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THE LOCAL LIFTING PROBLEM FOR ACTIONS
OF FINITE GROUPS ON CURVES

BY Tep CHINBURG, RoBerRT GURALNICK
AND DaviD HARBATER

ABSTRACT. — Let k be an algebraically closed field of characteristic p > 0. We study obstructions
to lifting to characteristic 0 the faithful continuous action ¢ of a finite group G on k[[t]]. To each such ¢
a theorem of Katz and Gabber associates an action of G on a smooth projective curve Y over k. We
say that the KGB obstruction of ¢ vanishes if G acts on a smooth projective curve X in characteristic 0
in such a way that X/H and Y/H have the same genus for all subgroups H C G. We determine for
which G the KGB obstruction of every ¢ vanishes. We also consider analogous problems in which one
requires only that an obstruction to lifting ¢ due to Bertin vanishes for some ¢, or for all sufficiently
ramified ¢. These results provide evidence for the strengthening of Oort’s lifting conjecture which is
discussed in [8, Conj. 1.2].

RESUME. — Soit k& un corps algébriquement clos de caractéristique p > 0. Nous étudions les
obstructions au relévement en caractéristique 0 d’une action fidéle et continue ¢ d’un groupe fini G sur
k[[t]]. Le théoréme de Katz-Gabber associe a ¢ une action du groupe G sur une courbe projective Y’
lisse sur k. La KGB-obstruction de ¢ est dite nulle si G agit sur une courbe projective lisse X de
caractéristique 0 avec égalité des genres de X/H et Y/H pour tout sous-groupe H C G. Nous
déterminons les groupes G pour lesquels la KGB-obstruction s’annule pour toute action ¢. Nous
considérons également des situations analogues pour lesquelles il suffit d’annuler ’obstruction de
Bertin a relever une action ¢ ou toutes actions ¢ suffisamment ramifiées. Ces résultats renforcent les
convictions en faveur de la conjecture de Oort généralisée aux relévements d’une action fidéle sur une
courbe projective lisse ([8], Conj. 1.2).

1. Introduction

This paper concerns the problem of lifting actions of finite groups on curves from positive
characteristic to characteristic 0. Let k£ be an algebraically closed field of characteristicp > 0,
and let " be a finite group acting faithfully on a smooth projective curve Y over k. We will
say this action /ifts to characteristic 0 if there is a complete discrete valuation ring R having
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538 T. CHINBURG, R. GURALNICK AND D. HARBATER

characteristic 0 and residue field & for which the following is true. There is an action of I' on
a smooth projective curve Y over R for which there is a I-equivariant isomorphism between
k®rY and Y.

We focus in this paper on the following local version of this problem. Let ¢ : G —
Auty(k[[t]]) be an injective homomorphism from a finite group G into the group of continu-
ous automorphisms of the power series ring k[[t]] over k. The existence of such a ¢ implies G
is the semi-direct product of a cyclic group of order prime to p (the maximal tamely ramified
quotient) by a normal p-subgroup (the wild inertia group). One says ¢ /ifts to characteristic 0
if there is an R as above such that ¢ can be lifted to an embedding ® : G — Autg(R|[[t]]) in
the sense that k @z © = ¢.

The local and global lifting problems are connected in the following way by a result of
Bertin and Mézard [3]. For each wildly ramified closed point y of Y, fix an identification
of the completion of the local ring of Y at y with k[[t]], and let ¢, : T'(y) — Autg(k[[t]])
be the resulting action of the inertia group I'(y) of y on this completion. Then ¢ lifts to
characteristic 0 if and only if each ¢,, does.

In [8] we studied the global lifting problem. We defined I" to be a (global) Oort group
for k if every action of I' on a smooth projective curve over k lifts to characteristic 0.
This terminology arises from Oort’s conjecture in [21, §1.7] that all cyclic groups I" have
this property, or equivalently that every connected cyclic cover lifts to characteristic 0. We
showed in [8] that all groups I" which are Oort groups for k£ must be on a certain list of finite
groups that is recalled in Remark 1.4 below, and we conjectured this list was complete. Some
results by various authors concerning Oort’s conjecture and the generalization proposed in
[8] are discussed after Remark 1.4 below.

In this paper we will focus on three local versions of the results in [8]. We will consider
which finite groups G that are semi-direct products of a cyclic prime to p-group with a normal
p-subgroup have the following properties for the field k.

1. Ifevery local action ¢ : G — Auty(k[[¢]]) lifts to characteristic 0 we call G a local Oort
group for k (as in [8]).

2. If every local action ¢ : G — Autg(k[[t]]) that is sufficiently ramified lifts to
characteristic 0, we will call G an almost local Oort group for k. More precisely, G is
an almost local Oort group if there is an integer N (G, k) > 0 such that a local action
¢ lifts to characteristic 0 provided V(%) divides ¢(o)(t) — t in k[[t]] for all elements
o € G of p-power order.

3. If there is at least one local action ¢ : G — Auty(k[[t]]) which lifts to characteristic 0
we will call G a weak local Oort group for k.

Our goal is to show that any G which has one of the three above properties must be on
a certain list of groups associated to that property. In view of Oort’s conjecture concerning
cyclic groups we will ask to what extent these lists are complete.

The lists that we obtain will result from studying an obstruction to lifting ¢ that is due
to Bertin [2], as well as from a refinement of this obstruction that we will call the KGB
obstruction.

The Bertin obstruction of ¢ vanishes if there is a finite G-set S with non-trivial cyclic
stabilizers such that the character x g of the action of G on S equals —ay on the non-trivial
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elements of G, where a4 is the Artin character associated to ¢. (For the definition of a4 see
[28, Chap. VI].) The condition on x¢ is thus that

(1.1) XS = m-Tegg — g
for some integer m, where reg, is the character of the regular representation of G.

We will say that Katz-Gabber-Bertin obstruction of ¢ vanishes, or simply that the KGB
obstruction of ¢ vanishes, if the following is true. There is a field K of characteristic 0 and a
G cover X — X /G = P} of smooth geometrically irreducible projective curves over K such
that

genus(X/H) = genus(Y/H)

for all subgroups H of G, where Y — Y/G = Pj is the G-cover of smooth projective curves
associated to ¢ by a theorem of Katz and Gabber (see [16]). Up to isomorphism, the Katz-
Gabber cover Y — Y/G = P}, is characterized by the fact that this G-cover is totally ramified
over one point co € P}, at most tamely ramified over another point 0 € P}, unramified off of
{00, 0}, and the action of G on the completion @y,m of the local ring of Y at the unique point
x over oo corresponds to ¢ via a continuous k-algebra isomorphism between A@y@ and k[[t]].

We prove in Theorem 4.2 that the Bertin obstruction vanishes if the KGB obstruction
vanishes. In Appendix 2 we show that the KGB obstruction for ¢ need not vanish when the
Bertin obstruction of ¢ does.

DEerINITION 1.1. — Let G be a finite group which is the semi-direct product of a cyclic
prime to p group by a normal p-subgroup. If the Bertin obstruction (resp. the KGB obstruc-
tion) vanishes for all ¢ then G will be called a Bertin group for k (resp. a KGB group for k).
If this is true for all sufficiently ramified ¢ we call G an almost Bertin group for k (resp. an
almost KGB group for k). Finally, if there is at least one ¢ for which the Bertin obstruction
(resp. the KGB obstruction) vanishes, we will call G a weak Bertin group for k (resp. a weak
KGB group for k).

Thus a local Oort group for £ must be a KGB group for &, which must in turn be a Bertin
group for k. One has a similar statement concerning almost local Oort groups and weak local
Oort groups for k.

We can now state our main result concerning Bertin and KGB groups for k.

THEOREM 1.2. — Suppose G is a finite group which is a semi-direct product of a normal
p-subgroup with a cyclic group of order prime to p. Let k be an algebraically closed field of
characteristic p. Then G is a KGB group for k if and only if it is a Bertin group for k, and this
is true exactly when G is isomorphic to a group of one of the following kinds:

1. A cyclic group.

2. The dihedral group Dopn of order 2p™ for some n > 1.

3. Ay whenp = 2.

4. A generalized quaternion group Qam of order 2™ for some m > 4 when p = 2.
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Note that if p = 2 and n = 1 in item (2), D, is simply Z/2 X Z/2.

By considering particular covers we showed in [8, Thm. 3.3, 4.4] that if G is a local Oort
group for k then it must either be on the list given in Theorem 1.2 or else p = 2 and G is
a semi-dihedral group of order at least 16. Theorem 1.2 shows that in fact, semi-dihedral
groups are not local Oort groups in characteristic 2. Note also that Theorem 1.2 provides
a necessary and sufficient condition for a group to be a Bertin group, which is equivalent to
being a KGB group. Theorem 3.3 of [8] concerns only necessary conditions which must be
satisfied by local Oort groups.

There are examples of particular actions ¢ for which the Bertin obstruction to lifting
vanishes but the KGB obstruction does not (see Example B.2). Thus the fact that the Bertin
and KGB groups turn out to be the same has to do with the requirement that the associated
obstructions vanish for a// such ¢.

Pagot has shown in [23, Thm. 3] (see also [18]) that there are ¢ which have vanishing Bertin
and KGB obstructions but which nonetheless do not lift to characteristic 0. Thus the latter
obstructions are not sufficient to determine whether ¢ has a lift.

In view of Theorem 1.2, we asked the following question:

QUESTION 1.3. — Is the set of groups listed in items [ 1]—[4] of Theorem 1.2 the set of all
local Oort groups for algebraically closed fields k of characteristic p?

Brewis and Wewers [7] have announced a proof that the answer to this question is negative
because the generalized quaternion group of order 16 is not a local Oort group in character-
istic 2.

REMARK 1.4. — Suppose the groups of type (1), (2) and (3) in Theorem 1.2 are all local
Oort groups. It would then follow from [8, Thm. 2.4, Cor. 3.4, Thm. 4.5] that a cyclic by p
group I' is a global Oort group for k if and only if T is either cyclic, dihedral of order 2p™
for some n or (if p = 2) the alternating group A4. This implication is not dependent on
determining which generalized quaternion groups are local Oort groups in characteristic 2.

Oort’s conjecture in [26] that cyclic groups are local and global Oort groups was shown
for cyclic groups having a p-Sylow subgroup of order p (resp. p?) by Oort, Sekiguchi and
Suwa [26] (resp. by Green and Matignon [12]). Pagot showed (see [23] and [18]) that when
p = 2, the Klein four group Dy, is a local and global Oort group. Bouw and Wewers have
shown [4] that for all odd p, the dihedral group D5, is a local and global Oort group, and
they have announced a proof that when p = 2, A, is a local and global Oort group. In [5],
Bouw, Wewers and Zapponi establish necessary and sufficient conditions for a given ¢ to lift
to characteristic 0 whenever the p-Sylow subgroup of G has order p, regardless of whether
G is a local Oort group.

The following is our main result concerning almost KGB groups and almost Bertin groups
for k.

THEOREM 1.5. — Suppose G is a finite group which is the semi-direct product of a cyclic
group of order prime to p by a normal p-subgroup. Then G is an almost KGB group for k if and
only if it is an almost Bertin group for k. The list of these groups consists of those appearing
in Theorem 1.2 together with the groups SLa(Z/3) and Qg when p = 2.
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In a similar vein to Question 1.3, we ask:

QUESTION 1.6. — Is the set of groups described in Theorem 1.5 the set of almost local Oort
groups for k?

We now consider G which are weak Bertin groups, i.e. for which there is at least one
injection ¢ : G — Aut(k[[t]]) that has vanishing Bertin obstruction. We will give a purely
group theoretic characterization of such G which requires no quantification over embeddings
of G into Auty (k[[t]]).

DEerINITION 1.7. — Let G be the semi-direct product of a normal p-group P by cyclic
subgroup C' of order prime to p. Let B be the maximal subgroup of C of order dividing
p—1. We will call G a Green-Matignon group for k, or more briefly a GM group for k, if there
is a faithful character © : B — Z; for which the following is true:

a. If 1 # ¢ € C, then Cp(c) = Cp(C) and this group is cyclic.

b. Suppose T is a cyclic subgroup of P and that C(T) is trivial. Then

xya:_l — y®(:c)

fory € Tand z € Ng(T).

Note that if |B| < 2, O is unique and so condition (b) is vacuous. Clearly, cyclic groups
and p-groups are GM-groups.

THEOREM 1.8. — Let G be the semi-direct product of a normal p-group G by cyclic
subgroup C of order prime to p. There is an injection ¢ : G — Auty (k[[t]]) which has vanishing
Bertin obstruction if and only if G is a GM group for k. Thus G is a weak Bertin group for k if
and only if it is a GM group for k.

This result generalizes a result of Green and Matignon in [12] which states that no ¢ can
lift to characteristic 0 if G contains an abelian subgroup that is neither cyclic nor a p-group.
In §10 we give some further examples and characterizations of GM groups. In particular, in
Theorem 10.1(c)(ii-iv) we describe some groups which are not GM groups even though all
of their abelian subgroups are either cyclic or p-groups.

Following Question 1.3, we ask:

QUESTION 1.9. — Is the set of groups described in Theorem 1.8 the set of groups G for
which some injection ¢ : G — Auty(k[[t]]) lifts to characteristic 0, i.e. the set of weak local
Oort groups for k?

If the answer to this question is affirmative, then every p-group would be a weak local
Oort group for k. Matignon has shown in [17] that every elementary abelian p-group is a
weak local Oort group for k. Brewis has shown in [6] that when p = 2 the dihedral group
of order 8 is a weak local Oort group for k. As one final instance of Question 1.3, it follows
from work of Oort, Sekiguchi and Suwa and of Bouw, Wewers and Zapponi that the answer
is affirmative if #G is exactly divisible by p; see Example 10.6.

We now discuss the organization of the paper.

In Proposition 2.1 of §2 we give a numerical reformulation of the Bertin obstruction
of ¢. We show this obstruction vanishes if and only if a constant by (¢) € Q associated
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to each non-trivial cyclic subgroup T' of G is non-negative and integral. The basis for this
reformulation is Artin’s Theorem that every character of G with rational values is a unique
rational linear combination of the characters of G-sets of the form G /T as T ranges over a
set of representatives for the conjugacy classes of cyclic subgroups of G. In §3 we compute
the constants br(¢) when T' contains a non-trivial element of order prime to p.

In §4 we give an alternate characterization of the vanishing of the KGB obstruction which
shows that if it vanishes, then the Bertin obstruction vanishes.

In §5 we consider the functorial properties of the Bertin and KGB obstructions on passage
to subgroups and quotient groups. We show that the vanishing of the Bertin (resp. KGB)
obstruction for ¢ : G — Autg(k[[t]]) implies that the corresponding obstruction vanishes
for the injection ¢* : T' — Auty(k[[t]]"V) associated to the quotient ' of G' by a normal
subgroup N. The vanishing of the Bertin obstruction of ¢ implies that the Bertin obstruction
of the restriction ¢|g of ¢ to any subgroup H of G also vanishes.

One consequence of §5 is that if the Bertin obstruction of ¢ vanishes, then that of the
restriction ¢|p vanishes when P is the (normal) p-Sylow subgroup of G. In §6 we sharpen
this statement by showing that the Bertin obstruction of ¢ vanishes if and only if that
of ¢|p vanishes and G and a, satisfy some further conditions (see Theorem 6.6). The extra
conditions are purely group theoretic except for one (condition c(ii) of Theorem 6.6) on the
numerical size of the wild ramification associated to ¢. This reduction to p-groups is central
to the proof of Theorem 1.8. The proof of Theorem 6.6 is carried out in §8, using results
from §3, §7 and §8. We prove Theorem 1.8 in §9. In §10 we give some examples and alternate
group theoretic characterizations of GM groups.

To prove Theorems 1.2 and 1.5 we must introduce some further ideas. Our strategy is to
exploit the fact that any quotient of a Bertin group must be a Bertin group (and similarly for
almost Bertin groups). One can thus eliminate G from the list of Bertin groups by showing it
has a quotient that is not Bertin. In §11 we recall from [8] some purely group theoretic results
which show that if G is not on a small list of groups then it must have a quotient which is on
a second list of groups. We then work to show that every element of the second list is not
a Bertin group, while every element on the first list is a KGB group (and thus also a Bertin
group).

The above strategy for proving Theorems 1.2 and 1.5 is carried out in the following way.
In §12 various groups are shown not to be almost Bertin. To use local class field theory we
show in §13 that we can allow k to be quasi-finite in the sense of [28, §XIII.2] rather than
algebraically closed. In §14, §15 and §16 we analyze the case of dihedral groups for all p,
quaternionic and semi-dihedral groups when p = 2 and the group SLy(3) when p = 2.
These results provide a new proof in Corollary 15.7 of a result of J-P. Serre [27, §5] and
J.-M. Fontaine [9] concerning local Artin representations associated to generalized quater-
nion groups which are not realizable over Q. The proofs of Theorems 1.2 and 1.5 are
completed in §17 and §18 using results from Appendix 1. In Appendix 1 we prove a techni-
cal result which constructs solutions to certain embedding problems with p-group kernels
such that the Artin character of the solution has large values on non-trivial elements of the
kernel as well as further congruence properties. To keep the details of the construction from
obscuring the arguments in the main theorems we put them in Appendix 1.

4¢ SERIE - TOME 44 — 2011 — N° 4



THE LOCAL LIFTING PROBLEM FOR ACTIONS OF FINITE GROUPS ON CURVES 543

This is the second in a series of papers concerning lifting problems. In a later paper we will
study the implications of Theorem 1.2 to the structure of the global Oort groups considered
in [8].
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2. The Bertin obstruction

Let k£ be an algebraically closed field of characteristic p. Suppose G is a finite group, and
let ¢ : G — Auty(k[[t]]) be an embedding. Let & be a set of representatives for the conjugacy
classes of cyclic subgroups of G. For each subgroup H of G, let 15 be the one-dimensional
trivial character of H, and let 1% = Indg 15 be the induction of 15 from H to G.

PROPOSITION 2.1. — Let ag be the Artin character of ¢.

i. There are unique rational numbers by = brp(9) for T € G such that
(2.1 —ag= Y brlf.
Te®
il. The following conditions are equivalent:
a. The Bertin obstruction of ¢ vanishes.
b. One has 0 < by € Z for all T € G such that T # {e}.
iii Suppose the conditions in part (ii) hold. Let S be the G-set whose character appears in
the definition of the vanishing of the Bertin obstruction in (1.1). Then m = —bgy >0
in (1.1), and there is an isomorphism of G-sets

br
(2.2) s= [ [JJw/mD.

{e}#Tet =1

Proof. — We first prove (i). By Artin’s Theorem [29, Thm. 13.30, Cor. 13.1], every
character of G with rational values is a Q-linear combination of the characters {15 : T € €},
and the dimension over Q of the space of all Q-valued characters is # G. Since the character
—ay takes rational values, we conclude that (2.1) holds for a unique function T' +— by from
G to Q.

We now prove (ii). Suppose statement (a) in part (ii) holds. By considering the G-orbits
of elements of S, we see that there is a G-set isomorphism

(2.3) sz ] ﬁG/T

{e}#£Te® i=1

for some integers n > 0. By (1.1) one has

2.4) mregg — ag = XS = Z nr 1?.
{e}#T€e®
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Hence

2.5) —ayp = —mregg + Z nr 1%
{e}#£Te®

where reg, = 1{Ge}. So by the uniqueness of the rational numbers by in (2.1), we conclude
that m = —by.) and ny = by for {e} # T € €. Thus statement (b) in part (ii) holds since
0<npeZif T # {e}.

Suppose now that condition (b) of part (ii) holds. Define

br
(2.6) s= 11 [TIwm
{e}£Te€ i=1
where b7 > 0 for the T appearing in this coproduct. The stabilizers of elements of S are then
conjugates of those T" for which by > 0, so they are non-trivial cyclic subgroups. By (2.1) we
have

(2.7) Xs= Y. brlf=—byyregs — ay.
{e}£T€®
Therefore condition (a) of part (ii) holds.

It remains to show part (iii) of Proposition 2.1, so we assume that the conditions in part
(ii) hold. The inner product (a4, xo) of a, with the one-dimensional trivial representation
Xo of G is 0 by [28, §VI.2]. Hence (1.1) gives m = (xs,Xxo0)/(rega,x0) = 0. It will now
suffice to show that (2.6) defines up to isomorphism the unique G-set S with non-trivial cyclic
stabilizers for which condition (a) of part (ii) holds. Since condition (a) of part (ii) determines
the character of S up to an integral multiple of 1?6}, this is a consequence of the fact that the
characters {15 : T € €} are linearly independent over Q by Artin’s Theorem. O

We now develop some formulas for the constant by appearing in (2.1).

NoTATION 2.2. — Since k is algebraically closed, G = Gj is the inertia group of G as an
automorphism group of k[[t]]. Let G; be the i** ramification subgroup of G in the lower
numbering. For all non-trivial subgroups I" of G, let «(I') = ¢ + 1 when ¢ is the largest
non-negative integer for which I' C G;. Let p be the M&bius function, and let Ng(T") be
the normalizer of a subgroup T in G. Let S(T') = S¢(T) be the set of all non-trivial cyclic
subgroups I' of G which contain T'. If T” is also a subgroup of G, let §(T,T") = 1if T = T"
andlet 6(T,T") =0if T # T".

THEOREM 2.3. — For T € G the constant by appearing in (2.1) is given by

1
2.8 br = ——+—— | —6(T,{e})as(e) + I':T)T
28) i or | UG CRIp T
Proof. — If T' is a non-trivial cyclic group with generator +, then «(I") = —ag(7y). Since

there are [G : Ng(T)] conjugates of a given cyclic group T, formula (2.8) results from
applying the explicit Artin induction theorem proved by Snaith in [31, Thm. 2.1.3] to the
rational valued character —ag. O
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3. Constants associated to cyclic subgroups which are not p-groups

In this section we analyze the constants by = br(¢) when T is not a p-group. This is
needed to relate the KGB obstruction to the Bertin obstruction in the next section.

DEerINITION 3.1. — If H is a cyclic subgroup of a finite group J, define

Y(H,J)= Y.  w(T:H).

HCTCJ, T cyclic

ProPOSITION 3.2. — Suppose T is a cyclic subgroup of G that contains a non-trivial
element of order prime to p. Then by is integral if and only if one of the following alternatives
occurs:

a. Na(T)=T. Thenbr = 1.
b. One has y(T,Cqg(T)) = 0. Then by = 0.

If T has order prime to p, then (b) is equivalent to

b $({e}, Co(T)/T) = 0.

Proof. — Letw : Cg(T) — J = Cg(T)/T be the quotient homomorphism. Recall from
Notation 2.2 that Sg(T) is the set of all non-trivial cyclic subgroups of G which contain T'.
We will first show that there is an injection

(3.1 f:8c(T)— S;({e})U{{e}} definedby f(I')=n(T).

which is a bijection if 7" has order prime to p. Clearly f is well defined, and since
I' = 7 Y(n(T)), f is injective. Suppose T has order prime to p and T is a cyclic sub-
group of J. It will suffice to show 7—1(T') is cyclic, since then 7~ *(T') € S(T) because T
is non-trivial. Since 7~1(T') is an extension of the cyclic group T by the cyclic subgroup
group T, 7~ 1(T) is nilpotent. So it will suffice to show 7~1(T) has cyclic Sylow subgroups.
The Sylow subgroups of 7~ 1(T') associated to primes ¢ # p are cyclic since G has cyclic
Sylow subgroups at such £. When £ = p, the p-Sylow subgroup of 7=(T') maps isomor-
phically to that of T since T has order prime to p, so this group is cyclic because T is cyclic.
This completes the proof that (3.1) is a bijection if 7" has order prime to p.

We now return to arbitrary cyclic T which contain a non-trivial element of order prime
to p. EachT' € Sg(T) contains a non-trivial element of order prime to p, so ¢«(T') = 1.
Theorem 2.3 gives

1 1
No@ T 2 AT = memerm > wll:T)).

reSq(T) resSq(T)

(3.2) by =
Using the injection (3.1) we have

1 1 _
G-3) ' = Ne@ o] FT_ 2= MHD)

Tef(Sa(T))
where J = C¢(T)/T. Thus if by € Z, we have to have
(3.4) > w#HT)=0 mod [Ng(T):Ca(T)]-#J.

