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INVARIANCE OF THE PARITY CONJECTURE FOR p-SELMER
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Abstract. — We show a p-parity result in a D2pn -extension of number fields L/K
(p ≥ 5) for the twist 1 ⊕ η ⊕ τ : W (E/K, 1 ⊕ η ⊕ τ) = (−1)〈1⊕η⊕τ,Xp(E/L)〉, where
E is an elliptic curve over K, η and τ are respectively the quadratic character and
an irreductible representation of degree 2 of Gal(L/K) = D2pn , and Xp(E/L) is the
p-Selmer group. The main novelty is that we use a congruence result between ε0-factors
(due to Deligne) for the determination of local root numbers in bad cases (places of
additive reduction above 2 and 3). We also give applications to the p-parity conjecture
(using the machinery of the Dokchitser brothers).

Résumé (Invariance de la conjecture de parité des p-groupes de Selmer de courbes
elliptiques dans une D2pn -extension)

On démontre un résultat de p-parité, dans une extension galoisienne de corps de
nombre de groupe D2pn , pour le twist 1⊕ η ⊕ τ :

W (E/K, 1⊕ η ⊕ τ) = (−1)〈1⊕η⊕τ,Xp(E/L)〉,
où E est une courbe elliptique définie sur K, η et τ sont respectivement le caractère
quadratique et une représentation irréductible de degré 2 de Gal(L/K) = D2pn , et
Xp(E/L) est le p-groupe de Selmer. La principale nouveauté est le fait que l’on uti-
lise un résultat de congruence (dû à Deligne) pour déterminer les « root numbers »
locaux dans les mauvais cas (les places additives au-dessus de 2 et 3). On donne aussi,
en utilisant la machinerie des frères Dokchitser, deux applications à la conjecture de
p-parité.
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572 T. DE LA ROCHEFOUCAULD

1. Introduction

1.1. The conjecture of Birch and Swinnerton-Dyer and the parity conjecture. — Let
K be a number field and E an elliptic curve defined over K. Denote by Kv the
completion of K at a place v.

We recall a few definitions:

Definition 1.1 (Tate Module). — The l-adic Tate module of E is the inverse
limit of the system of multiplication by l maps E[ln+1] −→ E[ln], where E[m]

denotes the kernel of multiplication by m on E. Set

Tl(E) = lim
←−

E[ln], Vl(E) = Ql ⊗Zl Tl(E)

and
σ′E/Kv,l : Gal(Kv/Kv) −→ GL(Vl(E)∗).

Fix an embedding, ι : Ql ↪→ C; we can then associate to σ′E/Kv,l a complex
representation σ′E/Kv,l,ι of the Weil-Deligne group (see [9] §13).

Remark 1.2. — One can show that the isomorphism class of σ′E/Kv :=

σ′E/Kv,l,ι is independent of the choice of l and ι (see [9] §13, §14, §15).

Denote by L(E/K, s) the global L-function, product of local L-functions:

L(E/K, s) =
∏

v finite
L(E/Kv, s)

Å
=

∏
v finite

L(σ′E/Kv , s)

ã
defined for Re(s) > 3

2 (see [9] §17 for the correspondence between the classical
definition of L(E/Kv, s) and the one using σ′E/Kv ) and by

Λ(E/K, s) = A(E/K)s/2L(E/K, s)(2(2π)−sΓ(s))[K:Q],

the “complete” L-function where A(E/K) is a constant depending on the
disciminant and the conductor of E/K (see [9] §21).

Recall the following classical conjectures:

Conjecture 1.3 (Birch and Swinnerton-Dyer: BSD). — We have

ords=1Λ(E/K, s) = rk(E/K).

Conjecture 1.4 (Functional equation of Λ : FE). — L(E/K, s) has a holo-
morphic continuation to C and there is a number

W (E/K) =
∏
v
W (E/Kv) ∈ {±1}

such that:

Λ(E/K, s) = W (E/K)Λ(E/K, 2− s)
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INVARIANCE OF THE PARITY CONJECTURE 573

(see [9] §12 and §19 for the definition of W (E/Kv) := W (σ′E/Kv ) and [9] §21
p. 157 for the functional equation of Λ).

This conjecture is known in a few cases:

– For elliptic curves over Q thanks to modularity results on elliptic curves
due to Wiles, Taylor, Breuil, Diamond and Conrad.

– For elliptic curves over a totally real field K, we only know a meromor-
phic continuation and the functional equation of Λ thanks to a potential
modularity result of Wintenberger (see [16]) together with an argument
of Taylor.

