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ON THE ASYMPTOTIC GEOMETRY OF
GRAVITATIONAL INSTANTONS

 V MINERBE

A. – We investigate the geometry at infinity of the so-called “gravitational instantons”,
i.e. asymptotically flat hyperkähler four-manifolds, in relation with their volume growth. In particular,
we prove that gravitational instantons with cubic volume growth are ALF, namely asymptotic to a circle
fibration over a Euclidean three-space, with fibers of asymptotically constant length.

R. – Nous étudions la géométrie à l’infini des instantons gravitationnels, i.e. des variétés
hyperkählériennes, asymptotiquement plates et de dimension quatre. En particulier, nous prouvons
que les instantons gravitationnels dont la croissance de volume est cubique sont asymptotiques à une
fibration en cercles au-dessus d’un espace euclidien à trois dimensions, avec des fibres de longueur asym-
ptotiquement constante ; autrement dit, ils sont ALF (asymptotically locally flat).

Introduction

Gravitational instantons are non-compact hyperkähler four-manifolds with decaying cur-
vature at infinity. “Hyperkähler” means the manifold carries three complex structures I, J ,
K that are parallel with respect to a single Riemannian metric and satisfy the quaternionic
relations (IJ = −JI = K, etc.). In other words, the holonomy group of the metric reduces
to Sp(1) = SU(2). As a consequence, hyperkähler four-manifolds are Ricci flat and anti-
self-dual [3]; the converse is true for simply connected manifolds.

Gravitational instantons were introduced in the late seventies by Stephen Hawking [19],
as building blocks for his Euclidean quantum gravity theory. Very roughly, the idea consists
in modeling gravitation by drawing an analogy with gauge theories, which are so efficient for
the other fundamental interactions. The Universe is represented by a Riemannian manifold
(equivalent in gauge theory: a connection on a principal bundle) which is assumed to be
Ricci flat, as a counterpart of the vacuum Einstein equation in Relativity (in gauge theory:
the Yang-Mills equation). Curvature decay is a “finite action” assumption: the curvature
tensor, which measures the strength of the gravitational field, should typically be in L2 (we
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will further discuss this decay issue below). Finally, the jump to “hyperkähler” is explained
by the analogy with gauge theory: it can be thought of as an anti-self-duality assumption.

More recently, gravitational instantons also appeared in string theory and it triggered
some interest from both mathematicians and physicists (cf. [8, 9, 10, 11, 13, 14, 18, 20]...).
For instance, their L2 cohomology was computed ([18], [20]) so as to test Sen’s S-duality
conjecture in string theory. New examples were built ([8, 9, 11]) and, from string theory
arguments, S. Cherkis and A. Kapustin conjectured a classification scheme [14], with four
families.

– The first one consists of Asymptotically Locally Euclidean (ALE for short) gravita-
tional instantons. ALE means that, outside a compact set, they are diffeomorphic to
the quotient of R4 (minus a ball) by a finite subgroup ofO(4) and the metric is asymp-
totic to the Euclidean metric gR4 . Indeed, this family is very well understood, since
P. Kronheimer ([23, 24]) classified ALE gravitational instanton in 1989. In particular,
he proved the underlying manifold is the minimal resolution of the quotient of C2 by a
finite subgroup of SU(2) (i.e. cyclic, binary dihedral, tetrahedral, octahedral or icosa-
hedral group).

– The second family consists of the so called ALF (“Asymptotically Locally Flat”)
gravitational instantons: outside a compact set, they are diffeomorphic to the total
space of a circle fibration π over R3 or R3/ {± id} (minus a ball); moreover, the fibers
have asymptotically constant length and the metric is asymptotic to π∗gR3 +η2, where
η is a (local) connection one-form on the circle fibration. Some examples are discussed
below (Section 1.2). A Kronheimer-like classification is conjectured, but involving only
cyclic or dihedral groups in SU(2) (see Section 1.2 for concrete examples).

– The third and fourth families, called ALG and ALH (by induction !) have a similar
fibration structure at infinity. In the ALG case, the fibers are tori and the base is R2. For
ALH gravitational instantons, the fibers are compact orientable flat three-manifolds
(there are six possibilities) and the base is R.

A striking feature of this conjectured classification is the quantification it imposes on the
volume growth: the volume of a ball of large radius t is of order t4 in the ALE case, t3 in
the ALF case, etc. Why not t3.5? And then, how can one explain this fibration structure at
infinity? The aim of this paper is to answer these questions.

Basically, the volume growth of asymptotically flat manifolds is at most Euclidean: on a
complete noncompact Riemannian manifold (Mn, g) whose curvature tensor Rmg obeys

(1) |Rm|g = O(r−2−ε) with ε > 0

(r is the distance function to some point), there is a constant B such that

∀x ∈M, ∀ t ≥ 1, volB(x, t) ≤ Btn.

Note the “faster-than-quadratic” decay rate is not anecdotic. U. Abresh proved such mani-
folds have finite topological type [1]: there is a compact subset K of M such that M\K has
the topology of ∂K×R∗+. In contrast, M. Gromov observed any (connected) manifold carries
a complete metric with quadratic curvature decay (|Rm|g = O(r−2), see [27]).
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A fundamental geometric result was proved by S. Bando, A. Kasue and H. Nakajima [2]
in 1989: if (Mn, g) satisfies (1) and has maximal volume growth, i.e.

∀x ∈M, ∀ t ≥ 1, volB(x, t) ≥ Atn,

thenM is indeed ALE: there is a compact setK inM , a ballB in Rn, a finite subgroupG of
O(n) and a diffeomorphism φ between Rn\B andM\K such that φ∗g tends to the standard
metric gRn at infinity. It is also proved in [2] that a complete Ricci flat manifold with maximal
volume growth and curvature in L

n
2 (dvol) is ALE. In particular, gravitational instantons

with maximal volume growth are ALE and thus belong to Kronheimer’s list. The authors
of the paper [2] raise the following natural question: can one understand the geometry at
infinity of asymptotically flat manifolds whose volume growth is not maximal? No answer
has been given since then.

Let us state our main theorem. Here and in the sequel, we will denote by r the distance to
some fixed point o, without mentioning it. We will also use the measure dµ = rn

volB(o,r)dvol. It
was shown in [28] that this measure has interesting properties on manifolds with nonnegative
Ricci curvature. Note that in maximal volume growth, it is equivalent to the Riemannian
measure dvol.

T 0.1. – Let (M4, g) be a connected complete hyperkähler manifold with curvature
in L2(dµ). Suppose there are positive constants A and B such that

∀x ∈M, ∀ t ≥ 1, Atν ≤ volB(x, t) ≤ Btν

with 3 ≤ ν < 4. Then ν = 3 and M is ALF: there is a compact set K in M such that M\K is
the total space of a circle fibration π over R3 or R3/{± id} minus a ball and the metric g can
be written

g = π∗gR3 + η2 + O(r−τ ) for any τ < 1,

where η is a (local) connection one-form for π; moreover, the length of the fibers goes to a
finite positive limit at infinity.

Up to a finite covering, the topology at infinity (i.e. modulo a compact set) is therefore
either that of R3 × S1 (trivial fibration over R3) or that of R4 (Hopf fibration).

Our integral assumption on the curvature might be surprising at first sight. Its relevance
follows from [28]. Indeed, it turns out to imply Rm = O(r−2−ε) and even more: a little
analysis (cf. Appendix A) provides∇k Rm = O(r−3−k), for any k in N!

Our volume growth assumption is uniform: the constants A and B are assumed to hold
at any point x. This is not anecdotic. By looking at flat examples, we will see the importance
of this uniformity. This feature is not present in the maximal volume growth case, where the
uniform estimate

∃A, B ∈ R∗+, ∀x ∈M, ∀ t ≥ 1, Atn ≤ volB(x, t) ≤ Btn

is equivalent to

∃A, B ∈ R∗+,∃x ∈M, ∀ t ≥ 1, Atn ≤ volB(x, t) ≤ Btn.

The idea of the proof is purely Riemannian. The point is the geometry at infinity collapses,
the injectivity radius remains bounded while the curvature gets very small, so Cheeger-
Fukaya-Gromov theory [6], [5] applies. The fibers of the circle fibration will come from
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suitable regularizations of short loops based at each point. The hyperkähler assumption will
be used to control the holonomy of these short loops, which is crucial in the proof.

The structure of this paper is the following.
In a first section, we will consider examples, with three goals: first, we want to explain our

volume growth assumption through the study of flat manifolds; second, these flat examples
will also provide some ideas about the techniques we will develop later; third, we will describe
the Taub-NUT metric, so as to provide the reader with a concrete example to think of.

In a second section, we will try to analyze some relations between three Riemannian
notions: curvature, injectivity radius, volume growth. We will introduce the “fundamental
pseudo-group”. This object, due to M. Gromov [16], encodes the Riemannian geometry at
a fixed scale. It is our basic tool and its study will explain for instance the volume growth
self-improvement phenomenon in our theorem (from 3 ≤ ν < 4 to ν = 3).

In the third section, we completely describe the fundamental pseudo-group at a conve-
nient scale, for gravitational instantons. This enables us to build the fibration at infinity, first
locally, and then globally. Then we make a number of estimates to obtain the description of
the geometry at infinity that we announced in the theorem. This part requires a good con-
trol on the covariant derivatives of the curvature tensor and the distance functions. This is
provided by the appendices.
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1. Examples

1.1. Flat plane bundles over the circle

To have a clear picture in mind, it is useful to understand flat manifolds obtained as
quotients of the Euclidean space R3 by the action of a screw operation ρ. Let us suppose this
rigid motion is the composition of a rotation of angle θ and of a unit translation along the
rotation axis. The quotient manifold is always diffeomorphic to R2×S1, but its Riemannian
structure depends on θ: one obtains a flat plane bundle over the circle whose holonomy is the
rotation of angle θ. These very simple examples conceal interesting features, which shed light
on the link between injectivity radius, volume growth and holonomy. In this paragraph, we
stick to dimension 3 for the sake of simplicity, but what we will observe remains relevant in
higher dimension.

When the holonomy is trivial, i.e. θ = 0, the Riemannian manifold is nothing but the
standard R2 × S1. The volume growth is uniformly comparable to that of the Euclidean R2:

∃A, B ∈ R∗+, ∀x ∈M, ∀ t ≥ 1, At2 ≤ volB(x, t) ≤ Bt2.

The injectivity radius is 1/2 at each point, because of the lift of the base circle, which is even
a closed geodesic; the iterates of these loops yield closed geodesics whose lengths describe all
the natural integers, at each point.
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Now, consider an angle θ = 2π · p/q, for some coprime numbers p, q. A covering of order
q brings us back to the trivial case. The volume growth is thus uniformly comparable to that
of R2. What about the injectivity radius? Because of the cylindric symmetry, it depends only
on the distance to the "soul", that is the image of the screw axis: let us denote by inj(t) the
injectivity radius at distance t from the soul. This defines a continuous function admitting
uniform upper and lower bounds, but not constant in general. The soul is always a closed
geodesic, so that inj(0) = 1/2. But as t increases, it becomes necessary to compare the lengths
lk(t) of the geodesic loops obtained as images of the segments [x, ρk(x)], with x at distance
t from the axis. We can give a formula:

(2) lk(t) =
»
k2 + 4t2 sin2(kθ/2).

The injectivity radius is given by 2 inj(t) = infk lk(t). In a neighborhood of 0, 2 inj equals l1;
then 2 inj may coincide with lk for different indices k. If k < q is fixed, since sin kθ

2 does not
vanish, the function t 7→ lk(t) grows linearly and goes to infinity. The function lq is constant
at q and lq ≤ lk for k ≥ q. Thus, outside a compact set, the injectivity radius is constant at q/2
and it is half the length of a unique geodesic loop which is in fact a closed geodesic. Besides,
the other loops are either iterates of this shortest loop, or they are much longer (lk(t) � t).

xx

t θ = 2π
3

F 1. The holonomy angle is θ = 2π
3

. On the left, a geodesic loop based at x
with length l3(t) = 3. On the right, a geodesic loop based at x with length

l1(t) =
√

1 + 9t2.

When θ is an irrational multiple of 2π, the picture is much different. In particular, the
injectivity radius is never bounded.

P 1.1. – The injectivity radius is bounded if and only if θ is a rational multiple
of 2π.

Proof. – The "only if" part is settled, so we assume the function t 7→ inj(t) is bounded by
some number C. For every t, there is an integer k(t) such that 2 inj(t) = lk(t). Formula (2)
implies the function t 7→ k(t) is bounded by C. Since its values are integers, there is a
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sequence (tn) going to infinity and an integer k such that k(tn) = k for every index n. Then
(2) yields

∀n ∈ N, lk(tn)2 = k2 + 4t2n sin2(kθ/2) ≤ C2.

Since tn goes to infinity, this requires sin2 kθ
2 = 0: there is an integerm such that kθ/2 = mπ,

i.e. θ/2π = m/k.

What about the volume growth? The volume of balls centered in some given point grows
quadratically:

∀x, ∃Bx, ∀ t ≥ 1, volB(x, t) ≤ Bxt2.
In the “rational” case, the estimate is even uniform with respect to the center x of the ball:

(3) ∃B, ∀x, ∀ t ≥ 1, volB(x, t) ≤ Bt2.

In the “irrational” case, this strictly subeuclidean estimate is never uniform. Why? The
proposition above provides a sequence of points xn such that rn := inj(xn) goes to infinity.
Given a lift x̂n of xn in R3, the ball B(x̂n, rn) is the lift of B(xn, rn) and its volume is 4

3πr
3
n.

If we assume two points v and w of B(x̂n, rn) lift the same point y of B(xn, rn), there is by
definition an integer number k such that ρk(v) = w; since ρ is an isometry of R3, we get∣∣∣ρk(x̂n)− x̂n

∣∣∣ ≤ ∣∣∣ρk(x̂n)− ρk(v)
∣∣∣+ ∣∣∣ρk(v)− x̂n

∣∣∣ = |x̂n − v|+ |w − x̂n| < 2rn = 2 inj(xn),

which contradicts the definition of inj(xn) (the segment [ρk(x̂n), x̂n] would go down as
a too short geodesic loop at xn). Therefore B(x̂n, rn) and B(xn, rn) are isometric, hence
volB(xn, rn) = 4

3πr
3
n, which prevents an estimate like (3).

