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WEAK SYMPLECTIC FILLINGS AND
HOLOMORPHIC CURVES

 K NIEDERKRÜGER  C WENDL

A. – We prove several results on weak symplectic fillings of contact 3-manifolds,
including: (1) Every weak filling of any planar contact manifold can be deformed to a blow up of
a Stein filling. (2) Contact manifolds that have fully separating planar torsion are not weakly fillable—
this gives many new examples of contact manifolds without Giroux torsion that have no weak fillings.
(3) Weak fillability is preserved under splicing of contact manifolds along symplectic pre-Lagrangian
tori—this gives many new examples of contact manifolds without Giroux torsion that are weakly but
not strongly fillable.

We establish the obstructions to weak fillings via two parallel approaches using holomorphic curves.
In the first approach, we generalize the original Gromov-Eliashberg “Bishop disk” argument to study
the special case of Giroux torsion via a Bishop family of holomorphic annuli with boundary on an
“anchored overtwisted annulus”. The second approach uses punctured holomorphic curves, and is
based on the observation that every weak filling can be deformed in a collar neighborhood so as
to induce a stable Hamiltonian structure on the boundary. This also makes it possible to apply the
techniques of Symplectic Field Theory, which we demonstrate in a test case by showing that the
distinction between weakly and strongly fillable translates into contact homology as the distinction
between twisted and untwisted coefficients.

R. – On montre plusieurs résultats concernant les remplissages faibles de variétés de contact
de dimension 3, notamment : (1) Les remplissages faibles des variétés de contact planaires sont à
déformation près des éclatements de remplissages de Stein. (2) Les variétés de contact ayant de la
torsion planaire et satisfaisant une certaine condition homologique n’admettent pas de remplissages
faibles – de cette manière on obtient des nouveaux exemples de variétés de contact qui ne sont pas
faiblement remplissables. (3) La remplissabilité faible est préservée par l’opération de somme connexe
le long de tores pré-lagrangiens — ce qui nous donne beaucoup de nouveaux exemples de variétés de
contact sans torsion de Giroux qui sont faiblement, mais pas fortement, remplissables.

On établit une obstruction à la remplissabilité faible avec deux approches qui utilisent des courbes
holomorphes. La première méthode se base sur l’argument original de Gromov-Eliashberg des
« disques de Bishop ». On utilise une famille d’anneaux holomorphes s’appuyant sur un « anneau
vrillé ancré » pour étudier le cas spécial de la torsion de Giroux. La deuxième méthode utilise des
courbes holomorphes à pointes, et elle se base sur l’observation que, dans un remplissage faible, la
structure symplectique peut être déformée au voisinage du bord, en une structure hamiltonienne
stable. Cette observation permet aussi d’appliquer les méthodes à la théorie symplectique de champs,
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802 K. NIEDERKRÜGER AND C. WENDL

et on montre dans un cas simple que la distinction entre les remplissabilités faible et forte se traduit en
homologie de contact par une distinction entre coefficients tordus et non tordus.

0. Introduction

The study of symplectic fillings via J-holomorphic curves goes back to the foundational
result of Gromov [25] and Eliashberg [9], which states that a closed contact 3-manifold that is
overtwisted cannot admit a weak symplectic filling. Let us recall some important definitions:
in the following, we always assume that (W,ω) is a symplectic 4-manifold, and (M, ξ) is an
oriented 3-manifold with a positive and cooriented contact structure. Whenever a contact
form for ξ is mentioned, we assume it is compatible with the given coorientation.

D 1. – A contact 3-manifold (M, ξ) embedded in a symplectic 4-manifold
(W,ω) is called a contact hypersurface if there is a contact form α for ξ such that dα = ω|TM .
In the case where M = ∂W and its orientation matches the natural boundary orientation,
we say that (W,ω) has contact type boundary (M, ξ), and ifW is also compact, we call (W,ω)

a strong symplectic filling of (M, ξ).

D 2. – A contact 3-manifold (M, ξ) embedded in a symplectic 4-manifold
(W,ω) is called a weakly contact hypersurface if ω|ξ > 0, and in the special case where
M = ∂W with the natural boundary orientation, we say that (W,ω) has weakly contact
boundary (M, ξ). If W is also compact, we call (W,ω) a weak symplectic filling of (M, ξ).

It is easy to see that a strong filling is also a weak filling. In general, a strong filling can also
be characterized by the existence in a neighborhood of ∂W of a transverse, outward pointing
Liouville vector field, i.e., a vector field Y such that LY ω = ω. The latter condition makes it
possible to identify a neighborhood of ∂W with a piece of the symplectization of (M, ξ); in
particular, one can then enlarge (W,ω) by symplectically attaching to ∂W a cylindrical end.

The Gromov-Eliashberg result was proved using a so-called Bishop family of pseudoholo-
morphic disks: the idea was to show that in any weak filling (W,ω) whose boundary con-
tains an overtwisted disk, a certain noncompact 1-parameter family of J-holomorphic disks
with boundary on ∂W must exist, but yields a contradiction to Gromov compactness. In [9],
Eliashberg also used these techniques to show that all weak fillings of the tight 3-sphere are
diffeomorphic to blow-ups of a ball. More recently, the Bishop family argument has been
generalized by the first author [36] to define the plastikstufe, the first known obstruction to
symplectic filling in higher dimensions.

In the meantime, several finer obstructions to symplectic filling in dimension three have
been discovered, including some which obstruct strong filling but not weak filling. Eliashberg
[12] used some of Gromov’s classification results for symplectic 4-manifolds [25] to show that
on the 3-torus, the standard contact structure is the only one that is strongly fillable, though
Giroux had shown [22] that it has infinitely many distinct weakly fillable contact structures.
The first examples of tight contact structures without weak fillings were later constructed by
Etnyre and Honda [18], using an obstruction due to Paolo Lisca [30] based on Seiberg-Witten
theory.
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F 1. The region between the grey planes on either side represents half a
Giroux torsion domain. The grey planes are pre-Lagrangian tori with their charac-
teristic foliations, which show the contact structure turning along the z-axis as we
move from left to right. Domains with higher Giroux torsion can be constructed by
gluing together several half-torsion domains.

The simplest filling obstruction beyond overtwisted disks is the following. Define for each
n ∈ N the following contact 3-manifolds with boundary:

Tn :=
(
T2 × [0, n], sin(2πz) dϕ+ cos(2πz) dϑ

)
,

where (ϕ, ϑ) are the coordinates on T2 = S1 × S1, and z is the coordinate on [0, n]. We will
refer to Tn as a Giroux torsion domain.

D 3. – Let (M, ξ) be a 3-dimensional contact manifold. The Giroux torsion
Tor(M, ξ) ∈ Z∪{∞} is the largest number n ≥ 0 for which we can find a contact embedding
of the Giroux torsion domain Tn ↪→M . If this is true for arbitrarily large n, then we define
Tor(M, ξ) =∞.

R. – Due to the classification result of Eliashberg [8], overtwisted contact man-
ifolds have infinite Giroux torsion, and moreover, one can assume in this case that the tor-
sion domain Tn ⊂M separates M . It is not known whether a contact manifold with infinite
Giroux torsion must be overtwisted in general.

The present paper was motivated partly by the following fairly recent result.

T (Gay [19] and Ghiggini-Honda [21]). – A closed contact 3-manifold (M, ξ)

with positive Giroux torsion does not have a strong symplectic filling. Moreover, if it
contains a Giroux torsion domain Tn that splits M into separate path components, then (M, ξ)

does not even admit a weak filling.

The first part of this statement was proved originally by David Gay with a gauge theoretic
argument, and the refinement for the separating case follows from a computation of the
Ozsváth-Szabó contact invariant due to Paolo Ghiggini and Ko Honda. Observe that due to
the remark above on overtwistedness and Giroux torsion, the result implies the Eliashberg-
Gromov theorem.

As this brief sampling of history indicates, holomorphic curves have not been one of the
favorite tools for defining filling obstructions in recent years. One might argue that this is
unfortunate, because holomorphic curve arguments have a tendency to seem more geomet-
rically natural and intuitive than those involving the substantial machinery of Seiberg-Witten
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theory or Heegaard Floer homology—and in higher dimensions, of course, they are still the
only tool available. A recent exception was the paper [42], where the second author used fam-
ilies of holomorphic cylinders to provide a new proof of Gay’s result on Giroux torsion and
strong fillings. By similar methods, the second author has recently defined a more general
obstruction to strong fillings [44], called planar torsion, which provides many new examples of
contact manifolds (M, ξ) with Tor(M, ξ) = 0 that are nevertheless not strongly fillable. The
reason these results apply primarily to strong fillings is that they depend on moduli spaces
of punctured holomorphic curves, which live naturally in the noncompact symplectic mani-
fold obtained by attaching a cylindrical end to a strong filling. By contrast, the Eliashberg-
Gromov argument works also for weak fillings because it uses compact holomorphic curves
with boundary, which live naturally in a compact almost complex manifold with boundary
that is pseudoconvex, but not necessarily convex in the symplectic sense. The Bishop family
argument however has never been extended for any compact holomorphic curves more gen-
eral than disks, because these tend to live in moduli spaces of nonpositive virtual dimension.

In this paper, we will demonstrate that both approaches, via compact holomorphic curves
with boundary as well as punctured holomorphic curves, can be used to prove much more
general results involving weak symplectic fillings. As an illustrative example of the compact
approach, we shall begin in §1 by presenting a new proof of the above result on Giroux
torsion, as a consequence of the following.

T 1. – Let (M, ξ) be a closed 3-dimensional contact manifold embedded into a
closed symplectic 4-manifold (W,ω) as a weakly contact hypersurface. If (M, ξ) contains a
Giroux torsion domain Tn ⊂M , then the restriction of the symplectic form ω to Tn cannot be
exact.

By a theorem of Eliashberg [14] and Etnyre [16], every weak filling can be capped to pro-
duce a closed symplectic 4-manifold. The above statement thus implies a criterion for (M, ξ)

to be not weakly fillable—our proof will in fact demonstrate this directly, without any need
for the capping result. We will use the fact that every Giroux torsion domain contains an
object that we call an anchored overtwisted annulus, which we will show serves as a filling
obstruction analogous to an overtwisted disk. Note that for a torsion domain Tn ⊂ M , the
condition that ω is exact on Tn is equivalent to the vanishing of the integral∫

T2×{c}
ω

on any slice T2 ×{c} ⊂ Tn. For a strong filling this is always satisfied since ω is exact on the
boundary, and it is also always satisfied if Tn separates M .

The proof of Theorem 1 is of some interest in itself for being comparatively low-tech,
which is to say that it relies only on technology that was already available as of 1985. As such,
it demonstrates new potential for well established techniques, in particular the Gromov-
Eliashberg Bishop family argument, which we shall generalize by considering a “Bishop
family of holomorphic annuli” with boundaries lying on a 1-parameter family of so-called
half-twisted annuli. Unlike overtwisted disks, a single overtwisted annulus does not suffice to
prove anything: the boundaries of the Bishop annuli must be allowed to vary in a nontrivial
family, called an anchor, so as to produce a moduli space with positive dimension. One
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consequence of this extra degree of freedom is that the required energy bounds are no longer
automatic, but in fact are only satisfied when ω satisfies an extra cohomological condition.
This is one way to understand the geometric reason why Giroux torsion always obstructs
strong fillings, but only obstructs weak fillings in the presence of extra topological conditions.
This method also provides some hope of being generalizable to higher dimensions, where the
known examples of filling obstructions are still very few.

In §2, we will initiate the study of weak fillings via punctured holomorphic curves in
order to obtain more general results. The linchpin of this approach is Theorem 2.9 in §2.2,
which says essentially that any weak filling can be deformed so that its boundary carries
a stable Hamiltonian structure. This is almost as good as a strong filling, as one can then
symplectically attach a cylindrical end—but extra cohomological conditions are usually
needed in order to do this without losing the ability to construct nice holomorphic curves
in the cylindrical end. It turns out that the required conditions are always satisfied for planar
contact manifolds, and we obtain the following surprising generalization of a result proved
for strong fillings in [42].

T 2. – If (M, ξ) is a planar contact 3-manifold, then every weak filling of (W,ω)

is symplectically deformation equivalent to a blow-up of a Stein filling of (M, ξ).

C 1. – If (M, ξ) is weakly fillable but not Stein fillable, then it is not planar.

C 2. – Given any planar open book supporting a contact manifold (M, ξ), the
manifold is weakly fillable if and only if the monodromy of the open book can be factored into
a product of positive Dehn twists.

The second corollary follows easily from the result proved in [42], that every planar open
book on a strongly fillable contact manifold can be extended to a Lefschetz fibration of the
filling over the disk. This fact was used in recent work of Olga Plamenevskaya and Jeremy
Van Horn-Morris [37] to find new examples of planar contact manifolds that have either
unique fillings or no fillings at all. Theorem 2 in fact reduces the classification question for
weak fillings of planar contact manifolds to the classification of Stein fillings, and as shown
in [43] using the results in [42], the latter reduces to an essentially combinatorial question
involving factorizations of monodromy maps into products of positive Dehn twists. Note
that most previous classification results for weak fillings (e.g. [9, 31, 37]) have applied to
rational homology spheres, as it can be shown homologically in such settings that weak
fillings are always deformable to strong ones. Theorem 2 makes no such assumption about
the topology of M .

R. – It is easy to see that nothing like Theorem 2 holds for non-planar contact
manifolds in general. There are of course many examples of weakly but not strongly fillable
contact manifolds; still more will appear in the results stated below. There are also Stein
fillable contact manifolds with weak fillings that cannot be deformed into blown up Stein
fillings: for instance, Giroux shows in [22] that the standard contact 3-torus (T3, ξ1) admits
weak fillings diffeomorphic to Σ × T2 for any compact oriented surface Σ with connected
boundary. As shown in [42] however, (T3, ξ1) has only one Stein filling, diffeomorphic
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to D ×T2, and if Σ 6= D then Σ×T2 is not homeomorphic to any blow-up of D ×T2, since
π2(Σ× T2) = 0.

Using similar methods, §2 will also generalize Theorem 1 to establish a new obstruction
to weak symplectic fillings in dimension three. We will recall in §2.3 the definition of a planar
torsion domain, which is a generalization of a Giroux torsion domain that furnishes an
obstruction to strong filling by a result in [44]. The same will not be true for weak fillings,
but becomes true after imposing an extra homological condition: for any closed 2-form Ω

on M , one says that M has Ω-separating planar torsion if∫
L

Ω = 0

for every torus L in a certain special set of disjoint tori in the torsion domain.

T 3. – Suppose (M, ξ) is a closed contact 3-manifold with Ω-separating planar
torsion for some closed 2-form Ω onM . Then (M, ξ) admits no weakly contact type embedding
into a closed symplectic 4-manifold (W,ω) with ω|TM cohomologous to Ω. In particular,
(M, ξ) has no weak filling (W,ω) with [ω|TM ] = [Ω].

As is shown in [44], any Giroux torsion domain embedded in a closed contact manifold
has a neighborhood that contains a planar torsion domain, thus Theorem 3 implies another
proof of Theorem 1. If each of the relevant tori L ⊂M separatesM , then

∫
L

Ω = 0 for all Ω

and we say that (M, ξ) has fully separating planar torsion.

C 3. – If (M, ξ) is a closed contact 3-manifold with fully separating planar
torsion, then it admits no weakly contact type embedding into any closed symplectic 4-manifold.
In particular, (M, ξ) is not weakly fillable.

R. – The statement about non-fillability in Corollary 3 also follows from a recent
computation of the twisted ECH contact invariant that has been carried out in parallel work
of the second author [44]. The proof via ECH is however extremely indirect, as according to
the present state of technology it requires the isomorphism established by Taubes [39] from
ECH to monopole Floer homology, together with results of Kronheimer and Mrowka [28]
that relate the monopole invariants to weak fillings. Our proof on the other hand will require
no technology other than holomorphic curves.

We now show that there are many contact manifolds without Giroux torsion that satisfy
the above hypotheses. Consider a closed oriented surface

Σ = Σ+ ∪Γ Σ−

obtained as the union of two (not necessarily connected) surfaces Σ± with boundary along
a multicurve Γ 6= ∅. By results of Lutz [32], the 3-manifold S1 × Σ admits a unique (up
to isotopy) S1-invariant contact structure ξΓ such that the surfaces {∗} × Σ are all convex
and have Γ as the dividing set. If Γ has no component that bounds a disk, then the manifold
(S1×Σ, ξΓ) is tight [24, Proposition 4.1], and if Γ also has no two connected components that
are isotopic in Σ, then it follows from arguments due to Giroux (see [33]) that (S1 × Σ, ξΓ)

does not even have Giroux torsion. But as we will review in §2.3, it is easy to construct
examples that satisfy these conditions and have planar torsion.
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F 2. An example of a surface Σ and multicurve Γ ⊂ Σ satisfying the
conditions of Corollary 4.

C 4. – For the S1-invariant contact manifold (S1 × Σ, ξΓ) described above,
suppose the following conditions are satisfied (see Figure 2):

1. Γ has no contractible components and no pair of components that are isotopic in Σ.
2. Σ+ contains a connected component ΣP ⊂ Σ+ of genus zero, whose boundary components

each separate Σ.

Then (S1 × Σ, ξΓ) has no Giroux torsion and is not weakly fillable.

The example of the tight 3-tori shows that the homological condition in the Giroux
torsion case cannot be relaxed, and indeed, the first historical examples of weakly but not
strongly fillable contact structures can in hindsight be understood via the distinction between
separating and non-separating Giroux torsion. In §3, we will introduce a new symplectic
handle attachment technique that produces much more general examples of weak fillings:

T 4. – Suppose (W,ω) is a (not necessarily connected) weak filling of a contact
3-manifold (M, ξ), and T ⊂ M is an embedded oriented torus which is pre-Lagrangian
in (M, ξ) and symplectic in (W,ω). Then:

1. (W,ω) is also a weak filling of every contact manifold obtained from (M, ξ) by performing
finitely many Lutz twists along T .