Tef(Sa(T))
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Let ¢(2) be the value of the Euler phi function on an integer z. If T is a cyclic subgroup
of J, there are exactly ¢(#I') generators for T, each of which has order #T. This leads to
the inequality

(3.5) Y o< Y 1=Y o

Tef(S(T)) TcJ, T cyclic geJ
The sum on the right is bounded by #J, and is less than #J unless J is the trivial group.
We conclude that the congruence (3.4) holds if and only if either Ng(T') = Cq(T) = T
and by = 1 or the sum on the left in (3.4) is 0, in which case b7 = 0. In the latter case, the
elements I" of S¢(T") are exactly the cyclic subgroups I' C Cg(T') containing 7', which leads
to condition (b) in Proposition 3.2 via (3.2). Conversely, if either condition (a) or (b) holds,
then by is integral by (3.2). Finally, if T has order prime to p, then (b) is equivalent to (b’)
because we have shown that the map f in (3.1) is bijective. O

In view of Corollary 5.5 we have:

COROLLARY 3.3. — Suppose J is a subquotient of G with the following property. There
is a cyclic subgroup T of J which contains a non-trivial element of order prime to p such
that N;(T) # T and (T, C;(T)) # 0. (If' T has order prime to p, the second condition is
equivalent to 1 ({e},Cs(T)/T) # 0.) Then by ; is not integral. In particular, G is not a weak
Bertin group in characteristic p, i.e. no local G-cover in characteristic p has vanishing Bertin
obstruction. As a result, no such cover can be lifted to characteristic 0.

COROLLARY 3.4 (Green [11, Prop. 3.3 and 3.4], Green—Matignon [12])

Suppose that the center C(G) of G is neither cyclic nor a p-group. Then there is a
subquotient J of G and a non-trivial cyclic subgroup T of J of order prime to p such that by ;
is not integral. Thus G is not a weak Bertin group.

Proof. — If C(G) is neither cyclic nor a p-group, then there is a subquotient J of G which
is the product of a non-trivial cyclic group T' of order prime to p with an elementary abelian
p-group E = C2 of rank 2. Then J = Ny (T) = C,(T) # T, and (T,C;(T)) =
v({e},Cy(T)/T) = v({e}, E) = 14+ (p+ u(p) = —p # 0. Thus Corollary 3.3 shows
that br s is not integral, which completes the proof. O

4. The Katz-Gabber-Bertin obstruction

As in §2 we suppose in this section that k£ is an algebraically closed field of charac-
teristic p, that G is a finite group, and that ¢ : G — Autg(k[[t]]) is an embedding. Let
¢ : G — Auty(Y) be the action of G on the Katz-Gabber cover Y — Y/G = P} associated
to ¢, whose properties were recalled in the introduction. Let a4 be the Artin character of G
associated to ¢.

Recall from the introduction that the KGB obstruction of ¢ vanishes if there is a field K
of characteristic 0 and a G cover X — X/G = Pj; of smooth geometrically irreducible
projective curves over K such that genus(X/H) = genus(Y/H) for all subgroups H of G.

THEOREM 4.1. — If the embedding ¢ : G — Autg(k[[t]]) lifts to characteristic 0, then the
KGB obstruction vanishes.
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Proof. — By the local-global principle for lifting G-covers proved by Bertin and Mézard
in [3, Cor. 3.3.5] (see also [8, Cor. 2.3]), there is a lifting of ¢ to characteristic 0 if and only
if there is a lifting of ¢ : G — Autg (YY) to characteristic 0. Suppose such a lift exists. Thus
there is a complete discrete valuation ring R having characteristic 0 and residue field k£ and an
action of G on a smooth projective curve X over R with the following property. There is an
isomorphism of the special fiber k@ g ¥ of ¥ with Y which carries the action of G on k® g X
to the action of G on Y specified by ¢.

Let K be the fraction field of R, and let X = K ®r %. Since ¥ is smooth over R, flat
base change implies genus(X/H) = genus(Y/H) for all subgroups H of G. By formal
smoothness (cf. [20, Remark 1.3.22] and [14, 17.1.1, 17.5.1]), each of X and X/G has a
point with residue field K because k is algebraically closed and X lifts Y. Therefore X
is geometrically irreducible and X/G is isomorphic to P, so the KGB obstruction of ¢
vanishes. O

THEOREM 4.2. — The KGB obstruction vanishes if and only if there is a finite G-set S for
which the following is true:

a. The stabilizer of each element of S is a non-trivial cyclic subgroup of G, and the character
of the action of G on S is

4.1) Xs =M -regg — ag

for some integer m.

b. There is a set of representatives Q for the G-orbits in S and a subset {g; }+cq C G such
that g, generates the stabilizer Gy # {e} of t in G, {g;}+teq generates G, and the order
of Tlieq 9t is the index |G : G1] in G of the wild inertia subgroup G1.

In particular, the vanishing of the KGB obstruction implies the vanishing of the Bertin

obstruction, and both of these obstructions vanish if ¢ lifts to characteristic 0.

Proof. — Suppose first that the KGB obstruction vanishes, so that there is a G-cover
X — X/G = P} of smooth geometrically irreducible curves over a field K of characteristic 0
such that
4.2) genus(X/H) = genus(Y/H)

for all subgroups H of G. By making a base change from K to an algebraic closure of K, we
can assume that K is algebraically closed. For each point g of X/G = P let z(g) be a point
of X over q. The inertia group I,y C G is cyclic and equal to the decomposition group of ¢
since K is algebraically closed of characteristic 0. Consider the character function

G
4.3) fx= ) Wdf any= ) (f,-17 )
qgeX/G q€X/G

where a,(g) = 1@}‘“ —1y,,,, is the Artin character of the action of I on Ox z(q)- Let H
be a subgroup of G. Then by the calculation of relative discriminants in [28, §3] we have

4.4 2-genus(X) — 2 — #H - (2 genus(X/H) — 2) = (fx,1%)

where (, ) is the usual inner product on characters. We now apply the same reasoning to the
Katz-Gabber cover Y — Y/G = P;. associated to ¢, which is totally ramified over co € P},
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tamely ramified with cyclic inertia groups isomorphic to C over 0 € P; and unramified over
all other points of P}. Define

(4.5) fr =ay+6c- (15, —18)

where the Artin character a, 1S the one associated to the action of G on the unique point of Y’
over co and d¢ = 0 (resp. § = 1) if C is trivial (resp. non-trivial). Then

(4.6) 2-genus(Y) — 2 — #H - (2- genus(X/H) — 2) = (fy,1%)

for all subgroups H of G.

We conclude from (4.2), (4.4) and (4.6) that (fx,1%) = (fy,1%) for all H. Since fx
and fy take rational values and the characters of the form 1% generate the Q-vector space
of rational valued characters, this implies that

(4.7) > Gy —1¢, ) =fx =fr =ag+dc- (A7, —18).

geX/G
We now rewrite this equation using the formula for —a, in part (i) of Proposition 2.1. We
can assume C is included in the set & of representatives for the cyclic subgroups of G. From
(4.7) we have

48) dc-1&+ Y brif=do-1§—as= Y 17 —m-1{; =xs —m-1{,
Te® qeX/G

for some integer m, where S’ is the set of points of X which ramify over X/G, and the

stabilizer in G of each element of S’ is cyclic and non-trivial.

The uniqueness of the values of the by was proved in Proposition 2.1(i). Hence (4.8) shows
that 0c + bc is the number of ¢ € X/G such that I, is a conjugate of C. This implies b¢
is integral. Thus if C' is non-trivial, Proposition 3.2 of §3 shows that b > 0. Since d¢ = 1 if
C is non-trivial, we conclude in this case that there is a point go € X/G such that I, isa
conjugate of C. We now define S to be the complement of the G-orbit of z(gg) in S if C is
non-trivial, and we let S = S’ if C is trivial. The uniqueness of the by in (4.8) now implies

—ag =Xs — M- Tg
where rg = 1?5} is the regular representation of G. Since the elements of S have non-trivial
cyclic stabilizers in G, S has the properties in part (a) of Theorem 4.2.

By the classical description of the fundamental group of P%, — Z (see [13, Chap. XIII,
Thm. 2.12]), we can find a set ' of representatives for the G-orbits in S’ and a generator g,
of the inertia group of each t € Q' such that [],cq g+ = e is the identity of G and {g: }+cqo-
generates G. Letting Q = Q'N S shows [],cq g is either trivial if C'is trivial or is a generator
of a conjugate of the cyclic group I (4, of order #C' if C'is non-trivial. This proves that S
has all properties stated in Theorem 4.2.

Conversely, suppose that we have an S with the properties stated in Proposition 2.1. Let K
be an algebraically closed field of characteristic 0. By reversing the above steps, we can
construct a G-cover X — P of smooth irreducible curves for which (4.7) holds. Now (4.3)
and (4.5) establish (4.2) for all H.

The vanishing of the Bertin obstruction is equivalent, by definition, to condition (a)
of Theorem 4.2. So the Bertin obstruction vanishes if the KGB obstruction does. Both
obstructions vanish if ¢ lifts to characteristic 0 by Theorem 4.1. O
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REMARK 4.3. — Using[28, §3], the vanishing KGB obstruction can also be formulated in
the following way. There is a G-cover of smooth geometrically irreducible projective curves
X — X/G such that for all primes ¢ different from the characteristic of k, the ¢-adic Tate
modules of X and of Y are G-isomorphic, where Y — Y/G is as before the Katz-Gabber
cover associated to ¢. We will not need this interpretation in what follows.

5. Functorality

Suppose ¢ : G — Auti(k[[t]]) as in §4 is given. Let N be a normal subgroup of G,
and letT' = G/N. Define ¢'' : T' — Auty(k[[t]]V) by ¢'' () = ¢(g) if g € G has image
v € T. Since k[[t]]V is a complete discrete valuation ring with residue field &, it is isomorphic
to k[[2]] for some z € k[[t]]Y by [28, Prop. I1.5]. If H is an arbitrary subgroup of G, define
¢u + H— Auti(k[[t]]) to be the restriction of ¢ from G to H.

THEOREM 5.1. — If the Bertin obstruction (resp. the KGB obstruction) vanishes for ¢,
then the same is true of ¢*. If the Bertin obstruction of ¢ vanishes, then it does for ¢p.

To prove this result we need a lemma concerning characters y of G. Define a character x*
of ' = G/N by

(5.1) XM= > x
#N
9€G, q(g9)=7
where g : G — G/N is the quotient map. By [28, Prop. VIL.3],
(5.2) agr = (ag)*.

The next result follows directly from Frobenius reciprocity [29, Thm. 13, Chap. 7].

LEMMA 5.2. — If S is a left G-set, let N\S be the G/N set formed by the orbits Ns of
elements s € S under the left action of N. Let xs (resp. xn\s) be the character of the
permutation representation of G (resp. G/N ) defined by S (resp. N\S). Then

(5.3) Xas = Xb-

Proof of Theorem 5.1. — Suppose that the Bertin obstruction vanishes for ¢, and that S
is as in Proposition 2.1(ii)(a). Let S” be the G/N set N\S. Let S/ be the set of the elements
of S” which have trivial stabilizer, and let S’ be the complement S” — S{/. The stabilizers
in G/N of the elements of S’ are then non-trivial, and these are cyclic because they are the
images in G/N of the cyclic stabilizers of elements of S. By hypothesis,

(5.4) Xs = -regg — g

for some integer m. By (5.3) and (5.2), one has

Xs = X?S' =m:- (I‘egG)ﬁ — ai =m- (regG/N) — a¢1".
Since x g~ and g differ by an integer multiple of the character of the regular representation
of G/N, we conclude that

(5.5) xs' =m' - (regg/n) — agr

for some integer m/, so S’ satisfies condition (ii)(a) of Proposition 2.1 for ¢*.
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Suppose now that the KGB obstruction vanishes for ¢. Let S, Q and {g; : t € Q} be as
in Theorem 4.2. By hypothesis, § is a set of representatives for the G orbits in S, {g; }+cq 1S
a subset of G such that g; generates the stabilizer G; # {e} of ¢ in G, {g: }+cq generates G,
and [];cq g¢ has order [G : G4].

Let ¢ = Nt be the image of ¢ € Qin S” = N\S. One has G; C N if and only if the
stabilizer Gy is trivial; this is true if and only if ¢’ € S§. Define

O ={t'=Nt:teQt' ¢S5}

Now € is a set of representatives for the G/N orbitsin S’, and for ¢’ € Q' the image g of g;
in G/N is non-trivial and generates the stabilizer of ¢’ in G/N. By hypothesis, {g: : t € Q}
generates G and [[{g: : t € O} has order [G : G;]. The image of g, in G/N is non-trivial if
and only if ' = Nt & S{/, so we conclude that {g; : t' € Q} generates G/N, and the image
of v =T[{g::t € Q}in G/Nis+ = [[{ge : t' € '}. Thus 4 has order [G/N : G;N/N].
Here G1N/N is the p-Sylow subgroup of G/N, so ' and {gi : t' € '} satisfy condition
(b) of Theorem 4.2.

We now have to show that if the Bertin obstruction of ¢ vanishes, then it does for ¢ 5 for
all subgroups H of G. Since the residue field & is algebraically closed, [28, Prop. V1.4] shows

(5.6) 1resga4> =\-regy +agy,

where ) is the valuation in k((t))¥ of the discriminant of k((t)) over k((¢))*. This implies
that if S is a G-set satisfying condition (ii)(a) of Proposition 2.1 for ¢, then the restriction of
S to H satisfies this condition for ¢ 5. This completes the proof of Theorem 5.1. O

REMARK 5.3. — In a later paper we will show that the KGB obstruction for ¢z vanishes
if that of ¢ vanishes; we will not need this result in this paper.

NoOTATION 5.4. — Let J be a subquotient of G, i.e. a quotient of a subgroup H of G by
a normal subgroup D of H. Suppose T is a cyclic subgroup of J. Define by ; = by ;(¢) to
be the constant by appearing in Proposition 2.1 when G is replaced by J and ¢ is replaced
by the induced injection ¢ : J — Auty (k[[t]]7).

Combining Theorem 5.1 with Proposition 2.1 we obtain:

COROLLARY 5.5. — Suppose the Bertin obstruction of ¢ vanishes. With the notations of
Notation 5.4, one has 0 < br_; € Z, for all non-trivial cyclic subgroups T of J.

COROLLARY 5.6. — Let G be a finite group, and suppose H is a quotient group of G.

a. If H is not a Bertin group (resp. almost Bertin group), then G is not a Bertin group
(resp. almost Bertin group ).
b. If G has a subquotient J which is not a weak Bertin group, then G is not a weak Bertin

group.

Proof. — In view of Theorem 5.1, part (a) is clear for Bertin groups, and to show
part (a) for almost Bertin groups it will suffice to prove the following. Suppose that
¢ : H — Autg(k[[t]]) is an injection with the property that the Artin character ay,
has the property that —ay,, (1) > M for some integer M and all non-trivial elements 7 € H
of p-power order. It will be enough to show that there is an injection ¢¢ : G — Auty(k[[#]])
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inducing ¢y when we identify k[[z]]7 with k[[t]] when T is the kernel of the surjection
G — H, and for which —¢g(7') > M for all non-trivial elements 7’ of G of p-power order.
This statement is a consequence of the parts (i) and (ii) of Proposition A.3(i) of Appendix 1.
Part (b) of Corollary 5.6 follows directly from Theorem 5.1, which shows that if the Bertin
obstruction of some injection ¢ : G — Aut(k[[t]]) vanishes, then Bertin obstruction of the
induced local J-cover would also have to vanish. O

REMARK 5.7. — Suppose H is a subgroup of G, and that H is not a Bertin group. In
general this need not imply G is not a Bertin group, since it may not be possible to realize a
local H-cover with non-zero Bertin obstruction as the restriction of a local G-cover. We will
show later in Proposition 15.6 that this occurs, for example, when H is the quaternion group
of order 8 and G is a generalized quaternion group of order at least 16.

6. The reduction to p-groups

Throughout this section we suppose given an injection ¢ : G — Auty(k[[t]]) as in §4.

By Theorem 5.1, if the Bertin obstruction of ¢ vanishes, then so does the Bertin obstruc-
tion of the restriction ¢p of ¢ to a p-Sylow subgroup P of G. In this section we state our
main result concerning exactly which further conditions G and ¢ must satisfy in order for
the Bertin obstruction of ¢ to vanish provided that of ¢p vanishes. The proof of this result
is given in §7-§8.

We begin with a well-known result about the structure of G which follows from a theorem
of P. Hall [1, Thm. 18.5].

LEMMA 6.1. — The group G is the semi-direct product of a normal p-group P and a cyclic
group C of order prime to p. Let z € G be an element which is not of p-power order. Let m
be the smallest positive integer such that w = z™ has order prime to p. Let t be the unique
element of C having the same image as w in G/P. Then w is conjugate to t in G. In particular,
all subgroups of G having a given prime-to-p order are conjugate.

NOTATION 6.2. — Let T be a non-trivial cyclic subgroup of G. Define
(6.1) r=bre= Y, wl:T)
PBTeS(T)

where as before S(T") = Sg(T") is the set of cyclic subgroups I' of G which contain T'.
Recall from Definition (3.1) that
(6.2) (T,G) = > w(l:T]).

res(T)

DEFINITION 6.3. — Let u be a uniformizer in the discrete valuation ring k[[t]]*(). The
field k((¢))??) is a cyclic C = G/P extension of k((¢))?(%) via ¢. Let @ : C — k* be the
faithful character defined by ¢(o)(u)/u = 6(c) mod uk[[u]] for ¢ € C. Suppose C is a
subgroup of C and that j is an integer such that the restriction 67|, of ¢7 to C; takes values
in (Z/p)*. We define the Teichmiiller lift of 67|c, to be the unique character ¢ : Cy — Z
whose reduction mod p is equal to 67|¢, .
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REMARK 6.4. — The definition of § does not depend on the choice of uniformizer u. In
Lemma 8.7 below we consider the character 8, : C — k™ defined by 6y (o) = o(¢t)/t mod tk[[t]].
This also does not depend on the choice of the uniformizing parameter ¢. Hence on letting
u = [[,ep7(t) = Normp(t), we see that 6(c) = 0y(0)#". Since #P is a power of p, we
conclude that §(o) = 6y(0) if 6p(0) € (Z/p)*.

NOTATION 6.5. — Suppose T is a cyclic subgroup of P. The normalizer No(T') of T in C
acts on T' by conjugation. Since T is cyclic of order a power of p, say of order p™, and N (T)
is of order prime to p, the order of the image of No(T") in Aut(T") divides p— 1. Thus we can
write x7 : No(T') — Z;, for the unique Teichmiilller lift character such that zyz~' = yxr (@)
forz € No(T)andy € T.

THEOREM 6.6. — The Bertin obstruction of ¢ vanishes if and only if all the following
conditions hold:

a. The Bertin obstruction of the restriction ¢p of ¢ to P vanishes.
b. If't is a non-trivial element of C, the centralizer C(t) of t in G is cyclic and equal to the
product group Cp(t) x C = Cp(C) x C.
c. For each non-trivial cyclic subgroup T of P, both of the following statements are true:
i. by g =0mod [Np(T) : T|Z.
11 [NP(T) : T]bT7P Z _b/T,G'
d. For each non-trivial cyclic subgroup T of P, one of the following is true:
i. The centralizer Co(T) of T in C' is non-trivial, and

Y(T,G) =0 mod #N¢g(T)Z.

il. The centralizer Co(T) is trivial. Then the restriction of 8 to N¢o(T) is faithful,
takes values in (Z/p)* and has Teichmiiller lift x 3", and

r.c =0 mod #N¢(T)Z.

The proof of this result is completed at the end of §8 using the results in §3, §7 and §8.

We should point out that conditions (b), (c)(i) and (d)(i) of the above theorem are purely
group theoretic, in the sense that they do not depend on ¢. Condition (c¢)(i1) should be
interpreted as saying that the wild ramification groups of G are sufficiently large relative to
the constant —bz ¢ which does not depend on the ramification filtration of G determined
by ¢. Condition (d)(ii) (when it applies) should be viewed as saying that the conjugation
action of No(T') on T is the inverse of the Teichmiiller lift of the restriction of the tame
character 0 : C' — k* to N¢(T'). Note that # does not depend on T and is also independent
of ¢. Thus condition (d)(ii) does involve the arithmetic information contained in €, but this
information is connected only with tame ramification. The higher ramification filtration of
G therefore enters into only condition (a) and condition (c)(ii) of Theorem 6.6.

7. Obstructions associated to cyclic subquotients which are not p-groups

Throughout this section we suppose that the finite group G = P.C'is a semi-direct product
of a normal p-group P with a cyclic prime to p group C. Our goal is to prove the following
proposition concerning the constants by ; = by j(¢) in Corollary 5.5:
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ProrosITION 7.1. — The following conditions are equivalent.

a. For each cyclic subgroup T of a subquotient J of G such that T is not a p-group, then the
constant by j = by, j(¢) in Corollary 5.5 has the property that 0 < by j € Z.

b. Ift is a non-trivial element of a cyclic subgroup Cy of G of maximal prime to p order, the
centralizer Cg(t) is cyclic and equal to the product group Cp(t) x Cy = Cp(Cy) x Cy.

If one (and hence both) of these conditions holds, then all of the constants br_j in part (a) are
either 0 or 1. Both conditions hold if the Bertin obstruction of ¢ vanishes.

Proof that condition (a) of Proposition 7.1 implies condition (b).

We assume that condition (a) of the proposition holds. Condition (b) holds trivially if P
is trivial, so we assume P is not trivial. All of the cyclic subgroups of G of maximal prime-
to-p order are conjugate to C' by Lemma 6.1. Hence to prove (b), we can reduce to the case
Co = C. The fact that C(C) = Cp(C) x C is clear because G is the semi-direct product of
the abelian group C with P.

We first show that Cp(¢) is cyclic. Since condition (a) applies to all subquotients of G, to
show Cp (%) is cyclic, we can replace G by Cp(t) x (t). We may thus temporarily assume that
G is the product group P x (t), with Cp(t) = P. Let P; be the Frattini subgroup of G, so
that P, = [P, P] - PP is the normal subgroup of G generated by the commutator subgroup
[P, P] of P and the p"* powers of elements of P. Thus P/P; is an elementary abelian group
of rank equal to that of P. By Corollary 3.4 and the fact that condition (a) applies to all
subquotients, we may conclude that if H is a subquotient of G, then C(H) must be either a
p-group or a cyclic group. But G/P; = (P/P;) x (t) is abelian and not a p-group, so this
group must be cyclic. Hence the p-Frattini quotient P/ P; is cyclic, so P = Cp(¢) itself must
be cyclic, as asserted.

We now drop the assumption that G = P x (t). To show the last equality in part (b) of
Proposition 7.1, it will suffice to prove

(7.1) Cp(t) = Cp(C).

To prove (7.1), we can use induction on #C' to reduce to the case in which the index of (t)
in C is a prime number by replacing G by P.Cp(t). We have already shown that Cp(t) is
cyclic, and clearly Cp(C) C Cp(t). We now check that C normalizes Cp(t). Suppose c € C
and g € Cp(t). Then cge™! = g’ € P since P is normal, and

/—1 1

gty ' = cgc_ltcg_ ct= cgtg_lc_1 =ctc =t
since cand ¢ are in the abelian group C' and g € Cp(t). Thus the subgroup Cp(t).C generated
by Cp(t) and C is a semi-direct product of these two groups. We now replace G by Cp(t).C
to be able to assume that P = Cp(¢) is cyclic and that [C : (t)] = £ is prime (and prime to p).
If C centralizes P, then (7.1) holds. So we will now assume that C' does not centralize P and
derive a contradiction.

Since ¢t commutes with P = Cp(t) and with all of C, we find that the centralizer Cg ((t))
is equal to all of G. We now apply Proposition 3.2 to the subgroup T' = (t) of G. Since

Ng(T) = Ce(T) = G is not T, this proposition implies that
(72) v({e},Co(T)/T) = > p(#H)=0

cyclic HCCq(T)/T
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where the sum is over the cyclic subgroups H of Cg(T")/T, including the trivial subgroup,
and p is the Mobius function.

In our situation, C¢(T)/T = G/(t) = P.(C/(t)) is a non-trivial semi-direct product of
the cyclic p-group P with the cyclic group C/(t) of prime order ¢ # p. Then C/(t) acts non-
trivially by conjugation on every element of P. It follows that any element g € Cg(T)/T
which does not lie in P must have order exactly £, since otherwise conjugation by g would fix
the non-trivial element g* of P. The number of elements of C¢(T')/T which do not lie in P
is (¢ — 1)(#P), and these generate the # P subgroups H of order £ in C¢(T")/T. The other
groups H appearing on the right hand side of (7.2) are subgroups of P, and the only groups
H of this kind for which pu(#H) # 0 are the trivial group {e} and the unique subgroup P,
of order p in C(T)/T. Thus

(7.3) ¢({e},Ca(T)/T) = > w#H) = p(l)+up) + #P- p(t) = —#P #0.
HCCq(T)/T

This contradicts (7.2), which completes the proof that part (a) of Proposition 7.1 implies

part (b).