In general, Conjecture 1.4 is not known.
The conjecture of Birch and Swinnerton-Dyer implies the following weaker

conjecture:

Conjecture 1.5 (BSD (mod 2)). — We have

rk(E/K) ≡ ords=1Λ(E/K, s) (mod 2) .

Combining it with the conjectural functional equation we get:

Conjecture 1.6 (Parity conjecture). — We have

(−1)rk(E/K) = W (E/K).

Tim and Vladimir Dokchitser showed that this conjecture is true assuming
that the 6∞-part of the Tate-Shafarevich group of E over K(E[2]) is finite (see
[5] Th 7.1 p. 20).

Definition 1.7 (Selmer group). — Let

Xp(E/K) := HomZp(S(E/K, p∞),Qp/Zp)⊗Zp Qp

where S(E/K, p∞) := lim
−→
n

S(E/K, pn) is the p∞-Selmer group, sitting in an

exact sequence:

0 −→ E(K)⊗Qp/Zp −→ S(E/K, p∞) −→XE/K [p∞] −→ 0.

If we let rkp(E/K) := dimQp
Xp(E/K) = rk(E/K)+corkZp XE/K [p∞], a more

accessible form of the Conjecture 1.6 is the following:

Conjecture 1.8 (p-parity conjecture). — We have

(−1)rkp(E/K) = W (E/K).

If L/K is a finite Galois extension and τ is a self-dual Qp-representation of
Gal(L/K) then there is an equivariant form of Conjecture 1.8:
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574 T. DE LA ROCHEFOUCAULD

Conjecture 1.9 (p-parity conjecture for (self-dual) twists)
We have

(−1)〈τ,Xp(E/L)〉 = W (E/K, τ),

where W (E/K, τ) =
∏
v
W (σ′E/Kv ⊗ResDv τ), Dv ⊂ Gal(L/K) is the decompo-

sition group at v and 〈τ , ∗〉 is the usual representation-theoretic inner product
of τ and the complexification of ∗.

It is this last conjecture in a particular setting that will interest us for the
rest of the paper.

1.2. Statement of the main theorem and applications to the p-parity conjecture. —
Let K be a number field, E/K an elliptic curve and L/K a finite Galois ex-
tension such that Gal(L/K) ' D2pn , with p ≥ 5 a prime number.
D2pn admits the following irreducible representations over Qp:

• 1 the trivial representation
• η the quadratic character
• pn−1

2 irreducible representations of degree 2; they are of the form,

I(χ) := Ind
D2pn

Cpn
(χ) = I(χ−1),

where χ is a non-trivial character of Cpn (I(1) = 1⊕ η is reducible). See
for example [12] for the description of irreducible representations of D2pn .

Let τ = I(χ) be such an irreducible representation of degree 2.

Theorem 1.10. — With the notation above and p ≥ 5, we have the following
equality:

W (E/K, τ)

W (E/K, 1⊕ η)
=

(−1)〈τ,Xp(E/L)〉

(−1)〈1⊕η,Xp(E/L)〉

In other words, the p-parity conjecture for E/K tensored by 1⊕ η ⊕ τ holds:

W (E/K, 1⊕ η ⊕ τ) = (−1)〈1⊕η⊕τ,Xp(E/L)〉

Remark 1.11. — The Dokchitser brothers have shown that this equality holds
in two different cases:

• In the case when p is any prime number but the extension L/K has a
cyclic decomposition group at all places of additive reduction of E/K
above 2 and 3 (see [3] Th.4.2 (1) p. 65).
• In the case when p ≡ 3 (mod 4) (without any additional assumption)
using a strong global p-parity result over totally real fields due to Nekovář
[8] (see [5] Prop. 6.12 p. 18).
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INVARIANCE OF THE PARITY CONJECTURE 575

Remark 1.12. — The statement of Thm.1.10 holds for p = 3 (see previous
remark). This case can be proved without using the “painful calculation” ([3]
p. 53) in the case of additive reduction (see the appendix below).

Here we prove the equality for all p ≥ 5 (without any additional assumption).

Corollary 1.13. — W (E/K,I(χ))

(−1)〈I(χ),Xp(E/L)〉 does not depend on χ : Cpn −→ C∗.

