group of height 2d over k, let sD,λ(m) be
the unique reduced locally closed subscheme of Ad,1,N,k that satisfies the following identity
of sets

sD,λ(m)(k) = { y ∈ Ad,1,N (k) | y∗(U ,Λ)[pm] ∼= (D,λ)[pm] }.
Then sD,λ(m) is regular and equidimensional (see [25], Corollary 4.3 and Example 4.5;
Subsection 2.3 below can be easily adapted to prove the existence and the smoothness of the
k-scheme sD,λ(m)). Moreover we have:

T 1.6. – If either p = 3 and d ≤ 6 or p ≥ 5, then the locally closed subscheme
sD,λ(m) is pure in Ad,1,N,k.

We remark that for m = 1, Theorem 1.6 neither implies nor is implied by Oort’s result
([20], Theorem 1.2) which asserts (for all primes p) that the scheme sD,λ(1) is quasi-affine.

Finally, we investigate briefly the following stronger notion of purity.
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928 M.-H. NICOLE, A. VASIU AND T. WEDHORN

D 1.7. – Let T → S be a quasi-compact immersion and let T̄ be the scheme-
theoretic closure of T in S. Then T is called Zariski locally principally pure in S if locally for
the Zariski topology of T̄ , there exists a function f ∈ Γ(T̄ ,OT̄ ) such that we have T = T̄f ,
where T̄f is the largest open subscheme of T̄ over which f is invertible.

We obtain variants of this notion by replacing the Zariski topology by another Grothen-
dieck topology T of S. If T is coarser than the fpqc topology (e.g., the Zariski or the étale
topology), each T locally principally pure subscheme is pure (as affineness for morphisms
is a local property for the fpqc topology). Principal purity for p-rank strata corresponds to
the existence of generalized Hasse–Witt invariants. They have been investigated by T. Itō for
certain unitary Shimura varieties (see [10]) and by E. Z. Goren for Hilbert modular varieties
(see [4]).

In Section 7, we will show that this stronger notion of purity does not hold in general. In
fact, we have:

P 1.8. – Let c, d ≥ 2 and s ∈ {1, . . . , c− 1}. Then the strata of p-rank equal
to s associated to BT1’s over Fp-schemes of codimension c and dimension d, are not étale
locally principally pure in general.

We now give an overview of the structure of the paper. In Section 2, we define the level m
strata SDm(Xm) and we prove some basic properties of them. Then we make a dévissage to
the following situation.

E S 1.9. – Let k be an algebraically closed field of characteristic
p > 0 and let Dm be a BTm over k which satisfies condition (C). Let D be a p-divisible
group over k such that D[pm] = Dm. Let S = A be a smooth k-scheme of finite type which
is equidimensional of dimension cd and for which the following two properties hold:

(a) There exists a p-divisible group E of codimension c and dimension d over A which is
a versal deformation at each k-valued point of A .

(b) There exists a point yD ∈ A (k) such that y∗D(E ) is isomorphic to D.

In this case we simply write sD(m) instead of AD(E [pm]). In Subsection 2.3, we will prove
that sD(m) is smooth over k (by [25], Theorem 1.2 (a) and (b) and Remark 3.1.2 we know
already that the reduced scheme of sD(m) is a smooth equidimensional k-scheme, although
this fact is not used in the proof below). Then we show that Theorem 1.2 follows if sD(m) is
pure in A .

We remark that for m ≥ nD (where nD is the integer defined above before Corollary 1.5)
the fact that sD(m) is pure in A is proved in [24], Theorem 5.3.1 (c). This result of [24] and
thus Corollary 1.5 also, hold even if condition (C) does not hold for D[p].

The proof of Theorem 1.2 is presented in Section 5. There we show that purity follows
from the affineness of a certain orbit Om of a group action

Tm : Hm ×Dm → Dm,

which was introduced in [25]. The orbits of Tm parameterize isomorphism classes of BTm’s
over perfect fields. In fact we show that Om is affine for all m provided O1 is affine.

The definition of the action Tm is recalled in Section 3, and in Section 4 the main proper-
ties of the action T1 we need are presented. There the condition (C) is introduced and used.
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Its key role is to imply that a certain morphism between affine k-schemes is finite (see The-
orem 4.8) which allows us in Subsection 5.2 to use Chevalley’s theorem to show that O1 is
affine.

In Section 6, we prove purity of the level m stratification for quasi Shimura p-varieties of
Hodge type. Finally, in Section 7, we show that generalized Hasse–Witt invariants do not
always exist for Shimura varieties. Indeed, we construct a counterexample and we deduce
Proposition 1.8.

2. Dévissage to the Essential Situation

2.1. Moduli spaces of truncated Barsotti–Tate groups

We recall that c, d, andm are positive integers. Let BTm = BT c,d
m be the moduli space of

m-truncated Barsotti–Tate groups in characteristic p that have codimension c and dimen-
sion d. In other words, for each Fp-scheme S, BTm(S) is the category of all BTm’s over S of
codimension c and dimension d, the morphisms in BTm(S) being isomorphisms of BTm’s.

As explained in [28], Proposition (1.8) and Corollary (3.3), it follows from results of
Illusie and Grothendieck (see [9], Théorème 4.4) that BTm is a smooth algebraic stack of
finite type over Fp. More precisely, BTm is an algebraic stack of the form [GLpm(c+d)\Zm],
where Zm is a smooth quasi-affine Fp-scheme on which GLpm(c+d) acts. Moreover, the
canonical morphism P : Zm → BTm is a GLpm(c+d) -torsor for the Zariski topology. Thus
P (R) : Zm(R)� BTm(R) is surjective for each commutative local Fp-algebra R.

2.2. The level m stratification

Let k be a field of characteristic p and let Dm be a BTm over k. By the definition of the
stack BTm, Dm defines a 1-morphism over k

ξ := ξDm : Spec k → BTm ⊗Fp k.

The pair (ξ, k) defines a point of BTm⊗Fp k (in the sense of [14], Section 5.2) which we also
denote by ξ. As BTm is locally noetherian, ξ is algebraic by [14], Section 11.3 and its residue
field is k. Let Gξ be the residue gerbe of the point ξ; it is an algebraic stack which is an fppf
gerbe over Spec k.

L 2.1. – The canonical monomorphism Gξ → BTm ⊗Fp k is representable by an
immersion of finite presentation. The algebraic stack Gξ is smooth over Spec k.

Proof. – The morphism Gξ → BTm ⊗Fp k is representable because ξ is algebraic. For
the remaining assertions we may assume that k is algebraically closed. With the notations of
Subsection 2.1, from [14], Exemple (11.2.2) we get that the fibre product of the diagram

Zm ⊗Fp k

Pk

��
Gξ // BTm ⊗Fp k
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is the GLpm(c+d) -orbitO(x) inZm⊗Fp k, where x ∈ Zm(k) is a lift of ξ. AsO(x)→ Zm⊗Fp k

is a quasi-compact immersion of noetherian schemes, Gξ → BTm ⊗Fp k is representable by
an immersion of finite presentation.

The morphism Pk is smooth and surjective and thusO(x)→ Gξ is smooth and surjective.
As O(x) is smooth over k, Gξ is smooth over Spec k.

Let S be an arbitrary k-scheme. Let Xm be a BTm over S defining a 1-morphism
ξXm : S → BTm ⊗Fp k. Let SDm(Xm) be the fibre product of the diagram

S

ξXm
��

Gξ // BTm ⊗Fp k.

The canonical morphism SDm(Xm) → S is an immersion of finite presentation by
Lemma 2.1. Thus we will view SDm(Xm) as a locally closed subscheme of S. As
SDm(Xm) → S is quasi-compact, its scheme-theoretic closure SDm(Xm) exists by [7],
Corollaire (6.10.6).

By [14], Section (11.1), a morphism f : S′ → S of k-schemes factors through SDm(Xm) if
and only if f∗(Xm) andDm×Spec kS

′ are locally for the fppf topology isomorphic as BTm’s
over S′. We call SDm(Xm) the level m stratum of (S,Xm) with respect to Dm.

We note that the level 1 strata are the Ekedahl–Oort strata introduced in [20] and that the
level m strata were studied first in [28] and in [25].

2.3. Dévissage

We will show that it suffices to prove Theorem 1.2 in the Essential Situation 1.9. Gener-
alizing Definition 1.1, we say that a substack T of an algebraic stack S is pure in S if the
immersion T ↪→ S is affine. We recall the following lemma (which follows from the fact
that the affineness property for a morphism is local for the fpqc topology, see [6], Proposi-
tion (2.7.1)).

L 2.2. – Let S be an algebraic stack and let T ⊂ S be a substack. Let f : Y → S

be a representable morphism of algebraic stacks. We have the following two properties:

(1) If T is pure in S , f−1(T ) is pure in Y .
(2) Conversely, assume that f is quasi-compact and faithfully flat. If f−1(T ) is pure in Y ,

then T is pure in S .

We now refer to the general situation of Subsection 2.2. It follows from the construction
of SDm(Xm) that to prove that the immersion SDm(Xm) ↪→ S is affine, it suffices to show
that the immersion Gξ → BTm is affine.

A smooth scheme A over k of dimension cd with a p-divisible group E over A satis-
fies the properties (a) and (b) of the Essential Situation 1.9 if and only if the morphism
ξE [pm] : A → BTm ⊗Fp k defined by E [pm] is smooth and contains the image of ξ. Note
that in this case, the level m stratum sD(m) = AD(E [pm]) is smooth over Gξ and hence by
Lemma 2.1 over k. This was claimed in the introduction.
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To reduce to the Essential Situation 1.9, by Lemma 2.2, we can assume that k is alge-
braically closed, and it suffices to prove the following proposition.

P 2.3. – There exists a smooth k-scheme A of finite type which is
equidimensional of dimension cd and a p-divisible group E of codimension c and dimension d
over A such that for each m ∈ N∗ the morphism ξE [pm] : A → BTm ⊗Fp k defined by E [pm]

is smooth and surjective.

Proof. – For A , we will take the special fibre of a good integral model of a Shimura
variety Sh(G ,X ) associated to a certain PEL-datum as follows. If c = d = 1, we can take
Sh(G ,X ) to be the elliptic modular curve. Thus we can assume that r := c+ d ≥ 3; in this
case the PEL-datum will be unitary.

Let K be a quadratic imaginary extension of Q in which p splits. Let OK be the ring of
integers of K. Let ∗ be the nontrivial automorphism of K. Let V be a Q-vector space of di-
mension 2r. We fix a monomorphism K ↪→ End(V) of Q-algebras. Via this monomorphism,
we can view V naturally as a K-vector space of dimension r and we can view ResK/QGm,K as
a torus of GLV. Whenever we write SLV or GLV, we consider V only as a Q-vector space.

Let G der be the simply connected semisimple group over Q whose Q-valued points are
those K-valued points of SLV that leave invariant the hermitian form
−z1z

∗
1 − · · · − zcz∗c + zc+1z

∗
c+1 + · · · zrz∗r on V. The group G der

R is isomorphic to SU(c, d).
Hilbert’s Theorem 90 implies that there exists a unique (up to non-zero scalar multiplication)
symplectic form 〈 , 〉 : V × V → Q fixed by G der. We have 〈bv, v′〉 = 〈v, b∗v′〉 for all b ∈ K
and v, v′ ∈ V.