Conclusion of the proof of Proposition 7.1. — We first prove two lemmas.

LEMMA 7.2. — Every subquotient J of G is the semi-direct product of a p-group with a
cyclic prime to p-group. If condition (b) of Proposition 7.1 holds for G, then it also holds when
G is replaced by J.

Proof. — The first statement is a consequence of Hall’s Theorem [, Thm. 18.5] together
with the fact that J is an extension of a cyclic group of order prime to p by a normal
p-subgroup. Suppose now that G satisfies condition (b) of Proposition 7.1. It is clear that
every subgroup of G then satisfies this condition. We are thus reduced to showing that
J = G/H satisfies this condition for all normal subgroups H of G. It is enough to prove
this when H is either a p-group or a cyclic prime to p-group.

Suppose first that H is a p-group. Then H C P and J = (P/H).C is the semi-direct
product of the p-group P/H with C. Let t be a non-trivial element of C. By hypothesis,
Cea(t) = Cp(t) x Cis cyclic. Hence to show C;(t) = Cp/g(t).C is cyclic, it will suffice
to show that the quotient homomorphism P — P/H gives a surjection Cp(t) — Cp, g (t).
Here t acts on P and P/H by conjugation, so we are to show that the invariants P{*) surject
onto (P/H){". Since P is a p-group and ¢ has order prime to p, this follows from taking the
non-abelian cohomology with respect to (t) of the sequence of 1 -~ H - P — P/H — 1
(see [28, Chap. VII, Annexe]).

Finally, suppose that H is cyclic of order prime to p. By Lemma 6.1, H is a subgroup
of C' since it is conjugate to such a subgroup and is normal. Then P.H contains the normal
subgroups P and H, so P.H is isomorphic to P x H, and H and P commute. Since H C C
commutes with C, we conclude H is in the center of G. Suppose t’ € J = G/H = P.(C/H)
has order prime to p. Since H is central, it is clear that condition (b) of Proposition 7.1
implies C;(t') = Cp(t') x (C/H) is cyclic, so condition (b) holds for J. O

For z € G, we will write Ng(z) for Ng((2)), where (z) is the subgroup generated by z.
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LeEmMA 7.3. — Suppose that condition (b) of Proposition 7.1 holds. Let z € G be an
element which is not of p-power order. Let m be the smallest positive integer such that w = z™
is a (non-trivial) element of order prime to p.

a. The group Cg(z) = Cg(w) is cyclic and conjugate to Cp(C) x C.

b. If Ng(2) properly contains (z), then so does Cg(z).

Proof. — By Lemma 6.1, w is conjugate to an element ¢ of C. By replacing z by a
conjugate of itself, we can assume that w = ¢ € C. Since we assume that condition (b)
of Proposition 7.1 holds, Cg(w) = Cg(t) = Cp(C) x C'is cyclic. We have z € Cg(w) D Cg(z)
since w is a power of z. Because Cg(w) is abelian, this implies Cg(w) C Cg(z), so
Cg(z) = Cg(w) = Cp(C) x C. This proves part (a).

To show part (b), we assume to the contrary that

(7.4) Ca(z) =Cp(C) x C = (2).
Note that this forces w = t above to be a generator of C. It will suffice to show
(7.5) Na(2) € Co(z)

since then Cg(2) = Ng(z) will equal (z).

The group (z) is obviously normal in Ng(2), and (w) = (t) = C C (%) is characteristic
in (z). Hence C is a normal subgroup of Ng(z). The group Ng(z) N P is also normal
in Ng(z) since P is normal in G. Since Ng(z) N P and C have coprime orders, and the
product of these orders is #Ng(z), we conclude that Ng(z) is isomorphic to the product
group (Ng(z) N P) x C. This means that C' commutes with Ng(z) N P.

Thus Ng(2)N P is contained in the cyclic group Co(C) = Cp(C) xC. Hence Ng(z)NP is
abelian. Since (z)N P is contained in Ng(2)N P, this means that N (z) NP centralizes (z)NP.
However, we have already shown that C commutes with Ng(z) N P. Thus Cg(Ng(z) N P)
contains both () N P and C = (w), and the latter two groups generate (z). Hence
Ce(Ng(z) N P) contains (z), so Ng(z) N P is contained in Cg(2).

We now use the fact that N (z2) is generated by Ng(2) N P C Cg(z) and C = (w) C Cg(w),
where we have shown Cg(w) = Cg(2) already. This implies Ng(z) C Cg(z) and proves
(7.5). O

COROLLARY 7.4. — Condition (b) of Proposition 7.1 implies that if T is a cyclic subgroup
of a subquotient J of G such that T is not a p-group, then by j is equal to 0 or 1.

Proof. — By Lemma 7.2, it will be enough to consider the case in which the subquotient J
is G itself. By Proposition 3.2, by = 1 if Ng(T') = T, and by = 0 provided
(7.6) Y(T,Ca(T)) = > (W - T) = 0.
TCWCCq(T),W cyclic

To prove that one or the other of these alternatives applies, let z be a generator of T', and
suppose that Ng(T') # T. By Lemma 7.3, C(T) is a cyclic group which strictly contains 7.
We conclude that (T, Ca(T)) = ¥({e},Ca(T)/T) = Y acer).r #(d) = 0in (7.6), so
the corollary holds. O

The last two assertions in Proposition 7.1 now follow from Corollaries 7.4 and 5.5, and
this completes the proof. O
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8. Obstructions associated to cyclic p-subgroups
We will fix the following hypotheses and notation throughout this section.

HyroTHEsIS 8.1. — Let ¢ : G — Auti(k[[t]]) be an injection, and write G as the semi-
direct product P.C of a normal p-group P and a cyclic group C of order prime to p. Let T be a
non-trivial cyclic subgroup of G of p-power order. Define bl = b'T’G asin (6.1). We assume
finally that if t is a non-trivial element of C, then Cg(t) = Cp(t) x C is cyclic.

Note that by Proposition 7.1, the final assumption in this hypothesis holds if ¢ has
vanishing Bertin obstruction.
The goal of this section is to compare the constants by = br ¢ and br p.

LEMMA 8.2. — After replacing T by a conjugate subgroup, the centralizer Cg(T) is the
semi-direct product Cp(T').Cco(T) and the normalizer Ng(T) is Np(T).Ne(T).

Proof. — The groupNp(T) = Ng(T)NP isnormal in Ng(T") since P isnormalin G. The
quotient group Ng(7T')/Np(T) injects into the cyclic prime to p-group G/ P, so Ng(T) is the
semi-direct product of N p(T") with a subgroup C” of order prime to p. By Lemma 6.1 we can
replace T by a conjugate of itself to be able to assume that C’ C C. After this replacement
we have ¢’ = N¢(T). Since Cq(T) C Ng(T), we can write each element of Co(T') in a
unique way in the form o with « € Np(T) and 8 € C’ = N (T'). Then the conjugation
action of # on T must be the inverse of the conjugation action of @ on T'. Since § and «
have co-prime orders, this implies that each of these actions are trivial, so & € Cp(T") and

B € Co(T). Thus Ce(T) = Cp(T).Co(T). O
COROLLARY 8.3. — One has
b — br,ce(T)
T =
[Ng(T) : Ca(T)]
br,p T.G

8.1) T N "IN Np(@) T

Proof. — By Theorem 2.3, since T' is non-trivial,

1

wermy | 2 M )

where ((I') = 1¢(T") is defined in Notation 2.2. Clearly if I' € S(T) then I C C(T) since
I is abelian and contains T'. Thus S¢(T') = Sc(r)(T), and the compatibility of the lower
numbering of ramification groups with passing from G to subgroups leads to the first equality
in (8.1). To prove the second equality, note that theI' € S (T) which are p-groups are exactly
the elements of Sp(T); the otherI' € S¢(T') have ¢(I") = 1 since no higher ramification group
can contain a group which is not a p-group. This leads to

[Ne(T) : Tlhr = Y p([L: T)e(T) = [Np(T) : T)br,p + b -
res(T)

(8.2) by =

The second equality in (8.1) follows from this and Lemma 8.2. O
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COROLLARY 8.4. — Suppose that 0 < by p € Z. Then 0 < by € Z if and only if all of the
following are true:
(a.) by g =0mod [Np(T) : T|Z.
(®) Yresry #([I': T))e(T) = 0 mod #Nc (T')Z.
—b
(C') bT,P > [Np(?)G:T]'
Proof. — We have by € Z if and only if #N¢(T)br € Z and [Np(T) : Tlbr € Z, since
[Np(T) : T] is a power of p while #N¢(T') is prime to p. From (8.1) we have

b/

T,G
[Np(T) : T)
So since we suppose by p € Z, we see that this is in Z if and only if condition (a) of
Corollary 8.4 holds. From (8.2) we have

#Nc(T)bor = br,p +

Tl — ) : T] :
[Np(T) : Tor = W Z p([L = T])(T)

res(T)
Since [Ng(T') : T]/[Np(T) : T] = #N¢(T') by Lemma 8.2, condition (b) of Corollary 8.4 is
equivalent to [Np(T') : T|br € Z. Finally, Corollary 8.3 shows condition (c) is equivalent to
br > 0. O

REMARK 8.5. — The hypothesis that 0 < by p € Z holds if the Bertin obstruction of
the restriction ¢|p of ¢ to P vanishes by Proposition 2.1. Corollary 8.4 has to do with the
further conditions which must hold if the Bertin obstruction of ¢ is to vanish. (Recall that if
the Bertin obstruction of ¢ vanishes then so does that of ¢ p by Theorem 5.1.) In condition (a)
of the corollary, the constant b’T’G is a purely group theoretic invariant which does not depend
on ¢. Condition (c) can be thought of as a lower bound on the size of the wild ramification
groups of G. The object of the rest of this section is to quantify the arithmetic information
contained in condition (b).

LEMMA 8.6. — Suppose T' € Sp(T'). Then No(T') C Ne(T) and the restriction of the
character x : No(T) — Zj, of Notation 6.5 to No(T') equals xr.

Proof. — Recall that I' € Sp(T") must be a cyclic p-group containing 7. Hence T is
characteristic in T', so No(T') C N¢(T). By definition, x7 : N¢(T) — Z; gives the
conjugation action of N¢(7') on T', while xr : N¢(I') — Zj; gives the conjugation action
of No(T') on T'. Since the kernel of the restriction homomorphism Aut(T') — Aut(T) is a
p-group, and N¢(T') has order prime to p, this implies x restricts to xr. O

The following result is Proposition 9 of §1V.2 of [28].

LemMA 8.7 (Serre). — Let p be the maximal ideal tk[[t]] of k[[t]], and recall that G is the
3" ramification subgroup of G in the lower numbering. Let 0y : C = Go/G1 — k* be the

faithful character defined by

$(0)(?)
t

Oo(o) = mod p for oe€C.
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For each j > 1 we have an injective group homomorphism 0; : G;/Gj+1 — p? /p? ! defined
by ¢(o)(t)/t =1+ 6;(c) mod p?T. Then

(8.3) 0;(szs™) = 0o(s)? - 0;()
Jorx e Gj/Gjy1ands € C.

COROLLARY 8.8. — Let 6y : C — k™ and 0 : C — k* be the characters defined in
Lemma 8.7 and Definition 6.3. Then 0 = G#P where #P is a power of p. If g € C then
0(g) € (Z/p)* if and only if 0y(g) € (Z/p)*, and in this case 6(g) = 0o(g)-

Proof. — The equality § = 9# P is clear from the fact that if  is the uniformizer in
E[[t]]*") used in Definition 6.3 then u = t#Fv for some unit v in k[[t]]. The second statement
in the corollary follows from the fact that # P is a power of p. O

COROLLARY 8.9. — SupposeI' € Sp(T'). Leti = «(I') — 1 as in Definition 2.2. Suppose
N¢(T) is not trivial. The character 6 : No(T) — k* takes values in (Z/p)* and is trivial if
p = 2. The resulting Teichmiiller lift of this character is the restriction of xT : No(T) — Z;
to Nc(F)

Proof. — Since T is a cyclic p-group and I'; = T" properly contains I'; 1, we have i > 1,
and the group I'; /T'; 11 is a non-trivial cyclic p-group. This group must in fact be of order p,
since 6; is an embedding of it into p?/p‘*!. Thus 6;(I';/T;;1) is a one dimensional Z/p
vector space inside p?/p?*T! which by Lemma 8.7 is stable by multiplication by the elements
of 04(N¢(T)) C k*. Thisimplies 65 (N¢(T')) C (Z/p)*. If p = 2, this shows 6], restricts to the
trivial character on N¢(I'). In general, Lemma 8.7 shows that 6|, (r) gives the conjugation
action of N¢(I') on I'. By Lemma 8.6, this action is also given by the restriction of xr to
Ne (D). O

LEMMA 8.10. — Suppose that T' € Sp(T), so that T is a cyclic p-group which contains T.
The group No(T) acts by conjugation on Sp(T). Let SL5(T) be the orbit of T under this
action. One has

(8.4) > w(Tr:ThuTy) = Y, w([T1:TNe(T) mod #N¢(T)Z.

r,est() rest(m)

Proof. — By Corollary 8.9, the restriction 96<T)71|NO(T) of 96<T)71 : C — k*toNg(T)
takes values in (Z/p)* and has the Teichmiiller lift of the character xr of Lemma 8.6. Since
N¢(T) conjugates T to itself, it acts on Sp(T'), and elements in each orbit have the same
order and value for ¢. The stabilizer of I under this action is N¢(I'), so
(8.5) S u(Ty s T)u(Ty) = [Ne(T) : No(T)]a([L = T)u().

rest(m)
By Lemma 8.6, the action of N¢(I') on I' by conjugation is given by the restriction of x
from C to N¢(T'). As in Corollary 8.9, let 4 be the largest integer such that I' C G, so that
1(T') = i+1. By Corollary 8.9, 6§ |, (ry has Teichmiiller lift x|y, (r). However, GB(T)_l INe ()
also has Teichmiiller lift x|n., ). Since g is a faithful character of C, this forces i = +(T) —1
mod #N¢(T'). Therefore ¢(I") = «(T') mod #N¢(T'). Substituting this into (8.5) proves (8.4)
since [N¢(T) : No(T)] - #Ne(I') = #No(T). O
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LemMma 8.11. — Suppose that xr in Lemma 8.6 has a non-trivial kernel.  Then
Ne(T) = Co(T) = C and xr is trivial.  Condition (b) of Corollary 8.4 is equivalent
to

(8.6) > w(C:T)=0 mod #N¢(T)Z
res(T)

which is independent of ¢.

Proof. — Suppose that ¢ € N (T') is a non-trivial element of the kernel of xr. Then ¢
acts trivially on the cyclic p-group T' by conjugation. The final assumption of Hypothesis 8.1
now says that Cg(t) = Cp(t) x C is cyclic. Thus T is contained in Cg(t), and every
element of Cg(t) commutes with T'. In particular, C is contained in C(T), so we get that
N¢(T) = Ce(T) = C and that xp is trivial. Hence the residue class ¢(T')—1 € Z/#N¢(T)Z
is trivial by Corollary 8.9. Summing (8.4) over the N (T') orbits in Sp(T) now gives

(8.7) > w(Ty:THuT) = Y ([T :T]) mod #N¢(T)Z.

P1ESP(T) F1€SP(F)

IfT" € S(T)is notin Sp(T) then +(T') = 1 since I' is not a p-group. Hence summing
w([T': TNe(T) = p([T : T]) as T runs over these groups to both sides of (8.7) leads to the
reformulation of condition (b) stated in Lemma 8.11. O

LeEmMMA 8.12. — Suppose that xT in Lemma 8.6 has trivial kernel, which is equivalent
to Co(T) = {e}. Let D be the subgroup of G generated by T and by No(T). Then the
constant by p equals o(T) /#Nc(T).

a. One has by p € Z if and only if 1(T) = 0 mod #N¢ (T')Z.
b. Suppose br,p € Z. Then condition (b) of Corollary 5.4 is equivalent to the congruence

(8.8) r=brg= Y  w([:T])=0 mod #Nc(T)Z.
PATES(T)

Proof. — Since xr has trivial kernel, D is the semi-direct product of the normal p-group T’
with the cyclic prime to p group N¢(T), and the action of No(T') on T is faithful. If T’
is a cyclic subgroup of D containing T, then I'/T C D/T = N¢(T) acts faithfully by
conjugation on 7. This forces I" = T, so the set Sp(T") of such I is simply {T'}. Therefore
br.p = «(T)/#N¢(T) by Theorem 2.3. Replacing G by D in Lemma 8.10 shows br p is
integral if and only if +(T") = 0 mod #N¢(T"), which we will suppose is the case for the rest
of the proof. We now return to G as before, so that G need not be D. Summing the formula
in Lemma 8.10 over the N¢(T') orbits in Sp(T") now gives

> w([ly:T)e(T1) =0 mod #Ne(T)Z
reSp(T)
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since ¢(T") = 0 mod #N¢(T')Z. Hence condition (b) of Corollary 8.4 becomes the congru-
ence

0= Y ([l :T))e(T') mod #Nc¢(T)Z

Tes(T)
= > ([ :T))e(T) mod #N¢(T)Z
PATES(T)
8.9) = bl mod #N¢(T)Z
since ((I') = 1ifI" ¢ P. O

REMARK 8.13. — In view of Lemma &.10, the arithmetic condition in part (a) of
Lemma 8.12 is that the conjugation action of N (7T') on T is via the inverse of the Teich-
miiller lift of the character 6g|n, (7). Note that 6|n, (1) takes values in (Z/p)*, so it agrees
with the restriction |x, (1 of the character 6 : C — k* defined in Definition 6.3 because of
Remark 6.4.

Completion of the proof of Theorem 6.6. — We split the proof into two parts:

Part 1. — Suppose the Bertin obstruction of ¢ vanishes.

The Bertin obstruction of ¢p then vanishes by Theorem 5.1, so condition (a) of Theo-
rem 6.6 holds. Condition (b) of the theorem follows from Corollary 5.5 and Proposition 7.1.
Condition (c) of Theorem 6.6 is a consequence of Corollary 5.5 and conditions (a) and (c)
of Corollary 8.4 together with Proposition 2.1 and Theorem 5.1 .

We now suppose as in condition (d) of Theorem 6.6 that T is a non-trivial cyclic subgroup
of P. Since we have supposed the Bertin obstruction of ¢ vanishes, we have by > 0 by
Proposition 2.1(ii). Therefore conditions (a), (b) and (c¢) of Corollary 8.4 hold.

Suppose first that Co(T) is non-trivial. By the definition of 7 in Lemma 8.6, x is trivial
on C¢(T'). Hence the hypothesis of Lemma 8.11 holds. This Lemma 8.11 now shows that
Cc(T) = C. This lemma also shows that since (b) of Corollary 8.4 holds, the congruence
claimed in condition (d)(i) of Theorem 6.6 is true, since (T, G) is the constant on the left
side of (8.6) by (6.2). This completes the proof of condition (d) of Theorem 6.6 if Co(T) is
not trivial.

Suppose now that Co(T) is trivial. The hypotheses of Lemma 8.12 now hold, and the
character x7 in this lemma has trivial kernel. As in this lemma, let D be the subgroup gener-
ated by T'and N¢(T'). Since we supposed that the Bertin obstruction of ¢ vanishes, by p is an
integer by Corollary 5.5. The character 6 in Definition 6.3 and Theorem 6.6(d)(ii) now has
the properties claimed because of Lemma §8.12(a), Lemma §.10 and Remark 8.13. Finally,
since we have already proved that (b) of Corollary 8.4 is true under the above hypotheses,
the remaining congruence to be proved in Theorem 6.6(d)(ii) follows from Corollary 5.5 and
Lemma 8.12(b). This completes the proof of condition (d) of Theorem 6.6. We have now
shown that if the Bertin obstruction of ¢ vanishes, then (a)—(d) of Theorem 6.6 hold.
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Part 2. — Suppose conditions (a)—(d) of Theorem 6.6 hold.

By Proposition 2.1(ii) it will suffice to show that 0 < by € Z for all non-trivial cyclic
subgroups T" of G, since then the Bertin obstruction of ¢ vanishes.

Suppose first that 7" is not a p-group. We have supposed that condition (b) of Theo-
rem 6.6 holds. By Lemma 6.1, all cyclic subgroups Cy of G of maximal prime-to-p order
are conjugate to C. If now follows from condition (b) of Theorem 6.6 that condition (b)
of Proposition 7.1 holds. Therefore by letting J = G in Proposition 7.1(a) we see that
0 < by = br,y € Z, as required.

Now suppose that T is a non-trivial cyclic p-subgroup of G. We have supposed in con-
dition (a) of Theorem 6.6 that the Bertin obstruction of the restriction of ¢ to P vanishes.
Thus 0 < br p € Z by Notation 5.4 and Proposition 2.1. Thus to complete the proof, it
will suffice to show that conditions (a), (b) and (¢) of Corollary 8.4 hold. Hypothesis (c) of
Theorem 6.6 is that (a) and (c) of Corollary 8.4 hold, so we are reduced to checking (b) of
that corollary.

Suppose first that the centralizer Co(T) of T in C is non-trivial. This is equivalent
to supposing that the character x7 in Lemma 8.6 has a non-trivial kernel. Lemma 8.11,
Notation 6.2 and (6.2) now show that Hypothesis d(i) of Theorem 6.6 is equivalent to
condition (b) of Corollary 8.4, so we are done in this case.

Finally, suppose that Co(T) is trivial. In view of Remark 8.13, the hypothesis in
part (d)(ii) of Theorem 6.6 concerning the character 6 is equivalent to condition (a) of
Lemma 8.12. Therefore part (b) of Lemma 8.12 shows that condition (b) of Corollary 8.4
is equivalent to the hypothesis on b7, ; in Theorem 6.6. Therefore condition (b) of Corol-
lary 8.4 holds in all cases and the proof is complete. O

9. Proof of Theorem 1.8

We begin by proving that GM-groups have certain properties that we require.

THEOREM 9.1. — Let G be a GM group with respect to the character ©. Let P, B and
C be as in the Definition 1.7. Set D := Cp(C). Suppose T is a non-trivial cyclic subgroup
of P. Recall that S (T) is the set of cyclic subgroups of G which contain T, and u(zx) is the
Mébius p function. Let by, ¢ and (T, G) be as in Notation 6.2 and (6.2).

a. One has
©.1) re= Y, w([:T)=0 mod [Np(T):TZ
PpTeSa(T)
b. Suppose Cc(T) is not trivial. Then T C D and
9.2) Y(T,G)= > u(l:T))=0 mod#CZL.
reSq(T)

c. Suppose Co(T) = 1. Then either No(T') = 1 or every cyclic overgroup of T is contained
in P.
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Proof. — The results are obvious if C' # 1. So assume this is not the case. Set H = D x C.
Let1 # W < C. Then Cq(W) = DC = H (since D = Cp(W) and C is a complement to
any Sylow p-subgroup of Cg(W)). Similarly, Ng(W) = Np(W)C = Cp(W)C = Cg(W).
It follows that C N C’ = 1 for any conjugate C’ of C other than C.

We first prove (c). Suppose that T" is contained in some cyclic subgroup not contained
in P. It follows that T centralizes some element ¢’ # 1 of order prime to p. By Lemma 6.1,
¢’ is conjugate to some element ¢ € C. Thus, T centralizes a conjugate C’ of C. It follows that
[G : Ce(T)] is a power of p and so Ng(T')/Cq(T) is a p-group. Thus, No(T) < Ce(T)NC =1,
and (c) follows.

We next prove (a) and (b). By Lemma 8.2 we can replace T' by a conjugate subgroup in
order to have Cg(T") = Cp(T).Co(T) and Ng(T') = Np(T').N¢(T'). We may assume that
Cc(T) # 1(thisis the assumption in (b); and in (a) if this is not the case, then we are summing
over the empty set). Thus, 1 # T' < D by Definition 1.7(a). So Ng(T') = Np(T')C.

Since H is cyclic, it is clear that by, y = —1if T = D and by = 0if T' < D. Also,
(T, H) = 0.

We claim that every cyclic subgroup E of G that contains 7" and that is not contained
in P is conjugate to a unique subgroup of H containing T via an element of Ng(T'). Here
uniqueness is clear because H is cyclic and so has a unique subgroup of each order. Existence
follows by Lemma 7.3 since F contains a nontrivial p’-subgroup which is conjugate (in
N¢(T)) to a subgroup of C. So we may assume that £ N C # 1, whence £ < H.

Now let E < H be such a subgroup. Then Ng (E) must normalize every subgroup of E,
and so Ng(E) = H. Thus, by, o = [Ng(T') : H]by . If T < D, this implies that b7, ; = 0
and (a) follows. If T'= D, then [Ng(T') : H] = [Np(D) : D], and again (a) follows.

