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GEOMETRIC THETA-LIFTING
FOR THE DUAL PAIR SO,,,, Span

BY SERGEY LYSENKO

ABSTRACT. — Let X be a smooth projective curve over an algebraically closed field of characteris-
tic > 2. Consider the dual pair H = SOz, G = Sp,,, over X with H split. Write Bung and Bung
for the stacks of G-torsors and H-torsors on X. The theta-kernel Aute, z on Bung X Bung yields
theta-lifting functors Fg : D(Bunyg) — D(Bung) and Fy : D(Bung) — D(Bung) between the
corresponding derived categories. We describe the relation of these functors with Hecke operators.

In two particular cases these functors realize the geometric Langlands functoriality for the above
pair (in the non ramified case). Namely, we show that for n=m the functor
Fe : D(Bung) — D(Bung) commutes with Hecke operators with respect to the inclusion of
the Langlands dual groups H = SO, < SO2,41 = G. For m = n + 1 we show that the functor
Fy : D(Bung) — D(Bunpg) commutes with Hecke operators with respect to the inclusion of the
Langlands dual groups G = SO2,41 — SO2n12 = H.

In other cases the relation is more complicated and involves the SLy of Arthur. As a step of the
proof, we establish the geometric theta-lifting for the dual pair GL,,, GL,. Our global results are
derived from the corresponding local ones, which provide a geometric analog of a theorem of Rallis.

RESUME. —Soit X une courbe projective lisse sur un corps algébriquement clos de caractéristique >
2. On considere la paire duale H = SOg2zm, G = Sp,, sur X ou H est déployé. Notons Bung
et Bung les champs de modules des G-torseurs et des H-torseurs sur X. Le faisceau théta Aute, g
sur Bung x Bung donne lieu aux foncteurs de théta-lifting F¢ : D(Bunyg) — D(Bung) et Fy :
D(Bung) — D(Bung) entre les catégories dérivées correspondantes. On décrit la relation entre ces
foncteurs et les opérateurs de Hecke.

Dans deux cas particuliers cela devient la fonctorialité de Langlands géométrique pour cette paire
(cas partout non ramifi¢). A savoir, on montre que pour m=m le foncteur
Fe : D(Bung) — D(Bung) commute avec les opérateurs de Hecke par rapport a Iinclusion
des groupes duaux de Langlands H = S0, < SOsn11 = G. Pour m = n + 1 on montre que le
foncteur Fz : D(Bung) — D(Bung) commute avec les opérateurs de Hecke par rapport a 'inclusion
des groupes duaux de Langlands G = SO2,41 > SO2n12 = H.

Dans d’autres cas la relation est plus complexe et fait intervenir le SLy d’Arthur. Comme une
étape de la preuve, on établit le théta-lifting géométrique pour la paire duale GL,,, GL,. Nos résultats
globaux sont déduits de résultats locaux correspondants, qui géométrisent un théoréme de Rallis.
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428 S. LYSENKO

1. Introduction

1.1. — The Howe correspondence for dual reductive pairs is known to realize the Langlands
functoriality in some particular cases (cf. [23], [1], [15]). In this paper, which is a continuation
of [16], we develop a similar geometric theory for the dual reductive pairs (Sps,,, SO,,,) and
(GL,,, GL,,). We consider only the everywhere unramified case.

Recall the classical construction of the theta-lifting operators. Let X be a smooth pro-
jective geometrically connected curve over k = F,. Let F' = k(X), A be the adéles ring
of X, O be the integer adéles. Let G, H be split connected reductive groups over F, that
form a dual pair inside some symplectic group Sp,,.. Assume that the metaplectic covering
gf)QT(A) — Sp,,.(A) splits over G(A) x H(A). Let S be the corresponding Weil represen-
tation of G(A) x H(A). A choice of a theta-functional § : S — Q, yields a morphism of
modules over the global non ramified Hecke algebras # ¢ @ # g

SGEXH(O) _, Funct((G x H)(F)\(G x H)(A)/(G x H)(0))

sending ¢ to the function (g, h) — 6((g, h)#). The space S(G*H)(?) has a distinguished non
ramified vector, its image ¢ under the above map is the classical theta-function. Viewing ¢
as a kernel of integral operators, one gets the classical theta-lifting operators

F : Funct(H(F)\H(A)/H(0)) — Funct(G(F)\G(A)/G(0))

and

Fg : Funct(G(F)\G(A)/G(9)) — Funct(H (F)\H(A)/H(9)).
For the dual pairs (Spy,,, SQy,,) and (GL,,GL,,) these operators realize the Langlands
functoriality between the corresponding automorphic representations (as we will see below,
its precise formulation involves the SLs of Arthur). We establish a geometric analog of this
phenomenon.

Recall that S = ®] . x S, is the restricted tensor product of local Weil representations of
G(F,) x H(Fy). Here F, denotes the completion of F' at z € X. The above functoriality
in the classical case is a consequence of a local result describing the space of invariants
Sf (02)xH(92) a5 2 module over the tensor product . # ¢ ®,7 i of local (non ramified) Hecke
algebras. In the geomeric setting the main step is also to prove a local analog of this and
then derive the global functoriality. The proof of this local result due to Rallis ([23]) does not
geometrise in an obvious way, as it makes essential use of functions with infinite-dimensional
support. Their geometric counterparts should be perverse sheaves, however the notion of a
perverse sheaf with infinite-dimensional support is not known. We get around this difficulty
using inductive systems of perverse sheaves rather then perverse sheaves themselves.

Let us underline the following phenomenon in the proof that we find striking. Let
G = Spy,, H = S0,,,. The Langlands dual groups are G = SQ,,, and H= SO,,,
over Q. Write Rep(G) for the category of finite-dimensional representations of G over Qy,
and similarly for H. There will be ind-schemes Yz, Y over k and fully faithful functors
fu : Rep(H) — P(Yy) and fg : Rep(G) — P(Yg) taking values in the categories of per-
verse sheaves (pure of weight zero) on Yy (resp., Yg) with the following properties. Extend
fu to a functor

fr :Rep(H x Gp,) — @iez P(Yg)[i] € D(Yg)
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as follows. If V is a representation of H and I is the standard representation of G,,, then
fa(V R (I®)= fi(V)[i] is placed in perverse cohomological degree —i. For n > m there
will be an ind-proper map 7 : Yo — Ypg such that the following diagram is 2-commutative

Rep(G) 1%  P(Y)
| Res® Lm
Rep(H X Gr) 25 @iez P(Vir)[i]

for some homomorphism & : H x G,, — G.Forn = m the restriction of k to G,, is
trivial, so m fg takes values in the category of perverse sheaves in this case. Both fg and fg
send an irreducible representation to an irreducible perverse sheaf. So, for V' € Rep(G) the
decomposition of Res™ (V') into irreducible ones can be seen via the decomposition theorem
of Beilinson, Bernstein and Deligne ([2]). Actually here = : II(K) x Grg — II(K) is the
projection, where K = k((t)), I is a finite-dimensional k-vector space, and Gr is the affine
grassmanian for G. There will also be an analog of the above result for n < m (and also for

the dual pair GL,,, GL,,).

The above phenomenon is a part of our main local results (Proposition 4 in Section 5.1,
Theorem 7 in Section 6.2). They provide a geometric analog of the local theta correspon-
dence for these dual pairs. The key technical tools in the proof are the weak geometric analogs
of the Jacquet functors (cf. Section 4.7).

1.2. — In the global setting let €2 denote the canonical line bundle on X. Let G be the
group scheme over X of automorphisms of 0 @® Q" preserving the natural symplectic
form A2(0% @ Q") — Q. Let H = SQ,,,. Write Bung for the stack of H-torsors on X,
similarly for G. Using the construction from [19], we introduce a geometric analog Aute g
of the above function ¢g, this is an object of the derived category of ¢-adic sheaves on
Bung x Bung. It yields the theta-lifting functors

Fg : D(Bungy) — D(Bung)

and
Fy : D(Bung) — D(Bungy)

between the corresponding derived categories. Our main global results for the pair (G, H) are
Theorems 3 and 4 describing the relation between the theta-lifting functors and the Hecke
functors on Bung and Bung. They agree with the conjectures of Adams ([1]). One of the
advantages of the geometric setting compared to the classical one is that the SLy of Arthur
appears naturally.

An essential difficulty in the proof was the fact that the complex Autg, z is not perverse
(it has infinitely many perverse cohomologies), it is not even a direct sum of its perverse
cohomologies (cf. Section 8.3).

We also establish the global theta-lifting for the dual pair (GL,,, GL,,) (cf. Theorem 5).
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430 S. LYSENKO

1.3. — Let us briefly discuss how the paper is organized. Our main results are collected in
Section 2. In Section 3 we remind some constructions at the level of functions, which we have
in mind for geometrization.

In Section 4 we develop a geometric theory for the following classical objects. Let
K = F,((t)) and ® = F,[[t]]. Given a reductive group G over F, and a finite dimensional
representation M, the space of invariants in the Schwarz space J(M (K))%(? is a module
over the non ramified Hecke algebra J¢ ¢. We introduce the geometric analogs of the Fourier
transform on this space and (some weak analogs) of the Jacquet functors. A way to relate
this with the global case is proposed in Section 4.6.

In Section 5 we develop the local theta correspondence for the dual pair (GL,,, GL,,,). The
key ingredients here are decomposition theorem from [2], the dimension estimates from [21]
and hyperbolic localization results from [4].

In Section 6 we develop the local theta correspondence for the dual pair (Sps,,, SOs,,)-
In addition to the above tools, we use the classical result (Proposition 2) in the proof of our
Proposition 7.

In Section 7 we derive the global theta-lifting results for the dual pair (GL,,, GL,,).

In Section 8 we prove our main global results (Theorems 3 and 4) about theta-lifting
for the dual pair (Spy,,SQs,,,). The relation between the local theory and the theta-
kernel Autg i comes from the results of [16]. In that paper we have introduced a scheme
La(M(F;)) of discrete lagrangian lattices in a symplectic Tate space M (F;) and a cer-
tain po-gerb %d(M (Fy)) over it. The complex Autg, m on Bung i comes from the stack
z’d(M (Fy)) simply as the inverse image. The key observation is that it is much easier to prove
the Hecke property of Autg i on %d(M (Fy)), because over the latter stack it is perverse.
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2. Main results

2.1. Notation

Let & be an algebraically closed field of characteristic p > 2 (except in Section 3, where
k = TF,). All the schemes (or stacks) we consider are defined over k.

Let X be a smooth projective connected curve. Set F' = k(X). For a closed point z € X
write F}, for the completion of F at z, let ©, C F, be the ring of integers. Let D, = Spec 0,
denote the disc around x. Write Q for the canonical line bundle on X.

Fix a prime ¢ # p. For a k-stack S locally of finite type write D(S) for the category
introduced in ([17], Remark 3.21) and denoted by D, (S, Q;) in oc. cit. It should be thought

of as the unbounded derived category of constructible Q,-sheaves on S. For * = +, —, b we
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have the full triangulated subcategory D*(S) C D(S) denoted D (S, Q) in loc. cit. Write
D*(S); € D*(S) for the full subcategory of objects which are extensions by zero from some
open substack of finite type. Write D~(S) C D(S) for the full subcategory of complexes
K € D(S) such that for any open substack U C S of finite type we have K |p€ D™ (U).
Write D : D°(S) — D®(S) for the Verdier duality functor.

Write P(S) < D7(S) for the full subcategory of perverse sheaves. Set DP(S) =
®iez P(S)[i] € D(S). For K, K' € P(S),14,j € Z we define

Homp(s)(K7 K/), for 4 :]

Hompps) (K], K'[j]) = {0 for i #j

Write P*(S) < P(S) for the full subcategory of semi-simple perverse sheaves. Let
DP*(S) < DP(S) be the full subcategory of objects of the form ®;cy K;[i] with
K; € P*(S) for all i.

Fix a nontrivial character ¢ : F, — Q} and denote by £, the corresponding Artin-
Shreier sheaf on A'. Since we are working over an algebraically closed field, we sys-
tematically ignore Tate twists (except in Sections 6.3-6.4). For a morphism of stacks
f Y — Z we denote by dim. rel(f) the function of a connected component C of Y given by
dim C' — dim C’, where C’ is the connected component of Z containing f(C).

IfV — Sand V* — S are dual rank r vector bundles over a stack S, we normalize the
Fourier transform Foury, : D(V) — DY(V*) by Foury(K) = (py-)1(£*Ly @ ptK)[r],
where py, py~ are the projections, and £ : V xg V* — Al is the pairing.

Write Buny, for the stack of rank & vector bundles on X . For k = 1 we also write Pic X for
the Picard stack Bun; of X. We have a line bundle &, on Bunj, with fibre det R['(X, V) at
V € Buny. View it as a Z/27-graded placed in degree x (V) mod 2. Our conventions about
Z/2Z-grading are those of ([19], 3.1).

For a sheaf of groups G on a scheme S, &, % denotes the trivial G-torsor on S. For a
representation V of G and a G-torsor ¢ on S we write Vg, =V x G F & for the induced
vector bundle on S.

If H is an algebraic group of finite type and pure dimension, assume given a scheme
Z with an action of H and an H-torsor ¥ g over a scheme Y. Then to J € D™ (Z/H),
K € D™ (Y) one associates their twisted external product K X J € D(7 i x* Z) defined by
KX =p*K ® ¢*J[dim H], where Y & T x* Z L Z/H are the projections. Here Z/H
is the stack quotient.

2.1.1. Hecke operators. — For a connected reductive group G over k, let # ¢ be the
Hecke stack classifying (z, ¥, 9&,@, where Y, 9”G are G-torsors on X, z € X and
B:9¢ |x—2 = Tg |x_e is an isomorphism. We have a diagram of projections

supp xhg

he
X x Bung Ha -5 Bung,

where h (resp., he , supp) sends the above collection to ¥ ¢ (resp., & 'C;, x). Write . ¢ for
the fibre of # ¢ over x € X.

Let T ¢ B C G be a maximal torus and Borel subgroup; we write A¢ (resp., Ag) for
the coweights (resp., weights) lattice of G. Let AJGr (resp., AJGF) denote the set of dominant
coweights (resp., dominant weights) of G. Write jg (resp., pg) for the half sum of the positive
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432 S. LYSENKO

roots (resp., coroots) of G, wy for the longest element of the Weyl group of G. For A € fxg
we write 9 for the corresponding Weyl G-module.

For z € X we write Grg , for the affine Grassmanian G(F,)/G(8,) (cf. [5], Section 3.2
for a detailed discussion). It can be seen as an ind-scheme classifying a G-torsor ¥ on
X together with a trivialization 8 : ¢ |x—s ’—79’% |x_z over X — z. For \ € AJCS let
@gm C Grg s be the closed subscheme classifying (& ¢, ) for which Vo (—(A, Nz) C Vo,

for every G-module V whose weights are < . The unique dense open G (0,)-orbit in @gm
is denoted by Gr’c\;yx.

Let ﬁg denote the intersection cohomology sheaf of @g Write G for the Langlands
dual group to G over Q. Write Sphy; for the category of G(f),)-equivariant perverse sheaves
on Grg ;. By ([21]), this is a tensor category, and there is a canonical equivalence of tensor
categories Loc : Rep(G) = Sphg, where Rep(G) is the category of G-representations over
Q¢. Under this equivalence ﬁg corresponds to the irreducible representation of G with
h.w. A.

Write Bung , for the stack classifying ¢ € Bung together with a trivialization
Fe= 97% | p, . Following ([5], Section 3.2.4), write id',id" for the isomorphisms

+#¢= Bung, x G(0) Grg,»
such that the projection to the first factor corresponds to hg,hg respectively. Let

—A . . . A .
+H g C o be the closed substack that identifies with Bung , x%(%=)Gry, , via id’.

To € Sphg, K € D™(Bung) one attaches their twisted external products (K X )*
and (KX J)" on . g, they are normalized to be perverse for K, J perverse (cf. [5], Sec-
tion 0.4.4). The Hecke functors

+Hg , :Hg : Sphe x D™ (Bung) — D~ (Bung)
are given by
He (4, K) = (hg (xR K)" and ,Hg (4, K) = (hg WA KK)".

We have denoted by * : Sph; = Sph the covariant equivalence of categories induced by
the map G(F,) — G(F;), g — g~'. Write also * : Rep(G) = Rep(G) for the corresponding
functor (in view of Loc), it sends an irreducible G-module with h.w. X to the irreducible
G-module with h.w. —wg()) (cf. [7], Theorem 5.2.6).

The Hecke functors preserve the full subcategory D™ (Bung); € D~(Bung). By ([6],
Proposition 5.3.9), we have canonically

Hg (+d, K) = Hg (¢, K).

Besides, the functors K — ,Hg (J, K) and K — ,Hg (D(), K) are mutually (both left
and right) adjoint.

Letting x move around X, one similarly defines Hecke functors

Hg ,Hg : Sphg x D™(S x Bung) — D™ (X x S x Bung),

where S is a scheme. The Hecke functors are compatible with the tensor structure on Sph,
and commute with Verdier duality for locally bounded objects (cf. loc. cit). Sometimes we

write Rep(G) instead of Sph, in the definition of Hecke functors in view of Loc.
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2.1.2. — We introduce the category
D Sphg := @rez Sphg[r] € D(Grg).

It is equipped with a tensor structure, associativity and commutativity constraints so that the
following holds. There is a canonical equivalence of tensor categories
Loc® : Rep(G x G,,) = D Sphg, such that G,, acts on Sph[r] by the character z — 2. So,
the grading by cohomological degrees in D Sph, corresponds to grading by the characters
of G,, in Rep(G x G,,). In cohomological degree zero the equivalence Loc® specializes to
Loc.

The action of Sph; on D(Bung) extends to an action of D Sph,,. Namely, we still denote
by
Hg, :Hg : DSphg x D¥(Bung) — D™ (Bung)

the functors given by ,Hg (J[r], K) = Hg (4, K)[r] and ,Hg (J[r], K) = Hg (J, K)[r]
for J € Sph and K € D(Bung).

We still denote by * : DSph; — D Sphg, the functor given by *(J[i]) = (xd)[¢] for
J € Sph. Write Locx for the tensor category of local systems on X. Set

DLocx = @;ez Locx[i] € D(X).

We also equip it with a tensor structure so that a choice of z € X yields an equivalence of
tensor categories Rep(m1 (X, z) x G,,) = D Locx. The cohomological grading in D Locx
corresponds to grading by the characters of G,,.

For the standard definition of a Hecke eigen-sheaf we refer the reader to ([10], Section 2.7).
Since we need to take into account the maximal torus of SLs of Arthur, we modify this
standard definition as follows.

DEerINITION 1. — Given a tensor functor E : Sph, — D Locx, an E-Hecke eigensheaf
is a complex K € D~ (Bung) equipped with an isomorphism

Hg (4, K) = E(J) K K[1]

functorial in J € Sph, and satisfying the compatibility conditions (as in loc. cit.). Note that
once x € X is chosen, a datum of E becomes equivalent to a datum of a homomorphism
o : m(X,z) x G,, — G.In other words, we are given a homomorphism G,, — G of
algebraic groups over Qy, and a continuous homomorphism 7 (X, z) — Zx(Gyy,), where
Z#(G,y) is the centralizer of G, in G.

Giveno : (X, z) X G, — G as above we write 0% : m (X, z) x G, — G x G,, for the
homomorphism, whose first component is o, and the second component 71 (X, z) x G, — G,
is the projection.

EXAMPLE 1. — The constant perverse sheaf Q, [dim Bung] on Bung is a o-Hecke eigen-
sheaf for the homomorphism ¢ : 71 (X, z) x G,, — G given by 2p : G,, — G and trivial on
1 (X, .'IZ) .
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2.2. Theta-sheaf

Let G, denote the sheaf of automorphisms of 0’ @ Q" preserving the natural symplectic
form A2(0% @& Q") — Q. The stack Bung, of G,-torsors on X classifies M € Buny,
equipped with a symplectic form A2M — Q.

Recall the following objects introduced in [19]. Write &g, for the line bundle on Bung,
with fibre det RI'(X, M) at M. We view it as a Z/2Z-graded line bundle purely of degree
zero. Denote by B—;l;lcr — Bung, the us-gerbe of square roots of @g, . The theta-sheaf
Aut = Aut, @ Aut, is a perverse sheaf on ]:%TfnGT (cf. [19] for details).

2.3. Dual pair SO,,,,, Sp,,,

231. - Letnom > 1,G = G, and Gg = €Gg,. Let H = S0O,,, be the split
orthogonal group of rank m over k. The stack Bungy of H-torsors on X classifies:
V € Bung,,, a nondegenerate symmetric form Sym2 V — ®Ox, and a compatible trivi-
alization v : det V= Ox. Let @y be the (Z/2Z-graded) line bundle on Bung with fibre
detRT'(X, V) at V.