Let G be the subgroup of GSp(V, <,>) generated by G der and by the torus ResK/QGm,K.
Our notations match, i.e. G der is the derived group of G . It is easy to see that there exists
a G (R)-conjugacy class X of homomorphisms h : ResC/R Gm,C → GR such that every
h ∈X defines a Hodge Q-structure on V of type {(−1, 0), (0,−1)} (with the sign convention
of [3]) and such that

VR × VR → R, (v, v′) 7→ 〈v, h(
√
−1)v′〉

is symmetric and either positive or negative definite (for instance, see [3], proof of Propo-
sition 2.3.10 or [12], Lemma 4.3). Then (G ,X ) is a Shimura pair given by the PEL-datum
(K, ∗,V, 〈 , 〉,X ). Its reflex fieldE is either equal to Q (if c = d) or isomorphic to K (if c 6= d).
In both cases, for each prime v of E that divides p the completion Ev of E with respect to v
is Qp.

As p splits in K, the reductive group GQp is split. This implies that there exists an OK-in-
variant Zp-lattice Γ of V⊗QQp such that the alternating form on Γ induced by 〈 , 〉 is a perfect
Zp-form. Denote by A(p)

f the ring of finite adèles of Q with trivial p-th component and fix an

open compact subgroup C(p) ⊂ G (A(p)
f ). Let M be the moduli space over OEv = Zp of

abelian schemes associated to the data (K, ∗,V, 〈 , 〉, OK,Γ, C
(p)), cf. [12], Section 5.

We set A := M ⊗Zp k. For C(p) small enough, A is quasi-projective, smooth, and
equidimensional of dimension cd over k. As the adjoint group of G is simple, the Hasse
principle holds for G (cf. [12], top of p. 394) and this implies that M is an integral model
over Zp of Sh(G ,X ) alone (cf. [12], Section 7).
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Let Z be the p-divisible group of the universal abelian scheme over A . The height of Z

is 2r and its dimension is r. It is endowed with an action of OK⊗Z Zp = Zp×Zp and with a
principal quasi-polarization ΛZ . The action of Zp×Zp defines a decomposition Z = E×E ′,
where E is a p-divisible group over A of codimension c and dimension d and where E ′ is via
ΛZ isomorphic to the Cartier dual E ∨ of E . In particular Z ∼= E × E ∨, endowed with its
natural Zp × Zp-action and with its natural principal quasi-polarization.

Due to the moduli interpretation of M , we easily get that:
(*) if y : Spec k → A and if Ẽy is a p-divisible group isogenous toEy := y∗(E ), then there

exists a point ỹ : Spec k → A such that Ẽy is isomorphic to Eỹ := ỹ∗(E ).
We claim that the morphism ξE [pm] : A → BTm ⊗Fp k is smooth and surjective. To check

this, let R be a local, artinian k-algebra and let I ⊂ R be an ideal with I2 = 0. We define
R0 := R/I. Assume that we are given a commutative diagram

SpecR0
χ0 //

��

A

ξE [pm]

��
SpecR

υ // BTm ⊗Fp k.

By a theorem of Grothendieck (see [9], Théorème 4.4) there exists a p-divisible group E

over R which lifts χ∗0(E ) and such that E[pm] is the BTm corresponding to υ. We endow
E × E∨ with the natural Zp × Zp-action and with its natural principal quasi-polarization.
As explained above, we have (E × E∨) ×R R0

∼= χ∗0(Z ). From this and the Serre–Tate
deformation theory, we get that there exists an abelian scheme overRwhose p-divisible group
is E × E∨ and such that its reduction modulo I is given by χ0, and this, due to the moduli
interpretation of M , defines a morphism χ : SpecR → A that lifts χ0. Thus ξE [pm] is
smooth.

By the generalization of the integral Manin principle to certain Shimura varieties of
PEL-type proved in [27], Subsection 5.4 (in particular Example 5.4.3 (b)), ξE [pm] is also
surjective. For the reader’s convenience and as our present context is much simpler than the
general situation considered in [27], we give a direct proof of the surjectivity of ξE [pm].

Let K be an algebraically closed extension of k and let ξ̃ : SpecK → BTm ⊗Fp k be a
K-valued point corresponding to a BTm D̃m over K. Let D̃ be a p-divisible group over K
such that D̃[pm] = D̃m. To show that ξE [pm] is surjective it suffices to prove that there exists
a point y3 : SpecK → A such that the p-divisible groups y∗3(E ) and D̃ are isomorphic (thus
the fibre product of ξ̃ and ξE [pm] is non-empty). We check this in four steps as follows.

(i) Let T0 be a maximal torus of G der such that T0,R is compact and T0,Qp has Qp-rank 0,
cf. [8], Lemma 5.5.3. Let T be the unique maximal torus of G that contains T0 (it is
generated by T0 and by the center of G ). Let h0 ∈ X be such that it factors through T0

(it exists as all maximal compact tori of G der
R are G der(R)-conjugate and as the centralizer

of each h ∈ X in G der
R is a maximal compact, connected subgroup of G der

R ). We have an
injective map (T , {h0}) ↪→ (G ,X ) of Shimura pairs. Each point of MEv which is in the
image of the natural functorial morphism Sh(T , {h0})Ev → MEv specializes to a point
y0 : Spec k → A such that y∗0(E ) is isoclinic (due to the fact that T0,Qp has Qp-rank 0). Such
a specialization makes sense as abelian varieties with complex multiplication over number
fields have potentially good reduction everywhere.
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(ii) Based on (*) (applied overK) and (i) we get that there exists a point y1 : SpecK → A

such that y∗1(E ) is isoclinic and its a-number is 1.
(iii) Based on (ii) and Grothendieck’s specialization conjecture for p-divisible groups over

K of a-number 1 (proved in [23], Sections 6, 7, and 24; see also [19], Theorem 6.2), there exists
a point y2 : SpecK → A such that the Newton polygons of y∗2(E ) and D̃ coincide. Here we
are using the fact that ξE [pm] is smooth.

(iv) Based on (iii) and (*) there exists a point y3 : SpecK → A such that the p-divisible
groups y∗3(E ) and D̃ are isomorphic.

3. Group actions

From now on, we will be in the Essential Situation 1.9. Thus k is algebraically closed
and D is a p-divisible group over k of codimension c and dimension d. The height of D is
r := c+ d. In this section, we recall from [25] the definition of an action Tm : Hm ×Dm → Dm

of a linear algebraic group Hm over k on a k-scheme Dm whose orbits parameterize iso-
morphism classes of BTm’s over k.

For a commutative Fp-algebra R, let Wm(R) be the ring of Witt vectors of length m

with coefficients in R, let W (R) be the ring of Witt vectors with coefficients in R, and let
σR be the Frobenius endomorphism of either Wm(R) or W (R) induced by the Frobenius
endomorphism r 7→ rp of R. We set σ := σk. Let B(k) be the field of fractions of W (k).

Let (M,φ) be the contravariant Dieudonné module ofD. ThusM is a freeW (k)-module
of rank r and φ : M → M is a σ-linear endomorphism such that we have pM ⊆ φ(M).
Let ϑ := pφ−1 : M → M be the Verschiebung map of (M,φ). Let M = F 1 ⊕ F 0 be a
direct sum decomposition such that F̄ 1 := F 1/pF 1 is the kernel of the reduction modulo p
of φ. Let F̄ 0 := F 0/pF 0. The ranks of F 1 and F 0 are d and c (respectively). We have
φ( 1

pF
1 ⊕ F 0) = M . The decomposition M = F 1 ⊕ F 0 gives birth naturally to a direct

sum decomposition of W (k)-modules

End(M) = Hom(F 0, F 1)⊕ End(F 1)⊕ End(F 0)⊕Hom(F 1, F 0).

The association e→ φ(e) := φ ◦ e ◦ φ−1 defines a σ-linear automorphism φ : End(M)[ 1
p ]
∼→

End(M)[ 1
p ] of B(k)-algebras.

Let W+ be the maximal subgroup scheme of GLM that fixes both F 1 and M/F 1; it is a
closed subgroup scheme of GLM whose Lie algebra is the direct summand Hom(F 0, F 1) of
End(M) and whose relative dimension is cd. Let W0 := GLF 1 ×W (k) GLF 0 ; it is a closed
subgroup scheme of GLM whose Lie algebra is the direct summand End(F 1) ⊕ End(F 0)

of End(M) and whose relative dimension is d2 + c2. The maximal parabolic subgroup
scheme W+0 of GLM that normalizes F 1 is the semidirect product of W+ and W0. Let W−
be the maximal subgroup scheme of GLM that fixes F 0 and M/F 0; it is a closed subgroup
scheme of GLM whose Lie algebra is the direct summand Hom(F 1, F 0) of End(M) and
whose relative dimension is cd. The maximal parabolic subgroup scheme W0− of GLM that
normalizes F 0 is the semidirect product of W− and W0. IfR is a commutativeW (k)-algebra,
then we have:

W+(R) = 1M⊗W (k)R + Hom(F 0, F 1)⊗W (k) R

W−(R) = 1M⊗W (k)R + Hom(F 1, F 0)⊗W (k) R.
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These identities imply that the group schemes W+ and W− are isomorphic to Gcd
a over

SpecW (k); in particular, they are smooth and commutative. Let

H := W+ ×W (k) W0 ×W (k) W−;

it is a smooth, affine scheme over SpecW (k) of relative dimension cd + d2 + c2 + cd = r2.
We consider the natural product morphism P0 : H → GLM and the following morphism
P− := 1W+ × 1W0 × p1W− : H →H . Let

P0− := P0 ◦P− : H → GLM ;

it is a morphism of SpecW (k)-schemes whose generic fibre is an open embedding of
SpecB(k)-schemes.

Let H̃ be the dilatation of GLM centered on W+0,k (see [1], Chapter 3, Section 3.2 for
dilatations). We recall that if GLM = SpecRM and if I+0k is the ideal of RM that defines
W+0,k, then as a scheme H̃ is the spectrum of the RM -subalgebra RH̃ of RM [ 1

p ] generated

by all elements ∗p with ∗ ∈ I+0k. It is well known that H̃ is a smooth, affine group scheme
over SpecW (k) which is uniquely determined by the following two additional properties
(they follow directly from the definition of RH̃ ; see Propositions 1, 2, and 3 of loc. cit.):

(i) There exists a homomorphism P̃0− : H̃ → GLM whose generic fibre is an isomor-
phism of SpecB(k)-schemes.

(ii) A morphism f : Y → GLM of flat SpecW (k)-schemes factors (uniquely) through
P̃0− if and only if the morphism fk : Yk → GLM/pM factors through W+0,k.

The group H̃ (W (k)) is the parahoric subgroup of GLM (W (k)) that normalizes the
sublattice F 1 ⊕ pF 0 = F 1 + pM of M .

The morphism P0− factors naturally as a morphism P : H → H̃ (cf. (ii)) whose p-adic
completion is an isomorphism (cf. [25], Subsubsection 2.1.1). Therefore we have a natural
identification HWm(k) = H̃Wm(k) that provides HWm(k) with a group scheme structure over
SpecWm(k) which does not depend on the decomposition H = W+ ×W (k) W0 ×W (k) W−
produced by the choice of the direct sum decomposition M = F 1 ⊕ F 0.

For g ∈ GLM (W (k)) and h = (h1, h2, h3) ∈ H (W (k)), let g[m] ∈ GLM (Wm(k))

and h[m] = (h1[m], h2[m], h3[m]) ∈ H (Wm(k)) be the reductions modulo pm of g and
h (respectively). Thus 1M/pmM = 1M [m]. Let φm, ϑm : M/pmM → M/pmM be the
reductions modulo pm of φ, ϑ : M →M .