We now prove (b). Note that C acts on Sg(T). Let E € Sg(T). Then C centralizes E
if E C H. Suppose E is not contained in H and 1 # ¢ € C normalizes E. Since
T C D, c centralizes T', so ¢ centralizes the cyclic Sylow p-subgroup of E. Thus, the Sylow
p-subgroup of E is contained in D. Thus, E must contain a nontrivial p’-subgroup C’ not
contained in C since we have assumed E ¢ H. Then ¢ normalizes C’ and so c centralizes C’
because it does so mod P. Therefore C' C H, so C' C C, which is a contradiction. Thus,
C acts freely by conjugation on the elements of S (7") not contained in H. Since p([T" : T)
is constant on C-conjugates, it follows that:

9.3) > w(L:T))=¢(T,G) mod #CZ.
reSy(T)

Since H is a cyclic group which properly contains 7', the sum on the left in (9.3) is 0, which
completes the proof. O

LEMMA 9.2. — Let Q be a p-group and x an automorphism of Q of order dividing p — 1.
Let ¢ : Q — R be an x-equivariant surjection. If r € R with x(r) = r¢, then there exists

s € Q with ¢(s) = r and x(s) = s°.

Proof. — Thereis no loss in assuming that R is generated by r (replace R by this subgroup
and @ by the inverse image). If ¢ factors equivariantly through an intermediate group, the
result follows by induction. So we may assume that K := ker(¢) is a minimal normal
z-invariant subgroup of Q). Thus, we may assume that K is a central elementary abelian
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p-subgroup of @ with z irreducible on @. Since x has order dividing p — 1, this forces K
to have order p. So either @ is cyclic of order p?, in which case the result is clear, or else @
is elementary abelian. In that case, @ is a completely reducible z-module and so the result is
also clear. O

LEMMA 9.3. — If G is a GM-group with respect to a character ©, then so is every
subquotient.

Proof. — Keep the usual notation. We induct on the order of G. It is clear that subgroups
of GM groups are GM groups. So it suffices to consider quotients by minimal normal non-
trivial subgroups N. Since P is normal in G, either N N P is trivial and N is of order prime
topor N C P. If N has order prime to P, then N.P must be the product group N x P, so
N and P commute. Hence N is a subgroup of the cyclic group C since all subgroups of G
of order prime to p are conjugate by an element of P to a subgroup of C. Definition 1.7(a)
now implies P must be cyclic by choosing c to be a non-trivial element of N, and C must
commute with P. Hence G is cyclic, and it follows that G/N is GM.

Suppose now that N is a minimal normal subgroup of G contained in P. On taking the
intersection of N with the lower central series of P, we see that there is a non-trivial subgroup
Ny of N which is normal in G such that the commutator group [P, Ny] is trivial. Since N is
a minimal normal subgroup of G, this implies N = Ny C C(P). Because C has order prime
to p, we see that if 1 # ¢ € C, then Lemma 9.2 implies that Cp/y(c) = Cp(c)N/N =
Cp(C)N/N = Cp,n(C) is cyclic. So condition (a) of Definition 1.7 holds in G/N. In a
similar way, Lemma 9.2 implies that condition (b) of Definition 1.7 holds for G/N because
it holds for G. O

Completion of the proof of Theorem 1.5. — Suppose first that there is an injection
¢c :— Autp(k[[t]]) having vanishing Bertin obstruction. Let W (k) be the ring of infi-
nite Witt vectors of k. Define ©¢ : C — W (k)* to be the inverse of the Teichmiiller lift of
the character 0 : C — k* appearing in Theorem 6.6. Parts (b) and (d) of Theorem 6.6 then
show that G is a GM group for k& with respect to the restriction © of ©¢ to the maximal
subgroup B of order dividing p — 1.

Suppose now that G is GM for k£ with respect to ©. Pick a faithful extension
O¢ : C — W(k)* of © from B to C. Let M be a positive integer. By induction on
the length of a composition series for GG, we can use Lemma A.2 and Proposition A.3 of
Appendix 1 to construct an injection ¢g : G — Auty(k[[z]]) which is GM with respect to
©¢ and such that

9.4) u(T)>uT)+ M and (T)=0modpM

if T' is a non-trivial proper subgroup of the cyclic p-subgroup I' of G. We will show that if M
is chosen to be sufficiently large, then ¢ will satisfy all the conditions of Theorem 6.6. This
theorem will then imply that ¢ has vanishing Bertin obstruction, and this will complete the
proof of Theorem 1.8.
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Consider first condition (a) of Theorem 6.6. By Theorem 2.3,

1
brp = W FESZP(T)M([F :T))(I)
9.5) - W (r)y+ S (I T

T#TESp(T)

where Sp(T) is the set of cyclic subgroups I' C P which contain 7. So by making M
sufficiently large, (9.4) will insure that each such by p will be larger than any specified integer
and will be integral. Thus the Bertin obstruction of the restriction of ¢ to P vanishes by
Proposition 2.1(ii)(b), so hypothesis (a) of Theorem 6.6 holds. We see also from this that
since the constant b’TG in Notation 6.2 depends only on G, we can insure that the inequality
in condition (c)(ii) of Theorem 6.6 holds by making M sufficiently large.

It remains to check conditions (b), (c)(i) and (d) of Theorem 6.6.

Concerning condition (b), let ¢ be a non-trivial element of C. Then C commutes with ¢;
so since G = P.C we conclude that C¢(t) = Cp(t).C. However, Cp(c) = Cp(C) is a cyclic
p-group since G is a GM group (see Definition 1.7). Hence Cg(t) = Cp(C) x C'is cyclic and
condition (b) of Theorem 6.6 holds.

Suppose now that T is a non-trivial cyclic subgroup of P as in conditions (c) and (d) of
Theorem 6.6. Condition (c)(i) of this theorem holds by part (a) of Theorem 9.1. If Co(T)
is not trivial, condition d(i) of Theorem 6.6 holds by part (b) of Theorem 9.1. Suppose
now that C¢(T) is trivial. The statements about 6 in condition d(ii) of Theorem 6.6 hold
because we constructed ¢ : G — Auty(k[[2]]) to be GM with respect to © in the sense of
Proposition A.3 of Appendix 1. It remains to prove the congruence

re= >, w([:T)=0 mod #Nc(T)Z
PATES(T)

required in part d(ii) of Theorem 6.6. Part (c) of Theorem 9.1 shows that either #N¢(T) = 1
or the sum defining bi[’G is empty; so this congruence holds and the proof is complete. [

10. Examples and characterizations of GM groups

We begin with some examples.

THEOREM 10.1. — Let G be the semi-direct product of a normal p-group P by cyclic
subgroup C of order prime to p. Let B be the maximal subgroup of C of order dividing p — 1.

a. If G is cyclic or a p-group then G is a GM-group.
b. If #B < 2, and C acts freely on the nontrivial elements of P, then G is a GM-group.
c. Gisnot a GM group if it has any of the following properties:
i. (Green-Matignon) G contains an abelian subgroup that is neither cyclic nor a
p-group;
ii. P is elementary abelian of order p?, C has order dividing p — 1 and C acts with
two distinct nontrivial eigenvalues on P.
. P is cyclic of order p, and C neither acts faithfully or trivially on P.
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iv. P is extraspecial of order p* and exponent p, C is cyclic, #C does not divide
p+1, and Cp(C) = C(P). (Recall that a p-group P is extraspecial if C(P) is
cyclic of order p and P/C(P) is a non-trivial elementary abelian p-group.)

Proof. — Parts (a) and (b) follow directly from 1.7. If conditions (i) (resp. (ii), resp. (iii)) of
part (c) hold, then condition (a) (resp. (b), resp. (a)) of Definition 1.7 does not hold. Suppose
now that condition (iv) of part (c) holds but that G is a GM group.

Let us first show that C' must act faithfully on P/C(P). Suppose to the contrary thatc € C
is non-trivial and acts trivially on P/C(P). Because ¢ commutes with Cp(C) = C(P) and
has order prime to p, ¢ must act trivially on P. Then P = Cp(c) = Cp(C) by part (a) of
Definition 1.7, which contradicts the assumption that Cp(C) = C(P) in part (iv). Therefore
C must act faithfully on P/C(P).

We have dimz,,, P/C(P) = 2, and C(P) = A?(P/C(P)) asa C-module. We have assumed
in (iv) of part (c) that the action of C on C(P) is trivial, so the determinant of the action of C
on P/C(P) is trivial. Let ¢ be a generator of C. The characteristic polynomial of the action
of ¢g on the two-dimensional Z/p-vector space P/C(P) thus has the form X2 — aX + 1 for
some a € Z/p. If this polynomial does not split over Z/p, its roots have multiplicative order
dividing p+1. Since the action of C' on P/C(P) is semi-simple, this would force the order of C
to divide p+1, contradicting one of the assumptions in (iv). Therefore X2 —aX 41 splits over
Z/p. We conclude that as a representation of C over Z/p, P/C(P) must be isomorphic to the
direct sum of two characters ¢, and ¢, over Z/p. Thus #C divides p — 1. Now Lemma 9.3
and part (i) imply that either ¢o = ¢, or we can order ¢; and ¢- so that ¢ is trivial. The
action of C on C(P) = A%2(P/C(P)) is given by the character ¢; - ¢2, and we assumed this
action is trivial in part (iv). Thus ¢; = ¢5 1 If ¢; = ¢, then ¢ and C have order 2. However,
we assumed that #C does not divide p+1, so #C = 2 would force p = 2, which is impossible
since #C' is prime to p. Thus ¢; = ¢5 Land ¢, are distinct characters of C. Part (ii) now
shows that G/C(P) is not a GM group, so G is not a GM group by Lemma 9.3. O

In fact, we now show that GM groups can be characterized as those groups of the form
PC which do not contain subgroups of the form in Theorem 10.1(c).

THEOREM 10.2. — Let G = PC be a group with P the normal Sylow p-subgroup of G with
C cyclic of order prime to p. Then G is a GM group if and only if it has no subgroup of the
following types:

1. Z/p X Z/p x Z]r, with r a prime distinct from p;

2. QF where Q is of order p, E is cyclic of order prime to p and E acts neither faithfully
nor trivially on Q;

3. QE where Q is elementary abelian of order p?, E is cyclic of order dividing p — 1,
Cr(Q) = 1 and E does not act like a scalar on Q; or

4. QE where Q is extraspecial of exponent p and order p3, E is cyclic of order e with e not
dividing p+ 1 and Co(E) = C(Q).

We require the following lemmas, the first of which is an exercise beginning with the

definition [z,y] = 27ty tay.
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LemMA 10.3. — If H is a group and z = [z,y] commutes with x for some x,y € H, then
2¢ = [2°,y]. If z commutes with both x and y, then [z¢,yf] = z¢7.

LeEMMA 10.4. — Let Q be a p-group with B = (b) a group of order dividing p — 1 acting
on Q. There is a filtration:

1=Qo<@Q1 < <Qm=Q,
such that:

a. each Q; is normal in Q and B-invariant,

b. each quotient Q;/Q;—1 is cyclic of order p;

c. there is a unique root of unity e; of order dividing p — 1 in Z, such that there is an
element x; € Q; for which x;Q;_1 generates Q;/Q;_1 and bx;b~' = xi', where x;’ is
well defined because x; has non-trivial p-power order.

Proof. — Using the Frattini subgroup of @ and induction on the order of  we can
reduce to the case in which @ is an elementary abelian p-group, in which case the lemma
is obvious. O

Note that one can modify the proof so that the filtration will pass through any given
normal subgroup of @ that is B-invariant.

Proof of Theorem 10.2. — Having no subgroup of the form (1) or (2) is equivalent to the
condition that if 1 # ¢ € C, then Cp(C) = Cp(c) is cyclic. This is the condition (a) in the
definition of GM groups (see Definition 1.7).

So it suffices to show that if G satisfies condition (a) of Definition 1.7, then it is a GM
group if and only if it does not contain a subgroup as in (3) or (4). By condition (b) of
Definition 1.7, a GM group has no subgroups as in (3) or (4). (For (4), see Theorem 10.1.c(iv)
and Lemma 9.3.) Thus it remains to show that if G is not a GM group, it contains such a
subgroup.

So assume that G is not a GM group but satisfies condition (a) of Definition 1.7. Therefore
condition (b) of Definition 1.7 does not hold. By passing to counterexample of minimal
order, we may assume that C has order at least 3 and dividing p — 1. We will use in what
follows that fact that since G is a minimal order counterexample, every subquotient of G
which is not G itself must be a GM group because of Lemma 9.3. In particular condition (b)
of Definition 1.7 holds for all proper subquotients of G but not for G itself.

Let @ be a C-stable subquotient of P, which may equal P. Let B = C in Lemma 10.4,
andletl = Qp < Q1 < -+ < @, = @, the z; and the e; be as in this lemma. If there
are indices ¢ # j such that e;, e; and 1 are distinct, then C acts on z; and z; via distinct
non-trivial characters, so that C.Q) cannot be a GM-group because this violates condition
(b) of Definition 1.7. Thus if @ is a proper subquotient of P, there is at most one e; different
from 1; we let e(Q) be this e; if it exists, and we let e(Q)) = 1 otherwise. We claim:

(10.6) If @ = P then at least two distinct e; are different from 1.

Suppose to the contrary that Q = P and that there is at most one e; which is different
from 1. It will suffice to show that condition (b) of Definition 1.7 holds, since this will be
a contradiction. If all the e; equal 1, then C commutes with all the z; and thus with @ = P,
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so Cp(C) = P and condition (b) holds automatically. If all the e; which are different from 1
are equal and there is at least one such e;, we define © : B — Z; by ©(b) = b* for any such
e;, where we have set B = C. If T is cyclic subgroup of P such that Cx(T) is trivial, then
by considering the smallest ¢ such that T C @; and the image of T in Q;/Q;_1 we see that
condition (b) of Definition 1.7 holds for T'. This contradiction proves the claim (10.6).

Let PP[P, P] be the Frattini subgroup of P, and let P(p) = P/(PP[P, P]) be the p-Frattini
quotient. If P(p) is cyclic, then P is cyclic, and the action of C' on P must be through a
single character, contrary to the fact that we have shown there must be at least two distinct e;
different from 1 when @ = P. Thus P(p) is a Z/p-vector space of dimension at least 2, and
the action of C = B on P(p) can be diagonalized over Z /p since #C divides p— 1. By pulling
back two C-eigenspaces, we conclude that there are C-stable normal subgroups P; and P,
in P such that P/(P; N P,) is elementary abelian of order p? and isomorphic as a C-module
to a sum of two characters ¢; and ¢ of P.

If P, N P, is trivial, so that P = P/(P; N P,), we have seen that ¢; and ¢, must be distinct
and non-trivial (since there are at least two distinct e; which are different from 1). In this case
G = PC satisfies the conditions in part (3) of Theorem 10.2.

Suppose now that P; N P, is non-trivial. If C acts non-trivially on P; N Py, then we
conclude that e(P;) = e(P») = e(P; N P,) in the above notation, since Py, P> and Py N P; are
proper subquotients of P. We have a C-isomorphism Py /(P; N P;) — P/P;. Since Py N P,
contains PP[P, P] we can now find a filtration

1=Qo<@Q1 < <Qm2=PINP<Qun-1=P<Qn=~P

as in Lemma 10.4 such that at most one non-trivial character of C arises from a C-module
quotient @Q;/Q;—1. This contradicts that at least two distinct e; different from 1 must arise
when we set Q = P. We conclude that C' acts trivially on PN P», so P,NP, C Cp(C), where
Cp(C) is cyclic because we have assumed condition (a) of Definition 1.7 holds. Thus P/P;
and P/ P, must define distinct non-trivial characters ¢; and ¢, of C in order for them to be
two distinct non-trivial e; and e; associated to setting @ = P. We now use Lemma 10.4 to
find z; € P, such that bz;b=! = z{* if b is a generator of B = C and for which z;(P; N Py)
generates the cyclic group P;/(P; N P2) of order p. Then z¥ € P, N P, so C acts trivially
on z¥. Thus
2P = (baib™H)P = baPb ! = af

so zf' = 1 because e; is a non-trivial (p — 1)** root of 1 in Z,. Let us check that z; must
centralize each y € P; N P,. Since z;yx; ' € P, N P, C Cp(C) we have

ziyx; ¢ = (bz;b™ 1) (byb~ ) (b~ )t = b(;cma:i_l)b_l = xmwi_l

so x;! ~1 centralizes ~, from which it follows that z; centralizes . This implies that P; N P is
central in G, since we have shown that C'commutes with P; N P, and because G is generated
by C, Py N P, z1 and xo. Thus z = [x1,z2] € P; N P, is central in G, so Lemma 10.3 shows
2P = [z, z3] = 1 because 2} = 1. The group generated by C, z1, z2 and z is now a subgroup
of G of the kind in part (4) of Theorem 10.2, which completes the proof. O

If the subgroup B (in the notation above) has order bigger than 2, the structure of GM
groups is quite limited, as we show in the next theorem.
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THEOREM 10.5. — Let G = PC be a GM-group with #B > 2, where B is the maximal
subgroup of C order dividing p — 1. Let D = Cp(C). Then the derived subgroup H = |G, G]
of G is abelian, C acts freely on the nonidentity elements of H, G is the semi-direct product
H.(C x D) and B acts as a scalar on H. Conversely, any such group is a GM group.

Proof. — We prove the first statement. By coprime action, we have that P = D[C, P] and
[C,H] = [C, P] (see[10, 5.3.5]). Since D normalizes both C and P and since G = [C, P]DC,
it follows that [C, P] is normal in G. Clearly, [C, P] is contained in the derived subgroup
of G. On the other hand C' and P commute modulo [C, P], whence G/[C, P] is abelian. Thus
[C,P]=H.

We next claim that H is abelian. Suppose not. Then we can pass to the quotient
H/[H,[H, H]] and so assume that H is nilpotent of class 2. Let T'= H/®(H), where ®(H)
is the Frattini subgroup of H. Let b be a generator for B. Then b is diagonalizable on T’
and we may choose a basis ¥, . .., y, of T' with each y; an eigenvector for b. We may lift y;
to an element z; € H with b normalizing each (z;). Since H = [C, H], T = [C,T] and so
b centralizes none of the ;. Since G is a GM-group, this implies that bz;b~1 = xie(b) for
each i. Thus, by Lemma 10.3, blz;, z,]b~! = [z;, z;]®®’ for each i, j. Since the order of b is
greater than 2 and © is faithful, ©(b)? # ©(b) and ©(b) # 1. By definition, this implies that
[zi,z;] = 1, whence H is abelian.

Again by coprime action on abelian groups, we have (see [10, 5.2.3]) that H = Cy(C) x [C, H]
and so Cy(C) = 1, using H = [C, H]. Thus C acts fixed point freely on the nontrivial
elements of H. We have already noted that G = HDC = H.(C x D).

Now assume that G is as described. If 1 # ¢ € C, then Cp(c) = D = Cp(C) is cyclic.
Moreover, we see that ¢ normalizes a cyclic subgroup if and only if it centralizes it or acts via
the character given by its action on H. Thus G is a GM-group. O

ExaMPLE 10.6. — Suppose P is cyclic. Since C is cyclic of order prime to p, it acts
faithfully on P if and only if it acts faithfully on the cyclic subgroup @ of order p in P. We
conclude from Theorem 10.2 that when P is cyclic, G is a GM group if and only if it is cyclic
or C acts faithfully on @Q; the latter condition is equivalent to the statement that the center of
G istrivial. If P = @ has order p, it follows from [26] (for cyclic G) and from [5, Theorem 2.1]
(for non-cyclic G) that if G is a GM group then it is in fact a weak local Oort group.

11. Reducing the proofs of Theorems 1.2 and 1.5 to particular groups

In this section we recall Propositions 3.1 and 4.2 of [8], which limit the possible cyclic by
p-groups which has no quotients of certain kinds. This will be used to limit the possible
isomorphism classes of Bertin and KGB groups. We will assume that G = P.C is a
finite group which is the semi-direct product of a normal p-group P with a cyclic prime to
p-group C. Let C, be a cyclic group of order n.

THEOREM 11.1. — Let p be an odd prime. Assume that G has no homomorphic image of
the following types:

1. C, x Cp;

4¢ SERIE - TOME 44 — 2011 — N° 4



THE LOCAL LIFTING PROBLEM FOR ACTIONS OF FINITE GROUPS ON CURVES 569

2. E.Cy,, where E is an elementary abelian p group, p fm > 3, and Cy, acts faithfully and
irreducibly on E;

3. E.Cy where E = Cy, x Cyp, and Cy acts on E by inversion;

4. Dy, x Cy for some prime number £ > 2 (including the possibility that £ = p);

5. E.Cy where E = Cy, and a generator of Cy acts on E by inversion.

Then G is either cyclic or dihedral of order 2p® for some a.

We recall some notation and facts about 2-groups. A generalized quaternion group of
order 2%, a > 3, is given by Q, = (z,y|z%" =1,yzy~? 2°7*) These are the
only noncyclic 2-groups that contain a unique involution.

The semidihedral group of order 2%,a > 3 is denoted by SD, and has presentation
(z,ylz2"" = 1,5® = 1,yzy = z~2""). Note that if G is dihedral, semidihedral or
generalized quaternion then G/[G, G] is elementary abelian of order 4.

= x_l,yQ =

THEOREM 11.2. — Suppose p = 2. Assume that G has no homomorphic image of the
following types:
1. E.D, where E is a non-trivial elementary abelian 2-group, D is cyclic of odd order at
least 5 and D acts irreducibly on E;
2. E.D, where E is elementary abelian of order 16, D has order 3 and acts without fixed
points on E;
3. E.D where E =7/4 x Z/4, D has order 3 and acts faithfully on E;
4. E.D, where E is elementary abelian of order 8 and D acts faithfully on E with D of
order 1 or 3 (note this is isomorphic to Ay x Z/2 or E);
5. E x C where E is elementary abelian of order 4 and C has prime order;
6. E.C where C is cyclic of order 3p with p an odd prime and E is elementary abelian of
order 4 with C acting nontrivially on E; or
7. Z]4 x Z]2.
Then G is cyclic, Ay, or SLy(3), or G = S is a dihedral, semidihedral or generalized quaternion
2-group.

12. Some groups which are not almost Bertin groups
We assume as before that & is an algebraically closed field of characteristic p > 0.

PRrOPOSITION 12.1. — Let G be the semidirect product of an elementary abelian p-group
E of order q > 1 with a cyclic group C,,, of order m prime to p.

a. Suppose q > p. Then G is not an almost Bertin group for k unless p = 2 and q = 4. If
(p,q) = (2,4), then G is not a weak Bertin group for k and not an almost Bertin group
for k unless m € {1,3} and C,, acts faithfully on E, in which case G is isomorphic to
either C% or Ay.

b. Suppose (p,q) = (2,4) and that G is isomorphic to Ay. Then for each integer M > 0,
there is an integer j > M — 1 such that j = 1 mod 4 and there is an injection
¢ : G — Auty(k[[t]) with the property that G1 = E = G # Gj41.

c. Suppose ¢ = p, m > 3 and that C,, acts faithfully on E. Then G is not an almost Bertin
group for k.
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Proof. — Let T be a subgroup of order p in E, and recall that S(T") is the set of cyclic
subgroups of G containing T'. Since FE is the unique p-Sylow subgroup of G, and E is
elementary abelian, each I' € S(T') which is different from T has order divisible by some
prime different from p. Thus ¢(I") = 1 for such I'. Therefore Theorem 2.3 gives

1 ) = {0+ @)
(12.1) b = Ny o FGES%T)M([F HTDUD) = (o) 7]
where
(12.2) )= >, w(r:T)
T#I'eS(T)

is independent of the ramification filtration of G.

We now suppose g > p, so that p?|q. Here E C Ng(T') since T C E and E is elementary
abelian of order g. Thus ¢/p is a positive power of p dividing [Ng(T') : T]. It follows that to
show G is not a Bertin group for k, it will suffice to show that for each integer M > 1, there
is an embedding ¢ : G — Auty(k[[t]]) such that —ay(7) > M for all non-trivial elements
T € G of p-power order, and such that ¢(T") # —c(T") mod ¢/p for some subgroup T" of order
pin E.

The condition on —a,(7) is equivalent to requiring that if j is the first jump in the wild
ramification filtration of G, so that G; = G; # Gj41, then j > M — 1. Suppose that in
addition we arrange that T is not contained in G 4+1. Then +(T") = j + 1, so we will be done
if we can also arrange that j + 1 # —¢(7T') mod ¢/p. We may assume that & is the algebraic
closure of Z /p, since if we can construct an extension of the required kind in this case we can
simply take its base change to an arbitrary algebraically closed field of characteristic p.