Write Bung g = Bung x Bung. Let

7 : Bung g — Bung,,,,,
be the map sending (M, V) to M ® V with the induced symplectic form A2(M @ V) — Q.
The following is proved in ([20], Proposition 2).
LEMMA 1. — There is a canonical Z/2Z-graded isomorphism of line bundles on Bung, g
(1) ™ g, = Gy @ 5" @ det RI(X, O) 4™,
Let 7 : Bungg — ]§\u/ngznm be the map sending (A\2M — Q,Sym?*V — 0) to
(AN2(M ®V) — Q, B), where

_ detRI(X, V)" ® det RT(X, M)™
- det RI(X, ©)2nm ’

and B is identified with det RT(X, M ® V) via (1).

B

DEFINITION 2. — Set Autg g = 7* Aut[dim.rel(7)] € D™ (Bung g). As in ([20], Sec-
tion 3.2) for the diagram of projections

Bung & Bung, g LN Bung
define Fg : D™ (Bung), — D™ (Bung) and F; : D™ (Bung); — D~ (Bung) by
Fo(K) = pi(Aute, g ®q9"K)[— dim Bung]
Fy(H) = qi(Autg, g ®p* K)[— dim Bung].

Since p is not representable, a priori F may send a complex from D®(Bung ), to a complex,
which is unbounded even over some open substack of finite type. We do not know if this
really happens (similarly for Fyy).

The Langlands dual groups are G = SQ,,, 41 and H= S0,,, over Q. For convenience
of the reader, we first formulate our main result in particular cases that yield Langlands
functoriality.
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THEOREM 1. — 1) Case n = m. There is an inclusion H — G such that there exists an
isomorphism
2) Hg (V, Fo(K)) = (id BFg) (Hi (Res§ (V), K)

over X x Bung functorial in V. € Rep(G) and K € D™ (Bung),. Here we denoted by
idXFg : D™ (X x Bung), — D™(X x Bung) the corresponding theta-lifting functor.
2) Case m = n + 1. There is an inclusion G — H such that there exists an isomorphism

(3) H; (V, Fu(K)) S (id RFy ) (Hg (ResZ (V), K))

over X x Bung functorial in V- € Rep(H) and K € D™ (Bung),. Here we denoted by
idXFy : D™ (X x Bung) — D~(X x Bung) the corresponding theta-lifting functor.

We will derive Theorem 1 from the following Hecke property of Autg #.

THEOREM 2. — 1) Case n = m. There is an inclusion H — G such that there exists an
isomorphism

) Hg (V, Aute, i) = Hy (ResS (V), Aute, i)
in D= (X x Bung, g) functorial in V € Rep(G).

2) Case m = n + 1. There is an inclusion G — H such that there exists an isomorphism
(5) Hy; (V, Autg, ) S Hg (Res? (V), Autg, )
in D= (X x Bung, g) functorial in V € Rep(H).
2.3.2. — In the case m < n define the map  : H x G,, — G as follows.

Set Wy = QF, write Wy = W, @ W, where W, (resp., W5) is the subspace generated by

the first m (resp., last n — m) base vectors. Equip Wy & W @ Q, with the symmetric form
given by the matrix

0 E,0
E, 00|,
0 01

where E,, € GL,(Qy) is the unity. Realize G as SO(Wy @ W @ Q). Equip the subspace
WieW; C Woe Wi ®Q, with the induced symmetric form, and realize H as SO(W, &W5).
This fixes the inclusion 4, : H < G. The centralizer of H in G contains the group
O(W, & W3 & Q). Let Tgrw,) be the maximal torus of diagonal matrices in GL(WW5).
We have Hom(G,,, TGL(WQ)) = Z™ ™ canonically, and we let o, = (2,4,...,2n — 2m) €
Hom (G, Tor(w,))- View oy as amap G, — G. Finally, set & = (ix, ax) : H x Gy, — G.

Another way to think of a is to say that Wy & W5 @ Q, admits an irreducible represen-
tation of the SLy of Arthur, and « is its restriction to the standard maximal torus

Gm < SLy 5 SO(Wy @ Wy @ Q).

As predicted by Adams ([1]), the representation o corresponds to the principal unipotent
orbit in SO(W2 & W5 @ Qy), so a,, = 2pso(w.ew; @Q,) for a suitable choice of positive roots
of SO(Wa & Wy @ Q).
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Write gRes”™ : Sph; — D Sphy; for the geometric restriction functor corresponding to «.
By this we mean the restriction functor Rep(G) — Rep(H x G, ) composed with the Satake
equivalences.

In the case m > n define k : G x G,, — H as follows. Set in this case W, = @Z‘, let W,
(resp., Ws) be the subspace of W, generated by the first n (resp., last m — n) base vectors.
Equip Wy @ W with the symmetric form given by the matrix

0 E,
E, 0 )’

where E,, € GL,,(Qy) is the unity. Realize H as SO(W, ® W¢).

Write {e;} for the standard base of Wy, and {e}} for the dual base in W;. Write
Wy = Wi & Wy, where W5 (resp., Wy) is spanned by e,+1 (resp., by eni2,...,€m).
Let W C W3 @ W3 be any nondegenerate one-dimensional subspace. Equip Wy @ Wy & W
with the induced symmetric form and set G= SO(W, & Wi & W). This fixes the inclusion
Ty G — H.

Let W+ denote the orthogonal complement of W in Wy @& W3. The centralizer of G in
H contains O(W ). Realize GL(W,) as the Levi subgroup of SO(W) using the standard
inclusion W, @ W; < W+, Let TGL(W4) be the maximal torus of diagonal matrices in
GL(W4) Set

ap = (-2,—4,...,2—2m+2n) € Z™ "' = Hom(G,,, TGL(W4))-

View a as amap G,,, — H, set & = (ip, ) : G x G,y — H.
Another way to think of o, is to say that W+ can be thought of as an irreducible
representation of the SLy of Arthur, and « is the restriction to the standard maximal torus

G < SLy < SO(WL).

As predicted by Adams ([1]), the representation o corresponds to the principal unipotent
orbit in SO(W), s0 a,x = 2pgoyw-+) for a suitable choice of positive roots of SO(W*). As
above, the geometric restriction functor corresponding to « is denoted by gRes" : Sphy; — D Sphe..

Here is our main global result.

THEOREM 3. — 1) Case m < n. There exists an isomorphism
(6) Hg (4, Fo(K)) = (idXFe) (Hy (gRes™(d), K))

in D™(X x Bung) functorial in J € Sphg and K € D™ (Bung),. Here we denoted by
idXFg : D™ (X x Bung), — D™(X x Bung) the corresponding theta-lifting functor.

2) Case m > n. There exists an isomorphism
@) Hy (d, Fu(K)) = (IdRFy ) (Hg (gRes™ (xd), K))

in D*(X x Bung) functorial in J € Sphy and K € D™ (Bung),. Here we denoted by
idXFg : D™ (X x Bung) — D™(X x Bung) the corresponding theta-lifting functor.

We will derive Theorem 3 from the following Hecke property of Autg #.
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THEOREM 4. — 1) Case m < n. There exists an isomorphism
®) H (4, Autg,i) = H (+ gRes™ (), Aut,x)
in D™(X x Bung, y) functorial in § € Sphg,.

2) Case m > n. There exists an isomorphism
©) Hy (4, Autg 1) = Hg (gRes" (+d), Aute, i)
inD™(X x Bung g) functorial in J € Sphy.

2.3.3. — Thereisan automorphism oy : H = H inducing the functor * : Rep(H) = Rep(H)
defined in Section 2.1.2. For m > n write & = opg o k. Note also that the functor

* : Rep(G) = Rep(G) is isomorphic to the identity functor. From Theorem 3 one derives
the following.

COROLLARY 1. — 1) For m < n let K € D™ (Bung), be a o-Hecke eigensheaf for some
o:m(X,z) x G,, — H. Let T be the composition
m1(X,z) X Gy L HxG, & G,
where o¢® is as in Definition 1. Then Fg(K) is equipped with a structure of a T-Hecke
eigensheaf.
2) For m > n let K € D™ (Bung), be a o-Hecke eigensheaf for some o : (X, z) x G, — G.
Let T be the composition
m (X, z) X Gy AN G x G, LN H,

where o¢* is as in Definition 1. Then Fg(K) is equipped with a structure of a T-Hecke
engeinsheaf.

2.4. Dual pair GL,,, GL,,

Let n,m > 0. Recall that Bun,, denotes the stack of rank n vector bundles on X. Our
convention is that GLy = {1} and Buny = Speck.

Let W,.. denote the stack classifying L € Bun,, U € Bun,, and a section
s: BOx — L ®U. We have a diagram

Bun,, i W m LN Bun,,,
where h,, (resp., hy) sends (L, U, s) to U (resp., to L). Let (]/l/;,m be the stack classifying
L € Bun,,U € Bun,, and a section s’ : L @ U — Q. We have a diagram
Bun, LS ‘M/:Lm B, Bun,,,
where h! (resp., h.) sends (L, U, s") to U (resp., to L).
DEFINITION 3. — The theta-lifting functors F,, ,,,, F}, ,, : D™ (Bun,); — D~ (Bun,,) are
given by
Frm(K) = (hp)1hy K[dim Bun,, +an,m] and F,  (K) = (h;,)i(h;,)* K[dim Bun,, —a, m].

Here a,,, is a function of a connected component of Bun, x Bun,, given by
an,m = X(L®U) for L € Bun,,,U € Bun,,. By restriction under h,, x h,, (resp., under
hl, X hl,), we View a,, », in the above formulas as a function on W,, ,,, (resp., on ‘W:l’m).
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Since hy, and hy, are not representable, a priori F}, ,, and Fy, ,, may send a bounded
complex to an unbounded one. The following result can be thought of as a functional
equation for the theta-lifting functors.

LEMMA 2. — There is a canonical isomorphism of functors F), . = Fy, m.

Proof. — Write ¢, ¢’ for the projections from W, ,, and from W’mm to Bun,, X Bun,,. As
in ([5], Lemma 7.3.6) one shows that ¢1Qq[asn,m] = ¢Q¢[—an,m] canonically. The assertion
follows. O

For the rest of Section 2.5 assume m > n and set G = GL(Lg) and H = GL(Uy) for
Uy = k™, Ly = k™. Write Uy = Uy & U,, where U; (resp., Us) is the subspace generated
by the first n (resp., last m — n) base vectors. Let M = GL(U;) x GL(Uz) C H be the
corresponding Levi factor.

Define « : G x G,, — H as the composition

. id x2 . - . .
G X Gy ——2SM), G s GL(U) = M — H.
Write gRes” : Sphy; — D Sphy; for the corresponding geometric restriction functor.

The analog of Theorem 3 for the dual pair (G, H) is as follows.

THEOREM 5. — We assume m > n. There exists an isomorphism
(10 Hy (J, Froom(K)) = ([dXE, ) (Hg (gRes" (), K))

in D™(X x Bun,,) functorial in € Sphy and K € D™ (Bun,).. Here we denoted by
idXF, ,, : D™(X x Bun,); — D™(X x Buny,) the corresponding theta-lifting functor.

If n = m or m = n+ 1 then the restriction of x to G,,, is trivial, so Theorem 5 in this case
says that F,, ,, realizes the (non ramified) geometric Langlands functoriality with respect to
aninclusion G < H. For example, for n = m one may show the following. For an irreducible
rank n local system E on X write Autg for the automorphic sheaf on Bun,, corresponding
to E (cf. [7]). Then F,, ,,(Autg) is isomorphic to Aut g~ tensored by some constant complex.

Write oo Wp,m for the stack classifying z € X, L € Bun,,U € Bun,, and a section
s : Ox — L ® U(oox), which is allowed to have an arbitrary pole at z. This is an ind-
algebraic stack. For a closed point z € X let ; oo Wi m C 0o Wa m be the closed stack given

by fixing z.

In Section 7 we will define Hecke functors
(11) Hi, oHg : Sphy X DP(4 0o Wam) — D (200 Wam)
(12) zﬂga mHg : Sth X Db(m,oo (Wn,m) g Db(x,oo (Wn,m)

and their family versions acting on Db(OO W,m)- Set
(13) g = (@g)rwn)m [dim Bun,, + dim Bun,, +a, m],

where a,, ,,, is a function of a connected component of W, ,, defined above. View 4 as a
complex on Wy, ,, extended by zero to ; oo W, m. Write also o/ for SXQe[1] over Wi, m x X
extended by zero to oo Wy, m. We will derive Theorem 5 from the following “Hecke property’
of J.
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THEOREM 6. — The two functors Sphy; — D° (oo Wpn.n) given by
I Hy (T,0d) and T — Hg (gRes™(T), x0d)

are isomorphic.

3. Classical setting and motivations

In Section 3 we assume k = F,,.

3.1. Weil representation of GL,, x GL,,

Let Uy (resp., Lg) be a k-vector space of dimension m (resp., n). For Section 3.1 set G =
GL(L()) and H = GL(U()) Let HO = UO ® LO and IT = Ho(@)

Let z € X be a closed point. Recall that the Weil representation of G(F,) x H(F,) can be
realized in the Schwarz space J(II(F)) of locally constant compactly supported Q,-valued
functions on II(Fy). The action of G(F};) x H (Fy) on this space comes from its natural action
on II(F,).

Write  ,,(G) for the Hecke algebra of the pair (G(F,), G(8,.)), and similarly for ¢, (H).
Recall that % ,(G) identifies canonically with the Grothendieck group K (Rep(G)) of the
category Rep(G) of G-representations over Q.

The space of invariants J(II(F,))¢(Y=)*H(02) js naturally a module over
H(G) ® J,(H). Let o € J(II(F)) be the characteristic function of II(#). The fol-
lowing result is well known (cf. [22], [23]), in Section 5 we prove its geometric version.

LEMMA 3. — Assume m > n. The map H ,(G) — J(I(F))(E*H)(O2) sending h to hey is
an isomorphism of H ,(G)-modules. There is a homomorphism k : H ,(H) — H ,(G) such
that the % ,(H)-action on J(T1(F,))¢0=)xH(O=) factors through k.

For n = m the homomorphism x comes from the functor Rep(H) — Rep(G) of
restriction with respect to an isomorphism G = H. For m > n we will see that x comes
from the functor Rep(H) — Rep(G x G,,)= DSphg of restriction with respect to a

homomorphism G x G,, — H. For m > n + 1 the restriction of this homomorphism to
G,,, 1s nontrivial.

3.2. Weil representation of SO,,,, x Sp,,,

3.2.1. — In this subsection we introduce some objects on the level of functions whose
geometric analogs are used in the proof of Theorem 3. Keep the notation of Section 2.3. Let
Uy = O and Vy = Uy @ Ug; we equip V, with the symmetric form Sym? V, — Ox given by
the pairing between Uy and U}, so Uy and Uy are isotropic subbundles in V5. Think of Vj as
the standard representation of H.

Let P(H) C H be the parabolic subgroup preserving Uy, let U(H) C P(H) be its
unipotent radical, so U(H) = A? Uy canonically.

Let Ly = 0% and My = Lo ® L} ® Q. We equip M, the symplectic form A2 M, — Q given
by the pairing Lo with L§ ® Q. So, Ly and L§ ® €2 are lagrangian subbundles in M. Recall
that G is the group scheme over X of automorphisms of M, preserving the symplectic form.
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Let P(G) C G be the parabolic subgroup preserving Lg, write U(G) C P(G) for its
unipotent radical. We have U(G) = Q' ® Sym? L, canonically.

Set Moy = Vo ® My, it is equipped with a symplectic form, which is the tensor product of
forms on Vj and Mj.

Set F = k(X). Let A be the adéles ring of F, & C A be the entire adeles. Let
x : QA)/Q(F) — Q; denote the character

X(w) =1 <Z tTh(2)/k Reswm> .

zeX

Let Hs = MU, & Q2 be the Heisenberg group over X constructed out of the symplectic bundle
My. The product in Hs is given by

1
(m1,w1)(ma,w2) = (M1 + ma,w1 + ws + §<m1,m2)).

For the generalities on the metaplectic extension gf)(/‘l/lo) of Sp(M) and its Weil representa-
tion we refer the reader to [19]. The natural map G(A) x H(A) — Sp(Mo)(A) lifts naturally
to a homomorphism G(A) x H(A) — Sp(Jiy)(A). We use two Schrodinger models of the
corresponding Weil representation of G(A) x H(A).
Set £y = Vo ® Ly C Vo ® Mpy; this is a Lagrangian subbundle in . Let
Xz Lo(A) ® Q(A) - Q;

denote the character xz(u,w) = x(w). Let Jy, , denote the induced representation of
(Zo(A) ®Q(A), xz) to Hs(A). By definition, f, ,, is the space of functions f : Hs(A) — Q,
satisfying:

— f(ah) = xp(a)f(h) fora € Lo(A) ® Q(A), h € Hs(A);

— there is an open subgroup U C My(A) such that f(h(u,0)) = f(h)foru € U,

h € Hs(A);

— f is of compact support modulo £o(A) & Q(A).

For a free A-module (or free F,-module) R of finite type denote by J(R) the Schwarz
space of locally constant compactly supported Q,-valued functions on R. We have an
isomorphism o, , = J(Vo ® Ly ® Q(A)) sending f to ¢ given by ¢(v) = f(v,0),
veVo®L{®QA).

The theta-functional

Oz : J(Vo ® Lg @ Q(A)) — Q
is given by

Or(@)= Y.  ¢(v) for ¢ €J(Vo®Li® QL))

vEVO®LE®Q(F)
Set Uy = Uy ® My; this is a Lagrangian subbundle in . Let
X+ Uo(A) © Q(A) — Q;

be the character x¢(u,w) = x(w). Let J, , denote the induced representation of
(Us(A) & QA),xq) to Hs(A). As above, we identify it with the Schwarz space
J(Us @ Mo(A)).
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The theta-functional O, : J(Us ® Mo(A)) — Q is given by
Oul@)= D>, o(t) for ¢ € J(US®Mo(A)).

teUg @ Mo (F)

For alocally free & x-module ¥ of finite type write x (%) for the Euler characteristic of .
Set € = ¢X(Uo®Lo) Let us construct a diagram of H(A) x G(A)-representations

HUs © Mo(8)) 2 Funct((H x G)(F)\(H x G)(4))
(14) T¢ /ety
J(Vo ® Lj ® Q(A)),
where H(A) x G(A) acts on the space of functions Funct((H x G)(F)\(H x G)(A)) by right

translations. The map 6y, sends ¢ to 0, 4 given by 8y, 4(h,g) = O¢((h,g)¢). The map 0,
sends ¢ to Oy , given by

02,6(h,9) = ©2((h, 9)9).
For ¢ € J(Vo ® L @ Q(A)) let (¢ € J(Us ® My(A)) be given by

(1) o= [ Mleb)élat bia

Hereforb € Uj ® Mo (A) we write b = by +bg with by € Uf®Lo(A) and by € UfQLERNQ(A),
and da is the Haar measure on Uy ® L§ ® 2(A) normalized by requiring that the volume of
Up®LE®0Q(0) is one. It is known that ¢ is an isomorphism of G(A) x H (A)-modules (cf. [22]).

Let ¢g 9 (resp., ¢o,¢) be the characteristic function of Uj ® My(0) (resp., of
Vo ® L @ Q(0)). An easy calculation shows that (¢ » = ¢g, 4.

LEMMA 4. — The diagram (14) commutes.

Proof. — We have @f(¢0,f) _ qdimHO(X,vo®Lg®Q) and @f/z(d)o,w) _ qdimHO(X,UJ(X)MO).
Since
dim H(X,U§ ® My) = x(U§ ® L) + dim HY(X,V, ® L ® Q),

we get ©g, 0 { = eO. Since ( is an isomorphism of G(A) x H(A)-modules, our assertion
follows. U

Write 7 (H ) for the Hecke algebra of the pair (H(0), H(A)), and similarly for G. Passing
to the (G x H)(®)-invariants, one gets from (14) the commutative diagram

J(Us @ Mo(A)HXEO) 2% Punct(Bung, g (k))
(16) T¢ Yy

(Vo ® L ® Q(A)) H*DO)

of #(H) ® #(G)-modules. The notation Bung g is that of Section 2.3.1.

Let ¢ € Funct(Bung, #(k)) be the function trace of Frobenius of Autg g. Then 04,¢¢ 4
equals ¢y up to a multiple.

Forz € X let ¢y ¢, € J(US ® Mo(F,)) be the characteristic function of Uj ® My(6,),
let ¢o. 7, € J(Vo @ L§ ® Q(F,)) be the characteristic function of Vo ® Lj ® Q(0,).
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Denote by % ,(G) the Hecke algebra of the pair (G(0,), G(F;)), and similarly for H.
Recall the decomposition as a restricted tensor product

H(G)= %;(ﬂz(G).

Similarly, we have
JUs ® Mo(A))= & (Ug ® Mo(Fz))-

In view of this isomorphism J(Ug ® My(A)) is generated as a Qp-vector space by functions
of the form ®, ¢, with ¢, € J(Us ® My(Fy)), where ¢, = ¢, 9, for all but finite number
ofx € X.