Let σφ : M
∼→ M be the σ-linear automorphism which takes x ∈ F 1 to 1

pφ(x)

and takes x ∈ F 0 to φ(x). Let σφ act on the sets underlying the groups GLM (W (k))

and GLM (Wm(k)) in the natural way: if g ∈ GLM (W (k)), then σφ(g) := σφgσ
−1
φ and

σφ(g[m]) := (σφgσ
−1
φ )[m]. For g ∈ W+(W (k)) (resp. g ∈ W0(W (k)) or g ∈ W−(W (k))) we

have φ(g) = σφ(gp) (resp. we have φ(g) = σφ(g) or φ(gp) = σφ(g)).
Let Affk be the category of affine schemes over k. Let Set and Group be the categories

of abstract sets and groups (respectively). Let M be a smooth, affine (resp. a smooth,
affine group) scheme of finite type over SpecW (k). Let Wm(M) : Affk → Set (resp.
Wm(M) : Affk → Group) be the contravariant functor that associates to an affine k-scheme
SpecR the set (resp. the group) M(Wm(R)). This functor is representable by an affine,
smooth (resp. affine, smooth group) scheme over k of finite type to be denoted also by
Wm(M) (see [25], Subsection 2.1.4 for these facts due to Greenberg).
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Let Hm := Wm(H ) and Dm := Wm(GLM ). As PWm(k) : HWm(k) → H̃Wm(k) is an
isomorphism of SpecWm(k)-schemes, we will identify naturally

H (W (k)) = H̃ (W (k)) and Hm = Wm(H ) = Wm(H̃ ).

Thus in what follows we will view H (W (k)) as a subgroup of GLM (W (k)) and Hm as a
connected, smooth, affine group over k of dimension mr2 (cf. [25], Subsection 2.1.4 applied
to H̃ ). Similarly, we will view Dm as a connected, smooth, affine variety over k of dimension
mr2. Let

Tm : Hm ×k Dm → Dm

be the action defined on k-valued points as follows. If h = (h1, h2, h3) ∈ H (W (k)) and
g ∈ GLM (W (k)), then the product of h[m] = (h1[m], h2[m], h3[m]) ∈Hm(k) = H (Wm(k))

and g[m] ∈ Dm(k) = GLM (Wm(k)) is the element

Tm(h[m], g[m]) := (h1h2h
p
3gφ(h1h2h

p
3)−1)[m]

= (h1h2h
p
3gφ(hp3)−1φ(h2)−1φ(h1)−1)[m] = (h1h2h

p
3gσφ(h3)−1σφ(h2)−1σφ(hp1)−1)[m]

= h1[m]h2[m]h3[m]pg[m]σφ(h3[m])−1σφ(h2[m])−1σφ(h1[m]p)−1 ∈ Dm(k).

The formula Tm(h[m], g[m]) = (h1h2h
p
3gφ(h1h2h

p
3)−1)[m] shows that the action Tm is in-

trinsically associated to D, i.e. it does not depend on the choice of the direct sum decompo-
sition M = F 1 ⊕ F 0.

Let Om be the orbit of 1M [m] ∈ Dm(k) under the action Tm. Let Ōm be the scheme-
theoretic closure of Om in Dm; it is an affine, integral scheme over k. The orbit Om is a
connected, smooth, open subscheme of Ōm and thus it is also a quasi-affine scheme over
k. Let Sm be the subgroup scheme of Hm which is the stabilizer of 1M [m] under the action
Tm. Let Cm be the reduced group of Sm. Let C 0

m be the identity component of Cm. The
connected, smooth group C 0

m over k is unipotent, i.e. it has no torus of positive dimension
(see [25], Theorem 2.4 (a); see also Subsection 4.3).

4. Combinatorics of the action T1

In this section, we present basic combinatorial properties of the action T1 which will be
used in Section 5 to show that if the condition (C) holds for D[p], then the orbit Om of Tm
is affine. For the remaining part of this section, we let m = 1 and we use the notations of
Section 3.

4.1. Nilpotent subalgebras of End(M/pM)

In [13] (see also [20], Subsection 2.3 and Lemma 2.4) it is shown that there exist a k-basis
{ē1, . . . , ēr} for M/pM and a permutation π of the set J := {1, . . . , r} such that for each
i ∈ J , the following two properties hold:

(i) φ1(ēi) = 0 if i > c, and φ1(ēi) = ēπ(i) if i ≤ c;
(ii) ϑ1(ēπ(i)) = 0 if i ≤ c, and ϑ1(ēπ(i)) = ēi if i > c.
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The permutation π is not uniquely determined by the isomorphism class of D[p]. For
instance, we can always replace π by π0π1ππ

−1
0 , where π0 is an arbitrary permutation of the

set J that leaves invariant the subset {1, . . . , c} and where π1 is an arbitrary permutation of
the set J that leaves invariant all the subsets {πi(1), . . . , πi(c)} with i ∈ N. More precisely, it
is known (e.g., [16], [26], or [17]) that there exists a canonical bijection between isomorphism
classes of BT1’s over k and the quotient set Sr/(Sc × Sd).

Let {e1, . . . , er} be a W (k)-basis for M that lifts the k-basis {ē1, . . . , ēr} for M/pM and
such that F 1 = ⊕ri=c+1W (k)ei. Let {ei,j |i, j ∈ J} be the W (k)-basis for End(M) such that
for each l ∈ J we have ei,j(el) = δj,lei. Let {ēi,j |i, j ∈ J} be the reduction modulo p

of {ei,j |i, j ∈ J}; it is a k-basis for End(M/pM). Let σπ : M
∼→ M be the σ-linear

automorphism that maps ei to eπ(i) for all i ∈ J . Let gπ := σπσ
−1
φ ∈ GLM (W (k)).

Due to the properties (i) and (ii), the reduction modulo p of (M, gπφ, ϑg
−1
π ) coincides with

(M/pM,φ1, ϑ1). Based on this, we can assume that gπ[1] = 1M [1]; thus σφ and σπ are
congruent modulo p. As the action T1 is intrinsically associated toD (i.e., it does not depend
on the choice of the direct sum decompositionM = F 1⊕F 0), to study the group C 0

1 we can
assume F 0 = ⊕ci=1W (k)ei. Let

J+ := {(i, j) ∈ J2|j ≤ c < i},

J0 := {(i, j) ∈ J2| either i, j > c or i, j ≤ c}, and J− := {(i, j) ∈ J2|i ≤ c < j}.
The three sets {ēi,j |(i, j) ∈ J+}, {ēi,j |(i, j) ∈ J0}, and {ēi,j |(i, j) ∈ J−} are k-bases
for Lie(W+,k) = Hom(F̄ 0, F̄ 1), Lie(W0,k) = End(F̄ 1) ⊕ End(F̄ 0), and Lie(W−,k) =

Hom(F̄ 1, F̄ 0) (respectively).

By the π-order of the pair (i, j) ∈J−, we mean the smallest positive integer ν(i, j) such
that we have

(πν(i,j)(i), πν(i,j)(j)) ∈J+ ∪J−.

We define the following five sets:

J−,1 := {(i, j) ∈J−|(πν(i,j)(i), πν(i,j)(j)) ∈J+} and J−,2 := J− \J−,1

J+,1 := {(πν(i,j)(i), πν(i,j)(j))|(i, j) ∈J−,1} and J+,2 := J+ \J+,1

J0,0 := {(πs(i), πs(j)|(i, j) ∈J−,1 and s ∈ {1, . . . , ν(i, j)− 1}}.
We remark that the set J+ ∪J0,0 ∪J− contains no pair of the form (i, i). The number of
elements of the set J0,0 is

|J0,0| :=
∑

(i,j)∈J−,1

(
ν(i, j)− 1

)
.

For (i, j) ∈ J−,1 and s ∈ {0, 1, . . . , ν(i, j)} we define the π-level of (πs(i), πs(j)) to be
the number η(πs(i), πs(j)) := s and we define the π-order of (πs(i), πs(j)) to be the number
ν(πs(i), πs(j)) := ν(i, j)− s. Thus the π-order ν(i, j) and the π-level η(i, j) are well defined
for all pairs (i, j) ∈J+,1 ∪J0,0 ∪J−,1.

L 4.1. – Let nF be the k-vector space generated by those ē(i,j)’s with (i, j) ∈ JF

(thus n+,1 := ⊕(i,j)∈J+,1
kēi,j , n0,0 := ⊕(i,j)∈J0,0

kēi,j , etc.). Then the following four
properties hold:
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(a) If the pairs (i, j) and (j, l) belong to J0,0, then we have (i, l) ∈J0,0. Similarly, if one
of the pairs (i, j) and (j, l) belongs to J0,0 and the other one belongs to J+,1 (resp. to
J−,1), then we have (i, l) ∈J+,1 (resp. we have (i, l) ∈J−,1).

(b) The k-vector space n0,0 is a nilpotent subalgebra of End(M/pM). More precisely, we
have nmax(c,d)

0,0 = 0.
(c) The k-vector spaces n+, n+,1, n−, and n−,1 are both left and right n0,0-modules.

Moreover we have nd0,0n+ = n+n
c
0,0 = nc0,0n− = n−n

d
0,0 = 0.

(d) The k-vector spaces n+ ⊕ n0,0, n+,1 ⊕ n0,0, n0,0 ⊕ n−, and n0,0 ⊕ n−,1 are nilpotent
subalgebras of End(M/pM).

Proof. – We prove only the first part of (a) as the second part of (a) is proved similarly.
Let s := min{η(i, j), η(j, l)} ∈ N∗ and let t := min{ν(i, j), ν(j, l)} ∈ N∗. From the very
definition of s, we get that one of the two pairs (π−s(i), π−s(j)) and (π−s(j), π−s(l)) belongs
to J− while the other one belongs to J0; thus (π−s(i), π−s(l)) ∈J−. It is easy to see that
for all u ∈ {1, . . . , s+ t− 1} we have (π−s+u(i), π−s+u(l)) ∈J0. From the very definition
of t, we get that one of the two pairs (πt(i), πt(j)) and (πt(j), πt(l)) belongs to J+ while
the other one belongs to J0; thus (πt(i), πt(l)) ∈J+. From the last three sentences we get
that we have (π−s(i), π−s(l)) ∈ J−,1 and ν(π−s(i), π−s(l)) = s + t. As 1 ≤ s < s + t, we
have (i, l) ∈J0,0 (i.e., the first part of (a) holds) as well as η(i, l) = s and ν(i, l) = t.

We check (b). For ν ∈ N let nν0,0 be the k-span of those ēi,j ’s for which (i, j) ∈J0,0 and
ν(i, j) = ν. As n+n+ = 0, we have nν0,0n

ν
0,0 = 0. From the end of the previous paragraph we

get that for ν1 < ν2, we have: nν10,0n
ν2
0,0 + nν20,0n

ν1
0,0 ⊆ n

ν1
0,0. These imply that n0,0 is a nilpotent

subalgebra of End(M/pM). Thus n0,0 is the Lie algebra of the smooth, connected subgroup
of W0,k = GLF̄ 1 ×k GLF̄ 0 whose group of valued points in an arbitrary commutative
k-algebra R is 1M⊗W (k)R + n0,0⊗k R. Therefore n0,0 is W0(k)-conjugate to a Lie subalgebra
of End(F̄ 1) ⊕ End(F̄ 0) formed by upper triangular nilpotent matrices. This implies that
n

max(c,d)
0,0 = 0. Thus (b) holds.