To construct a ¢ of the required kind, choose a power ¢’ of p such that F, contains a
primitive m*" root of unity, and let L = F,/((y)) for an indeterminate y. Letting z = y*/™
we see that N = L(z) is a cyclic totally and tamely ramified extension of L, and the integral
closure of Oy, = Fy/[[y]] in N is Oy = Fy[[2]]. We fix an identification of H = Gal(N/L)
with C,,.

The group ring (Z/p)[C.y] is semi-simple and acts on N*/(N*)P. For each integer ¢ > 1
the natural map

1+ 20n N*
14270y  (N9P(1+2710y)
is injective if ¢ # 0 mod p and is the trivial homomorphism otherwise. The group
H = Gal(N/L) = C,, acts on the one-dimensional Fy vector space Fy/ - z via a faith-
ful character x : H — F7,. Thus H acts on the one-dimensional I, vector space

(12.3) W; =

W = 14 ZiON ~ ZiON
‘T + 210N ~ 2H10pN

via the character x!. As a (Z/p)[C,,]-module, W; is the direct sum of finitely many copies of
the unique simple (Z/p)[C,,]-module V; whose character is the sum of the conjugates of x*
over Z/p. Each simple (Z/p)[C,,]-module is isomorphic to V; for some ¢ Z 0 mod p. Finally
W; and W, are isomorphic, so V; and V;,,, are isomorphic.

Suppose first that g/p > 2, and recall that we have assumed p?|q. There is a direct
sum decomposition E = Ty @ Ty of E as a (Z/p)[Cy,]-module in which Tj is a simple
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(Z/p)|Cy]-module. Let T be an order p subgroup of Tp. We claim there is an integer j such
that j # Omod p, 1 + j # —¢(T) mod ¢/p, Tj is isomorphic to V; and j > M — 1. The
condition that j # 0 mod p removes q/p? residue classes mod gq/p, while 1 + j # —c¢(T)
mod ¢/p removes at most one more residue class mod ¢/p. Since ¢/p > 2 by assumption, we
have ¢/p—q/p* —1 = (q/p)(1 —1/p) — 1 > 0 so both of these congruences may be satisfied.
The condition that T} is isomorphic to V; is a condition on j mod m. Since m is prime to p
we can find arbitrarily large j satisfying all three congruences, as claimed.

The group N*/(N*)? is a semi-simple (Z/p)[C.,]-module with a descending filtration
whose terms are given by the image of 1 + 2'Oy for i > 1 prime to p. The successive
quotients in this filtration are the W; above. Since V; is by construction isomorphic to Ty,
it follows from the semi-simplicity of N*/(N*)? and of E that we can find an H-stable
subgroup U of N* containing 1 4+ 2z"Oy for some h > 1 with the following properties.
There is an H-equivariant isomorphism N*/(U - (N*)?) — E which gives rise to surjections
1+270y — E = Ty®T, and 14+29110x — Ty. Let F be the extension of N corresponding
to U - (N*)P by local class field theory. Then F/L is a Galois extension, and there is an
isomorphism Gal(F/L) = G such that G; = G; and G,4+1 # G, does not contain Ty D T'.
The existence of this G-extension shows that G is not an almost Bertin group for k if ¢/p > 2.

Suppose now that ¢/p = 2, so that p = 2 and ¢ = 4. Let C,,,» C C,, be the kernel of the
action of C,,, on E = (C3)2. Then C,, is in the center of G, and C,,/C" is a cyclic group
of odd order acting faithfully on E = (Cs)?2. It follows that G/C,, is either isomorphic to
E = (Cy)? or to Ay.

Suppose first that m’ = 1 and (p,q) = (2,4). In this case, G is isomorphic to either
E = (C5)? or to A4. All that we must prove for such G is that part (b) of Proposition 12.1
holds when G is isomorphic to A4. Thus we now assume m = 3. With the above notation,
we can find an integer j > M — 1 such that j = 1 mod 4, and V; is faithful as a module for
C,, = C3 = H. (The last condition is equivalent to j # 0 mod 3.) The above construction
now produces an example in which £ = G; = G # G;41, which is all that is required when
m' = 1.

We now suppose m’ > 1, (p,q) = (2,4) and that % is an arbitrary algebraically closed
field of characteristic p. Then Cg(Cyp) = G # Cpyr. If G/C,y is isomorphic to E = (Cy)2,
then with the notation of Definition 3.1,

b({e}h, Cal(Con)/Cor) = 1+ 30(2) = —2.
Otherwise G/C,, is isomorphic to A4 and
Y({e}, Ca(Cmr)/Crmr) =1+ 3u(2) + 4u(3) = —6.

It now follows from Corollary 3.3 that there is no local G-cover for which the Bertin obstruc-
tion vanishes, so that G is not a weak Bertin group for k. We can construct examples of such
covers in which the first jump in the wild ramification is arbitrarily large by the same argu-
ments used earlier, so this completes the proof of case (a) of Proposition 12.1.

We now suppose that ¢ = p, m > 3 and that C,, acts faithfully on £ = C,. LetT = E.
Then S(T') = {T}, since the image of T'in G/E = C,, has to act trivially on T' = E. We

have N (T') = G. So Theorem 2.3 gives
uT)

(12.4) by = 2.
m
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Therefore we just have to produce a ¢ : G — Autg(k[[t]]) such that when j is the first
(and only) jump in the wild ramification of G, j is arbitrarily large and j + 1 = «(T') is not
congruent to 0 mod m. The action of C,, on E = C,, is via some faithful character of C,,,
and Aut(C,, ) acts transitively on these faithful characters. Thus by varying the identification
of Gal(N/L) = Gal(F((y'/™))/F(y)) with C,, in our earlier construction of G extensions,
we can produce an example in which j is any positive integer such that j % 0 mod p and j is
relatively prime to m. Since m is prime to p, we can find arbitrarily large j such that j # 0
mod p and j = 1 mod m. Since m > 3, such j will have j+1 # 0 mod m, so we are done. [

EXAMPLE 12.2. — Suppose p > 2 and that G = C,, x C,, so that ¢ = p? and m = 1 in
Proposition 12.1. Thus G is not an almost Bertin group. Nevertheless, there exists a ¢ for
which the Bertin obstruction vanishes. Namely, each non-trivial T € © has order p, and
(12.1) shows by = (1 + «(T"))/p. For all positive integers a = —1 mod p, we can construct
an injection ¢ : G — Aut(k[[t]]) such that (') = a for all non-trivial subgroups T of G.
Thus the Bertin obstruction for such a ¢ vanishes. Moreover, Pagot proves in [22] that when
a = p — 1, one cannot lift ¢ to characteristic 0.

LEMMA 12.3. — Suppose that p is odd and that G is the semidirect product of a normal
cyclic subgroup E of order p with a cyclic group Coy of order 24, where £ is a prime different
from p, with a generator of Cyy acting on E by inversion. Then there is a non-trivial cyclic
subgroup T of G such that the constant by in Proposition 2.1 is not integral. Therefore G is not
a weak Bertin group for k, not an almost Bertin group for k, and not a local Oort group for k.

Proof. — Suppose first that £ = 2 and that o is a generator for Cop = Cy. Let T = {e, 02},
so that T"is in the center of G and Ng(T') = C¢(T') = G. The group C¢(T")/T is isomorphic
to the dihedral group D5y, and ¢({e},Ca(T)/T) = 1+ p(p) + pu(2) =1 —-1—p = —p.
Therefore 3.3 implies no local G cover has vanishing Bertin obstruction. To show that G is
not a local almost Bertin group for k, it will now be enough to prove that for each integer
M > 0, there is an injection ¢ : G — Autg(k[[t]])) such that —ay(7) > M for all non-
trivial elements 7 € G of p-power order. Let ¢ = p? and let L/K be the cyclic quartic
extension F,((2))/F4((t)) for which 2* = t. One can construct a ¢ with the above properties
by considering L*/(L*)P as a module for (Z/p)[Gal(L/K)] and by applying the class field
theory arguments used in the proof of Proposition 12.1; we will leave the details to the reader.

In the other case of Lemma 12.3, G = (E.C3) x Cy; where £ > 2 is prime, p # £ and
Cy acts on E = C,, by inversion. Let T' be the cyclic subgroup E x Cy = Cpe. Then T has
index 2 in G, so Ng(T') = G while C¢(T) = T. Hence ¥(T,Cqs(T)) = 1, so Corollary 3.3
shows that no local G cover has vanishing Bertin obstruction. We can construct injections
¢ : G — Auty(k[[t]]) leading to such covers such that —a,(7) is arbitrarily large for all non-
trivial elements 7 € G of p-power order by the same local class field theory arguments used
in previous cases. This completes the proof. O

COROLLARY 12.4. — Suppose that p > 2, that G is a semi-direct product of a non-trivial

p-group with a cyclic prime-to-p group, and that G is an almost Bertin group for k. Then G
must be either a cyclic p-group or a dihedral group Dopa of order 2p® for some a > 1.
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Proof. — Suppose the corollary is false for some group G. By Theorem 11.1, G has a
quotient H having one of the forms (1)-(5) there. Forms (1)-(3) are not almost Bertin groups
by Proposition 12.1, and similarly for (4) and (5) by Lemma 12.3. So there is a quotient H
of G that is not an almost Bertin group for k. Thus G is not an almost Bertin group by
Corollary 5.6, and this is a contradiction. O

COROLLARY 12.5. — Suppose that p = 2. Let G be a group which is not cyclic, and which
is one of the groups described in items (1), (2), (4), (5) or (6) of Theorem 11.2. Then G is
not an almost-Bertin group for k.

Proof. — The only G described in items (1), (2), (4), (5) or (6) of Theorem 11.2 which
are not covered by Proposition 12.1(a) are those described in item (1) of Theorem 11.2 for
which the elementary abelian p = 2 group FE is of order 2. However, these G are cyclic, so
Corollary 12.5 follows. O

PROPOSITION 12.6. — Suppose p = 2 and that as in item (3) of Theorem 11.2, G is
isomorphic to the semi-direct product E.C3 where the normal subgroup E is isomorphic
to (Z,/4)? and the cyclic group C3 of order 3 acts faithfully on E. Then G is not an almost
Bertin group for k.

Proof. — Since the ramification groups G; are normal in G, there is an integer r > 1 such
that G=Gy DG =FE=---=G, # Grr1and G, C E? = (2Z/4Z)?. Let T be a cyclic
subgroup of order 4 in E. Then Ng(T') = E and there are no cyclic subgroups of G which
properly contain 7. Now Theorem 2.3 gives

1 r+1
N 1) =
Following [28, §IV.3] we let G, for u > 0 be G; when ¢ is the smallest integer > u, and we

define
(u) = /" dt
4 o [Go:Gy]

The upper ramification group G¥*) then equals G,,. Since G contains E with index 3, we
find that (u) = u/3 for 0 < u < r. Thus G"/3 = E and G"/3+¢ is contained in E? if € > 0.
The group E? is normal in G, and H = G/E? is isomorphic to A4. By [28, Prop. 1V.14], the
image of G¥ in H is H” for all v > 0. Thus H"/?® = E/E? and H"/3t¢ = {e} for e > 0.
By comparing the lower and upper ramification groups of H, we find that H, = E/E? while
Hr+1 = {6}

Suppose now that M > 0 is given. To show that G is not an almost Bertin group for k&, it
will suffice to show that there is ¢ : G — Autg(k[[t]]) such that when r is defined as above,
r > M —1and r+ 1 % 0mod 4. This is because (12.5) will then show bt is not integral, so
the Bertin obstruction of ¢ does not vanish by Proposition 2.1.

To construct such a ¢, we apply Proposition A.3 of Appendix 1 to the surjection
G — H = A4. This produces an integer M’ depending on M for which we may use the fol-
lowing argument. Replace M by M’ in Proposition 12.1 and let r be the integer j in part (b) of
Proposition 12.1. Proposition 12.1 then produces an injection ¢ : H = Ay — Autg(k[[2]])
such that H; = H, # H,,; for some integer r > M’ — 1 such that r + 1 = 2 mod 4.
Proposition A.3 now produces an injection ¢ : G — Auty(k[[t]]) as follows. The H-cover

(12.5) by =

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



574 T. CHINBURG, R. GURALNICK AND D. HARBATER

associated to 9 is the quotient of the local G-cover associated to ¢, and —ag(7) > M if 718
a p = 2-torsion element of G. We now see from the above computation of upper and lower
ramification groups that r is the first jump in the wild lower ramification filtration of G, so
we are done. O

ProproSITION 12.7. — Suppose p = 2 and that as in item (7) of Theorem 11.2, G is
isomorphic to (Z/4) x (Z/2). Then G is not an almost Bertin group for k.

Proof. — Suppose M > 1. Let H = Z/2 be the second factor in G, so that there is
a split surjection # : G — H. Let M’ be an integer having the properties for M and
G — H described in Proposition A.3 of Appendix 1. We can construct an H-extension
N/L of L = k((y)) such that the first (and only) jump in the lower numbering ramification
filtration of H occurs at an integer r > M’ — 1 such that r = 1 mod 4. By Proposition A.3(i),
there is an injection ¢ : G — Autg(k[[t]]) which defines a local G-cover of L = k((y))
having N/L as the quotient cover associated to = : G — H. By Proposition A.3(ii), we can
furthermore require that a,(7) > r + 1 for all non-trivial elements 7 € ker (), since all such
7 have order a power of p = 2. This means that ker(7) C G,. Since 7(G”) = H" for all
v, we conclude that 7(G") = H while 7(G"*¢) = {e} for e > 0. Now ker(n) C G, C G",
so we conclude that G" = G, while G"*¢ C ker(7) for e > 0. The first jumps in the lower
and upper ramification filtrations of G are equal, so we deduce from this that G, = G while
Gr41 C ker(m). When we now view H = Z/2 as a subgroup of G = (Z/4) x H, we see that
t(H) = r + 1. Furthermore, Ng(H) = G, while there are no cyclic subgroups of G which
property contain H. Thus

1 r+1

b = Nom m =
Since we arranged that » = 1 mod 4, this proves by is not integral, so the Bertin obstruction
of ¢ : G — Auty(k[[t]]) is non-trivial by Proposition 2.1. Because G, = G andr > M — 1,
this completes the proof that G is not an almost Bertin group for &. O

COROLLARY 12.8. — To complete the proof of Theorem 1.2, it will suffice to show the
following:

a. The groups listed in items (1)—(4) of Theorem 1.2 are KGB groups for k.

b. When p = 2, neither the quaternion group Qg nor the group SLo(3) is a Bertin group
for k.

c. When p = 2, no semi-dihedral group of order at least 16 is a Bertin group for k.

Proof. — If p is odd, this follows from Corollary 12.4, since KGB groups are Bertin and
hence almost Bertin. Suppose now that p = 2. If we grant the results stated in parts (b)
and (c¢) of Corollary 12.8, then Corollary 12.5 together with Propositions 12.6 and 12.7 show
that none of the groups listed in items (1)—(7) of Theorem 11.2 are Bertin groups for k, and
that Qs, SL2(3) and semi-dihedral groups of order > 16 are not Bertin groups for k. By
Corollary 5.6, no group G that has one of these groups as a quotient can be a Bertin group
for k. Thus Theorem 11.2 shows that if G is a cyclic-by-p group which is a Bertin group for
k for p = 2, it must be cyclic, dihedral, generalized quaternion of order at least 16, or Ay.
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Thus a proof that all of these groups are in fact KGB groups for k will complete the proof of
Theorem 1.2. O

13. Reduction to quasi-finite residue fields

To further apply classfield theory to study Artin characters, it is useful to be able to replace
the algebraically closed field & by a quasi-finite field. We first recall the definition of such
fields from [28, §XIIL.2].

DerINITION 13.1. — A field L of characteristic p > 0 is quasi-finite if it has the following
properties:

a. L is perfect;

b. There is an automorphism F' € Gal(L%°?/L) of the separable closure L°°P of L such
that the map Z — Gal(L**P/L) defined by v — F" is an isomorphism of profinite
groups.

ProrosITION 13.2. — Suppose that G is a finite group, k is an algebraically closed field
of characteristic p and that ¢ : G — Auty(k[[t]]) is an injection. There is a subfield k' of k
of finite type over the prime field ,, such that ¢ is the base change from k' to k of a unique
injection ¢' : G — Auty (K'[[t]]). There is a quasi-finite field L containing k' such that
@' induces an injection ¢, : G — Auty(L[[t]]) with the following properties. Let L be an
algebraic closure of L. Then ¢}, induces an injection ¢ : G — Autz(L[[t]]), and the Artin
characters of ¢, ¢', ¢, and qﬁ’f are equal.

Proof. — The existence of k' and ¢’ is clear from the fact that a Katz-Gabber G-cover
associated to ¢, together with the action of G on this cover, is defined over a field of finite
type over the prime field F,,. Since ¢ defines a totally ramified action of G, so does ¢'. If k' is
finite, we can therefore take L to be k’. Suppose now that &k’ has positive transcendence degree
over F,,. By the Noether normalization theorem, &' is a finite extension of a rational subfield
Fp(t1,...,t,) for some algebraically independent indeterminates ¢4, ...,¢,, where n > 1.
Letk; = F,(t1,...,t,—1) be an algebraic closure of the subfield F,,(¢1,...,t,—1), and let N
be the compositum of &’ and k; in an extension field of k. Then N has transcendence degree
1 over ky. Since k; is algebraically closed, IV is the function field of a smooth projective
curve V over ki, and k; is the field of constants of V. By [15] and [24], Gal(N/N) =

Gal(k1(V)/k1(V)) is a free profinite group of countable rank since k; is countable. Let F
be one element of a set of topological generators for Gal(N/N), and let L = N be the
fixed field of F acting on N. Then L is a quasi-finite field, with algebraic closure L = N
and an isomorphism Z — Gal(L/L) defined by v — F”. Since ¥’ ¢ N C L, we can let
¢r : G — Autp(L[[t]]) be the base change of ¢’ from &’ to L. Since ¢, ¢, and ¢ are base
changes of ¢’, all of the associated Artin characters are equal. O

COROLLARY 13.3. — Fix an algebraically closed field k of characteristic p > 0, and let a
be a complex character of G. There is an injection ¢ : G — Autg(k[[t]]) for which ay = a
if and only if there is a quasi-finite field L of characteristic p together with an injection
o1 : G — Auty (L[[t]) such that ay, = a.
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Proof. — Given ¢, we can take L and a4, to be as in Proposition 13.2. Given L and ¢y,
we take k = L, and we let ¢ be the base change of ¢, from L to k. O

14. Dihedral, quaternion and semi-dihedral groups: Ramification filtrations

The object of this section is to begin the analysis of the Bertin obstruction for certain
dihedral, generalized quaternion and semi-dihedral groups.

The following lemma is an example from the end of §IV.3 of [28]. Recall that a real number
s a jump in the upper (resp. lower) ramification filtration of a subgroup J C Gif J¥ # J¥+¢
(resp. J, # Jy,4¢) foralle > 0.

LemMma 14.1 ([28]). — Let k be a field of characteristic p > 0, let H be a cyclic group of
order p", and assume we are given a Galois extension of k((t)) with group H. Then there are

positive integers ig, i1, . . ., in,—1 Such that the jumps in the upper numbering of the ramification
Iltration of H occur at ig, 19 + %1, ...,40 + 41 + -+ + in—1. We have ramification groups
group.
Hy= ---=H,=H=H"=...= H"
Hijy1 = -+ = Hjpypiy, =pH = Hot! = ... = fioth
2 io+i1+1 jo-+i+i
(14.1) Higipi41 = =+ = Higpiyyp2i, = pP°H = HOT0TL = = flotite

Higtpigtotpr—tin_o+1 = PMH = {e} = Hotwinatl,
Thus the jumps in the lower ramification filtration are at Z§:0 plij for0<£<n-—1
For the remainder of this section we make the following standing hypothesis:

HyProTHESIS 14.2. — Let k be an algebraically closed field of characteristic p > 0 and let
n > 1 be an integer. The group G is of order 2p™, is generated by a cyclic subgroup H = (1) of
order p™ and an element o. In addition to the relation 7" = e, G is specified by the following
relations:

1 1

a. (Dihedral case) 0? = eand oro™! = 771,
b. (Generalized quaternion case) p =2, n > 2, 02 = ™ ore~l =171
c. (Semi-dihedral case) p=2,n>3,0% =e, oro~t = 7~ 142",

Let ¢ : G — Auty(K[[t]) be an injection. For I' a subgroup of G, let T, and TV be the lower

and upper ramification subgroups of T associated to v € R.
Under Hypothesis 14.2, Lemma 14.1 yields:

COROLLARY 14.3. — Suppose that T = p’H is a non-trivial subgroup of H, so that
0<j<n-—1 Then

(14.2) uT) = 1+ip + piy + - + plij.
It is straightforward to verify the following lemma and corollary.

LeEMMA 14.4. — A set © of representatives for the cyclic subgroups T of G may be given
as follows. For 0 < j < n, let PP H = (7P’ be the subgroup of index p’ in H, and let
H ={p’H :0<j<n} OnehasNg(T) =T forT € H.
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a. (Dihedral case when p > 2) G = H U {D1}, where Dy = (o) has order 2 and
Ng(D1) = D1.

a’. (Dihedral case whenp = 2) € = 9 U{Dy, Dy} where D1 = (o) and Dy = (T0) have
order 2. The group Ng(D;) = (D;,2"~*H) contains D; with index 2.

b. (Generalized quaternion case) 6 = 9 U {Dy, Do} where D1 = (o) and Dy = (70)
have order 4. The group Ng(D;) = {2"~2H, D;} contains D; with index 2.

c. (Semi-dihedral case) € = J¢ U {D1, Do} where Dy = (o) has order 2 and Dy = (o)
has order 4. One has Ng(D1) = (2""'H, D,) and Ng(Dy) = (2"~2H, D,). For
i =1,2, the index [Ng(D;) : D;] equals 2.

COROLLARY 14.5. — Suppose T € G is non-trivial. Recall that S(T) is the set of non-
trivial cyclic subgroups T' C G which contain T. Define S'(T)) to be the set of T' € S(T') such
that u([T : T) is non-zero, i.e. for which [T : T is square-free. Then S'(T') has the following
description.

a. If T = D; for some i as in Lemma 14.4, then S'(T) = {T'}.

b. Suppose T = p'H for some 0 < j < n — 1 and that either G is dihedral or j # n — 1.
Then S'(T) = {T} ifj =0and S'(T) = {T,p" 1T} if 0 < j.

c. Suppose G is quaternionic and T = 2"~YH. Then S'(T) is the union of {T,2" 2H}
with the set of #(G/Ng(D1)) = 22 distinct conjugates of Dy and the set of
#(G/Ng(D2)) = 22 distinct conjugates of Ds.

d. Suppose G is semi-dihedral and T = 2"~ H. Then S'(T) is the union of {T,2"2H}
with the set of #(G /Ng(D3)) = 2"~2 distinct conjugates of Ds.

COROLLARY 14.6. — Suppose that T = p’ H is a non-trivial subgroup of H satisfying the
conditions of part (b) of Corollary 14.5. Thus either G is dihedral or 0 < j < n — 1. Then

L
(14.3) by = — 0

if j=0 and bT:ZEj if >0

Proof. — Recall from Theorem 2.3 that

1
(14.4) br No(D) 1] FGES;T) u([T: T)e(T).
Since T is normal in G, [Ng(T) : T| = #G/#T = 2p"/p"~7 = 2p’. The only I' which
contribute to the sum for by are those I in S’(T’). Hence Corollary 14.5 gives by = 2u(H)
if j = 0 while by = 55 («(p’ H) — o(p? " H)) if j > 0. Corollary 14.3 now gives the stated
formulas for br. O

COROLLARY 14.7. — Suppose p > 2, G is dihedral, and that T = Dy is as in
Lemma 14.4(a). Then by = +(T) = 1.

Proof. — This is clear from the general formula (14.4) for by and the fact that
S'(T) ={T},Ng(T) = T and T has order 2, which is prime to p. O
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LeEmMA 14.8. — Suppose that G, D1 and Dy are as in parts (@' ), (b) or (¢) of Lemma 14.4.
Let ¢ : G — Auty(k[[t]]) be an injection. Define Dy = H. Let N = k((t)), K = N€, and
L; = NCHD) for i =0,1,2, where (2H, D;) is the subgroup generated by 2H and D;. Then
L;/K is quadratic for i = 0, 1,2, with relative discriminant ideal (m )% for some even integer
d;, where my is the maximal ideal of the integers Ok of K. Moreover fori = 0,1, 2,

. . d;) —d;
(14.5) b, = (Zae{o,l,z};;ﬁ )

is a positive integer.