Theorem 1.10 is equivalent to the fact that Hypothesis 4.1 of [3] holds for
any elliptic curve and any p > 3 (using a result of the Dokchitser brothers it
is also true for p = 3, see Remark 1.11 above). Now using the machinery of
the Dokchitser brothers (see Th.4.3 and Th.4.5 in [3]) we have the following
theorems:

Theorem 1.14. — Let K be a number field, p 6= 2, and E/K an elliptic curve.
Suppose F is a p-extension of a Galois extension M/K, Galois over K. If the
p-parity conjecture (−1)rkp E/L = W (E/L) holds for all subfields K ⊂ L ⊂M ,
then it holds for all subfields K ⊂ L ⊂ F.

Theorem 1.15. — Let K be a number field, p 6= 2, E/K an elliptic curve
and F/K a Galois extension. Assume that the p-Sylow subgroup P of
G = Gal(F/K) is normal and G/P is abelian. If the p-parity conjecture holds
for E over K and its quadratic extensions in F , then it holds for all twists of
E by orthogonal representations of G.

2. Invariance of the parity conjecture in a D2pn -extension

2.1. Reduction to the case of aD2p-extension. — Here we reduce the demonstra-
tion of Theorem 1.10 by an induction argument together with the Galois in-
variance of root numbers due to Rohrlich (see [11] Theorem 2), to the following
statement:

Proposition 2.1. — It is sufficient to prove Theorem 1.10 in the case when
n = 1 (i.e. Gal(L/K) ' D2p).

Proof. — Suppose Theorem 1.10 is true for n = N − 1. We will show that
theorem is true for n = N .

Consider L/K a finite Galois extension such that Gal(L/K) ' D2pN and
τ = I(χ) an irreducible representation of degree 2 of D2pN .

• If χ is not injective, then the statement is known by the induction hy-
pothesis.
• If χ is injective:

Let σ = res(I(χ)) := res
D2pN

D2pN−1
(I(χ)).
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576 T. DE LA ROCHEFOUCAULD

Then σ = I(χ′), where χ′ := χ|CpN−1
: CpN−1 → Qp is injective.

We have: Ind
D2pN

D2pN−1
(σ) =

⊕
χ0

I(χ0), where the sum is taken over the χ0 such

that χ0|CpN−1
= χ|CpN−1

.

For each such χ0 there is an element of Aut(C) sending χ into χ0 and I(χ)

into I(χ0).

By inductivity of root numbers in Galois extension:

W (E/K, σ) = W (E/K, Ind
D2pN

D2pN−1
(σ)).

By Galois invariance of root numbers:

W (E/K, I(χ′)) = W (E/K, I(χ0)), ∀χ0 such that χ0|CpN−1
= χ|CpN−1

.

So W (E/K, σ) = W (E/K, Ind
D2pN

D2pN−1
(σ)) = W (E/K, τ)p = W (E/K, τ).

On the other hand,

〈σ,Xp(E/L)〉 =
〈

Ind
D2pN

D2pN−1
(σ), Xp(E/L)

〉
= p. 〈τ ,Xp(E/L)〉 ,

because Xp(E/L) is a Qp-representation. So (−1)〈1⊕η⊕σ,Xp(E/L)〉 = (−1)〈1⊕η⊕τ,Xp(E/L)〉.

By the induction hypothesis, (−1)〈1⊕η⊕σ,Xp(E/L)〉 = W (E/K, σ). As a result,
W (E/K, 1⊕ η ⊕ τ) = (−1)〈1⊕η⊕τ,Xp(E/L)〉.

2.2. The case of a D2p-extension. — We first restate Theorem 1.10 in the case
of a D2p-extension.

Let K be a number field, E/K an elliptic curve and L/K a Galois extension
such that Gal(L/K) ' D2p ' Cp o C2, with p ≥ 5 a prime number. We are
going to use the notation D2 instead of C2 to avoid confusion with the local
Tamagawa factors Cv defined below.

Recall the irreducible representations of D2p over Qp:

• 1 the trivial representation
• η the quadratic character
• I(χ) = IndGCp(χ) irreducible representations of degree 2, where χ is a

non-trivial character of Cp.

Theorem 2.2. — With the notation above and p ≥ 5, we have the following
equality:

W (E/K, τ)

W (E/K, 1⊕ η)
=

(−1)〈τ,Xp(E/L)〉

(−1)〈1⊕η,Xp(E/L)〉 .