It is obvious that n+ and n− are left and right n0,0-modules. As in the previous paragraph,
using the second part of (a) we argue that n+,1 and n−,1 are left and right n0,0-modules.
The second part of (c) follows from relations of the form
nd0,0n+ ⊆ [n0,0 ∩ End(F̄ 1)]d Hom(F̄ 0, F̄ 1) = 0. Thus (c) holds.

Part (d) follows from (b) and (c) and the fact that n2+ = n2− = 0.

4.2. Condition (C)

We define four subsets of ∪s≥2J
s as follows:

Γ := {(i1, . . . , is)|s ≥ 2, (i`, i`+1) ∈J0,0 ∀ ` ∈ {1, . . . , s− 2}, (is−1, is) ∈J+,2}
∆ := {(i1, . . . , is)|s ≥ 3, (i1, . . . , is−1) ∈ Γ, (is−1, is) ∈J0,0}

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



938 M.-H. NICOLE, A. VASIU AND T. WEDHORN

Γ1 := {(i1, . . . , is) ∈ Γ|(i1, is) ∈J+,1 and (i2, is) /∈J+,1}
∆1 := {(i1, . . . , is) ∈ ∆|(i1, is) ∈J+,1 and (i2, is) /∈J+,1}.

If (i1, . . . , is) ∈ Γ1, then s ≥ 3. For each element γ = (i1, . . . , is) ∈ Γ ∪ ∆ and for
every t ∈ N∗, let nt(γ) be the number of elements ` ∈ {1, . . . , s − 1} such that we have
(i`, i`+1) ∈J0,0 and ν(i`, i`+1) = t. We define a number:

κ(γ) :=
∞∑
t=1

nt(γ)p−t ∈ (0,∞) ∩Q.

D 4.2. – Let κ(π) := max{κ(γ)|γ ∈ Γ1 ∪ ∆1} with the convention that
κ(π) = 0 if Γ1 ∪∆1 is the empty set. Let κ(D[p]) be the smallest value κ(π), where π runs
through all permutations of the set {1, . . . , r} for which there exists a k-basis {ē1, . . . , ēr} for
M/pM as in the beginning of Subsection 4.1. We say the condition (C) holds forD (or for any
truncation of D) if either κ(D[p]) < 1 or κ(D∨[p]) < 1. Here D∨ is the Cartier dual of D.
We say the condition (C) holds for an m-truncated Barsotti Tate group B over a field K of
characteristic p, if the condition (C) holds for the extension of B to an algebraic closure of K.

L 4.3. – The following four properties hold:

(a) Let γ ∈ Γ. Then for each positive integer t we have the following inequality
nt(γ) ≤ 1 +

∑t−1
u=1 nu(γ). Therefore we have nt(γ) ≤ 2t−1.

(b) If p ≥ 3 and γ ∈ Γ, then κ(γ) < 1.
(c) If p ≥ 5 and γ ∈ Γ ∪ ∆, then κ(γ) < 1. Thus if p ≥ 5, then κ(π) < 1 and therefore

condition (C) holds for D.
(d) We assume that p = 3. Then κ(π) < 4

3 . If moreover min{c, d} ≤ 6, then condition (C)

holds for D.

Proof. – To prove (a) we write γ = (i1, . . . , is) and we can assume that nt(γ) > 0; thus
we have s ≥ 3 even if γ ∈ Γ. We consider the identity

(1) ēπt(i1),πt(is−1) =
s−2∏
`=1

ēπt(i`),πt(i`+1)

between elements of End(M/pM). The right-hand side of (1) contains at leastnt(γ) elements
of n+, it contains

∑
u>t nu(γ) elements of n0,0, and it contains n1(γ)+n2(γ)+ · · ·+nt−1(γ)

elements that belong to J+, J0, or J−. Let µ̄ : Gm → GLM/pM be the cocharacter
that fixes F̄ 0 and that acts via the inverse of the identical character of Gm on F̄ 1. If we have
nt(γ) > 1 + n1(γ) + n2(γ) + · · · + nt−1(γ), then Gm acts via µ̄ on the right-hand side of
(1) via at least the second power of the inverse of the identical character of Gm; therefore the
right-hand side of (1) must be 0 and this contradicts the fact that the left-hand side of (1) is
non-zero. Thus we have nt(γ) ≤ 1 +n1(γ) +n2(γ) + · · ·+nt−1(γ). By induction on t ∈ N∗

we get that nt(γ) ≤ 2t−1 = 1 + 1 + 2 + · · ·+ 2t−2. This proves (a).
We prove (b). Due to (a) and the inequality p ≥ 3 we have

(2) κ(γ) =
∞∑
t=1

nt(γ)p−t <
∞∑
t=1

2t−1p−t =
1

p− 2
≤ 1.

Thus (b) holds.
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Due to (b), to prove (c) we can assume that γ = (i1, . . . , is) ∈ ∆. We have

(3) κ(γ) =
1

pν(is−1,is)
+ κ((i1, . . . , is−1)) ≤ 1

p
+ κ((i1, . . . , is−1)).

Due to the last inequality and the fact that p ≥ 5, from relations (2) and (3) we get that
κ(γ) < 1

p−2 + 1
p < 1. Thus (c) holds.

The first part of (d) follows from (b) and (3). To check the last part of (d) we can assume
that d ≤ 6 (otherwise we can replace D by D∨). From Lemma 4.1 (c), (by taking t = 0 in
Formula (1)) we get that for each element γ = (i1, . . . , is) ∈ Γ we have s ≤ d + 1 ≤ 7 and
thus

∑∞
t=1 nt(γ) ≤ s − 2 ≤ 5. From this and (a) we get that κ(γ) ≤ 1

3 + 2
9 + 2

27 = 17
27 . As

17
27 + 1

3 = 26
27 < 1, from the last sentence and (3), we get that we have κ(γ̃) < 1 for all γ̃ ∈ ∆.

Thus κ(π) < 1 and therefore (d) holds.

E 4.4. – We assume that p ∈ {2, 3} and that there exists an integer a ≥ 2 such
that we have a ring monomorphism Fpa ↪→ End(D[p]) with the property that Fpa acts on
the tangent space of D[p] via scalar endomorphisms. We will check that κ(D) < 1.

To the product decomposition Fpa ⊗Fp k = ka corresponds a direct sum decomposition
M/pM = ⊕au=1M̄u. It is easy to see that we can assume that the last sum decomposition
is the reduction modulo p of a direct sum decomposition M = ⊕au=1Mu with the property
that σπ(Mu) = Mu+1, whereMa+1 := M1. The direct sum decomposition ofW (k)-modules
End(M) = ⊕au=1⊕aũ=1 Hom(Mu,Mũ) allows us to view each Hom(Mu,Mũ) as aW (k)-sub-
module of End(M).

As Fpa acts on the tangent space of D[p] via scalar endomorphisms, we can choose the
indexing of M̄u’s such that we have F̄ 1 ⊆ M̄1. Thus we can assume that F 1 ⊆ M1. We can
also assume that certain subsets of {e1, . . . , er} are W (k)-bases for the Mu’s. From the last
two sentences, we get that:

(*) if (i, j) ∈J+, then ei,j ∈ Hom(M,F 1) ⊆ Hom(M,M1).

Let γ = (i1, . . . , is) ∈ Γ ∪∆. To check that κ(D) < 1, it suffices to show that κ(γ) < 1.
Based on (3), to check this it suffices to show that if γ ∈ Γ, then we have κ(γ) < 1 − 1

p . We
can assume that s ≥ 3. As γ ∈ Γ, we have (is−1, is) ∈J+,2 and (i1, i2), . . . , (is−2, is−1) ∈J0,0.
From this and (*) we easily get that we have ei1,i2 , . . . , eis−2,is−1

∈ End(M1). As
σπ(End(Mu)) = End(Mu+1), we get that each positive integer i such that
eπi(i1),πi(i2) ∈ End(M1) is a multiple of a. From this and (*), we get that ν(i1, i2) ⊆ aN∗.
Similarly we argue that {ν(i2, i3), . . . , ν(is−2, is−1)} ⊆ aN∗. Therefore for each t ∈ N∗ \aN∗
we have nt(γ) = 0. As in the proof of Lemma 4.3 (a) we argue that for each t ∈ N∗ we have
nta(γ) ≤ 2t−1. Therefore we have κ(γ) <

∑∞
t=1 2t−1p−at = 1

pa−2 . As a ≥ 2, we get that
κ(γ) < 1− 1

p . Thus κ(D) < 1.

R 4.5. – If p = 2 (resp. p = 3), there exist plenty of examples in which there exist
elements γ ∈ Γ1 (resp. γ ∈ ∆1) such that κ(γ) > 1 and therefore also κ(π) > 1 (for p = 2

see Example 4.10 below).
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4.3. Computing C 0
1 with explicit equations

Let (h1[1], h2[1], h3[1]) ∈ H1(k). Let h12[1] := h1[1]h2[1] ∈ W+0(k) and
h23[1] := h2[1]h3[1] ∈ W0−(k). We have (h1[1], h2[1], h3[1]) ∈ C1(k) if and only if
h12[1] = σφ(h23[1]), cf. the very definition of the action T1. Writing h12 = 1M [1] +∑

(i,j)∈J+∪J0
xi,j ēi,j and h23 = 1M [1] +

∑
(i,j)∈J0∪J− xi,j ēi,j with xi,j as indepen-

dent variables, the equation h12[1] = σφ(h23[1]) gets translated into a system of equations
that are of the form aπ(i),π(j)xπ(i),π(j) = bi,jx

p
i,j with aπ(i),π(j), bi,j ∈ {0, 1} and that are

indexed by (i, j) ∈ J2. More precisely, we have ai,j = 1 (resp. bi,j = 1) if and only if
(i, j) ∈ J+ ∪J0 (resp. (i, j) ∈ J0 ∪J−). Based on this, by tracing those variables xi,j
that can take independently an infinite number of values in k, one easily gets that we have
(h1[1], h2[1], h3[1]) ∈ C 0

1 (k) if and only if the following three identities hold (to be compared
with [25], Subsection 2.3, Formulas (4a) to (4c)):

h12[1] = 1M [1] +
∑

(i,j)∈J−,1

ν(i,j)∑
`=1

xp
`

i,j ēπ`(i),π`(j),(4)

h2[1] = 1M [1] +
∑

(i,j)∈J−,1

ν(i,j)−1∑
`=1

xp
`

i,j ēπ`(i),π`(j),(5)

h23[1] = 1M [1] +
∑

(i,j)∈J−,1

ν(i,j)−1∑
`=0

xp
`

i,j ēπ`(i),π`(j),(6)

where the variables xi,j with (i, j) ∈ J−,1 can take independently all values in k such that
h2[1] ∈ W0(k).

Note that Formulas (4), (5), and (6) differ only by summation limits. If n0,0 is as in
Lemma 4.1 (b), then we have h2[1] ∈ 1M [1] + n0,0. From this and the fact that n0,0 is a
nilpotent algebra, we get that:

(*) The element h2[1] has an inverse in 1M [1] + n0,0 which is a polynomial in h2[1] with
coefficients in k and therefore we always have h2[1] ∈ W0(k).

Thus the variables xi,j with (i, j) ∈ J−,1 can take independently all values in k. Based
on Formulas (4) to (6) we get that

(7) Lie(C 0
1 ) =

⊕
(i,j)∈J−,1

kēi,j = n−,1 ⊆ Lie(W−,k).