R 1. – What about the injectivity radius growth in the irrational case? Using the
explicit formula for lk(t) and the pigeonhole principle, one can always bound inj(t) by a
constant times

√
t, for t large. This is optimal: Roth theorem in diophantine approximation

theory shows that, if θ/(2π) is an irrational algebraic number and if α ∈]0, 1/2[, then inj(t) is
bounded from below by a constant times tα. When θ/(2π) admits good rational approximations,
an almost rational behavior can be recovered, with a slowly growing injectivity radius. For
instance, if θ/(2π) is the Liouville number

∑∞
n=1 10−n!, then lim inft−→∞ (t−a inj(t)) = 0 for

every a > 0.

1.2. The Taub-NUT metric

The Taub-NUT metric is the basic non trivial example of ALF gravitational instanton.
This Riemannian metric over R4 was introduced by Stephen Hawking in [19]. A very detailed
description can be found in [25].

Thanks to the Hopf fibration, we can see R4\ {0} = R∗+ × S3 as the total space of a
principal circle bundle π over R∗+×S2 = R3\ {0}. If x = (x1, x2, x3) denotes the coordinates
on R3, we let V be the harmonic function given on R3\ {0} by V = 1 + 1

2|x| and η be a
connection one-form on the circle bundle whose curvature dη is the pullback of ∗R3dV (η is
essentially the standard contact form on S3). In what follows, we denote lifts by hats. On
R4\ {0}, the Taub-NUT metric is given by the formula

g = V̂ dx̂2 +
1

V̂
η2
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and one can check (cf. [25]) that this can be extended as a complete metric on R4. By
construction, the metric is S1-invariant and the length of the fibers goes to a (nonzero)
constant at infinity, while the induced metric on the base is asymptotically Euclidean (it is
at distance O(|x|−1

) from the Euclidean metric). Thus there are positive constants A and B
such that Taub-NUT balls satisfy

∀R ≥ 1, AR3 ≤ volB(z,R) ≤ BR3.

Moreover, the Taub-NUT metric is hyperkähler. Indeed, an almost complex structure J1 can
be defined by requiring the following action on the cotangent bundle:

J1

(√
V̂ dx̂1

)
=

1√
V̂
η and J1

(√
V̂ dx̂2

)
=
√
V dx̂3.

Then (g, J1) is a Kähler structure (cf. [25]). A permutation of the coordinates x1, x2, x3 yields
three Kähler structures (g, J1), (g, J2), (g, J3) satisfying the quaternionic relations, hence the
hyperkähler structure. In fact, it turns out these complex structures are biholomorphic to
that of C2 [25]. Using [31], it is possible to compute the curvature of the Taub-NUT metric.
It decays at a cubic rate: |Rm| = O(r−3).

This ansatz produces a whole family of examples: the “multi-Taub-NUT” metrics or Ak
ALF instantons [19, 25]. These are obtained as total spaces of a circle bundle π over R3 minus
some points p1, . . . , pN , endowed with the metric V̂ dx̂2 + 1

V̂
η2, where V is the function

defined on R3\ {p1, . . . , pN} by V (x) = 1 +
∑N
i=1

1
2|x−pi| and where η is the one-form of a

connection with curvature ∗R3dV . As above, a completion byN points is possible. The circle
bundle restricts on large spheres as a circle bundle of Chern number−N . The metric is again
hyperkähler and has cubic curvature decay. The underlying manifold is a minimal resolution
of C2/ZN . The geometry at infinity is that of the Taub-NUT metric, modulo an action of
ZN , which is the fundamental group of the end.

Other examples are built in [8, 9]: the geometry at infinity of these Dk ALF gravitational
instantons is essentially that of a quotient of a multi-Taub-NUT metric by the action of a
reflection on the base.

2. Injectivity radius and volume growth

2.1. An upper bound on the injectivity radius

P 2.1 (Upper bound on the injectivity radius). – There is a universal
constant C(n) such that on any complete Riemannian manifold (Mn, g) satisfying

(4) inf
t>0

lim sup
x−→∞

volB(x, t)

tn
< C(n),

the injectivity radius is bounded from above, outside a compact set.

The assumption (4) means there is a positive number T and a compact subset K of M
such that:

(5) ∀x ∈M\K, volB(x, T ) < C(n)Tn.

We think of a situation where there is a function ω going to zero at infinity and such that
for any point x, volB(x, t) ≤ ω(t)tn. The point is we require a uniform strictly subeuclidean
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volume growth. Even in the flat case, we have seen that a uniform estimate moderates the
geometry much more than a centered strictly subeuclidean volume growth.

Proof. – The constant C(n) is given by Croke’s inequality [12]:

(6) ∀ t ≤ inj(x), ∀x ∈M, volB(x, t) ≥ C(n)tn.

Let x be a point outside the compact K given by (5). If inj(x) is greater than the number T
in (5), (6) yields: C(n)Tn ≤ volB(x, T ) < C(n)Tn, which is absurd. The injectivity radius
at x is thus bounded from above by T .

Cheeger-Fukaya-Gromov’s theory applies naturally in this setting: it describes the geome-
try of Riemannian manifolds with small curvature and injectivity radius bounded from above
[6]. Let us quote the

C 2.2. – Let (Mn, g) be a complete Riemannian manifold whose curvature goes
to zero at infinity and satisfying (4). Outside a compact set,M carries a F -structure of positive
rank whose orbits have bounded diameter.

It means we already know there is some kind of structure at infinity on these manifolds.
Our aim is to make it more precise, under additional assumptions.

2.2. The fundamental pseudo-group

The notion of “fundamental pseudo-group” was introduced by M. Gromov in the out-
standing [16]. It is a very natural tool in the study of manifolds with small curvature and
bounded injectivity radius. Let us give some details.

Let M be a complete Riemannian manifold and let x be a point in M . We assume the
curvature is bounded by Λ2 (Λ ≥ 0) on the ball B(x, 2ρ), with Λρ < π/4. In particular,
the exponential map in x is a local diffeomorphism on the ball B̂(0, 2ρ) centered in 0 and of
radius 2ρ in TxM . The metric g on B(x, 2ρ) thus lifts as a metric ĝ := exp∗x g on B̂(0, 2ρ).
We will denote by Exp the exponential map corresponding to ĝ.

An important fact is proved in [16] (8.19): any two points in B̂(0, 2ρ) are connected by
a unique geodesic which is therefore minimizing; moreover, balls are strictly convex in this
domain.

When the injectivity radius at x is greater than 2ρ, the Riemannian manifolds (B(x, ρ), g)

and (B̂(0, ρ), ĝ) are isometric. But if it is small, there are short geodesic loops based at x and
x admits different lifts in B̂(0, ρ). The fundamental pseudo-group Γ(x, ρ) in x and at scale ρ
measures the injectivity defect of the exponential map over B̂(0, ρ) [16]: Γ(x, ρ) is the pseudo-
group consisting of all the continuous maps τ from B̂(0, ρ) to TxM which satisfy

expx ◦τ = expx and τ(0) ∈ B̂(0, ρ).

In particular, the elements of Γ(x, ρ) map geodesics onto geodesics, so they are isometries.
Given a lift v of x in B̂(0, ρ) (i.e. expx(v) = p), consider the map τv := Expv ◦ (Tv expx)

−1
,

whose action is described in Figure 2. Then τv defines an element of Γ(x, ρ).
It is also easy to see that any element τ ∈ Γ(x, ρ) mapping 0 to v has to be τv. So there is a

one-to-one correspondence between elements of Γ(x, ρ) and oriented geodesic loops based
at x with length bounded by ρ. Since expx is a local diffeomorphism, Γ(x, ρ) is in particular
finite. Thus (Γ(x, ρ))0<ρ<π/(4Λ) is a nondecreasing family of finite pseudo-groups .
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TxM

expx

v = τv(0)

M

w

τv(w)

x

0

expx w

F 2. τv(w) is obtained in the following way. Push the segment [0, w] from
TxM to M thanks to expx and lift the resulting geodesic from v to obtain a new
geodesic in TxM whose tip is τv(w).

E 1. – Consider a flat plane bundle over S1, with rational holonomy ρ (cf.
Section 1): the screw angle θ is 2π times p/q, with coprime p and q. For large ρ and x

farther than ρ/ sin(π/q) from the soul (when q = 1, there is no condition), the fundamental
pseudo-group Γ(x, ρ) is generated by the unique geodesic loop with length q. It therefore
consists of translations only. In particular, it does not contain ρ, except in the trivial case
ρ = id. In general, many geodesic loops are forgotten, for they are too long.

Every nontrivial element of Γ(x, ρ) acts without fixed points. To see this, let us assume
a point w is fixed by some τv in Γ(x, ρ) and introduce the geodesics γ1 : t 7→ tw and
γ2 : t 7→ τv(tw). Then γ1(1) = γ2(1) = w and, differentiating at t = 1 the identity
expx ◦γ1(t) = expx ◦γ2(t), one gets γ′1(1) = γ′2(1). The geodesics γ1 and γ2 must then
coincide, hence 0 = γ1(0) = γ2(0) = v and τv = id.

It is also useful to observe that every element of Γ(x, ρ) has a well-defined inverse: it is
given by (τv)

−1 = τ−σ′(1) where σ(t) := expx tv.
Given a geodesic loop σ with length bounded by ρ, let us call “sub-pseudo-group gener-

ated by σ in Γ(x, ρ)” the pseudo-group Γσ(x, ρ) which we describe now: it contains an ele-
ment τv of Γ(x, ρ) if and only if v is the tip of a piecewise geodesic segment staying in B̂(0, ρ)

and obtained by lifting several times σ from 0. If τ is an element of Γ(x, ρ) which corresponds
to a loop σ, we will also write Γτ (x, ρ) for the sub-pseudogroup generated by τ in Γ(x, ρ). If
k is the largest integer such that τ i(0) belongs to the ball B̂(0, ρ) for every natural number
i ≤ k, then:

Γτ (x, ρ) = Γσ(x, ρ) =
{
τ i/− k ≤ i ≤ k

}
.

If 2ρ ≤ ρ′ < π
4Λ , then the orbit space of the points of the ball B̂(0, ρ) under the action

of Γ(x, ρ′), B̂(0, ρ)/Γ(x, ρ′), is isometric to B(x, ρ), through the factorization of expx. The
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only thing to check is the injectivity. Given two lifts w1, w2 ∈ B̂(0, ρ) of the same point
y ∈ B(x, ρ), let us prove they are in the same orbit for Γ(x, ρ′). Consider the unique geodesic
γ1 from w1 to 0, push it by expx and lift the resulting geodesic from w2 to obtain a geodesic
γ2, from w2 to some point v (cf. Figure 3). Then v is a lift of x in B̂(0, ρ′) (by triangle
inequality) and τv maps w1 to w2, hence the result.

M

w2

v

0

TxM

B̂(0, ρ)

B̂(0, 2ρ)

expx

γ2

y

γ1

x

w1

F 3. τv(w1) = w2.

We will need to estimate the number Nx(y, ρ) of lifts of a given point y in the ball B̂(0, ρ)

of TxM . Lifting one shortest geodesic loop from 0 =: v0, we arrive at some point v1. Lifting
the same loop from v1, we arrive at a new point v2, etc. This construction yields a sequence
of lifts vk of x which eventually goes out of B̂(0, ρ): otherwise, since there cannot exist an
accumulation point, the sequence would be periodic; τv1 would then fix the centre of the
unique ball with minimal radius which contains all the points vk, which is not possible, since
τv1 is nontrivial hence has no fixed point (the uniqueness of the ball stems from the strict
convexity of the balls, cf. [17], 8.16, p. 379-380). Of course, one can do the same thing with
the reverse orientation of the same loop. Since the distance between two points vk is at least
2 inj(x), this yields at least ρ/ inj(x) lifts of x in B̂(0, ρ):

|Γ(x, ρ)| = Nx(x, ρ) ≥ ρ/ inj(x).

Lifting one shortest geodesic between x and some point y from the lifts of x and estimating
the distance between the tip and 0 with the triangle inequality (cf. Figure 4), we get:

(7) Nx(y, ρ) ≥ Nx(x, ρ− d(x, y)) = |Γ(x, ρ− d(x, y))| ≥ ρ− d(x, y)

inj(x)
.

For d(x, y) ≤ ρ/2, this yields:

(8)
ρ

2 inj(x)
volB(x, ρ/2) ≤ |Γ(x, ρ/2)| volB(x, ρ/2) ≤ vol B̂(0, ρ).
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M

x

TxM

expx

B̂(0, ρ)

v1

v2

v−1

y

v0 = 0

v−2

F 4. Take a minimal geodesic between x and y and lift it from every point in
the fiber of x to obtain points in the fiber of y.

For ρ ≤ ρ′ < π
4Λ , the set

F (x, ρ, ρ′) :=
{
w ∈ B̂(0, ρ)

/
∀ γ ∈ Γ(x, ρ′), d(0, γ(w)) ≥ d(0, w)

}
is a fundamental domain for the action of Γ(x, ρ′) on the ball B̂(0, ρ). Finiteness ensures each
orbit intersects F . Furthermore, if τ belongs to Γ(x, ρ′), the set
F (x, ρ, ρ′) ∩ τ( F (x, ρ, ρ′)) consists of points whose distances to 0 and τ(0) are equal,
hence has zero measure: by finiteness again, up to a set with zero measure, F (x, ρ, ρ′)

contains a unique element of each orbit. For the same reason, if τ belongs to Γ(x, ρ′), the
set

Fτ (x, ρ, ρ′) :=
{
w ∈ B̂(0, ρ)

/
∀ γ ∈ Γτ (x, ρ′), d(0, γ(w)) ≥ d(0, w)

}
is a fundamental domain for the action of the sub-pseudo-group Γτ (x, ρ′). From our discus-
sion follows an important fact: if 2ρ ≤ ρ′ >< π

4Λ , then vol F (x, ρ, ρ′) = volB(x, ρ). We will
need to control the shape of these fundamental domains.

L 2.3. – Fix ρ ≤ ρ′ < π
4Λ and consider a nontrivial element τ in Γ(x, ρ′). Denote by

I τ (x, ρ) the set of points w in B̂(0, ρ) such that

max
{
gx (w, τ(0)) , gx

(
w, τ−1(0)

)}
≤ |τ(0)|2

2
+

Λ2ρ2 |τ(0)|2

2
.

Then Fτ (x, ρ, ρ′) is a subset of I τ (x, ρ).