In other words, the p-parity conjecture for E/K tensored by 1⊕ η⊕ τ holds:
W (E/K, 1⊕ η ⊕ τ) = (−1)〈1⊕η⊕τ,Xp(E/L)〉.
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The proof of Theorem 2.2 will occupy the rest of section 2.
We use the following notations:

• v a finite place of K
• Kv the completion of K at v
• q = lrv the cardinality of the residue field of Kv

• z | v a finite place of L
• w | v a finite place of LH (where H is a subgroup of Gal(L/K) = D2p)
• δ = ordv (the minimal discriminant of E/Kv)

• δH = ordw
(
the minimal discriminant of E/

(
LH
)
w

)
• eH the ramification index of

(
LH
)
w
/Kv

• fH the residue degree of
(
LH
)
w
/Kv

• ω0
E/Kv

= a minimal invariant differential of E/Kv

• Cw(E/LH) = cw(E/LH)ω(H),

where


cw(E/LH) = local Tamagawa factor of E/

(
LH
)
w

ω(H) =

∣∣∣∣∣ ω0
E/Kv

ω0

E/(LH)w

∣∣∣∣∣
(LH)w

.

A minimal invariant differential of E/Kv and one of E/
(
LH
)
w
differ by an

element of
(
LH
)
w
. If we choose ω

′0
E/Kv

(resp ω′0E/(LH)w
) a different minimal in-

variant differential of E/Kv (resp E/
(
LH
)
w
), we have

ω′0E/Kv
ω′0
E/(LH)w

= α
ω0
E/Kv

ω0

E/(LH)w

,

where α is a unit in
(
LH
)
w
(see [14] p. 172). Therefore ω(H) is well defined.

Furthermore, if lv > 3 then (see [3] p. 53):∣∣∣∣∣ ω0
E/Kv

ω0
E/(LH)w

∣∣∣∣∣
(LH)w

= q
δ.eH−δH

12 fHÅ
= q
⌊
δ.eH
12

⌋
fH in the case of potentially good reduction

ã
.

For D2p, there is the following equality:

Ind
D2p

{1} 1− 2.Ind
D2p

D2
1− Ind

D2p

Cp
1 + 2.1 = 0

of virtual representations of G, this gives the G-relation Θ : {1}−2D2−Cp+2G
in the sense of [3] (Def 2.1 p. 34).

We recall two definitions in our setting (i.e. with Θ : {1}−2D2−Cp+2D2p),
for general definitions see [3].

Definition 2.3 ([3], Def. 2.13 p. 36). — Let ρ be a self-dual Qp[G]-represen-
tation.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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Pick a G-invariant non-degenerate Qp-linear pairing 〈, 〉 on ρ and set

CΘ(ρ) = det(〈, 〉
∣∣∣ρ{1} ) det(1

2 〈, 〉
∣∣ρD2 )−2 det( 1

p 〈, 〉
∣∣ρCp )−1 det( 1

2p 〈, 〉
∣∣ρD2p )2

as an element of Q×p /Q×2
p , where det(〈, 〉

∣∣ρA ) is det((〈ei, ej〉i,j) in any Qp-basis
{ei} of ρA.

Remark 2.4. — CΘ(ρ) is well defined and does not depend on the choice of
the pairing (see [3] Theorem 2.17 p. 37).

Definition 2.5 ([3], Def. 2.50 p. 46). — We define:

TΘ,p =

{
σ a self-dual Qp[G]-
representation

∣∣∣∣∣ 〈σ, ρ〉 ≡ ordpCΘ(ρ) (mod 2)

∀ρ a self-dual Qp[G]-representation.

}
Following the approach of the Dokchitser brothers, we have the following

theorem

Theorem 2.6 (Theorem 1.14 of [3]). — Let L/K be a Galois extension of
number fields with Galois group G = D2p, where p > 2 is a prime num-
ber. Let Θ : {1} − 2D2 − Cp + 2D2p. For every elliptic curve E/K, the
Qp[G]-represention Xp(E/L) is self-dual, and

∀σ ∈ TΘ,p, (−1)〈σ,Xp(E/L)〉 = (−1)ordp(C),

where C =
∏
v-∞

Cv with Cv = Cv({1})Cv(D2)−2Cv(Cp)
−1Cv(G)2 and

Cv(H) =
∏
w|v

w places of LH

Cw(E/LH).

Now, since 1 ⊕ η ⊕ τ ∈ TΘ,p (see [3], example 2.53 p. 46), we only need to
prove that :

(1)
W (E/K, τ)

W (E/K, 1⊕ η)
= (−1)ordpC .

Furthermore, since we are only interested in the parity of ordp(C), we do
not have to determine Cv(D2) and Cv(G), because these terms only bring an
even contribution (since they appear with an even exponent).