As n−,1 does not contain non-zero semisimple elements, from (7) we get that Gm is not a
subgroup of C 0

1 and thus C 0
1 is unipotent.

Let V−1, V1, and V2 be the vector group schemes over k whose Lie algebras are n−,1,
n+,1 and n+,2 (respectively). For a commutative k-algebra R we have V−1(R) = n−,1 ⊗k R,
V1(R) = n+,1⊗kR, and V2(R) = n+,2⊗kR. We get that the morphism of smooth k-schemes

V−1 → C 0
1

that takes the element
∑

(i,j)∈J−,1 xi,j ēi,j ∈ n−,1 = Lie(C 0
1 ) = Lie(V−1) = V−1(k) to the

element
(h12[1](h2[1])−1, h2[1], (h2[1])−1h23[1]) ∈ C 0

1 (k)
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obtained naturally from Formulas (4) to (6), is an isomorphism. For s ∈ {1, 2} we consider
the closed embedding monomorphism

εs : Vs ↪→ W+,k

that takes vs ∈ Vs(R) to 1M/pM⊗kR + vs ∈ W+,k(R).

4.4. The key morphism ζ

Let I1 := H1/W−,k; it is an affine, smooth group scheme over k isomorphic to W+0,k and
therefore such that we have a short exact sequence

1→ W+,k → I1 → W0,k → 1.

As schemes over k we can identify naturally I1 = W+,k ×k W0,k. Thus we will also identify
(as sets) I1(k) = W+(k) × W0(k). Let ε : H1 � I1 and θ : I1 � W0,k be the natural
epimorphisms and let ι := θ ◦ ε : H1 � W0,k be their composite. The epimorphism ε

gives birth via restriction to a finite homomorphism C 0
1 → I1 whose kernel is finite and

connected.
The group C̃ 0

1 := Im(C 0
1 → I1) is isomorphic to C 0

1 . More precisely, using the
isomorphism V−1 → C 0

1 one easily gets that the epimorphism C 0
1 � C̃ 0

1 can be identified
with the Frobenius endomorphism of C 0

1 . We have

Lie(C̃ 0
1 ) =

⊕
(i,j)∈J0,0∪J+,1,η(i,j)=1

kēi,j .

D 4.6. – The morphism ζ : C̃ 0
1 ×k V2 ×k W0,k → I1 of k-schemes is defined

by the following rule: if R is a commutative k-algebra, then the element (h̃, y, z) ∈
C̃ 0

1 (R)×V2(R)×W0,k(R) is mapped to the product element h̃ · (ε2(y), 1) · ε(1, z, 1) ∈ I1(R).

The key step for proving the main result Theorem 1.2 is to show that ζ is finite and flat.
For this, we first prove the following basic fact.

L 4.7. – LetR be a commutative Fp-algebra. Let n ∈ N∗. Let d1, . . . , dn be positive
integers. For each ` ∈ {1, . . . , n} we consider a polynomial Q` ∈ R[x1, . . . , xn]. We assume
that there exist positive rational numbers µ1, . . . , µn such that for each ` ∈ {1, . . . , n}
and for every monomial term β

∏n
i=1 x

vi
i of Q` with β ∈ R \ {0} we have an inequality

µ`d` >
∑n
i=1 µivi (thus the degree of each Q` in the variable x` is at most equal to d` − 1).

Let
R := R[x1, . . . , xn]/(xd11 −Q1, . . . , x

dn
n −Qn).

Then R is a freeR-module of rank
∏n
`=1 d`. Therefore the natural morphism Spec R → SpecR

of schemes is a finite, flat cover of degree
∏n
`=1 d`.

Proof. – Multiplying all µ1, . . . , µn by a positive integer, we can assume that we have
µ1, . . . , µn ∈ N∗. Let M := Nd. Let τ : M ↪→ M be the monomorphism of additive
monoids that takes a sequence (v1, . . . , vn) ∈ M to (µ1v1, . . . , µnvn) ∈ M. Let < be
the degree-lexicographic ordering on M. Let ≺ be the well ordering on M such that for
a, b ∈M we have a ≺ b if and only if τ(a) < τ(b). For each P ∈ R[x1, . . . , xn], we define its
weight ω(P ) to be the maximal element (v1, . . . , vn) of M with respect to the ordering ≺ for
which the monomial

∏n
i=1 x

vi
i appears in P with a non-zero coefficient. From hypotheses

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



942 M.-H. NICOLE, A. VASIU AND T. WEDHORN

we get that for each ` ∈ {1, . . . , n} we have ω(xd`` ) > ω(Q`). Using this, it is an easy
exercise in the theory of Gröbner bases (over the base R) to check that the image of the set
{
∏n
i=1 x

vi
i |0 ≤ vi < di ∀ i ∈ {1, . . . , n}} in R is an R-basis for R. From this the lemma

follows.

T 4.8. – We assume that we have an inequality κ(D[p]) < 1. Then the morphism
ζ is a finite, flat morphism of degree p|J0,0|.

Proof. – Each element of W+(k) can be written uniquely as ε1(a1)ε2(a2) with a1 ∈ n+,1
and a2 ∈ n+,2. Thus each element of I1(k) can be written uniquely as a pair (ε1(a1)ε2(a2), a0)

with a0 ∈ W0(k). Let (h̃, y, z) ∈ C̃ 0
1 (k)× V2(k)×W0,k(k) be an arbitrary element. We look

at the equation

(8) ζ((h̃, y, z)) = (ε1(a1)ε2(a2), a0).

By applying θ to (8) we get that

(9) ι(h̃)z = a0.

We write h̃ = (h1(x), h2(x)) with x ∈ Lie(C̃ 0
1 ). We have h2(x)z = a0, cf. (9).

We write y =
∑

(i,j)∈J+,2
yi,j ēi,j and x =

∑
(i,j)∈J0,0∪J+,1,η(i,j)=1 xi,j ēi,j , where yi,j ’s

and xi,j ’s are variables. Based on Formulas (4) and (5), we have

h2(x) = 1M [1] +
∑

(i,j)∈J0,0,η(i,j)=1

ν(i,j)−1∑
l=0

xp
l

i,j ēπl(i),πl(j)

and

h12(x) := h1(x)h2(x) = 1M [1] +
∑

(i,j)∈J0,0∪J+,1,η(i,j)=1

ν(i,j)∑
l=0

xp
l

i,j ēπl(i),πl(j).

By applying (8) and (9), by using the identification I1(k) = W+(k)×W0(k), and by denoting
with 1 identity elements, we get that

(h1(x), h2(x)) · (1 + y, 1) · (1, z) = (1 + a1 + a2, 1) · (1, h2(x)) · (1, z).

Thus we get the equation (h1(x), h2(x)) · (1 + y, 1) = (1 +a1 +a2, 1) · (1, h2(x)) between
elements of I1(k) and therefore the equation

(10) h12(x)(1M [1] + y) = (1M [1] + a1 + a2)h2(x)

between elements of GLM (k). As n2+ = 0, we have h12(x)y = h2(x)y. Thus Equation (10)

is equivalent to h12(x) + h2(x)y = h2(x) + (a1 + a2)h2(x). Let

l1(x) := h12(x)− h2(x) =
∑

(i,j)∈J0,0∪J+,1,η(i,j)=1

xp
ν(i,j)

i,j ēπν(i,j)(i),πν(i,j)(j) ∈ n+,1

and

l2(x) := h2(x)−1M [1] =
∑

(i,j)∈J0,0,η(i,j)=1

ν(i,j)−1∑
l=0

xp
l

i,j ēπl(i),πl(j) =:
∑

(i′,j′)∈J0,0

qi′,j′(x)ēi′,j′ .

We get that Equation (10) can be rewritten as

(11) l1(x) + h2(x)y = (a1 + a2)h2(x).
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For s ∈ {1, 2} let
πs : Lie(W+,k)� Lie(Vs)

be the projection of Lie(W+,k) on Lie(Vs) along Lie(V3−s). Multiplying (11) from the
left by h2(x)−1 and using that h2(x)−1l1(x) =

∑∞
s=0(−1)sl2(x)sl1(x) ∈ n+,1 and

h2(x)−1a1h2(x) ∈ n+,1 (cf. Property 4.3 (*) and Lemma 4.1 (c)), we get that

(12) y = π2

(
h2(x)−1a2h2(x)

)
.

Due to (12), solving Equation (11) is the same thing as solving the equation h2(x)−1l1(x) =

π1

(
h2(x)−1(a1 + a2)h2(x)

)
and therefore the equation

l1(x) = [1M [1] + l2(x)]π1

( ∞∑
s=0

(−1)sl2(x)s(a1 + a2)[1M [1] + l2(x)]
)

=

(13) a1 + a1l2(x) + [1M [1] + l2(x)]π1

( ∞∑
s=0

(−1)sl2(x)s(a2)[1M [1] + l2(x)]
)
.

The last identity is implied by Lemma 4.1 (c).
We write a1 + a2 =

∑
(i,j)∈J+

ai,j ēi,j , with the ai,j ’s thought as variables. We consider
the polynomial k-algebra R := k[ai,j |(i, j) ∈J+]. Due to the above formulas for l1(x) and
l2(x), the system of equations defined by Equation (13) has the form

(14) xp
ν(i,j)

i,j = Qi,j for (i, j) ∈J0,0 ∪J+,1 with η(i, j) = 1,

where each Qi,j is a polynomial in the variables xi,j ’s with coefficients in R. This system
defines a morphism Spec R → SpecR of affine k-schemes. For (i, j) ∈ J0,0 ∪J+,1 with
η(i, j) = 1, by identifying the coefficients of ēπν(i,j)(i),πν(i,j)(j) in the two sides of Equation
(13), we get the formula:

Qi,j =
∑

(i′1,i
′
2,...,i

′
s−1,i

′
s)∈Γ1

i′1=πν(i,j)(i)

i′s=π
ν(i,j)(j)

(−1)s−2ai′
s−1

,i′s
qi′1,i′2(x) · · · qi′

s−2
,i′
s−1

(x)(15)

+
∑

(i′1,i
′
2,...,i

′
s−1,i

′
s)∈∆1

i′1=πν(i,j)(i)

i′s=π
ν(i,j)(j)

(−1)s−3ai′
s−2

,i′
s−1

qi′1,i′2(x) · · · qi′
s−3

,i′
s−2

(x)qi′
s−1

,i′s
(x)

+ aπν(i,j)(i),πν(i,j)(j) +
∑

i′∈{1,...,r}
(πν(i,j)(i),i′)∈J+,1

(i′,πν(i,j)(j))∈J0,0

aπν(i,j)(i),i′qi′,πν(i,j)(j)(x).

In Formula (15), the first two lines record (resp. the third line records) the contribution of a2

(resp. of a1) to Qi,j .
Let n be the number of elements of J−,1. We write

{(i, j) ∈J0,0 ∪J+,1|η(i, j) = 1} = {(i1, j1), . . . , (in, jn)}.

We can assume that κ(π) < 1, cf. the very definition of κ(D[p]). Let

ν := max{ν(i`, j`)|` ∈ {1, . . . , n}}.
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For each ` ∈ {1, . . . , n} we define a positive integer (thought as a weight) µ` := pν−ν(i`,j`).
We have µ`pν(i`,j`) = pν .

We consider a monomial term:

β
n∏
`=1

xt`i`,j` = (−1)s−2ai′
s−1

,i′s
qi′1,i′2(x) · · · qi′

s−2
,i′
s−1

(x)

with γ := (i′1, i
′
2, . . . , i

′
s−1, i

′
s) ∈ Γ1 (resp.