2. If T ′ ⊂ M is another torus satisfying the stated conditions, disjoint from T , such that∫
T
ω =

∫
T ′
ω, then the contact manifold obtained from (M, ξ) by splicing along T and

T ′ is also weakly fillable.

See §3 for precise definitions of the Lutz twist and splicing operations, as well as more
precise versions of Theorem 4. We will use the theorem to explicitly construct new examples
of contact manifolds that are weakly but not strongly fillable, including some that have planar
torsion but no Giroux torsion. Let

Σ = Σ+ ∪Γ Σ−

be a surface divided by a multicurve Γ into two parts as described above. The principal circle
bundles PΣ,e over Σ are distinguished by their Euler number e = e(P ) ∈ Z which can be
easily determined by removing a solid torus around a fiber ofPΣ,e, choosing a section outside
this neighborhood, and computing the intersection number of the section with a meridian
on the torus. The Euler number thus measures how far the bundle is from being trivial. Lutz
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() ()

F 3. Surfaces Σ = Σ+ ∪Γ Σ− which yield S1-invariant contact manifolds
(S1 × Σ, ξΓ) that are weakly but not strongly fillable due to Corollary 5.

[32] also showed that every nontrivial S1-principal bundle PΣ,e with Euler number e over Σ

admits a unique (up to isotopy) S1-invariant contact structure ξΓ,e that is tangent to fibers
over the multicurve Γ and is everywhere else transverse. For simplicity, we will continue to
write ξΓ for the corresponding contact structure ξΓ,0 on the trivial bundle PΣ,0 = S1 × Σ.

T 5. – Suppose
(
PΣ,e, ξΓ,e

)
is the S1-invariant contact manifold described above,

for some multicurve Γ ⊂ Σ whose connected components are all non-separating. Then(
PΣ,e, ξΓ,e

)
is weakly fillable.

C 5. – There exist contact 3-manifolds without Giroux torsion that are weakly
but not strongly fillable. In particular, this is true for the S1-invariant contact manifold
(S1 × Σ, ξΓ) whenever all of the following conditions are met:

1. Γ has no connected components that separate Σ, and no pair of connected components
that are isotopic in Σ,

2. Σ+ has a connected component of genus zero,
3. Either of the following is true:

(a) Σ+ or Σ− is disconnected,
(b) Σ+ and Σ− are not diffeomorphic to each other.

R. – Our proof of Theorem 5 will actually produce not just a weak filling
of
(
PΣ,e, ξΓ,e

)
but also a connected weak filling of a disjoint union of this with another con-

tact 3-manifold. By Etnyre’s obstruction [17] (or by Theorem 2), it follows that
(
PΣ,e, ξΓ,e

)
is not planar whenever Γ ⊂ Σ has no separating component.

One further implication of the techniques introduced in §2 is that weak fillings can now
be studied using the technology of Symplectic Field Theory. The latter is a general frame-
work introduced by Eliashberg, Givental and Hofer [15] for defining contact invariants by
counting J-holomorphic curves in symplectizations and in noncompact symplectic cobor-
disms with cylindrical ends. In joint work of the second author with Janko Latschev [45], it is
shown that SFT contains an algebraic variant of planar torsion, which gives an infinite hier-
archy of obstructions to the existence of strong fillings and exact symplectic cobordisms in
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all dimensions.(1) Stable Hamiltonian structures can be used to incorporate weak fillings into
this picture as well: analogously to the situation in Heegaard Floer homology, the distinction
between strong and weak is then seen algebraically via twisted (i.e., group ring) coefficients
in SFT.

We will explain a special case of this statement in §2.5, focusing on the simplest and
most widely known invariant defined within the SFT framework: contact homology. Given
a contact manifold (M, ξ), the contact homology HC∗

(
M, ξ

)
can be defined as a Z2-graded

supercommutative algebra with unit: it is the homology of a differential graded algebra
generated by Reeb orbits of a nondegenerate contact form, where the differential counts rigid
J-holomorphic spheres with exactly one positive end and arbitrarily many negative ends.
(See §2.5 for more precise definitions.) We say that the homology vanishes if it satisfies the
relation 1 = 0, which implies that it contains only one element. In defining this algebra,
one can make various choices of coefficients, and in particular for any linear subspace
R ⊂ H2(M ; R), one can define contact homology as a module over the group ring(2)

Q[H2(M ; R)/R] =

{
N∑
i=1

cie
Ai
∣∣∣ ci ∈ Q, Ai ∈ H2(M ; R)/R

}
,

with the differential “twisted” by inserting factors of eA to keep track of the homology classes
of holomorphic curves. We will denote the contact homology algebra defined in this way for
a given subspace R ⊂ H2(M ; R) by

HC∗
(
M, ξ; Q[H2(M ; R)/R]

)
.

There are two obvious special cases that must be singled out: if R = H2(M ; R), then the
coefficients reduce to Q, and we obtain the untwisted contact homology HC∗

(
M, ξ; Q

)
, in

which the group ring does not appear. If we instead set R = {0}, the result is the fully twisted
contact homology HC∗

(
M, ξ; Q[H2(M ; R)]

)
, which is a module over Q[H2(M ; R)]. There

is also an intermediately twisted version associated to any cohomology class β ∈ H2
dR(M),

namely HC∗
(
M, ξ; Q[H2(M ; R)/ kerβ]

)
, where we identify β with the induced linear map

H2(M ; R) → R, A 7→ 〈β,A〉. Observe that the canonical projections Q[H2(M ; R)] →
Q[H2(M ; R)/ kerβ]→ Q yield algebra homomorphisms

HC∗
(
M, ξ; Q[H2(M ; R)]

)
→ HC∗

(
M, ξ; Q[H2(M ; R)/ kerβ]

)
→ HC∗

(
M, ξ; Q

)
,

implying in particular that whenever the fully twisted version vanishes, so do all the others.
The choice of twisted coefficients then has the following relevance for the question of filla-
bility.

(1) Examples are as yet only known in dimension three, with the exception of algebraic overtwistedness, see [5] and [3].
(2) In the standard presentation of contact homology, one usually requires the subspace R ⊂ H2(M ; R) to lie in
the kernel of c1(ξ), however this is only needed if one wants to lift the canonical Z2-grading to a Z-grading, which
is unnecessary for our purposes.
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T 6. – (3) Suppose (M, ξ) is a closed contact 3-manifold with a cohomology class
β ∈ H2

dR(M) for which HC∗
(
M, ξ; Q[H2(M ; R)/ kerβ]

)
vanishes. Then (M, ξ) does not

admit any weak symplectic filling (W,ω) with [ω|TM ] = β.

Since weak fillings that are exact near the boundary are equivalent to strong fillings up to
symplectic deformation (cf. Proposition 3.1 in [11]), the special case β = 0 means that the
untwisted contact homology gives an obstruction to strong filling, and we similarly obtain
an obstruction to weak filling from the fully twisted contact homology:

C 6. – For any closed contact 3-manifold (M, ξ):

1. If HC∗
(
M, ξ; Q

)
vanishes, then (M, ξ) is not strongly fillable.

2. If HC∗
(
M, ξ; Q[H2(M ; R)]

)
vanishes, then (M, ξ) is not weakly fillable.

This result does not immediately yield any new knowledge about contact topology, as so
far the overtwisted contact manifolds are the only examples in dimension 3 for which any
version (in particular the twisted version) of contact homology is known to vanish, cf. [46]
and [44]. We have included it here merely as a “proof of concept” for the use of SFT with
twisted coefficients to study weak fillings. For the higher order algebraic filling obstructions
defined in [45], there are indeed examples where the twisted and untwisted theories differ,
corresponding to tight contact manifolds that are weakly but not strongly fillable.

We conclude this introduction with a brief discussion of open questions.
Insofar as planar torsion provides an obstruction to weak filling, it is natural to wonder

how sharp the homological condition in Theorem 3 is. The most obvious test cases are the
S1-invariant product manifolds (S1×Σ, ξΓ), under the assumption that Σ\Γ contains a con-
nected component of genus zero, as for these the question of strong fillability is completely
understood by results in [44] and [43]. Theorems 3 and 5 give criteria when such manifolds
either are or are not weakly fillable, but there is still a grey area in which neither result applies,
e.g. neither is able to settle the following:

Q 1. – Suppose Σ = Σ+ ∪Γ Σ−, where Σ \ Γ contains a connected component of
genus zero and some connected components of Γ separate Σ, while others do not. Is (S1×Σ, ξΓ)

weakly fillable?

Another question concerns the classification of weak fillings: on rational homology
spheres this reduces to a question about strong fillings, and Theorem 2 reduces it to the
Stein case for all planar contact manifolds, which makes general classification results seem
quite realistic. But already in the simple case of the tight 3-tori, one can combine explicit
examples such as Σ × T2 with our splicing technique to produce a seemingly unclassifiable
zoo of inequivalent weak fillings. Note that the splicing technique can be applied in general
for contact manifolds that admit fillings with homologically nontrivial pre-Lagrangian tori,

(3) While the fundamental concepts of Symplectic Field Theory are now a decade old, its analytical foundations
remain work in progress (cf. [26]), and it has meanwhile become customary to gloss over this fact while using the
conceptual framework of SFT to state and “prove” theorems. We do not entirely mean to endorse this custom, but
at the same time we have followed it in the discussion surrounding Theorem 6, which really should be regarded as
a conjecture for which we will provide the essential elements of the proof, with the expectation that it will become
fully rigorous as soon as the definition of the theory is complete.
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and these are never planar, because due to an obstruction of Etnyre [17] fillings of planar
contact manifolds must have trivial b02.

Q 2. – Other than rational homology spheres, are there any non-planar weakly
fillable contact 3-manifolds for which weak fillings can reasonably be classified?

On the algebraic side, it would be interesting to know whether Theorem 6 actually implies
any contact topological results that are not known; this relates to the rather important open
question of whether there exist tight contact 3-manifolds with vanishing contact homology.
In light of the role played by twisted coefficients in the distinction between strong and weak
fillings, this question can be refined as follows:

Q 3. – Does there exist a tight contact 3-manifold with vanishing (twisted or
untwisted) contact homology? In particular, is there a weakly fillable contact 3-manifold with
vanishing untwisted contact homology?

The generalization of overtwistedness furnished by planar torsion gives some evidence
that the answer to this last question may be no. In particular, planar torsion as defined in
[44] comes with an integer-valued order k ≥ 0, and for every k ≥ 1, our results give examples
of contact manifolds with planar k-torsion that are weakly but not strongly fillable. This
phenomenon is also detected algebraically both by Embedded Contact Homology [44] and
by Symplectic Field Theory [45], where in each case the untwisted version vanishes and the
twisted version does not. Planar 0-torsion, however, is fully equivalent to overtwistedness,
and thus always causes the twisted theories to vanish. Thus on the k = 0 level, there is a
conspicuous lack of candidates that could answer the above question in the affirmative.

Relatedly, the distinction between twisted and untwisted contact homology makes just
as much sense in higher dimensions, yet the distinction between weak and strong fillings
apparently does not. The simplest possible definition of a weak filling in higher dimensions,
that ∂W = M with ω|ξ symplectic, is not very natural and probably cannot be used to prove
anything. A better definition takes account of the fact that ξ carries a natural conformal
symplectic structure, and ω should be required to define the same conformal symplectic
structure on ξ: in this case we say that (M, ξ) is dominated by (W,ω). In dimension three
this notion is equivalent to that of a weak filling, but surprisingly, in higher dimensions
it is equivalent to strong filling, by a result of McDuff [34]. It is thus extremely unclear
whether any sensible distinct notion of weak fillability exists in higher dimensions, except
algebraically:

Q 4. – In dimensions five and higher, are there contact manifolds with vanishing
untwisted but nonvanishing twisted contact homology (or similarly, algebraic torsion as in
[45])? If so, what does this mean about their symplectic fillings?

Another natural question in higher dimensions concerns the variety of possible filling
obstructions, of which very few are yet known. There are obstructions arising from the
plastikstufe [36], designed as a higher dimensional analog of the overtwisted disk, as well
as from left handed stabilizations of open books [3]. Both of these cause contact homology
to vanish, and there is as yet no known example of a “higher order” filling obstruction in
higher dimensions, i.e., something analogous to Giroux torsion or planar torsion, which
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might obstruct symplectic filling without killing contact homology. One promising avenue to
explore in this area would be to produce a higher dimensional generalization of the anchored
overtwisted annulus, though once an example is constructed, it may be far from trivial to
show that it has nonvanishing contact homology.

Q 5. – Is there any higher dimensional analog of the anchored overtwisted annulus,
and can it be used to produce examples of nonfillable contact manifolds with nonvanishing
contact homology?
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1. Giroux torsion and the overtwisted annulus

In this section, which can be read independently of the remainder of the paper, we adapt
the techniques used in the non-fillability proof for overtwisted manifolds due to Eliashberg
and Gromov to prove Theorem 1.

We begin by briefly sketching the original proof for overtwisted contact structures.
Assume (M, ξ) is a closed overtwisted contact manifold with a weak symplectic filling
(W,ω). The condition ω|ξ > 0 implies that we can choose an almost complex structure J
on W which is tamed by ω and makes the boundary J-convex. The elliptic singularity in the
center of the overtwisted disk DOT ⊂M is the source of a 1-dimensional connected moduli
space M of J-holomorphic disks

u :
(
D, ∂D

)
→
(
W,DOT

)
that represent homotopically trivial elements in π2

(
W,DOT

)
, and whose boundaries encircle

the singularity of DOT once. The space M is diffeomorphic to an open interval, and as we
approach one limit of this interval the holomorphic curves collapse to the singular point in
the center of the overtwisted disk DOT.

We can add to any holomorphic disk in M a capping disk in DOT, such that we obtain
a sphere that bounds a ball, and hence the ω-energy of any disk in M is equal to the
symplectic area of the capping disk. This implies that the energy of any holomorphic disk
in M is bounded by the integral of |ω| over DOT, so that we can apply Gromov compactness
to understand the limit at the other end of M. By a careful study, bubbling and other
phenomena can be excluded, and the result is a limit curve that must have a boundary
point tangent to the characteristic foliation at ∂DOT; but this implies that it touches ∂W
tangentially, which is impossible due to J-convexity.
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Below we will work out an analogous proof for the situation where (M, ξ) is a closed
3-dimensional contact manifold that contains a different object, called an anchored over-
twisted annulus. Assuming (M, ξ) has a weak symplectic filling or is a weakly contact hyper-
surface in a closed symplectic 4-manifold, we will choose an adapted almost complex struc-
ture and instead of using holomorphic disks, consider holomorphic annuli with boundaries
varying along a 1-dimensional family of surfaces. The extra degree of freedom in the bound-
ary condition produces a moduli space of positive dimension. If ω is also exact on the region
foliated by the family of boundary conditions, then we obtain an energy bound, allowing us
to apply Gromov compactness and derive a contradiction.

1.1. The overtwisted annulus

We begin by introducing a geometric object that will play the role of an overtwisted disk.
Recall that for any oriented surface S ↪→ M embedded in a contact 3-manifold (M, ξ), the
intersection TS ∩ ξ defines an oriented singular foliation Sξ on S, called the characteristic
foliation. Its leaves are oriented 1-dimensional submanifolds, and every point where ξ is
tangent to S yields a singularity, which can be given a sign by comparing the orientations
of ξ and TS.

D 1.1. – Let (M, ξ) be a 3-dimensional contact manifold. A submanifold
A ∼= [0, 1]× S1 ↪→M is called a half-twisted annulus if the characteristic foliation Aξ has the
following properties:

1. Aξ is singular along {0} × S1 and regular on (0, 1]× S1.
2. {1} × S1 is a closed leaf.
3. (0, 1)× S1 is foliated by an S1-invariant family of characteristic leaves that each meet
{0} × S1 transversely and approach ∂A asymptotically.

We will refer to the two boundary components ∂LA := {1}×S1 and ∂SA := {0}×S1 as the
Legendrian and singular boundaries respectively. An overtwisted annulus is then a smoothly
embedded annulus A ⊂M which is the union of two half-twisted annuli

A = A− ∪ A+

along their singular boundaries (see Figure 4).

R 1.2. – As pointed out to us by Giroux, every neighborhood of a point in a
contact manifold contains an overtwisted annulus. Indeed, any knot admits a C0-small
perturbation to a Legendrian knot, which then has a neighborhood contactomorphic to
the solid torus S1 × D 3 (ϑ;x, y) with contact structure ker (dy − x dϑ). A small torus
T2 ∼= S1 ×

{
(x, y)

∣∣ x2 + y2 = ε
}

is composed of two annuli glued to each other along
their boundaries, and the characteristic foliation on each of these is linear on the interior but
singular at the boundary. By pushing one of these annuli slightly inward along one boundary
component and the other slightly outward along the corresponding boundary component,
we obtain an overtwisted annulus.

The above remark demonstrates that a single overtwisted annulus can never give any con-
tact topological information. We will show however that the following much more restrictive
notion carries highly nontrivial consequences.
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F 4. An overtwisted annulus A = A− ∪ A+ with its singular characteristic foliation.

D 1.3. – We will say that an overtwisted annulus A = A− ∪ A+ ⊂ (M, ξ)

is anchored if (M, ξ) contains a smooth S1-parametrized family of half-twisted annuli{
A−ϑ
}
ϑ∈S1 which are disjoint from each other and from A+, such that A−0 = A−. The region

foliated by
{
A−ϑ
}
ϑ∈S1 is then called the anchor.