Figure 5 provides a picture, in the plane containing 0, τ(0) and τ−1(0)).

Proof. – Consider a point w in Fτ (x, ρ, ρ′), set v = τ(0) and denote by θ ∈ [0, π] the
angle between v and w. We first assume gx(w, v) > 0, that is θ < π/2. Since any two points
in B̂(0, ρ) are connected by a unique geodesic which is therefore minimizing, we can apply
Toponogov’s theorem to all triangles. In particular, in the triangle 0vw, we find

cosh(Λd(v, w)) ≤ cosh(Λ |w|) cosh(Λ |v|)− sinh(Λ |w|) sinh(Λ |v|) cos θ.
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0 τ(0)

τ−1(0)

Iτ (x, ρ)

F 5. The domain I τ (x, ρ).

Observing |w| = d(0, w) ≤ d(0, τ−1(w)) = d(v, w), we get

cosh(Λ |w|) ≤ cosh(Λd(v, w)) ≤ cosh(Λ |w|) cosh(Λ |v|)− sinh(Λ |w|) sinh(Λ |v|) cos θ,

hence

tanh(Λ |w|) cos θ ≤ cosh(Λ |v|)− 1

sinh(Λ |v|)
and

gx(v, w)

|v|2
≤ Λ |w|

tanh Λ |w|
cosh(Λ |v|)− 1

Λ |v| sinh(Λ |v|)
≤ 1

2
+

Λ2ρ2

2

(Taylor’s formulas). Assuming gx(w, τ−1(0)) > 0, we can work in the same way (with
v = τ−1(0)) so as to complete the proof.

To understand the action of the elements in the fundamental pseudo-group, the following
lemma is useful: it approximates them by affine transformations.

L 2.4. – Consider a complete Riemannian manifold (M, g) and a point x in M such
that the curvature is bounded by Λ2, Λ ≥ 0, on the ball B(x, ρ), ρ > 0, with Λρ < π/4. Let v
be a lift of x in B̂(0, ρ) ⊂ TxM . Define

– the translation tv with vector v in the affine space TxM ,
– the parallel transport pv along t 7→ expx tv, from t = 0 to t = 1,
– the map τv = Expv ◦ (Tv expx)

−1,

where Exp denotes the exponential map of (TxM, exp∗x g). Then for every point w in
B̂(0, ρ− |v|),

d(τv(w), tv ◦ p−1
v (w)) ≤ Λ2 |v| |w| (|v|+ |w|).

Proof. – Proposition 6.6 of [4] yields the following comparison result: if V is defined by
Exp0 V = v and if W belongs to T0TxM , then

(9) d(Expv ◦p̂v(W ),Exp0(V +W )) ≤ 1

3
Λ |V | |W | sinh(Λ(|V |+ |W |)) sin ∠(V,W ),
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where p̂v is the parallel transport along t 7→ Exp0 tV , from t = 0 to t = 1. Set w = Exp0W .
We stress the fact that Exp0 = T0 expx is nothing but the canonical identification between
the tangent space T0TxM to the vector space TxM and the vector space itself, TxM . In
particular, Exp0(V +W ) = v + w = tv(w). Since expx is a local isometry, we have

p̂v = (Tv expx)
−1 ◦ pv ◦ T0 expx,

so that Expv ◦p̂v(W ) = τv◦pv(w). With sinh(Λ(|V |+|W |)) ≤ 3Λ(|V |+|W |), it follows from
(9) that: d(τv ◦pv(w), tv(w)) ≤ Λ2 |v| |w| (|v|+ |w|). Changing w into p−1

v (w), we obtain the
result.

2.3. Fundamental pseudo-group and volume

2.3.1. Back to the injectivity radius. – Our discussion of the fundamental pseudo-group
enables us to recover a result of [7].

P 2.5 (Lower bound for the injectivity radius). – Let (Mn, g) be a complete
Riemannian manifold. Assume the existence of Λ ≥ 0 and V > 0 such that for every point x
in M , |Rmx| ≤ Λ2 and volB(x, 1) ≥ V. Then the injectivity radius admits a positive lower
bound I = I(n,Λ, V ).

Proof. – Set ρ = min(1, π8Λ ) and assume there is a point x inM and a geodesic loop based
at x with length bounded by ρ. Apply (8) to find

ρ

2 inj(x)
volB(x, ρ/2) ≤ vol B̂(0, ρ).

Bishop’s theorem estimates the right-hand side byωn cosh(Λρ)n−1ρn, whereωn is the volume
of the unit ball in Rn. We thus obtain inj(x) ≥ C(n,Λ) volB(x, ρ/2) for some C(n,Λ) > 0.
Since Bishop’s theorem also yields a constant C ′(n,Λ) > 0 such that

volB(x, 1) ≤ C ′(n,Λ)−1 volB(x, ρ/2),

we are left with inj(x) ≥ C(n,Λ)C ′(n,Λ) volB(x, 1) ≥ C(n,Λ)C ′(n,Λ)V .

Combining Propositions 2.1 and 2.5, we obtain

C 2.6 (Injectivity radius pinching). – Let (Mn, g) be a complete Riemannian
manifold with bounded curvature. Suppose:

∀x ∈M, V ≤ volB(x, t) ≤ ω(t)tn

for some positive number V and some function ω going to zero at infinity. Then there are
positive numbers I1, I2 such that for any point x in M :

I1 ≤ inj(x) ≤ I2.
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2.3.2. Self-improvement of volume estimates. – Here and in the sequel, we will distinguish a
point o in our complete non-compact Riemannian manifolds, which will always be smooth
and connected. The distance function to o will be denoted by ro or r.

P 2.7. – Let (Mn, g) be a complete non-compact Riemannian manifold with
faster than quadratic curvature decay, i.e. |Rm| = O(r−2−ε) for some ε > 0. If there exists a
function ω which goes to zero at infinity and satisfies

∀x ∈M, ∀t ≥ 1, volB(x, t) ≤ ω(t)tn,

then there is in fact a number B such that

∀x ∈M, ∀t ≥ 1, volB(x, t) ≤ Btn−1.

Proof. – Proposition 2.1 yields an upper bound I2 on the injectivity radius. Our assump-
tion on the curvature implies that, given a point x inM\B(o,R0), with large enoughR0, one
can apply (8) with 2I2 ≤ ρ = 2t ≤ r(x)/2:

t

inj(x)
volB(x, t) ≤ vol B̂(0, 2t).

Thanks to the curvature decay, ifR0 is large enough, Bishop’s theorem bounds the right-hand
side by ωn cosh(1)n−1(2t)n; with Proposition 2.1, it follows that for I2 ≤ t ≤ r(x)/2:

volB(x, t) ≤ ωn cosh(1)n−12nI2t
n−1.

We have found some numberB1 such that for every x outside the ballB(o,R0) and for every
t in [I2, r(x)/2],

(10) volB(x, t) ≤ B1t
n−1.

From Lemma 3.6 in [26], which refers to the construction in the fourth paragraph of [1], we
can find a number N such that for any natural number k, setting Rk = R02k, the annulus
Ak := B(o, 2Rk)\B(o,Rk) is covered by a family of balls (B(xk,i, Rk/2))1≤i≤N centered
in Ak. Since the volume of the balls B(xk,i, Rk/2) is bounded by B1(Rk/2)n−1, we deduce
the existence of a constant B2 such that for every t ≥ I2

volB(o, t) ≤ B2

dlog2(t/R0)e∑
k=0

(2k)n−1

and thus, for some new constant B3, we have

(11) ∀ t ≥ I2, volB(o, t) ≤ B3 t
n−1.

Now, for every x in M\B(o,R0) and every t ≥ r(x)/4, we can write

volB(x, t) ≤ volB(o, t+ r(x)) volB(o, 5t) ≤ 5n−1B3t
n−1.

And when x belongs to B(o,R0), for t ≥ I2, we observe

volB(x, t) ≤ volB(o, t+R0) ≤ volB(o, (1 +R0/2)t) ≤ B3(1 +R0/2)n−1tn−1.

Therefore there is a constant B such that for every x in M and every t ≥ I2, the volume of
the ball B(x, t) is bounded by Btn−1. The result immediately follows.

When the Ricci curvature is nonnegative, the assumption on the curvature can be relaxed.
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P 2.8. – Let (Mn, g) be a complete non-compact Riemannian manifold with
nonnegative Ricci curvature and quadratic curvature decay, i.e. |Rm| = O(r−2). If there exists
a function ω which goes to zero at infinity and satisfies

∀x ∈M, ∀t ≥ 1, volB(x, t) ≤ ω(t)tn,

then there is in fact a number B such that

∀x ∈M, ∀t ≥ 1, volB(x, t) ≤ Btn−1.

Proof. – The previous proof can easily be adapted. (10) holds for I2 ≤ t ≤ δr(x), with
a small δ > 0. The existence of the covering leading to (11) stems from Bishop-Gromov’s
theorem (the xk,i are given by a maximal Rk/2-net).

This threshold effect shows that the first collapsing situation to study is that of a “codi-
mension 1” collapse, where the volume of balls with radius t is (uniformly) comparable to
tn−1. This explains the gap between ALE and ALF gravitational instantons, under a uni-
form upper bound on the volume growth: there is no gravitational instanton with interme-
diate volume growth, between volB(x, t) � t3 and volB(x, t) � t4.

3. Collapsing at infinity

3.1. Local structure at infinity

We turn to codimension 1 collapsing at infinity. It turns out that the holonomy of short
geodesic loops plays an important role. In order to obtain a nice structure, we will make a
strong assumption on it. The next paragraph will explain why gravitational instantons satisfy
this assumption.

P 3.1 (Fundamental pseudo-group structure). – Let (Mn, g) be a complete
Riemannian manifold such that, for some positive numbers A and B,

∀x ∈M, ∀ t ≥ 1, Atn−1 ≤ volB(x, t) ≤ Btn−1.

We further assume that there is a constant c > 1 such that |Rm| ≤ c2r−2 and such that if γ is
a geodesic loop based at x and with length L ≤ c−1r(x), then the holonomy H of γ satisfies

|H − id| ≤ cL

r(x)
.

Then there exists a compact set K in M such that for every x in M\K, there is a unique
geodesic loop σx of minimal length 2 inj(x). Besides there are geometric constants L and κ > 0

such that the fundamental pseudo-group Γ(x, κr(x)) has at most Lr(x) elements, all of which
are obtained by successive lifts of σ.

D 3.2. – σx is the “fundamental loop at x”.
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Proof. – Let us work around a point x far away from o, say with r(x) > 100I2c. Recall
(2.6) yields constants I1, I2 such that 0 < I1 ≤ inj ≤ I2. The fundamental pseudo-group
Γ := Γ(x, r(x)

4c ) contains the sub-pseudo-group Γσ := Γσ(x, r(x)
4c ) corresponding to the loop

σ of minimal length 2 inj(x). Denote by τ = τv one of the two elements of Γ that correspond
to σ: |v| = 2 inj(x). (8) implies for ρ = r(x)

2c :

|Γ| volB

Å
x,
r(x)

4c

ã
≤ vol B̂

Å
0,
r(x)

2c

ã
.

Bishop’s theorem bounds (from above) the Riemannian volume of B̂(0, r(x)
2c ) by (cosh c)

n

times its Euclidean volume. With the lower bound on the volume growth, we thus obtain:

|Γ|A
Å
r(x)

4c

ãn−1

≤ (cosh c)
n
ωn

Å
r(x)

2c

ãn
,

where ωn denotes the volume of the unit ball in Rn. We deduce the estimate

|Γ| ≤ Lr(x) with L :=
2n−2ωn (cosh c)

n

Ac
.

Now, consider an oriented geodesic loop γ, based at x and with length inferior to r(x)
4c .

Name τz the corresponding element of Γ := Γ(x, r(x)
4c ). Hz will denote the holonomy of

the opposite orientation of γ. By assumption,

|Hz − id| ≤ c |z|
r(x)

.

The vector z = τz(0) is the initial speed of the geodesic γ, parameterized by [0, 1] in the
chosen orientation. In the same way, τ−1

z (0) is the initial speed vector of γ, parameterized
by [0, 1], but in the opposite orientation. We deduce −z is obtained as the parallel transport
of τ−1

z (0) along γ: Hz(τ
−1
z (0)) = −z. From the estimate above stems:

(12)
∣∣τ−1
z (0) + z

∣∣ ≤ c |z|2

r(x)
.

Given a small λ, say λ = 1
100c , we consider a point w in the domain I τz (x, λr(x)) (see the

definition in 2.3). It satisfies

gx(w, τ−1
z (0)) ≤ |z|

2

2
+ 2c2λ2 |z|2 .

With

gx(w, z) = −gx(w, τ−1
z (0)) + gx(w, τ−1

z (0) + z) ≥ −gx(w, τ−1
z (0))− |w|

∣∣τ−1
z (0) + z

∣∣ ,
we find

gx(w, z) ≥ −|z|
2

2
− 2c2λ2 |z|2 − λc |z|2 ,

that is

gx(w, z) ≥ −|z|
2

2

(
1 + 4c2λ2 + 2λc

)
.

With Lemma 2.3, this ensures:

F τz

Å
x, λr(x),

r(x)

4

ã
⊂

®
w ∈ B̂(0, λr(x))

/
|gx (w, z)| ≤ |z|

2

2

(
1 + 4c2λ2 + 2λc

)´
.
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And with λ = 1
100c , this leads to

(13) F τz

Å
x, λr(x),

r(x)

4

ã
⊂

®
w ∈ B̂(0, λr(x))

/
|gx (w, z)| ≤ 3 |z|2

4

´
.

Let τ ′ be an element of Γ\Γσ such that v′ := τ ′(0) has minimal norm. Suppose
|v′| < λr(x). Then, the minimality of |v′| combined with (13) yields

|gx (v′, v)| ≤ 3 |v|2

4
.

If θ ∈ [0, π] is the angle between v and v′, this means: |v′| |cos θ| ≤ 0.75 |v|. Since |v| ≤ |v′|,
we deduce |cos θ| ≤ 0.75, hence sin θ ≥ 0.5. Applying (13) to τ and τ ′, we also get

F
Å
x, λr(x),

r(x)

4c

ã
⊂ F τv

Å
x, λr(x),

r(x)

4c

ã
∩ F τv′

Å
x, λr(x),

r(x)

4c

ã
⊂
{
w ∈ B̂(0, λr(x))

/
|gx (w, v)| ≤ |v|2 , |gx (w, v′)| ≤ |v′|2

}
.

v

v′

0 θ

θ

F 6. The fundamental domain is inside the dotted line.