β
n∏
`=1

xt`i`,j` = (−1)s−3ai′
s−2

,i′
s−1

qi′1,i′2(x) · · · qi′
s−3

,i′
s−2

(x)qi′
s−1

,i′s
(x)

with γ := (i′1, i
′
2, . . . , i

′
s−1, i

′
s) ∈ ∆1) that contributes via Equation (15) to some Qia,ja . If

u ∈ {1, . . . , s− 1} is such that (i′u, i
′
u+1) ∈J0,0, then for

(i`, j`) := π−η(i′u,i
′
u+1)+1(i′u, i

′
u+1) ∈ {(i, j) ∈J0,0 ∪J+,1|η(i, j) = 1}

with ` ∈ {1, . . . , n}we get that the contribution of xi`,j` to β
∏n
`=1 x

t`
i`,j`

that corresponds to

the segment (i′u, i
′
u+1) of γ is xp

ν(i`,j`)−ν(i
′
u,i
′
u+1

)

i`,j`
. Thus the contribution of xi`,j` to the sum∑n

`=1 t`µ` that corresponds to the segment (i′u, i
′
u+1) is precisely pν−ν(i′u,i

′
u+1). For t ∈ N∗,

let nt(γ) be as in Subsection 4.2 (i.e., the number of those u ∈ {1, . . . , s − 1} such that we
have (i′u, i

′
u+1) ∈J0,0 and ν(i′u, i

′
u+1) = t). From the last two sentences, we get that

(16)
n∑
`=1

t`µ` = pν
∞∑
t=1

nt(γ)p−t = pνκ(γ) ≤ pνκ(π) < pν

(the first inequality, cf. the very definition of κ(π)).

If β
∏n
`=1 x

t`
i`,j`

is aπν(i,j)(i),πν(i,j)(j) (resp. is aπν(i,j)(i),i′qi′,πν(i,j)(j)(x) with
(πν(i,j)(i), i′) ∈ J+,1 and (i′, πν(i,j)(j)) ∈ J0,0), then the sum

∑n
`=1 t`µ` is 0 (resp. is

pν−ν(i′,πν(i,j)(j)) ≤ pν−1) and thus it is less than pν .

From the last two paragraphs we get that for every monomial term β
∏n
`=1 x

t`
i`,j`

that shows up with a non-zero coefficient in some Qia,ja with a ∈ {1, . . . , n}, we have∑n
`=1 t`µ` < pν and thus (cf. (14)) the hypotheses of Lemma 4.7 are satisfied. Thus from

Lemma 4.7 we get that the morphism Spec R → SpecR is a finite, flat cover of degree∏n
`=1 p

ν(i`,j`) = p

∑
(i,j)∈J−,1

ν(i,j)−1
= p|J0,0|.

All the above part can be redone using arbitrary K -valued points instead of k-valued
points. Taking K to be the k-algebra of global functions of the affine k-scheme I1, from
Equation (9) and the fact that the morphism Spec R → SpecR is a finite, flat cover of degree
p|J0,0|, we get that ζ is a finite, flat cover of degree p|J0,0|.

4.5. Examples

E 4.9. – Suppose that D is minimal, i.e. we have nD = 1. As nD = 1, we
can assume that gπ = 1M and thus that σφ = σπ. As σφ = σπ, we have direct sum
decompositions:

(End(M), φ) = ⊕α∈Q∩[−1,1](Wα, φ) = (S+, φ)⊕ (S0, φ)⊕ (S−, φ)
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such that all Newton polygon slopes of (Wα, φ) are α, all Newton polygon slopes of (S+, φ)

are positive, all Newton polygon slopes of (S0, φ) are 0, and all Newton polygon slopes of
(S−, φ) are negative.

Referring to Equation (11), in this paragraph we will check that y, a2 ∈ S+/pS+. To check
this we can assume that either D is indecomposable or a direct sum of two indecomposable
minimal p-divisible groups over k that have distinct Newton polygon slopes. In the first case
we have S+ = S− = 0 and from [25], Example 2.3.1, we get that J−,2 = J− \J−,1 = ∅
and therefore that J+,1 = J+ and J+,2 = ∅; thus y = a2 = 0 ∈ S+/pS+. In the
second case, we write D = D1×D2 such that both D1 and D2 are indecomposable minimal
p-divisible groups over k. For s ∈ {1, 2}, let cs and ds be the codimension and the dimension
of Ds. We can assume that the Newton polygon slope d1

c1+d1
of D1 is less than the Newton

polygon slope d2
c2+d2

of D2. We have c = c1 + c2, d = d1 + d2, and c2d1 < c1d2. Let
(M,φ) = (M1, φ) ⊕ (M2, φ) be the direct sum decomposition such that the Dieudonné
module of Ds is (Ms, φ). We have S+ = Hom(M1,M2), S0 = End(M1) ⊕ End(M2),
and S− = Hom(M2,M1). From [25], Example 2.3.2, we get that if (i, j) ∈ J− is such
that ei,j ∈ Hom(M1,M2), then we have (i, j) ∈ J−,1. The W (k)-linear map that takes
ei,j to ej,i induces naturally an isomorphism between (Hom(M2,M1), φ) and the dual of
(Hom(M1,M2, φ)) (in the natural sense that involves no Tate twists). From the previous two
sentences we get via duality that if (i, j) ∈ J+ is such that ei,j ∈ Hom(M2,M1), then we
have (i, j) ∈ J+,1. From this and the first case, we get that if (i, j) ∈ J+,2, then we have
ei,j ∈ Hom(M1,M2) = S+. This implies that y, a2 ∈ S+/pS+.

In this paragraph we assume that a1 = 0. As y, a2 ∈ S+/pS+ and a1 = 0, from Equation
(11) we get by an increasing induction on the Newton polygon slope α ∈ Q∩ [−1, 1] that the
component of x in Wα/pWα is uniquely determined. Thus the system (11) has for a1 = 0 a
unique solution. More precisely, for a1 = 0 the system (13) is of the form:

xv11 = a1, xv22 = Q2(x1), · · · , xvnn = Qn(x1, . . . , xn−1),

where {x1, . . . , xn} = {xi1,j1 , . . . , xin,jn}, where v1, . . . , vn are the corresponding rearrange-
ment of νi1,j1 , . . . , νin,jn , and where a1, Q2, . . . , Qn are the corresponding rearrangement of
Qi1,j1 , Qi2,j2 , . . . , Qin,jn . Thus, if I is the ideal of R generated by ai,j with (i, j) ∈ J+,1,
then the morphism Spec R/RI → SpecR/I is a purely inseparable, finite, flat cover of de-
gree p|J0,0|.

If D is isoclinic, then J+,2 = ∅, κ(D) = 0, and the condition (C) holds. Thus the
morphism Spec R → SpecR is a finite, flat cover of degree p|J0,0|.

E 4.10. – Suppose that π is the r-cycle (1 2 · · · r). We compute several invariants
introduced above in this section. We have:

J−,1 = {(i, r)|i ≤ c} ∪ {(c, j)|c+ 1 ≤ j ≤ r − 1},
J+,1 = {(c+ 1, j)|j ≤ c} ∪ {(i, 1)|c+ 2 ≤ i ≤ r},
J0,0 = {(i, j)|r ≥ j > i > c} ∪ {(i, j)|c > i > j ≥ 1}.

– Here is a pictorial representation of the sets for c = d = 4. The gray diagonal and the
arrow remind how the r-cycle π acts on the diagram.
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π = (12345678)

i

j

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8

bc bc bc

bc bc

bc

bc

bc bc

bc bc bc

+ + + +

+

+

+

|

|

|

|| | | |

r r r

r r r

r r r

rs rs rs

rs rs rs

rs rs rs

N.B. We write: | ∈ J−,1, o ∈ J0,0, + ∈ J+,1, � ∈ J−,2, � ∈ J+,2.

• We compute the numbers: ν(i, j) with (i, j) ∈ J−,1. If (i, j) ∈ J−,1

and j = r, then ν(i, j) = c + 1 − i; if (i, j) ∈ J−,1 and i = c,

then ν(i, j) = r + 1 − j. Note that |J0,0| = c(c−1)+d(d−1)
2

and that
n = |J−,1| = r − 1. The set of π-orders of elements of J−,1 is
{0, 1, 2, . . . ,max{c, d}} and therefore ν = max{c, d} − 1.

• Note that the nilpotency bounds of Lemma 4.1 (b) and (c) are sharp
for π = (12 · · · r − 1 r). For example, we have n

c−1
0,0 6= 0 as by going

down the line j = i− 1 we have an identity:

ēc,c−1ēc−1,c−2 · · · ē2,1 = ēc,1.

• We compute the invariant κ(π) explicitly for p = 2, 3. As π is an r-cycle,
it is easy to see that π is unique up to conjugation by a permutation of
the set J that leaves invariant the subset {1, . . . , c}. Therefore we have
κ(D[p]) = κ(π). Suppose that c ≥ 3 and d ≥ 2. The maximal value of
κ(γ) with γ ∈ Γ1 ∪ ∆1 is obtained for certain elements γ ∈ ∆1. Like
for γ = (c+ 1, c+ 2, . . . , r, c, 2), we have

κ(γ) =
2

p
+

1

p2
+

1

p3
+ · · · + 1

pd−1
.

For p = 3, clearly κ(π) < 1. For p = 2, we have κ(π) ≥ 1. Using this
one gets that if p = 2 and c = d ≥ 3, then D is isomorphic to D∨ and
the condition (C) does not hold for D.

• Suppose p = 2 and (c, d) = (3, 2). Then J+,1 = {(4, 1), (4, 2), (4, 3), (5, 1)},
J+,2 = {(5, 2), (5, 3)}, and J0,0 = {(2, 1), (3, 1), (3, 2), (4, 5)}. Thus

27

N.B. We write: | ∈ J−,1, o ∈ J0,0, + ∈ J+,1, � ∈ J−,2, � ∈ J+,2.

– We compute the numbers: ν(i, j) with (i, j) ∈J−,1. If (i, j) ∈J−,1 and j = r, then
ν(i, j) = c + 1 − i; if (i, j) ∈ J−,1 and i = c, then ν(i, j) = r + 1 − j. Note that
|J0,0| = c(c−1)+d(d−1)

2 and that n = |J−,1| = r − 1. The set of π-orders of elements
of J−,1 is {0, 1, 2, . . . ,max{c, d}} and therefore ν = max{c, d} − 1.

– Note that the nilpotency bounds of Lemma 4.1 (b) and (c) are sharp for
π = (12 · · · r − 1 r). For example, we have nc−1

0,0 6= 0 as by going down the line
j = i− 1 we have an identity:

ēc,c−1ēc−1,c−2 · · · ē2,1 = ēc,1.

– We compute the invariant κ(π) explicitly for p = 2, 3. As π is an r-cycle, it is easy to see
that π is unique up to conjugation by a permutation of the set J that leaves invariant the
subset {1, . . . , c}. Therefore we have κ(D[p]) = κ(π). Suppose that c ≥ 3 and d ≥ 2.
The maximal value of κ(γ) with γ ∈ Γ1 ∪∆1 is obtained for certain elements γ ∈ ∆1.
Like for γ = (c+ 1, c+ 2, . . . , r, c, 2), we have

κ(γ) =
2

p
+

1

p2
+

1

p3
+ · · ·+ 1

pd−1
.