In particular, we have a canonical diagram

J(Us @ Mo(F,))H>*O0) s f(Us @ Mo(A))H*AO)

T ¢a T¢
B(Vo ® Li @ QF,))H*D(02) s J(Vy @ Li @ QA))H*DO),

where ¢ is given by (15) with Uy ® L§ ® Q(A) replaced by Uy ® L ® Q(Fy).
Set
Weilgs, 11 (k) = {(f1, f2) | fr € J(Vo © L ® Q(F,)) X0,
fo € JUG @ Mo(Fy))H*D =) such that (4 (f1) = fo}

The Hecke property of ¢g (a classical analog of Theorem 4) is as follows.

PROPOSITION 1. — 1) Assume m < n. There is a homomorphism k : H (G) — H,(H)
such that for h € J¢(G) we have

«Hg (h; do) = Hy (k(R), o)

2) Assume m > n. There is a homomorphism & : H (H) — I (G) such that for
h € 9 ,(H) we have

zHE (h7 ¢0) = EHE(K(h)a ¢0)
The above discussion reduces the proof of Proposition 1 to the following local result.

PROPOSITION 2. — 1) Assume m < n. There is a homomorphism k : H (G) — H ,(H)
such that for h € # . (G) we have

oHg (h, do,0,0) = Co (2 Hp (k(h), do,2,2))-
Moreover, Weil ;11 (k) is a free module of rank one over J¢ ,(H) generated by ¢ ¢ ;.

2) Assume m > n. There is a homomorphism k : H,(H) — H,(G) such that for
h € #,(H) we have

Cm (mHg(ha ¢O,f,m)) = zHg (K'(h)y ¢0,7l,m)'

Moreover, Weil ;1 (k) is a free module of rank one over ¥ ,(G) generated by ¢g 4 ;.
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To the author’s best knowledge, there are three different proofs of Proposition 2 available
in the literature. First part of both statements 1) and 2) is proved by Rallis ([23]) by some
explicit calculation based on the following description of the Jacquet module. By ([14],
Lemma 5.1) we have an isomorphism of GL(Lg)(F,) x H(F,)-representations

(17) d(Vo ® Ly @ UF2))u(c)(r.) = H(Cr(Vo ® Ly @ Q(Fy))).

Here Cr(Vo @ LEQQ(F,)) C Vo LE®Q(F;) is the subset of maps v : Lo(Fy) — Vo @Q(Fy)
such that s (v) = 0, where sy(v) denotes the composition

Sym? v

s¢(v) : Sym® Lo(F,) ——— Sym® (Vo ® Q(F,)) — Q*(F,).

A different proof due to Howe is found in [22], where the space Wi g is described com-
pletely (a revisited version is given in [12]). One more proof is given by Kudla in [15].
Namely, in [14] it was shown that the Howe correspondence is compatible with the parabolic
induction, this allows one to describe explicitely the image of a principal series representa-
tion under the Howe correspondence (cf. [15], Proposition 3.2, p. 96), hence, to derive the
functoriality ([15], Theorem on p. 105).

3.2.2. — In Section 6 we prove Theorem 7, which is a geometric analogue of Proposition 2.
The main difficulty is that the existing proofs of Proposition 2 do not geometrize in an
obvious way. Our approach, though inspired by [23], is somewhat different.

One more feature is that classical proofs of Proposition 2 do not reveal a relation with the
SLo of Arthur, though it is believed to be relevant here (cf. the conjectures of Adams in [1]).
In our approach at least the maximal torus of SLs of Arthur appears naturally. In Section 8
we derive Theorem 4 from Theorem 7.

4. Geometric model of the Schwarz space and Hecke functors

4.1. —Set © = k[[t]] ¢ F = k((t)), write D* = SpecF C D = Spec 0. Let Q be the
completed module of relative differentials of ©) over k.

For a free ©-module M of finite rank we introduce the categories P(M (F')) C D(M (F'))
as follows. For N,r > 0 set y .M = t~N M /t" M. Given positive integers Ny > Ny, 71 > 73
we have a cartesian diagram

Nz,hM < N1,T1M
(18) Ip lp
Nz,’I‘QM fi) N1,’I"2M7
where i is the natural closed immersion, and p is the projection.

By ([9], Lemma 4.8), the functor D(w,,, M) — D(n,, M) given by K — p*K[dim. rel(p)]
is fully faithful and exact for the perverse t-structures, and similarly for the functor i,. These
functors yield a diagram of full triangulated subcategories

D(Nz,TlM) — D(Nl,T1 M)

(19) 1 1
D(NZJ"QM) = D(N177'2M)'
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We let P(M (F)) (resp., D(M(F))) be the inductive 2-limit of P(y M) (resp., of D(nM))
asr, N go to infinity. The category P(M (F")) is a geometric analog of the Schwarz space of
locally constant functions with compact support on M (F).

Set yM =t~ M viewed as a k-scheme (not of finite type).

4.2.1. — Let G be a connected reductive group over k, assume that M = M, ®; ©), where
M is a given finite-dimensional representation of G.

For N + r > 0 the group G(0) acts on y,M via its finite-dimensional quotient
G(O/tN*T0). For 1y > N + r > 0 the kernel of G(0/t"0) — G(O/tNT70) is a
contractible unipotent group. So, the projection between the stack quotients

q: GO/t O)\n, M — GO/ O\ N, M
yields an (exact for the perverse t-structures) equivalence of the equivariant derived cate-
gories

Depjev+roy (N M) — Dgioser 0y (v M).
Denote by Dg(g)(n,-M) the equivariant derived category D¢ (g/im g)(n,-M) for any
ry >N +r.

The stack quotient of (18) by G(8/tN1+71 ) yields a diagram

De()(No,rs M) — Dg(p)(ny,r M)
(20) T T

DG(Q) (N2,T2M) — DG(@) (Nl,T‘2M)ﬂ
where each arrow is a fully faithful (and exact for the perverse t-structures) functor.
Define Dg(gy (M (F')) as the inductive 2-limit of D¢ (g (n,-M) as N, go to infinity. Write
Dlé(@) (M(F)) for the inductive 2-limit of DI’G(@) (vrM) as N,r go to infinity.

Since G(O/t"*+"0) is connected, the category Pg(p) (v, M) of G(O/tN+"0)-equivariant
perverse sheaves on y M is a full subcategory of P(y,-M). The category Pg(g)(M(F)) is
defined along the same lines. A similar construction has been used in ([13]).

Since the Verdier duality is compatible with the transition functors in (20) and (19), we
have the Verdier duality self-functors D on D¢ gy (M (F)) and on D(M (F')), they preserve
perversity.

42.2. — Write Grg for the affine Grassmanian G(F)/G(0) of G. Let us define the equi-
variant derived category D¢ (g) (M (F) x Grg).
For 51,89 > 0 let
51.5:G(F)={9 € G(F) | t*"M Cc gM C t~2M},

it is stable by left and right multiplication by G(#), and , 5, Grg = (s,,5,G(F))/G(H)
is closed in Grg. For s§ > s1, sh > so we have a closed embedding s, 5, Grg — st.s, Gra,
and the union of all 4, 5, Grg is Grg. The map g +— ¢! yields an isomorphism
152G (F) S 4,0, G(F),

Assume for simplicity that My is a faithful G-module, then the action of G(0) on , 5, Grg
factors through an action of G(0)/t51+52),

For N,r,s1,s2 > 0and s > max{N +r, s+ s>} we have the equivariant derived category

DG(@/tS)(N,TM X 51,5, GTG),
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where the action of G(0/t%) on y M X s, s, Grg is diagonal. For s’ > s > max{N +r,51 + s2}
we have a canonical equivalence (exact for the perverse t-structures)
Doy (N M X 51,5, Gra) = Dggpeey (v M X 5,5, GIG).

Define Dg(g)(v,rM X s, s, Grg) as the category Dg(g/sy(NrM X s, s, Grg) for any s
as above. As in Section 4.2.1, define Dg(p)(M(F) x Grg) as the inductive 2-limit of
Dg(p) (nrM X 5, s, Grg). The subcategory of perverse sheaves

Pgo)(M(F) x Grg) C Dg(g)(M(F) x Grg)
is defined similarly.

4.3.1. — Let Sph denote the category of spherical perverse sheaves on Grg. Recall the
canonical equivalence of tensor categories Loc : Rep(G) = Sphg (cf. [21]).

Let us define an action of the tensor category Sph on Dlé 0 (M (F)) by Hecke operators.
Consider the map
(21) a:M(F)x G(F)=M(F) x G(F)

sending (m, g) to (g~ 'm, g). Let (a,b) € G(0) x G(P) act on the source sending (m, g) to
(am, agb). Let it also act on the target sending (m’, g’) to (b=*m/, ag’b). The above map is
equivariant for these actions, so yields a morphism of stacks

qact : G(O)\(M(F) x Grg) — (M(F)/G(9)) x (G(O)\ Grg),
where the action of G(8) on M (F) x Grg is the diagonal one.

The connected components of Grg are indexed by 71 (G). For 8 € 71 (G) the component
Gr?, is the one containing Grp, forany A € A, whose image in 1 (G) equals 8. For 0 € 71(G)
set s, s, Grf = Gr&, Nsy,s5 Gra.

In the rest of Section 4.3.1 we construct an inverse image functor
(22) ¢act™(-,+) : Dgypy (M (F)) x D¢y (Grg) — D) (M(F) x Grg)
satisfying the following properties.

Al) For K € Dg(g)( (F),J € DG(@)(Grg) one has canonically
(23) D(yact™ (K, Y)) = qact™(D(K),D(Y)).
A2) If both K and & are perverse then , act* (K, &) is perverse.

For non negative integers N, r, 51, so, with 7 > s1 and s > max{s; + sz, N + r} we have
a diagram

act

Ny M x5 6, G(F) — Ntsi,r—s: M
| ac | an
N Mo & NeM x o, 4, Grg 2N, GO/ ) \Npsy s, M
l l /" acty..

G(O/t*)\n, M & GO/ (v, M X 5, 5, GIg) =2 G(O/t")\(s1,5.Gra).
Here act sends (m, g) to g~!m, the map qg sends (m, g) to (m, gG(0)), and pr, pr, denote

the projections. All the vertical arrows are the stack quotient maps for the action of a
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corresponding group. One checks that act descends to a map act, between the corresponding
quotients.

For s > max{s; + s2, N + r} the group G(0/¢°0) acts diagonally on y .M X 4, 5, Grg,
and act,, is equivariant with respect to this action. Consider the functors

temp b

D¢ (o0 (Nts1,r—s: M) X D00 (51,52 G16) = D0y (N M X 51, G15)
| |
Dbg(@)(N-ﬁ—sl,r—slM) X DbG(?))(Sl,Sz Grg) Dbg(@)(N,rM X 51,5, GTG)
sending (K, ) to

(24) act, ((K) ® pry I[sdim G + s; dim My — ¢],

where ¢ equals to (6, fi) over ,, ., Gr%. Here fi € A, denotes the character det M.

For ry > ro and s > max{s; + s2, N + r1} the functors temp are compatible with the
transition functors for the diagram

act

GO/EN\ (N M X 5,5, Grg) —= G(O/t5)\Ntsym—s:. M
1 1
GO/EN(NraM X o1 0y C1@) 22255 G(O/15)\ N 4a1ra—sy M.
So, they yield a functor

N,s1,s, t€mp : Dlé(@)(N"FSlM) X Dl&(@)(a,szGrG) - Dl&(@)(NM Xs1,55 GTG).

For N1 > N, and s > max{s; + s2, N1 + r} we have a diagram, where the vertical maps
are closed immersions

acty, s

GO/, r M X 5,5, Gra) —— G(O/°)\Ny 41 r—ss M
T T

acty, s

GO/t (o e M X 5, s, Grg) —= G(O/")\Nots1,0—s, M.

This diagram is not cartesian in general, we come around this as follows. If K € DbG 0) (M),
VS Dg(@)(sthGrG) then for any N; > N + s the image of (K, &) under the composition

Nyp,s1,s9 t€mMp
IR A IRELEN

Dl&(@)(NM) X Dl&(@)(m,@GrG) C Dlé;(@)(NﬁslM) X DY) (51,5, Crc)
D% ) (i M X 5.5, Gr) C DGy (M (F) X 4, 4, Gra)

does not depend on N, so we get a functor
o1, temp : DG o) (M(F)) x D) (s1,5,Gra) = Dy (M(F) X5, 5, Grer).
For s} > s1, 85, > s2 we have the functors of extension by zero
D% gy (s1,5:G1a) = D) (54,5, Crc)-
They are compatible with g, 5, temp. This yields the desired functor (22). The properties Al,

A2 follow easily from the construction.
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4.3.2. — For nonnegative integers s, s2, N, and s > max{N +r, s1 + s5 } for the projection
pr: G(O/°)\(Nn+M X5, s, Grg) = G(O/° N\ M
the corresponding functors pr, : Dg(@)(N,TM Xsy,85 GIg) — DZ(@)(N,TM) are compatible
with the transition functors, so yield a functor pr, : Dg(o)(M(F) x Grg) — DZ’G(@) (M(F)).
Finally, we define the Hecke functor
(25) HG (7,7) : D) (M(F)) — D) (M (F))
by Hg (7, K) = pri(qact™(K,9)) for & € Sphy and K € D%(@)(M(F)). From (23) one

gets that the functors (25) commute with the Verdier duality, namely
D(Hg (Y,K)) = Hg (DY, DK).
They are also compatible with the tensor structure on Sph, (as in [5], Section 3.2.4). For
Y € Sphgand K € DZ’G(@)(M(F)) set H7 (9, K) = Hg (7, K). Then the functors
K Hg(7,K) and K — Hg (D(7),K)

are mutually (both left and right) adjoint.
For a G-dominant coweight A we set H)(-) = Hg (G, -).

REMARK 1. — Call K € Pgp)(rM) smooth if it comes from a G(®)-equivariant local
system on g M for some r. Let us make the above definition explicit in this case.

Let us above f€ ]\g denote the character det My, so the virtual dimension
dim(M/gM) = (0, 1) for gG(0) € Grl. Let 7 € Sphg be the extension by zero from
s1,5 Grg. For r large enough, let g .M X, 5, Grg be the scheme of pairs (m, gG(#)) with
gG(0) € 5,5, Grg and m € t~BgM/t" M. Set

51,59 GreG = 5.5, Grg N Gr% .
Then M X5, ., Gr% is a locally trivial fibration over ,, ., Gr% with fibre an affine space of
dimension (R + r) dim My — (6, 1). We get a diagram

acty

R+52,TM & R,rM;(sl,SQ Grg — G(@/tR+T781)\(R,r—slM)a

where pr sends (m, gG(0)) to m. Let K X T denote the perverse sheaf acty K ® pry & [dim]
on g ,MXg, s, Grg; here dim is the unique integer for which this complex is perverse. Then
Hg (7, K) = pr (K X 7). We see once again that indeed the shift in (24) must depend on fi.

4.4. — Let I denote the constant sheaf Q; on oM, this is an object of Pgg)(M(F)). For
K = I, the above definition of Hy (K) simplifies as follows.

Assume that all the weights of M are less than or equal to a G-dominant weight A. Then
for a dominant coweight A of G we have @2\; C r,n Grg and Hg(IO) € DZ&(Q)(N,TM) with
r= (XA and N = (—wo(N), A).

Let M i@g be the scheme classifying pairs ¢gG(0) € @g, m e gM. Let
Tpro Mi@’c\; — N M be the map sending (m, gG(9)) tom € y M. Write O,TMiﬁg for
the scheme classifying gG(#0) € @2\;, m € gM/t" M. The map m,,, gives rise to a proper
map

(26) o MXGry — y, M
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sending (m, gG(0)) to m. By Remark 1, Hg(Io) identifies with m(Q X ﬁz\;)[dim 0rM].

4.5. — The group of automorphisms of the k-algebra @ is naturally the group of k-points
of a (reduced) affine group scheme Aut® & over k. The group scheme Aut® @ acts nat-
urally on M(F), G(F), G(0) and Grg. We write § : Aut’ ) x M(F) — M(F) and
6 : Aut® © x G(F) — G(F) for the corresponding action maps, and G(F) x Aut® @ for the
corresponding semi-direct product with operation

(91»01)(92,02) = (915(01792)30102), Ci € Aut® 0, gi € G(F)

Then G(F) x Aut® @ acts on M(F) via the map (G(F) x Aut® §)) x M(F) — M(F)
sending ((g, ¢), m) to gd(c,m). For r > 0 we similarly have a semi-direct product G(8/t") x
Aut(9/t") and a surjective homomorphism G(8) x Aut(0) — G(0/t") x Aut(@/t"), whose
kernel is pro-unipotent.

Let us define the equivariant derived category D¢ (gyxauto (M (F)). As in 4.2, for
r1 > N 4+ r > 0 the projection between the stack quotients
q: (G(O/t™) x Aut(O/t™)\N. M — (G(O/NFT) x Aut(O/tN "))\ N M
yields an (exact for the perverse t-structures) equivalence of the equivariant derived cate-
gories
Da(oyev+rysaut(o/ev+ry (N M) = Daoserysausoyery (v, M).

Denote by D¢ (g)xaute o(n,~M) the equivariant derived category Dg(p/ir1)xaus(o/em1) (N, M)
foranyr; > N +r.

The stack quotient of (18) by G(0/tN1+71) x Aut(€/tN1+71) yields a diagram

Da(pysauto 9(Nars M) = Da(pysaute o(ny,r M)
27 T T

De(oyxaut® 9(Nara M) = Doy sauto o(Ny,m M),
where each arrow is a fully faithful (and exact for the perverse t-structures) functor. Define
D¢ (0)xauto (M (F)) as the inductive 2-limit of D¢ (g auto o(v,-M) as N, go to infinity.
Similarly, one defines the category of perverse sheaves

Pa(oynaute o(M(F)) C Dgipysaute p(M(F)).

Asin 4.3, one defines a natural action of Sph; on D’&(@) wauto p(M (F')). For our purposes
note that the map (26) is Aut® O-equivariant, so that all the perverse cohomologies of Hé (Io)
are objects of P (p)waute o(M (F)).

4.6. — If X is a smooth projective connected curve and z € X then one can consider the
following global version of the category DI’G(@) (M(F)).

Let , oo Wea be a stack classifying a G-torsor F¢ on X together with a section
Ox = Mg, (cox). The stack , o, W is ind-algebraic. We have a diagram

hi hy
x,00 WG — z,00 (M/G XBung xﬂG — z,00 (WGv
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where we used hg to define the fibre product, the map hj, (resp., hy,)) sends
(Fa, T, B,0x > Mg, (cox)) to (Fa,s) (tesp., to (T, 8') with s = s 0 ). As in
Sections 2.1.1 and 4.3, one defines the Hecke functors

HE(7 ),HE(, ) : Sth X Db(z,mWG) i Db(z,oo(WG)~
Let z <N Wa C 2,00 W be the closed substack given by requiring that Ox > Mg (Nz)
is regular.

Forr > 1let D,, = Spec®,/t., where ), is the completed local ring at z € X, and
t. € O, is a local parameter. Pick a trivialization ), = ©. For N,r > 0 it yields a map

NPy : z,SN(WG - G(@/tN+T)\N,rM

sending (Y¢, Ox 5 Mg,(Nz)) to Yq|py,,.. equipped with the induced
G(O/tNTT)-equivariant map Y |py,,.— ~,»M. We get a functor Dg(()/tN+r)(N7TM) —
D’(s,<n W) given by

K n,p},/K[a+ dim Bung +N dim My — dim G(0/t" ")\ n,- M];

here a is a function of a connected component of Bung sending & ¢ to x(Mg,, ). The shift in
the above formula should be thought of as ‘the corrected relative dimension’ of n ,pqy, over
a suitable open substack of , <y W it is indeed the relative dimension. These functors are
compatible with the transition functors in (20), thus we get a well defined functor

glob, : Dbc(@)(M(F)) - Db(z,oo We),

here glob stands for ‘globalization’. One checks that it commutes with the functors Hg; , H .
Along the same lines, one defines a functor DI&(O) wauto (M (F)) — D’(4,00 We) that does
not depend on a choice of a trivialization 8, = 0.

Write o, W for the stack classifying z € X, a G-torsor ¢ on X, and a section
s: Ox — Mg, (cox). As above, one defines the Hecke functors

HE(? ')’Hg('v ) : Sth X Db(ooWG) - Db(mWG)-

Let <y W C o W be the closed substack given by the condition that s : Ox — Mg, (Nz)
is regular. Along the same lines one gets a map

<N Wa — (G(O/tVH) 3 Aut(O/tN 7)) \n - M,
the corresponding functors

D (0/ev 7y waut(yev+r) (N M) = DY (<y W)

are compatible with the transition functors in (27). The resulting functor

globe, : D& gy xauo(g) (M (F)) = D°( We)

commutes with the action of Hg; , H.
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4.7. Weak analogues of Jacquet functors

4.7.1. — Let P C G be a parabolic subgroup, U C P its unipotent radical and L = P/U the
Levi quotient. In classical setting, an important tool is the Jacquet module J(M (F))y () of
coinvariants with respect to U(F'). We do not know how to geometrize the whole Jacquet
module. However, let V; C My be a P-invariant subspace, on which U acts trivially. Set
V = V5(0). We have a surjective map of L(F)-representations J(M (F'))yry — J(V(F))
given by restriction under V(F) — M(F). We rather geometrize the composition map
JM(F)) = J(M(F))ur) — SV (F)).