Proof. — Let 1); be the quadratic one-dimensional character of G = Gal(N/K) which is
the inflation of the non-trivial one dimensional character of Gal(L;/K). Then t); is trivial
on D;. Write

2
(14.6) —ag=Y brif= > brif+> bp, 15

Te® 2HDOTe® i=0

Take the inner product of this expression with xo — 1; when X is the one-dimensional trivial
character of G. If T C 2H then (1§, xo — %:) = 0, and

(14.7) (—ag, xo — i) = —(ag, xo0) + (ag, ¥i) = 0+ (ag,¥:) = d;
by [28, §VI.2]. For 4,5 € {0,1,2}, one has
(14.8) (13, x0 — i) = (15, x0) — (1%, %) = 1= 8(i, §)

since the restriction of 1; to D; is trivial if ¢ = j and non-trivial otherwise. Combining (14.6),
(14.7) and (14.8) gives the system of equations

do = bp, +bp,
(14.9) dy = bp, + bp,
dy =bp, +bp, .

The formula (14.5) is clear from this. The exponents dy, dy, ds are even and positive since
p = 2, so that all the bp, are integral. The compositum of Ly, L; and Ly over K is a
biquadratic extension of K. Thus either all the d; are equal, or two are equal and the third
is smaller than these two. This implies that all the bp, are positive, which completes the
proof. O

COROLLARY 14.9. — Assume the hypotheses of Lemma 14.5. Then

L(Dl) = 2bD1. = Z dj - dz
j€{0,1,2},5j#1i

fori=0,1,2.

Proof. — By Lemma 14.4 and Corollary 14.5, [Ng(D;) : D;] = 2 and S’(D;) = {D;}, so
the result follows from (14.4) and Lemma 14.8. O

COROLLARY 14.10. — With the hypotheses of Lemima 14.8, suppose G is quaternionic or
semi-dihedral, and that T = 2" ' H.
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a. If G is quaternionic then

b. If G is semi-dihedral then

in-1  do+dy —dy
2 4 '

Proof. — If G is quaternionic, then Corollaries 14.5, 14.3 and 14.9 give

1
Ne@) 1] Fgmmr  T))u(T)

br

br =

(14.10) — = (2" H) — u(2"2H) — 2" 2(u(Dy) + 1(D5)))

|—~l\§‘>—\

= 27 (2n_1in_1 — 2n_1(bD1 —+ bDQ))
in—1 do
14.11 = - —.
( ) 2 >

If G is semi-dihedral, the same arguments show

1
[Na(T) : T] restT) u([C: T)u(T)
(1412) = 2% (L(2n71H) _ L(angH) _ 2"*2L(D2)))
= 2% (Qn_lin—l _ 2n—1bD2)
in-1  do+di—dy
2 1 .

br =

O

COROLLARY 14.11. — The Bertin obstruction of aninjection ¢ : G — Auty (k[[t]]) vanishes
if and only if the following conditions hold:

a. 4o is odd, and i; is even for 0 < j <n — 1.

b. If G is dihedral, i, is even.

c. If G is quaternionic, i,_1 is even and i, _1 > dy.

d. If G is semidihedral, “‘T‘l — %‘j_d? is a non-negative integer.

Proof. — By Proposition 2.1, the Bertin obstruction of ¢ vanishes if and only if bp is
a non-negative integer for 7' a non-trivial subgroup contained in the set & described in
Lemma 14.4. Those non-trivial T' € & contained in H are treated in Corollaries 14.6 and
14.10 since the d; in Lemma 14.8 are even. The T' € © which are not contained in H
are treated in Corollary 14.7 and Lemma 14.8. Conditions (a)-(d) are equivalent to the
statement that the by in Corollaries 14.6, 14.10 and 14.7 and in Lemma 14.8 are non-negative
integers. O

COROLLARY 14.12. — Suppose that the Bertin obstruction of ¢ vanishes, so that (a)—(d)
of Corollary 14.11 hold. Then the KGB obstruction of ¢ vanishes.

Proof. — We claim that the KGB obstruction vanishes if we can find for each non-trivial
T € & a sequence of elements {gm}fil of G with the following properties:
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i. Each gr; is in a conjugate of T';
ii. There is an ordering {g; }+cq of the doubly indexed set {gr;}r,;, counting multiplici-
ties, such that [[,cq g+ has order [G : G4].

To prove this claim, suppose we can find {g; }+cq as above. In Theorem 4.2(b) we can
then take S to be [[,cq G/(g:) provided we show that {g;}.cq generates G. Suppose first
that p > 2, so G = Dg,n. By Corollary 14.7, bp, = 1, so there is one g; which has order 2.
By Corollary 14.6, by = £ > 0. Thus the subgroup of G generated by {g; }+cq contains
H and Dq, so must be all of G. Suppose now that p = 2. By Lemma 14.8, by, bp, and
bp, are positive. Hence the subgroup of G generated by {g: }:cq surjects onto the Klein four
quotient G/2H of G. This implies this subgroup must be all of G.

We now have to show that we can choose the gr; so that (i) and (ii) hold.

We consider first the case p > 2. Then G is isomorphic to Dg,» for some n > 1, and
(14.13) holds vacuously. By Corollary 14.7, bp, = 1. It follows that if we pick the g7 ; to be
any generators of T', and pick any ordering {g: }+cq of all these g7 ;, then the product [],cq, 9+
projects to the non-trivial element of G/H. Hence this product has order 2 = [G : G4], since
every element of G = Dgp,» not in H has order 2. Hence (i) and (ii) hold.

Suppose now that p = 2 and that G is a 2-group and is either dihedral, quaternionic
or semi-dihedral. The quotient G/(2H) is then isomorphic to the Klein four group, and
G = G1. We claim that

(14.13) bg = bp, = bp, mod 2Z.

Here by = bp, in the terminology of Lemma 14.8, where it was shown that

j iz dj) — di
(14.14) bp, = (Zae{o,l,z};;é ])

for i = 0, 1, 2. Since all the d; are even, we have d; =& —d; mod 4Z. Thus

2%p,= Y  d;j mod 4Z
j€{0,1,2}

from which (14.13) is clear. Let the g7 ; be any choice of generators for T" as T' ranges over
Gandi=1,...,bp. By Corollary 14.6, by > 0. Hence we can choose an ordering {g: }+cq
of these gr; such that the first g, is a generator of H. The congruence (14.13) implies that
I1:cq g: lies in 2H. We can now multiply the first g, by an element of 2H to produce a new
generator of H such that when we use this element as the first g, we have [],cq g+ = e. This
shows that (i) and (ii) hold and completes the proof. O

COROLLARY 14.13. — With G a finite group and k a field of characteristic p > 0, let
P(G, k) be the assertion that every injection ¢ : G — Auty(k[[t]]) satisfies conditions (a)—
(d) of Corollary 14.11. Then fixing G, the assertion P(G,k) holds for all algebraically
closed fields k of characteristic p if and only if P(G, k) holds for all quasi-finite fields k of
characteristic p. The same is true if we add condition (14.13) to P(G, k).

Proof. — This a consequence of Corollary 13.3. O
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15. Dihedral, quaternion and semi-dihedral groups: Class field theory

In the section we will assume the hypotheses and notations of the previous section, with
the following modifications:

HypoTHESIS 15.1. — The field k is quasi-finite (rather than algebraically closed) of
characteristic p. Fix an injection ¢ : G — Auty(k[[t]). Let N = k((t)), L = N¥ and
K = N€. Define x : L* — H = Gal(N/L) to be the Artin isomorphism. Let & be the image
of o € Gin G/H = Gal(L/K), so that T has order 2 and is a generator of G/H. We choose
a uniformizer g, in L such that if p > 2, o(ny) = —wr. Let Normp i : L — K be the norm.
Define Dy = H, so that L = NPo. If p = 2, we also have the quadratic extensions Ly and Lo
of K defined in Lemma 14.8; in this case, Lo = L, Ly and Ly are the three quadratic subfields
of N containing K.

DEFINITION 15.2. — Let x : L* — C* be a character of order p”, and let x|k~ be the
restriction of x to K*.

a. Say x is of dihedral type if x|k~ is trivial.

b. Say x is of quaternionic type if p = 2 and x|~ is the non-trivial quadratic character
€0 : K* — {#£1} associated to L/ K. This is the character with kernel Norm, /g (L*).

c. Say x is of semi-dihedral typeif p = 2,n > 3, x|k~ is the non-trivial quadratic character
€1: K* — {#£1} associated to L; /K, and x o Normp /x = x>

LemMA 15.3. — If G is a dihedral (resp. quaternion, resp. semi-dihedral) group then x is
of dihedral (resp. quaternion, resp. semi-dihedral) type. Conversely, suspend Hypothesis 15.1
for the moment, and suppose L/K is a specified quadratic extension of K = k((2)) for some
indeterminate z. Let x be a character of order p™ of L*, and let N be the cyclic extension of L
of degree p™ over L which corresponds to the kernel of x by local classfield theory.

1. Suppose x is of dihedral (resp. quaternionic) type, in the sense of parts (a) and (b) of
Definition 15.2. Then N is a Galois extension of N and Gal(N/K) is a dihedral group
(resp. generalized quaternion group) of order 2p™.

il. Suppose that x|k~ is an order 2 character of K* which corresponds to a quadratic
extension L1/K different from L/K, and that x o Ny g = in_l. Then N is a
semi-dihedral extension of K of degree 2p™, with biquadratic subfield over K the
compositum of L and Ly over K. The character x is of semi-dihedral type in the sense
of Definition 15.2(c).

Proof. — Suppose first that Hypothesis 15.1 holds and that G is dihedral, quaternionic
or semi-dihedral. By local classfield theory, x|k~ : K* — C* corresponds to the charac-
ter G®» — C* which is the composition of the transfer map ver : G** — H*’ = H with
x : H — C*. The action of Gal(L/K) = G/H on L* corresponds via ¢ : L* — Gal(N/L) = H
with the conjugation action of Gal(L/K) on H. The assertions in the lemma now follow
from the properties of this conjugation action and of ver when G is a dihedral, quaternion
or semi-dihedral group (see [28, §VII.8]). The converse implications of the lemma are proved
similarly. O
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LEmMA 15.4. — Assume Hypothesis 15.1 holds. If 0 < £ < n — 1 then
(15.1) c(f) =dg+---+1ip

is a jump in the upper ramification filtration of H. Let x : L* — C* be a character having the
properties in the converse direction of Lemma 15.3. Then the kernel of Xp%“H) corresponds
via class field theory to the extension NP H /L, which has Galois group H/(p**'H). The

—(£+1)

integer c({) is the largest positive integer such that x*" is non-trivial on 1 + 71'2“)0 L

Proof. — By[28,§XV.2],if h > 1is integral then the image £(1+ 72 O},) of the multiplica-
tive subgroup 1 +7r£ Oy, under the local Artinmap £ : L* — H equals the upper ramification
subgroup H" of H. Since X”W“H) has kernel p®*' H when we view it as a character of H
via the local Artin map, this leads to the interpretation ¢(¢) in the lemma. O

COROLLARY 15.5. — The jump iy is odd. If G is dihedral, then i; is even for 0 < j < n—1.
Suppose that G is quaternionic or semi-dihedral. Then c(¢) is odd for 0 < ¢ < n — 2, i; is even
foro<j<n-—1andi,_1 =c(n—1)—c(n —2) is even if and only if c(n — 1) is odd.

Proof. — By [28, §XV.2], the local Artin map ¢ induces an isomorphism
1+ ﬂz(l) Or,
1+ ﬂ_z(@)-‘rl O;

This isomorphism is equivariant with respect to the action of Gal(L/K). Recall that we
chose the uniformizer 7y, so that that y(7) = —p if p > 2, and there is an isomorphism of

(15.2) =HWO/H O = ot H/(p" " H) = Z/p for 0<L<n—1.

the left hand side of (15.2) with the one dimensional k-vector space wz(e)k. Hence if p > 2,
then + acts on the left hand side of (15.2) by (—1)¢(¥). We conclude that ¢(£) is odd because
~ acts by inversion on the right hand side of (15.2). In view of (15.1), this shows that g must
be odd and 4, is even for j > 0, so we are done in case p > 2.

Suppose now that p = 2. To complete the proof, it will suffice by Lemma 15.4 to show
that c(¢) is odd if either

i. 0 < ¢ <n—1and (G is dihedral, or

il. 0 < /¢ <n—2and G is either quaternionic or semi-dihedral.

(e+1)

By Lemma 15.4, ¢(¢) is the largest positive integer such that x?"~ is non-trivial on

1+ WZ(E)OL. Therefore x*"~“*" is trivial on 1 + 7T2<£)+10L. Suppose c(¢) is even. Then
wz“) is equal to w%z)/ 2. u, where T = Normp, g7z, is a uniformizer in K and u is a unit

in Oj . Since O, and Ok have the same residue field £, we would then have

(15.3) 14+ 790, = 1+ 7897205 - (1+ 75971 0),).

It follows that x*" " must be non-trivial on 1+7T§((-e)/ ®Ok. By Lemma 15.3, the restriction

of x to K* is trivial if G is dihedral, so we have a contradiction in this case. Suppose now
that G is quaternionic or semi-dihedral. By Lemma 15.3, the restriction of x to K* then
has order 2. We have supposed 0 < £ < n — 2 if G is quaternionic or semi-dihedral, so
n—(£+1)>1and """ is an integral power of x? = x2. Thus x*" ™" is trivial on
K* in this case, and we again have a contradiction. This shows that ¢(¢) must have been odd,
and completes the proof. O

PROPOSITION 15.6. — Suppose G is quaternionic or semi-dihedral.
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i. The integer i,_1 is even unless G is the quaternion group of order 8 and G4 = {e}. In
this case i,_1 is odd and the following is true:
a. The lower ramification filtration of G is G = Gy = G1 # Go = G3 # G4 = {e},
where Go is the order 2 center of G.
b. The Bertin obstruction of ¢ : G — Auty(k[[t]]) does not vanish.
. Suppose G is a generalized quaternion group and i,,_1 is even. Then the KGB obstruction
(and hence the Bertin obstruction) associated to ¢ vanishes.
ii. Suppose G is semi-dihedral. The Bertin obstruction of ¢ does not vanish if dy + dy + da
is not divisible by 4, in the notation of Lemma 14.5.

The proof is an argument by contradiction, and requires a series of lemmas. Before
beginning this we note that this result gives a new proof of a result of Serre [27, §5] and
Fontaine [9] concerning Artin representations which cannot be realized over Q.

COROLLARY 15.7 (Serre, Fontaine). — Suppose G is a generalized quaternion group. Then
the Artin character —ag is not realizable over Q if and only if G has order 8 and the lower
ramification filtration of G is as in Proposition 15.6.1.a.

Proof. — If the Bertin obstruction vanishes, then —a, is the character of a permutation
representation by Proposition 2.1 so it is realizable over Q. Otherwise, G must have order 8
and must have the ramification filtration in part (i.a) of Proposition 15.6. Suppose now that
G is as in part (i.a) of Proposition 15.6. Serre proved in [27, §5] that —a is not realizable
over Q by proving that the multiplicity of the two-dimensional irreducible representation
of G in —ay is 5. O

Lemma 15.8. — Suppose G is quaternionic or semi-dihedral. Then i,,_1 is odd if and only
ife(n—1)in (15.1) is even. Suppose i,,_1 is odd, and let dy and dy be as in Lemma 14.5. Then

-1
(15.4) % =do—1(resp.d;—1) if G isquaternionic (resp. semi — dihedral).
Proof. — The first statement is clear from (15.1) and Corollary 15.5. Now suppose i,_1
is odd, so that ¢(n — 1) is even. By Lemma 15.4, ¢(n — 1) is the largest positive integer such
c(n—

that x|(1+ 7, 1)OL) is non-trivial. Now c(n —1) is even, mx O, = 720y, and the residue
fields of L and K are both k; so we have

(L4717 00p) = (147" 20k) - (14 77"V Oy).

This implies that c¢(n — 1)/2 is the largest positive integer j such that x|(1 + ﬂf,‘{O k) 1s non-
trivial. By Lemma 15.3, the restriction x| K* is the non-trivial quadratic character associated
to the quadratic extension L;/K, where i = 0 and Ly = L if G is quaternionic, and
¢t =1and L,/K is described in Lemma 15.3 if G is semi-dihedral. The ramification groups
Gal(L;/K)* = Gal(L;/K), equal Gal(L;/K) ifv = 0,...,d; — 1 and these groups are
trivial for v > d; — 1 since [L; : K] = 2. Thus ¢(n — 1)/2 = d; — 1 as claimed. O

LEMMA 15.9. — Recall that 0 € G = Gal(N/K) is an element not in H = Gal(N/L).
One has

(15.5) o(np) =7 - (14 Brde! 4 1oy
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Jfor some v € O, and some 8 € k*. We may define a uniformizer wy in K by

(15.6) i =mpo(rg) =72 - (14 Brdo~t 4 o),

Proof. — The first and only jump in the lower ramification numbering of Gal(L/K)
occurs at dg— 1. By the definition of the lower numbering, this gives (15.5), and (15.6) follows
from the fact that L/ K is quadratic and totally ramified. O

LEmMA 15.10. — Let G be quaternionic or semi-dihedral. The integer ig = c(0) is the
largest integer for which there exists an element 6 € k* such that x(1+n}°) = ( is a primitive
2"-th root of unity. The value of ig is odd and given by

(15.7) ig =dy+doy —do— 1.

Proof. — The first statement follows from [28, Cor. 3, §XV.2] since x has order 2. In
the quaternionic or semi-dihedral case, p = 2. For v € L*, the value () is a primitive
2"™-th root of unity if and only if " (7) is non-trivial. Hence Lemma 15.4 shows the first
statement about g, since i is the largest integer such that in_l is not trivial on 1 + wiLO Or.
The character 2" corresponds to the order two character of the Galois group Gal(L'/L),
where L = Lo and L’ is the compositum L - Ly = Ly - Ly over K (with notation as in
Hypothesis 15.1). Thus g is the first (and only) jump in the upper (and lower) ramification
filtration of Gal(L’/L). It follows that the relative discriminant dy, /7, equals 79+t10y. The
relative discriminant dy g is given by

7 g -Normpgedpyr, = dpyx = dojk - dp, i - Aoy

where the second equality follows from the conductor discriminant formula. Since L = Ly
is totally and quadratically ramified over K, this gives

2d0+20+1:d0+d1+d2
which is equivalent to (15.7). Since all of dy, d; and ds are even, iq is odd. O
LemMa 15.11. — Suppose B, 7y, are as in Lemma 15.10 and that 7y is a uniformizer in K.
For all a € k, all odd integers h > 1, and all sufficiently large positive integers M > 1, we have
(15.8) 1+ aw%)QM_2 (14a?mh)y =1+ aQﬂﬁih+d°_1 + W%h+d°n

Jfor somen € k[[r]] = Of.

Proof. — We will show by induction on the integer p > 1 that
(15.9) (14am?)? 2. (14 a®1l) = 1+ o' 7 4 o2pp2htdo=1 4 g2htdo )

for some 7, € k[[r1]] = Or, using that the characteristic is 2. We then get (15.8) by setting
M = pand

w_
n= aQﬂ 7_‘_22 (2h+d0) + 77”

when p is large enough so that h2* > 2h + dj.
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To prove (15.9), first consider the case u = 1. We have from (15.6) that since h is odd and

do > 2,
1+ a?nh =1+ a®*(npo(np))"
(15.10) =1+a*(n? - (1+ Brb~t 4 nfoq))h
=1+ azw%h + a257r%h+d°_l + ﬂih"’d‘)m

for some n; € k[[w]] = Or. This is exactly the assertion in (15.9) when p = 1.

Now assume that (15.9) holds for some p > 1. We multiply both sides by

(1 +ax?)? =1+ 7%,

The left side becomes
(15.11) 1+ar)? - A +ar?)? 2. 1+ anh) =1+ aﬂﬁ)2u+l_2 (14 a?mh).
The right hand side becomes
(15.12)  (1+a®'7?") (14 a7} + a?Brpt it 4 ot )

2M+1

_ hortt 2 n_2h+do—1 2h+d,
=14a" 7} +a " frp T T

*Np+1
where

77,u+1 — (1 + a2#ﬂ_22ﬂ)np + a2“+2ﬂ,22“_1/3 c k[[ﬂ-L]] — OL'
Equating the right hand sides of (15.11) and (15.12) shows (15.9) when p is replaced by p+1,
so the induction is complete. O

COROLLARY 15.12. — With the notations of Lemma 15.11, let a = §, h = ig and
(15.13) z2=1+ 525W]2Lio+d071 n ﬂ_iingdon.

Then x(2) is a root of unity of order exactly 2"~ unless n = 2, G is a quaternion group of
order 8 and x(1 + §°m2) = —1, in this case, x(z) = 1.

Proof. — From (15.8), we have

(15.14) x(z) = x(1 4 dn')

Now from Lemma 15.10, x(1 + (57r? = ( is a primitive root of unity of order 2", while
x(14827%) = +1 by Lemma 15.3 since 1+ 6272 € K*. Thus x(1+067)2" 2 = ¢2"'~2 s
a root of unity of order 2"~! since M > 1. If n > 3, the product of a root of unity of order
2"~1 with £1 isaroot of unity of order 2”1, so (15.14) shows x(z) has order 2" 1. Since G'is
quaternionic or semi-dihedral of order 2"*1, the only way in which one can have n < 3 is for
n = 2 and for G to be a quaternion group of order 8. In this case, x(1+ 57r?)2M_2 =—1,s0
x(2) = —x(1427%) is a root of unity of order 2"~ = 2ifand only if x(1+272) = 1. O

2M

2y (1 4 8%n%).

LemMma 15.13. — Suppose G is quaternionic or semi-dihedral. Then i,_; is even unless all
of the following hypotheses hold.:

1. n = 2 and G is the quaternion group of order 8;
il. The constants dy, dy and dg are all equal to ig + 1 in the notation of Lemma 15.10;
ili. The largest integer ¢(1) = c¢(n—1) such that x is non-trivial on 1+71'2(1)OL is ¢(1) = 2.
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Proof. — We assume throughout the proof that i,,_; is odd, so that ¢(n — 1) is even by
Lemma 15.8. Suppose first that n > 2. By Corollary 15.12, x(z) is a root of unity of order
exactly 2”1, Then since L has characteristic 2,

n— n—1 n— i _ n—2 i n—2 pn_—
(15.15)  x(z2"7) = x(1+ 8% p2 pPiotdom D2y qBlodo)2 2
is a primitive root of unity of order 2, so it is equal to —1. Since
62n71/32n72 # 0

in k, this shows that

(15.16) c(n—1) > (2ig +do — 1)2"72.
On the other hand, Lemma 15.8 shows
(15.17) di—1= C(n27_1)

where 4 = 0 if G is quaternionic and ¢ = 1 if G is semi-dihedral. We conclude from (15.17)
and (15.16) that

(15.18) (2ip +do — 1)2""2 = 2" 2(dg — 1) + 2" Yig < ¢(n — 1) = 2(d; — 1).

Now ig > 1and dg — 1 > 1 because dj is an even positive integer. Since we have assumed
n > 3 in deducing (15.18), we conclude from (15.18) that d; > dy. Then ¢ = 1 and G must
be semi-dihedral. In this case, di = dy > dg, since w?g’ O is the relative discriminant of the

quadratic extension L; /K, and the compositum of Lo, L, and L is the biquadratic extension
L'/K. Here

(15.19) do > dg + 2

since do = d; > dp and each of dg, d; and ds are even. By Lemma 15.10, x(1 + 5#?) isa
root of unity of order 2" for some ¢ € k* and ig = d; +ds —dy — 1 and some § € k*. Hence
(15.19) gives

(1520) io=dy+do—dog—12>d; + 1.
Thus (15.17), (15.18) and (15.20) give
(15.21) 2" Mdy 4+ 1) <27 hig < 272 (dg — 1) + 2" ig < e(n — 1) = 2(dy — 1).
Since n > 3, this would imply d; < 0, which is impossible. Thus d; > dg is impossible, and
we conclude our assumption that n > 3 is also impossible.