For p = 3, clearly κ(π) < 1. For p = 2, we have κ(π) ≥ 1. Using this one gets that if
p = 2 and c = d ≥ 3, thenD is isomorphic toD∨ and the condition (C) does not hold
for D.

– Suppose p = 2 and (c, d) = (3, 2). Then J+,1 = {(4, 1), (4, 2), (4, 3), (5, 1)}, J+,2 =

{(5, 2), (5, 3)}, and J0,0 = {(2, 1), (3, 1), (3, 2), (4, 5)}.
Thus Γ1 = {(4, 5, 2), (4, 5, 3)}, ∆1 = {(4, 5, 3, 2), (5, 2, 1), (5, 3, 1)}, and κ(π) =

κ(D[p]) = 1. The system (14) is of the form (cf. (15))

x4
2,1 = a5,3x4,5 + a4,3, x2

3,1 = a5,2x4,5 + a5,3x4,5x
2
2,1 + a4,2 + a4,3x

2
2,1

x2
4,5 = a5,2x2,1 + a5,3x3,1 + a5,1, x4,1 = a4,1 + a4,2x2,1 + a4,3x3,1.

Eliminating x4,1 and substituting x3,1 = t7/4, Lemma 4.7 implies that this system
defines a finite morphism (i.e., ζ is a finite morphism despite the fact that κ(π) =

κ(D[p]) = 1). This points out that the general weights µ` used in the proof of
Theorem 4.8 can occasionally be replaced by other weights which can still make the
proof of Theorem 4.8 work even if κ(D[p]) ≥ 1.
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5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 (see Subsection 5.2).

5.1. Exact subgroups

We first recall from [2] several properties of exact subgroups of an affine, smooth, con-
nected group G over a field which are needed in Subsection 5.2. A smooth subgroup scheme
F of G is called exact if the induction of rational F -modules to rational G -modules pre-
serves short exact sequences.

T 5.1. – The following six properties hold:

(a) The smooth subgroup scheme F of G is exact if and only if the quotient variety G /F is
affine.

(b) The smooth subgroup scheme F of G is exact if and only if its identity component F 0

is exact.
(c) If G is unipotent, then each smooth subgroup of it is exact.
(d) If K is a smooth subgroup of F which is exact in F and if F is exact in G , then K is

exact in G .
(e) Let N be a normal, smooth, connected subgroup of G . Let F̃ := Im(F → G /N );

it is a smooth subgroup of G /N . Then F̃ is exact in G /N if and only if the smooth
subgroup N F is exact in G .

(f) If F is exact in G , then it is exact in every other smooth, connected subgroup K of G

that contains F .

Proof. – Part (a) is the main result of [2] (cf. [2], Theorem 4.3). The natural morphism
G /F 0 → G /F is finite and surjective. Thus G /F 0 is an affine variety if and only if G /F

is an affine variety, cf. Chevalley’s theorem of [5], Théorème (6.7.1). From this and (a), we
get that (b) holds. Parts (c) and (d) are implied by [2], Corollary 2.2 and [2], Proposition 2.3
(respectively). Part (e) follows from (a) once we remark that (G /N )/F̃ is isomorphic to
G /N F . Part (f) follows from [2], Proposition 2.4.

L 5.2. – We assume that the orbit O1 is an affine variety over k. Then for each
m ∈ N∗, the orbit Om is an affine variety over k.

Proof. – As we have a finite, surjective morphism H1/C 0
1 → H1/S1

∼→ O1, from our
hypothesis we get that the quotient variety H1/C 0

1 is affine. Thus C 0
1 is exact in H1, cf.

Theorem 5.1 (a).
Let C 0

1,m be the pullback of C 0
1 via the reduction epimorphism Hm � H1. As

Ker(Hm � H1) is a unipotent group (cf. [25], Lemma 2.2.3) which is smooth and con-
nected and as C 0

1 is a unipotent, smooth, connected group, we get that the group C 0
1,m is

a unipotent, smooth, connected group. As C 0
1 is exact in H1, from Theorem 5.1 (e) we get

that C 0
1,m is exact in Hm. The subgroup C 0

m of C 0
1,m is exact in C 0

1,m, cf. Theorem 5.1 (c).
From the last two sentences and Theorem 5.1 (d), we get that C 0

m is exact in Hm. Thus the
quotient variety Hm/C 0

m is affine, cf. Theorem 5.1 (a).
As we have a finite, surjective morphism Hm/C 0

m → Hm/Sm
∼→ Om, we get from

Chevalley’s theorem that Om is an affine variety over k.
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5.2. Proof of Theorem 1.2

Based on Subsection 2.3, we can assume that we are in the Essential Situation 1.9.
In particular, Dm = D[pm] and k is algebraically closed. We recall that we are assum-
ing that the condition (C) holds for Dm (see the introduction) and thus also for D. As
sD(m) = AD(E ) is equal to AD∨(E ∨), by replacing if needed (D,E ) with (D∨,E ∨) we
can assume that κ(D) < 1. Therefore we can choose the permutation π of Subsection 4.1
such that κ(π) < 1. We also recall that C̃ 0

1 is a connected, smooth, unipotent subgroup
of I1. As κ(π) < 1, from Theorem 4.8 we get that we have a natural finite, flat morphism
V2×kW0,k � C̃ 0

1 \I1 of degree p|J0,0| (in the smooth, faithfully flat topology, this morphism
looks like the morphism ζ). From this and Chevalley’s theorem, we get that the quotient
variety C̃ 0

1 \I1 is affine. As the quotient varieties C̃ 0
1 \I1 and I1/C̃ 0

1 are isomorphic, we get
that I1/C̃ 0

1 is affine. Thus C̃ 0
1 is an exact subgroup of I1, cf. Theorem 5.1 (a). Therefore

the unipotent group W−,kC 0
1 is an exact subgroup scheme of H1, cf. Theorem 5.1 (e). From

this and Theorem 5.1 (c) and (d), we get that C 0
1 is an exact subgroup of H1. As we have a

finite, surjective morphism H1/C 0
1 → H1/S1

∼→ O1, from Theorem 5.1 and Chevalley’s
theorem, we get that O1 is affine. From this and Lemma 5.2, we get that:

C 5.3. – We assume that the condition (C) holds for D. Then for each m ∈ N∗,
the orbit Om is an affine variety over k.

We can complete the proof of Theorem 1.2 as follows. Locally in the Zariski topology of
A , we can write A = SpecA and we can assume that the evaluation of the Dieudonné crystal
D(E ) of E at the thickening A ↪→ SpecW (A) is, when viewed without connection and
Verschiebung map, a pair of the form (M⊗W (k)W (A), gA(φ⊗σA)) with gA ∈ GLM (W (A)).
The reduction gA[m] ∈ GLM (Wm(A)) = Dm(A) of gA is a morphism $ : A → Dm.
The locally closed embedding sD(m) ↪→ A is the pullback of the locally closed embedding
Om ↪→ Dm via $ (cf. [25], Subsubsection 3.1.1).

From the previous paragraph and Corollary 5.3, we get that in general sD(m) is an affine
A -scheme. This ends the proof of Theorem 1.2.

R 5.4. – Under the natural identification I1 = W+0,k, the group C̃ 0
1 gets identi-

fied with the crystalline realization Aut(D[p])0
crys,red of the identity component Aut(D[p])0

red

of the reduced group scheme of automorphisms of D[p] (cf. [25], Theorem 2.4 (b)). Thus the
quotient variety W+0,k/Aut(D[p])0

crys,red is affine. It is easy to see that n0,0⊕n+,1 is the k-span
of elements g−1M [1] with g ∈ Aut(D[p])0

crys,red(k) = Aut(D[p])0
red(k). Therefore the num-

ber |J0,0| is an invariant of the isomorphism class of D[p].

6. Level m stratifications for quasi Shimura p-varieties of Hodge type

In this section, we consider the relative version of the action Tm. We prove Proposition 6.1,
an analogue of Corollary 5.3, which will imply Theorem 1.6 and its analogues for general
level m stratifications.
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6.1. Orbits of relative group actions

Let G be a smooth, closed subgroup scheme of GLM such that its generic fibre GB(k) is
connected. Thus the scheme G is integral. Until the end we will assume that the following
two axioms hold for the triple (M,φ,G):

(i) The Lie subalgebra Lie(GB(k)) of GB(k) is stable under φ, i.e. we have
φ(Lie(GB(k))) = Lie(GB(k)).

(ii) There exist a direct sum decompositionM = F 1⊕F 0 and a smooth, closed subgroup
scheme G1 of GLM such that the following four properties hold:

(a) The kernel of the reduction modulo p of φ is F 1/pF 1.
(b) The cocharacter µ : Gm → GLM which fixes F 0 and acts via the inverse of the

identical character of Gm on F 1, factors through G1.
(c) The group scheme G1 contains G in such a way that we have a short exact

sequence 1→ G→ G1 → Gu
m → 1 with u ∈ {0, 1}.

(d) If u = 1 (i.e., if G1 6= G), then the homomorphism µ : Gm → G1 defined
by µ (cf. properties (b) and (c)) is a splitting of the short exact sequence of the
property (c).

We will use the notations of Section 3 for the direct sum decomposition M = F 1⊕F 0 of
the axiom (ii). Due to the properties (ii.b) and (ii.c) we have a direct sum decomposition into
W (k)-modules

(17) Lie(G) = ⊕1
i=−1F̃

i(Lie(G))

such that µ acts via inner conjugation on F̃ i(Lie(G)) as the−i-th power of the identical char-
acter of Gm. Let e+, e0, and e− be the ranks of F̃ 1(Lie(G)), F̃ 0(Lie(G)), and F̃−1(Lie(G))

(respectively). Let dG := dim(Gk) = dim(GB(k)). Due to (17), we have

dG = e+ + e0 + e−.

We consider the following four closed subgroup schemes W G
+ := W+ ∩ G, W G

0 := W0 ∩ G,
W G
− := W− ∩G, and W G

+0 := W+0 ∩G of G. Let

H G := W G
+ ×W (k) W G

0 ×W (k) W G
− ;

it is a closed subscheme of H such that H G
Wm(k) is a closed subgroup subscheme of

HWm(k) = H̃Wm(k) (we recall that we view the isomorphism PWm(k) : HWm(k)
∼→ H̃Wm(k)

of SpecWm(k)-schemes as a natural identification).
The group schemes W G

+ and W G
− over SpecW (k) are isomorphic to Ge+

a and Ge−
a

(respectively). More precisely, if R is a commutative W (k)-algebra, then we have identities
W G

+ (R) = 1M⊗W (k)R + F̃ 1(Lie(G))⊗W (k) R and W G
− (R) = 1M⊗W (k)R + F̃−1(Lie(G))⊗W (k) R.

Let W G1
0 := W0 ∩ G1. The group schemes W G1

0 and W G
0 are smooth (see [25], Subsub-

section 4.1.1).
The Lie algebras of WG

+ , WG
0 , and WG

− are F̃ 1(Lie(G)), F̃ 0(Lie(G)), and F̃−1(Lie(G))

(respectively). This implies that the relative dimension of W G
0 is e0. The smooth, affine

scheme H G has relative dimension dG over SpecW (k). The natural product morphism
PG

0 : H G → G is induced naturally by the open embedding P0 : H ↪→ GLM and
therefore it is also an open embedding. Let PG

− := 1W G
+
×1W G

0
×p1W G

−
: H G →H G. The

composite morphism PG
0− := PG

0 ◦PG
− : H G → G has the property that its reduction
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PG
0−,Wm(k) : H G

Wm(k) → GWm(k) modulo pm is a homomorphism of affine group schemes
over SpecWm(k) which is a restriction of the homomorphism P0−,Wm(k) : HWm(k) →
GLM/pmM (see Section 3 for P0−).