Asin 4.2, we have the derived categories D(V (F)), Dy, gy (V(F)). We are going to define
natural functors

(28) Jp,Jp : Do) (M(F)) — D) (V(F)),

they will preserve boundedness of a complex. To do so, for N + r > 0 consider the natural
closed embedding in, : N,V <— n,M.Recall that 5,V = t~NV/t"V. Consider the
diagram of stack quotients

PO\ (V) 25 PO\ (v M) B GO\ (v, M)
(29) lq
L(O/" )\ (v V),
where p comes from the inclusion P C G and q is the natural quotient map. Using (29), define
functors
Jp, Jp 1 Daopen+ry(NeM) = Dirggyensry (V)
by
g* o Jp[dim.rel(q)] = (in,)*p*[dim. rel(p) — ra)
q* o Jp[dim.rel(q)] = (in,)'p*[dim. rel(p) + ra].
Since ¢*[dim.rel(q)] : Drgjev+ry(nrV) — Dpegjv+ry(n,V) is an equivalence (exact
for the perverse t-structures), the functors J3,J, are well defined. Here we have set
a = dim My — dim V.
Further, J}, J} are compatible with the transition functors in (20), so they give rise to

the desired functors (28). We underline that J3, J5» do not depend on a choice of a section
of P — P/U. Note also that D o J5 = J} o D naturally.

4.7.2. — Due to its importance, recall the definition of the geometric restriction functor
gResf : Sphy — Sphj from ([5], Proposition 4.3.3). The diagram L «— P — G yields
by functoriality the diagram

GI"L <t—P Grp ti) Grg.
The connected components of Grg are indexed by 71 (G). For 8 € 7;(G) the component
Gr% is the one containing Grg for any A € A, whose image in 71 (G) equals 6.

For 6 € m;(L) let Gr% be the preimage of Grf under tp. The following strengthened ver-
sion of ([5], Proposition 4.3.3) is derived from ([21], Theorem 3.5) (cf. also [3], Sections 5.3.27-
5.3.30).
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PROPOSITION 3. — For any J € Sphe and 0 € w1 (L) the complex
(tP)i(d |are, )0, 2(p — pr)]
lies in Sph . The functor gRes$ : Sphy — Sph; given by
0 (o Lo (0.2~ po)]

Ty
has a natural structure of a tensor functor. The following diagram is 2-commutative

G
gRes}

Sphg Sphy,

T Loc T Loc
~ Res$ >
Rep(G) —= Rep(L).

For the purposes of Lemma 5 below we renormalize gResg as follows. We let
gRes? : Sph; — D Sph;, be given by gRes% (7) = (tp)1t5 7.
COROLLARY 2. — The diagram is 2-commutative

eSG
Sphg e p Sph;,

T Loc T Loc®
Rep(G) Res"™, Rep(L x G,,),
where ko : L x G,,, — G is the map whose first component is a Levi factor L i, G, and the
second is o '
G 2025, Z(E) — L5 6.
Here Z(L) is the center of L. O
Write i = det My and o = det Vj, view them as cocharacters of the center Z (Z) of L.
Let k : L x G,, — G be the homomorphism, whose first component is i;, : L — G,

and the second component is 2(p — 1) + i — v. Let gRes"™ : Sph; — D Sph; denote
the corresponding geometric restriction functor.

LEMMA 5. — For 9 € Sphg, K € Dg(@)(M(F)) there is a filtration on JEHg (9, K) in
the derived category such that the corresponding graded complex identifies with

H (gRes™(7), Jp(K)).
For P = G and a G-subrepresentation Vo C My we have canonically
JpHg (7, K) = Hy (gRes™ (), Jp(K)).
Proof. — For s1,s5 > 0 let
s1,0: P(F) ={p € P(F) | t** M C pM C t~** M},

it is stable by left and right multiplication by P(#), and 4, s, Grp := (5,5, P(F))/P(0) is
closed in Grp. We have a natural map 5, 5, Grp — 5, s, Grg, and at the level of reduced
schemes the connected components of 4, ;, Grp form a stratification of 4, 5, Grg. Set

o0 Grp = {2 € LIO\L(F) | £V CaV C 72V},
The map tp : Grp — Gry, yields a map still denoted by tp : ¢, o, Grp — 4, 5, Gryr.
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Let N,r >0, assume that & is the extension by zero from ,, ,, Grg, and
K € Dg(p)(N+s,,r—s; M). For the diagram

pr acty

N,TM — N,rM X S$1,82 GI'G — G(@/tN+T)\N+sl,r—slM
we calculate the direct image
pr (act; K ® pry &)[dim]

with respect to the stratification of g, 5, Grg by the connected components of , 5, Grp. We
have the diagram

act

NV X g s, P(F) — Ntsi,r—s1V
lar lau
NV & N,V X g, Grp o PO/NT N\ Ngsy,r—s.V
Liny | in,rxid L ingsgrms
N M oM %, ., Grp o PO/ENT)\ Ny, s M
! Lp

acty

NrM X g s, Grg — G(@/tN+T)\N+S17T—S1M’
where act sends (m, p) to p~tm, the map gp sends (m, p) to (m,pP(0)), and qy is the stack
quotient under the action of P(8/tN*"). Moreover, act, p fits into the diagram

actq p

P(@/tN+T)\N+31,T—51V
| id xtp laq

L, O/ \ Ny, Ve

Our assertion follows (the shifts can be checked using Remark 1). O

N,’I"V X 81,82 GI‘P

N,rv X 1,82 GI‘L

Let 6y : G,, x My — M, be an action, whose fixed points set is V. Assume that §y
contracts My onto V. We will apply Lemma 5 under the following form.

COROLLARY 3. — Let K € Pgg)(M(F)) be Gy, -equivariant for a éyr-action on M (F).
Assume that Hg (I, K) is also G,-equivariant for a éy-action on M(F'). Assume that K
admits a k'-structure for some finite subfield k' C k and, as such, is pure of weight zero. Then
J5(K) is also pure of weight zero, and there is an isomorphism

JpHg (7, K) = HL (gRes™(7), Jp(K))
in D) (V(F)).

Proof. — Under our assumptions, J3 is the hyperbolic localization functor with respect
to the §y-action on M (F'), the assertion follows from ([4], Theorem 2) and Lemma 5. [

REMARK 2. — In our applications §y will be of the form 6y (z) = v(z)z™", z € Gy,
where v : G,, — L is a cocharacter of the center of L acting on Vi by z — z" for some
r € L. If K € Pg(g)(M(F)) is Gy,-equivariant under homotheties on M (F) then both K
and Hg; (¥, K) are G,,,-equivariant for a §yy-action on M (F).
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4.8. Fourier transform

Recall the notation Q from Section 4.1. Let us define the Fourier transform functors
Foury, : D*(M(F)) — D*(M* ® Q(F)) and

(30) Foury, : DY) (M (F)) — D gy (M* ® Q(F)).

We actually will use the following a bit more general functor. Given a decomposition
My = M; & M, into direct sum of vector spaces, one defines the Fourier transform
(1) Foury, : D*(M(F)) — D*(M; @ Q(F) ® My(F))

as follows. For N > 0 we have a natural evaluation map ev : y yM7 X v n(M] ® Q) — Al
sending (m, m*) to Res(m, m1). It gives rise to the usual Fourier transform functor

Foury, : D°(x v M) = DP(n. v M; @ Q& n.nMy).

For N/ > N these functors are compatible with the transition functors D?(y y M) —
Db( NN M) in (19), so give rise to the desired functor (31). From the usual properties of
the Fourier transform we learn that (31) is an equivalence of triangulated categories, which
preserves the perversity.

Assume in addition that My = M; & M> is a decomposition of M, into a direct sum of
G-modules. Then similarly the usual Fourier transform functors

Four¢ : DI&(@)(NVNM) = Dlé(z))(NJva ROD N,NM2)7
being compatible with the transition functors in (19), give rise to the functor
(32) Foury, : D¢y ) (M(F)) = Dy (M7 © Q(F) & Ma(F)),

which satisfies the same formal properties.

REMARK 3. — The following diagram commutes

Four
DbG(@)(M(F)) — Dbc(@)(Mf ® Q(F) & Ma(F))
\ Foury, l Four,,

D (p)(M* @ Q(F)),
that is, the composition of two partial Fourier transforms identifies with the complete Fourier
transform.
LEMMA 6. — The functor (30) commutes with Hecke operators. Namely, there is an
isomorphism functorial in € Sphg and K € Dg(@)(M(F))
Foury HE (7, K) = Hg (7, Foury, (K))

Proof. — Step 1. Pick s1,s2 > 0 so that & is the extension by zero from 4, ,, Grg. Pick

r,71, N, N7 large enough compared to s; and K. In particular, we assume

(33) r—N;i>s81+sy and 71— N > 51+ 89
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Let s > max{s; + s2, N + r, N; + r1}. Consider the diagram
G(@/ts)\N‘i’Sl,T*SlM

T actq,s
G(Q/ts)\N,TM & G(@/ts)\(N,rM X 51,82 Grg)
Ta i
GO/, (M* @ Q) Xy 0 M) &= GO/t (v, 0 (M* @ Q) X0 M X 4, 4, Grg)

1B
GO/t )\ (w1, (M ® ),
where the square is cartesian, all the quotients are taken in the stack sense, the action of
G(0/t%) on all the involved schemes is diagonal. We have denoted by « and 3 the projections.
By our assumptions,
He (7, K) = pr (7 ® acty ; K)[dim]
for a suitable shift. Assuming K € Dlé(@) ( niM ) with N;, r; sufficiently large with respect
to N ,T, we get
Four, (Hg (7, K)) = fi(ev* Ly @ a"Hg (I, K))[dim. rel(«)]
Here ev : G(O/t*)\(ny,r (M* @ Q) xn, M) — Al is the evaluation map, it is correctly

defined because r — N7 and r; — N are nonnegative.
Consider the diagram

G(@/ts)\N+sl,r—slM

T
G(Q/ts)\(]\hﬂ‘l (M* & Q) XNKF M x 81,82 GI"G) &} G(Q/tﬁ)\(Nﬁ-Sz,ﬁ—Sz (M* ® Q) XN+517T_51 M)
! g
GO (s (MF®Q) X 51 0y Gr) 2y G(O/1)\ s 3y s (M* B Q)

Lo’
GO/t \ N, (M7 2 Q)

where o/, 3, pr’ are the projections. The square in the above diagram is not cartesian, write
b: y - G(@/ts)\(N1+82,T1—82 (M* ® Q) X N+s1,r—s1 M)
for the map obtained from act;, ; by the base change #'. Then
(34) G(Q/ts)\(Nl,Tl(M*®Q) XN{I‘MX 1,82 GI‘G) - y
is naturally a closed substack. Let
ev: G(@/ts)\(Nl-l-sz,Tl—Sz (M* ® Q) X N+s1,r—s1 M) — Al
be the evaluation map, it is correctly defined due to (33). By our assumptions,
Foury (K) = B{(ev* £y ® o K)[dim. rel(a)]

and
Hg (7, Foury (K)) = pri(J ® (acty, ;)" Foury (K))[dim].
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Since N, r are large enough compared to N, 7, it follows that b*(o/)* K is the extension by
zero under (34). The desired result follows now from the base change theorem. O

Note that for the functor (30) we have Foury, (Iy) = I, canonically.

4.9. Extensions of actions

Let G be a connected reductive group, P and P~ two opposite parabolic subgroups in G
with common Levi subgroup L = PN P~.

LEMMA 7. — Let Y be a scheme (of finite type over k) with a G-action. Then we have a
diagram of equivariant categories of perverse sheaves

PP(Y) C PL(Y)
U U
Pe(Y) C Pp-(Y),

where all the functors are fully faithful embeddings. Moreover, Pp(Y) N Pp-(Y) = Pg(Y),
that is, if an object K € Pr,(Y) lies in both Pp(Y') and Pp- (Y) then K € Pg(Y).

Proof. — The natural maps between the stack quotients Y/L — Y/P — Y/G are smooth
of fixed relative dimension, surjective, and have connected fibres. By ([9], Lemma 4.8), they
induce the corresponding fully faithful embeddings of categories.

Now assume K is an object of Pp(Y) N Pp-(Y). Let W be the image of the product map
m : P x P~ — G. We have a diagram

PxP xy > vy
| mxid lid
WxYy 2%y,
where act’ sends (p1,p1,y) to pipey. The map m : P x P~ — W is smooth and surjective
with connected fibres. So, by loc. cit., the equivariance isomorphism (act’')*K = Q, X K
descends to an isomoprhism act}, K = Q, X K over W x Y.

Further, the product map my : W x W — G is smooth and surjective with con-
nected fibres. Indeed, any fibre of myy is isomorphic to zPP~ N P~ P for some z € G.
The latter intersection is connected, because it is open in G. So, for the action map
actwxw : W x W x Y — Y the equivariance isomorphism actjy .,y K = Q K K
descends to the desired isomorphism act* K = Q, X K over G x Y. O

Now assume My is a finite-dimensional representation of G, set M = My ®y, 6. Let U be
the unipotent radical of P. The following result will be used in Section 6.2.

LemMA 8. — 1) We have a diagram of fully faithful embeddings of categories

Ppg)(M(F)) C P (M(F))
U U
Pgp)(M(F)) C Pp- gy (M(F)).
The intersection Pp(g)(M(F)) N Pp— gy (M(F)) inside Py gy(M(F) equals Pg(p)(M(F)).
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ii) We have fully faithful embeddings P g)(M(F)) C P(M(F)) D Py(gy(M(F)). The
intersection Pr,py(M(F)) N Py (M (F)) equals Ppgy(M(F)).

Proof. — 1) Given N,r > 0, by ([9], Lemma 4.8), we get a diagram of fully faithful
embeddings

Ppgesy(NeM) C Prigpsy(n,-M)
U U
Peosis)(N e M) C Pp— gy (N, M)
with s = N + 7. Let K be an object of Pp(g/s)(N,rM) N Pp— g4y (N, M).

Letm : Px P~ — Wandm : W x W — G be as in Lemma 7. The induced
maps m : P(0/t*) x P~ (0/t°) — W(0/t*) and m : W(0/t*) x W(0/t*) — G(0/t%)
are again smooth and surjective. Indeed, if Y; — Y53 is a smooth surjective morphism of
affine algebraic varieties, A is an Artin k-algebra then Y;(A) is a scheme, and the induced
map Yi1(A) — Y3(A) is smooth and surjective. As in Lemma 7, one shows now that
K € Pg(g/esy(n,-M). The first assertion follows.

il) Given N, r > 0 as above for s = N + r one gets a diagram of fully faithful embeddings
Prepjesy (N M) C P(Nr-M) D Pypsesy (v M).

If K € Ppigjesy(n-M) N Py(pyesy(v,-M) then the equivariance isomorphisms for L and U
yield an isomorphism a* K = Q,X K, where a : L(0/t%) x U(0/t%) x y M — n,M is the
map sending (g,u,m) to gum. The product induces an isomorphism
L(O/t*) x U(0/t*) = P(0/t*), so K lies in the full subcategory Pp(p/ss)(nrM) C P(n - M).
Our assertion follows. O

5. Geometric model of the Weil representation of GL,, x GL,,

5.1. —Let Uy = k™, Ly = k™ be the standard k-vector spaces of dimensions m and n. For
Section 5 we let G = GL(Lg) and H = GL(Up). Let Iy = Uy ® Ly.

Set U = Uy(0), L = Lo(0) and II = Iy (0). Let Tz C Bg C G be the torus of diagonal
matrices and the Borel subgroup of upper-triangular matrices. We identify Ag = Z™ in the
usual way. Let w; € AJG“ be the h.w. of the representation A*Lg of G. The objects Ty C By C
H are defined similarly for H. By some abuse of notation, &; € A}, will also denote the
h.w. of the H-representation A*Uy. Keep the notations of Section 4, in particular we write
~.I1=t=NII/t"T1, and I is the constant sheaf on g oII.

We are going to describe the submodule over Sph, (resp., over Sphy;) in D{(’GX () II(F))
generated by Iy. Assume m > n.

Let U; & Us = Uj be the direct sum decomposition, where U; (resp., Us) is generated by
the first n (resp., last m — n) base vectors. Let P C H be the parabolic subgroup preserving
Uy, Uy C P beits unipotent radical. Let M = GL(U;) x GL(Uy) C P be the standard Levi
factor. Let & : G x G,, — H be the composition

id X2paL(vy)  x .
_

G x G, G x GL(Uy) = M — H.
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Write gRes™ : Sphy; — D Sph, for the functor corresponding (in view of Loc and Loc")
to the restriction Rep(H) — Rep(G x G,,) with respect to . Here is the main result of
Section 5.

PROPOSITION 4. — The two functors Sphy — Dl()GxH)(O) (II(F)) given by
(35) I —Hy(T,1y) and T — Hg (gRes"(T),Ip)

are isomorphic.

Let N,r € Z with N + r > 0. Think of v € II(F) asamap v : U*(F) — L(F). For
v € n,IlletU,, = v(U*) +t"L, this is a O-lattice in L(F). For A\ € Af satisfying

(36) (—w§(\),01) <N and (A\a) <r

let ,\,THO C n,II be the locally closed subscheme of those v € n,II for which
t*L/(v(U*) + t* L) is isomorphic to §/t* 7% & ... ¢ B/t*»~% as H-module. Here
A= (a; > -+ > ay). In other words, for v € y Il we have v € » ,II°iff U, . € Grg.

One checks that the G(0) x H(#)-orbits on y . II are exactly 5 ,I1° for A\ € A, satisfying
(36). The fact that the set of (G x H)(®)-orbits on y .II is finite also follows from ([11],
Theorem 3.2.1), because Il is a spherical G x H-variety.

Given A € Af let now N = (—w§(\),@1) and r = (\,@1). By 44, HM(l)) €
D (¢ x#)(g)(v,-1T). Define the closed subscheme I C yIT as follows. A point v € yII lies in
zIifffori =1,...,n the map

AU 20 (AL)(—(wo(N), @3))
is regular. The scheme AII is stable under translations by ¢"II(#), so there is a unique
closed subscheme  ,.II C n,II such that ,II is the preimage of » ,II under the projection
~II — wII. Under our assumptions the map (26) factors as

~—\ T
0, IIXGrg — 5 I — n 1L

PROPOSITION 5. — For A\ € AY, we have a canonical isomorphism Hg(Iy) = IC(, ,11°)
with the intersection cohomology sheaf of x . I1°.

Proof. — Note that » ,I1° C , ,.IT is an open subscheme. The map g ,-II %@2\; 5oy Iis
an isomorphism over ,\WHO, in particular dim ,\7,«1'[0 =rnm + (X, 2pG — m@y).

The scheme , I is stratified by locally closed subschemes ,, . II°, where i € A, satisfies
(36) and

(37) (w§ (A —p),@;) <0

fori = 1,...,n. Further, O,Tﬂiﬁg is stratified by locally closed subschemes g ,.ITx Grf,
with € AL, p < A Let us show that 7 is stratified small (in the sense of [21]) with respect
to these stratifications.

Let pe Ag satisfy (36) and (37), take wve ,, II° Let Y be the fibre of
710, 1IX Gryy — »,IT over v. We must show that 2dim Y < (A — p, 2p¢ — may,).

From (37) it follows that (A — u,w,) < 0. So, to finish the proof it suffices to show that
2dimY < (A — p,2pc — nwy,).
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The scheme Y classifies O-lattices L’ C L(F) such that L’ € Grg, and U,, . C L'. Stratify
Y by locally closed subschemes Y, indexed by 7 € A, which are very positive. We call

72(512”~2bn)

very positive iff b, > 0. By definition, the subscheme Y- classifies L’ € Y such that U, , is in
the position 7 with respect to L’. Now by ([21], Lemma 4.4), if Y, is nonempty then

dimY, < (A+7—p,pag)-
So, we have to show that (7,2p¢) < (A — p, —nwy,). The formula for virtual dimensions

dim(L/L") 4+ dim(L'/U, ,) = dim(L/U, ,) reads (T + A — u, w,) = 0. Thus, we are reduced
to show that

(38) (1, n&n, — 2pG) > 0.
This inequality follows from the fact that 7 is very positive, because
noy — 2pc = (1,3,5,...,2n — 1)

is very positive. Moreover, the inequality (38) is strict unless 7 = 0. Since 7 = 0 iff A = p, we
are done. O

COROLLARY 4. — 1) The functor Sphy — D’(’GxH)(@)(H(F)) given by I — Hg (9, 1)
takes values in PG py(p)(IL(F)). The corresponding functor

Sphg — P (gm0 (IL(F))

is fully faithful, its image is the full subcategory Pig, iy () (IL(F)) of semi-simple objects in
PG xm)0)IL(F)).
i) For any X € A} we have ExtéaxH)(@)(IC(,\,,«HO), IC(»,11%) = 0.