The Riemannian volume of F (x, λr(x), r(x)/(4c)) equals that ofB(x, λr(x)), so it is not
smaller than Aλn−1r(x)n−1. The Euclidean volume of{

w ∈ B̂(0, λr(x))
/
|gx (w, v)| ≤ |v|2 and |gx (w, v′)| ≤ |v′|2

}
is not greater than 4 |v| |v′| (2λr(x))n−2/ sin θ ≤ 2n+2λn−2I2 |v′| r(x)n−2. Comparison
yields

Aλn−1r(x)n−1 ≤ 2n+2 (cosh c)
n
λn−2I2 |v′| r(x)n−2,

that is

|v′| ≥ λA

2n+2I2 (cosh c)
n r(x).
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Given a positive number κ which is smaller than λ and λA
2n+2I2(cosh c)n , we conclude that for

any x outside some compact set, the pseudo-group Γ(x, κr(x)) only consists of iterates of τ
(in Γ(x, r(x)

4c )).
Suppose there are two geodesic loops with minimal length 2 inj(x) at x. They correspond

to distinct points v and v′ in TxM . Write

F
Å
x, λr(x),

r(x)

4

ã
⊂ F τv

Å
x, λr(x),

r(x)

4

ã
∩ F τv′

Å
x, λr(x),

r(x)

4

ã
⊂
{
w ∈ B̂(0, λr(x))

/
|gx (w, v)| ≤ |v|2 , |gx (w, v′)| ≤ |v|2

}
.

As above, we find

Aλn−1r(x)n−1 ≤ 2n (cosh c)
n
λn−2 |v| |v′| r(x)n−2/ sin θ,

where θ ∈ [0, π] is the angle between the vectors v and v′. Here, |v| = |v′| ≤ 2I2, so

Aλr(x) sin θ ≤ 2n+2I2
2 (cosh c)

n
.

The minimality of |v| and distance comparison yield

|v| ≤ d(v, v′) ≤ cosh(0.02) |v − v′|

hence cos θ ≤ 0.51. For the same reason, we find

|v| ≤ d(τ−1
v (0), v′) ≤ cosh(0.02)

∣∣τ−1
v (0)− v′

∣∣ .
With (12), which gives ∣∣τ−1

v (0) + v
∣∣ ≤ 0.01 |v| ,

we deduce
|v + v′| ≥

∣∣τ−1
v (0)− v′

∣∣− ∣∣τ−1
v (0) + v

∣∣ ≥ 0.98 |v|
hence cos θ ≥ −0.52, then |cos θ| ≤ 0.52, and sin θ ≥ 0.8. Eventually, we obtain

0.8Aλr(x) ≤ 2n+2I2
2 (cosh c)

n
,

which cannot hold if x is far enough from o. This proves the uniqueness of the shortest
geodesic loop.

Uniqueness implies smoothness:

L 3.3. – In the setting of Proposition 3.1, there are smooth local parameterizations
for the family of loops (σx)x. More precisely, given an orientation of σx, we can lift it to TxM
through expx; denoting the tip of the resulting segment by v, if w is in the neighborhood of
0 in TxM , then the fundamental loop at expx w is the image by expx of the unique geodesic
connecting w to τv(w).

Proof. – We first prove continuity. Let y be inM (outside the compact setK) and let (yn)

be a sequence converging to y. Let Vn be a sequence of initial unit speed vector for σyn . Com-
pactness ensuresVn can be assumed to converge toV . Letα be the geodesic emanating from y

with initial speed V . For every indexn, we have expyn(inj(yn)Vn) = σyn(inj(yn)) = yn. Con-
tinuity of the injectivity radius ([16]) allows to take a limit: α(inj(y)) = expy inj(y)V = y.
Uniqueness implies α parameters σy. This yields the continuity of (σx)x. Now, given w in a
neighborhood of 0 in TxM , consider the e(w) of the lift of σexpx w. The map e is a continuous
section of expx and e(0) = τv(0) : e = τv. The result follows.
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Now we turn to gravitational instantons: we can control their holonomy and thus apply
the previous proposition.

3.2. Holonomy in gravitational instantons

L 3.4. – Let (M4, g) be a complete hyperkähler manifold with inj(x) ≥ I1 > 0 and
|Rm| ≤ Qr−3. Then there is some positive c = c(I1, Q) such that the holonomy H of geodesic
loops based at x and with length L ≤ r(x)/c satisfies

|H − id| ≤ c

r(x)
.

Proof. – Consider a point x (far from o) and a geodesic loop based at x, withL ≤ r(x)/4.
Let τv ∈ Γ(x, r(x)/4) be a corresponding element. Thanks to (2.4), we know that for every
point w in TxM such that |w| ≤ r(x)/4:

d(τv(w), tv ◦ p−1
v (w)) ≤ 8Q

r(x)3
|v| |w| (|v|+ |w|)

and therefore, with H = p−1
v ,

d(τv(w), Hw + v) ≤ QL

r(x)
.

Since (M, g) is a hyperkähler four-manifold, the holonomy group is included in SU(2), so

that in some orthonormal basis of TxM , seen as a complex two-space, H =

(
eiθ 0

0 e−iθ

)
with an angle θ in ] − π, π]. Suppose θ is not zero (otherwise the statement is trivial). The
equation Hw + v = w admits a solution:

w =

(
v1

1−eiθ
v2

1−e−iθ

)
where v1 and v2 denote the coordinates of v.

If |w| ≤ r(x)/4, we obtain d(τv(w), w) ≤ QL
r(x) . Since the lower bound on the injectivity

radius yields d(τv(w), w) ≥ 2I1, we find L ≥ 2I1
Q r(x).

As a consequence, if L < 2I1
Q r(x), then |w| > r(x)

4 , that is

|H − id| =
∣∣∣1− eiθ∣∣∣ =

L

|w|
≤ 4L

r(x)
.

As a result, we obtain the

P 3.5. – Let (M4, g) be a complete hyperkähler manifold such that

(14)
∫
M

|Rm|2 rdvol <∞

and, for some positive numbers A and B,

(15) ∀x ∈M, ∀ t ≥ 1, At3 ≤ volB(x, t) ≤ Bt3.

Then there exists a compact set K in M such that for every x in M\K, there is a unique
geodesic loop σx of minimal length 2 inj(x). Besides there are geometric constants L and κ > 0
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such that the fundamental pseudo-group Γ(x, κr(x)) has at most Lr(x) elements, all of which
are obtained by successive lifts of σ.

Proof. – Since M is hyperkähler, it is Ricci flat. So [28] applies (see Appendix A):
|Rm| = O(r−3). So we use Proposition 3.1, thanks to Lemma 3.4.

R 2. – From now on, we will remain in the setting of four dimensional hyperkähler
manifolds. It should nonetheless be noticed that the only reason for this is Lemma 3.4. If the
conclusion of this lemma is assumed and if we suppose convenient estimates on the covariant
derivatives of the curvature tensor, then we can work in any dimension (see 3.26 below).

3.3. An estimate on the holonomy at infinity

To go on, we will need a better estimate of the holonomy of short loops. This is the goal
of this paragraph. First, let us state an easy lemma, adapted from [4] (6.2).

L 3.6 (Holonomy comparison). – Let γ : [0, L] −→ N be a curve in a Riemannian
manifold N and let t 7→ αt be a family of loops, parameterized by 0 ≤ s ≤ l with
αt(0) = αt(l) = γ(t). We denote by pγ(t) the parallel transportation along γ, from γ(0) to
γ(t). We consider a vector field (s, t) 7→ X(s, t) along the family α and we suppose it is parallel
along each loop αt (∇sX(s, t) = 0) and along γ (∇tX(0, t) = 0). Then:∣∣pγ(L)−1X(l, L)−X(l, 0)

∣∣ ≤ ∫ L

0

∫ l

0

|Rm(∂sσt, ∂tσt)X(s, t)| dsdt.

γ(0)

γ(t)

αt
αL

α0

γ(L)

F 7. A one parameter family of loops.

We consider a complete hyperkähler manifold (M4, g) with∫
M

|Rm|2 rdvol <∞ or equivalently |Rm| = O(r−3)

and for some positive constants A, B,

∀x ∈M, ∀ t ≥ 1, At3 ≤ volB(x, t) ≤ Bt3.

We choose a unit ray γ : R+ −→ M starting from o and we denote by pγ(t) the
parallel transportation along γ, from γ(0) to γ(t). For large t, we can define the holonomy
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endomorphism Hγ(t) of the fundamental loop σγ(t): here, there is an implicit choice of
orientation for the loops σγ(t), which we can assume continuous. This yields an element of
O(Tγ(t)M). Holonomy comparison Lemma 3.6 asserts that for large t1 ≤ t2:∣∣pγ(t2)−1Hγ(t2)pγ(t2)− pγ(t1)−1Hγ(t1)pγ(t1)

∣∣
≤
∫ ∞
t1

∫ 1

0

|Rm| (c(t, s)) |∂sc(t, s) ∧ ∂tc(t, s))| dsdt,

where, for every fixed t, c(t, .) parameterizes σγ(t) by [0, 1], at speed 2 inj(γ(t)).

L 3.7. – |∂sc ∧ ∂tc)| is uniformly bounded.

Proof. – The upper bound on the injectivity radius bounds |∂sc|. We need to bound the
component of ∂tc that is orthogonal to ∂sc. We concentrate on a neighborhood of some
point x along γ. For convenience, we change the parameterization so that x = γ(0). We
also lift the problem to TxM =: E, endowed with the lifted metric ĝ. If v = γ′(0), γ lifts as
a curve γ̂ parameterized by t 7→ tv. The lift ĉ of c consists of the geodesics ĉ(t, .) connecting
tv to τ(tv); τ is the element of the fundamental pseudo-group corresponding to σx, for
the chosen orientation. Observe ĉ(t, s) = Exptv sX(t) where X(t) ∈ TtvE is defined by
ExptvX(t) = τ(tv). The vector field J defined along ĉ(0, .) by

J(s) = ∂tĉ(0, s) =
d

dt

∣∣∣
t=0

Exptv sX(t)

is a Jacobi field with initial data J(0) = v (E = T0E) and J ′(0) = (∇tX) (0). Suppose the
curvature is bounded by Λ2, Λ > 0, in the area under consideration and apply Lemma 6.3.7
of [4]: the part J̃ of J that is orthogonal to ĉ(0, .) satisfies∣∣∣J̃(s)− p(sv)J̃(0)− sp(sv)J̃ ′(0)

∣∣∣ ≤ a(s)

where p(.) is the radial parallel transportation and where a solves

a′′ − Λ2a = Λ2
(∣∣∣J̃(0)

∣∣∣+
∣∣∣J̃ ′(0)

∣∣∣)
with a(0) = a′(0) = 0, i.e. a(s) =

(∣∣∣J̃(0)
∣∣∣+
∣∣∣J̃ ′(0)

∣∣∣) (cosh(Λs)− 1) . Since here 0 ≤ s ≤ 1

and Λ� 1, we only need a bound on
∣∣∣J̃(0)

∣∣∣ and
∣∣∣J̃ ′(0)

∣∣∣ to control J̃ and end the proof. Since

J(0) = v has unit length, we are left to bound J̃ ′(0).

We consider the family of vectors Y in E that is defined by X(t) = p(tv)Y (t). Then
J ′(0) = ∇tX(0) = Y ′(0). Let f be the map fromE2 toE given by f(w,W ) = Expw p(w)W.

The equality f(tv, Y (t)) = τ(tv) can be differentiated into

(16) ∂1f(0,Y (0))v + ∂2f(0,Y (0))Y
′(0) = (Dτ)0v.

Lemma 6.6 in [4] ensures ∂2f(0,Y (0)) is Λ2-close to the identity. Besides, τ is an isometry for ĝ,
so (Dτ)0 is uniformly bounded. Finally, ∂1f(0,Y (0))v is the value at time 1 of the Jacobi field
K along s 7→ sY (0) corresponding to the geodesic variation H(t, s) 7→ Exptv sp(tv)Y (0).

As the initial data for K(s) = ∂tH(0, s) are K(0) = v and K ′(0) = 0, we obtain
(Corollary 6.3.8 of [4]) a bound onK and thus on ∂1f(0,Y (0))v. This yields a bound on Y ′(0)

(thanks to (16)) and we are done.
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This lemma and the curvature decay lead to the estimate∣∣pγ(t2)−1Hγ(t2)pγ(t2)− pγ(t1)−1Hγ(t1)pγ(t1)
∣∣ ≤ C ∫ ∞

t1

t−3dt ≤ C t−2
1 .

Now recall the holonomy of the loops under consideration goes to the identity at infinity.
Setting t1 =: t and letting t2 go to infinity, we find

(17)
∣∣pγ(t)−1Hγ(t)pγ(t)− id

∣∣ ≤ C t−2.

SinceM has zero (hence nonnegative) Ricci curvature and cubic volume growth, it follows
from Cheeger-Gromoll’s theorem thatM has only one end. Relying on faster than quadratic
curvature decay, [21] then ensures large spheres S(o, t) are connected with intrinsic diameter
bounded byCs. Thus every point x inS(o, t) is connected to γ(t) by some curve β with length
at most Ct and remaining outside B(o, t/2). Holonomy comparison Lemma 3.6 yields:

(18)
∣∣∣p−1
β Hxpβ −Hγ(t)

∣∣∣ ≤ Ct−2,

where pβ is the parallel transportation along β and Hx is the holonomy endomorphism
corresponding to a consistent orientation of σx. It follows that

(19) |Hx − id| ≤ Cr(x)−2.

So we have managed to improve our estimate on the holonomy of fundamental loops.

L 3.8. – Let (M4, g) be a complete hyperkähler manifold satisfying (14) and (15).
Then the holonomy Hx of the fundamental loops σx satisfies

|Hx − id| ≤ Cr(x)−2.

3.4. Local Gromov-Hausdorff approximations

The following lemma ensures the elements of the fundamental group are almost transla-
tions.

L 3.9. – Let (M4, g) be a complete hyperkähler manifold satisfying (14) and (15).
Then there exist a compact set K in M and geometric constants J , L, κ > 0 such that for
every point x in M\K and every τ in Γ(x, κr(x)), one has

∀w ∈ B̂(0, κr(x)), |τ(w)− tkvx(w)| ≤ J

where vx is a lift of the tip of σx and k is a natural number bounded by Lr(x).