What we have shown thus far is that if 4,,_1 is odd then n < 3. Son = 2 and G must be
the quaternion group of order 8, which we will assume for the rest of the proof. In view of
Lemma 15.8 we have ¢(n — 1) = ¢(1) = dp — 1. Suppose that the discriminant exponents

do, dy and dy are not all equal. Since G is the quaternion group of order 8, we can switch the
roles of Lo, L1 and L4 to be able to assume that dy < d; = d2. We now have the lower bound

(15.22) jo=di+do—do—1=2dy —do—1>2(do+2) —do — 1 = do + 3

provided that 4, ; is odd. Since x(1 + 67%) is a root of unity of order 2" = 4,
x(1 + 8272°) = x(1 + drz)? = —1, so x is non-trivial on 1 + 72 +3) 0y by (15.22).
This implies 2(dg + 3) < ¢(1) = 2(dp — 1) which is impossible. Hence all of dy, d; and dy
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must be equal, and we find from Lemma 15.10 that they equal 49 + 1. This and (15.17) (in
which 4 = 0, since G is a quaternion group) complete the proof. O

LemMa 15.14. — Suppose G is quaternionic. Then i,_1 > dy unless conditions (i), (ii)
and (iii) of Lemma 15.13 hold.

Proof. — By Lemma 15.4,
(15.23) ino1=c(n—1)—c(n—2)
where j = ¢(n — 1) (resp. j = c(n — 2)) is the largest positive integer such that x (resp. x?)
is non-trivial on 1 + 77 Oy,. Thus ¢(n — 2) is the largest positive integer such that there is a

constant a € k* such that y (1 + aﬂc(" )y = ¢ is a primitive fourth root of unity. It follows
from Corollary 15.5 and (15.1) that ¢(n—2) is odd, sowe canlet h = ¢(n—2) in Lemma 15.11.
With the notations of Lemma 15.11,

(15.24) (1 +amy" 22" =2 (14 2" %) = 14 a2y DTl gDty
for some n € k[[rr]] = Op. Since M is very large, x(1 + awi("*z))w—? =22 =

because ( is a root of unity of order 4. Hence (15.24) shows

X(1+ a2pmyermHdomt | pden=2bdoyy 21 if x(1+ a2 Y) = 1.
This shows that if (1 + a27%" ™)) = 1 then y is non-trivial on 1 4 72"~ %=1

(15.23) gives
inc1=c(n—1)—c(n—2)>2c¢(n—2)+dy—1—c(n—2) >dg

L, SO

as required.

We now must consider the case in which x (1 + 275"~ ) # 1. For quaternionic G, x|k~
is the character associated to L/K. Hence if x(1 + a?m C(n 2)) # 1thene(n —2) <dy—1
since the first jump in the ramification filtration of Gal(L /K) occurs at dg — 1. However,

Lemmas 15.4 and 15.10 show that
(1525) C(’n—2):’i0+i1+"'+in_2Zi0=d1+d2—d0—1

where all of the i; are positive. Since dy,d; and dy are the exponents of the discriminants
of quadratic subextensions of a Klein four extension of K, either all of these integers are
the same or two of them are equal and larger than the third. Hence we see from (15.25) that
c(n—2) > dy—1, with strict inequality unlessn = 2, dy = d1 = de and ¢(n—2) = ig = do—
Suppose now that all of these conditions hold. Then x(1 + wc(” 2) OL) x(1+70r)
contains a primitive fourth root of unity, so x(1 + 7r2c(" 2)O ) # {1}. If follows that
c(l) =c¢(n—1) > 2¢(n — 2) = 2ig, and if ¢(1) > 24y then (15.23) implies
in,1 :c(n—l)—c(n—2) 22l0+1—10220+1:d0

Thus the only way in which we could have 4,,_1 < d is for ¢(1) = 2ig, which shows that all
of the conditions of Lemma 15.13 hold. O

LemMma 15.15. — Suppose hypotheses (i), (ii) and (iii) of Lemma 15.13 hold and that
ig > 1. There is an inclusion of multiplicative groups

(15.26) 1+ 77°0;, C (Normp, g L*) - (L*)* - (1 + 770 Oy).
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Proof. — By Lemma 14.8, dj is even. We have
io=di+dy—dog—1=dyg—1

by Lemma 15.10 and hypothesis (ii) of Lemma 15.13. By [19, Lemme 5.1.1] and the para-
graph following that lemma, we can choose the uniformizer 7y, of L such that

(15.27) o(rp) =

.

(1 4 mioy1/io

where o € G projects to the non-trivial element of Gal(L/K).
For ¢ > 1 the binomial theorem for fractional exponents now gives

(15.28) o(rh) = nt (vesp. 7t (1 + 7)) mod 72010 if 2|4 (resp. 2/i).
Suppose now that ¢ € k. Define

(15.29) h(¢) = A +7 +CPre ) oL+ 7 + i) = Normp, i (1 + 7p, + (Prie ™).

Using ig > 1 and the fact that 59 — 1 is even, we have from (15.28) the following congruences
mod 73O

h(¢) = (L +mp + o™ (1 + mp + wioth 4 oo™

(15.30) =1+77 + (47r2 o=l) mioth 4oplot2 4 (2p2io

h(0) + ¢*a 0T 4 P,
Here
(15.31) h(0)~* (1 + a2 et 4 7TZO+2) g 72 mod 730y
since 19 > 3. Thus (15.30) gives congruences

h(0) 7 h(¢) = 1+ h(0) T (¢'r 7Y + (PaE) mod wpetlOL
(15.32) =1+ (1 —72) (Y 4 2a¥o) mod wFotloy
= (¢ (4 (P D) mod wptOL

where the last congruence holds because

2(io — 1) + 2ip = 4ig — 2 > 2ip + 1
since 49 > 3. Because i > 3 is odd, (ip — 1)/2 > 1 is an integer. Hence (15.32) gives
(1533)  (1+¢meo V) h(0) ™ A =14+ (P = ¢y mod 0O

Now for each A € k, thereis a ¢ € K such that (2 — ¢* = X. By (15.29), h(0)~! € Normp x (L*).
We conclude from (15.33) that

1+ 720 C (L*)* - Normy, g (L*) - (1 + 77°T'0y)

which proves Lemma 15.15. O

COROLLARY 15.16. — Hypotheses (i), (ii) and (iii) of Lemma 15.13 imply ig = 1.
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Proof. — Suppose ig > 1. By part (iii) of Lemma 15.13, x is not trivial on 1 + 72% Oy,
but trivial on 1 + 72%°+10;. Since G is the quaternion group of order 8, the character x
has order 2" = 4. By Lemma 15.3, x is trivial on Normp, /i (L*). Hence X is trivial on
(Normy, g L*) - (L*)*- (14 77710y so x is trivial on 1+ 72Oy, by Lemma 15.15, which
is a contradiction. This proves that we must have ig = 1. O

Completion of the proof of Proposition 15.6. — We begin with statement (i) of the propo-
sition.

Suppose first that 4,,_; is odd. By Lemma 15.13, we can reduce the case in which G
satisfies the hypotheses of Lemma 15.13. By Corollary 15.16, i = 1. Fori = 0,1,2, let
H; = Gal(N/L;) where L; is the quadratic extension of K described in Lemma 14.8, so that
H = Hy. The first (and only) jump in the upper (and lower) ramification filtration on G/H;
occurs at d; — 1. By Lemma 15.13, dg = dy = ds. Therefore if v € R is a jump in the
ramification filtration of G/H; for one i, it is a jump in this filtration for all <. The image
of the higher ramification group G* in G/ H, is equal to the ramification group (G/H;)". It
follows that G¥ N H; has order independent of i € {0,1,2}. Hence G" is either G, {e} or the
center C(G) = {e, 7%} of G. By Lemma 15.13 and the definition of ig in Lemma 15.10, the
jumps in the ramification filtration of Hy = H = Gal(N/L) occur at the integers iy = 1
and at 259 = 2. Hence by the Hasse-Arf Theorem (see Lemma 14.1), the jumps in the
lower numbering of the ramification filtration of H occur at 1 and at 1 + 2 = 3. Since each
ramification group is either G, {e} or C(G), we conclude that the lower numbering of the
ramification filtration of G is

(15.34) G=Gy=G1DC(G) =Gy =G5 DGy ={e}.

Suppose now that G is the quaternion group of order 8 and G4 = {e}. From G4 = {e}
and Lemma 14.1 we must have H = Hy = H; D Hy = 2H = H3 D H, = {e}. Since this
holds true for each of the cyclic subgroups H of index 2 in G, the lower ramification filtration
of G must be given by (15.34). Since #G = 8, we have n = 2. Lemmas 15.4 and 14.1 give
that 39 = ¢; = 1, so that 4,,_; = %7 is odd.

We now check that if G has order 8 and ramification filtration (15.34) then the Bertin
obstruction does not vanish. Let T' = C(G). The set S(T') of cyclic subgroups of G which
contain T is {T, Hy, Hy, H>}. The constant by appearing in Theorem 2.3 is thus

1
(1535 by = No(@) 1] —8(T, {e})ay(1) + FE%(:T)M([F $THUT) | = 3.

Proposition 2.1 now shows that the Bertin obstruction associated to the given action of G
on N does not vanish. This completes the proof of part (i) of Proposition 15.6.

We now suppose that as in part (ii) of Proposition 15.6, G is a generalized quaternion
group and i,,_; is even. We claim that not all of hypotheses (i), (ii) and (iii) of Lemma 15.13
can hold. Suppose to the contrary that all of these hypotheses do hold. Thusn = 2,
¢(1) = 2ig, and by Corollary 15.16, i9 = 1. Thus Lemma 15.4 gives i,y = i; =
¢(1) — ¢(0) = ¢(1) —ip = ip = 1. This contradicts our assumption that 3,,_; is even, so
not all of hypotheses (i), (ii) and (iii) of Lemma 15.13 hold. Therefore Lemma 15.14 proves
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in_1 > do. Hence Corollaries 14.11(c), 14.12 and 14.13 show that the KGB obstruction
vanishes.

To prove the final statement (iii) in Proposition 15.6, we know by Lemma 15.13 that 4,,_;
is even if G is semi-dihedral. Since the d; are all even, we conclude from Corollary 14.11(d)
that the Bertin obstruction does not vanish if

(15.36) dy+di+do=do+dy —do #0 mod A4Z. O

16. The group SL(3) when p = 2

PrOPOSITION 16.1. — Suppose p = 2 and that G is isomorphic to SLy(3). A 2-Sylow
subgroup P of G is normal and isomorphic to a quaternion group of order 8. The Bertin
obstruction associated to an injection ¢ : G — Auty(k[[t]]) vanishes if and only if the Bertin
obstruction associated to the restriction ¢p of ¢ = ¢g from G to P vanishes. These two
equivalent conditions hold if and only if the KGB obstructions of both ¢ and ¢p vanish.

Proof. — Because of Theorem 6.6, the Bertin obstruction of ¢ p vanishes if that of ¢ does,
and we now prove the converse. We suppose for the rest of the proof that Bertin obstruction
of ¢ p vanishes. To show that the Bertin obstruction of ¢ vanishes, it will be enough to show
that conditions (b), (¢) and (d) of Theorem 6.6 hold.

Let ¢ be a non-trivial element of the cyclic group C of order 3. Then Cg(t) = Cp(t) x C
where Cp(t) is the center C(G) of G, which has order 2. This shows condition (b) of
Theorem 6.6.

The cyclic non-trivial subgroups T of P are C(G) together with the three cyclic subgroups
I'(1), I'(2) and I'(3) of order 4 which are conjugate under the action of C. There are four
conjugates C(1) = C, C(2), C(3) and C(4) of C in G. Let J(j) = (C(G),C(j)) be the
cyclic group of order 6 generated by C'(j) and C(G). One has

(16.1) Sc(C(G@)) = {C(G),I'(1),I'(2),I'(3), J(1), J(2), J(3), J(4)}
and
(16.2) Sa(T'(5)) ={r'()}-

In the notation of Theorem 6.6, we have
4

(16.3) Voo = p,  m([:C@)) = ulJ3G): C@G)) =—4

PZTESc(C(G)) j=1
Since every I' € S (I'(j)) is contained in P, we have
(16.4) e = o, w(l:T@E)]) =0.
P2TeSc(T(5))

Condition (c.i) of Theorem 6.6 is that by, ; = 0 mod [Np(T') : T]Z, which we see follows
from (16.3) and (16.4) since [Np(C(P)) : P] = 4.

Since we have supposed that the Bertin obstruction of ¢ p vanishes, we have by p > 0 for
T = C(G) and T =T'(j). Condition (c.ii) of Theorem 6.6 is that

(16.5) [Na(P): Tlbrp = >, p(l:THe(T) > —brg.
reSp(T)
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When T = T'(j), this follows from bp(;) p > 0 = —br(;),¢. We now assume that T' = C(G),
so that —br ¢ = —bc(q),¢ = 4. It remains to prove the inequality (16.5) in this case.

Let H = I'(1) be one of the three cyclic subgroups of order 4 in P. Let ig and i be
the integers associated to ¢p and to H in Lemma 14.1. Let x : H — pu4 be a faithful
character of H. We let L = N be the fixed field of H acting on N, where N/F is the G
extension associated to ¢g. By classfield theory, we can view x as a character of L*, after
reducing to the case of quasi-finite residue fields via Proposition 13.2. By Lemma 15.4, ig is
the largest integer such that x(1 + 7°O1) = 4, while i; is the largest integer such that
x(1+ 7riL°+“OL) = {£1}. Since (1 + W?OL)2 cl+ wiiOOL we conclude that i¢ 4+ 71 > 24,
s0 i1 > ig. By Corollary 14.11, iy is odd and 4, is even since the Bertin obstruction to ¢p is
trivial. Hence i; > i implies i1 = ig + 1 + 2h for some ~A > 0. By the definition of i and 41,
the jumps in the upper ramification filtration of H occur at i and i¢ + ¢;. By Herbrand’s
theorem [28, Chap. IV.3, Lemma 5], the jumps in the lower ramification filtration occur at i
and ig+ 241 = i9+2(ig+ 14 2h) = 3ig+2+4h. Now C(G) is the order 2 subgroup of H, so
the jumps in the lower and the upper ramification filtration of C(G) both occur at 3ig+2+4h.
Recall that J(1) is a cyclic group of order 6 which contains C(G) (see (16.1)). By the Hasse-
Arf Theorem, the jumps in the upper ramification of J(1) occur at integers jo = 0 and j; > 0
since J (1) is abelian and the wild ramification subgroup of J(1) is C(G). Herbrand’s theorem
now shows that the jumps in the lower ramification of J(1) occur at 0 and at 35;. Therefore
the (unique) jump in the lower ramification of C(G) occurs at 351 = 3ig + 2 + 4h. This and
h > 0force h =1+ 3h' for some 0 < k' € Z. Thus

(16.6) i1 =i+ 1+2h=ip+1+2(1+3h)=4y+3+6h with 0<h' €Z.

Since I'(1) is conjugate to I'; for j = 2,3, we have ¢(I'(1)) = «(T'(j)) for j € {1,2,3}.
Considering that the jumps in the lower numbering of H = I'(1) occur at 39 and i + 241, we
conclude that

(16.7) C(G)) =ig +2i1 +1 =ig +2(ig + 3+ 6h') + 1 = 3ig + 7+ 124

and
(16.8) (1)) =do+ 1.
Now
[NP(C(G)) : C(@be(e),p = > u([l = C(G)u(T)
C(G)CTeSp(C(Q))

YC(G)) —3u(IT'(1))
= 3ip + 7+ 12h' — 3(ip + 1)
(16.9) =4+ 120 > 4= —by ¢
because of (16.7), (16.8) and (16.3). This proves (16.5) for T = C(G), which completes the
proof of condition (c.ii) of Theorem 6.6.

We finally consider condition (d) of Theorem 6.6. If T = C(G) then Co(T) = C =
N¢(T') and

P(C(G),G) = Y, wl:C@))=1-3-4=-6=0 mod #Nc(I)Z
r'eSc(C(G))
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since #N¢(T') = 3. Thus condition (d.ii) of Theorem 6.6 holds for T' = C(G). The other
non-trivial cyclic subgroups T' of p-power order in G are the I'(j) for j = 1,2,3. We have
Ne(I(4)) = {e} = Cc(I'(4)), so condition (d.ii) of Theorem 6.6 holds trivially for T = T'(j).
This completes the proof that the Bertin obstruction of ¢ vanishes if and only if that of ¢p
does.

It remains to prove the last assertion of the proposition. It follows from Proposition 15.6
that the Bertin obstruction of ¢ p vanishes if and only if the KGB obstruction of ¢ p vanishes.
By Theorem 4.2, if the KGB obstruction of ¢ vanishes then the Bertin obstruction of ¢¢
does also. So to finish the proof of Proposition 16.1, it will suffice to show that if the Bertin
obstructions of ¢ and ¢p vanish then the KGB obstruction of ¢ vanishes.

We can choose a set G of representatives for the conjugacy classes of non-trivial cyclic
subgroups of G in the following way:

(16.10) Ge ={C(G),I'(1),C(1),J(1)}.
We have
(16.11)  bpay.c = [NG(F(ll)) T X (T = L(F;I)) _ 10;1.

reSq(r(1))

Thus br(1),¢ > 0, and this is integral by Proposition 2.1 because the Bertin obstruction of ¢¢
vanishes. One has Ng(C'(1)) = J(1) # C(1) and Ng(J(1)) = J(1), so Proposition 3.2 gives

(16.12) bc(1),c =0 and by e =1

From Theorem 4.2 and Proposition 2.1, to show that the KGB obstruction vanishes, it
will be enough to construct for each T' € G a sequence By of br g elements of G such that
each b € Br generates a conjugate of T and [[r¢ ¢, [[pep, 0 has order [G : G1] = #C =3
after choosing some ordering for [[r¢ ¢, Br. Here br(1), ¢ > 0, so since we can choose the
elements of Br(;) to be generators of any of the three (conjugate) order 4 subgroups of P,
we can arrange that HbGBm) b has order 4. We know that Bo(;) = @ and that B () has
one element by (16.12). Now the product of an element of order 4 and an element of order 3
in PSLy(3) = SLa(3)/{%I} is an element of order 3. Thus for any choice of B¢g), the

resulting product
II II¢

T€6g bEBr
has order 3 image in PSL3(3). We can make this element have order 3 in SL2(3) = G by
adjusting one of the elements of Br(;) by multiplying it by either the trivial or the non-trivial
element of C(G). This completes the proof of Proposition 16.1. O

17. Proof of Theorem 1.2

By Corollary 12.8, the proof of Theorem 1.2 is reduced to showing the following results:

a. The groups listed in items (1)—(4) of Theorem 1.2 are KGB groups for k.

b. When p = 2, the quaternion group Qs and the group SLy(3) are not Bertin groups
for k.

c. When p = 2, no semi-dihedral group of order at least 16 is a Bertin group for k.

4¢ SERIE - TOME 44 — 2011 — N° 4



THE LOCAL LIFTING PROBLEM FOR ACTIONS OF FINITE GROUPS ON CURVES 593

Lemma 17.1. — For all k, every cyclic group G is a KGB group for k.

Proof. — Let G be a cyclic group with p-Sylow group H of order p™. It was noted in
Remark 1 of §4 of [2] that the Bertin obstruction of G vanishes. To show that the KGB
obstruction vanishes, we first compute by when T is a non-trivial cyclic subgroup of G.

The lower numbering of the ramification groups of G has Go = G and G; = H; if i > 0.
By Lemma 14.1, there are positive integers g, i1, . - -, i, 1 such that the jumps in the upper
numbering of the ramification filtration of H occur at ig, g + %1,...,% + 91 + -+ + Gpn_1-
Write #G = mp" for some integer m prime to p. By the Hasse-Arf Theorem, the jumps
in the lower ramification filtration are at ¢(—1) := 0if m > 1 together with the integers
q(0) = mezopjij for{=0,--- ,n— 1. We find by Corollary 14.3 that

(17.1) (ptH)Y=14q) for 0<f<n-1 ; T)=1 if T ¢ H.
By Proposition 3.2,
17.2) br =0fG#T ¢ H and be=1ifG#H.
Otherwise, T' C H and we may write T = p*H for some 0 < ¢ < n — 1. By Theorem 2.3,

1
" Ne@) 1] FEXS;T)M([F : T))u(T)

=— Z w(l:T]) + Z p([T TN ((T) = 1)

res(T) res(T)ICH

(17.3) — (6@ H,G) + mptiy) = §("H, G) + is.

(In the second sumin (17.3), onlyI' = H contributesif ¢ = 0, whileI’ = p*H and T’ = p*~'H
contribute if ¢ > 0. The last equality in (17.3) is a consequence of the fact that p’H = G if
and only ifm =1and £ =0.)

To show that the KGB obstruction vanishes, we start by picking an ordered set {g; }+cq of
elements of G such that each g; is non-trivial, and the number of g; which generate a given
non-trivial 7' € @ is by. As in Theorem 4.2(b), we have to show that we can adjust these g;
so that they collectively generate G and so that [[,cq g+ has order [G : G1] = m.

Suppose first that G = H, so that m = 1. By (17.3), by = 1 + 49 > 2. Hence there must
be at least two distinct elements u,v € 2 such that g, and g, generate G = H. Consider
the product g = [[;cq—{u,0} 9¢- It will suffice to show that there are generators g;, and g,
of G such that g/,g/ = g~!, since then we can replace g, by g/, and g, by g/, to have a set
with the required properties. We claim that for all primes p, the elements of a cyclic group
G = H of order p™ which are the product of two generators are exactly the set of squares
in G (which equals G unless p = 2). This is clear for n = 1, and it follows by induction for
all n. Thus to construct the required g/, and g/, it will suffice to show that g above is a square
if p = 2. So we now suppose p = 2. Then 1 + 4 is the valuation of the discriminant of the
quadratic extension k((t))2¢ of k((¢))€ inside k((¢)), and this must be even. Hence i, is odd
s0bg = 1+1ip > 0iseven. Every T € & except for T' = G is contained in 2G = 2H. Hence
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the product g = [[;cq—fu,0} 9¢ lies in 2G' = 2H, and this completes the analysis of the case
G=H.

We now suppose that G # H. By (17.2), the unique T' € & which is not a p-group and
for which by isnot 0is 7' = G, and bg = 1. We can therefore pick the first element g,, of
{g: : t € Q} to be a generator of G, and all the other elements will be in H. We are therefore
done if H is trivial, so suppose from now on that H is non-trivial. Consider the product
[Tustten 9t € H. If p = 2 then all terms of this product are in 2H except for by terms in
which g; is a generator of H. Here by = ig > 0 by (17.3), and this is odd if p = 2. Thus
we can pick an element v € Q — {u} such that g, is a generator of H, and the number of
v € Q- {u, v} for which g, generates H is even. Taking into account that g, is a generator
of G, we find that g = [[,cq g: lies in 2G if p = 2; and whether or not p = 2, this is the
product of a generator g, of G with an element of the p-Sylow subgroup H of G. This implies
g has order divisible by m. It will suffice to show that we can pick elements h,,, h, € H such
that g/, = g, h,, is a generator of G, g, = g, h, is a generator of H, and

gugy  [] 9= huhog
teQ—{u,v}

has order m, since then we can simply replace g,, by g, and g, by g,,.

We first observe that k. h, g always has order divisible by m since h,, and h,, are elements
of p-power order and g has order divisible by m. Hence h,h,g has order m if and only if
hirhitg™ = e, where ¢"™ € H and g™ € 2H if p = 2. Since h,, € H and g,, is a generator
of G, the element g, = g, h,, will be a generator of G if and only if g/*h}" is a generator of the
p-Sylow subgroup H of G. This will be the case if h]" is not congruent mod pH to g;,;™ € H.
Similarly, h, g,, will be a generator of H if and only if h]*g¢}" is such a generator, and this will
be so if and only if A]" is not congruent mod pH to g, ™. We thus see that h]}' and h]® are to
be elements of H which each avoid a particular congruence class mod pH which generates
H mod pH, and for which Ak} is equal to g™, where ¢™ € H and g™ € 2H ifp = 2.
Since H is cyclic of order p™, one sees by induction on n that such A} and h}* always exist.
Since m is prime to p, we can then find A, and h,, in H with the required properties, which

completes the proof. O

PROPOSITION 17.2. — For all primes p and integers n > 1, the dihedral group Dopn is a
KGB group for k. If p = 2, then the following hold:

1. If G is a generalized quaternion group of order 2™ > 16, then G is a KGB group for k.
. If G is the quaternion group of order 8, G is an almost KGB group for k.
iil. If G is a semi-dihedral group then G is not an almost Bertin group for k.