Let H̃ G be the dilatation of G centered on the smooth subgroup W G
+0,k of Gk; it is a

smooth, closed subgroup scheme of H̃ . As in Section 3, we argue that we have a natural
morphism PG : H G → H̃ G of SpecW (k)-schemes which gives birth to an isomorphism
PG
Wm(k) : H G

Wm(k)

∼→ H̃ G
Wm(k) of SpecWm(k)-schemes, to be viewed as an identification.

The group schemes structures on H G
Wm(k) induced via the identification PG

Wm(k) or via the
identification of H G

Wm(k) with a closed subgroup scheme of HWm(k), are equal.

Let H G
m := Wm(H G) = Wm(H̃ G); it is a smooth, affine group over k of dimension

mdG which is connected if and only if H G
k (equivalently W G

0,k) is connected (cf. Section 3).
Let DG

m := Wm(G); it is a smooth, affine k-scheme of dimension mdG which is connected if
and only if Gk is connected (cf. Section 3). There exists a unique action

TGm : H G
m ×k DG

m → DG
m

which is the natural restriction of the action Tm of Section 3.
Let OG

m be the orbit of 1M [m] ∈ DG
m(k) under the action TGm. Let S G

m be the sta-
bilizer subgroup scheme of the point 1M [m] ∈ DG

m(k) under the action TGm; we have
S G
m := Sm ∩ H G

m . Let CG
m be the reduced group of S G

m and let C 0G
m be the identity

component of CG
m .

P 6.1. – If the condition (C) holds forD, then the orbit OG
m of 1M [m] ∈ DG

m(k)

under the action TGm is a smooth, affine k-scheme. Therefore, if either p = 3 and min{c, d} ≤ 6

or p ≥ 5, then each orbit of the action TGm is a smooth, affine k-scheme.

Proof. – As C 0
m is a unipotent group, C 0G

m is exact in C 0
m (cf. Theorem 5.1 (c)). From this

and the fact that C 0
m is exact in Hm (cf. Subsection 5.2), we get that C 0G

m is exact in Hm (cf.
Theorem 5.1 (d)) and thus also in H G

m (cf. Theorem 5.1 (f)). As in Subsection 5.2, we argue
that this implies that OG

m is a smooth, affine k-scheme.

E 6.2. – Let a ≥ 2 be an integer. We assume that we have a direct sum decompo-
sition M = ⊕as=1Ms such that F 1 ⊆ M1 and for all s ∈ {1, . . . , a} we have φ(Ms) ⊆ Ms+1

(here Ma+1 := M1). We identify naturally W (Fpa) with a Zp-subalgebra of End(M,φ)

(equivalently of End(D)) that acts on each Ms via scalar endomorphisms. From Exam-
ple 4.4, we get that the condition (C) holds for D. Thus OG

m is a smooth, affine k-scheme, cf.
Proposition 6.1. Thus, if G is a closed subgroup scheme of

∏a
s=1 GLMs

, then each orbit of
TGm is a smooth, affine k-scheme. We emphasize that these hold for all primes p.

6.2. Quasi Shimura p-varieties of Hodge type

In this subsection, we assume that c = d and we use only d. We also assume that
the condition (C) holds for each p-divisible group over k which admits principal quasi-
polarizations and has dimension d (e.g., if p ≥ 5). Suppose that D has a principal quasi-
polarization λ. Let ψ : M × M → W (k) be the perfect, alternating form on M induced
naturally by λ; for x, y ∈ M , we have ψ(φ(x), φ(y)) = pσ(ψ(x, y)). Suppose that G is a
closed subgroup scheme of Sp(M,ψ). We recall that axioms (i) and (ii) of Subsection 6.1
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hold for the triple (M,φ,G). As µ : Gm → G1 cannot factor through Sp(M,ψ), we have
u = 1 (i.e., we have a short exact sequence 1→ G→ G1 → Gm → 1). Let

F := {(M, gφ, ψ,G)|g ∈ G(W (k))};

it is a family of principally quasi-polarized Dieudonné modules with a group over k. Let
Ad,1,N be as in the introduction.

Let M be a quasi Shimura p-variety of Hodge type relative to F in the sense of [25], Defi-
nition 4.2.1. Thus M is a smooth k-scheme which is equidimensional and which is equipped
with a morphism M → Ad,1,N,k that induces k-epimorphisms at the level of complete, lo-
cal rings of residue field k (i.e., it is a formal closed embedding at all k-valued points) and
that satisfies an extra axiom that involves F (see [25], Axiom 4.2.1 (iii)). This extra axiom
implies that M has a level m stratification S G(m) in the sense of [24], Definition 2.1.1. For
each algebraically closed field K that contains k, we have a set S G

m (K) of reduced locally
closed subschemes of MK which are regular, equidimensional and which locally in the étale
topology of MK are pullbacks of locally closed embeddings of the form OG ↪→ H G

m,K for
some orbit OG of the extension of the action TGm to K (cf. [25], Subsubsection 4.2.3). From
this and the analogue of the Proposition 6.1 over K, we get that each element of S G

m (K) is
pure in MK . Thus we get that:

T 6.3. – The level m stratification S G
m of M is pure. In other words, for each

algebraically closed field K that contains k, all the elements of S G
m (K) (i.e., all strata of S G

m

which are subschemes of MK) are affine MK-schemes (equivalently, are affine M -schemes).

C 6.4. – LetK be an algebraically closed field extension of k. Let s ∈ S G
m (K).

Let s̄ be the Zariski closure of s in MK . Then the reduced scheme underlying s̄ \ s is either
empty or of pure codimension 1 in s̄.

E 6.5. – Suppose thatG = Sp(M,ψM ) andG1 = GSp(M,ψM ). Then Ad,1,N,k

is a quasi Shimura p-variety of Hodge type relative to F , cf. [25], Example 4.5. The strata
of S G

m (k) are of the form sD,λ(m), cf. loc. cit. Thus Theorem 1.6 is a particular case of
Theorem 6.3.

R 6.6. – One can use Example 6.2 to get plenty of examples of level m stratifica-
tions in characteristic 2 or 3 which are pure.

7. On principal purity for stratifications

In Definition 1.7, we introduced the stronger notion for a subscheme to be principally pure
(with respect to some Grothendieck topology). In this section, we investigate the question
whether the p-rank stratification is principally pure. This is connected to the existence of
generalized Hasse–Witt invariants, i.e. to the local existence of functions f such that a
stratum is defined in its scheme-theoretic closure as the locus where f is invertible.

In [10], Theorem on p. 1567, T. Itō proves the existence of generalized Hasse–Witt invari-
ants for p-rank strata of the special fibre (at a split prime p) of a good integral model of a
unitary Shimura variety Sh(G ,X ) which is of PEL type and which over R involves a de-
rived group G der

R = SU(n−1, 1)×SU(n, 0)×· · ·×SU(n, 0). In this case, the p-rank strata
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coincide with the level m strata for all m. He derives the corollary that the p-rank strata are
affine. From the affineness result and the weak Lefschetz theorem, he obtains that the num-
ber of connected components of all Zariski closures of positive dimensional p-rank strata are
equal.

In general, however, principal purity (for the étale topology) does not hold for p-rank
strata, even over regular schemes, as the following example shows.

E 7.1. – We set c = d = 2. Let R := k[[x1, x2, x3, x4]] and
R := R/(x1x4 − x2x3). Let S := Spec R and T := SpecR. Let g be the R-linear
automorphism of N := R4 associated to an invertible block matrix

A =

(
A1 A2

A3 A4

)
formed by 2× 2 blocks, where

A1 =

(
x1 x2

x3 x4

)
.

Let {ē1, ē2, ē3, ē4} be the standard basis for N . Let φN : N ⊗R,σR R → N be the
R-linear map that takes the quadruple (ē1 ⊗ 1, ē2 ⊗ 1, ē3 ⊗ 1, ē4 ⊗ 1) to the quadruple
(g(ē1), g(ē2), 0, 0). Let ϑN : N → N ⊗R,σR R be the R-linear map that takes the quadruple
(g(ē1), g(ē2), g(ē3), g(ē4)) to the quadruple (0, 0, ē3⊗1, ē4⊗1). It is easy to see that the triple
(N,φN , ϑN ) is the Dieudonné crystalline functor (viewed without connection) of aBT1 over
S, to be denoted as B.

One computes the p-rank of B at a geometric point x of S as follows. Let N1 be the
direct summand of N generated by ē3 and ē4. The kernel of φN is N1 ⊗R,σR R. Let
φ̄N : (N/N1)⊗R,σR R → N/N1 be the R-linear map induced naturally by φN . We view
{ē1, ē2} as an R-basis for N/N1. One looks for solutions of the equation
φ̄N ((z1ē1 + z2ē2) ⊗ 1) = z1ē1 + z2ē2. One comes across the following system Y of
two equations

z1 = x1z
p
1 + x2z

p
2 , z2 = x3z

p
1 + x4z

p
2 .

The p-rank ofB at x is the dimension of the Fp-vector space of solutions of Y at x. Therefore
the p-rank stratification of S has an open dense stratum S \ T (of p-rank 2) and has one
stratum T \ Y of codimension 1 in S (of p-rank 1). Here Y is the smallest (thus reduced)
closed subscheme of T with the property that Y defines a scheme over T which is an étale
cover of degree p above T \ Y .

We show that the assumption that Y is the zero locus of a single function f ∈ R leads to
a contradiction. To solve Y over T , we remark that since we have x1x4 = x2x3 inR, we also
have x3z1 = x1z2. Thus to solve Y over T ′ := SpecR[ 1

x1
], we can substitute z2 = x−1

1 x3z1

into the first equation of Y and get the equation z1 = (x1 +x−p1 x2x
p
3)zp1 . One concludes that

Y ∩T ′ is the zero locus of the function x1 +x−p1 x2x
p
3 = x1−p

1 (xp1 +x4x
p−1
3 ) in T ′. One checks

that T ′ is regular and that SpecR[ 1
x1

]/(xp1 +x4x
p−1
3 ) is regular and irreducible (irreducibility

can be checked starting from the fact that k[x1, x2, x3, x4]/(x1x4−x2x3, x
p
1 +x4x

p−1
3 )[ 1

x1
] is

isomorphic to k[x1, x3][ 1
x1x3

]). Moreover, each unit in R[ 1
x1

] is a unit of R times an integral
power of x1. From the last two sentences we get that the image of f in R[ 1

x1
] is equal to
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(xp1 + x4x
p−1
3 )vxt1u, where v is a positive integer, where t is an integer, and where u is a unit

inR. It is easy to see that t ≥ 0 and therefore the equations x1 = x3 = x2 = 0 define a closed
subscheme of Y . But over the locus defined by x4 6= 0 and x1 = x2 = x3 = 0, the p-rank
of B is 1, and this is a contradiction to the p-rank being 0 there. Therefore, principal purity
fails for the p-rank 1 stratum T \ Y of S.

7.1. Proof of Proposition 1.8

Let S and B be as in Example 7.1. From Example 7.1, we get that Proposition 1.8 holds
for c = d = 2 and s = 1. Using direct sums of B and of constant BT1’s over S, one easily
gets that Proposition 1.8 holds for all c, d ≥ 2 and s ∈ {1, . . . , c− 1}.
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