Proof. – Proposition 3.1 asserts we can write τ = τkvx , where vx is a lift of a tip of σx and k
is a natural number bounded by Lr(x). Lemma 2.4 ensures that for every w in B̂(0, r(x)/4):∣∣τvx(w)− vx − p−1

vx (w)
∣∣ ≤ Cr(x)−3 |vx| |w| (|vx|+ |w|).

Thanks to cubic curvature decay (Appendix A), (19) yields:
∣∣p−1
vx (w)− w

∣∣ ≤ Cr(x)−2 |w| .
Combining these estimates, we obtain:

|τvx(w)− tvx(w)| = |τvx(w)− vx − w| ≤ Cr(x)−2 |w| .

For i ≤ k, let us set ei = τ ivx − t
i
vx . Then ei+1 − ei = e1 ◦ τ ivx . With∣∣τ ivx(w)

∣∣ = d(τ ivx(w), 0) = d(τ−ivx (0), w) ≤
∣∣τ−ivx (0)

∣∣+ |w| ,
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we find that for every w in B̂(0, κr(x)):

|ei+1(w)− ei(w)| ≤ Cr(x)−2
∣∣τ ivx(w)

∣∣ ≤ Cr(x)−1.

By induction, it follows that |ek(w)| ≤ Ckr(x)−1 and since k ≤ Lr(x), we are led to:

|τ(w)− tkvx(w)| =
∣∣∣τkvx(w)− kvx − w

∣∣∣ = |ek(w)| ≤ C.

P 3.10 (Gromov-Hausdorff approximation). – Let (M4, g) be a complete
hyperkähler manifold satisfying (14) and (15). Then there exist a compact set K in M and
geometric constants I, κ > 0 such that every point x in M\K has a neighborhood Ω whose
Gromov-Hausdorff distance to the ball of radius κr(x) in R3 is bounded by I.

Proof. – Choose a lift of σx in TxM and denote by vx its tip. We call H the hyperplane
orthogonal to vx and write v 7→ vH for the Euclidean orthogonal projection ontoH (for gx).

If y is a point in B(x, κr(x)/2), we can define h(y) as affine center of mass of the points
vH obtained from lifts v of y in B̂(0, κr(x)/2). This defines a map h from B(x, κr(x)/2) to
H ∼= R3 (we endow H of the Euclidean structure induced by gx = |.|2).

We consider the ball B centered in 0 and with radius 0.1κr(x) in H: 0.1κ will be the κ of
the statement. Let us set Ω := h−1(B). We want to see that h : Ω −→ B is the promised
Gromov-Hausdorff approximation. We need to check that this map h has I-dense image and
that for all points y and z in Ω: |d(y, z)− |h(y)− h(z)|| ≤ I.

Firstly, since v is in B, Lemma 3.9 ensures that for every τ = τkvx in Γ(x, κr(x)),
we have |τ(v)− v − kvx| ≤ J and thus, with Pythagoras’ theorem, |τ(v)H − v| ≤ J .
Passing to the center of mass, we get |h(expx v)− v| ≤ J . If d(v,H\B) > J , this proves
h(expx v) belongs to B and therefore expx v belongs to Ω; as a result, d(v, h(Ω)) ≤ J . As
{v ∈ B /d(v,H\B) > J} is J-dense in B, we have shown that h(Ω) is 2J-dense in B.

Secondly, consider two points y and z in Ω. Lift them into v andw (∈ B(x, κr(x)/2)) with
d(v, w) = d(y, z). As above, we get |h(y)− vH | ≤ J and |h(z)− wH | ≤ J , hence

|h(y)− h(z)| ≤ |vH − wH |+ 2J ≤ |v − w|+ 2J.

Since comparison yields |v − w| ≤
(
1 + Cr(x)−1

)
d(v, w) ≤ d(v, w) +C for some constant

C (changing from line to line), we deduce

(20) |h(y)− h(z)| ≤ d(v, w) + C = d(y, z) + C.

Now, consider lifts v′ and w′ at minimal distance from H and observe Lemma 2.3 yields:
|v′ − v′H | ≤ C and |w′ − w′H | ≤ C. We deduce: |v′ − w′| ≤ |v′H − w′H | + C. The distance
between y and z is the infimum of the distances between their lifts, so d(y, z) ≤ d(v′, w′).
As above, comparison ensures: d(v′, w′) ≤ |v′ − w′| + C. These three inequalities give
altogether:

d(y, z) ≤ |v′H − w′H |+ C.

And since ||h(y)− h(z)| − |v′H − w′H || ≤ C, we get

(21) d(y, z) ≤ |h(y)− h(z)|+ C.

The combination of (20) and (21) yields |d(y, z)− |h(y)− h(z)|| ≤ C, hence the result.

The following step consists in regularizing local Gromov-Hausdorff approximations to
obtain local fibrations which accurately describe the local geometry at infinity.
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3.5. Local fibrations

The local Gromov-Hausdorff approximation that we built above has no reason to be reg-
ular. We will now smooth it into a fibration. The technical device is simply a convolution, as
in [15] and [5]. We basically need Theorem 2.6 in [5]. The trouble is this general result will
have to be refined, by using fully the cubic decay of the curvature and the symmetry proper-
ties of the special Gromov-Hausdorff approximation we smooth. This technique requires a
control on the covariant derivatives of the curvature, but it is heartening to know that this is
given for free on gravitational instantons (see Theorem A.4 in Appendix A).

We say f is a C-almost-Riemannian submersion if f is a submersion such that for every
horizontal vector v (i.e. orthogonal to fibers), e−C |v| ≤ |dfx(v)| ≤ eC |v| .

P 3.11 (Local fibrations). – Let (M4, g) be a complete hyperkähler manifold
satisfying (14) and (15). Then there exist a compact set K in M and geometric constants
κ > 0, C > 0 such that for every point x in M\K, there is a circle fibration fx : Ωx −→ Bx
defined on a neighborhood Ωx of x and with values in the Euclidean ball Bx with radius κr(x)

in R3. Moreover,

– fx is a Cr(x)−1-almost-Riemannian submersion,
– its fibers are submanifolds diffeomorphic to S1, with length pinched between C−1 and C,
–
∣∣∇2fx

∣∣ ≤ Cr(x)−2,
– ∀i ≥ 3,

∣∣∇ifx∣∣ = O(r(x)1−i).

Proof. – In the proof of 3.10, we introduced a function h from the ballB(x, κr(x)) to the
hyperplaneH, orthogonal to the tip vx of a lift of σx in TxM ; this hyperplaneH is identified
to the Euclidean space R3 through the metric induced by gx.

Let us choose a smooth nonincreasing function χ from R+ to R+, equal to 1 on [0, 1/3]

and 0 beyond 2/3. We also fix a scale ε := 0.1κr(x) and set χε(t) = χ(2t/ε2). Note the
estimates:

(22)
∣∣∣χ(k)
ε

∣∣∣ ≤ Ckε−2k.

We consider the function defined on B(x, κr(x)) by:

f(y) :=

∫
TyM

h(expy v)χε(d(0, v)2/2)dvol(v)∫
TyM

χε(d(0, v)2/2)dvol(v)
.

Here, dvol and d are taken with respect to exp∗y g. If w is a lift of y in TxM , we can change
variables thanks to the isometry τw := Expw ◦ (Tw expx)

−1 between (TyM, exp∗y g) and

(TxM, exp∗x g). For every point v in TxM , we introduce the function ρv := d(v,.)2

2 and set
f̂ := f ◦ expx, ĥ := h ◦ expx. We then get the formula:

f(y) = f̂(w) =

∫
TxM

ĥ(v)χε(ρv(w))dvol(v)∫
TxM

χε(ρv(w))dvol(v)
.

The point is we can now work on a fixed Euclidean space, (TxM, gx). The Riemannian
measure dvol can be compared to Lebesgue measure dv: on a scale ε, if the curvature is
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bounded by Λ2, we have
(

sin Λε
Λε

)4
dv ≤ dvol ≤

(
sinh Λε

Λε

)4
dv. Cubic curvature decay implies

Λ is of order ε−
3
2 , so that we find

(23) − Cε−1dv ≤ dvol− dv ≤ Cε−1dv.

Distance comparison yields in the same way: |d(v, w)− |v − w|| ≤ CΛ2ε2d(v, w) ≤ C,

hence

(24)
∣∣∣ρv(w)− |v − w|2 /2

∣∣∣ ≤ Cε.
Eventually, the proof of 3.10 shows ĥ is close to a Euclidean projection onto H:

(25)
∣∣∣ĥ(v)− vH

∣∣∣ ≤ C.
We can write∫

ĥ(v)χε(ρv(w))dvol(v) =

∫
ĥ(v)χε(ρv(w))(dvol(v)− dv)

+

∫
ĥ(v)

Ä
χε(ρv(w))− χε(|v − w|2 /2)

ä
dv

+

∫
(ĥ(v)− vH)χε(|v − w|2 /2)dv

+

∫
vHχε(|v − w|2 /2)dv.

The support of v 7→ χε(ρv(w)) is included in a ball whose radius is of order ε: ĥwill therefore
take its values in a ball with radius of order ε. With (23), we can then bound the first term of
the right-hand side by Cε · ε−1 · ε4 = Cε4. With (22) and (24), we bound the second term by
Cε · ε−2 · ε · ε4 = Cε4. Eventually, (25) controls the third term by Cε4. We get:∫

ĥ(v)χε(ρv(w))dvol(v) =

∫
vHχε(|v − w|2 /2)dv + O(ε4),

where O(ε4) stands for an error term of magnitude ε4.
Thanks to (23), (22) and (24), we obtain in the same way:∫

TxM

χε(ρv(w))dvol(v) =

∫
χε(|v − w|2 /2)dv + O(ε3).

Observing ∫
vHχε(|v − w|2 /2)dv = O(ε5)

and

C−1ε4 ≤
∫
χε(|v − w|2 /2)dv ≤ Cε4,

we deduce

f̂(w) =

∫
vHχε(|v − w|2 /2)dv∫
χε(|v − w|2 /2)dv

+ O(1).

The change of variables z = v − w yields:

f̂(w)− wH =

∫
zHχε(|z|2 /2)dz∫
χε(|z|2 /2)dz︸ ︷︷ ︸
=0 by parity

+ O(1),
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hence

(26) f̂(w) = wH + O(1).

The differential of f̂ reads

df̂w =

∫
(ĥ(v)− f̂(w))χ′ε(ρv(w))(dρv)wdvol(v)∫

χε(ρv(w))dvol(v)
.

The same kind of approximations, based on (8), (22), (24), (B.3), (25) and (26) implies

(27) df̂w = −
∫
zHχ

′
ε(|z|

2
/2)(z, .)dz∫

χε(|z|2 /2)dz
+ O(ε−1).

Let us choose an orthonormal basis (e1, . . . , e4) of TxM , with e4⊥H. If i 6= j, parity
shows ∫

ziχ
′
ε(|z|

2
/2)zjdz = 0.

On the contrary, an integration by parts ensures that for every α ≥ 0:∫ ∞
−∞

z2
i χ
′
ε(z

2
i /2 + α)dzi = −

∫ ∞
−∞

χε(z
2
i /2 + α)dzi,

so that

−
∫
z2
i χ
′
ε(|z|

2
/2)dz =

∫
χε(|z|2 /2)dz.

This means precisely:

−
∫
zHχ

′
ε(|z|

2
/2)(z, .)dz∫

χε(|z|2 /2)dz
=

3∑
i=1

ei ⊗ (ei, .).

And one can recognize the Euclidean projection onto H. We deduce

df̂w =
3∑
i=1

ei ⊗ (ei, .) + O(ε−1).

With (40), this proves f̂ is a Cε−1-almost-Riemannian submersion. Since exp is a local
isometry, f is also a Cε−1-almost-Riemannian submersion.

The Hessian reads:

∇2f̂w =

∫
(ĥ(v)− f̂(w))

(
χ′′ε (ρv(w))(dρv)w ⊗ (dρv)w + χ′ε(ρv(w))(∇2ρv)w

)
dvol(v)∫

χε(ρv(w))dvol(v)

− 2df̂w ⊗
∫
χ′ε(ρv(w))(dρv)w)dvol(v)∫

χε(ρv(w))dvol(v)
.

Again, with (8), (22), (24), (B.3), (25) and (26), we arrive at

∇2f̂w =

∫
zH

Ä
χ′′ε (|z|2 /2)(z, .)⊗ (z, .) + χ′ε(|z|

2
/2)(., .)

ä
dz∫

χε(|z|2 /2)dz

− 2df̂w ⊗
∫
χ′ε(|z|

2
/2)(z, .)dz∫

χε(|z|2 /2)dz
+ O(ε−2).
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To begin with, parity ensures∫
χ′ε(|z|

2
/2)(z, .)dz = 0 and

∫
zHχ

′
ε(|z|

2
/2)(., .)dz = 0.

The ith component of the integral
∫
zHχ

′′
ε (|z|2 /2)(z, .) ⊗ (z, .) can be written as a sum of

terms Å∫
zizjzkχ

′′
ε (|z|2 /2)dz1 . . . dz4

ã
(ej , .)⊗ (ek, .)

which vanish for a parity reason. Therefore:∇2f̂w = O(ε−2).

The proof of Theorem 2.6 in [5] yields the remaining properties of fx := f . Essentially,
f is a fibration because it is C1-close to a fibration. The connectedness of the fibers follows
from the bound on the Hessian of f . The length of the fibers is controlled by the assumption
on the volume growth (since f is an almost-Riemannian submersion).

We will need to relate neighboring fibrations (this somewhat corresponds to Proposi-
tion 5.6 in [5]).

L 3.12 (Closeness of local fibrations I). – The setting is the same as in Proposi-
tion 3.11. Given two points x and x′ in M\K, with d(x, x′) ≤ κr(x), if Ωx,x′ = Ωx ∩ Ωx′

(notations in 3.11), then there is a Cr(x)−1-almost-isometry φx,x′ between fx′(Ωx,x′) and
fx(Ωx,x′), for which moreover

– |fx − φx,x′ ◦ fx′ | ≤ C,
– |Dfx −Dφx,x′ ◦Dfx′ | ≤ Cr(x)−1,
–
∣∣D2φx,x′

∣∣ ≤ Cr(x)−2,
– ∀ i ≥ 3,

∣∣Diφx,x′
∣∣ = O(r(x)1−i).