Proof. — By Corollaries 14.11, 14.12, 14.13 and 15.5, Dg,» is a KGB group for &, for
all p. Now assume that p = 2. These corollaries together with Proposition 15.6(iii) imply
statements (1) and (i1) concerning generalized quaternion groups. Suppose now that G is a
semi-dihedral group. We can construct a Klein four extension L’/ K such that the exponents
dp, dy1 and dy of the discriminants of the three quadratic subfields (as in Lemma 14.8) are
larger than a specified number and for which dy + d; + ds is not divisible by 4. By parts
(1) and (ii) of Proposition A.3 of Appendix 1, we can realize this L' /K as a subfield of a
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G-extension of K such that the first jump in the ramification filtration of G occurs above a
specified number. Proposition 15.6(iii) now shows G is not an almost Bertin group for k. O

COROLLARY 17.3. — Whenp = 2, the group SLo(3) is an almost KGB group for k.
Proof. — This follows from Propositions 17.2 and 16.1. O
LEMMA 17.4. — When p = 2, the alternating group Ay is a KGB group for k.

Proof. — We can take the set G to consist of a group Hs of order 2 and a group Hj3 of
order 3. Since N (Hs) = Hs, Proposition 3.2 shows by, = 1. There is no cyclic subgroup
of A4 which properly contains Hs, and N 4, (H2) has order 4, so

1 L(HQ)
b, = [N, (Hy) : Hy] “H) = =5
Since H, has order p = 2, the first (and only ) jump i in the upper (and lower) ramification
filtration of H» occurs at an odd integer, so ¢(Hz) = 1+ 49 > 2 is even. Thus by, > lisan
integer. This shows that Bertin obstruction associated to local A4 covers in characteristic 2 is
trivial. Since by, = 1 and the 2-Sylow of A, is normal, if we choose any set of generators for
the stabilizers appearing in the product described in the KGB condition of Theorem 4.2(b),
this product will not lie in the 2-Sylow of A4. Therefore this product has to be an element of
order 3 = [A4 : (A4)1], so the KGB condition holds. O

In view of the remarks at the beginning of this section, the following result completes the
proof of Theorem 1.2.

LeEMMA 17.5. — Suppose p = 2. The quaternion group Qs of order 8 and the group SLo(3)
are not Bertin groups for k.

Proof. — By Proposition 16.1, it will be enough to construct an injection
¢ : G = SLa(3) — Auty (K[[t]])

such that the restriction of G to the (unique) 2-Sylow subgroup P of G has non-trivial Bertin
obstruction, where P is isomorphic to QJs. By Proposition 15.6(ii), it will be enough to
construct an example of this kind in which the lower ramification filtration of P has the form
P =Py, = P,C(P) = P, = Pyand P, = {e}. By[30, Ex. A.1.b], thereis an elliptic curve F
over k whose automorphism group G = Aut(F) is isomorphic to SL2(3). Every element
of G fixes the origin 0 of E, so 0 is totally ramified over its image ¢ in the quotient cover
E — E/G. Let Py; be the i*" lower ramification subgroup of P acting on the completion
of the local ring of 0 on E. Then Py o = FPy,; = P. By applying Lemma 14.1 to the action
of a cyclic subgroup H of order 4 in P, we see that Py 2 and Py 3 must be non-trivial. The
Hurwitz formula gives

0 =2g(E) —2=8-(2g(E/P) —2) + Y _(#Poi — 1) + 70

=0
3 0o
(17.4) =8-(29(E/P)—2)+16+ > (#Pyi —2)+ Y _(#Poi— 1) + 720
=2 =4
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where r is the contribution of ramification points of the cover E — E/P which are not
equal to 0. This implies g(E/P) = 0, 7o = 0 and that the ramification filtration of P = P,
has the required form, in the sense that P = Py = P;, C(P) = P, = P; and Py = {e}.
Hence the action of G on the completion of the local ring of E at 0 defines an injection
¢ : G = SLy(3) — Autg(k[[t]]) for which the Bertin obstruction does not vanish. O

18. Proof of Theorem 1.5

By Corollary 5.6, if a quotient of a group G is not an almost Bertin group then G is not
an almost Bertin group for k. The Bertin groups for k£ have been determined in Theorem 1.2,
and each of these is a KGB group for & and hence an almost KGB group for k. Hence
by Theorems 11.1 and 11.2, Theorem 1.5 follows from the following assertions, which have
already been shown:

i. The groups listed in items (1)—(5) of Theorem 11.1 are not almost Bertin groups for &

if p = chark # 2. This follows from Corollary 12.4, since each of the groups (1)—(5)
in Theorem 11.1 are cyclic-by-p.

ii. The groups listed in items (1)—(7) of Theorem 11.2 are not almost Bertin groups for & if

char k = 2. This follows from Corollary 12.5, Proposition 12.6 and Proposition 12.7.
iii. The groups Hg and SL2(3) are almost KGB groups k if char £ = 2. This was shown in
Proposition 17.2 and Corollary 17.3.
iv. Semi-dihedral groups are not almost Bertin groups in characteristic 2. This was shown
in Proposition 17.2.

Appendix A

Constructing extensions with prescribed ramification

In this section we suppose G is a finite group which is the semi-direct product of a normal
p-group P with a finite cyclic group C of order prime to p.

DEFINITION A.1. — Suppose that G is a GM group for k with respect to a faithful
character © : B — Zj as in Definition 1.7. Let ©¢ : C — W (k)" be an extension of © to a
faithful character of C. Aninjection ¢ : G — Auty(k[[z]]) will be said to be GM for ©¢ if

(A.1) da(c)(u)/u=0c¢c(c)™ mod wuk[u]]
for some uniformizer u in k[[2]]?¢(F), where ©¢ : C — k* is the reduction of O¢
mod pW (k).

LEmMA A.2. — Suppose G = C. Then G is GM with respect to any given faithful character
©: B — Zy. Let ©Oc : C — W(k)" be a faithful extension of ©. There is an injection
oc : G — Auty(k[[z]]) which is GM with respect to O¢.

Proof. — The first statement is clear from Definition 1.7. For the second statement, pick
a root of unity ¢ € k* of order #C and a generator c of C' = G. Let ¢f; : G — Auti(k[[2]])
be the injection for which ¢ (c)(z) = (c. Since Aut(C) acts transitively on the faithful
characters of C, there will be a unique o € Aut(C') such that ¢ = ¢ o o will be GM
with respect to O¢. O
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The main result of this section is:

PRrOPOSITION A.3. — Suppose H is a quotient group of G, and let H(p) be the p-Sylow
subgroup of H. Let M be a positive integer. There is an integer M' > 1, with M' = 1 if
M =1, for which the following is true. Suppose ¢ : H — Auty(k[[t]]) is an injection such
that the lower ramification group Hypy 1 contains H(p). Let J be the kernel of the surjection
m: G — H. Then there is an injection ¢ : G — Auty(k[[z]]) with the following properties:

i. There is a k-isomorphism between k[[2]]” and K[[t]] such that the induced action of
G/J = H on k[[t]] is given by ¢g.

ii. The lower ramification group G p;_1 contains P.

iii. Suppose J C P, G is GM with respect to © : B — Z, and ©¢ : C — W (k)" is a
faithful extension of © to C. Suppose ¢p is GM with respect to ©¢. Then ¢g is GM
with respect to ©¢.

iv. Suppose J C P and T is a proper non-trivial cyclic subgroup of J. Then 1q(T) = 0
mod pM—1, where as before 1 (T) is i + 1 if i is the largest integer such that T lies in
the ramification group G;. Let T be cyclic subgroup of P containing T such that J 7 T.
Then Lg(T) > g (F) + M.

v. Suppose M > 1,J C Pand.g(T') =0 modp™' = for all non-trivial cyclic p-subgroups
T' of H. Then 1g(T) = 0 mod p™ = for all non-trivial cyclic p-subgroups T of G.

The remainder of this section is devoted to proving Proposition A.3. For a related result,
see the work of Pries in [25, Prop. 2.7]. Since J is solvable we have the following result by
induction on #J.

LemMmA A.4. — To prove Proposition A.3, it will suffice to consider the case in which J is
abelian and the conjugation action of H on J makes J into a simple Z[H|-module. We will
assume J to be such a module for the rest of this section.

LEMMA A.5. — Givenany ¢ : H — Auty(k[[t]]) as in Proposition A.3, there is always an
injection g : G — Auty(k[[2]]) for which condition (i) of the proposition holds. To complete
the proof of the proposition, it will suffice to show that there is a ¢ for which (i) and (iv)
hold.

Proof. — 1t is shown in [8, Lemma 2.10] that there is always a ¢g as in part (i). We
now show part (iii) of Proposition A.3. (See Lemma A.2 for the case G = C.) Let J, G,
O¢ and ¢y be as in part (iii), so that ¢ is GM for ©¢. Then the identification of k[[t]]
with k[[2]]?¢(Y) identifies k[[2]]?¢ (") with k[[t]]?# (P/7) = K[[u]]. We have identified C as a
subgroup of both G and H, and the actions of ¢ (c) and ¢ (c) on k[[u]] for ¢ € C must be
the same since ¢¢ induces ¢ . Since ¢y is GM with respect to O,

éu(c)(u)/u=0c(c)™! mod uk|[u]].

Thus this congruence holds when ¢y is replaced by ¢¢g; so ¢ is GM with respect to O¢.

To complete the proof of Lemma A.5 now amounts to showing that if we can always
construct an M’ for which parts (i) and (iv) of Proposition A.3 hold, then we can construct
an M’ for which parts (ii) and (v) also hold. By increasing M’, we can assume M’ > M.
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Let o be a non-trivial element of G of p-power order, and define o’ = 7(0) € H. To show
G contains P as in part (ii), it will suffice to show

(A.2) ig(o) > M.
To show part (v), it will be enough to prove
(A.3) tic({c)) =0 mod pM~'Z.

Suppose first J is a p-group. If ¢ € J, then condition (iv) applied to the subgroup (o)
generated by o shows 0 < ig(0) = 1g((c)) = 0 mod pM 1, which shows (A.3). We also have
ig(o) > p™~1 > M which proves (A.2). Suppose now that o & J, so that o’ = 7(0) € H is
not trivial. By [28, Chap. IV.1, Prop. 3],

(A.4) ig(o') = = > ial) = # > ia(aj).

#J veG,r(v)=t' jeJ
From [28, Chap. IV.1] we have
ic(0j) = Inf(ig(o), ic(4)).

Since o ¢ J and we have supposed that (iv) holds, we have i (j) > ig (o) forall j € J, where
ig(e) = oo by definition if e is the identity element of J. It follows that i¢(cj) > ig(o) for
all j € J, and similarly ig(o) = ig(0jji™!) > ig(0j™1), soig(0j) = ig(o) for j € J. Thus
(A.4) becomes i (0') = ig(0), s0 tg({0)) = ig(c) =im(c’) = tp({c’')). Because we chose
M’ > M, part (iv) now gives 0 < ig(c0) = tg({c’)) = 0mod pM 1, s0ig(oc) > pM~t > M
as above, which completes the proof of (A.2) and (A.3) when J is a p-group.

Suppose now that J is not a p-group. We only need to show (A.2), since statement (v) of
Proposition A.3 holds vacuously. Since J is a simple Z[H]-module, it has order prime to p.
Therefore o/ = (o) has the same order as o, and in particular is not trivial. The group P.J
generated by P and J has normal subgroups P and J, and these groups have coprime order
and the product of their orders is # P.J. Hence P.J is isomorphic to P x J and we conclude
that P and J commute. Thusife # j € J then ¢j is not of p-power order and so ig(cj) = 1.
In this way, (A.4) becomes

in0") = 55 X ia(od) =

jeJ

ig(U) + #J -1
#J '

This shows
ig(0) —ig(o") = (#J —1)(ig(c’) — 1) > 0.
Thus M’ > M and the assumption that Hj, _; contains H (p) in Proposition A.3 implies
ig(o) >ig(c") > M > M.
This establishes (A.2) and completes the proof. O

The following corollary is now clear from Lemma A.5 because condition (iv) of Proposi-
tion A.3 holds vacuously if J has order prime to p.

COROLLARY A.6. — Suppose J is abelian and is a simple Z|H|-module of order prime to p.
Then Proposition A.3 holds.

For the rest of this section we assume the hypotheses of the following lemma.
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LEMMA A.7. — Suppose J is abelian and is a simple Z|H|-module of p-power order. Let
c = #C be the order of the prime to p-part of #G (and of #H ). There is a divisor ¢’ of ¢ such
that J has the following description. There is an isomorphism of abelian groups between J
and the additive group IF:d of the finite field ¥ ,a of order p? such that the action of H on J
is given by the inflation to H of a multiplicative character x : C — IF;d of order c'. The
field ¥ ,a is generated over ¥y, by a primitive c™ root of unity. We can choose a uniformizer w
in k[[t]"®) in such a way that there is a faithful character x' : C — k* with the property that
o (o) sends w to X' (o)w for all o € C under the natural identification of C = H/H (p) with

Gal(k((w))/k((£))™).

Proof. — Recall that since J is a p-group, the surjection G — H is an isomorphism on C;
so we can view C as a subgroup of H. Thus H is the semi-direct product H(p).C. All simple
(Z/p)|H]-modules must be inflated from simple (Z/p)[C]-modules since the kernel of the
natural surjection (Z/p)[H] — (Z/p)[C] is the radical of (Z/p)[H]. The description of J is
now a consequence of the well-known description of the simple modules in characteristic p
for a cyclic group C of order prime to p. The action of C' on k[[t]]”®) via ¢ makes
E((t))H® into a tame Kummer extension of k((¢))*. From this we get the existence of a
uniformizer w in k[[t]]” ®) and of a character x’ with the properties stated in the lemma. []

LEMMA A.8. — With the notations and assumptions of Lemma A.7, let ¢ = p®. There are
arbitrarily large integers n > 0 which are relatively prime to p such that x = x'™ as characters
from C to¥,. By Lemma A.7, J as a (Z/p)[H]-module is inflated from a (Z/p)[C]-module J.
The polynomial

(A.5) Yy —y—w"

is irreducible in k((w))[y]. Let L be the splitting field of this polynomial over
E((w)) = k(@®)"®).  Define F = k((t))”. When we identify J with T, there is an
isomorphism Gal(L/k((w))) — J defined by o — o(y) —y. The group C embeds into
Auty (L) via the map which sends T € C to the automorphism defined by T(w) = x'(7)w and
7(y) = x'(7)~™y. This extends to an action of the semi-direct product J.C' on L which fixes
F, and in this way Gal(L/F) = J.C. The corresponding lower ramification group J,, equals J
while Jy 11 = {e}.

Proof. — All of the assertions are clear from Artin-Schreier theory except for the fact that
Jn = Jand J,.1 = {e}. For this observe that if a,b € Z are such that aqg — bn = 1 then
w®y® is a uniformizer in L. If e # o € Gal(L/k((w))) then 0 # o(y) —y = ¢ € Fy, bis
prime to p and

o(w?® b + b B
(A.6) ordL((wayZé) -1)= ordL((yybo ~1) =ord,(1+¢y )’ —1) =n.
Thus o lies in the ramification group J,, but not in jn+1- O]

In view of Lemma A.5, part (v) of the following lemma completes the proof of Proposi-
tion A.3.
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LEmMMA A.9. — Assume the hypothesis and notations of Lemmas A.7 and A.S. By
Lemma A.5, there is an injection ¢g : G — Autg(k[[z]]) inducing ¢p. Let
F=k(@t)? = L7-C asin Lemma A.8, so that k((2))/F is a Galois G = P.C-extension while
L/F is a Galois J.C extension. If nin Lemma A.8 is sufficiently large, then the following hold:

L. The fields k((2)) and L are linearly disjoint over their common subfield, k((w)) =
k()@ =k((2))" = L7

ii. Let N = L - k((2)) be the compositum of these two extensions of k((w)). Then
Gal(N/F) = (J x P).C

where the action of C on the product group J x P is via the conjugation action of C on
both factors.

iii. Fix identifications of J and J C P with IFq+ as in Lemmas A.7 and A.S. This gives an
isomorphism 1 : J — J, with the property that

(A7) A={Ey(E):te ]}
is a subgroup of J x J C J x P that is normal in Gal(N/F) = (J x P).C.

iv. The fixed field N® is Galois over F, with Gal(N® /F) isomorphic to G. We can choose
a uniformizer z' in N® and an injection ¢y, : G — Auty(k[[2']]) having the following
properties:

a. There is an isomorphism of k[[2']|%c)) with K[[t] such that ¢ induces
om : H — Autg(k[[t]).
b. The ramification group ¢ (G),, equals ¢ (J), while ¢ (G)n+1 = {e}.
v. Suppose 1 < M € 7. We can choose n to be arbitrarily large with n = —1 mod pM 1.
For such n, the following will be true for each cyclic subgroup T of J:
a. ta(T) = n+1=0modp™~1Z,s where n is the largest integer such that ¢ (G)n,
contains T and where we compute v¢ using ¢g,.
b. 1g(T) > ta(T) + M for all cyclic groups T C P that properly contain T.
For such n, ¢ will have properties (i) and (iv) in Proposition A.3.

Proof. — Part (i) follows from the fact that if n in Lemma A.8 is sufficiently large, the
valuation of the relative discriminant of every non-trivial extension of k((w)) inside L is
larger than that of every non-trivial extension of k((w)) inside k((z)).

Parts (i1), (iii) and (iv)(a) are straightforward from Galois theory.

To prove (iv)(b), consider the j** upper ramification subgroup of the p-group
(A.8) Gal(N/k((w))) = J x P.

This must surject onto Gal(L/k((w)))’ as well as onto Gal(k((z))/k((w)))? = PI. By
Lemma A8, Gal(L/k((w)))" = Gal(L/k((w)))n, = Gal(L/k((w))), and this group is
identified with

(JxP)/(1x P)J.
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Furthermore, Gal(L/k((w)))"*¢ = {e} if e > 0. If we choose n sufficiently large, then
Gal(k((2))/k((w)))™ = P™ will be the trivial group, where Gal(k((z))/k((w))) is identified
with the quotient group
(Jx P)/(J x1)=P.

It follows that if n is sufficiently large, then Gal(N/k((w)))™ must lie in J x 1 and surject
onto J, so in fact Gal(N/k((w)))™ = J x 1 relative to the description of Gal(N/k((w)) in
(A.8). Hence the image of Gal(N/k((w)))™ in Gal(N2 /k((w))) = (J x P)/A is the image
of J x 1, and this group is identified with J when we identify G with ((J x P).C)/A as
above. Thus the action of G on k[[z’]] specified by ¢, leads to the ramification group J”
being equal to J and J" € being {e} if € > 0. Since J is a p-group, we conclude that J,, = J
and J,1 = {e}, which completes the proof of part (iv).

For part (v), we observe that the condition on n in Lemma A 8§ is that it be sufficiently
large, relatively prime to p, and satisfy x = x'™ as characters from C to IF,. The last condition
is one on n mod #C; so since #C is prime to p, we can always find such n for whichn = —1
mod pM~1. Since 1g(T) = n + 1 for T a non-trivial cyclic subgroup of J by part (iv.b), we
conclude that tg(T) = 0 mod pM~! as in (v.a). Suppose now that T' is a cyclic subgroup
of P which contains T but is not contained in J. Then I'(H) = I'/(I'N J) is identified with a
non-trivial subgroup of G/J = H = Gal(k[[z']]?¢”) /F), where k[[2’]]?¢(”) is identified
with k[[t]] as in part (iv.a). This last identification shows that there is an integer ¢ > 0
independent of the choice of n such that the upper ramification group I'(H)¢ equals {e}
if ¢ > ¢g. Then I'® C J for such c since I'° surjects onto I'(H)°. We have I'yg. C TI'°
by the crudest estimates for the Herbrand function, so I'yge, C J. Thus I'yge, # I, s0
ta(I) < #Gcp. We now choose n so that n > #Gcy + M, to have vg(T) = n+1 >
#Gco+ M > 1g(T) + M as required in part (v). Finally, we note that having chosen n so
that all of parts (i)-(v) hold, ¢y, will satisfy conditions (i) and (iv) of Proposition A.3. O

Appendix B
Appendix 2: Distinguishing the Bertin and KGB obstructions

In this section we show the KGB obstruction to lifting an injection ¢ : G — Auty (k[[¢]])
can be non-zero when the Bertin obstruction vanishes, by proving the following result.

Recall that the first jump in the lower ramification filtration of G occurs at the largest
integer io such that G = G, .

ProrosITION B.1. — Suppose G is isomorphic to Z/p x Z/p.

a. (Bertin) The Bertin obstruction for lifting ¢ vanishes if and only if p|(ig + 1).
b. When pl|(io + 1), the KGB obstruction for lifting ¢ does not vanish if and only if
p=3=iy+1 andGiOH = {6}

While this shows that the KGB obstruction is in general stronger than the Bertin obstruc-
tion for particular ¢, our results in §1 show that every Bertin group for & is a KGB group
for k and vice versa.
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ExaMPLE B.2. — When p = 3, one obtains from statement (b) an explicit example of
a ¢ with vanishing Bertin obstruction and non-vanishing KGB obstruction in the following
way. Let ¢y > 0 be any integer such that p|(ig + 1). Let u be an indeterminate, and let N
be the extension k((u))[X]/(X® —u~%) of k((u)). Then G = Gal(N/k((u))) is isomorphic
to the finite field Fg = Z/p x Z/p via the map sending « € Fg to the automorphism o, for
which 0,(X) = X + a. One has ordy(u) = 9, ordy(X) = —ig and ordy(¢) = 1 when
t = X%’ and 9b — aiy = 1 for some integers a and b. Thus ¢ is a uniformizer in N, and
(04(t)/t) — 1 = (1 + aX~1)% — 1 has valuation ordy (aaX 1) = ig for 0 # a € Fy. It
follows G = G, D Giy41 = {e}.

Proof of Proposition B.1. — Statement (a) is a special case of Example 1 of §4 of [2]. As
noted there, Green and Matignon proved earlier in [12] for G = Z/p x Z/p there is no lift
of ¢ to characteristic 0 unless p|(ig + 1).

We now focus on statement (b). The (unique) set & of representatives for the conjugacy
classes of cyclic subgroups T' of G consists of the trivial subgroup {e} together with the
p + 1 subgroups of G of order p. By Proposition 2.1 and Theorem 2.3, the set S appearing
in Theorem 4.2 is the disjoint union over the non-trivial T € € of by = «(T)/p copies
of the left G-set G/T. There are always ' € © not contained in G;,+1, and for these T'
one has «(T') = ip + 1. By the Hasse-Arf Theorem, if ' C G;,41 then T = G;,41 and
t(T) = ig + pi1 + 1, where ¢; > 1 is an integer and the second jump in the upper numbering
of the ramification groups of G is at iy + 4. The KGB obstruction vanishes if and only if for
each non-trivial T' € & and each integer j such that 1 < j < b, we can choose a generator
gr,; for T such that

br
(B.1) II Ilgors=e in G
{e}#£Te® j=1
Note that by = «(T")/p > 0 for all {e} # T € & so {gr, ;}r,; generates G.

Suppose first that i + 1 > p. Then by > (ip + 1)/p > 1 forall {e} # T € G. For each
such T', we can therefore choose the generators gr ; for 1 < j < br so that H?il gr,; = €.
This makes (B.1) hold, so the KGB obstruction vanishes.

We now suppose that ig+1 = p, but that G;,+1 # {e}. Then G;,+1 has order p, and there
are exactly p order p subgroups Ty, ...,T,_; of G different from G, 1. We can choose the
generators for G = Z/p x Z/p so that G;,+1 corresponds to the subgroup {0} x Z/p. Then
91,1 = (1,1) is a generator for T; for 0 < ¢ < p — 1. We have

p—1
[[or.:=0,(p-1p/2) in G=2/pxZ/p.
=0

Thus this product is in the last cyclic order p subgroup G;,+1, and as noted above,
bGiyi1 = fotpitl > 1. Hence we can choose the final generators 9Giy 11,5 forl < j < bg
in such a way that (B.1) holds, which shows that the KGB obstruction vanishes.

We are thus reduced to showing that if p = iy + 1 and G;,+1 = {e}, then the KGB
obstruction vanishes if and only if p # 3. Fix an isomorphism of G with Z/p x Z/p, and
define h; = (1,4) for 0 < ¢ < p — 1 and h, = (0,1). Any generator for the subgroup T;
generated by h; has the form g, 1 = ¢; - h; for some ¢; € (Z/p)*. The question of whether

ig+1
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we can choose generators of these groups for which (B.1) holds is the same as asking where
there are ¢; € (Z/p)* such that

(B.2) <Z ci (1,i)> +¢,-(0,1)=(0,0) in G=Z/pxZ]/p.

i=0
Such ¢; exist if and only if the KGB obstruction vanishes.

We will leave it to the reader to check the following facts. If p = 2thency =¢; = ¢c2 =1
is a solution of (B.2). If p = 3 there is no solution with the ¢; € (Z/p)*. Finally, if p > 2
then a solution is given by ¢; = 1if0 <4 < p —3, cp—2 = —1, ¢p—1 = 3 and ¢, = —2. This
completes the proof. O
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