Both sides of (1) are of local nature.
As W (E/K, τ) =

∏
v
W (E/Kv, τv), where σv := resGal(Lz/Kv)σ, all we need

to do is to prove the following local equality:

(2)
W (E/Kv, τv)

W (E/Kv, (1⊕ η)v)
= (−1)ordp(Cv),

for each finite place v of K (v | ∞ do not contribute, since p 6= 2).
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Denote by Gv := Gal(Lz/Kv) the decomposition group of v. The proof of
Theorem 2.2 splits in several cases:
• Gv = {1} (there are 2p places above v in L) see section 2.2.2
• Gv = D2 (there are p places above v in L) see section 2.2.3
• Gv = Cp (there are 2 places above v in L) see section 2.2.2
• Gv = D2p (there is a unique place above v in L) see section 2.2.4

The case where Gv is cyclic is treated in Dokchitser’s work but the proof
given here is slightly different and specific to our particular choices of G and Θ.

We first recall a few facts about the local Tamagawa factors of elliptic curves.

2.2.1. Local Tamagawa factors of elliptic curves. — The assumptions and no-
tation from above are in force.

The local Tamagawa factor at v, c(E/Kv) = #
(
E(Kv)/E

0(Kv)
)
,(

where E0(Kv) = {Points of non-singular reduction}
)
is determined by Tate’s

algorithm (see [13] IV §9):

c(E/Kv) =



1 if E has good reduction at v
1, 2, 3 or 4 if E has additive reduction at v

n
if E has split multiplicative reduction
of type In at v

1 or 2
if E has non-split multiplicative reduction
of type In at v

If E acquires semi-stable reduction over Lz, then:

1. If E has split multiplicative reduction of type In over Kv, then:

c(E/
(
LH
)
w

) = n.eH .

2. If E has non-split multiplicative reduction of type In over Kv, then:

c(E/
(
LH
)
w

) =

n.eH
if E has split multiplicative reduction
over

(
LH
)
w

1 or 2 otherwise.

3. If E has potentially good reduction, then c(E/
(
LH
)
w

) = 1, 2, 3 or 4.

4. If E has additive and potentially multiplicative reduction then:

c(E/
(
LH
)
w

) =

n.eH
if E has split multiplicative reduction
of type In over

(
LH
)
w

and lv 6= 2.
1, 2, 3 or 4 otherwise.

The following proposition will be used in the subsequent computations.
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580 T. DE LA ROCHEFOUCAULD

Proposition 2.7. — 1. If w1 and w2 are two places of L above the same
v, then: cw1

(E/L) = cw2
(E/L). In particular:{

Cv({1}) = Cw(E/L)r

Cv(Cp) = Cw′(E/L
Cp)r

′
,

where r =the number of places w of L such that w | v and r′ =the number
of places w′ of LCp such that w′ | v.

2. If E/K has potentially good reduction at v, then:∀w (resp. w′) place of L
(of LCp), cw(E/L) (cw′(E/LCp)) ∈ {1, .., 4}, and therefore ordp (cv) = 0

and (−1)ordp(Cv) = (−1)
ordp
(
ω({1})
ω(Cp)

)
.

3. If the reduction of E/K at v is semi-stable, then ∀H subgroup of D2p,
δH = δ.eH and therefore ω(H) = 1 and (−1)ordp(Cv) = (−1)ordp(cv).

4. If v - p (i.e. p 6= lv, p is fixed, lv is variable), then ordp (ω(H)) = 0 and
(−1)ordp(Cv) = (−1)ordp(cv).

Remark 2.8. — By points 3 and 4 of the proposition, if E/K has good reduc-
tion at v, then: (−1)ordp(Cv) = 1. As W (E/Kv,τv)

W (E/Kv,(1⊕η)v) = det τv(−1)
det(1⊕η)v(−1) = 1 in

the case of good reduction, we have the desired equality (2) in the case of good
reduction at v.

Remark 2.9. — From 2 and 4 we deduce that the only case that needs the
calculation of both ω(H) and cw(E/LH) is the case of additive potentially mul-
tiplicative reduction at v | p.

2.2.2. The cases Gv = {1} and Gv = Cp. — In these cases, Cv({1}) and
Cv(Cp) are squares, so ordp (Cv) ≡ 0 (mod 2) .

• If Gv = {1}, resGal(Lz/Kv)τ = 1⊕1 = (1⊕η)v, hence
W (E/Kv,τv)

W (E/Kv,(1⊕η)v) = 1.