E 1.4. – Recall that we defined a Giroux torsion domain Tn as the thickened
torus T2 × [0, n] =

{
(ϕ, ϑ; z)

}
with contact structure given as the kernel of

sin(2πz) dϕ+ cos(2πz) dϑ .

For every ϑ ∈ S1, such a torsion domain contains an overtwisted annulus Aϑ which we
obtain by bending the image of

[0, 1]× S1 ↪→ Tn,
(
z, ϕ

)
7→
(
ϕ, ϑ; z

)
slightly downward along the edges {0, 1} × S1 so that they become regular leaves of the
foliation. This can be done in such a way that T2 × [0, 1] is foliated by an S1-family of
overtwisted annuli,

T2 × [0, 1] =
⋃
ϑ∈S1

Aϑ ,

all of which are therefore anchored.

The example shows that every contact manifold with positive Giroux torsion contains an
anchored overtwisted annulus, but in fact, as John Etnyre and Patrick Massot have pointed
out to us, the converse is also true: it follows from deep results concerning the classification
of tight contact structures on thickened tori [23] that a contact manifold must have positive
Giroux torsion if it contains an anchored overtwisted annulus.

We will use an anchored overtwisted annulus as a boundary condition for holomorphic
annuli. By studying the moduli space of such holomorphic curves, we find certain topolog-
ical conditions that have to be satisfied by a weak symplectic filling, and which will imply
Theorem 1.
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F 5. An anchored overtwisted annulus A = A−
0 ∪ A+

0 in a Giroux torsion
domain T1.

1.2. The Bishop family of holomorphic annuli

In the non-fillability proof for overtwisted manifolds, the source of the Bishop family
is an elliptic singularity at the center of the overtwisted disk. For an anchored overtwisted
annulus, holomorphic curves will similarly emerge out of singularities of the characteristic
foliation, in this case the singular boundaries of the half-twisted annuli in the anchor, which
all together trace out a pre-Lagrangian torus. We shall first define a boundary value problem
for pseudoholomorphic annuli with boundary in an anchored overtwisted annulus, and then
choose a special almost complex structure near the singularities for which solutions to this
problem can be constructed explicitly. If ω is exact on the anchor, then the resulting energy
bound and compactness theorem for the moduli space will lead to a contradiction.

For the remainder of §1, suppose (W,ω) is a weak filling of (M, ξ), and the latter contains
an anchored overtwisted annulus A = A− ∪A+ with anchor {A−ϑ }ϑ∈S1 such that A−0 = A−.
The argument will require only minor modifications for the case where (W,ω) is closed and
contains (M, ξ) as a weakly contact hypersurface; see Remark 1.14.

1.2.1. A boundary value problem for anchored overtwisted annuli. – We will say that an
almost complex structure J on W is adapted to the filling if it is tamed by ω and preserves ξ.
The fact that ξ is a positive contact structure implies that any J adapted to the filling makes
the boundary ∂W pseudoconvex, with the following standard consequences:

L 1.5 (cf. [47], Theorem 4.2.3). – If J is adapted to the filling (W,ω) of (M, ξ),
then:

1. Any embedded surface S ⊂ M = ∂W on which the characteristic foliation is regular is
a totally real submanifold of (W,J).

2. Any connected J-holomorphic curve whose interior intersects ∂W must be constant.
3. If S ⊂ ∂W is a totally real surface as described above and u : Σ → W is a non-

constant J-holomorphic curve satisfying the boundary condition u(∂Σ) ⊂ S, then u|∂Σ

is immersed and positively transverse to the characteristic foliation on S.

Given any adapted almost complex structure J on (W,ω), the above lemma implies that
the interiors int A+ ⊂ A+ and int A−ϑ ⊂ A−ϑ are all totally real submanifolds of (W,J). We
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shall then consider a moduli space of J-holomorphic annuli defined as follows. Denote byAr
the complex annulus

Ar =
{
z ∈ C

∣∣ 1 ≤ |z| ≤ 1 + r
}
⊂ C

of modulus r > 0, and write its boundary components as ∂−r :=
{
z ∈ C

∣∣ |z| = 1
}

and
∂+
r :=

{
z ∈ C

∣∣ |z| = 1 + r
}

. We then define the space

M(J) =
⋃
r>0

{
u : Ar →W

∣∣ Tu ◦ i = J ◦ Tu, u(∂+
r ) ⊂ int A+,

u(∂−r ) ⊂ int A−ϑ for any ϑ ∈ S1
}/

S1,

where τ ∈ S1 acts on maps u : Ar →W by τ · u(z) := u(e2πiτz). This space can be given a
natural topology by fixing a smooth family of diffeomorphisms from a standard annulus to
the domains Ar,

(1.1) ψr : [0, 1]× S1 → Ar : (s, t) 7→ es log(1+r)+2πit ,

and then saying that a sequence uk : Ark →W converges to u : Ar →W in M(J) if rk → r

and
uk ◦ ψrk(s, t+ τk)→ u ◦ ψr(s, t)

for some sequence τk ∈ S1, with C∞-convergence on [0, 1]× S1.
We will show below that J can be chosen to make M(J) a nonempty smooth manifold of

dimension one. This explains why the “anchoring” condition is necessary: it introduces an
extra degree of freedom in the boundary condition, without which the moduli space would
generically be zero-dimensional and the Bishop family could never expand to reach the edge
of the half-twisted annuli.

1.2.2. Special almost complex structures near the boundary. – Suppose α is a contact
form for (M, ξ). The standard way to construct compatible almost complex structures on
the symplectization

(
R × M,d(etα)

)
involves choosing a compatible complex structure

Jξ on the symplectic vector bundle
(
ξ|{0}×M , dα

)
, extending it to a complex structure

on
(
T (R×M)|{0}×M , d(etα)

)
such that

JXα = −∂t and J∂t = Xα

for the Reeb vector field Xα of α, and finally defining J as the unique R-invariant almost
complex structure on R × M that has this form at {0} × M . Almost complex structures
of this type will be essential for the arguments of §2. For the remainder of this section, we
will drop the R-invariance condition but say that an almost complex structure on R×M is
compatible with α if it takes the above form on {0} ×M ; in this case it is tamed by d(etα)

on any sufficiently small neighborhood of {0} ×M . It is sometimes useful to know that an
adapted J on any weak filling can be chosen to match any given J of this form near the
boundary.

P 1.6. – Let (M, ξ) be a contact 3-manifold with weak filling (W,ω). Choose
any contact form α for ξ and an almost complex structure J on R ×M compatible with α.
Then for sufficiently small ε > 0, the canonical identification of {0} ×M with ∂W can be
extended to a diffeomorphism from (−ε, 0]×M to a collar neighborhood of ∂W such that the
push-forward of J is tamed by ω.
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In particular, this almost complex structure can then be extended to a global almost complex
structure on W that is tamed by ω, and is thus adapted to the filling.

Proof. – Writing Jξ := J |ξ, construct an auxiliary complex structure Jaux on TW |M
as the direct sum of Jξ on the symplectic bundle

(
ξ|{0}×M , ω

)
with a compatible complex

structure on its ω-symplectic complement
(
ξ⊥ω

∣∣
{0}×M , ω

)
. Clearly this complex structure is

tamed by ω|M .
Define an outward pointing vector field along the boundary by setting

Y = −Jaux ·Xα .

Extend Y to a smooth vector field on a small neighborhood of M in W , and use its flow to
define an embedding of a subset of the symplectization

Ψ : (−ε, 0]×M →W,
(
t, p
)
7→ ΦtY (p)

for sufficiently small ε > 0. The restriction of Ψ to {0} ×M is the identity on M , and the
push-forward of J under this map coincides with Jaux alongM , because Ψ∗∂t = Y . It follows
that the push-forward of J is tamed by ω on a sufficiently small neighborhood of M = ∂W ,
and we can then extend it to W as an almost complex structure tamed by ω.

1.2.3. Generation of the Bishop family. – We shall now choose an almost complex
structure J0 on the symplectization of M that allows us to write down the germ of a Bishop
family in R×M which generates a component of M(J0). At the same time, J0 will prevent
other holomorphic curves in the same component of M(J0) from approaching the singular
boundaries of the half-twisted annuli A−ϑ . We can then apply Proposition 1.6 to identify a
neighborhood of {0} ×M in the symplectization with a boundary collar of W , so that W
contains the Bishop family.

The singular boundaries of A−ϑ define closed leaves of the characteristic foliation on a
torus

T :=
⋃
ϑ∈S1

∂SA−ϑ ⊂M ,

which is therefore a pre-Lagrangian torus. We then obtain the following by a standard Moser-
type argument.

L 1.7. – For sufficiently small ε > 0, a tubular neighborhood N (T ) ⊂ M of T can
be identified with T2 × (−ε, ε) with coordinates (ϕ, ϑ; r) such that:

– T = T2 × {0},
– ξ = ker [cos(2πr) dϑ+ sin(2πr) dϕ],
– A ∩ N (T ) = {ϑ = 0}, and A−ϑ0

∩ N (T ) = {ϑ = ϑ0, r ∈ (−ε, 0]} for all ϑ0 ∈ S1.

Using the coordinates given by the lemma, we can reflect the half-twisted annuli A−ϑ0

across T within this neighborhood to define the surfaces

A+
ϑ0

:=
{
ϑ = ϑ0, r ∈ [0, ε)

}
⊂M .

Each of these surfaces looks like a collar neighborhood of the singular boundary in a half-
twisted annulus. Now choose for ξ a contact form α on M that restricts on N (T ) to

(1.2) α| N (T ) = cos(2πr) dϑ+ sin(2πr) dϕ .
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The main idea of the construction is to identify the set N (T ) with an open subset of the unit
cotangent bundle T3 = S

(
T ∗T2

)
of T2, with its canonical contact form αcan. We will then

use an integrable complex structure on T ∗T2 to find explicit families of holomorphic curves
that give rise to holomorphic annuli in R×M .

The cotangent bundle of T2 = R2/Z2 can be identified naturally with

C2/iZ2 = R2 ⊕ i(R2/Z2)

such that the canonical 1-form takes the form λcan = p1 dq1 + p2 dq2 in coordinates
[z1, z2] =

[
p1 + iq1, p2 + iq2

]
. The unit cotangent bundle

S
(
T ∗T2

)
=
{

[p1 + iq1, p2 + iq2] ∈ T ∗T2
∣∣ |p1|2 + |p2|2 = 1

}
can then be parametrized by the map

T3 = T2 × S1 3 (ϕ, ϑ; r) 7→
[
sin 2πr + iϕ, cos 2πr + iϑ

]
∈ T ∗T2 ,

and the pull-back of λcan to T3 gives

αcan := λcan|TS(T∗T2) = cos(2πr) dϑ+ sin(2πr) dϕ .

The Liouville vector field dual to λcan is p1 ∂p1 + p2 ∂p2 , and we can use its flow to identify
T ∗T2 \ T2 with the symplectization of S

(
T ∗T2

)
:

Φ : (R× S
(
T ∗T2

)
, d(etαcan))→ (T ∗T2 \ T2, dλcan), (t; p+ iq) 7→ etp+ iq .

Then it is easy to check that the restriction of the complex structure Φ∗i to {0}×T3 preserves
kerαcan and maps ∂t to the Reeb vector field ofαcan, hence Φ∗i is compatible withαcan. Now
for the neighborhood N (T ) ∼= T2 × (−ε, ε), denote by

Ψ : (−ε, 0]× N (T ) ↪→ R× T3

the natural embedding determined by the coordinates (ϕ, ϑ; r). Proposition 1.6 then implies:

L 1.8. – There exists an almost complex structure J0 adapted to the filling
(W,ω) of (M, ξ), and a collar neighborhood N (∂W ) ∼= (−ε, 0] × M of ∂W such that
on (−ε, 0]× N (T ) ⊂W , J0 = Ψ∗Φ∗i.

Consider the family of complex lines Lζ :=
{

(z1, z2)
∣∣ z2 = ζ

}
in C2. The projection of

these curves into T ∗T2 ∼= C2/iZ2 are holomorphic cylinders, whose intersections with the
unit disk bundle D(T ∗T2) =

{
p + iq ∈ C2/iZ2

∣∣ |p|2 ≤ 1
}

define holomorphic annuli. In
particular, for sufficiently small δ > 0 and any

(c, τ) ∈ (0, δ]× S1 ,

the intersection L(1−c)+iτ ∩ D(T ∗T2) is a holomorphic annulus in Φ ◦Ψ
(
(−ε, 0]× N (T )

)
,

which therefore can be identified with a J0-holomorphic annulus

u(c,τ) : Arc →W

with image in the neighborhood (−ε, 0]× N (T ), where the modulus rc > 0 depends on c and
approaches zero as c → 0. It is easy to check that the two boundary components of u(c,τ)

map into the interiors of the surfaces A+
τ and A−τ respectively in ∂W . Observe that all of these

annuli are obviously embedded, and they foliate a neighborhood of T in W . We summarize
the construction as follows.
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F 6. The unit disk bundle in T ∗T2 is foliated by a family of holomorphic
annuli obtained from the complex planes Lζ . The neighborhood N (T ) can be
identified with a subset of the unit disk bundle S

(
T ∗T2

)
.

P 1.9. – For the almost complex structure J0 given by Lemma 1.8, there exists
a smooth family of properly embedded J0-holomorphic annuli{

u(c,τ) : Arc →W
}

(c,τ)∈(0,δ]×S1

which foliate a neighborhood of T in W \ T and satisfy the boundary conditions

u(c,τ)

(
∂+
rc

)
⊂ int A+

τ , u(c,τ)

(
∂−rc
)
⊂ int A−τ .

In particular the curves u(c,0) for c ∈ (0, δ] all belong to the moduli space M(J0).

Denote the neighborhood foliated by the curves u(c,τ) by

U =
⋃

(c,τ)∈(0,δ]×S1

u(c,τ)(Arc) ,

and define the following special class of almost complex structures,

J U(ω, ξ) =
{

almost complex structures J

adapted to the filling (W,ω) such that J ≡ J0 on U
}
.

The annuli u(c,τ) are thus J-holomorphic for any J ∈ J U(ω, ξ), and the space M(J) is
therefore nonempty. In this case, denote by

M0(J) ⊂ M(J)

the connected component of M(J) that contains the curves u(c,0).

L 1.10. – Every curve u : Ar → W in M0(J) is proper, and its restriction to ∂Ar is
embedded.

Proof. – Properness follows immediately from Lemma 1.5, and due to our assumptions
on the characteristic foliation of a half-twisted annulus, embeddedness at the boundary also
follows from the lemma after observing that the homotopy class of u|∂±r is the same as for
the curves u(c,0), whose boundaries intersect every characteristic leaf once.

P 1.11. – For J ∈ J U(ω, ξ), suppose u ∈ M0(J) is not one of the curves
u(c,0). Then u does not intersect the interior of U.
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Proof. – The proof is based on an intersection argument. Each of the curves u(c,τ) foliat-
ing U can be capped off to a cycle û(c,τ) that represents the trivial homology class inH2(W ).
We shall proceed in a similar way to obtain a cycle û for u, arranged such that intersections
between the cycles û and û(c,τ) can only occur when the actual holomorphic curves u and
u(c,τ) intersect. Then if u is not any of the curves u(c,0) but intersects the interior of U, it
also is not a multiple cover of any u(c,0) due to Lemma 1.10, and therefore must have an iso-
lated positive intersection with some curve u(c,τ). It follows that [ûc0 ] • [û] > 0, but since
[ûc0 ] = 0 ∈ H2(W ), this is a contradiction.

We construct the desired caps as follows. Suppose u(∂−r ) ⊂ A−ϑ0
. We may assume without

loss of generality that u and u(c,τ) intersect each other in the interior, and since this intersec-
tion will not disappear under small perturbations, we can adjust τ so that it equals neither 0

nor ϑ0. A cap for u(c,τ) can then be constructed by filling in the space in A−τ ∪A+
τ between the

two boundary components of u(c,τ); clearly the resulting homology class [û(c,τ)] is trivial.

The cap for u will be a piecewise smooth surface in ∂W constructed out of three smooth
pieces:

– A subset of A+ filling the space between the singular boundary ∂SA+ and u(∂+
r ),

– A subset of A−ϑ0
filling the space between the singular boundary ∂SA−ϑ0

and u(∂−r ),
– An annulus in T = {r = 0} defined by letting ϑ vary over a path in S1 that connects 0

to ϑ0 by moving in a direction such that it does not hit τ .

By construction, the two caps are disjoint, and since both are contained in ∂W , neither
intersects the interior of either curve.

1.2.4. Local structure of the moduli space. – We now show that M0(J) can be given a nice
local structure for generic data.

P 1.12. – For generic J ∈ J U(ω, ξ), the moduli space M0(J) is a smooth
1-dimensional manifold.

Proof. – Since M0(J) is connected by assumption, the dimension can be derived by
computing the Fredholm index of the associated linearized Cauchy-Riemann operator for
any of the curves u(c,0) ∈ M0(J). By Lemma 1.10, every curve u ∈ M0(J) is somewhere
injective, thus standard arguments as in [35] imply that for generic J ∈ J U(ω, ξ), the subset
of curves in M0(J) that are not completely contained in U is a smooth manifold of the correct
dimension. Proposition 1.11 implies that the remaining curves all belong to the family u(c,0),
and for these we will have to examine the Cauchy-Riemann operator more closely since J
cannot be assumed to be generic in U.