Proof. — For A € AL letr = (\,01) and N = (—w§(A\),@1). Pick s > N + r. The
stabilizor, say K, in (G x H)(0/t*) of a point of » ,.I1° is connected. So, the irreducible objects
of PGy () (II(F)) are exactly IC( »I1°), A € A&. Part i) follows.

We have a canonical equivalence Py ) (p) (11 =P (Speck). By ([9], Lemma 4.8),
the connectedness of K implies that P (Speck) is equivalent to the category of vector
spaces. If 0 — IC(» ,I1°) — K — IC(, ,I1°) — 0 is an exact sequence in Paxmyoe) (v 10)
then A is the intermediate extension from , ,I1°. Part ii) follows. O

REMARK 4. — 1) As in Section 4.5, one may strengthen Corollary 4i) saying that the
functor I — Hg (7, Ip) takes values in the category P m)(0) wauto p(IL(F)). The functors
in Proposition 4 may also be seen as taking values in the Aut®(©)-equivariant version of the
corresponding derived category.

ii) The category P gy my(g)(II(F)) is not semi-simple in general. To have an example,
taken = m = 2and A\ = (1,0). Let Y C (.1II be the support of IC(, 1I1°) then
dimY = 3 and dim ¢ ;I = 4. The restriction to Y yields a nontrivial map Iy — IC(, 111°)[1]
in DG x ) (0)(0,111).
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Proof of Proposition 4. — STEP 1. — Assume first n = m. Interchanging U, and Lg, one
derives from Proposition 5 that the functors Rep(GLy) — P (g x ) (p) (IL(F)) given by
Ve Hy(V,I;) and V w— Hg(V,I)

are isomorphic. For n = m we are done.
StEP 2. — For m > n consider the Jacquet functors

Jp : Diaxmyo)IU(F)) = Daxano)(Ur @ Lo(F)).
We have J}(Ip) = Ip canonically. The action of GL(Uz) on Uy ® Lo is trivial, so
J € Sphgy,(u,) acts on Iy € D(gyar)y(0)(Us ® Lo(F)) as
HeLw,) (s Lo) = Io ® R (GraLw,), d)-

As a representation of H, det(Uy ® Lg) is the character nw,, € [\};. As a representation of

M, det(U; ® Lg) is the character nw,, € ]\}}. Thus, let k1 : GL(Ul) x G, — H be the
composition

- X (20 —2p —NWp+NWm - .

GL(UL) X G, X(2pH—2pGL(U,) ) M < 1,

where i : GL(U;) < M is the natural inclusion. Let gRes" : Sphy; — D Sphgr,(v,) be the

corresponding restriction functor. From Corollary 3 we get for & € Sphy; an isomorphism

JpHy (7, 1o) = Hay v, (8Res™ (7), Lo).

Let ky : G x G,, — H be the map obtained from k; via the canonical identification

GL(U,) = G. By Step 1, we have an isomorphism
HGLw,)(gRes™ (7), o) = Hg (gRes™ (7)), Io)
in D(gxary0) (U1 ® Lo(F)).

Further, we may think of J} as the Jacquet functor corresponding to the parabolic sub-
group P x G of H x G. As a representation of G, det(Uy ® Ly) ® det(U; ® Lo)_1 is the
character (m — n)w,, € Ag. So, let k3 : G x G,, — G x G,, be the map, whose second
component G x G,, — G,, is the projection, and the first component is

(id,(m—n)@,)
_

G x Gy, G.

Write gRes™ : D Sph — D Sph,, for the corresponding geometric restriction functor. By
Corollary 3, for J € D Sph, we get an isomorphism

JpHg (d,10) = He (gRes™ (), 1o)
in Dgxary(0)(Ur ® Lo(F)). From Corollary 4 we conclude that
(39) Jp : DPG iy o) (T(F)) = DP{GLw, ) xa)0) (U ® Lo(F))
is an equivalence. The equality
20 — 2pGL(Uy) — 2PGL(U,) T+ NWim — Mw, =0

shows that the composition G x G,,, =% G x G,, — H equals k.
Summarizing, for & € Sphy we get an isomorphism

JpHy (7,10) = JpHg (gRes™(7), Lo)
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in Dgxnmy(p) (U1 ® Lo(F)), and (39) garantees that this isomorphism can be lifted to the
desired isomorphism of functors (35). O

We will need the following version of Proposition 4. Set IT; = U ® Ly. Recall the functor
% : Sph(H)= Sph(H) from Section 2.1.1.

COROLLARY 5. — The two functors Sphy — D?GXH)(O)(Hl (F)) given by
I —Hy(xT,Iy)) =Hg(J,Iy) and I — Hg (gRes"(T), 1)

are isomorphic. O

6. Geometric model of the Weil representation of SO,,,, x Spa,

6.1. —Let Uy = k™,Ly = k™. Set Vo = Uy @ Ug, we equip it with the symmetric form
Sym? V) — k as in Section 3.2. Set H = SO(V}).

Let Py C H be the parabolic subgroup preserving Uy, Uy C Ppy be its unipotent radical.
Write Qg = GL(Uy) = GL,, for the standard Levi factor of Py. We equip it with the
maximal torus Ty of diagonal matrices and the Borel subgroup of upper-triangular matrices
(its preimage in Py is a Borel subgroup, which yields our choice of positive roots).

Set My = Lo @ L, we equip it with the symplectic form A2M, — k arising from pairing
between Ly and L§, so Ly and L§ are lagrangian subspaces in My. Set G = Sp(My). Let
Ps C G be the parabolic subgroup preserving Ly, Us C Pg its unipotent radical. Write
Q¢ = GL(Lo)= GL, for the natural Levi factor of Pg. We equip Q¢ with the maximal
torus T of diagonal matrices and the Borel subgroup of upper-triangular matrices (the
preimage of the latter in Py is a Borel subgroup, which yields our choice of positive roots).

Keep the notation of Section 4, in particular, & = k[[¢]] and Q is the completed module
of relative differential of O over k. Set L = Lo(0),U = Up(0),V = Vy(D)and M =L & L* @ Q.
The isomorphism ©= ) sending 1 to dt yields an isomorphism of group schemes
G = Sp(M) over Spec . So, we often think of G as the group acting on M.

Set Y =L*QVQand I =U*Q M.

REMARK 5. — In general, L§ ® Vp is not a spherical Q¢ x H-variety. By ([11], Theo-
rem 3.2.1), in this case the set of Q¢ () x H(@)-orbits on T(F) is not countable. Indeed,
already for the open Q¢ x H-orbit (Qg x H) /R in L{QVy, the set of R(F')-orbits on Grg, x i
is not countable.

Similarly, in general Uj ® M, is not a spherical Qg X G-variety, and the set of
Qu(H) x G(H)-orbits on II(F) is not countable.
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6.2. — Asin Section 3.2, we define the functor

(40) ¢+ D{gax@m () (L)) = Digyxqeo) IF)

as the partial Fourier transform (32) with respect to the decomposition

TFA)SL*QUQF)® L* @ U* @ Q(F).

DEFINITION 4. — The Weil category for G x H is the category Weilg m of triples
(91,59, 8), where 71 € P (g xmy0)(Y(F)), T2 € Pg, xayo)TU(F)), and B : ((f(F1)) = f(F2)
is an isomorphism for the diagram

Pqexmyo)(T(F)) P (Quxa) () I(F))
Lt L
¢
P@ax@um ) (T(F)) = Pguxqe) o) ILEF),

where f are forgetful functors. Write

fo: Wele.n — Pquxeyo)(I(F)) and  fy: Welc,n — Pgaxmo)(T(F))

for the functors sending (71, 72, 8) to ¥ and F; respectively. Write DWeil g for the
category obtained by replacing in the above definition P by DP everywhere.

By ([9], Lemma 4.8), both functors f in the above diagram are full embeddings, and their
image is stable under subquotients. It follows that WeZ¢ g is abelian, and both fg and fg
are full embeddings. Write (M/edsé 1 C Weil, g for the full subcategory of semi-simple objects.
We write

DW&ZSG%,H C DWB&ZG,H
for the full subcategory of objects of the form @®;ez K;[i] with K; € Wiy, 5 for all i.

Since ¢(Iy) = I, canonically, Ij is naturally an object of ‘Wa'lsc? - Combining the decom-
position theorem ([2], Corollary 5.4.6) with the fact that G and H-actions in the Weil repre-
sentation commute with each other, one gets the following.

PROPOSITION 6. — There  exist  natural ~ functors D Sphg — DWely y  and
D Sphy; — DUy, 5 such that the diagrams commute

N\ ac l fa \ an | ru
DP% .. <)o) (I(F)) DP ¢ )y (T(F))-

Here the functor ag (resp., ag) sends I to Hg (9, Iy) (resp., to Hy (9, Ip) ).

Proof. — The arguments for both functors being similar, we give a proof only for the
second one. Given I € Sphy, by decomposition theorem Hy; (7, In) € D(g, x (o) (T (F))
identifies with the direct sum of its (shifted) perverse cohomology sheaves. It suffices to
show that each perverse cohomology sheaf K of ((fHy (¥, Ip)) actually lies in the full

subcategory P (g, ) (p) (IL(F)) of P (g, x @) (o) TL(F)).
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Denote by P, C G the parabolic subgroup preserving L§, write U, for its unipotent
radical. By Lemma 8, it suffices to show that K admits a Ug(®) and U (0)-equivariant
structures. For v € T (F') write sy (v) for the composition

Sym? v
-

Sym? L(F) Sym?(V © Q)(F) — Q*(F).

Let Char(Y) C Y(F) be the ind-subscheme of v € T(F) such that sy (v) : Sym? L — Q2 is
regular. The Ug (0)-equivariance of K is equivalent to the fact that (1 (K) is the extension
by zero from Char(Y). But the complex Hy; (7, I) itself satisfies this property, so its direct
summand also does.

To get a U (0)-action on K, consider the commutative diagram

¢
Paoxem ) (T(F) = Puxqe) o (II(F))
\ Four,, l ¢
Pgexqumyo) (L@ V(F)),

where (; is a partial Fourier transform (with respect to ¢), and Four,, is the complete Fourier
transform (cf. Remark 3). By Lemma 6,

Clc(fHE(g, Io)) = Four¢(fH§(9, Io)) = leE(g, I()),
where we have denoted by f1 : Pg,xm)0)(L ® V(F)) — Posxou) (o)L ® V(F)) the
forgetful functor.
Let Char(L ® V(F)) C L ® V(F') be the ind-subscheme of v € L ® V(F') such that the

Sym? v

composition Sym? L* =2 Sym? V(F) — F factors through © C F. Note that
Hy (9, 1) € Pgoxmyo)(L @ V(F))

is the extension by zero from Char(L ® V (F)). The U, (©)-equivariance of K is equivalent
to the fact that {; (K) is the extension by zero from Char(L ® V(F)). We are done. O

REMARK 6. — Asin Section 4.5, one may strengthen Proposition 6 saying that the func-
tors ag, ag actually take values in the Aut®()-equivariant versions of the corresponding
categories.

By abuse of notation, we simply write Hg (7, 1) € DWilg y (resp., Hy (7, 1o) €
DWeile; i) for I € D Sphy, (resp., 7 € D Sphy).

Recall the definition of the homomorphisms « from Section 2.3.2. For m < n we have
k : H x G,, — G. We write gRes” : Sph, — D Sphy for the corresponding geometric
restriction functor.

For m > nwehave k : G x G,, — H. Write gRes” : Sphy — D Sphg; for the
corresponding geometric restriction functor.

Here is our main local result.

THEOREM 7. — 1) Assume m < n. The functors Sphg — D‘WaZSC?)H given by
(41) J—Hg (J, 1) and J+— Hyg (xgRes"(J), Io)

are isomorphic.
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2) Assume m > n. The two functors Sphy — D‘W&ZSC;H given by
42) I —Hy(Y,1y) and T — Hg (gRes™ (%), Ip)

are isomorphic.

The proof will be given in Section 6.4.
6.3.1. — In this subsection we assume m < n and analyse the action of Sph; on
DZ(’QG «m)(0)(T(F)) in more details.
Write V* for the irreducible H-module with h.w. A € Af;. For1 <i < mleta; € A}
denote the h.w. of the H-module A*V;. Recall that
AV S VEm @ Vm

is a direct sum of two irreducible representations, this is our definition of &, &), . Say that
a maximal isotropic subspace ¥ C Vj is &, -oriented (resp., &, -oriented) if N™£ C Vom
(resp., A™# C V%m). The group H has two orbits on the scheme of maximal isotropic
subspaces in Vg given by their orientation.

For v € T(F) let s»(v) : Sym? L — Q2(F) be the composition

Sym? L 2%, Sym?(V © Q)(F) — Q2(F).

For )\ € AJI; let N = (), 1), define a closed subscheme \Y C yT = ¢t~V 7 as follows. A
point v € §Y lies in , Y iff the following conditions hold:
Cl) s»(v) : Sym? L — Q2 is regular;
C2) for1 <i<mthemap AL 2% (QF @ ATV)((—wo(N), ds)) is regular;
C3) the map A™L Y ®Vm, (Q™ @ V) ((—wo(N), &m)) & (™ @ V) ((—wo(N), &)
induced by A™w is regular.

The scheme T is stable under translations by _n7T, so there is a closed subscheme
AN T C nnYT whose preimage under the projection yT — n nY is 2 T.

. . ~ A .
As in Section 4.4, we have amap 7 : o T xGry — n, n7, it factors through the closed
immersion y yT — n n7T, and

H} (Io) = m(Qe B G)[dim o, Y] € Do) (v, ).

Let Char(Y) C T(F) be the ind-subscheme of v € T(F) satisfying Cl). Note that
Char(Y) is preserved by the H (F')-action. For v € Char(Y) let L, = v(L) + V ®  and

LE:={veVeQ|(vu cQ? forany uc L,}.

Let V,, C V(F) be defined by V,, ® Q2 = v(L) + L, then V,, is an orthogonal lattice in V' (F),
that is, a point of Grg. We stratify Char(Y') by locally closed subschemes , Char(Y) indexed
by A € A};. Namely, for v € Char(Y) we let v € 5 Char(Y) iff V,, € Gry.

We have , Char(Y) C AT. Moreover, for N = (), &;) there is a unique open subscheme
A, NYO C a,~n' T whose preimage under the projection »T — » xT identifies with 5 Char(Y).

Write IC(y, ¥ T°) € P g, x ) (p) (v, T) for the intersection cohomology sheaf of 5 yT°.
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LEMMA 9. — Assume m < n.
1) The map
T O,NTQ@;} —AnNT
is an isomorphism over the open subscheme )HNTO. So, dim A’NTO =2Nnm + (\,2px).
2) For A € Ajf; we have Hy (Io) = 1C(x nY°) canonically.

Proof. — 1) The fibre of m over v € 5 yY° is the scheme classifying orthogonal lattices
V' C V(F) such that V' € Gz and v(L) C V' ® Q. Given such lattice V”’, the inclusion
v(L)+VeQC V' ®@Q+V ®Qmust be an equality, because for V'’ € Grl; with p < X\ we
get

dim(V' + V)V = e(u) < e(A) = dim(v(L) + V@ Q/V ®@ Q).
We have set here () = max{{(u, &), (1, &,,)}. Thus, V,, € Gry is the unique preimage of
v under 7. The first assertion follows.

For the convenience of the reader recall that Ty = G is the torus of diagonal matrices
in GL(Up), and
(43) Ap={u=(a122an) €EZ" | am-1 2|anl}.

In these notations one may take &, = (1,...,1)and &, = (1,...,1,—1). So, if
p=(a,...,an) € Af; thene(p) =ar + -+ am—1+ |am|.

2) From 1) we learn that IC(, xY°) appears in H}; (Io) with multiplicity one. So, it suffices
to show that

Hom(H; (Io), Hy (Io)) = Q,
where Hom is taken in the derived category D?QG <)) (T(F)). By adjointness,

Hom(HY); (Io), HY (Io)) = Hom(Hy,"*MHY (L), Io).

So, it suffices to show that for any A\ € Aj; with A # 0 one has Hom(H};(Iy), I) = 0 in
D (T(F)). As above, set N = (A, ¢&1). We will show that
(QexH)(0)

Hom(Hy, (Ip), Ip) = 0

in Dl(’chH)(Q/td)(N,NT(F)) for d large enough.

Let 4:9nYT — ynYT denote the mnatural closed immersion. Recall that
Iy = iip'Q¢[~2Nnm] on y yY, where p : o v — Speck is the projection. By adjointness,
we are reduced to show that

Hom (pii*H (Io)[2Nnm], Q) = 0

in Dl(’QGxH)(Q/td)(Spec k). It suffices to show that pyi*H (Iy)[2Nnm] is placed in
degrees < 0.
Denote by y’\ the preimage of o 5T under

~—=A
T O’NTXGIH — N,NT~

Then %" is the scheme classifying V' € @2 and v € o yY such thatv(L) C (V//tNV)®Q.
Stratify yA by locally closed subschemes y’\’“ indexed by u € Aj; with u < X. The
subscheme %" C % is given by the condition V' € Gr* .
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Recall that H); (Iy) = m (I ) @};), where I, X @7, is perverse. It remains to show that for
each stratum %" the complex

(44) R (YN, (Io® @) | ) [2Nnm]

is placed in degrees < 0. The key observation is that the map y“‘ — Gr; sending (v, V)
to V' is a vector bundle, its rank equals n(2mN — e(u)). Here e(p) is the expression defined
in 1). Indeed, for any lattice V' € Gr’;, the fibre of this vector bundle over V" is

Homy (L, (V' nV)/tVV) ® Q)
and dimg (V/(V' NV)) = dim(V 4+ V') /V = €(u). So, (44) identifies with
(45) RT(Grg, By |ar, )[2ne(p))-

By definition of the intersection cohomology sheaf, ﬁj\q |Gr;;1 has usual cohomology
sheaves in degrees < —(u,2py), and the inequality is strict unless ¢ = A. So, (45) is placed
in degrees < {u,2pg) — 2ne(u), and the inequality is strict unless p = .

One checks that for any 7 € A}, we have (1,2pg) — 2me(r) < 0, and the inequality is
strict unless 7 = 0. Our assertion follows, because n > m.

For the convenience of the reader note that in the notation (43) for 7 = (a1 > -+- > a;,) € A}}
one gets

(1,2pg) — 2me(T) = —2a1 —4ag — - — (2m — 2)ay,—1 — 2m|ay| . O

Write # for the composition of functors
, f Tr .
D Weilc.tr " DP(qgxmo)(Y(F) = Diggxquo) (U ® L* @ QF)).
Let ko C k be a finite subfield. Assume that all the objects of Section 6.1 are defined over k.
Set Oy = ko[[t]] and Fo = ko(()).
Write D Weil i i, for the category of triples (¥1, F2, B) as in Definition 4, where now

1 € Doy w00 (T(F0), T2 € Dig, xayion (T(F))

are pure complexes of weight zero, and 5 : {(f(¥1))= f(T2) is an isomorphism as above
(it is understood that (40) is normalized to preserve purity). Let Weda gk, C DWedc b 1,
be the full subcategory given by the condition that & is perverse.

We have a natural functor ¢:DWedg gk, — DWeleg y that restricts to
L (W&ZG,H,kO — W@tZG,H.

Note that any object of Wed g is G,,-equivariant with respect to the homotheties on
L* ®V ® Q(F), because it is equivariant with respect to the action of the center of Q¢ (9).
Write

(46) Po : DWilG 11,k — D x)(00)mixea (U © L* @ Q(Fp))
for the natural lifting of the functor %, here we have denoted by
b * b *
D(QGXQH)(?)Q),mixed(U QL ® Q(FO)) C D(QGXQH)(@O)(U RL*® Q(F{)))

the full subcategory of mixed complexes ([2], 5.1.5). By Corollary 3, if K € DWWl u k, then
Po(K) is pure of weight zero. The Grothendieck group of D((JQG «Q11)(),mixed (U ® L™ ® Q(Fp))
is denoted by K, . Remind that K, is Z-graded by weights, and its component of weight 4
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is a free abelian group with base consisting of irreducible (Qg X Qg )(8o)-equivariant pure
perverse sheaves of weight s on U @ L* ® Q(Fp).

PROPOSITION 7. — Fori = 1,2 let K; € DWelg,p ko If Po(K1) = Po(Kz) in K, then
(K1) = o(K3) in DWeilg .

Proof. — Write Ky, for the Grothendieck group of the category DWedg p i, It is
Z-graded by weights, and its component of weight i is a free abelian group with base con-
sisting of triples (1, ¥2, ) as in the definition of Wéiq, g i, such that &; is an irreducible
perverse sheaf pure of weight i. By Corollary 4,

(47) P xam0)(U ® L* ® Q(F))

identifies with Sphy,, (resp., with Sphg, ) for m < n (resp., for m > n). All the objects of
the latter category are defined over ky and as such are pure of weight zero.