• If Gv = Cp, (1⊕ η)v = 1⊕ 1 and τv = χ⊕ χ∗, so

W (E/Kv, τv) = 1 = W (E/Kv, (1⊕ η)v) (see [3] lemma A.1 p. 69).

As a result, in both cases we have: W (E/Kv,τv)
W (E/Kv,(1⊕η)v) = 1 = (−1)ordp(Cv).

2.2.3. The case Gv = D2. — We have τv = (1⊕ η)v, so
W (E/Kv,τv)

W (E/Kv,(1⊕η)v) = 1.

On the other hand, in this case, ∀w′ | v place of LCp and ∀w | w′ place of
L, [

(
LCp

)
w′

: Kv] = 2 and
(
LCp

)
w′

= Lw. In particular, Cv({1}) = Cv(Cp)
p,

therefore Cv = Cv(Cp)
p−1 and ordp (Cv) = 0.

Finally, we get: W (E/Kv,τv)
W (E/Kv,(1⊕η)v) = 1 = (−1)ordp(Cv).
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2.2.4. The case Gv = D2p. — Denote by w (resp z) the unique place of LCp
(resp L) above v.

In this case, there are two possibilities for the inertia group of Gv, Iv = Cp
or D2p (because Iv is a normal subgroup of Gv = D2p and Gv/Iv is cyclic).

Furthermore, if lv 6= p then Iv = Cp :

– For lv 6= 2 because the inertia group of a tamely ramified extension is
cyclic.

– For lv = 2 because the case Iv = D2p, Iwild
v = D2 (the wild inertia group)

is impossible since Iwild
v is normal in Iv.

2.2.4.1. Computation of (−1)ordp(Cv)

1. If E/Kv has potentially multiplicative reduction:
(a) If E/Kv acquires split multiplicative reduction of type In over Lz

(and therefore over
(
LCp

)
w
), then:

Cv({1}) = cw(E/Lz) = eLz/(LCp)
w

× cw′(E/
(
LCp

)
w

)

=
e{1}

eCp
× cv(E/K)Cv(Cp)

=
e{1}

eCp
× Cv(Cp)

but

{
if Iv = Cp then e{1} = p and eCp = 1

if Iv = D2p then e{1} = 2p and eCp = 2.

In both cases we get: Cv = p and (−1)ordp(Cv) = −1.

(b) If E/Kv does not acquire split multiplicative reduction of type In
over Lz (and therefore nor over

(
LCp

)
w
), then:

cv({1}), cv(Cp) ∈ {1, 2, 3, 4} and ordp

Å
ω ({1})
ω (Cp)

ã
≡ 0 (mod 2) .

The second claim is a consequence of Proposition 2.7.4 in the case
lv 6= p.
In the case lv = p, we have to distinguish two cases:
(i) If E/Kv acquires non-split multiplicative reduction of type

In over Lz (and therefore over
(
LCp

)
w
), then δ{1} = δCp .

Furthermore, fCp = f{1} = 1 or 2 and ω({1})
ω(Cp) = qδf(e{1}−eCp ),

so ordp
Ä
ω({1})
ω(Cp)

ä
≡ 0 (mod 2) (because p− 1 |

(
e{1} − eCp

)
).

(ii) If E/Kv, E/
(
LCp

)
w

and E/Lz have additive reduction (of
type I∗n):
• If Iv = Cp, then fCp = f{1} = 2 and the result follows.
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• if Iv = D2p, since p ≥ 5, E becomes of type I∗2n over(
LCp

)
w
and I∗2pn over Lz and we get:

ordp (ω ({1})) = ordp (ω (Cp)) ≡ 0 (mod 2) .

To sum up, in the case of potentially multiplicative reduction:

(−1)ordp(Cv) =

{
−1 if E/(LCp) has split multiplicative reduction
1 otherwise.

2. If E/Kv has potentially good reduction, then:
(a) If Iv = Cp (i.e. e{1} = p and eCp = 1), we get: f{1} = fCp = 2

so ordp(ω(Cp)) ≡ ordp(ω({1})) ≡ 0 (mod 2) and therefore
(−1)ordp(Cv) = 1 (see Proposition 2.7.2).

(b) If Iv = D2p (i.e. e{1} = 2p, eCp = 2 and lv = p), we get:

Cv({1})
Cv(Cp)

=
ω({1})
ω(Cp)

= q

ö
δ.e{1}

12

ù
−
ö
δ.eCp

12

ù
= qb

δ.2p
12 c−b δ.212 c.