Abbreviate u = u(c,0) : Ar →W for any c ∈ (0, δ]. Since u is embedded, a neighborhood
of u in M0(J) can be described via the normal Cauchy-Riemann operator (cf. [41]),

(1.3) DN
u : W 1,p

`,ζ (Nu)→ Lp
(
HomC(TAr, Nu)

)
,

where p > 2, Nu → Ar is the complex normal bundle of u, DN
u is the normal part of the

restriction of the usual linearized Cauchy-Riemann operatorD∂̄J(u) (which acts on sections
of u∗TW ) to sections of Nu, and the subscripts ` and ζ represent a boundary condition
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to be described below. We must define the normal bundle Nu so that at the boundary its
intersection with TA has real dimension one, thus defining a totally real subbundle

` = Nu|∂Ar ∩ (u|∂Ar )∗TA ⊂ Nu|∂Ar .

To be concrete, note that in the coordinates (ϕ, ϑ; r) on N (T ), the image of u can be
parametrized by a map of the form

v : [−r0, r0]× S1 → (−ε, 0]× N (T ), (σ, τ) 7→ (a(σ); τ, 0;σ)

for some r0 > 0, where a(σ) is a smooth, convex and even function. Choose a vector field
along v of the form

ν(σ, τ) = ν1(σ) ∂r + ν2(σ) ∂t

which is everywhere transverse to the path σ 7→ (a(σ), σ) in the tr-plane, and require

ν(±r0, τ) = ∓∂r .

Then the vector fields ν and iν along v span a complex line bundle that is everywhere
transverse to v, and its intersection with TA at the boundary is spanned by ∂r. We define this
line bundle to be the normal bundle Nu along u, which comes with a global trivialization
defined by the vector field ν, for which we see immediately that both components of the
real subbundle ` along ∂Ar have vanishing Maslov index. To define the proper linearized
boundary condition, we still must take account of the fact that the image of ∂−r for nearby
curves in the moduli space may lie in different half-annuli A−ϑ : this means there is a smooth
section ζ ∈ Γ(Nu|∂−r ) which is everywhere transverse to `, such that the domain for DN

u takes
the form

W 1,p
`,ζ (Nu) :=

{
η ∈W 1,p(Nu)

∣∣ η(z) ∈ `z for all z ∈ ∂+
r ,

η(z) + c ζ(z) ∈ `z for all z ∈ ∂−r and any constant c ∈ R
}
.

Leaving out the section ζ, we obtain the standard totally real boundary condition

W 1,p
` (Nu) := {η ∈W 1,p(Nu) | η(z) ∈ `z for all z ∈ ∂Ar} ,

and the Riemann-Roch formula implies that the restriction of DN
u to this smaller space has

Fredholm index 0. Since the smaller space has codimension one in W 1,p
`,ζ (Nu), the index

of DN
u on the latter is 1, which proves the dimension formula for M0(J). Moreover, since

Nu has complex rank one, there are certain automatic transversality theorems that apply:
in particular, Theorem 4.5.36 in [40] implies that (1.3) is always surjective, and M0(J) is
therefore a smooth manifold of the correct dimension, even in the region where J is not
generic.

1.2.5. Energy bounds. – Assume now that ω is exact on the anchor, i.e., there exists a
1-form β on the region

⋃
ϑ∈S1 A−ϑ with dβ = ω. The aim of this section is to find a uniform

bound on the ω-energy

Eω(u) =

∫
Ar

u∗ω

for all curves
u :
(
Ar, ∂

−
r ∪ ∂+

r

)
→ (W,A−ϑ ∪ A+)

in the connected moduli space M0(J) generated by the Bishop family.
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F 7. The holomorphic annulus u :
(
Ar, ∂

−
r ∪ ∂+

r

)
→ (W,A−

ϑ ∪ A+) is
part of a 1-parameter family ut of curves that start at an annulus uε that lies in the
Bishop family.

Given such a curve u ∈ M0(J), there exists a smooth 1-parameter family of maps

{ut : Ar →W}t∈[ε,1] ,

such that uε is a reparametrization of one of the explicitly constructed curves u(c,0) that
foliate U, and u1 = u. The map ū : [ε, 1] × Ar → W : (t, z) 7→ ut(z) then represents a
3-chain, and applying Stokes’ theorem to the integral of d(ū∗ω) = 0 over [ε, 1]×Ar gives

Eω(u) = Eω(uε)−
∫

[ε,1]×∂Ar
ū∗ω .

The image ū
(
[ε, 1]× ∂Ar

)
has two components ū

(
[ε, 1]× ∂+

r

)
and ū

(
[ε, 1]× ∂−r

)
. The first

lies in a single half-twisted annulus A+, and thus the absolute value of
∫

[ε,1]×∂+
r
ū∗ω can be

bounded by
∫

A+ |ω|. For the second component, the image ū
(
[ε, 1]× ∂−r

)
lies in the anchor⋃

ϑ∈S1 A−ϑ , so we can write

Eω(u) ≤ Eω(uε) +

∫
A+

|ω|+
∫
∂−ε

u∗εβ −
∫
∂−r

u∗β .

It remains only to find a uniform bound on the last term in this sum,
∫
∂−r
u∗β. Observe

that u(∂−r ) and the singular boundary ∂SA−ϑ enclose an annulus within A−ϑ , thus∣∣∣∣∣
∫
∂−r

u∗β

∣∣∣∣∣ ≤
∫
∂SA−

ϑ

|β|+
∫

A−
ϑ

|ω| .

This last sum is uniformly bounded since the surfaces A−ϑ for ϑ ∈ S1 form a compact family.

1.2.6. Gromov compactness for the holomorphic annuli. – The main technical ingredient still
needed for the proof of Theorem 1 is the following application of Gromov compactness.

P 1.13. – Suppose J is generic in J U(ω, ξ), ω is exact on the anchor, and

uk :
(
Ark , ∂

−
rk
∪ ∂+

rk

)
→ (W,A−ϑk ∪ A+)
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is a sequence of curves in M0(J) with images not contained in U. Then there exist r > 0,
ϑ ∈ S1 and a sequence τk ∈ S1 such that after passing to a subsequence, rk → r, ϑk → ϑ and
the maps

z 7→ uk(e2πiτkz)

are C∞-convergent to a J-holomorphic annulus u : Ar → W satisfying u(∂−r ) ⊂ A−ϑ and
u(∂+

r ) ⊂ A+.

The energies
∫
Ark

u∗kω are uniformly bounded due to the exactness assumption, and the

proof is then essentially the same as in the disk case, cf. [9] or [47]. A priori, uk could con-
verge to a nodal holomorphic annulus, with nodes on both the boundary and the interior.
Boundary nodes are impossible however for topological reasons, as each boundary compo-
nent of uk must pass exactly once through each leaf in an S1-family of characteristic leaves,
and any boundary component in a nodal annulus will also pass at least once through each of
these leaves. Having excluded boundary nodes, uk could converge to a bubble tree consisting
of holomorphic spheres and either an annulus or a pair of disks, all connected to each other
by interior nodes. This however is a codimension 2 phenomenon, and thus cannot happen
for generic J since M0(J) is 1-dimensional. Here we make use of two important facts:

1. Any component of the limit that has nonempty boundary must be somewhere injective,
as it will be embedded at the boundary by the same argument as in Lemma 1.10. Such
components therefore have nonnegative index.

2. (W,ω) is semipositive (as is always the case in dimension 4), hence holomorphic
spheres of negative index cannot bubble off.

With this, the proof of Proposition 1.13 is complete.

1.2.7. Proof of Theorem 1. – Assume (W,ω) is a weak filling of (M, ξ) and the latter has
positive Giroux torsion. As shown in Example 1.4, (M, ξ) contains an anchored overtwisted
annulus. For this setting, we defined in §1.2.1 a moduli space of J-holomorphic annuli M(J)

with a 1-parameter family of totally real boundary conditions. In §1.2.3, we found a special
almost complex structure J0 which admits a Bishop family of holomorphic annuli, and
thus generates a nonempty connected component M0(J0) ⊂ M(J0). This space remains
nonempty after perturbing J0 generically outside the region foliated by the Bishop family,
thus producing a new almost complex structure J and nonempty moduli space M0(J). We
then showed in §1.2.4 that M0(J) is a smooth 1-dimensional manifold, which is therefore
diffeomorphic to an open interval, one end of which corresponds to the collapse of the
Bishop annuli into the singular circle at the center of the overtwisted annulus. In particular,
this implies that M0(J) is not compact, and the key is then to understand its behavior at the
other end. The assumption that ω is exact on the anchor provides a uniform energy bound,
with the consequence that if all curves in u remain a uniform positive distance away from
the Legendrian boundaries of A+ and A−ϑ , Proposition 1.13 implies M0(J) is compact. But
since the latter is already known to be false, this implies that M0(J) contains a sequence of
curves drawing closer to the Legendrian boundary, and applying Proposition 1.13 again, a
subsequence converges to a J-holomorphic annulus that touches the Legendrian boundary
of A+ or A−ϑ tangentially. That is impossible by Lemma 1.5, and we have a contradiction.
Together with the following remark, this completes the proof of Theorem 1.
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R 1.14. – If (M, ξ) ⊂ (W,ω) is a separating hypersurface of weak contact type,
then half of (W,ω) is a weak filling of (M, ξ) and the above argument provides a contra-
diction. To finish the proof of the theorem, it thus remains to show that (M, ξ) under the
given assumptions can never occur as a nonseparating hypersurface of weak contact type
in any closed symplectic 4-manifold (W,ω). This follows from almost the same argument,
due to the following trick introduced in [1]. If M does not separate W , then we can cut
W open along M to produce a connected symplectic cobordism (W0, ω0) between (M, ξ)

and itself, and then attach an infinite chain of copies of this cobordism to obtain a non-
compact symplectic manifold (W∞, ω∞) with weakly contact boundary (M, ξ). Though
noncompact, (W∞, ω∞) is geometrically bounded in a certain sense, and an argument in [1]
uses the monotonicity lemma to show that for a natural class of adapted almost complex
structures on W∞, any connected moduli space of J-holomorphic curves with boundary
on ∂W∞ and uniformly bounded energy also satisfies a uniform C0-bound. In light of this,
the above argument for the compact filling also works in the “noncompact filling” furnished
by (W∞, ω∞), thus proving that (M, ξ) cannot occur as a nonseparating weakly contact
hypersurface.

We will use this same trick again in the proof of Theorem 3. In relation to Theorem 2, it
also implies that in any closed symplectic 4-manifold, a weakly contact hypersurface that is
planar must always be separating. This is closely related to Etnyre’s theorem [17] that planar
contact manifolds never admit weak semifillings with disconnected boundary, which also can
be shown using holomorphic curves, by a minor variation on the proof of Theorem 2.

R 1.15. – It should be possible to generalize the Bishop family idea still further
by considering “overtwisted planar surfaces” with arbitrarily many boundary components
(Figure 8). The disk or annulus would then be replaced by a k-holed sphere Σ for some
integer k ≥ 1, with Legendrian boundary, of which k − 1 of the boundary components are
“anchored” by S1-families of half-twisted annuli. The characteristic foliation on Σ must in
general have k−2 hyperbolic singular points. One would then find Bishop families of annuli
near the anchored boundary components, which eventually must collide with each other and
could be glued at the hyperbolic singularities to produce more complicated 1-dimensional
families of rational holomorphic curves with multiple boundary components, leading in the
end to a more general filling obstruction.

One situation where such an object definitely exists is in the presence of planar torsion (see
§2.3), though we will not pursue this approach here, as that setting lends itself especially well
to the punctured holomorphic curve techniques explained in the next section.

2. Punctured pseudoholomorphic curves and weak fillings

We begin this section by showing that up to symplectic deformation, every weak filling
can be enlarged by symplectically attaching a cylindrical end in which the theory of finite
energy punctured J-holomorphic curves is well behaved. This fact is standard in the case
where the symplectic form is exact near the boundary: indeed, Eliashberg [11] observed that
if (W,ω) is a weak filling of (M, ξ) and H2

dR(M) = 0, then one can always deform ω

in a collar neighborhood of ∂W to produce a strong filling of (M, ξ), which can then be
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F 8. An overtwisted planar surface anchored at two boundary components.

attached smoothly to a half-symplectization of the form
(
[0,∞)×M,d(etα)

)
. For obvious

cohomological reasons, this is not possible whenever [ω|M ] 6= 0 ∈ H2
dR(M). The solution is

to work in the more general context of stable Hamiltonian structures, in which M carries
a closed maximal rank 2-form that is not required to be exact. We will recall in §2.1 the
important properties of stable hypersurfaces and stable Hamiltonian structures, proving in
particular (Proposition 2.6) that there exist stable Hamiltonian structures representing every
de Rham cohomology class. We will then use this in §2.2 to prove Theorem 2.9, that weak
boundaries can always be deformed to stable hypersurfaces. A quick review of the definition
and essential facts about planar torsion will then be given in §2.3, leading in §2.4 to the proofs
of Theorems 2 and 3.

2.1. Stable hypersurfaces and stable Hamiltonian structures

Let us recall some important definitions. The first originates in [27].

D 2.1. – Given a symplectic manifold (W,ω), a hypersurfaceM is called stable
if it is transverse to a vector field Y defined near M whose flow ΦtY for small |t| preserves
characteristic line fields, i.e., if Mt := ΦtY (M) and `t ⊂ TMt is the kernel of ω|TMt

, then
(ΦtY )∗`0 = `t.

As an important special case, if (W,ω) is a strong filling of (M, ξ), then ∂W is stable, as
it is transverse to an outward pointing Liouville vector field which dilates ω and therefore
preserves characteristic line fields. In this case we say the boundary of W is convex; if ∂W is
instead transverse to an inward pointing Liouville vector field, we say it is concave.

Stable hypersurfaces were initially introduced in order to study dynamical questions, but
it was later recognized that they also yield suitable settings for the theory of punctured
J-holomorphic curves. In this context, the following more intrinsic notion was introduced
in [2].

D 2.2. – A stable Hamiltonian structure on an oriented 3-manifoldM is a pair

H = (λ,Ω)

consisting of a 1-form λ and 2-form Ω such that

1. dΩ = 0,
2. λ ∧ Ω > 0,
3. ker Ω ⊂ ker(dλ).
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The second condition implies that Ω has maximal rank and is nondegenerate on the
distribution

ξ := kerλ ,

so that (ξ,Ω) is a symplectic vector bundle. There is then a positively transverse vector fieldX
uniquely determined by the conditions

Ω(X, ·) = 0, λ(X) = 1 ,

and the flow of X preserves both ξ and Ω. Conversely, a triple (X, ξ,Ω) satisfying these
properties uniquely determines (λ,Ω), and thus can be taken as an alternative definition of
a stable Hamiltonian structure.

If M ⊂ (W,ω) is a stable hypersurface and Y is the transverse vector field of Defini-
tion 2.1, then we can orient M in accordance with the coorientation determined by Y and
assign to it a stable Hamiltonian structure (λ,Ω) defined as follows:

(2.1) λ :=
(
ιY ω

)∣∣
TM

, and Ω := ω|TM .

Now Ω is obviously closed and nondegenerate on ξ := kerλ, and the stability condition
implies that for any vector X in the characteristic line field on M ,(

LY ω
)
(X, ·)

∣∣
ξ

= 0 .

From this it is an easy exercise to verify that the pair (λ,Ω) satisfies the conditions of a stable
Hamiltonian structure.

Given a 3-manifold M with stable Hamiltonian structure (λ,Ω), the 2-form

(2.2) ω := Ω + d(tλ)

on (−ε, ε)×M is symplectic for sufficiently small ε > 0. Conversely, and more generally (cf.
Lemma 2.3 in [6]):

L 2.3. – Let (W,ω) be a symplectic 4-manifold whose interior contains a closed
oriented hypersurface M ⊂ W , and let λ be a nonvanishing 1-form on M that defines a
cooriented (and thus also oriented) 2-plane distribution ξ. Assume ω|ξ > 0. Then writing
Ω = ω|TM , there exists an embedding

Φ : (−ε, ε)×M ↪→W

for sufficiently small ε > 0, such that Φ(0, ·) is the inclusion and

Φ∗ω = Ω + d(tλ) .

Proof. – Since ω is nondegenerate on ξ, there is a unique vector field Xω on M deter-
mined by the conditions ω(Xω, ·) ≡ 0 and λ(Xω) ≡ 1. Choose a smooth section Y of TW |M
such that Y also lies in the ω-complement of ξ and ω(Y,Xω) ≡ 1. Extend this arbitrarily as
a nowhere zero vector field on some neighborhood of M . Then Y is transverse to M , and
(ιY ω)|TM = λ.

Using the flow ΦtY of Y , we can define for sufficiently small ε > 0 an embedding

Φ : (−ε, ε)×M →W, (t, p) 7→ ΦtY (p) ,

and compare ω0 := Φ∗ω with the model ω1 := d(t λ) + Ω on (−ε, ε) × M , shrinking ε
if necessary so that ω1 is symplectic. Then ω1 and ω0 are symplectic forms that match
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identically along {0} ×M , and the usual Moser deformation argument provides an isotopy
between them on a neighborhood of {0} ×M .