The functor (46) yields a homomorphism Jp, @ Ky, — Kj . Let us show that it is
injective. Let F' be an object in its kernel. For any finite subfield kg C k; C k we have the
Q¢-vector space Weil:, g (k1) introduced in Section 3.2. The map trg, trace of Frobenius over
k1 fits into the diagram

Th,

’
Kko Kko

l trkl l trkl
J

Weil (k1) —% Functy,
where Functy, is the non ramified Hecke algebra 7 (Qg) (resp., #(Qg)) of Qg form < n
(resp., of Qg for m > n). By Proposition 2, the low horizontal arrow Jg, is injective. So,
trg, (F) = 0 for any finite extension ko C k;. By a result of Laumon ([18], Theorem 1.1.2)
this implies F' = 0 in K}, . Since K; is pure of weight zero, the semi-simplifications of K; and
K are isomorphic in D Weil i, p 1., by Remark 7 below, and ¢(K7) = «(K2) inDWedl g. O

REMARK 7. — Let Y be a scheme of finite type over k¢ and K7, Ky pure complexes of
weight zero in D?(Y). Write Kpixea(Y) for the Grothendieck group of the subcategory
D%, a(Y) C DY) of mixed complexes. If K; = K5 in Kpixea(Y) then the semi-
simplifications of K; and K, are isomorphic in D?(Y). Indeed, Kpixea(Y) is Z-graded by
weights, and its component of weight ¢ is a free abelian group with a base consisting of

irreducible perverse sheaves pure of weight s on Y.

CONJECTURE 1. — Assume m < n. The irreducible objects of Weilg m are exactly
IC(\nTYO), XA € AL The functor T — Hy (7, Io) yields an equivalence of categories
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6.3.2. — In this subsection we assume m > n and analyse the action of Sphs on
Dlg. xa)(0) (TI(F)) in more details.

Letw; € Ag be the highest weight of the fundamental representation of G that appears
in A°My (all the weights of A°M, are less than or equal to &;). For v € II(F) write
sg(v) : N2U(F) — Q(F) for the composition

N2U(F) 2% A2M(F) — Q(F).
Write Char(II) C II(F) for the ind-subscheme of v € II(F) such that sq(v) : AU — Qs
regular.
For A € A} let N = (A, @), define the closed subscheme \II C yII = ¢~ V11 as follows.
A point v € yII lies in AIT if the following conditions hold:
Cl) v € Char(II);
C2) fori=1,...,nthe map AU 2% (AM)(—(wo()),@)) is regular.
The scheme »II is stable under the translations by tVII, so there is a closed subscheme
N1 C n nII such that AIT is the preimage of » x1I under the projection yII — n yII. As
in Section 4.4, we have a map

(48) T O,NH;(@)C\: — N,NH
and, by definition,
Hp (Io) = m(Qe R Gey)[dim o v1I] € Dig,, x () (v, v 10).

Since all the weights of the G-module A? M are less than or equal to @;, the map (48) factors
through the closed subscheme  yII — n nII.

For v € Char(II) let U, = v(U) + M and

Ul ={me M(F)|(m,m) €Q forany m; € U,}.
Let M, = v(U) + U;. Note that U,/U;- is naturally a symplectic vector space, and
M, /U c U,/U}t is a lagrangian subspace. So, M, C M(F) is a symplectic lattice, that
is, M, € Grg.

Stratify Char(II) by locally closed subschemes  Char(IT) indexed by A € Af. Namely,
for v € Char(IT) we let v € » Char(I) iff M, € Grg. The condition M, € Gry is also
equivalent to requiring that there is an isomorphism of ©-modules

UU/M: D/t @@ O/t

forA=(a;>-->a,>0)€ Ag. So, the stratification in question is by the isomorphism
classes of the O-module U, /M.

Clearly, » Char(II) C »II, and there is a unique open subscheme NII° C a,~1I whose
preimage under the projection A\II — » yII identifies with 5 Char(II).

Write IC(, v I1°) for the intersection cohomology sheaf of 5 yII°.

LemMA 10. — Assume m > n.
1) For any A € Ag the map

~ A
Y/ 07NHXGI'G — A,NH

is an isomorphism over the open subscheme  N1I°. So, dim 5 NII® = 2Nmn + (X, 2p¢).
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2) For X € A we have Hgy(Ip) = IC(x,N11°) canonically.

Proof. — 1) The fibre of m over v €  yII° is the scheme classifying symplectic lattices
M’ C M(F) such that M’ € @g and v(U) C M’. Given such lattice M’, the inclusion
U, C M’ + M must be an equality, because for M’ € Grf, with p < X we get

dim(M' + M/M) = e(u) < €(A\) = dim(U,/M).
We have set here e(u) := (u,w,) for p € Ag. Thus, M’ = M, is the unique preimage of v
under 7. The first assertion follows.

2) Is completely analogous to the proof of the second part of Lemma 9. O

CONJECTURE 2. — Assume m > n. The irreducible objects of Weilq u are exactly
IC(\,n1I%), X € AL, The functor T — Hg (7, 1y) yields an equivalence of categories

REMARK 8. — i) Forn = 1and m > n the isomorphism Hg(Iy) = IC(y y1I°) for
A € A can also be obtained from Proposition 5. Indeed, in this case Grg identifies
with a connected component of (Grgr,, )reda. The desired irreducibility of Hgy(Io) becomes

a particular case of Proposition 5.
ii) For m = 1 and m < n it is evident that H}; (Iy) = IC(, nY°) for A € Af;.

6.4. Proof of Theorem 7

STEP 1. — The following property of the Fourier transform functors follows from base
change for proper morphisms. If ¢/ — S « ¢/* is a diagram of dual vector bundles over
a scheme S, let ¥ — 8’ «— 9" be the diagram obtained from it by the base change
with respect to a closed immersion S’ < S. Then for the inclusions iy : ¥’ < 9 and
iy : V™" < ¥" we have i} o Foury, = Four,, oi}. Thus, the following diagram of functors
commutes

DWedc u
 fr N\ fe
DP (e x )0y (T(F)) DP (g, xa)(p) (IL(F))
LI, LI,
D U®L* @ QF Foury D U* @ L(F
@ax@m0)(U @ L ® Q(F)) (@ex@u () (U" ® L(F)).
Let kg : Qu x G,, — H be the map, whose first component Qi — H is the natural

inclusion, and second component G,,, — H is 2(pg — pQy) — n@m. Here @y, is the h.w. of
the @ g-module det Uy. The corresponding geometric restriction functor is denoted by

gRes"™" : Sphy — D Sphg, , .

Let kg : Qg x G,, — G be the map, whose first component is the natural inclusion
Qg — G, and the second component is 2(pg — o) — mwy. Here w,, is the h.w. of the
Qc-module det Ly. The corresponding geometric restriction functor is denoted by

gRes"™¢ : Sphg — D Sphg,, .
Note that J3_(Io) = Lo, Jp, (Io) = Io and Foury (Ip) = Iy canonically.
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Assume that all the objects of Section 6.1 are defined over some finite subfield kg C k.
Remind our notation Oy = k[[t]] and Fy = ko((¢)). Combining Lemmas 5 and 6, for
9 € Sphy and J € Sph we get the equalities

Foury, Jp, Hy (7, Iy) = Hy,, (gRes"™ (7), Io)
and
JpoHa (4: Io) = Hy,, (gRes"™ (), Io)
in the Grothendieck group of D?QGXQH)(@O),mixed(U* ® L(Fp)).

Remind the functor %y given by (46). To summarize, for Y € Sphy and J € Sph we
get

(49) Po(Hy (T, Ip)) = Ho, (gRes™ (), Iy)
and
(50 Po(Hg (4, Io)) = Hg,, (gRes" (), Io)

in the Grothendieck group K, = of Dl()QGxQH)(OO),mixed(U ® L* ® Q(Fp)).
STEP 2. — CASEm < n. Let
ko : Qu X Gy — Qg x Gy
be the map whose second component Qg x G,, — G,, is the projection, and the first
component Qg x G,, — Q¢ is the composition

. id X2pcL, _ -« Levi ~
QH X Gm —_— QH X GLn—m — QG'

Write gRes"? : D Sphg, , — D Sphy, , for the corresponding geometric restriction functor.

Now (50) and Corollary 5 yield for J € Sph, the equalities
Po(Hg (d,1o)) = Hy,, (gRes™ (), In) = Hg, (gRes"? (x gRes™ (¢)), Io)
in K}, . On the other hand, (49) yields an equality in K;_
Po(Hy (x gRes™ (), Io)) = Hg,, (gRes™ (x gRes" (), o).

Let 0 : Qg = Q¢ be the automorphism sending g to ‘g~ ! for g € Qg = GL,.
The restriction functor with respect to o x id : Qg X Gm = Q¢ X G,, identifies with
*:DSphg, — DSphg,,.

We will define an automorphism oz of H inducing * : Rep(H) = Rep(H) and x making
the following diagram commmutative

HxG, 22 gvg,, = G
(51) T ku 1 ke

QHXGm _K—Q_’ QGXGmﬂ’QGXGm'

This will yield for f € Sph; an equality in K|
(52) PoHg (4, In) = PoHy (x gRes"™ (), Io).
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Let Wy = Q?, let Wy = W1 ® W, be the decomposition, where Wy (resp., W) is generated
by the first m (resp., last n — m) base vectors. Equip Wy @ Wi @ Q, with the symmetric form
given by the matrix

0 E,0
E, 00],
0 01

where E,, € GL,,(Qy) is the unity. Realize G as SO(W, ® W @ Q).

Equip the subspace W1 @ Wy C Wy @ W§ @ Q, with the induced symmetric form, realize
H as SO(W,®W;), this yields the inclusion H < G. Letoy : H — H be the automorphism
sending g to *g~'. It is understood that Q¢ = Aut(W) and Qg = Aut(W;) canonically.
Let x be the composition

H % Gy 222 | x GL(W2) — G,
where a,; : G,,, = GL(Ws) is (n — m + 1)(&p, — @m) — 2pGL,_,, - The equality
= 2P — PQu) + nwm = 2(Pc — PQe) — 2PcL(W,) — MWy
shows that (51) commutes. If m = n then & is trivial on G,,.
Now by Proposition 7, (52) can be lifted to the desired isomorphism (41) in D‘WeJZSGS, H-
CASEm > n. Let
KQ:QGxGm—)QHXGm
be the map whose second component Q¢ x G,, — G,, is the projection, and the first
component Qg x G,, — Qg is the composition

id X2pcL

X m—n X Levi X
QG X Gm QG X GLm—n L’ QH
Write gRes"? : D Sphg,,, — D Sphg,, for the corresponding geometric restriction functor.

Now (49) and Corollary 5 yield for & € Sphy; the equalities
PoHy (7, 1o) = Hy, (gRes" ™ (), Iy) = Hy, (gRes™ (x gRes" (7)), L)
in Kj, . On the other hand, (50) yields an equality in K}
Po(Hg (gRes”™ (), Iy)) = H‘Q_G (gRes"™¢ gRes™ (), Ip).

Let o be the automorphism of Q@ = GL,, sending g to ‘g~'. The automorphism
o x id of Qy x G,, induces the equivalence * : D Sphg,, — D Sphg,,,. We will define
an automorphism oy of H inducing * : Rep(H) = Rep(H) and x making the following
diagram commutative

GxG,, = H on, H
(53) T ke Trn

QGXGmEQHXGmLM’QHXGm-
This will provide for & € Sphy an equality in Kj_

(54) PoHy (T, 1) = PoHg (gRes" (xT), Ip).
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Let Wy = Qi, let Wi (resp., W2) be the subspace of W spanned by the first n (resp., last
m — n) base vectors. Equip Wy & W{ with the symmetric form given by the matrix

0 E,,
E, 0 )’

where E,,, € GL,,(Q) is the unity. Realize H as SO(Wo@W(). Let o be the automorphism
of H sending g to tg~'. Let W C W, @ W be the subspace spanned by e,,; 1 + ey .1, equip
W1 ®W; @ W with the induced form and realize G as SO(W, @ W; @ W). Thus, the inclusion
i : G — H is fixed. There is a unique o, : G,, — H such that for k = (i, ) GxG,,—H
the diagram (53) commutes. Actually, ax = 2parw,) + (m — n — 1)(@n — @p,). Note that
if m = n + 1 then «, is trivial.

By Proposition 7, (54) can be lifted to the desired isomorphism (42) in D (I/I/edsé H- O

REMARK 9. — In the special case m = 1 we have H = Qpg. So, in this case Wil o
is equivalent to the category Py ) (p)(IL(F)), and one need not glue the categories as in
Definition 4. The proof of Theorem 7 can be simplified in this case. For an integer N let
~NIC € P(myc(p) (II(F)) denote the constant perverse sheaf on ¢~II. The irreducible
objects of Wil i in this case are exactly x IC, N € Z. For a dominant coweight A = N
of H in this case we get Hy, (Ip) = n IC.

7. Global theta-lifting for the dual pair GL,,, GL,,

In this section we prove Theorems 5 and 6.

Proof of Theorem 6. — Recall the notation Uy = k™, Ly = k™, and the groups G =
GL(Ly), H = GL(Up). Set My = Lo ® Uy and M = My(0) for & = k[[t]]. Viewing M,
as a representation of G x H, one defines the functor glob : Dl(’GX H)(0)naue () (M (F)) —
D (oo Wh.1m) as in Section 4.6. One gets glob,_(Iy) = w0/ The Hecke functors (11) and (12)
are a particular case of those defined in Section 4.6. Since glob_,, commutes with Hecke

functors, our assertion follows from the Aut®(#)-equivariant version of Proposition 4 (cf.
Remark 4). O

Proof of Theorem 5. — The argument below mimics that of ([5], Section 4.1.8). To sim-
plify notation, we will establish for J € Sphy and K € D™ (Bun,, ), an isomorphism

(55 oHig (4, Fom(K)) = Fom (:Hg (Res™ (), K))

for a given « € X. The proof of the original statement is analogous.
Let , oo Z g denote the stack classifying (U, U’,8: U'=U |x_) € zH# u, L € Bun, and
s: Ox — L®U'(cox). We have a diagram, where both squares are cartesian

hZH hZH
x,00 (Wn,m — x,ooZH — z,00 (Wn,m
l hm »l« l hm

Ry hg
Bun,, «* H#y —> Bun,,.
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Here hy; (resp., hy) sends (U,U’) to U’ (resp., to U). The map h; 5 (resp., hy ;) sends
(U,U',L,s : § — L ® U'(oox)) to (L,U',s : 6 — L ® U'(cox)) (resp., to
(L,U,Bos:0— L®U(xx))).

Using base change and the projection formula, one gets an isomorphism

IHE (dv Fn,m(K)) - (hm)'(h:LK 0 zH;((J, j))[— dim Bunn].

Here hy, : 4,00 Wn,m — Bun, is the corresponding projection. By Theorem 6, this complex
identifies with

(56) (hm )i (P K @ .Hg (gRes"(J), 7)) [— dim Bun,,].

Let ; o Z¢ be the stack classifying (L, L,8 : L' S L |x_,) € »#¢, U € Bun,, and
s: Ox — L' ® U(ocox). As above, one has the diagram

hy, h,
Wam =2 40026 —2 4,00 W
z,00 W' n,m z,004G z,00 W' n,m

| hn 1 L hn
2] hg
Bun,, — mﬂG —— Bun,.
Here hg (resp., hi) sends (L,L’) to L' (resp., to L). The map hz g (resp., hi7 o) sends
(U,L',L,s : 0 — L' @ U(ocox)) to (L',U,s : 0 — L' ® U(coz)) (resp., to the collection
(L,U,Bos: 0 — L®U(cox))).
The maps h, o hy  and hp, o h ; coincide. So, by base change and projection formula,
(56) identifies with
From(-Hg (gRes™ (), K)).

This yields the desired isomorphism (55). O

8. Global theta-lifting for the dual pair SQO,,,,, Sp2,

8.1. — In this subsection we derive Theorem 3 from Theorem 4. We give the argument for
m < n (the case m > n is completely similar).

By base change theorem, for J € Sph, K € D™ (Bung), we get
HE((J, Fg(K)) = (ld Xp)u(q*K ® HE((J, AutG’H))[— dim BunH],

where id xp : X x Bung g — X x Bung and q : Bung, g — Bung are the projections. By
Theorem 4, the latter complex identifies with

(57) (id xp)(q* K ® Hy (gRes" (), Autg,ir))[— dim Bung].

Now the diagram

b

X x Bung e xhi Hu — Bung
T id xq T Ta
X x Bung g M H g x Bung M X x Bung g
| idxp
X X Bung
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and the projection formula show that (57) identifies with
(id xp)1((id xq)*Hy (gRes" (), K) @ Autg, gr)[— dim Bung].
This is what we had to prove. O

8.2. — In this section we derive Theorem 4 from Theorem 7. To simplify notations, fix
z € X, we will establish isomorphisms (8) and (9) over z x Bung . The fact that these
isomorphisms depend on x as expected is left to the reader (one uses Remark 6 to check that
the isomorphisms we obtain are independent of a trivialization ), = k[[t]]).

Keep notations of Section 2. As in Section 6.1, let L = QZ, set M = L& L® Q, with
the corresponding symplectic form A2M — Q,. LetU = 0., set V. = U @ U* with the
corresponding symmetric form Sym? V' — @,. Sometimes we view M (resp., V) as the trivial
G-torsor (resp., H-torsor) over Spec 0.

In view of Theorem 7, Theorem 4 is reduced to the following result, which we actually
prove.

PROPOSITION 8. — Thereis anatural functor LW : DWeilg g — D~ (Bung, i) commuting
with the actions of both D Sphy and D Sphy. There is an isomorphism LW (Iy) = Autg g.

8.2.1. — The proof is based on the following construction from [16]. Let £4(M ® V(F;))
denote the scheme of discrete lagrangian lattices in M ® V(F;). Let &, be the line bundle
on £4(M ® V(F,)) with fibredet(M ® V : R) at R € £4(M ® V(F})) (cf. loc. cit. for the
definition of this relative determinant). Note that &, is (G x H)(#®,)-equivariant, so it can
be viewed as a line bundle on the stack quotient

La(M @V (F))/(G x H)(0z).

Let %d(M ® V(F;)) denote the us-gerb of square roots of @,;. Write ;?d(M ® V(F))/
(G x H)(#,) for the corresponding po-gerb over £4(M ® V(Fy))/(G x H)(0,).
Let Bung 5 be the stack classifying /% € Bung, ¥ € Bungy and isomorphisms

YG M |Spec Oy —M |Spec (%) YH : (2/ |Spec Og =V |Spec (28
of the corresponding G-torsors and H-torsors over Spec f),.. One has a morphism of schemes
(58) 0z : Bung g — La(M @ V(F;))

sending the above point of Bung g to the image of HY (X -z, M® V) in M @ V(F,).
The group (G x H)(F;) acts on Bung, g as follows. An element g € G(F;) sends the
above point of Bung, ; to (', g, V, vu), where v = gy and ' is the O x-module whose
sections over an open subset U C X are s € H*(U — z, M) such that gyg(s) € M(0,). The
action of H(F},) is similar.
The morphism (&, is equivariant with respect to natural actions of (G x H)(F}). Taking
the stack quotient by (G x H)(9,,), it yields a morphism of stacks

fx : Bunng — fd(M [ V(Fx))/(G X H)(@z)

We have canonically £ @4 = 7% @¢,,,,,, where 7 is defined in Section 2.3.1. We lift £, to a
morphism
€ :Bung g — La(M @ V(F,))/(G x H)(0,)
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sending (M € Bung, ¥ € Bung) to (£.(M, V), B), where

det RT(X, )" ® det RT(X, )™

(59) %= det RT(X, §)2nm

is equipped with an isomorphism B> det RINX, M ® V) given by Lemma 1.

For r>0 write ,;Bungy CBung gy for the open substack given by
HO(X,/’I/Z®‘V(—7"$)) = 0for M € Bung, V € Bung. Ifr’ > rthen,, Bung g C ;v Bung g
is an open substack, and we have a natural functor from the projective 2-limit to the whole
derived category

2-1im D~ (,,Bung ) — D~ (Bung #).
8.2.2. — Asin ([16], Section 7.2) define the derived category DfoH)(Ow)(%d(M R V(F)))
and the restriction functor

(60) €1 Dy 0,y (La(M ® V(F,))) — D¥(Bung,x)

as follows. For N,r € Z with N + r > 0 and a free O,-module ¥ of finite rank write
NP =t NL/t" L. Let (v nM ® V) denote the scheme of lagrangian subspaces in the
symplectic k-space y nM @ V.For N > r > 0 let

fTLINNM V) C P(NNM V)

be the open subscheme of R € #(y nM ®V)suchthat RN_, n(M ® V) = 0. Forr; > 2N
let &y be the Z/27-graded line bundle on the stack quotient

+LINNMQV)/(G x H)(O/t™)
whose fibre at a lagragian subspace R is det(o yM ® V) ® det R. Write

(-Z(nwM @ V)/(G x H)(O:/t™))
for the gerb of square roots of this line bundle. The derived categories on these gerbs for all
rq > 2N are canonically equivalent to each other (compatibly with the perverse t-structures)
and are denoted by

D(_GxH)(QI)(Tf(N,NM(@ V))
For N; > N > r > 0 we have a projection

p: 'rf(Nl,NlM@V) - Tf(N,NM®V)

sending R to RNy, n, M ® V. Thereis a canonical Z/2Z-graded isomorphism p* &y = G, .
For r; > 2Ny it yields a morphism of stacks

P: (L M@ V)/(G x H)(O:/t™)) = (-L(nnM V) /(G x H)(0z/t™)).