(i) If q is an even power of p, then

(−1)ordp(Cv) = (−1)
ordp
(
ω({1})
ω(Cp)

)
= 1.

(ii) If q is an odd power of p :

A computation of
ö
δ.2p
12

ù
and

⌊
δ.2
12

⌋
depending on p modulo

12 gives the following table:

Table of values of (−1)ordp(Cv) depending on the Kodaira
symbol of the curve (and the value of e = 12

pgcd(δ,12) ) and
p mod 12:

p mod12 1 5 7 11

II, II∗ (e = 6) 1 -1 1 -1
III, III∗ (e = 4) 1 1 -1 -1
IV, IV ∗ (e = 3) 1 -1 1 -1
I∗o (e = 2) 1 1 1 1

In relation to the above table it may be useful to recall the
following fact: if the residue characteristic of Kv is > 3, then
we have the following correspondence between e = 12

pgcd(δ,12) ,
the valuation of the minimal discriminant δ and the Kodaira
symbols:
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e = 1 ⇔ δ = 0 ⇔ E is of type I0
e = 2 ⇔ δ = 6 ⇔ E is of type I∗0
e = 3 ⇔ δ = 4 or 8 ⇔ E is of type IV or IV ∗

e = 4 ⇔ δ = 3 or 9 ⇔ E is of type III or III∗

e = 6 ⇔ δ = 2 or 10 ⇔ E is of type II or II∗.

For the meaning of the Kodaira symbols see [13] p. 354.

2.2.4.2. Computation of W (E/Kv,τv)
W (E/Kv,(1⊕η)v)

1. The case of potentially multiplicative reduction:
We have an explicit formula of Rohrlich (see [10] Th.2 (ii) p. 329):

W (E/Kv, σ) = detσ(−1)χ(−1)dimσ(−1)〈χ,σ〉,

where χ is the character of K∗v associated to the extension Kv(
√
−c6) of

Kv (c6 is the classical factor, see [14] p. 46).
Since dim τv = dim 1 ⊕ η = 2, det(τv) = det(1 ⊕ η) and 〈χ, τv〉 = 0,

we get:

W (E/Kv, τv)

W (E/Kv, (1⊕ η)v)
=

(−1)〈χ,τv〉

(−1)〈χ,(1⊕η)v〉
=

1

(−1)〈χ,(1⊕η)v〉
= (−1)〈χ,(1⊕η)v〉.

(a) If the reduction of E/Kv is split multiplicative (i.e. χ = 1):
Then (−1)〈χ,(1⊕η)v〉 = −1.

(b) If the reduction of E/Kv is non-split multiplicative (i.e. χ is an
unramified quadratic character):
(i) If E acquires split multipl. reduction over Lz (and therefore

over
(
LCp

)
w
), then ηv = χ, hence (−1)〈χ,(1⊕η)v〉 = −1.

(ii) If E acquires non-split multiplicative reduction over
Lz (and therefore over

(
LCp

)
w
), then ηv 6= χ, hence

(−1)〈χ,(1⊕η)v〉 = 1.

(c) If the reduction of E/Kv is additive (i.e. χ is a ramified quadratic
character)
(i) If E acquires split multipl. reduction over Lz (and therefore

over
(
LCp

)
w
), then ηv = χ, hence (−1)〈χ,(1⊕η)v〉 = −1.

(ii) If E acquires non-split multiplicative reduction over
Lz (and therefore over

(
LCp

)
w
), then ηv 6= χ, hence

(−1)〈χ,(1⊕η)v〉 = 1.
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To sum up, in the case of potentially multiplicative reduction:

W (E/Kv, τv)

W (E/Kv, (1⊕ η)v)
=

{
−1 if E/(LCp) has split multiplicative reduction
1 otherwise.

= (−1)ordp(Cv), by 2.2.4.1.1

2. The case of potentially good reduction:
Here we have to distinguish the cases lv = p and lv 6= p.

(a) The case lv = p.

We have again an explicit formula of Rohrlich, since p ≥ 5 (see
[10], Th.2 (iii) p. 329). We use the following notation:
• q = pr the cardinality of the residue field residue degree of
Kv

• e = 12
pgcd(δ,12)

• ε =


1 if r is even or e = 1Ä
−1
p

ä
if r is odd and e = 2 or 6Ä

−3
p

ä
if r is odd and e = 3Ä

−2
p

ä
if r is odd and e = 4.