This result has an obvious analog for the case ∂W = M . Given this, if (W,ω) is any
symplectic manifold with stable boundary ∂W = M and H = (λ,Ω) is an induced stable
Hamiltonian structure, then one can glue a cylindrical end [0,∞)×M symplectically to the
boundary as follows. Choose ε > 0 sufficiently small so that

(2.3) (Ω + t dλ) |ξ > 0 for all |t| ≤ ε,

and let T denote the set of smooth functions

ϕ : [0,∞)→ [0, ε)

which satisfy ϕ(t) = t for t near 0 and ϕ′ > 0 everywhere. Then if a neighborhood of ∂W is
identified with (−ε, 0]×M as above, we can define the completed manifold

W∞ := W ∪
(
[0,∞)×M

)
by the obvious gluing, and assign to it a 2-form

(2.4) ωϕ :=

{
ω in W,

Ω + d(ϕλ) in [0,∞)×M

which is symplectic for anyϕ ∈ T due to (2.3). There is also a natural class J (ω, H ) of almost
complex structures on W∞, where we define J to be in J (ω, H ) if

1. J is compatible with ω on W ,
2. J is R-invariant on [0,∞)×M , maps ∂t toX and restricts to a complex structure on ξ

compatible with Ω|ξ.
Then any J ∈ J (ω, H ) is compatible with any ωϕ for ϕ ∈ T . Observe that whenever λ is
a contact form, the conditions characterizing J ∈ J (ω, H ) on the cylindrical end depend
on λ, but not on Ω, as J |ξ is compatible with Ω|ξ if and only if it is compatible with dλ|ξ. In
this case we simply say that J is compatible with λ on the cylindrical end.

For J ∈ J (ω, H ), we define the energy of a J-holomorphic curve u : Σ̇→W∞ by

E(u) = sup
ϕ∈ T

∫
u∗ωϕ .

Then E(u) ≥ 0, with equality if and only if u is constant. It is straightforward to show that
this notion of energy is equivalent to the one defined in [2], in the sense that uniform bounds
on either imply uniform bounds on the other. Thus if Σ̇ is a punctured Riemann surface,
finite energy J-holomorphic curves have asymptotically cylindrical behavior at nonremovable
punctures, i.e., they approach closed orbits of the vector field X at {+∞}×M .

The most popular example of a stable Hamiltonian structure is (λ,Ω) = (α, dα), where
α is a contact form; this is the case that arises naturally on the boundary of a strong filling.
One can then obtain other stable Hamiltonian structures in the form

(2.5) (λ,Ω) = (α, F dα) ,

for any function F : M → (0,∞) such that dF ∧ dα = 0. In fact, since ker(dα) is a vector
bundle of rank 1 whenever ξ = kerα is contact, every stable Hamiltonian structure in this
case has the form of (2.5), and the vector field X is the usual Reeb vector field Xα. In this
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context it will be useful to know that one can choose F so that F dα may lie in any desired
cohomology class. In order to formulate a sufficiently general version of this statement, we
will need the following definition.

D 2.4. – Suppose K ⊂ (M, ξ) is a transverse knot. We will say that a contact
formα for ξ is in standard symmetric form nearK if a neighborhood N (K) ⊂M ofK can be
identified with a solid torus S1 × D 3 (ϑ; ρ, ϕ), thus defining positively oriented cylindrical
coordinates in which K = {ρ = 0} and α takes the form

α = f(ρ) dϑ+ g(ρ) dϕ

for some smooth functions f, g : [0, 1]→ R with f(0) > 0 and g(0) = 0.

Recall that by the contact neighborhood theorem, there always exists a contact form
in standard symmetric form near any knot transverse to the contact structure. The condi-
tion that α is a positive contact form in these coordinates then amounts to the condition
f(ρ)g′(ρ) − f ′(ρ)g(ρ) > 0 for ρ > 0, and g′′(0) > 0. An oriented knot is called positively
transverse if its orientation matches the coorientation of the contact structure; in this case its
orientation must always match the orientation of the ϑ-coordinate in the above definition.

R 2.5. – Recall that a contact form α is called nondegenerate whenever its Reeb
vector field Xα admits only nondegenerate periodic orbits. The transverse knot K ⊂ M is
always the image of a periodic orbit if α is in standard symmetric form near K. Then after
multiplying α by a smooth function that depends only on ρ, one can always arrange without
loss of generality thatK and all its multiple covers are nondegenerate orbits and are the only
periodic orbits in a small neighborhood of K. In this way we can always find nondegenerate
contact forms that are in standard symmetric form near K.

P 2.6. – Suppose (M, ξ) is a contact 3-manifold,

K = K1 ∪ · · · ∪Kn ⊂M

is an oriented positively transverse link, NK ⊂ M is a neighborhood of K and α is a contact
form for ξ that is in standard symmetric form nearK. Then for any set of positive real numbers
c1, . . . , cn > 0, there exists a smooth function F : M → (0,∞) such that the following
conditions are satisfied:

1. (α, F dα) is a stable Hamiltonian structure.
2. F ≡ 1 on M \NK and F is a positive constant on a smaller neighborhood of K.
3. [F dα] ∈ H2

dR(M) is Poincaré dual to c1 [K1] + · · ·+ cn [Kn] ∈ H1(M ; R).

R 2.7. – Since every oriented link has aC0-small perturbation that makes it posi-
tively transverse (see for example [20]), every homology class inH1(M ; R) can be represented
by a finite linear combination

c1 [K1] + · · ·+ cn [Kn]

where c1, . . . , cn > 0 and K1 ∪ · · · ∪Kn is a positively transverse link.
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R 2.8. – A few days after the first version of this paper was made public,
Cieliebak and Volkov unveiled a comprehensive study of stable Hamiltonian structures
[7] which includes an existence result closely related to Proposition 2.6, and valid also in
higher dimensions.

Proof of Proposition 2.6. – We will have [F dα] = PD
(
c1[K1]+· · ·+cn[Kn]

)
if and only if∫

S

F dα =
n∑
i=1

ci [Ki] • [S]

for every closed oriented surface S ⊂M . Then a function F with the desired properties can
be constructed as follows. By assumption, each component Ki ⊂ K comes with a tubular
neighborhood N (Ki) ⊂ NK that is identified with S1 × D 3 (ϑ; ρ, ϕ), on which α has the
form

α = fi(ρ) dϑ+ gi(ρ) dϕ

for some smooth functions fi, gi : [0, 1] → R with fi(0) > 0 and gi(0) = 0. Denote the
union of all these coordinate neighborhoods by N (K). Now choose h : M → (0,∞) to be
any smooth function with the following properties:

1. The support of h is in the interior of N (K).
2. On each neighborhood N (Ki), h depends only on the ρ-coordinate, and restricts to a

function hi(ρ) that is constant for ρ near 0 and satisfies

2π

∫ 1

0

hi(ρ) g′i(ρ) dρ = ci .

Now for any closed oriented surface S ⊂ M , we can deform S so that its intersection with
N (K) is a finite union of disks of the form {ϑ0}×D ⊂ S1×D for eachx = (ϑ0, 0, 0) ∈ Ki∩S,
each oriented according to the intersection index σ(x) = ±1. Thus if we set F = 1 +h, then∫

S

F dα =

∫
S

dα+

∫
S

h dα

=
n∑
i=1

∑
x∈Ki∩S

σ(x)

∫
D
hi(ρ) g′i(ρ) dρ ∧ dϕ

=
n∑
i=1

ci [Ki] • [S] ,

as desired.

2.2. Collar neighborhoods of weak boundaries

The application of punctured holomorphic curve methods to weak fillings is made possi-
ble by the following result.

T 2.9. – Suppose (W,ω) is a symplectic 4-manifold with weakly contact boundary
(M, ξ), K = K1 ∪ · · · ∪ Kn ⊂ M is a positively transverse link with positive numbers
c1, . . . , cn > 0 such that the homology class

c1 [K1] + · · ·+ cn [Kn] ∈ H1(M ; R)
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is Poincaré dual to [ω|TM ] ∈ H2
dR(M), N (K) is a tubular neighborhood of K, λ is a contact

form for ξ that is in standard symmetric form near K (cf. Definition 2.4), and N (M) ⊂W is
a collar neighborhood of ∂W . Then there exists a symplectic form ω̂ on W such that

1. ω̂ = ω on W \ N (M),
2. M is a stable hypersurface in (W, ω̂), with an induced stable Hamiltonian structure of

the form (C λ, F dλ) for some constant C > 0 and smooth function F : M → (0,∞)

that is constant near K and outside of N (K).

Lemma 2.3 shows that in the right choice of coordinates, ω can always be assumed to be
of the form

d(t λ) + ω|TM
on (−ε, 0] ×M for sufficiently small ε > 0, where t denotes the coordinate on the interval
(−ε, 0]. In light of Proposition 2.6, Theorem 2.9 will be an easy consequence of the following
lemma that provides a symplectic interpolation between any two cohomologous symplectic
structures of this form for a fixed contact structure ξ, as long as we are willing to rescale the
1-form λ.

L 2.10. – Suppose M is a closed oriented 3-manifold with cooriented contact
structure ξ ⊂ TM defined as the kernel of a contact form λ. Let Ω0 and Ω1 be closed,
cohomologous 2-forms on M that are both positive on ξ.

Then for any ε > 0 sufficiently small, [−ε, 0]×M admits a symplectic form ω which satisfies
ω|ξ > 0 on {0} ×M and the following additional properties:

1. ω = d(tλ) + Ω0 in a neighborhood of {−ε} ×M ,
2. ω = d(ϕλ) + Ω1 in a neighborhood of {0} ×M , where ϕ : [−ε, 0] → [−ε,∞) is a

smooth function that satisfies ϕ′ > 0 everywhere.

Proof. – Since Ω0 and Ω1 are cohomologous, we find a 1-form η on M such that
Ω1 = Ω0 + dη. Choose smooth functions ϕ : [−ε, 0] → [−ε,∞) and f : [−ε, 0] → [0, 1]

such that f(t) = 0 for t near −ε and f(t) = 1 for t near 0, while ϕ(t) = t whenever t is near
−ε, and ϕ′ > 0 everywhere.

We must then show that under these conditions, ϕ can be chosen so that the closed 2-form

ω := d
(
ϕλ
)

+ Ω0 + d
(
f η
)

is nondegenerate, where f and ϕ are lifted in the obvious way to a function on [−ε, 0]×M .
We compute,

ω ∧ ω = 2 dt ∧
(
ϕ′ λ+ f ′ η

)
∧ [(1− f) Ω0 + f Ω1 + ϕdλ] ,

and observe that if ϕ is chosen with ϕ′ sufficiently large we have ω ∧ ω > 0 everywhere. The
condition ω|ξ > 0 on {0} ×M is now immediate from the construction.

Combining Proposition 2.6 with this lemma, Theorem 2.9 now follows from the observa-
tion that if (λ,Ω) is a stable Hamiltonian structure such that λ is contact, and ϕ is a strictly
increasing smooth positive function on some interval in R, then the level sets {T} ×M are
all stable hypersurfaces with respect to the symplectic form d(ϕλ) + Ω, inducing the stable
Hamiltonian structure (ϕ′(T )λ, ϕ(T ) dλ+ Ω) on such a hypersurface.
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2.3. Review of planar torsion

In this section we recall the important definitions and properties of planar torsion; we
shall give only the main ideas here, referring to [44] for further details.

Recall that an open book decomposition of a closed oriented 3-manifold M is a fibration
π : M \ B → S1, where the binding B ⊂ M is an oriented link, and the fibers are oriented
surfaces with embedded closures whose oriented boundary is B. The fibers are connected if
and only if M is connected, and we call the connected components of the fibers pages. We
wish to consider two topological operations that can be performed on an open book:

1. Blowing up a binding circle γ ⊂ B: this means replacing γ by the unit circle bundle
in its normal bundle, or equivalently, removing a small neighborhood of γ so that M
becomes a manifold M̂ with 2-torus boundary. Defining “B = B \ γ, the fibration
π : M \B → S1 now induces a fibration

π̂ : M̂ \ “B → S1 .

The structure associated with this fibration is called a blown up open book with
binding “B. Observe that ∂M̂ also carries a distinguished 1-dimensional homology
class, arising from the meridian on the tubular neighborhood of γ.

2. The binding sum: consider two distinct binding circles γ1, γ2 ⊂ B, which come with
distinguished trivializations of their normal bundles νγ1, νγ2 determined by the open
book. Any orientation preserving diffeomorphism γ1 → γ2 is then covered by a unique
(up to homotopy) orientation reversing isomorphism

Φ : νγ1 → νγ2

which is constant with respect to the distinguished trivializations. Blowing up both γ1

and γ2, we obtain a manifold M̂ with two torus boundary components ∂1M̂ and ∂2M̂ ,
and Φ determines a unique (up to isotopy) orientation reversing diffeomorphism

Φ̂ : ∂1M̂ → ∂2M̂ ,

which we may assume restricts to orientation preserving diffeomorphisms between
boundary components of fibers of π̂. Gluing ∂1M̂ and ∂2M̂ together via Φ̂ then gives a
new closed manifold M̌ , containing a distinguished torus I ⊂ M̌ , called the interface,
which also carries distinguished 1-dimensional homology classes (unique up to sign)
determined by the meridians. Due to the orientation reversal, the fibration is not well
defined on the interface, but it determines a fibration

π̌ : M̌ \ (B̌ ∪ I )→ S1 ,

where B̌ := B \ (γ1 ∪ γ2). The associated structure is called a summed open book with
binding B̌ and interface I . If M1 and M2 are two distinct manifolds with open books,
one can attach them by choosing some collection of binding circles inM1, pairing each
with a distinct binding circle inM2 and constructing the binding sum for each pair. We
use the shorthand notation

M1 �M2

for any manifold and summed open book constructed from two open books in this way.
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Clearly both operations can also be performed on binding components of blown up or
summed open books, so iterating them finitely many times we can produce a more compli-
cated manifold (possibly with boundary), carrying a more general decomposition known as
a blown up summed open book. If M carries such a structure, then it comes with a fibration

π : M \ (B ∪ I )→ S1 ,

where the binding B is an oriented link and the interface I is a disjoint union of tori.
The connected components of fibers of π are again called pages, and their closures are
generally immersed surfaces, as they occasionally may have multiple boundary components
that coincide as oriented circles in the interface. We call a blown up summed open book
irreducible if the fibers π−1(∗) are all connected, and planar if they also have genus zero.

Generalizing the standard definition of a contact structure supported by an open book,
we say that a contact form α on M with induced Reeb vector field Xα is a Giroux form if it
satisfies the following conditions:

1. Xα is positively transverse to the interiors of all pages,
2. Xα is positively tangent to the boundaries of the closures of all pages,
3. The characteristic foliation induced on I ∪∂M by kerα has closed leaves representing

the distinguished homology classes determined by meridians.

It follows that the interface and boundary are always foliated by closed orbits of the Reeb
vector field for any Giroux form. We say that a contact structure ξ is supported by the summed
open book whenever it is the kernel of a Giroux form.

E 2.11. – Suppose Σ is a compact, connected and oriented surface, possibly with
boundary, and ξ is a positive, cooriented and S1-invariant contact structure on S1×Σ, such
that the curves S1×{z} are Legendrian for all z ∈ ∂Σ. We can then divide Σ into the following
subsets:

Σ+ = {z ∈ Σ | S1 × {z} is positively transverse} ,

Σ− = {z ∈ Σ | S1 × {z} is negatively transverse} ,

Γ = {z ∈ Σ | S1 × {z} is Legendrian} .

By assumption, ∂Σ ⊂ Γ. The Lutz construction [32] produces such a contact structure for
any given multicurve Γ that contains ∂Σ and divides Σ into two separate pieces Σ+ and Σ−.
In fact, one can find a contact formα for ξ such that for every t ∈ S1, the Reeb vector fieldXα

is positively transverse to {t}×Σ+, negatively transverse to {t}×Σ− and tangent to {t}×Γ.
This is thus a Giroux form for a blown up summed open book, whose pages are the connected
components of {t} × (Σ \ Γ), with trivial monodromy. The interface is the union of all the
tori S1 × γ for connected components γ ⊂ Γ in the interior of Σ, and the binding is empty.

A blown up summed open book is called symmetric if its boundary and binding are both
empty, and it is obtained as a binding sum of two connected pieces M+ � M−, with open
books whose pages are diffeomorphic to each other. The two simplest examples of contact
structures supported by symmetric summed open books are the standard contact structures
on S1 × S2 and T3: the former can be obtained as a binding sum of two open books with
disk-like pages, and the latter as a binding sum of two open books with cylindrical pages
and trivial monodromy.
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D 2.12. – A planar torsion domain is any contact 3-manifold (M, ξ), possi-
bly with boundary, together with a supporting blown up summed open book that can be
obtained as a binding sum of two separate nonempty pieces,

M = M0 �M1 ,

where M0 carries an irreducible planar summed open book without boundary, and M1

carries an arbitrary blown up summed open book (possibly disconnected), such that the
induced blown up summed open book on M is not symmetric. The interior of M then
contains a compact submanifold with nonempty boundary,

MP ⊂M ,

called the planar piece, which is obtained from M0 by blowing up all of its summed binding
components. The closure of M \MP is called the padding.

We say that a contact 3-manifold (M, ξ) has planar torsion whenever it admits a contact
embedding of some planar torsion domain.

Note that the interface of the blown up summed open book on a planar torsion domain
contains the (nonempty) boundary of the planar piece, and may also have additional com-
ponents in its interior.

D 2.13. – For any closed 2-form Ω on a closed contact 3-manifold (M, ξ),
we say that (M, ξ) has Ω-separating planar torsion if it contains a planar torsion domain
such that

∫
L

Ω = 0 for every interface torus L in the planar piece. If each of these tori is
nullhomologous in H2(M ; R), then we say (M, ξ) has fully separating planar torsion.

R 2.14. – The fully separating condition can only be satisfied when the planar
piece MP ⊂ M has no interface tori in its interior and each of its boundary components
separates M . This follows from the observation that an interface torus in an irreducible
blown up summed open book is always homologically nontrivial.

E 2.15. – As shown in [44], any open neighborhood of a Lutz twist contains a
fully separating planar torsion domain whose planar piece has disk-like pages, and in fact
planar torsion of this type (called planar 0-torsion) is equivalent to overtwistedness. Similarly,
a neighborhood of a Giroux torsion domain always contains a planar torsion domain whose
planar piece has cylindrical pages (called planar 1-torsion).