The latter gives rise to the transition functor

(e1) D(_GXH)(OE)(TZ)(N’NM &® V)) — D(_GXH)(Q$)(T2€)(N1’N1M ® V))
sending K to p*K[dim.rel(p)], it is exact for the perverse t-structures and a fully faithful
embedding. The inductive 2-limit of

D(_GXH)(@w)(rf(N,NM ® V))
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as N goes to infinity is denoted by D(_GxH)(Om)(T%d(M ® V(F;))). For N > v/ > r and

r1 > 2N we have an open immersion

71 G2NNM @ V)/(G x H)(0:/t™)) = (v L(nnM ® V) /(G x H)(0:/t™))

hence the restriction functors

7" D g0 LINNM @ V)) = Dig, gy g, (- £(vn M @ V)

compatible with the transition functors (61). Passing to the limit as N goes to infinity we get
the functors

Jrr * Diguayon (LM ® V(F2))) = D iy, (- La(M @ V (Fy))).
By definition, chxH)(@x) (Z’d(M ® V(Fy))) is the projective 2-limit of
D(GXH)(QZ)(de(MQ? V(Fy)))

as r goes to infinity (cf. also loc. cit.). The category D™ (%d(M ®V(F;))) is defined along the
same lines.

The map p fits into the diagram
v Bung,i <5 L(n M @ V)/(G x H) (0, /t™)
N Evy To
Tf(N17N1M ® V)/(G X H)(@x/trl)

where ¢ sends (Ui, V) to the lagrangian subspace H*(X, /M ® ¥(Nz)) C nNM @ V. As
above, it is understood that one first picks a trivialization

MV |Spec Oy /tT1 MoV |Spec Oz /tT1

of the corresponding G x H-torsor over Spec £, /t?N and further takes the stack quotients
by (G x H)(O,/t™).

We have canonically &y @y = 7% @g,,,., . So, we get a similar diagram between the gerbs

e Bung g 25 Ly M@ V)/(G x H)(0./t™))
N\ €vy To
(L, M @ V)/(G x H)(0, /7).

The functors K +— E}*VK [dim. rel({x)] are compatible with the transition functors (61) so
yield a functor

&0 D(_GXH)(Om)(de(M ® V(Fy))) = D™ (zBung m).
Passing to the limit by r, one gets the desired functor (60).

8.2.3. — Recall that P(Bung ) = 2-lim, o P(;;Bung g) C 2-lim, oo D™ (,,Bung u)
is a full subcategory. Let Sy;gv () denote the theta-sheaf on Z’d(M ®V(F,)) introduced in
([16], Section 6.5). It is naturally (G x H)(#,)-equivariant, and we have E;SM(@V(FI) = Autg g
by (loc. cit., Theorem 3).
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8.2.4. — Asin ([16], Section 5.4) let gf)(M ® V) (F;) denote the metaplectic group corre-
sponding to the c-lattice M ® V in M ® V(F,). This is a group stack classifying collections

(g €SPp(M RV)(F,), B, BB det(M @V : g(M @ V))),
where B is a 1-dimensional k-vector space. The product map sends
(91, Br,01: B2 det(M @V : gM @ V), (g2, Ba,02: B3 det(M @V : gM @ V)

to (9192, B, o : B = det(M @ V : g1go2M ® V)), where B = B; @ B, and o is the
composition

(@1@%2)2 M’det(M@’V191M®V)®det(M®V:gzM®V) id ®g1

det(M @V :gtM V) Qdet(g1 MV : g1goM @ V)= det(M @V : g1goM @ V).

LemMA 11. — Let M; be a free O,-module of rank n;. Then for g € Grgy ) there is a
canonical isomorphism of 7./ 27.-graded lines

det(Mo ® M : (gMp) ® M1) = det(My : gMy)™*.

Proof. — Let @y be the line bundle on Grgy,(pz,) With fibre det(My : gMp) at g € Grgy,(ay)-
It is known that Pic Grgy,(ag,) — Zis generated by €. Let 2 be the line bundle on Grgy,(az,)
with fibre

det(Mo ® M1 : gMo ® Ml)

at g. A choice of a base in M; yields a Z/2Z-graded isomorphism £ = @, . Thus, the line
bundle #® G, on Grsp(a,) 18 constant. Its fibre at 1 € Grgy,(az,) is canonically trivialized,
so the line bundle itself is canonically trivialized. O

By Lemma 11, for g € G(F,),h € H(F,) we have a canonical Z/2Z-graded isomorphism
det(M RV :gMhV)S det(M QV : gM Q@ V)@ det(gM QV : gM @ hV) =
det(M : gM)*™ @ det(V : RV)?".

It yields a canonical section (Gx H)(F,) — gf)(M@V)(Fz) sending (g € G(Fy),h € H(F;)
to(g®@h, B, B det(M @V : gM @ hV)), where

B =det(M : gM)™ @ det(V : hV)".
The canonical sections (G x H)(F,) — Sp(M ® V)(F,) and Sp(M ® V)(0,) — Sp(M ® V)(F,)
are compatible over (G x H)(8,).
__ The group gf)(M ® V)(F,) acts naturally on %d(M ® V(F;)). Let (G x H)(F;) act on
La(M ® V(F,)) via the canonical section (G x H)(F,) — Sp(M ® V)(F,). Let

o€ 1 Bung, ; — Zq(M ® V(F,))

be the morphism sending (M, V) to (o€, (M, V), B) with B given by (59). Then (&, is
naturally (G x H)(F,)-equivariant. For this reason, (60) commutes with the actions of
D Sphg and D Sphy on both sides (cf. Proposition 11).
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8.2.5. Proof of Proposition §. — Recall the notation T = L* @ V@ Q,and Il = U* @ M
from Section 6.1. Consider the decomposition M @ V = (LQV)® (L* @V ®Q,). In ([16],
Definition 5) we associated to this decomposition a functor

T 1ev (e, : D'(T(F)) = D (La(M ® V(F,)))
exact for the perverse t-structures (its definition is also found in Appendix A). Let also
Tasu(r,) : D'(I(F,)) — D™ (La(M ® V(Fy)))

denote the corresponding functor for the decompositioon M = (M @ U) ® (M ® U*). By
([16], Theorem 2 and Proposition 5), the diagram is canonically 2-commutative

DY (Y (Fy)) L2552, DX(24(M @ V(F,)))
lC /‘ MU (Fg)
DY (II(F,)),

where ( is the partial Fourier transform (40).
Let (G x H)(F;) act on £4(M ® V(F,)) via the canonical section
(G x H)(Fy) — Sp(M ® V)(Fy).

Then & Loy (r,) commutes with the action of H(F;), and & ygu(r,) commutes with the
action of G(Fy) (cf. [16], Section 6.6). So, if (F1, F2, B) is an object of Weil, g as in Defini-
tion4 then 7 gy (r,) (7 1) is H(0,)-equivariant, and ¥ yeu(r,) (9 2) is G( 0, )-equivariant.
We get a functor

LW, : Weilg n — P(GXH)(QI)(%d(M ® V(Fs)))

sending (Y1, 72, B) to ¥ Lgv (r,)(Y1). By definition, we get LW 4(Io) = Sarov (r,)- Extend
LW, to a functor

LWy : DWedlg, i — D(GXH)(@I)(%d(M ® V(F:)))

by LW 4(K[r]) = LW 4(K)]r]. By Proposition 10 from Appendix A, LW ; commutes with the
actions of both D Sph; and D Sph;. Finally, we set LW = £} o LW,. Our assertion follows.

Thus, Proposition 8 and Theorem 4 are proved. O

8.3. —In this subsection we establish some additional properties of Autg, g. Write .S; for the
stratum of Bung g given by dim H(X,M ® V) =ifor M € Bung,V € Bung.

PROPOSITION 9. — 1) The complex Autg, i is placed in perverse degrees > 0.

ii) For any n, m the complex Autg, g has nontrivial perverse cohomologies in degrees larger
than any given integer.

Proof. — 1) Recall that Bunp g is the stack classifying L € Bun,, and an exact sequence
0 — Sym’L —? —» Q — 0 on X. Let °Bunp(gyxg C Bunp(g)xm be the open substack
given by

(62) H°(X,Sym?L) =0 and H'(X,L*®QQV)=0
for V. € Bung, (L C M) € Bunpg).
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Let Y p g be the. stack classifying L € Bun, and s : Sym®*L — Q2. So, Yp (e and
Bunp(g) are generalized dual vector bundles over Buny,.

Denote by °(¥ p(G) * Bun H)CY p(G) * Bung the open substack given by (62). We have
the Fourier transform

Four,, : D<(yP(G) x Bung) — D™ (Bunpg)xm)-

Write v : Bunp(gyxg — Bungx g for the projection. Its restriction °v : ® Bunpgyxg —
Bung g is smooth and surjective.

Let 9, be the stack classifying L € Bun,, V € Bung andv : L — V ® Q. Let
%Y1 C Vnu be the open substack given by (62). We have an affine map mp : Vo g —
Y P(G) X Bung sending v to the composition

Sym? L 22% Sym?(V © Q) — Q2.
Set
J = (Q¢ |y, ,)dim Bung + dim Bun, +ay],
where ay is the function of a connected component of ¥, g sending (L,V,v) to
x(L* ® 2 ® V). By ([20], Proposition 1), there is an isomorphism over Bunp(g)xx
(63) Foury (my)1d = v* Autg g [dim. rel(v)].

The complex ./ is perverse over °V/,, i and coincides with Q,[dim(°V,, z)]. Since 7 is

affine, (), is left exact for the perverse t-structure. So, (63) implies that
Ov* Autg, gr[dim. rel(°v)]
is placed in perverse degrees > 0.

i) Consider two cases.

CasSE 2n > m — 1. Pick a k-point M of Bung and a rank m vector bundle E on X of
degree zero. Let € be a line bundle on X of degree a > 0 large enough in the sense below.
Set U = E® % and V = U & U* with the symmetric form Sym? V — @y as in Section 3.2.
The pair (M, V') can be viewed as a closed substack Y := B(Aut(M) x Aut(V)) of Bung, u.
We will let a go to infinity, below we write const for quantities independent of a.

The dimension of the group of automorphisms Aut(M) is constant, whence
dim Aut(V') = m(m — 1)a + const. Since a is large enough, Y C S, for ¢ = 2nma + const.
Assuming that Autg, g is placed in perverse degrees < C' for some C > 0, we get

const —m(m — 1)a =dimY < dim S; < dimBung g —i + C' = const — 2nma.
Since 2n > m — 1, this is a contradiction.

Casg 2m > n + 1. Pick a k-point V' of Bung and a rank n vector bundle £ on X of
degree zero. Let & be a line bundle on X of degree a > 0 large enough. Set L = E ® & and
M = L& L* ® Q with symplectic form A2M — Q asin Section 6.1. As above, we get a closed
substack Y = B(Aut(M)xAut(V)) of Bung p. Write const for quantities independent of a.

In this case dim Aut(M) = n(n + 1)a + const. For a large enough we have Y C S, for
i = 2nma + const. If Aute, g is placed in perverse degrees < C' then

const —n(n + 1)a = dimY < dim S; < dim Bung g —i + C = const — 2nma.

Since 2m > n + 1, this is a contradiction.
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Any pair of integers n, m > 0 satisfies one of the above inequalities. We are done. O

REMARK 10. — The complex Autg, g on Bung g is not pure in general. Let us show that
for m = 1 and any n the complex Autg, g is not pure.

Recall that Bung is irreducible. We have Buny = Pic X. Consider the connected compo-
nent (Pic® X) x Bung, the intersection % of this component with Sy is nonempty. Indeed,
take V = 0%, the corresponding point of Pic® X is @x. There is M € Bung with HO(M) =
0.

Over % the complex Autg, g identifies with the constant perverse sheaf Q,[dim %/]. Its
intermediate extension to (PicO X) x Bung is the constant perverse sheaf. If Autg g was
pure, this constant perverse sheaf would be its direct summand. However, (Pic® X) x Bung
contains points of \S; for some ¢ > 0. The -fibre of Autg g at such point is the trivial one-
dimensional space placed in usual degree i — dim %. It cannot contain Q,[dim %] as a direct
summand.

Appendix A
Complement to [16]

A.1. - In this appendix independent of the rest of the paper we prove Proposition 10 below.
We freely use the notations from [16].

Let © = k[[t]] C F = k((t)), let Q be the completed module of relative differentials of
over k. Let U be a free ©-module of rank d, set M = U & U* ® Q. Equip M with a natural
symplectic form A2M — Q, so that U and U* ® Q are lagrangian.

For a c-lattice R C R C M(F) remind that &g is the line bundle on #(R*/R) with
fibre det L ® det(M : R) at L. Write #(R*/R) for the gerb of square roots of #x.

Let g € G(F) be a k-point and § = (g, B) € G(F) with B> = det(M : gM) its lifting to
G(F). One has a canonical isomorphism
(64) g: Z(R*/R)= L(gR*/gR)
defined as follows. It sends (L, B;) € #(R*/R) with %?3 det L ® det(M : R) to
(9L, B ® B1) equipped with

(B® B1)*= det L ® det(M : R) ® det(M : gM) ELLN
det gL ® det(gM : gR) @ det(M : gM) = det gL ® det(M : gR).
Let Hr = (R1/R) x A be the corresponding Heisenberg group. Then (64) gives rise to
the isomorphism
g: Z(R*/R) x Z(R"/R) x Hn= £(gR"/gR) x £(gR"/gR) x Hyr
for which one has canonically

(65) GFF.

Here, by abuse of notation, for each finite-dimensional symplectic k-space Mo we denote by
F the perverse sheaf on £ (My) x £ (My) x Hyy, from (loc. cit., Theorem 1).
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For any L%, QY% € P (R*/R) the diagram is canonically 2-commutaive

142
DﬂQR — DﬂLR

lg la
3£9,),5(@%)
DHyqn) — > DHy(rp)

for the functors & £9,.Q% from (loc. cit., Section 6.2). Here the categories in the top (resp.,
low) row are categories of certain sheaves on Hp, (resp., on Hyg).

A.2. —Welet GL(U)(F) act on Z)d(M(F)) via the section
(66) GL(U)(F) — G(F)
defined in (loc. cit. just after Definition 5).
For a k-point L° € 2~€’d(M (F)) in (loc. cit., Proposition 5) we introduced the functor
Fuwy,ro DU @QF)) - DHL.
Let us reformulate its definition. Given two c-lattices 7' C S in U(F), let
'"T={xcU*QQF) | (z,u) € Qforallu € T},

similarly for ’S. Then 'S C 'T are c-lattices in U* ® Q(F). Let R = T & 'S then
RC R+ =S8@&'T,and R' /R is a symplectic space.

Set Ug = S/T € £(R*/R). Let
UY = (Ug,det(U : T)) € £(R*/R)

equipped with a canonical Z/2Z-graded isomorphism det(U : T)? = det Ur @ det(M : R).
One has a canonical isomorphism P('T/'S) = J¢y;,, exact for the perverse t-structures. Then
S u(ry,ro 1s the limit of the functors
T Lo yo
D(T/'S)= DHy, —— DK,
as T becomes smaller and S becomes bigger inside U (F).

Proposition 5 from Joc. cit. can be strengthened as follows.

LEMMA 12. — Let g € GL(U)(F). For a k-point L° € %d(M(F)) the diagram is
canonically 2-commutative

g
D(U* ® Q(F)) —222°, D,
lg lg
g ~
D(U* @ QF)) —222% D gy,

where § is the image of g under (66). Here the left vertical arrow sends K to g, K.
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Proof. — Given c-lattices T C S C U(F)set R = T & 'S. For the correspond-
ing decomposition gR = ¢T @ ¢'S one gets g(Ur) = Uyr € £(gR*/gR). Moreover,

gUuY) = U;)R, where g is the map (64). As in Section A.1, the following diagram is canoni-

cally 2-commutative

C
JL U

D(T/S) = D#Hy, —2%% Dy,
lg lag lg
, oy — 7529,).5(0%)
D(g('T)/9('S)) = D H y(y) DH g(1r)-
Our assertion follows by going to the limit as 7" becomes smaller and S becomes bigger in

U(F). O

The diagram
g, ~
Hi —= D(La(M(F)))
lg 13
7 410 ~
Hqr, —— D(La(M(F)))
is canonically 2-commutative, where the right vertical arrow sends K to (§71)* K (cf. loc. cit.,
Section 6.3-6.4). Combining this fact with Lemma 12, we get that the functor
Tu(r) : DU* ® QF)) — D(La(M(F)))

commutes with the action of GL(U)(F).

Let now H C GL(U) be a closed connected reductive subgroup. The line bundle &, on
Lq(M(F)) is H(0)-equivariant, so we have a us-gerb £4(M(F))/H(0) of square roots of
@4 over the stack quotient £4(M (F))/H(0).

ProrosiTION 10. — The functor
Juwr)  Duoy(U" @ QUF)) — Dy ) (La(M(F)))

commutes with the Hecke functors for H acting on both sides.

Let us first give a proof at the level of functions. Remind that if R C M (F) is a c-lattice
then

%d(M(F))R - %d(M(F))
is the open substack of L° € ‘Z’d(M(F)) suchthat LN R =0.LetT C S C U(F) be
c-lattices, set R = T' @ 'S. By definition, if K € D("T’/'S) then the restriction of ¥y (p)(K)
to L4(M(F))g is given by

(67) 2 [ R (-r.0)K @)y
ye'T/'S
for L° € £4(M(F))gr. Here LY is the image of L° under the natural map

Sr : La(M(F))r — PL(RY/R), and (—y,0) € (R+/R) x A'= Hp. We denoted by
dy a suitable Haar measure.
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Now let € Sphy and K € Dy gy (U* ® Q(F)). Recall that, at the level of functions,
Hy (9, K) is the function

Y / K(g~'y) 7 (g)dg,
gEH(F)/H(0)

where dg is a Haar measure on Gry.

Let us check the equality of functions &y (pyHy (9, K) = Hg (9, Yy(r)(K)) at a given
point L° € Z’d(M (F)). Pick T sufficiently small and S sufficiently large with respect to &, K
and such that L° € %d(M(F))R. The value of () Hy (7, K) at L is

/ Fu s (=9, 0) K (g~'9) T (g)dyd.
ye'T/'S, geH(F)

After the change of variables g~y = z, in view of (65) the above expression becomes

/ Fiug, (=92 0) K (2) (g)dzdg =
z€g=*('T)/g=*('S), g€ H(F)

/ Fysag. o sy (—2 0)K (2) 7 (g)dzdg.
z€g=1('T)/g=1('S), g€ H(F)
Here § is the image of g under (66). Recall that g~ (U%) = Ug,lR for any g € GL(U)(F).
We have also g~*(L%) = (G7*L°),-1 5.

Since g 'L € L4(M(F))4-1g, the value of Hy (7, 7y (r)(K)) at L is

[ (o EG )T )y =
geEH(F)

/ Flgiaoy, e, (=.0)K(2)7 (g)dzdg.
geH(F),z€9~1('T)/g=1('S) ’ 9TR

So, both expressions coincide. This completes the proof of Proposition 10 at the level of
functions.

REMARK 11. — Let T ¢ T C S C S be c-lattices in U(F). Set R = T @ 'S and
R = T @'S. The fact that (67) does not change if R is replaced by R is a consequence of
the following claim (obtained from /oc. cit. Lemma 5 and Proposition 3). Let V = T @®'S, so
that V+ = S@'T. Let Hp = (RY/R) x At and Hy = (V1 /V) x A be the corresponding
Heisenberg groups. Set iy, : HY = (V1/R) x A' — Hp, this is a closed subgroup. Let
ay : HY — Hy be the map (u,a) — (u mod V,a). Then

aviiy Fro vo = Fry vo
up to a shift. Further, let HE := (R+/V) x A! C Hy, letagr : H® — Hpg be the map

sending (u,a) to (u mod R,a). Write ig : H® — Hy for the natural closed immersion.
Then

% —
=
OZR!ZRF[O JUO Flo U2

up to a shift (both claims are also true in families as L° varies in z’d(M (F))R). Actually, the
complex 1 Fro o is constant along the fibres of ag.
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A.3. — The precise definition of the Hecke functors
Hy : Sphy x DFI(())(fd(M(F))) - DE(())(fd(M(F)))

is left to the reader, let us only explain the idea.
For s; + s2 > Osets, s, H(F) = {9 € H(F) | t2U c gU C t=*2U}. Let

s1,s2 GTH = 51,5, H(F)/H(0). Let K € Dy (La(M(F))). Assume that 7 € Sphy is
the extension by zero from 4, 5, Gry for some s; > 0.