Proof. – We use the same notations as in the previous proof, adding subscripts to precise
the point under consideration, and we work in TxM . Choose a lift u of y at minimal distance
from o and set τu := Expu ◦(Tu expx)−1 the corresponding isometry (between large balls in
Tx′M and TxM ). We consider the map

φx,x′ := fx ◦ expx′ |fx′ (Ωx,x′ ).

In order to bring everything back intoTxM , we writeφx,x′◦fx′◦expx = fx◦expx′ ◦fx′◦expx .

The relation expx ◦τu = expx′ leads to the reformulation

(28) φx,x′ ◦ fx′ ◦ expx = f̂x ◦ f̃x′

with f̂x = fx ◦ expx and f̃x′ = τu ◦ fx′ ◦ expx′ ◦τ−1
u . We need to understand this latest map.

Since τu is an isometry between the metrics exp∗x′ g and exp∗x g and since Hx′ is the union
of all the geodesics starting from 0 and with a unit speed orthogonal to (T0 expx′)

−1(vx′),
τu(Hx′) is the hypersurface generated by the geodesics starting from u with a unit speed
orthogonal to V := (dτu)0 ◦ (T0 expx′)

−1(vx′). vx′ is by definition one of the lifts of x′ by
expx′ which is not 0 but at minimal distance from 0 (in Tx′M ). So τu(vx′) is one of the two
lifts of x′ by expx which is not τu(0) = u but at minimal distance from τu(0) = u (in TxM ).
We have seen in Lemma 3.3 that such a point τu(v′x) is τvx(u) or τ−1

vx (u). To fix ideas, assume
we are in the first case: τu(v′x) = τvx(u).

The exponential map of Tx′M (at 0) maps (T0 expx′)
−1(vx′) to vx′ , so

V = (dτu)0◦(T0 expx′)
−1(vx′) is the vector which is mapped by the exponential map of TxM
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V
u

τu(Hx′)
u+Hx

0

TxM Tx′M

Hx

τu

(T0 expx)−1vx 0 (T0 expx′)
−1vx′

Hx′

(at τu(0) = u) to τu(v′x) = τvx(u): Expu V = τvx(u). Consider the geodesic
γ(t) := Expu tV . Taylor’s formula γ(1) − γ(0) − γ̇(0) =

∫ 1

0
(1 − t)γ̈(t)dt and the esti-

mate |γ̈| ≤ Cr(x)−2 |V |2 ≤ Cr(x)−2, stemming from Lemma B.2 and the bound on the
injectivity radius (2.1), together imply

|τvx(u)− u− V | ≤ Cr(x)−2.

With the estimate |τvx(u)− u− vx| ≤ Cr(x)−1, we deduce

(29) |V − vx| ≤ Cr(x)−1

so that, with Û := B̂(0, κr(x)) ∩ B̂(u, κr(x′)), the affine hyperplanes pieces
(u + V ⊥) ∩ Û and (u + Hx) ∩ Û remain at bounded distance. Considering the geodesic
γ(t) = Expu tW , with W⊥V and |W | ≤ Cr(x), we obtain in the same way (thanks to
Lemma B.2):

|ExpuW − u−W | ≤ Cr(x)−2r(x)2 = C.

This means the affine hyperplane piece (u+ V ⊥) ∩ Û and the hypersurface piece
τu(Bx′) ∩ Û = Expu V

⊥ ∩ Û remain at bounded distance. And we conclude τu(Bx′) ∩ Û
and (u+Hx)∩ Û remain C-close. In the previous proof, we saw that fx′ ◦ expx′ was C-close
to the orthogonal projection (for gx′ ) onto Hx′ . Now, τu is an isometry between the metrics
exp∗x′ g and exp∗x g, which are respectively Cr(x)−1-close to gx′ and gx. It follows from all
this that in the area under consideration, f̃x′ is C-close to the projection onto (u+Hx)∩ Û.
And since wu+Hx = wHx + (u− uHx), we deduce∣∣∣f̃x′(w)− wHx − (u− uHx)

∣∣∣ ≤ C, hence
∣∣∣f̃x′(w)− f̂x(w)− (u− uHx)

∣∣∣ ≤ C.
Composing with f̂x, we find

∣∣∣f̂x ◦ f̃x′(w)− f̂x(w)
∣∣∣ ≤ C. Recalling Formula (28), we obtain

|φx,x′ ◦ fx′ ◦ expx−fx ◦ expx| ≤ C, and, with the surjectivity of expx, this yields

|φx,x′ ◦ fx′ − fx| ≤ C.

Relation (28) also implies

(30) D(φx,x′ ◦ fx′ expx) = Df̂x ◦Df̃x′ .
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Let z be a point in Û and set z′ = τ−1
u (z) ∈ Tx′M . The previous proof has shown that

Dz f̂x is Cr(x)−1-close to the orthogonal projection in the direction of Hx. In the same way,
Dz′(fx′ expx′) is Cr(x)−1-close to the orthogonal projection in the direction of Hx′ , i.e. in
the direction orthogonal to vx′ . Conjugating by Dτu, we find that Dz f̃x′ is Cr(x)−1 close to
the projection in the direction orthogonal to Dzτu(vx′).

Let Z ′ be the initial speed of the geodesic connecting z′ to τvx′ (z
′) in unit time. The

argument leading to (29) yields |Z ′ − vx′ | ≤ Cr(x)−1. If we set Z := DzτuZ
′, we thus

have |Z −Dzτu(vx′)| ≤ Cr(x)−1. Since Z is the initial speed of the geodesic connecting
z to τvx(z) (or τ−1

vx (z)) in unit time, we also find |Z − vx| ≤ Cr(x)−1, so that we can deduce:

|vx −Dzτu(vx′)| ≤ Cr(x)−1.

Finally, Dz f̃x′ is Cr(x)−1-close to the projection in the direction of the hyperplane Hx,

orthogonal to vx:
∣∣∣D(φx,x′ ◦ fx′ ◦ expx)−Df̂x

∣∣∣ ≤ Cr(x)−1. Hence:

(31) |Dφx,x′ ◦Dfx′ −Dfx| ≤ Cr(x)−1.

Let W be a vector tangent to fx′(Ωx,x′) and let W ′ be its horizontal lift for
fx′ : Dfx′W ′ = W . As Df̃x′ and Df̂x are Cr(x)−1-close, a horizontal vector for fx′ is
Cr(x)−1-close to a horizontal vector for fx. And since fx and fx′ are Cr(x)−1-almost-
Riemannian submersions, we get

||Dfx(W ′)| − |W ′|| ≤ Cr(x)−1 |W ′| and ||W | − |W ′|| ≤ Cr(x)−1 |W ′| .

Writing

||Dφx,x′W | − |W || ≤ |Dφx,x′(Dfx′W ′)−DfxW ′|+ ||DfxW ′| − |W ′||+ ||W ′| − |W ||

and using (31), we obtain ||Dφx,x′(W )| − |W || ≤ Cr(x)−1 |W | , which proves φx,x′ is a
Cr(x)−1-quasi-isometry.

Higher order estimates stem from those on fx and fx′ , thanks to Formula (28).

We will also need the following lemma. Indeed, it stems from the previous one.

L 3.13 (Local fibration closeness II). – The setting is the same as in Lemma 3.12.
We consider three points x, x′ and x′′ in M\K, whose respective distances are bounded by
κr(x). Then, wherever it makes sense, we have

– |φx,x′′ − φx,x′ ◦ φx′,x′′ | ≤ C,
– |Dφx,x′′ −Dφx,x′ ◦Dφx′,x′′ | ≤ Cr(x)−1.

Proof. – On the intersection of Ωx, Ωx′ and Ωx′′ , we can write

|fx − φx,x′ ◦ fx′ | ≤ C and |fx′ − φx′,x′′ ◦ fx′′ | ≤ C.

Since φx,x′ is a quasi-isometry, it follows that:

|fx − φx,x′ ◦ φx′,x′′ ◦ fx′′ | ≤ |fx − φx,x′ ◦ fx′ |+ |φx,x′ ◦ (fx′ − φx′,x′′ ◦ fx′′)| ≤ C.

Using the estimate |fx − φx,x′′ ◦ fx′′ | ≤ C, we obtain by triangle inequality:

|(φx,x′′ − φx,x′ ◦ φx′,x′′) ◦ fx′′ | ≤ C.

The first part of the statement then follows from the surjectivity of fx′′ . Since fx′′ is a
submersion, the same argument applies to the differentials, yielding the second part.
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3.6. Local fibration gluing

Now, we need to adjust the local fibrations so as to make them compatible. The technical
device is essentially the same as in [5]. The following lemma will be widely used in this process.

L 3.14 (Local fibration adjustment I). – The setting is that of Lemma 3.12. Given
two points x and x′ in M\K with αr(x) ≤ d(x, x′) ≤ βr(x) for some real numbers
0 < α < β < 1, we assume that on B(x, γr(x)) and B(x′, γr(x′)), some fibrations fx and fx′
as in 3.11 are defined, that B(x, δr(x)) and B(x′, δr(x′)) have nonempty intersection, with
0 < δ < γ, and that a map φx′,x as in 3.12 is defined. We can then build a fibration f̃x′ on
B(x′, δr(x′)), with the same properties as fx′ , plus:

f̃x′ = φx′,x ◦ fx

on B(x, δr(x)) ∩ B(x′, δr(x′)). Moreover, this new fibration coincides with the old fx′ on
B(x, γr(x)) and wherever we already had fx′ = φx′,x ◦ fx.

Proof. – We set f̃x′(y) = λ(y)φx′,x(fx(y)) + (1 − λ(y))fx′(y) with λ(y) = θ
Ä
fx(y)
r(x)

ä
where θ : R3 −→ [0, 1] is a truncature function equal to 1 on the ball centered in 0 and with
radius δ, equal to 0 outside the ball centered in 0 and with radius γ. Using the bounds on fx,
we find

∣∣∇kλ∣∣ ≤ Ckr(x)−k, and the announced estimates can be obtained by differentiating
the equation f̃x′(y)− fx′(y) = λ(y) (φx′,x ◦ fx(y))− fx′(y)) .

L 3.15 (Local fibration adjustment II). – The setting is that of Lemma 3.13. Given
three points x,x′ and x′′ in M\K with αr(x) ≤ d(x, x′), d(x′, x′′), d(x, x′′) ≤ βr(x) for
some real numbers 0 < α < β < 1, we assume that on B(x, γr(x)), B(x′, γr(x′)) and
B(x′′, γr(x′′)), some fibrations fx, fx′ and fx′′ as in 3.11 are defined, that the intersection of
B(x, δr(x)), B(x′, δr(x′)) and B(x′′, δr(x′′)) is nonempty for some 0 < δ < γ and that maps
φx′,x, φx,x′′ and φx′,x′′ as in 3.13 are defined. We can then build a new diffeomorphism φ̃x′,x′′ ,
with the same properties as φx′,x′′ , plus:

φ̃x′,x′′ = φx′,x ◦ φx,x′′

on fx′′(B(x, δr(x)) ∩ B(x′, δr(x′)) ∩ B(x′′, δr(x′′)). Moreover, this new diffeomorphism
coincides with φx′,x′′ on B(x′′, γr(x′′)) and wherever we already had φx′,x′′ = φx′,x ◦ φx,x′′ .

Proof. – We simply set φ̃x′,x′′(v) = λ(v)φx′,x ◦ φx,x′′(v) + (1 − λ(v))φx′,x′′(v) with

λ(v) = θ
(
|v|2
r(x)2

)
where θ is the same function as in the previous proof.

T 3.16 (Global fibration). – Let (M4, g) be a complete hyperkähler manifold
such that ∫

M

|Rm|2 rdvol <∞ and ∀x ∈M, ∀ t ≥ 1, At3 ≤ volB(x, t) ≤ Bt3

with 0 < A ≤ B. Then there exists a compact set K in M such that M\K is endowed with a
smooth circle fibration π over a smooth open manifold X. Besides, there is a geometric positive
constant C such that fibers have length pinched between C−1 and C and second fundamental
form bounded by Cr−2.
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R 3. – The proof will show that for any point x in M\K, there is a diffeomorphism
ψx between a neighborhood of π(x) in X and a ball in R3 such that ψx ◦ π is a fibration
satisfying estimates as in Proposition 3.11.

Proof. – We take a maximal set of points xi, i ∈ I, such that for all indices i 6= j,
d(xi, xj) ≥ κr(xi)/8. This provides a uniformly locally finite covering of M by the balls
B(xi, κr(xi)/2). For every index i, we let fi be the local fibration given by 3.11. We will work
with the minimal saturated (for fi) sets Ωi(α) containing the ballsB(xi, αr(xi)), where α is a
parameter inferior to κ. As in [5], we divide I into packs S1, . . . , SN such that any two distinct
points xi, xj whose indices are in the same pack are far from each other:

∃ a ∈ [1, N ], {i, j} ⊂ Sa ⇒ d(xi, xj) ≥ 100κmin(r(xi), r(xj)).

In particular, Ωi(α) and Ωj(α) have empty intersection if i and j are in different packs;
in this case, if the number of the pack of i is greater than for j, one denotes by φi,j the
diffeomorphism given by 3.12 and by φj,i its inverse.

In order to improve the approximations fi ≈ φi,jfj into equalities fi = φi,jfj , we set up
an adjustment campaign in the following way. The idea consists in giving priority to packs
with small number. To do so, given an area where several fibrations are defined, we will
modify them so that they all fit with the fibration with smallest number among them. The
order of implementation is important. We will distinguish several stages, indexed by subsets
A := {a1 < · · · < ak} of [1, N ]. We implement these 2N stages by increasing order of a1,
then decreasing order of k, then increasing order of a2, then increasing order of a3, etc. To
rephrase it, we have

{a1 < · · · < ak} ≺ {b1 < · · · < bl}
if one of these exclusive conditions is realized:

– a1 < b1;
– a1 = b1 and k > l;
– ai = bi for i ≤ i0 and k = l and ai0 < bi0 .