E 2.16. – The S1-invariant contact manifold (S1 × Σ, ξ) of Example 2.11 is a
planar torsion domain whenever Σ\Γ contains a connected component of genus zero whose
closure is disjoint from ∂Σ, but which is not diffeomorphic to both Σ+ and Σ−. The fully
separating condition is satisfied whenever every boundary component of the genus zero piece
separates Σ.

The following is a combination of two of the main results in [44].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



834 K. NIEDERKRÜGER AND C. WENDL

T 2.17 ([44]). – If (M, ξ) is a closed contact 3-manifold with planar torsion then
it is not strongly fillable. Moreover, if MP ⊂ M denotes the planar piece of a planar torsion
domain in M and π : MP \ (B ∪ I ) → S1 is the associated fibration with binding B and
interface I , then for any ε > 0, (M, ξ) admits a Morse-Bott contact form α and a generic
R-invariant almost complex structure J on R×M , compatible with α, such that:

– α is in standard symmetric form (see Definition 2.4) near B, and the components of B
are nondegenerate elliptic Reeb orbits of Conley-Zehnder index 1 (with respect to the
trivialization determined by the open book) and period less than ε.

– The interface and boundary tori I ∪ ∂M ⊂ MP are Morse-Bott submanifolds foliated
by Reeb orbits of period less than ε.

– All Reeb orbits in M outside of B ∪ I ∪ ∂MP have period at least 1.
– The interior of each planar page π−1(τ) is the projection to M of an embedded finite

energy punctured J-holomorphic curve

uτ : Σ̇→ R×M ,

with only positive ends and Fredholm index 2.

2.4. Proofs of Theorems 2 and 3

The important feature that Theorems 2 and 3 have in common is that they involve weak
fillings of contact manifolds that admit regular families of index 2 punctured holomorphic
spheres. For Theorem 2, the idea will be to stabilize the boundary so that the pages of a given
planar open book can be lifted to holomorphic curves in the cylindrical end—we can then
repeat precisely the argument used for strong fillings in [42], as the resulting moduli space
spreads into the filling to form the fibers of a symplectic Lefschetz fibration. The idea for
Theorem 3 is similar, except that instead of a Lefschetz fibration, we will get a contradiction.
First however we must take care to stabilize the boundary in such a way that the desired
holomorphic curves in the cylindrical end will actually exist, and this is not trivial since by
Theorem 2.9, we can only choose the contact form freely outside of a neighborhood of a
certain transverse link.

L 2.18. – Suppose Σ is a compact oriented surface with nonempty boundary,
ϕ : Σ → Σ is a diffeomorphism with support away from the boundary, and Σϕ denotes the
mapping torus of ϕ, i.e., the manifold (R × Σ)/ ∼ where (t + 1, z) ∼ (t, ϕ(z)) for all t ∈ R,
z ∈ Σ. Then for any given connected component L ⊂ ∂Σϕ, every homology class h ∈ H1(Σϕ)

can be represented as a sum of cycles

h = hΣ + hL ,

where hΣ lies in a fiber of the natural fibration Σϕ → S1, and hL lies in L.

Proof. – The fibration Σϕ → S1 gives rise to an exact sequence

H1(Σ)
ϕ∗−1−→ H1(Σ)

ι∗−→ H1(Σϕ)
Φ−→ H0(Σ) ∼= Z ,

where ι : Σ → Σϕ is the inclusion and Φ computes the intersection number of any 1-cycle
in the interior of Σϕ with a fiber. Thus if we choose any reference cycle h0 ∈ H1(Σϕ) that
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passes once transversely through each fiber, the exact sequence implies that any h ∈ H1(Σϕ)

decomposes as a sum of the form

h = ι∗(hΣ) + c h0

for hΣ ∈ H1(Σ) and c ∈ Z. The lemma follows since h0 can be represented by a loop in any
given connected component of ∂Σϕ.

Assume (W,ω) is a weak filling of (M, ξ), and the latter either is planar or contains
a planar torsion domain with planar piece MP ⊂ M , whose binding and interface are
denoted by BP , I P ⊂ MP respectively. In the planar case it makes sense also to define
MP = M and I P = ∅, so in both cases MP carries a planar blown up summed open
book with bindingBP and interface I P . After modifying ω via Theorem 2.9, we can assume
∂W is a stable hypersurface, with an induced stable Hamiltonian structure of the form
H = (λ, F dλ), where λ is a contact form for ξ that is in standard symmetric form near some
positively transverse link K = K1 ∪ · · · ∪Kn. The latter must be chosen so that

(2.6) PD
(
[ω|TM ]

)
=

n∑
i=1

ci [Ki]

for some set of positive real numbers c1, . . . , cn > 0.

L 2.19. – If
∫
L
ω = 0 for every connected component L ⊂ I P ∪ ∂MP , then one can

choose the positively transverse link K to be a disjoint union of three links

K = KB ∪KP ∪K ′ ,

where KB is a subcollection of the oriented components of BP , KP lies in a single page in MP

and K ′ ⊂M \MP .

Proof. – Note that in the planar case, MP = M and the condition on the boundary and
interface is vacuous: then applying Lemma 2.18 to the mapping torus of the monodromy of
the open book, we see that for any oriented binding component γ ⊂ BP , any h ∈ H1(M ; R)

can be written as h = c [γ] + hP for some c ∈ R and hP is represented by a cycle in a page.
If c < 0, we can exploit the fact that the total binding is the boundary of a page and thus
rewrite c [γ] as a positive linear combination of the other oriented binding components.

For the case of a planar torsion domain, we have ∂MP 6= ∅ and must show first that
h = PD

(
[ω|TM ]

)
under the given assumptions can be represented by a cycle that does not

intersect I P ∪ ∂MP . The above argument then completes the proof.
To find a representative cycle disjoint from I P ∪∂MP , supposeK = K1∪· · ·∪Kn is any

oriented link with c1 [K1] + · · · + cn [Kn] Poincaré dual to [ω|TM ] for some real numbers
c1, . . . , cn 6= 0. Then for each connected component L ⊂ I P ∪ ∂MP , Poincaré duality
implies ∑

i

ci [Ki] • [L] =

∫
L

ω = 0 .

We can assume K and L have only transverse intersections x ∈ K ∩ L. Now for each
component Ki, we can replace Ki by a homologous link for which all intersections of Ki

with L have the same sign: indeed, if x, y ∈ Ki ∩ L are two intersections of opposite sign,
we can eliminate both of them by splicing Ki with a path between x and y along L. Having
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done this, we can also split Ki into multiple parallel components so that each intersects L
either not at all or exactly once. Then by switching orientations ofKi and signs of ci, we can
arrange for this intersection to be positive. Let us therefore assume that each component Ki

has at most one intersection with L, which is transverse and positive, so∑
{i;Ki∩L6=∅}

ci = 0 .

Now if any intersection x ∈ K ∩ L exists, there must be another y ∈ K ∩ L for which
the real coefficient has the opposite sign; for concreteness let us assume x ∈ K1, y ∈ K2,
c1 > 0 and c2 < 0. We can then eliminate one of these intersections via the following two
steps: first, replace K2 by a disjoint union of two knots K ′2 and K ′′2 , where K ′2 := K2 and
K ′′2 is a parallel copy of it, and set c′2 := −c1, c′′2 := c2 + c1. This introduces one additional
intersection y′′ ∈ K ′′2 ∩L. But now since c′2 = −c1, we can eliminate x and y by splicing in a
path between them along L to connect K1 and K ′2. The result of this operation is a new link
K̃ = K̃1 ∪ · · · ∪ K̃ñ with real numbers c̃1, . . . , c̃ñ 6= 0 such that

ñ∑
i=1

c̃i[K̃i] =
n∑
i=1

ci[Ki]

and K̃ ∩ L contains one point fewer than K ∩ L. One can then repeat this process until the
intersection ofK with I P ∪∂MP is empty. By switching orientations of the componentsKi

again, we can then assume the real coefficients c1, . . . , cn are all positive.

The lemma has the following consequence: for any fixed page Σ ⊂MP , we can now freely
choose the contact form λ on some open set U,

Σ ∪BP ∪ I P ∪ ∂MP ⊂ U ⊂MP ,

to be the one provided by Theorem 2.17, for which there exists a generic almost complex
structure J compatible with H such that the pages in U lift to embedded J-holomorphic
curves of index 2 in the symplectization. Enlarge W to W∞ by attaching a cylindrical
end, and extend the compatible J from the end to a generic almost complex structure
J ∈ J (ω, H ) onW∞. After pushing up by R-translation, the J-holomorphic pages in R× U
may be assumed to live in [c,∞) × M for arbitrarily large c > 0 and thus can also be
regarded as J-holomorphic curves in W∞. Since the asymptotic orbits of these curves have
much smaller periods than all other Reeb orbits in M , the connected 2-dimensional moduli
space M of J-holomorphic curves in W∞ that contains these curves satisfies a compactness
theorem proved in [44]: namely, M is compact except for codimension 2 nodal degenerations
and curves that “escape” to +∞ (and thus converge to curves in R × M ). Moreover, the
curves in M foliate W∞ except at a finite set of nodal singularities, which are transverse
intersections of two leaves. A similar statement holds for the curves in R × M that form
the “boundary” of M: observe that for any m ∈ M \ (BP ∪ I P ∪ ∂MP ), one can find
a sequence tk → ∞ such that each of the points (tk,m) is in the image of a unique curve
uk ∈ M, and the latter sequence must converge to a curve in R×M whose projection to M
passes throughm. By positivity of intersections using [38], any two of these curves in R×M
are either identical or disjoint, and their projections to M are all embedded, thus forming a
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foliation of M \ (BP ∪ I P ∪ ∂MP ) by holomorphic curves whose asymptotic orbits all lie
in the same Morse-Bott families. At this point the two proofs diverge in separate directions.

Proof of Theorem 2. – Following the proof of Theorem 1 in [42], the curves in the com-
pactification of the moduli space M form the fibers of a Lefschetz fibration

Π : W∞ → D ,

and the vanishing cycles in this fibration are all homologically nontrivial if W is minimal.
It then follows from Eliashberg’s topological characterization of Stein manifolds [10] that
(W,ω) is deformation equivalent to a symplectic blow-up of a Stein domain.

Proof of Theorem 3. – Since the planar piece of a planar torsion domain has nonempty
boundary ∂MP by assumption, one can pick any component L ⊂ ∂MP and define an
asymptotic evaluation map as in [42], which defines an embedding of M into a certain line
bundle over the S1-family of orbits in L. It follows that the compactified moduli space M is
diffeomorphic to an annulus, and its curves are the fibers of a Lefschetz fibration

Π : W∞ → [0, 1]× S1 ,

whose boundary is a symmetric summed open book. As shown in [43] using ideas due
to Gompf, such a Lefschetz fibration always admits a symplectic structure, unique up to
symplectic deformation, which produces a strong filling of the contact manifold supported by
the symmetric summed open book. But (M, ξ) is not strongly fillable due to Theorem 2.17,
so we have a contradiction.

It remains to exclude the possibility that (M, ξ) could embed into a closed symplec-
tic 4-manifold (W,ω) as a nonseparating weakly contact hypersurface. This is ruled out by
almost the same argument, using the “infinite chain” trick of [1]: as explained in Remark 1.14,
we can cut W open along M and use it to construct a noncompact but geometrically
bounded symplectic manifold (W∞, ω∞) with weakly contact boundary (M, ξ), then attach
a cylindrical end and consider the above moduli space of holomorphic curves in W∞. The
monotonicity lemma gives a C0-bound for these curves, but the same arguments that we
used above also imply that they must foliateW∞, which is already a contradiction sinceW∞
is noncompact by construction.

2.5. Contact homology and twisted coefficients

In this section we will justify Theorem 6 by using the deformation result Theorem 2.9 to
show that any weak filling (W,ω) of (M, ξ) gives rise to an algebra homomorphism from
contact homology with suitably twisted coefficients to a certain Novikov completion of the
group ring Q

[
H2(M ; R)/ ker[ω|TM ]

]
. Thus if 1 = 0 in twisted contact homology, the same

must be true in the Novikov ring and we obtain a contradiction. Since our main goal is to
illustrate the role of twisted coefficients in SFT rather than provide a rigorous proof, we shall
follow the usual custom of ignoring transversality problems—let us merely point out at this
juncture that abstract perturbations are required (e.g. within the scheme under development
by Hofer-Wysocki-Zehnder, cf. [26]) in order to make the following discussion fully rigorous.

We first briefly review the definition of contact homology, due to Eliashberg [13] and
Eliashberg-Givental-Hofer [15]. In order to allow maximal flexibility in the choice of coeffi-
cients and avoid certain complications of bookkeeping (e.g. torsion in H1(M)), we will set
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up the theory with only a Z2-grading instead of the usual Z-grading—this choice makes
no difference to the vanishing of the homology and its consequences. Assume (M, ξ) is a
closed (2n− 1)-dimensional manifold with a positive and cooriented contact structure, and
α is a contact form for ξ such that all closed orbits of the Reeb vector field Xα are nonde-
generate. Each closed Reeb orbit γ then has a canonically defined mod 2 Conley-Zehnder
index, CZ(γ) ∈ Z2, which defines the even or odd parity of the orbit. An orbit is called
bad if it is the double cover of an orbit with different parity than its own; all other orbits
are called good. For any linear subspace R ⊂ H2(M ; R), the group ring Q[H2(M ; R)/R]

consists of all finite sums of the form
∑N
i=1 cie

Ai with ci ∈ Q andAi ∈ H2(M ; R)/R, where
multiplication is defined so that eAeB = eA+B . Now let

CC∗
(
M,α; Q[H2(M ; R)/R]

)
denote the free Z2-graded supercommutative algebra with unit generated by the elements
of Q[H2(M ; R)/R], which we define to have even degree, together with the symbols qγ for
every good Reeb orbit γ, to which we assign the degree

|qγ | = n− 3 + CZ(γ) ∈ Z2 .

Note that orbits with the same image but different periods (i.e., distinct covers of the same
orbit) give rise to distinct generators in this definition.

To define a differential on CC∗
(
M,α; Q[H2(M ; R)/R]

)
, we must make a few more

choices. First, let C1, . . . , CN denote a basis of cycles generating H1(M ; R), and for each
good orbit γ, choose a real singular 2-chain Fγ in M such that ∂Fγ = γ −

∑N
i=1 diCi for a

(unique) set of coefficients di ∈ R. Choose also an R-invariant almost complex structure J
on R × M which is compatible with α. Then any punctured finite energy J-holomorphic
curve u : Σ̇ → R × M represents a 2-dimensional relative homology class, which can be
completed uniquely to an absolute homology class [u] ∈ H2(M ; R) by adding the appro-
priate combination of spanning 2-chains Fγ . Given A ∈ H2(M ; R)/R and a collection of
good Reeb orbits γ+, γ−1 , . . . , γ

−
k for some k ≥ 0, we denote by

MA(γ+; γ−1 , . . . , γ
−
k )

the moduli space of unparametrized finite energy punctured J-holomorphic spheres in
homology classes representing A ∈ H2(M ; R)/R, with one positive cylindrical end
approaching γ+, and k ordered negative cylindrical ends approaching γ−1 , . . . , γ

−
k respec-

tively.(4) The components of this moduli space can be oriented coherently [4], and we call a
curve in MA(γ+; γ−1 , . . . , γ

−
k ) rigid if it lives in a connected component of the moduli space

that has virtual dimension 1. The rigid curves in MA(γ+; γ−1 , . . . , γ
−
k ) up to R-translation

can then be counted algebraically, producing a rational number

#

Ç
MA(γ+; γ−1 , . . . , γ

−
k )

R

å
∈ Q .

(4) Since various conflicting conventions appear throughout the literature, we should emphasize that our moduli
spaces are defined with ordered punctures and no asymptotic markers. The combinatorial factors in (2.7) and (2.8)
are written with this in mind.
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(Note that since we are allowing the homology class to vary in an equivalence class within
H2(M ; R), MA(γ+; γ−1 , . . . , γ

−
k ) may in general contain a mixture of rigid and non-rigid

curves; we ignore the latter in the count.) We then define the differential on generators qγ by

(2.7) ∂qγ =
∞∑
k=0

∑
(γ1,...,γk)

∑
A∈H2(M ;R)/R

κγ
k!
·#

Ç
MA(γ; γ1, . . . , γk)

R

å
eAqγ1 · · · qγk ,

where the second sum is over all ordered k-tuples (γ1, . . . , γk) of good orbits, and κγ ∈ N
denotes the covering multiplicity of γ. It follows from the main compactness theorem of
Symplectic Field Theory [2] that this sum is finite, and moreover that the resulting map

∂ : CC∗
(
M,α; Q[H2(M ; R)/R]

)
→ CC∗

(
M,α; Q[H2(M ; R)/R]

)
,

extended uniquely to the complex as a Q[H2(M ; R)/R]-linear derivation of odd degree,
satisfies ∂2 = 0. The homology of this complex,

HC∗
(
M, ξ; Q[H2(M ; R)/R]

)
:= H∗

(
CC∗

(
M,α; Q[H2(M ; R)/R]

)
, ∂
)

is a Z2-graded algebra with unit which is an invariant of the contact structure ξ, called the
contact homology of (M, ξ) with coefficients in Q[H2(M ; R)/R]. We say that this homology
vanishes if it contains only one element; this is equivalent to the relation 1 = 0, which is true
if and only if there exists an element Q ∈ CC∗

(
M,α; Q[H2(M ; R)/R]

)
such that ∂Q = 1.