Forr > 0let R=t"M and Z = t"*** M. One has a map
@y : La(M(F)g % 1,5, H(F) = 2a(M(F))z

sending (L%, g) to g71L°. Set Y = #"+251 M. After taking the stack quotients by H(#) on
the LHS and by H(8)/t*) on the RHS, the composition

Za(M(F)g % 1,0, H(F) 25 2a(M(F))z 2> 2(2*/2)
yields a map
La(M(F))r X 5,5, Grg — £(Z*/2Z)/H(0/t*)
for s large enough (actually s > 2r + 2s;). It factors as
La(M(F))r % sy, Crir = 2V /YR % 6, G =5 2(2*/2)/H(0/1°).

Here ;‘,’(ZL /Z)/H(0/t*) denotes the corresponding pz-gerb over the stack £(Z+/Z)/H(0/t*).

If r is large enough then the restriction of Hy; (&, K) to %d(M (F))g is the inverse image
under the natural map £4(M(F))r — £(Y+/Y)g of the complex

pry (7 ® 7,K)

(up to a shift depending on a connected component of s, 5, Gry).

A.4. — The geometrization of the proof from Section A.2 is quite formal, so we only give a
sketch. Recall that for a free ©-module 9 and N + 7 > 0 we write x,. ¥ =t~ NV /t" V.

Let K € Dyg)(n,,r, U* ® Q). Assume that & € Sphy is the extension by zero from
s15, Grg. Let T = ¢"U and S = t7"U,sothat'T = ¢ "U* @ Qand 'S = t"U* @ Q. Set
R =T &'S. Assume that r is large enough with respect to K, &. Set Z = ¢ R. Consider
the diagram

La(M(F)r % s, H(F) 5 Lo(M(F))z
| 6rxid
Z)(Rl/R) X 51,81 H (F) s 2~?(RL/R) X 51,1 H(F) X, U* @8 < rts1,r—s U™ @ (L
Here pr,, is the projection, and g sends (L%, g,y) to g~ 'y. Let
Br: P2(RY/R) x ,,U*®Q — P(R*/R) x P(R*/R) x Hg
be the map sending (L%, y) to (L%, U%, (—y,0)).

From Remark 11 together with (65) one gets the following. There is an isomorphism

(68) (v K) = (6r x id)*(pri2) (B F ® ¢*K)
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(up to a shift) geometrizing the equality

(TumK) (G 1L0) = /T//SFL%,U%«—y,o»K(g—ly)dy
for L0 € 24(M(F))r, g € 5,5, H(F).

The above diagram gives rise, by taking the corresponding stack quotients, to the follow-
ing one

Lo(M(F))r X 5,5, H(F)

!
PV )R X o0 Gy~ P(Z)2)/H(O))
uyﬂxid

pri; g actq

%(RL/R) X 5,5 Gty —— (RL/R) X 51,8 Gt X UT @ Q — (r+81,r—51U* ®Q)/H(0/t°);

here by : P(YL)¥)r — L(R:/R) is the natural map. The isomorphism (68) descends to
an isomorphism

(69) To(TuryK) = (Oy g % id)"(pri)i(BRF ® acty K)

over %(YL/?)R X s,,s; Grg. Tensor both sides of (69) with & and take the direct image
under the projection

PVL)V)R X 1,6, Gty — LY/ ) 5.
One gets this way the desired isomorphism

YvrHy (7, K)=Hy (7, Ty r)(K))

over %d(M (F))r. The other details of the proof of Proposition 10 are left to the reader.

Appendix B

Ind-pro systems and Hecke functors

B.1. Ind-schemes with an action of G(F")

B.1.1. — On the referee’s request we add this appendix where we generalize to some extent
the ind-pro systems and Hecke functors used in this paper. We will use the terminology from
([13], Section 4).

Let 4 be a partially ordered set filtering in both directions, that is, for a;,as € 4 there
are o, 8 € J such that 8 < a; < afori = 1, 2. The limit by 4 will be the limit as o becomes
bigger in J. Let 4° be 4 with the reversed order. Set I = {(a € 4,8 € ) | B < a}.

Assume given an ind-pro system (X§) indexed by pairs (o, 3) € I. Assume that X5 is a
k-scheme of finite type, and

(1) Foreach a < o’ € 4 the structure map Z‘ga’ P X§ — Xg, is a closed embedding.

(2) Foreach8 < g’ € ° the structure map pgs : Xg — X§ is an affine morphism
smooth of some relative dimension d(8, 8’) independent of «.
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(3) Foreach 8 < 8’ € 4°, a < o’ € J the commutative square
Xg — Xg
(70) ! !
X5 — xg
is cartesian.
(4) thereis (a, ) € I such that X is smooth.

. o .o o _ T : o
According to loc. cit., the ind-scheme X lim _lim e X§ 1s called smooth and

locally compact over k. By (loc. cit., Proposition 4.4.2), one has canonically
X — lim lim X73.
— ==
Bes® acd

Set X5° = li_1r>noée p XGand X$ = lim B0 X5 Passing to limits, one gets the structure maps
i’ 1 X% — X and py : X — X

Assume in addition that each fibre of the map pgg is isomorphic to an affine space of
dimension d(3, 3').

Under these assumptions, define the derived category D(X ) of étale Q,-sheaves on X
as follows.

The functor D(X§) — D(X§)) given by K — (pfs,)* K [d(B3, 8')] is exact for the perverse
t-structures and fully faithful, and similarly for the functors (iga/)!. We let D(XZ) be the
inductive 2-limit of D(X§) fora € 4, g € 4 °. Similarly for the category P(X§) of perverse
sheaves.

The function d is initially defined on pairs (8,3’) € J. We extended it to a function
d: JxJ — Zasfollows: if 3 < aand 8 < « for some o € 4 then d(3,8) =

d(a, 8') — d(a, B).
B.1.2. — Let now G be a connected reductive group over k, set & = k[[t]] C F = k((¢)).
Assume that G(©) acts (on the left) on each X§ via its finite-dimensional quotient G(0/t")
for some r depending on «, 5. Assume that the maps Z‘ga’ and pgg are G (0)-equivariant.
Then G(0) acts on each X (in the sense of functors), namely g € G(0) sends the
projective system (zg) to the projective system (gzg). The induced maps X3 — ng’ are
G(0)-equivariant, so G(0) acts in the sense of functors on the ind-scheme X2 (cf. loc. cit
and [8], appendix).

One defines the equivariant derived category D) (XS) as follows. For (o, ) € I the
group G(0) acts on each X§ via its finite-dimensional quotient G(©)/t"), and for r; > r the
projection between the stack quotients

GO/t \X§ — G(O/t")\X§

yields an equivalence of the derived categories, exact for the perverse t-structures equivalence
of the derived categories

D¢ (pjery(X5) — De(pyer)(X5)-
Denote by Dg(p)(X§) the equivariant derived category Dg(p)¢r1) (X ) for any r1 > 7.
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For < B € 4°,a < o' € J the diagram (70) yields a diagram

Dg(0)(X§) = Deoy(Xg)
i 7
De()(X§) — Deo) (X5,
where each arrow is fully faithful and exact for the perverse t-structures functor. Define
D (p)(XZ) as the inductive 2-limit of D) (X3) asa € 4, 5 € 5.
Along the same lines, one defines the category P (g (XS) of perverse sheaves on X55.
Define also the derived category D) (X35 x Grg) as follows. Let K C G(F) be a closed
subscheme G(@)-invariant on the left and right and such that K/G(9) is of finite type. Given
(o, B) € I'let r be large enough so that G(0) acts on X§ x K/G(®) via G(0/t"). For any
s > r one has a canonical equivalence exact for the perverse t-structures

DG(@/t’“)(Xg X K/G(@)):DG(@/ts)(Xg X K/G(@))
Define Dg(p)(X§ x K/G(0)) as Dg(pye)(Xg x K/G(#)) for any s > r. Then the
category D¢ (g) (X x Grg) is defined as the inductive 2-limit of Dg(g)(Xg§ x K/G(0))

undera € 4,08 € 4 0 and K becoming bigger and bigger. We similarly have the category
P (X x Grg) of perverse sheaves.

B.1.3. — Now assume in addition that each X is equidimensional then for «, o € 4 one
defines the relative dimension dim(X2 : X2) as dim Xg — dim Xgl for any 8 € 4 with
B<a,B<al.

Assume that the action of G(#) on X is extended to an action of G(F') (in the sense of
functors). Write act : X x G(F) — X for the map (z, g) — g~ 'z. We need the following
well known result.

LemMA 13. — If A is a commutative ring and A; is an inductive system of flat A-algebras
indexed by a filtering poset then lim A; is a flat A-algebra.

Let K C G(F) be a closed subscheme G(f)-invariant on the left and right and such that
K/G(0) is of finite type. For any such K we assume the following.
(A) Forany o € J thereis o/ € 4 such that act : X x K — X2° factors through X2 .
For any 8’ < o € J thereis 8 < a € 4 and a commutative diagram
Xe x K 2 xo
l pgoo xid J, pg,,oo
Xg x K 27, xg/
B B
(By Lemma 13, pg_, is faithfully flat and quasi-compact. So, there may be at most one
morphism actgs making the latter diagram commutative. Though it is not reflected in
the notation, the map actgg depends also on K, «, o’.) Besides, for any 8 < « there
are ' < o' and a commutative diagram
Xe x K 2 xo
1 Pie L5

X9 x K 2222, xo
5 &
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REMARK 12. — Let 8 < B < a € Jand ' < ' < o' € J, assume that actgg and
actgg exist then the diagram commutes

a aCtEB’ o
Xg x K~ Xg
(71) 1 1
actggs

Xg xK—>X§,’.
B.1.4. — Let
a: XX xGF)— X2 xG(F)

be the map (m, g) — (g~ 'm, g). Let (a,b) € G(0) x G(0) act on the source sending (m, g)
to (am, agb). Let it act on the target sending (m’, ¢’) to (b~*m/, ag’b). Then a is equivariant
for these actions, so yields a morphism of stack quotients

Jact : GIONXZ x Gra) — (X2/G(0)) x (G(0)\ Gra),
where the action of G(#) on X x Grg is the diagonal one.

Assuming (A), in the rest of this subsection we define the inverse image functor
(72) qact™ () : D¢y (X2) x Dey(g) (Gra) — D) (X x Gre)
satisfying the following properties.

Al) For S € DZ’G(@)(X;S) and I € D”G(O)(Grg) one has
D(,act™ (S, 9)) = qact*(D(S),D(Y))
naturally.
A2) If both S, & are perverse then 4 act*(S, &) is perverse.

Let K C G(F) be a left and right G(#)-invariant closed subscheme. The map
Xg x K LI Xg,, is G(0)-equivariant, where h € G(0) acts on (z,9) € X§ x K
as (z,gh)andony € Xg,l as h~1y. Let r be large enough so that G(0) acts on Xg,/ via
G(0O/t"). Then actgg: induces a morphism of stack quotients

Xg x K/G(0) — GO/t")\Xg .

Assume in addition r large enough so that G() acts diagonally on X§ x (K/G(9)) via its
quotient G(@)/t"). The latter map being equivariant under this action, we get a diagram of
stack quotients

- actﬁﬁl

GO/NE/G(D)) &2 GO/ (X5 x K/G(0)) “22 G0/ )\x3.
Consider the functor
DY ey (X8 ) % Dl (K/G(0)) 22 Dy ) (Xg x K/C(D)

[ [
D% o) (X5) x DY) (K/G(D)) Dg (X5 x K/G(0))

sending (S, ¥) to
(ractpg)*S ® pry I[d(B', B) + dim G(O/t") + 4];
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here § : 7 (G) — Z is some group homomorphism, we then view § as a function of
K/G(0) sending (K/G(0)) N Gr& to §(9). Here Gr% is the connected component of Grg
corresponding to 8 € 71 (G). We will precise ¢ later.

Now for any data as in Remark 12 consider the commutative diagram (71), it yields a
commutative diagram

Do) (X5) % Doy (K/G(0)) =5 Dly)(Xg x K/G(0)
T T
Dl (0)(X§) % Dis() (K/G(0)) ~25 Dl ) (X5 x K/G(D)),
where vertical arrows are the transition functors. Let tj;5, denote tgg: followed by the inclu-
sion into DI&(O) (X% x K/G(0)). Passing to the limit by 4', the functors tj;5, yield a functor

£ 1 DY ) (X&) x DY) (K/G (D)) — D& (X2 x K/G(D)).
Define a functor
tr : DG o) (X2) x D) (K/G(0)) — D) (X2 x K/G(0))
as follows. Let S € DG(O)( 2) forsomey € 4, T € Dg(@) (K/G(0)). There are &, &’
sufficiently large in  with the following properties:
— v < @& inJ, and there is a map act : X% x K — X asin (A);
—foranya > @ € Jand o' > @ € Jsuch thatact : X& x K — Xf‘o/ the images of
(S, ) under t*" are canonically isomorphic in DI&(Q) (X2 x K/G(D)).
This defines the desired functor ¢ . The functors ¢ are compatible with the trasition func-
tors, passing to the limit by K, one gets the desired functor (72). One checks that there is a
unique § as above such that A2) holds for this functor.

B.1.5. — Define an action of Sphg on D) (X)) as follows. Let K C G(F') be a left and
right G(®)-invariant closed subscheme. Assume that r is large enough so that G(9) acts on
Xg§ x K/G(0) via G(O/t"). For the projection

pr: G(O/t")\ (X5 x K/G(0)) — G(O/t")\ X5
the functors pr, : Dg(@) (X§ x K/G(0)) — DG(@)(X‘B’) are compatible with the transition
functors, so yield a functor pr; : Dlé(a) (X2 x K/G(P)) — Dg(@)(ng). Finally, we define
the Hecke functor

Hg (++) : Sphg x Dme)(ng) - ch’;(@)(ng)
by H5 (7,5) = pry(qact*(S, 7)) for 7 € Sphg, S € Dy ) (X ).

By A2), they commute with the Verdier duality, namely
D(H; (T, S)) = Hg (DT,DS).

They are compatible with the tensor structure on Sph (as in [5], Section 3.2.4). For
J € Sphgand S € DZ(O)(X&S) set H7 (7, 5) = Hg (x7, S). Here  : Sph; — Sphg is
the covariant equivalence of categories induced by the map G(F) — G(F),g — g~ *. The

functors
K—Hg(9,5) and K~ Hg(D(Y),S)
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are mutually (both left and right) adjoint.

B.2. Ind-pro systems of scheme type

B.2.1. — Now assume given an ind-pro system (Yj') indexed by 4 as in Section B.1.1

satisfying the properties (1)-(4) with the only difference that the maps iga/ are now open
immersions.

Then for each o < o’ €  in the limit, one gets an open immersion %% : X2 < X
and each X2 is a scheme (not necessarily of finite type). Since 4 is filtering, the inductive
limit X = lim _ X& exists, it is a scheme, which is a union of its open subschemes X&

_)aej o0 o0
for a € 4. We will say that (Y§") is an ind-pro system of scheme type.

Assume in addition that each fibre of the map pf,, is isomorphic to an affine space of
dimension d(3, 3').

Under these assumptions, define the derived category D(X°) of étale Q,-sheaves on X°
as follows. The categories D(X2) are defined as in Section B.1.1, they are inductive 2-limits
of D(Xg) for 8 € 4°. Further, D(X2) is defined as the projective 2-limit of D(XZ) for
a€d.

B.2.2. — Assume that the group G(#) acts on each Y via its finite-dimensional quotient
G(0/t") for some r. Then as in Section B.1.2 one defines the categories Dg(p)(Ys'), and
D¢ (p)(Ys) is the inductive 2-limit of Dg(g) (Y5') for 8 € 4°. Further, De¢(p) (YY) is defined
as the projective 2-limit of D) (Y2) fora € J.

The category D¢ (p) (Y x Grg) is defined as the inductive 2-limit of the following
categories D¢ o) (Y x K/G(0)), where K/G(0)) C Grg is a closed G(8)-invariant
subscheme of finite type (as K becomes bigger and bigger). The category
Dg) (Y x K/G(0)) is defined as in Section B.1.2, this is an inductive 2-limit of
Dgg)(Ys x K/G(D)) for B € 4°. Further, Dgp)(Yy x K/G(D)) is the projective
2-limit of Dg () (Y2 x K/G(0)) fora € J.

Let D) (V) be the inductive 2-limit of Dy, (V) for 3 € #°. Further, DG (YZ°) is
defined as the projective 2-limit of Ds o (Y2)fora € 4. Thus,if S € Dg(g) (Y2°) then over

each open subscheme Y it is placed in cohomological degrees less than or equal to some
integer (depending on «).

B.2.3. — Assume each Y equidimensional. Assume that the action of G(0) is extended to
an action of G(F') on Y2° in the sense of functors (on the category of k-schemes). Assume
the condition (A). Under this condition, one defines a functor

(73) qact” (-, ) : DG ) (YY) X Dy (Gra) — DG (Ysy x Grg)
as follows.

First, one defines the functors t** exactly as in Section B.1.4. They preserve boundedness
as well as the corresponding categories D™, so we view them as a functor

1% 1 Dg ) (Ysr) X D) (K/G(0)) = D) (Yar x (K/G(0))).
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Further, ifa < a € 4, o’ < &' € 4 assume we have a diagram
act

Y2 x K 25 v

Ticaxid  T2e

oo
act

Yo x K 25y,

Then t*©" commutes with the functors (12%)* for this diagram, so passing to the projective
2-limit, one gets a functor

ti : D) (YY) X D) (K/G(0)) — D5 (Y x (K/G(D))).
Passing further to the inductive 2-limit by K, one gets the desired functor (73).

If a < o then for the cartesian square

Y x (K/G(D) = ve'  (k/G(0)

L pr Lpr
ioe! ,
« [e3
YOO YOO

the functors pr, : Da(o)(Yo‘gl x (K/G(0))) — D(_;(O)(YO";') commute with (29" )*; so passing

to the projective limit, one gets a functor
pry ¢ D?;(@)(YOZ" x (K/G(0)) — DZ:(@)(YO?)-
The Hecke functors
H ()  Sphe x DE ) (V) = D ) (V)
for 7 € Sph, which is an extension by zero from K/G(0), is then defined as
HG (7,8) = pr(tx (S, 7).
B.2.4. — Now assume we are given two ind-pro systems of scheme type (Y*) and (yg) with

o, B3 € J satisfying all the assumptions of Section B.2.

Assume for each (o, 8) € J we are given a morphism 7§ : Y — yg commuting with
the actions of G(#). Passing to the limit, we get a morphism 7 : Y° — %/

Assume each Y, yg to be smooth of pure dimension, so we may consider the functors
(mg)*[dim. rel(§)] : Dg Q)( gg) — Da(@)(Yg‘). They are compatible with the transition
functors, so yield a functor

(74) ()™ Dé(@)(yi) - Dé(@)(yo?)-

The proof of the following is left to the reader.

PROPOSITION 11. — Assume that 7 is G(F)-equivariant. Then (74) commutes with the
action of Sphg.
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B.3. A functor given by a kernel

B.3.1. — Assume given an ind-pro system (X §) satisfying all the assumptions of Section B.1.
Let (Y§') be an ind-pro system of scheme type satisfying all the assumptions of Section B.2.
They are indexed by the same set (a, 8) € J.

Assume for each (o, 8) € J we are given a complex K§ € Dg gy (X§ x Y3'). It gives rise
to a functor

(75) 5 : Doy (X§) = Do) (Y5)
sending S to (pry)i(pri S ® K§) for the diagram of projections
GO/t\XS <2 G(O/\(XG x Yg§) 22 G(O/t)\Ys
for r large enough (with respect to «, 3). The quotients here are stack quotients.

In the only example we have the following happens. Fora < o/ € 4 and 8’ < 8 € J the
diagram is canonically 2-commutative

g'()t
Deio)(X5) —= Dg(p)(Y§) — DoY)
l gy

o

’ '(7 ’ ’
D¢ (p) (X)) — Dgp) (Y5).

The two arrows which have no names in this diagram are the corresponding transition
functors.

The above diagram shows that in the limit by § the functors & g yield a functor

I % : Deo)(X%) = Dgp)(Y2)-

Define a functor 7 : D¢ (g)(XS) — Dg(o)(Ysy) as follows. Let S € Dg(p)(X). For
any o < o’ € J we declare the restriction of *(S) to Y to be the image of S under the
composition

’

a (igoa/)! a ‘(7:; o’
Dg(p)(X5%) — Dg(9)(XS%) — Dg(p) (Y )-
The corresponding projective system is naturally an object of D¢ g (Y3)-

Passing to the inductive limit by o € 4 the functors ¥ yield a functor
7 : D) (X5) = Da o) (YD)
In the only example we have the functor & commutes with the action of G(F').

An analog of Proposition 10 would be the claim that, possibly under some additional
assumptions, the functor & commutes with the action of the Hecke functors Sph on both
sides.
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