We denote bym A the rank of A in this order and setαm := κ ·
Å

1

2

ã m

2N

.Along the campaign,

the fibration domains Ωi(α) will be shrinked: αm A will be the domain size at stage A.
At stage A := {a1 < · · · < ak}, we consider all elements I = (i1, . . . , ik) of

Sa1
× · · · × Sak : to each such element corresponds one step. At step I , we are inter-

ested in Ω I := Ωi1(αm A+1) ∩ · · · ∩ Ωik(αm A+1). One should notice that our choice of
packing ensures all the intersections Ωi1(αm A ) ∩ · · · ∩ Ωik(αm A ) treated at the same stage
are away from each other, so that the following modifications are independent (during the
stage). Essentially, the fibration fi1 will overrule its neighbor on Ω I . Given 2 ≤ p ≤ k, we
build f̃ip on Ωip(αm A+1), from fi1 and fip , as in 3.14, so as to obtain

– f̃ip = φip,i1fi1 sur Ωip(αm A+1) ∩ Ωi1(αm A+1),
– f̃ip = fip sur Ωip(αm A+1)\Ωi1(αm A ).

We also build, for 2 ≤ p < q ≤ k, φ̃ip,iq on f̃iq (Ωip(αm A+1)∩Ωiq (αm A+1)) from φip,i1φi1,iq
and φip,iq , as in 3.15, so that

– φ̃ip,iq = φip,i1φi1,iq sur f̃iq (Ωip(αm A+1) ∩ Ωiq (αm A+1) ∩ Ωi1(αm A )),
– φ̃ip,iq = φip,iq sur f̃iq (Ωip(αm A+1) ∩ Ωiq (αm A+1)\Ωi1(αm A )).
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After this, we can add that wherever it makes sense, we have for every {p, q} ⊂ [2, k]:

φ̃iq,ip f̃ip = φiq,i1φi1,ipφip,i1fi1 = φiq,i1fi1 = f̃iq .

Now forget the tildes. We have just ensured that on Ω I , for all relevant indices i, j, one has
fi = φi,jfj .

We proceed, independently, for all possible I at this stage, then we go on with the next
stage, following the chosen order.

At the moment we pass from a stage {a1 < · · · } to a stage {b1 < · · · }, with a1 6= b1, we
can notice the fibrations fi and the diffeomorphisms φi,j are definitively fixed on the sets with
number in the pack Sa1 : indeed, the device of 3.14 and 3.15 does not modify the fibrations
which are already consistent. Afterwards, on these areas, we have definitively ensured the
equalities fi = φi,jfj .

For the same reason, at the moment we pass from a stage {a1 < · · · < ak} to a stage
{a1 < · · · < bk−1}, the fibrations fi and the diffeomorphisms φi,j are definitively fixed on
the sets Ω I , where I is a k-tuple beginning with an element of Sa1

. Therefore, on these
intersections of order k, we have definitively ensured the equalities fi = φi,jfj and all that is
done afterwards on intersections of order k − 1 will not perturb it.

After this adjustment campaign, we have local fibrations fi on the sets Ωi := Ωi(κ/2) and
diffeomorphisms φi,j such that φi,j ◦fj = fi on Ωi∩Ωj . The initial estimates still hold, with
different constants.

Let us define an equivalence relation: x and y are considered equivalent if there is an
index i such that x and y belong to Ωi and fi(x) = fi(y). Denote by X the quotient
topological space and by π the corresponding projection. Maps fi induce homeomorphisms
(from their domain to their image) f̌i, which endowX with a structure of smooth 3-manifold:
for every (relevant) pair i, j, f̌if̌j

−1
= φi,j is a diffeomorphism between open sets in R3. By

construction, π is then a smooth fibration.

3.7. The circle fibration geometry

In this whole paragraph, the setting is a complete hyperkähler manifold (M4, g) satisfying
(14) and (15). We have built a circle fibration π : M\K −→ X. The vectors that are tangent
to the fibers will be called “vertical” whereas vectors orthogonal to the fibers will be called
“horizontal”. Let us average the metric g along the fibers of this fibration. Given a point x
in M\K, we can choose a unit vector field V , defined on a saturated neighborhood of x and
vertical (there are two choices of sign). Let φt be the flow of V . Denote by lx the length of
the fiber π−1(π(x)). We define a scalar product on TxM by the formula

hx :=
1

lx

∫ lx

0

φ∗t g dt.

This definition does not depend on the choice of V . We thus obtain a Riemannian metric h
onM\K and the flows φt are isometries for h. To estimate the closeness of h to g, we proceed
to a few estimations.

L 3.17. – The covariant derivatives of V can be estimated by ∇V = O(r−2) and
∀k ≥ 2, ∇kV = O(r−k).
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Proof. – Let f : Ω −→ R3 be one of the local fibrations. By construction, we have
df(V ) = 0. Differentiation yields:

(32) ∇2f(V, .) = −df(∇V ).

Since V has constant norm, one has

(33) (∇V, V ) = 0

so, with (3.11): |∇V | ≤ C
∣∣∇2f

∣∣ ≤ Cr−2. We then implement an induction, assuming the
result up to order k − 1. Differentiating k − 1 times (32), we get a formula that looks like

df(∇kV ) =
k−1∑
i=1

∇1+k−if ∗ ∇iV +
k−1∑
i=0

∇1+k−if ∗ ∇iV,

which enables us to bound the horizontal part of∇kV by∣∣∣∇kV ⊥∣∣∣ ≤ Ck k−1∑
i=1

∣∣∣∇1+k−if
∣∣∣ ∣∣∇iV ∣∣+ Ck

k−1∑
i=0

∣∣∣∇1+k−if
∣∣∣ ∣∣∇iV ∣∣ ≤ Ckr−k

(from induction assumption and (3.11)). Differentiating (33), we also get∣∣∣(∇kV, V )
∣∣∣ ≤ Ck k−1∑

i=1

∣∣∣∇k−iV ∣∣∣ ∣∣∇iV ∣∣ ≤ Ckr−k.
All in all:

∣∣∇kV ∣∣ ≤ Ckr−k.

L 3.18. – The Lie derivative of g along V satisfies LV g = O(r−2) and its derivatives
obey ∀ k ≥ 1, ∇kLV g = O(r−1−k).

Proof. – The formula LV g(X,Y ) = (∇XV, Y ) + (∇Y V,X) ensures
∣∣∇kLV g∣∣ is esti-

mated by
∣∣∇k+1V

∣∣ so we can apply Lemma 3.17.

If φt is the flow V , we are interested in the family of metrics gt := φt∗g, with Levi-Civita
connection∇t and curvature Rmt. First, a nice formula.

L 3.19. – For every vector fields X and Y ,
d

dt
∇tXY = Rmt(X,V )Y −∇t,2X,Y V.

Proof. – The connection∇t is obtained by transporting∇ thanks to the isometry φt:

(34) φt∗∇tXY = ∇φt∗Xφ
t
∗Y.

Let us differentiate with respect to t:

φt∗[V,∇tXY ] + φt∗
d

dt
∇tXY = ∇[V,φt∗X]φ

t
∗Y +∇φt∗X [V, φt∗Y ].

Thanks to (34) and the invariance of V under its flow, this simplifies into
d

dt
∇tXY = ∇t[V,X]Y +∇tX [V, Y ]− [V,∇tXY ].

It then suffices to use the symmetric connection∇ to expand the brackets and then simplify
to get the formula.

This formula gives a control on the covariant derivatives of gt (with respect to g).

L 3.20. – For every t, gt satisfies gt = g+ O(r−2) and ∀ k ∈ N∗, ∇kgt = O(r−1−k).
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Proof. – Let X be a vector field. By definition, one has d
dtgt(X,X) = (φt∗LV g)(X,X).

Integrating and using the bound on |LV g| given by Lemma 3.18, we get
g(X,X)e−Cr

−2 ≤ gt(X,X) ≤ g(X,X)eCr
−2

, hence the first estimate.
Given three vector fields X, Y , Z, we have

(∇tXgt)(Y, Z) = 0 = X · gt(Y,Z)− gt(∇tXY, Z)− gt(Y,∇tXZ),

(∇Xgt)(Y, Z) = X · gt(Y, Z)− gt(∇XY,Z)− gt(Y,∇XZ),

so, if At := ∇t−∇, we arrive at (∇Xgt)(Y, Z) = gt(A
t(X,Y ), Z) + gt(Y,A

t(X,Z)), which
we write

(35) ∇gt = gt ∗At.

Lemma 3.19 impliesAt =

∫ t

0

(Rms(., V )−∇s,2V )ds. Since the curvature is invariant under

isometries, we find

(36) Rmt = φt∗Rm

and, thanks to (34) and the invariance of V under the flow,

(37) ∇t,2V = φt∗∇2V.

This leads to
∣∣Rmt

∣∣ ≤ Cr−3,
∣∣∇t,2V ∣∣ ≤ Cr−2 and |At| ≤ Cr−2. Let us then assume (by

induction) that for some k ≥ 1:

∀ t, ∀ i ∈ [0, k−1],
∣∣∇i(gt − g)

∣∣ ≤ Cr−1−i,
∣∣∇i Rmt

∣∣ ≤ Cr−2−i,
∣∣∇i∇t,2V ∣∣ ≤ Cr−2−i.

In particular, this implies

∀ t, ∀ i ∈ [0, k − 1],
∣∣∇iAt∣∣ ≤ Cr−2−i.

Fixing t, we differentiate (35) and use the induction assumption to get

∇kgt =
k−1∑
i=0

∇k−1−igt ∗ ∇iAt = O(r−1−k).

To go on, we need to estimate
∣∣∇t,iAt∣∣, i ≤ k − 1. To do this, we write ∇t = ∇ + At

and observe that
∣∣∇t,iAt∣∣ can be controlled by a sum of a bounded number of terms like(

i−1∏
α=0

∣∣∇αAt∣∣mα)∣∣∣∇βAt∣∣∣ with natural numbers mα, β satisfying
i−1∑
α=0

(1 + α)mα + β = i.

Induction assumption implies each of these terms is O(r−(2+α)mα−2−β) = O(r−2−i), so
∇t,iAt = O(r−2−i). Then, writing ∇ = ∇t − At, we estimate

∣∣∇k Rmt
∣∣ by a sum of a

bounded number of terms like

(
k−1∏
α=0

∣∣∇t,αAt∣∣mα)∣∣∣∇t,β Rmt
∣∣∣ with natural numbers mα, β

satisfying
k−1∑
α=0

(1 + α)mα + β = k. With (36) and (34), we bound
∣∣∇t,β Rmt

∣∣ by
∣∣∇β Rm

∣∣
and thus by r−2−β . Eventually, we find

∣∣∇k Rmt
∣∣ = O(r−2−k). In the same way, we get∣∣∇k∇t,2V ∣∣ = O(r−2−k) and conclude by induction.

L 3.21. – The length l of the fibers is controlled by the estimates: dl = O(r−2) and
∀k ≥ 2, ∇kl = O(r−k). As a consequence, l goes a finite limit at infinity.
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Proof. – By construction, we have the identity φl(x)(x) = x, at every point x in M\K.
Differentiation yields dl ⊗ V + Tφl = id. Taking the scalar product with V , we obtain

dl = (g − gl)(V, .). Differentiating this leads to ∇kl =
k−1∑
i=0

∇i(g − gl) ∗ ∇k−1−iV . Now we

use (3.20), (3.17) and the bound on l:
∣∣∇kl∣∣ ≤ Cr−k. The existence of a finite limit at infinity

follows from Cauchy criterion.

We can finally control the metric h, obtained by averaging g along the fibers.

P 3.22. – The averaged metric h obeys the estimates h = g + O(r−2) and
∀k ≥ 1, ∇kh = O(r−1−k).

Proof. – The definition of h can be written h− g =
1

l

∫ l

0

(gt − g)dt, hence the first esti-

mate (cf. (3.20)). This formula differentiates into:

∇kh =
k∑
i=1

Ç
k

i

å
∇il
l
⊗∇k−i(gl − h) +

1

l

∫ l

0

∇kgtdt

and an induction (with (3.20) and (3.21)) finally yields∇kh = O(r−1−k).

Since g has cubic curvature decay, we deduce the

C 3.23. – The curvature of h has cubic decay.

Now, let us push h down into a Riemannian metric ȟ on X: for every point y in X, for
every vector w in TyX, we choose a lift x of y (π(x) = y) and we set ȟy(w,w) = hx(v, v)

where v is the horizontal lift of w in TxM ; this definition makes sense because the flow φt is
isometric for h.

P 3.24. – The manifold X is diffeomorphic to the complementary set of a ball
in R3 or R3/ {± id}. Moreover, ȟ = gR3 + O(r−τ ) for every τ < 1.

Proof. – Observe the volume of a ball of radius t in (X3, ȟ) is comparable to t3. To
estimate the curvature on the base, we use O’Neill’s formula ([3]), which asserts that if Y and
Z are orthogonal unit horizontal vector fields on M\K, then

Sectȟ(π∗Y ∧ π∗Z) = Secth(Y ∧ Z) +
3

4
h([Y, Z], V )2.

The first term decays at a cubic rate by 3.23. Moreover, Lemma 3.17 and Corollary 3.22 yield
h([Y,Z], V ) = −(∇Y h)(Z, V )−h(Z,∇Y V ) + (∇Zh)(Y, V ) +h(Y,∇ZV ) = O(r−2), hence
Sectȟ(π∗Y ∧ π∗Z) = O(r−3). This cubic curvature decay, combined with Euclidean volume
growth, enables us to apply the main theorem of [2].
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3.8. What have we proved?

We have proved the following theorem, based on 3.16, 3.21, 3.22, 3.24. Recall
dµ = rn

volB(o,r)dvolg in dimension n.

T 3.25. – Let (M4, g) be a complete hyperkähler manifold with curvature in
L2(dµ) and such that, for some positive numbers A and B

∀x ∈M, ∀ t ≥ 1, Atν ≤ volB(x, t) ≤ Btν ,

with 3 ≤ ν < 4. Then there are a compact set K in M , a ball B in R3 and a circle fibration
π : M\K −→ R3\B or (R3\B)/ {± id}. Moreover, the fibers have asymptotically constant
length and the metric g obeys g = π∗g̃+η2 + O(r−2), where η is a (local) connection one-form
and g̃ is an ALE metric of order 1−.