In general, this means there exists a rigid J-holomorphic plane that cannot be “cancelled”
in an appropriate sense by other rigid curves with the same positive asymptotic orbit.

Suppose now that n = 2 and (W,ω) is a weak filling of (M, ξ). By Theorem 2.9, we can
deform ω to make the boundary stable, inducing a stable Hamiltonian structure H = (α,Ω)

on M such that α is a nondegenerate contact form for ξ, and Ω is a closed maximal rank
2-form with

[Ω] = [ω|TM ] ∈ H2
dR(M) .

We can therefore extend W by attaching a cylindrical end [0,∞) × M) with a symplectic
structure of the form d(ϕ(t)α) + Ω for some small but increasing function ϕ. Denote the
extended manifold by W∞, and choose a generic compatible almost complex structure
J ∈ J (ω, H ) on W∞.

The following observation is now crucial: since Ω and dα are conformally equivalent
as symplectic structures on ξ, the compatibility condition for J on the cylindrical end
[0,∞) ×M depends only on α, not on Ω. Thus J determines an almost complex structure
on the symplectization R × M of precisely the type that is used to define the differen-
tial on CC∗

(
M,α; Q[H2(M ; R)/R]

)
, and the breaking of J-holomorphic curves in W∞

into multi-level curves will generally produce curves that are counted in the computation
of HC∗

(
M, ξ; Q[H2(M ; R)/R]

)
. The only difference between this and the case of a strong

filling is the definition of energy, which does involve Ω, but this makes no difference for the
count of curves in R×M .

Relatedly, one can now define another version of contact homology with coefficients that
depend on the filling: defining a complex CC∗

(
M,α; Q[H2(W ; R)/ kerω]

)
the same way as

above but replacing Q[H2(M ; R)/R] with Q[H2(W ; R)/ kerω], (2.7) yields a differential

∂W : CC∗
(
M,α; Q[H2(W ; R)/ kerω]

)
→ CC∗

(
M,α; Q[H2(W ; R)/ kerω]

)
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by interpreting the term eA as an element of Q[H2(W ; R)/ kerω] through the canonical map
H2(M ; R)→ H2(W ; R) induced by the inclusionM ↪→W . We denote the homology of this
complex by

HC∗
(
M, ξ; Q[H2(W ; R)/ kerω]

)
= H∗

(
CC∗

(
M,α; Q[H2(W ; R)/ kerω]

)
, ∂W

)
,

and observe that since the canonical map H2(M ; R) → H2(W ; R) takes ker Ω into kerω,
there is also a natural algebra homomorphism

HC∗
(
M, ξ; Q[H2(M ; R)/ ker Ω]

)
→ HC∗

(
M, ξ; Q[H2(W ; R)/ kerω]

)
.

The right hand side therefore vanishes whenever the left hand side does.
With this understood, we shall now count rigid J-holomorphic curves in W∞ to define

an algebra homomorphism from HC∗
(
M, ξ; Q[H2(W ; R)/ kerω]

)
into a certain Novikov

completion of Q[H2(W ; R)/ kerω]. Choose a basis of 1-cycles Z1, . . . , Zm for the image
ofH1(M ; R) inH1(W ; R), and for each of the basis cyclesCi inM , choose a real 2-chainGi
in W such that ∂Gi = Ci −

∑m
j=1 djZj for some (unique) coefficients dj ∈ R. Then for any

finite energy punctured J-holomorphic curve u : Σ̇ → W∞ with positive cylindrical ends
approaching Reeb orbits in M , these choices allow us again to define an absolute homology
class [u] ∈ H2(W ; R) by adding the relative homology class to the appropriate sum of the
spanning 2-chains Fγ and Gi.

For any Reeb orbit γ in M and A ∈ H2(W ; R)/ kerω, denote by

MA(γ)

the moduli space of unparametrized finite energy J-holomorphic planes inW∞ in homology
classes representingA, with a positive end approaching the orbit γ. We call such a plane rigid
if its connected component of the moduli space has virtual dimension 0. Since the natural
homomorphism [ω] : H2(W ; R)→ R descends toH2(W ; R)/ kerω, the holomorphic curves
in MA(γ) satisfy a uniform energy bound depending on A and γ, thus the compactness
theory implies that MA(γ) contains finitely many rigid curves. These can again be counted
algebraically (ignoring the non-rigid curves) to define a rational number # MA(γ) ∈ Q. Now
for any good Reeb orbit γ in M , define the formal sum

(2.8) ΦW (qγ) =
∑

A∈H2(W )/ kerω

κγ ·#
Ä
MA(γ)

ä
eA .

This sum is not generally finite unless ω is exact, but it does belong to the Novikov ring Λω,
which we define to be the completion of Q[H2(W ; R)/ kerω] obtained by including infinite
formal sums{ ∞∑

i=1

cie
Ai
∣∣∣ ci ∈ Q \ {0}, Ai ∈ H2(W ; R)/ kerω, 〈[ω], Ai〉 → +∞

}
.

One can extend ΦW uniquely as an algebra homomorphism

ΦW : CC∗
(
M,α; Q[H2(W ; R)/ kerω]

)
→ Λω ,

which we claim descends to the homology HC∗
(
M, ξ; Q[H2(W ; R)/ kerω]

)
. This follows

by considering the boundary of the union of all 1-dimensional connected components
of MA(γ): indeed, this boundary is precisely the set of all broken rigid curves, consisting of
an upper level in R ×M that has a positive end approaching γ and an arbitrary number of
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negative ends, which are capped off by a lower level formed by a disjoint union of planes
in W∞. Counting these broken rigid curves yields the identity

ΦW ◦ ∂W = 0 ,

implying that ΦW descends to an algebra homomorphism

ΦW : HC∗
(
M, ξ; Q[H2(W ; R)/ kerω]

)
→ Λω .

Theorem 6 follows immediately, because we now have a sequence of algebra homomorphisms

HC∗
(
M, ξ; Q[H2(M ; R)/ ker Ω]

)
→ HC∗

(
M, ξ; Q[H2(W ; R)/ kerω]

)
→ Λω ,

for which 1 6= 0 on the right hand side.

3. Toroidal symplectic 1-handles

In this section we introduce a symplectic handle attachment technique that can be used
to construct weak fillings of contact manifolds. To apply the method in general, we need the
following ingredients:

– A weakly fillable contact manifold (M, ξ), possibly disconnected,
– Two disjoint homologically nontrivial pre-Lagrangian tori T+, T− ⊂ (M, ξ) with

characteristic foliations that are linear and rational,
– Choices of 1-cycles K± ⊂ T± that intersect each leaf once,
– A (possibly disconnected) weak filling (W,ω) of (M, ξ) such that ω restricts to an area

form on the tori T± and (with appropriate choices of orientations)
∫
T+
ω =

∫
T−
ω.

Note that examples of this setup are easy to find: for instance if (W±, ω±) are a pair of
strong fillings of contact manifolds (M±, ξ±) which contain pre-Lagrangian tori T± ⊂ M±
with [T±] 6= 0 ∈ H2(W±; R), one may assume after a perturbation that the characteristic
foliations on T± are rational. Furthermore one can deform the symplectic structures ω±
so that they vanish on T±, and find closed 2-forms σ± on W± such that σ±|T± > 0 and∫
T±
σ± = 1. Then for any ε > 0 sufficiently small,

(W+, ω+ + ε σ+) t (W−, ω− + ε σ−)

is a weak filling of (M, ξ) := (M+, ξ+)t (M−, ξ−) with the desired properties. We will use a
construction of this sort in the proof of Theorem 5.

Given this data, we will show that a new symplectic manifold with weakly contact bound-
ary can be produced by attaching to W a toroidal 1-handle

T2 × [0, 1]× [0, 1]

along T+ t T−. The effect of this on the contact manifold can be described as a contact
topological operation called splicing, which essentially cuts (M, ξ) open alongT+ andT− and
then reattaches it along a homeomorphism that swaps corresponding boundary components.
The result of this operation depends on the isotopy class of the map used when identifying
the boundary tori, but a choice can be specified uniquely by requiring that this map take the
generators ofH1(T−,Z) represented by the cycleK− and a leaf of the characteristic foliation
to the corresponding generators of H1(T+,Z).
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F 9. Splicing along tori.

We shall describe this topological operation in §3.1, and prove a general result on toroidal
symplectic handle attaching in §3.2, leading in §3.3 to the proof of Theorem 5. As an easy by-
product of the setting we use for handle attaching, we will also see why fillability is preserved
under Lutz twists along symplectic pre-Lagrangian tori.

3.1. Pre-Lagrangian tori, splicing and Lutz twists

Assume (M, ξ) is a contact 3-manifold, let T ⊂ M be an embedded and oriented pre-
Lagrangian torus with rational linear characteristic foliation, and choose a 1-cycle K ⊂ T

that intersects each characteristic leaf once. We can find a contactomorphism between a
neighborhood of T and the local model(

T2 × (−ε, ε), ker(dϑ+ r dϕ)
)
,

where we use the coordinates (ϕ, ϑ; r) on the thickened torus T2 × (−ε, ε), such that T is
identified with T2×{0}with its natural orientation, and theϑ-cycles are homologous toK up
to sign. This identification is uniquely defined up to isotopy. We shall refer to the coordinates
(ϕ, ϑ; r) chosen in this way as standard coordinates near (T,K).

Now suppose (T+,K+) and (T−,K−) are two pairs as described above, with T+∩T− = ∅,
and choose disjoint neighborhoods N (T±) together with standard coordinates (ϕ, ϑ; r). The
coordinates divide each of the neighborhoods N (T±) into two halves:

N +(T±) :=
{
r ∈ [0, ε)

}
⊂ N (T±) and N −(T±) :=

{
r ∈ (−ε, 0]

}
⊂ N (T±) .

We can then construct a new contact manifold (M ′, ξ′) by the following steps (see Figure 9):

1. Cut M open along T+ and T−, producing a manifold with four pre-Lagrangian torus
boundary components ∂ N +(T+), ∂ N −(T+), ∂ N +(T−) and ∂ N −(T−).

2. Attach N −(T−) to N +(T+) and N −(T+) to N +(T−) so that the standard coordi-
nates glue together smoothly.

The resulting contact manifold (M ′, ξ′) is uniquely defined up to contactomorphism, and it
also contains a distinguished pair of pre-Lagrangian tori T ′±, namely

T ′+ := N +(T+) ∩ N −(T−) ⊂M ′ and T ′− := N −(T+) ∩ N +(T−) ⊂M ′ .

D 3.1. – We will say that (M ′, ξ′) constructed above is the contact manifold
obtained from (M, ξ) by splicing along (T+,K+) and (T−,K−).
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E 3.2. – Consider the tight contact torus (T3, ξn) for n ∈ N, where

ξn = ker
[
cos(2πnρ) dϑ+ sin(2πnρ) dϕ

]
in coordinates (ϕ, ϑ, ρ) ∈ T3. Then T0 := {ρ = 0} is a pre-Lagrangian torus, to which
we assign the natural orientation induced by the coordinates (ϕ, ϑ). If (M, ξ) is another
connected contact 3-manifold with an oriented pre-Lagrangian torus T ⊂M , then splicing
(M, ξ)t(T3, ξn) along T and T0 produces a new connected contact manifold, namely the one
obtained from (M, ξ) by performing n Lutz twists along T . If T ⊂ M is compressible then
the resulting contact manifold is overtwisted; by contrast, Lutz twists along incompressible
tori can be used to construct tight contact manifolds with arbitrarily large Giroux torsion.
Note that in this example the choice of the transverse cycles on T and T0 does not influence
the resulting manifold.

R 3.3. – Note that if (M, ξ) is a contact 3-manifold with an S1-action such that
the oriented pre-Lagrangian toriT+, T− ⊂M consist of Legendrian S1-orbits, then the splic-
ing operation can be assumed compatible with the circle action, in the sense that the mani-
fold (M ′, ξ′) obtained by splicing is then also an S1-manifold, with the tori T ′± consisting of
Legendrian orbits.

If sections σ± of the S1-action are given in a neighborhood of the tori T+, T− in (M, ξ),
then we can obtain any desired intersection number e+ between σ− ∩ N −(T−) and
σ+ ∩ N +(T+) in T ′+ by letting the cycle K− be the intersection σ− ∩ T−, and choosing
a cycle K+ that has intersection number e+ with σ+. The intersection number e− between
σ+ ∩ N −(T+) and σ− ∩ N +(T−) in T ′− will always be equal to −e+.

Note in particular that we can arrange for the sections σ± to glue smoothly after splicing
by choosing both cycles K± ⊂ T± to be the intersections σ± ∩ T±.

3.2. Attaching handles

Given δ > 0, we will use the term toroidal 1-handle to refer to the smooth manifold with
boundary and corners,

Hδ = T2 × [−δ, δ]× [−δ, δ] .

Let (ϕ, ϑ; r, r′) denote the natural coordinates on Hδ, and label the smooth pieces of its
boundary ∂Hδ = ∂NHδ ∪ ∂SHδ ∪ ∂WHδ ∪ ∂EHδ as follows:

∂NHδ = {r′ = +δ}, ∂SHδ = {r′ = −δ}, ∂WHδ = {r = −δ}, and ∂EHδ = {r = +δ} .

Observe that if we assign the natural boundary orientations to each of these pieces, then
the induced coordinates (ϕ, ϑ; r) are negatively oriented on ∂NHδ but positively oriented
on ∂SHδ; similarly, the coordinates (ϕ, ϑ; r′) are negatively oriented on ∂WHδ, and positively
oriented on ∂EHδ.

Suppose (M, ξ) is a contact manifold, W = (−ε, 0] ×M is a collar neighborhood with
∂W = M , and T+, T− ⊂ M are oriented pre-Lagrangian tori with transverse 1-cycles
K± ⊂ T± and standard coordinates (ϕ, ϑ; r) on a pair of disjoint neighborhoods

T2 × (−ε, ε) ∼= N (T±) ⊂M .
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Choosing δ with 0 < δ < ε, we can attach Hδ to W along (T+,K+) and (T−,K−) via the
orientation reversing embeddings

Φ : ∂NHδ ↪→ N (T+), (ϕ, ϑ; r, δ) 7→ (ϕ, ϑ; r)

Φ : ∂SHδ ↪→ N (T−), (ϕ, ϑ; r,−δ) 7→ (ϕ, ϑ;−r) .

Then if W ′ = W ∪Φ Hδ, after smoothing the corners, the new boundary M ′ = ∂W ′ is
diffeomorphic to the manifold obtained from M by splicing along (T+,K+) and (T−,K−),
where the distinguished tori T ′± ⊂M ′ are naturally identified with

T ′± = T2 ×
{

(±δ, 0)
}
⊂ ∂WHδ ∪ ∂EHδ ⊂M ′ .

The main result of this section is that such an operation can also be defined in the symplectic
and contact categories.

T 3.4. – Suppose (W,ω) is a symplectic manifold with weakly contact boundary
(M, ξ), and T+, T− ⊂ M are disjoint, oriented pre-Lagrangian tori with rational linear
characteristic foliations and transverse 1-cycles K± ⊂ T±, such that T± are also symplectic
with respect to ω, with ∫

T+

ω =

∫
T−

ω > 0 .

Then after a symplectic deformation of ω near T+ ∪ T−, ω extends to a symplectic form ω′ on
the manifold

W ′ = W ∪Hδ

obtained by attaching a toroidal 1-handle Hδ to W along (T+,K+) and (T−,K−), so that
(W ′, ω′) then has weakly contact boundary (M ′, ξ′), where the latter is obtained from (M, ξ)

by splicing along (T+,K+) and (T−,K−).

As we saw in Example 3.2, Lutz twists along a pre-Lagrangian torus T ⊂ (M, ξ) can
always be realized by splicing (M, ξ) together with a tight contact 3-torus, and due to the
construction of Giroux [22], the latter admits weak fillings for which the pre-Lagrangian
tori {ρ = const} are symplectic. Thus whenever (M, ξ) has weak filling (W,ω) and
T ⊂M = ∂W is a torus that is both pre-Lagrangian in (M, ξ) and symplectic in (W,ω), the
above theorem can be used to construct weak fillings of every contact manifold obtained by
performing finitely many Lutz twists along T . We will see however that the setup needed to
prove the theorem yields a much more concrete construction of such a filling:

T 3.5. – Suppose (W,ω) is a symplectic manifold with weakly contact boundary
(M, ξ), and T ⊂M is a pre-Lagrangian torus which is also symplectic with respect to ω. Then
for any n ∈ N, (W,ω) can be deformed symplectically so that it is also positive on ξn, where
the latter is obtained from ξ by performing n Lutz twists along T .

To prove both of these results, we begin by constructing a suitable symplectic deformation
of a weak filling near any symplectic pre-Lagrangian torus. The local setup is as follows: let

M = T2 × [−5ε, 5ε]

with coordinates (ϕ, ϑ; r) and contact structure ξ = kerλ, where

λ = dϑ+ r dϕ .
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If (W,ω) is a symplectic manifold with weakly contact boundary M , then we can set
Ω = ω|TM , and we have Ω|ξ > 0. We require moreover that Ω is positive on the torus

T := T2 × {0} ⊂M .

By shrinking ε if necessary, we can then assume without loss of generality that ω is positive
on each of the tori T2 × {r} ⊂M for r ∈ [−5ε, 5ε]. Define the constant

(3.1) A =

∫
T

ω > 0 .

Next, choose a smooth cutoff function

β : [−5ε, 5ε]→ [0, 1]

that has support in [−3ε, 3ε] and is identically 1 on [−2ε, 2ε]. Remember that a confoliation
is a cooriented hyperplane field on a 3-dimensional manifold such that α∧ dα ≥ 0 for every
defining 1-form α.

L 3.6. – Suppose f(r) and g(r) are any two smooth real valued functions on [−5ε, 5ε]

such that the 1-form
α = f(r) dϑ+ g(r) dϕ

on T2 × [−5ε, 5ε] is contact. Then for any τ ∈ [0, 1), the 1-form

ατ := τβ(r) dr +
[
1− τβ(r)

]
α

is also contact, and α1 defines a confoliation.

Proof. – Noting that dr ∧ dα = 0, we compute

ατ ∧ dατ =
[
τβ dr + (1− τβ)α

]
∧
[
(1− τβ) dα− τβ′ dr ∧ α

]
= (1− τβ)2 α ∧ dα 6= 0 .

Let us now apply the lemma to define a family of 1-forms on M ,

(3.2) λτ = τβ(r) dr +
[
1− τβ(r)

]
λ .

Then λ0 = λ, λτ is a contact form for all τ ∈ [0, 1) and λ1 defines a confoliation. Let
ξτ = kerλτ and λ̄ = λ1. By Gray’s stability theorem, each of the contact structures ξτ for
τ < 1 are related to ξ = ξ0 by isotopies with support in T2×[−3ε, 3ε]. Thus after a compactly
supported isotopy, we can view ξ as a small perturbation of the confoliation ξ̄ := ξ1 = ker λ̄.

The 1-form λ̄ is identical to λ in
{
|r| ≥ 3ε

}
, but defines a foliation in

{
|r| ≤ 2ε

}
and takes

the especially simple form
λ̄ = dr in T2 × [−2ε, 2ε] .

The main technical ingredient we need is then the following deformation result.

P 3.7. – Given the local model of a symplectic pre-Lagrangian torus
T ⊂ M = ∂W described above, for any sufficiently large constant C > 0 there exists a
symplectic form ω̄ on W with the following properties:

1. ω̄ = ω outside some compact neighborhood of T in W ,
2. ω̄|ξ̄ > 0,
3. ω̄ = Adϕ ∧ dϑ+ C dt ∧ dr on some neighborhood of T .
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Proof. – Note that Ω restricts on the 2-plane field ξ̄ to a positive form. This is clear,
because λ̄ as defined in (3.2) is pointwise a convex combination of dr and λ, where λ ∧ Ω

and dr ∧ Ω are both positive, the latter due to the assumption that the tori T2 × {r} are all
symplectic.

Next, let us replace Ω by a cohomologous closed 2-form that takes a much simpler form
near T . Indeed, since

∫
T

Ω = A =
∫
T
Adϕ∧dϑ and T generatesH2(M), there exists a 1-form

η on M such that

Adϕ ∧ dϑ = Ω + dη .

Choose a smooth cutoff function F : [−5ε, 5ε] → [0, 1] that has compact support in
[−2ε, 2ε] and equals 1 on [−ε, ε], and define the closed 2-form

Ω̄ = Ω + d(F (r) η) ,

which equals Ω outside of
{
|r| ≤ 2ε

}
and Adϕ ∧ dϑ in

{
|r| ≤ ε

}
. We claim

Ω̄
∣∣
ξ̄
> 0 .

Indeed, outside of the region
{
|r| ≤ 2ε

}
this statement is nothing new, and otherwise λ̄ = dr,

so we compute

λ̄ ∧ Ω̄ = dr ∧
[
(1− F (r)) Ω +AF (r) dϕ ∧ dϑ

]
> 0 .

Lemma 2.3 guarantees that we can find a model

W = (−ε, 0]×M

with coordinates (t;ϕ, ϑ; r), identifying M with ∂W = {0} ×M , where ω can be written in
the form

ω = d(t λ̄) + Ω .

The result follows from a similar argument as the one in Lemma 2.10. Choose smooth
functions G : [−ε, 0] → [0, 1] and ϕ : [−ε, 0] → [−ε,∞) such that G(t) = 0 for t near −ε
and G(t) = 1 for t near 0, while ϕ(t) = t whenever t is near −ε, and ϕ′ > 0 everywhere. It is
easy to check that the 2-form

ω̄ = d
(
(1− F (r)) t λ̄

)
+ d
[
F (r)

(
ϕ(t) λ̄+G(t) η

)]
+ Ω

simplifies to d(t λ̄) + Ω = ω close to t = −ε and {r ≥ 2ε}. On T2 × [−ε, ε], ω̄ takes the
desired form Adϕ ∧ dϑ + C dt ∧ dr with C = ϕ′(0). It is also easy to check that along M ,
λ̄ ∧ ω̄ > 0, because outside the support of F , we have ω̄ = ω, and otherwise λ̄ = dr, so that

λ̄ ∧ ω̄ = dr ∧ Ω̄ > 0 .

To check that ω̄ is symplectic, we also only need to consider the domain {r < 2ε}, where
ω̄ simplifies to

(
1− F (r) + F (r)ϕ′(t)

)
dt ∧ dr + d

(
F (r)G(t) η

)
+ Ω, so that we compute,

ω̄2 = 2 dt ∧ dr ∧
(
G(t) Ω̄ + (1−G(t)) Ω

)
+ 2F (r) dt

∧
[(
ϕ′(t)− 1

)
dr +G′(t) η

]
∧
(
G(t) Ω̄ + (1−G(t)) Ω

)
.

The first term is always positive, and choosing ϕ′(t) sufficiently large guarantees that the
second term will never be negative, and the result is thus proved.
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Proof of Theorem 3.5. – The following argument generalizes the construction of weak
fillings on tight 3–tori described by Giroux [22]. Consider the confoliation ξ̄ and deformed
symplectic structure ω̄ constructed in Proposition 3.7. Then ω̄ is also positive on any contact
structure ξ′ that is sufficiently C0–close to ξ̄ as a distribution. It suffices therefore to find,
for any n ∈ N, a contact structure ξn that is C0–close to ξ̄ and isotopic to the one obtained
by performing n Lutz twists on ξ along T . This is easy: define a smooth 1-form α0 which
matches λ outside the coordinate neighborhood T2 × [−ε, ε], and in T2 × [−ε, ε] is contact
and takes the form

f(r) dϑ+ g(r) dϕ ,

such that the curve r 7→ (f(r), g(r)) ∈ R2 winds n times counterclockwise about the origin
for r ∈ [−ε, ε]. Then α0 is contact and defines a contact structure isotopic to the one we are
interested in. It follows now from Lemma 3.6 that for all τ ∈ [0, 1),

ατ := τβ(r) dr +
[
1− τβ(r)

]
α0

is a contact form, but as τ → 0 it converges to λ̄.

Proof of Theorem 3.4. – We assume (W,ω) is a symplectic manifold with weakly contact
boundary (M, ξ), and T+, T− ⊂ M ⊂ W are oriented tori which are pre-Lagrangian
in (M, ξ) and symplectic in (W,ω), such that∫

T−

ω =

∫
T+

ω = A > 0 .

Then for a sufficiently large constantC > 0, we can use Proposition 3.7 to deform ω near T+

and T− to a new symplectic structure ω̄, which takes the form

ω̄ = C dt ∧ dr +Adϕ ∧ dϑ

in local coordinates near T+ and T−, and satisfies ω̄|ξ̄ > 0. Here ξ̄ is a confoliation with the
following properties:

– ξ̄ = ξ outside a small coordinate neighborhood N ⊂M of T+ ∪ T−,
– ξ̄ admits a C0-small perturbation to a contact structure, which is isotopic to ξ by an

isotopy supported in N ,
– ξ̄ = ker dr on an even smaller coordinate neighborhood of T+ ∪ T−.

Choose δ > 0 sufficiently small so that the coordinate neighborhoods T2× [−δ, δ] of T− and
T+ are contained in the region where ξ̄ = ker dr and ω̄ = C dt ∧ dr + Adϕ ∧ dϑ. Then we
define the following smooth model of a toroidal 1-handle (see Figure 10):

Hδ =
{

(ϕ, ϑ; r, r′) ∈ T2 × [−δ, δ]× [−δ, δ]
∣∣∣ |r| ≤ h(r′)

}
,

where h : [−δ, δ]→ (0, δ] is a continuous, even and convex function that is smooth on (−δ, δ)
and has its derivative blowing up at r′ = ±δ, such that its graph merges smoothly into the
lines r′ = ±δ. Denote the smooth pieces of ∂Hδ by

∂NHδ = {r′ = +δ}, ∂SHδ = {r′ = −δ}, ∂WHδ = {r = −h(r′)}, and ∂EHδ = {r = +h(r′)} .

This model can be attached smoothly to W as in Figure 10, so that

W ′ := W ∪Hδ
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F 10. The handleHδ is attached in the ambient space T2×R2 to two model
neighborhoods.

has smooth boundary M ′ := ∂W ′. The symplectic structure ω̄ then extends to W ′ by
defining

ω̄ = C dr′ ∧ dr +Adϕ ∧ dϑ

on Hδ, which restricts positively to the smooth confoliation ξ̄′ on M ′ defined by

ξ̄′ =

{
ξ̄ on M \ (∂NHδ ∪ ∂SHδ),

T (T2 × {∗}) on ∂WHδ ∪ ∂EHδ.

The latter admits a C0-small perturbation to a contact form which is isotopic to the one
obtained by splicing (M, ξ) along T+ and T−.

3.3. Proof of Theorem 5

Assume Σ = Σ+ ∪Γ Σ− is a closed oriented surface that is the union of two surfaces with
boundary along a multicurve Γ ⊂ Σ whose connected components are all nonseparating,
and let

(
PΣ,e, ξΓ,e

)
denote the S1-principal bundle PΣ,e over Σ with Euler number e together

with the S1-invariant contact structure ξΓ,e that is everywhere transverse to the S1-fibers with
exception of the tori that lie over the multicurve Γ. Under these assumptions, we will use the
handle attaching technique described in §3.2 to construct a weak filling of

(
PΣ,e, ξΓ,e

)
. The

idea is to obtain
(
PΣ,e, ξΓ,e

)
by a sequence of splicing operations from a simpler disconnected

contact manifold for which a (disconnected) strong filling is easy to construct by hand. For
this strong filling, the components of Γ give rise to pre-Lagrangian tori, and the significance
of the nonseparating assumption will be that it allows us to perturb the strong filling to a
weak one for which these tori become symplectic, and are thus suitable for handle attaching.
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The building blocks are obtained in the following way. Let S be a connected, oriented
compact surface with non-empty boundary. The symmetric double of S is the closed surface

SD := S ∪∂S S ,

where S is a second copy of S taken with reversed orientation, and the two are glued along
their boundaries via the identity map. The multicurve ΓS := ∂S ⊂ SD determines an
S1-invariant contact manifold (S1 × SD, ξΓS ) in the standard way.

P 3.8. – The contact manifold (S1 × SD, ξΓS ) obtained from a symmetric
double has a strong symplectic filling homeomorphic to [0, 1]× S1 × S.

Proof. – Regard S together with a positive volume form ΩS as a symplectic manifold.
Choose a plurisubharmonic Morse function f : S → [0, C] whose critical values all lie in
the interval [0, ε] with ε < C, such that f−1(C) = ∂S. Take now the annulus R × S1 with
symplectic form dx ∧ dϕ, and with plurisubharmonic function g(x, ϕ) = x2. The product
manifold (

(R× S1)× S,Ω + dx ∧ dϕ
)

is a symplectic manifold with a plurisubharmonic function given by F := f + x2. The
critical values of this function all lie in [0, ε], so thatN := F−1(C) will be a smooth compact
hypersurface. In fact, it is easy to see thatN is diffeomorphic to S1×SD. The standard circle
action on the annulus R × S1 splits off naturally, so that N is the product of a circle with a
closed surface.

We can explicitly give two embeddings of the 3-manifold S1 × S into F−1(C) ⊂
(R× S1)× S as the graphs of the two maps

S1 × S → (R× S1)× S, (ϕ, p) 7→
(
±
»
C − f(p), ϕ, p

)
distinguished by the different signs in front of the square root. The boundary of S1 × S is
mapped by both maps to the set {0} × S1 × ∂S so that the two copies are glued along their
boundary.

The contact form is defined as α := −dcF |TN = −dF ◦ J |TN . It is S1-invariant (for the
standard complex structure on R×S1), and the vector ∂ϕ is parallel toN , and never lies in the
kernel ofαwith the exception of the points where d(x2) vanishes, which happens to be exactly
along the boundary of S. By [32], this proves that the hypersurface N is contactomorphic
to (S1 × SD, ξΓS ).

Now denote by

Σ1, . . . ,ΣN

the closures of the connected components of Σ \ Γ, whose boundaries Γj := ∂Σj are all
disconnected due to the assumption that components of Γ are nonseparating. Then for each
j = 1, . . . , N , construct the doubled manifold ΣDj , and define the disconnected contact
manifold

(M0, ξ0) =
N⊔
j=1

(S1 × ΣDj , ξΓj ) ,
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which by the proposition above can be strongly filled. Let (Wj , ωj) denote the resulting
strong filling of S1×ΣDj . For each connected component γ ⊂ Γj , which is also a component
of Γ, the torus S1 × γ ⊂ ∂Wj is a Lagrangian submanifold in (Wj , ωj).

L 3.9. – There exists a cohomology class [β] ∈ H2
dR

(
PΣ,e

)
such that

∫
T
β 6= 0 for

every torus T that lies over a connected component γ ⊂ Γ.

Proof. – By Poincaré duality, it suffices to find a homology classA ∈ H1

(
PΣ,e; R

)
whose

intersection number A • [Tγ ] ∈ R is nonzero for every torus Tγ lying over a connected
component γ ⊂ Γ. For each component γ ∈ Γ, pick an oriented loop Cγ in PΣ,e with
[Cγ ] • [Tγ ] = 1; this necessarily exists since γ and hence also Tγ is nonseparating. Then we
construct A by the following algorithm: starting with any connected component γ1 ⊂ Γ,
let A1 = [Cγ1 ]. Then A1 • [Tγ ] 6= 0 for some subcollection of the components γ ⊂ Γ,
including γ1. If there remains a component γ2 ⊂ Γ such that A1 • [Tγ2 ] = 0, then we set

A2 = A1 + d2 [Cγ2 ] ,

where d2 > 0 is chosen sufficiently small so that for every component γ ⊂ Γ with A1 • [Tγ ]

nonzero, A2 • [Tγ ] is also nonzero. The result is that A2 • [Tγ ] is nonzero for a strictly larger
set of components than A1 • [Tγ ]. Thus after repeating this process finitely many times, we
eventually find A ∈ H1

(
PΣ,e; R

)
with all intersection numbers A • [Tγ ] nonzero.

Using the cohomology class [β] given by the lemma, orient every torus Tγ ⊂ PΣ,e that
projects onto a connected component γ ⊂ Γ in such a way that

∫
Tγ
β > 0. We find a closed

2-form σ representing [β] that is positive on each of the oriented pre-Lagrangian tori Tγ .
Since every component Σj has non-empty boundary, it follows that the restriction PΣ,e|Σj
is trivial so that we can identify it with

PΣ,e|Σj
∼= S1 × Σj ,

and we can then pull back σ to each component S1×Σj to obtain a collection of 2-forms σj
on the fillings Wj

∼= [0, 1]× S1 × Σj , all of which are positive on the tori S1 × γ ⊂Wj . The
same is then true for the 2-forms ωj + ε σj , with ε > 0 chosen sufficiently small so that

(W0, ω0) :=
N⊔
j=1

(Wj , ωj + ε σj)

is a weak filling of (M0, ξ0).
Observe now that each torus Tγ for a connected component γ ⊂ Γ corresponds to

two pre-Lagrangian tori in (M0, ξ0), which are symplectic in (W0, ω0) and have matching
integrals of ω0 by construction. This allows us to attach toroidal 1-handles to (W0, ω0) along
corresponding pairs of tori via Theorem 3.4, which by Remark 3.3 can be done in a way that
is compatible with circle actions. To prescribe the isotopy class of the gluing maps, choose
for all except one of the tori Tγ ⊂ M0 the curves {∗} × ∂Σj as the transverse cycle. This
way the splicing will glue the sections {∗} × Σj together smoothly along each of the pre-
Lagrangian tori. If the transverse cycle is also chosen to be of the form {∗}×∂Σj on the last
torus, then the section will in fact glue to a global section, and the resulting manifold will be
a weak filling of two disjoint copies of the contact manifold (S1×Σ, ξΓ). If we instead choose
a different transverse cycle on the last torus, we obtain a connected symplectic manifold with
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weak contact boundary consisting of the disjoint union of the circle bundles
(
PΣ,e, ξΓ,e

)
and(

PΣ,−e, ξΓ,−e
)

with the corresponding contact structures. We claim that the Euler number e
is given by the intersection number of the two sections touching the last pre-Lagrangian torus
T0, which is equal to the intersection number of the chosen transverse cycle with the curve
{∗}×∂Σj . The Euler number is obtained by choosing a section over a diskD, a section over
the complement of this disk, and computing the intersection number of both sections in the
torus that lies over the boundary ∂D. Our construction yields so far a section of the spliced
manifold defined everywhere except at the last pre-Lagrangian torus T0. We can push both
parts of the section a bit away from T0, and connect them with a strip crossing this torus.
The new section obtained this way is defined over the whole surface Σ with the exception
of a disk D, and it is easy to see that the intersection number between the section we have
just constructed, and a section over D is equal to the intersection number of the two initial
sections in the pre-Lagrangian torus T0.

Finally, capping the weak contact boundary
(
PΣ,−e, ξΓ,−e

)
using [14, 16], we obtain a

weak filling of
(
PΣ,e, ξΓ,e

)
, thus the proof of Theorem 5 is complete.
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