Let us describe the topology at infinity, namely the topology of the connected space
E = M\K, which, according to Theorem 3.25, is a circle bundle over X = R3\B or
(R3\B)/ {± id}. We can get rid of the Z2-action: just pull back the fibration π into a circle
fibration π̄ : Ē −→ X̄ between two-fold coverings of E and X. Then X̄ = R3\B has the
homotopy type of S2, so that we can classify its circle fibrations. Moreover, the homotopy
groups of Ē can be computed thanks to the long exact homotopy sequence associated to π̄.
In this way, we obtain essentially two cases, which are distinguished by the homotopy groups
at infinity (those of M\K).

If the fundamental group at infinity is finite, then a finite covering of M\K is R4\B4 and
the circle fibration is the Hopf fibration, up to a finite group action. In this case, the π2 at
infinity is trivial. This is typically the “Taub-NUT” situation.

If the fundamental group at infinity is infinite, then, up to a two-fold covering, M\K is
R3\B3 × S1 and the circle fibration comes from the trivial one. The π2 at infinity is then Z.

It is also easy to adapt the arguments above in order to obtain the following result.

T 3.26. – Let (Mn, g) be a complete manifold satisfying

∀k ∈ N,
∣∣∣∇k Rm

∣∣∣ = O(r−3−k).

Suppose there are a positive number A and a function ω : R+ −→ R+ going to zero at infinity
such that

∀x ∈M, ∀ t ≥ 1, Atn−1 ≤ volB(x, t) ≤ ω(t)tn.

Further assume there is a number c ≥ 1 such that the holonomy H of any geodesic loop based
at x and with length L ≤ r(x)/c satisfies

|H − id| ≤ cL

r(x)
.

Then there are a compact set K in M , a ball B in Rn−1, a finite subgroup G of O(n − 1)

and a circle fibration π : M\K −→ (Rn−1\B)/G. Moreover, the fibers have asymptotically
constant length and the metric g obeys

g = π∗g̃ + η2 + O(r−2),

where η is a (local) connection one-form and g̃ is an ALE metric of order 1− (1 if n ≥ 5).
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R 4. – The required estimates on the curvature are satisfied on a Ricci flat manifold
with cubic curvature decay. This allows one to englobe the Schwarzschild metrics ([28] for
instance) in this setting. Note a little topology ensures the fibration is trivial if n ≥ 5.

Appendix A

Curvature decay

In this appendix, we wish to sharpen some results from [28]: we want to obtain pointwise
bounds on the derivatives of the curvature of a Ricci flat manifold, starting from an integral
bound on the curvature tensor. To do this, we need a technical inequality.

L A.1 (Moser iteration with source term). – Let (Mn, g) be a complete noncom-
pact Riemannian manifold with nonnegative Ricci curvature and let E −→ M be a smooth
Euclidean vector bundle, endowed with a compatible connection ∇. We denote by ∆ = ∇∗∇
the Bochner Laplacian and suppose V is a continuous field of symmetric endomorphisms of E
whose negative part satisfies |V−| = O(r−2). Given a locally bounded section φ and a locally
Lipschitz section σ such that (σ,∆σ + V σ) ≤ (σ, φ), the following estimate holds for large R:

sup
A(R,2R)

|σ| ≤ C

volB(o,R)
1
2

‖σ‖L2(A(R/2,5R/2)) + CR2 ‖φ‖L∞(A(R,2R)) .

Proof. – Set u := |σ|+F , withF := R2 ‖φ‖L∞(A(R,2R)) .The caseφ = 0 is treated in [28].
Actually, in [28], the estimation is written assuming a global weighted Sobolev inequality. But
since we work at a fixed scaleR, there is no need for such a global inequality: the local Sobolev
inequality of L. Saloff-Coste [29], with controlled constant, is sufficient for our purpose; and
its validity only requires Ric ≥ 0. Therefore we assume F 6= 0.

To avoid troubles on the zero set of σ, let us consider the regularizations vε :=
»
|σ|2 + ε

and uε := vε + F . Observing the inequalities

vε∆vε ≤ (σ,∆σ) ≤ |σ| (|V−| |σ|+ |φ| |σ|) ≤ vε(|V−| |σ|+ |φ| |σ|),

we deduce ∆vε ≤ |V−| vε + |φ| and thus find

∆uε ≤ |V−|uε + |φ| ≤
Å
|V−|+

|φ|
F

ã
uε.

Our choice of F enables us to use the estimate without source term in [28]:

sup
A(R,2R)

uε ≤
C

volB(o,R)
1
m

‖uε‖Lm(A(R/2,5R/2)) .

Let ε go to zero, so as to obtain

sup
A(R,2R)

|σ| ≤ sup
A(R,2R)

u ≤ C

volB(o,R)
1
m

‖σ‖Lm(A(R/2,5R/2)) + CF,

which is what we want.

Let us use it to prove that on a Ricci flat manifold, if the curvature decays at infinity, then
the covariant derivatives of the curvature also decay.

P A.2. – Let (Mn, g) be a complete noncompact Ricci flat manifold. If a ≥ 2,
the estimate |Rm| = O(r−a) implies:

∣∣∇i Rm
∣∣ = O(r−a−i), i ∈ N.
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Proof. – Since M is Ricci flat, its curvature tensor obeys an elliptic equation
∆ Rm = Rm ∗Rm [2], which implies [30]:

(38) ∀ k ∈ N, ∆∇k Rm =
k∑
i=0

∇i Rm ∗∇k−i Rm .

Let us prove the result by induction on i. The case i = 0 is contained in the assumptions.
Suppose that the result is established for i ≤ k. Formula (38) can be written

(∆− Rm ∗)∇k+1 Rm =
k∑
i=1

∇i Rm ∗∇k+1−i Rm .

Since the right-hand side is bounded by Ck+1r
−2a−k−1, Lemma A.1 yields:

(39) sup
A(R,2R)

∣∣∣∇k+1 Rm
∣∣∣ ≤ Ck+1

volB(o,R)
1
2

∥∥∥∇k+1 Rm
∥∥∥
L2(A(R/2,5R/2))

+ Ck+1R
1−2a−k.

Let χ be a positive smooth function equal to 1 onA(R/2, 5R/2), 0 onA(R/3, 3R)c and with
gradient bounded by 10/R. Then we can write∫

A(R/2,5R/2)

∣∣∣∇k+1 Rm
∣∣∣2 ≤ ∫

A(R/3,3R)

∣∣∣∇ (χ∇k Rm
)∣∣∣2

and, after integration by parts, we find∫
A(R/2,5R/2)

∣∣∣∇k+1 Rm
∣∣∣2 ≤ ∫

A(R/3,3R)

|dχ|2
∣∣∣∇k Rm

∣∣∣2 +

∫
A(R/3,3R)

χ2(∇k Rm,∆∇k Rm).

With (38), we obtain the upper bound∫
A(R/2,5R/2)

∣∣∣∇k+1 Rm
∣∣∣2 ≤ 100

R2

∫
A(R/3,3R)

∣∣∣∇k Rm
∣∣∣2

+ Ck+1

k∑
i=0

∫
A(R/3,3R)

∣∣∣∇k Rm
∣∣∣ ∣∣∇i Rm

∣∣ ∣∣∣∇k−i Rm
∣∣∣ .

Using a ≥ 2, we estimate this by∫
A(R/2,5R/2)

∣∣∣∇k+1 Rm
∣∣∣2 ≤ Ck+1 volB(o,R)

(
R−2−2a−2k +R−3a−2k

)
≤ Ck+1 volB(o,R)R−2−2a−2k.

As a result, (39) implies

sup
A(R/2,5R/2)

∣∣∣∇k+1 Rm
∣∣∣ ≤ Ck+1

(
R−1−a−k +R1−2a−k) ≤ Ck+1R

−1−a−k,

hence
∣∣∇k+1 Rm

∣∣ ≤ Ck+1r
−a−(k+1).

This proposition, together with [28], leads to the two following results. Recall we
always distinguish a point o in our manifolds. We will use the measure µ defined by
dµ = rn

volB(o,r)dvol and assume
∫
|Rm|

n
2 dµ < ∞, which is weaker than |Rm| = O(r−2−ε)

for some positive ε.
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T A.3. – Let (Mn, g) be a complete Ricci flat manifold such that for some
numbers ν > 2 and C > 0:

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ C

Å
t

s

ãν
.

Then the integral bound
∫
M

|Rm|
n
2 dµ <∞ implies for every k in N:

∣∣∣∇k Rm
∣∣∣ = O(r−a(n,ν)−k) with a(n, ν) = max

Å
2,

(ν − 2)(n− 1)

n− 3

ã
.

C A.4. – Let (Mn, g) be a complete Ricci flat manifold, with n ≥ 4. Assume
there are positive numbers A and B such that Atn−1 ≤ volB(o, t) ≤ Btn−1 for every t ≥ 1.

Then the integral bound
∫
M

|Rm|
n
2 dµ <∞ implies for every k in N:∣∣∣∇k Rm

∣∣∣ = O(r−(n−1)−k).

Appendix B

Distance and curvature

The following lemma sums up some comparison estimates on the distance function. Up
to order two, it is quite classical. Higher order estimates do not seem to be proved in the
literature, so we include a proof.

L B.1. – Consider a complete Riemannian manifold (M, g), a point x in M and a
number a ≥ 2 such that inj(x) > ε ≥ 1 and ∀ i ∈ [0, k],

∣∣∇i Rm
∣∣ ≤ cε−a−i on the ballB(x, ε).

Then there is a constant C such that on this ball, the function ρ = d(x, .)2/2 satisfies:

– |dρ| ≤ ε;
–
∣∣∇2ρ− g

∣∣ ≤ Cε2−a;
– for 3 ≤ i ≤ k,

∣∣∇iρ∣∣ ≤ Cε4−a−i.
Proof. – The first estimate is obvious and the second follows from [4]. Let us turn to

higher order estimates. We consider the gradient N of r := d(x, .) and use the Riccati
equation for the second fundamental form S := ∇N of geodesic spheres:

∇NS = −S2 − Rm(N, .)N.

Identifying quadratic forms to symmetric endomorphisms, we can write the endomorphism
E := ∇2ρ − Id as E = dr ⊗ N + rS − Id and, setting V = grad ρ = rN , we obtain the
equation

∇V E = −E − E2 − Rm(V, .)V.

Since∇V = Id +E and∇V∇E = ∇∇V E −∇∇V E + Rm(V, .)E, it follows that

∇V∇E = −2∇E + E ∗ ∇E +∇Rm ∗V ∗ V + Rm ∗∇V ∗ V + Rm ∗V.
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Observing that for k ≥ 2, we have ∇kV = ∇k−1E, an induction yields:

∇V∇kE = − (k + 1)∇kE +
∑
i+j=k

∇iE ∗ ∇jE

+
∑

i+j+l=k

∇i Rm ∗∇jV ∗ ∇lV +
∑

i+j=k−1

∇i Rm ∗∇jV,

for every k. We then set Fk = rk+1∇kE and G = E/r, so that∇NFk = G ∗Fk +Hk, where

Hk = r−2
k−1∑
i=1

Fi ∗ Fk−i + rk

Ñ ∑
i+j+l=k

∇i Rm ∗∇j+1ρ ∗ ∇l+1ρ+
∑

i+j=k−1

∇i Rm ∗∇j+1ρ

é
.

Along a geodesic starting from x, we find ∂r |Fk| ≤ Ck |Fk| |G| + |Hk| and since the order
two estimate ensures r |G| is small, we can bound |Fk| by r sup |Hk|, up to a constant. We
will prove by induction the estimate

|Fk| ≤ Ckrk+1ε2−a−k

which will ensure
∣∣∇kE∣∣ ≤ Ckε2−a−k, hence

∣∣∇k+2ρ
∣∣ ≤ Ckε4−a−(k+2). It will conclude the

proof. Initialization (k = 0) follows from the order two estimate on ρ. Assume the estimates
up to order k − 1. It implies:

|Hk| ≤ Ckrk
(
ε4−2a−k + ε4−2a−k+2−a + ε4−2a−k) .

With a ≥ 2, we find |Hk| ≤ Ckrkε4−2a−k ≤ Ckrkε2−a−k and therefore we get the promised
estimate |Fk| ≤ Ckrk+1ε2−a−k, hence the result.

H. Kaul [22] proved a control on Christoffel’s coefficients in the exponential chart, given
bounds on Rm and ∇Rm. We need the following

P B.2. – Consider a complete Riemannian manifold (M, g), a point x in M
and a number a ≥ 2 such that |Rm| ≤ cε−a and |∇Rm| ≤ cε−a−1 on the ball B(x, ε), with
ε ≥ 1. Then there is a constant C such that, on the ball B̂(0, ε) in TxM , the connection ∇ĝ of
the metric ĝ = exp∗x g and the flat connection ∇0 are related by∣∣∣∇ĝ −∇0

∣∣∣ ≤ Cε1−a.
A better control on the distance function stems from this.

L B.3. – Consider a complete Riemannian manifold (M, g), a point x in M and a
number a ≥ 2 such that |Rm| ≤ cε−a and |∇Rm| ≤ cε−a−1 on the ball B(x, ε), with ε ≥ 1.
Then there is a constant C such that if v and w belong to B̂(0, C−1ε), endowed with ĝ, then

|(dρv)w − gx(w − v, .)| ≤ Cε3−a.

Proof. – First, choose a sufficiently largeC to ensure the convexity of the ball under con-
sideration. Observe the expression (dρv)w = −ĝw(Exp−1

w v, .), where Exp is the exponential
map of ĝ. Comparison yields

(40) |ĝw − gx| ≤ Cε−aε2 = Cε2−a.

Suppose γ parameterizes the geodesic connecting w to v in unit time. The geodesic equation
∇ĝγ̇ γ̇ = 0 can be written γ̈ +

Ä
∇ĝγ̇ −∇0

ä
γ̇ = 0. With (B.2), we obtain
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|γ̈| ≤ Cε1−aε2 = Cε3−a. Taylor’s formula γ(1) − γ(0) − γ̇(0) =
∫ 1

0
(1 − t)γ̈(t)dt then

yields
∣∣v − w − Exp−1

w v
∣∣ ≤ Cε3−a. To conclude, we write

|(dρv)w − gx(w − v, .)| =
∣∣ĝw(Exp−1

w v, .)− gx(v − w, .)
∣∣

≤
∣∣(ĝw − gx)(Exp−1

w v, .)
∣∣+
∣∣gx(Exp−1

w v, .)− gx(v − w, .)
∣∣

≤ Cε2−aε+ Cε3−a

≤ Cε3−a.
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