Then ∀σ a self-dual representation of Gal(Kv/Kv) with finite im-
age:

W (E/Kv, σ) =


α(σ, ε) if q ≡ 1[e]

α(σ, ε)(−1)〈1+ηnr+σ̂e,σ〉 if q ≡ −1[e]

and e = 3, 4, 6,

where ηnr is the unramified quadratic character, σ̂e is an ir-
reductible representation of degree 2 of D2e and α(σ, ε) :=

(detσ)(−1)εdimσ.
Since dim τv = dim (1⊕ η)v = 2 and det τv = det (1⊕ η)v,
α((1⊕ η)v , ε) = α(τv, ε) and we get:

W (E/Kv, τv)

W (E/Kv, (1⊕ η)v)
=

{
1 if q ≡ 1[e]

(−1)〈1+ηnr+σ̂e,1+ηv+τv〉 if q ≡ −1[e]and e = 3, 4, 6,

=

{
1 if q ≡ 1[e]

(−1)〈1+ηnr,1+ηv〉 if q ≡ −1[e]and e = 3, 4, 6,

(〈σ̂e, τv〉 = 0 since e = 3, 4, 6 and p ≥ 5).

(i) If r is even, then q ≡ 1[e] ∀e ∈ {2, 3, 4, 6} and therefore

W (E/Kv, τv)

W (E/Kv, (1⊕ η)v)
= 1 = (−1)ordp(Cv),
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by 2.b.i (in section 2.3.4.1).
(ii) If r is odd, then q ≡ 1[e]⇐⇒ p ≡ 1[e] and:

W (E/Kv, τv)

W (E/Kv, (1⊕ η)v)
=

{
1 if q ≡ 1[e]

(−1)〈1+ηnr,1+ηv〉 if q ≡ −1[e] ande = 3, 4, 6.

(A) If Iv = Cp, then ηnr = ηv and W (E/Kv,τv)
W (E/Kv,(1⊕η)v) = 1.

(B) If Iv = D2p, then ηnr 6= ηv and:

W (E/Kv, τv)

W (E/Kv, (1⊕ η)v)
=

{
1 if q ≡ 1[e]

−1 if q ≡ −1[e] and e = 3, 4, 6.

In both cases, we obtain for the values of W (E/Kv,τv)
W (E/Kv,(1⊕η)v)

exactly the same table as for the values of (−1)ordp(Cv),
depending on p modulo 12. Here is the table of values of
W (E/Kv,τv)

W (E/Kv,(1⊕η)v) depending on the Kodaira symbol of the
curve (and the value of e = 12

pgcd(δ,12) ) and p mod 12:

p mod12 1 5 7 11

II, II∗ (e = 6) 1 -1 1 -1
III, III∗ (e = 4) 1 1 -1 -1
IV, IV ∗ (e = 3) 1 -1 1 -1
I∗o (e = 2) 1 1 1 1

(b) The case lv 6= p :

In this case, the explicit formula of Rohrlich cannot be used, since
lv can be 2 or 3.

Let σ be a representation σ : Gal(Kv/Kv) → GL(Vσ) with fi-
nite image; let σ′E/Kv : WD(Kv/Kv) → GL(V ) be the represen-
tation of the Weil-Deligne group associated to the elliptic curve
given by

(
σE/Kv , N

)
=
(
σE/Kv , 0

)
(because the reduction is po-

tentially good). This is simply a representation of the Weil group
W (K̄v/Kv) (because N = 0) and

σ′E/Kv ⊗ σ = σE/Kv ⊗ σ : W (Kv/Kv)→ GL(W ),

where W = V ⊗ Vσ, is also a representation of the Weil group.
We first recall the definition of root numbers via ε-factors (see [9]
§11 and §12):

W (E/Kv, σ) =
ε(σE/Kv ⊗ σ, ψ, dx)∣∣ε(σE/Kv ⊗ σ, ψ, dx)

∣∣ = ε(σ′E/Kv ⊗ σ, ψ, dxψ),

where dx is any Haar measure, ψ is any additive character of Kv

and dxψ the self-dual Haar measure with respect to ψ on Kv.
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Here, we choose an additive character ψ for which the Haar measure
dxψ takes values (on open compact subsets of Kv) in Zp[ζp], where
ζp is a primitive p-th root of unity. For example, if the conductor
of ψ is trivial, then the values of dxψ lie in lZv ∪ {0} ⊂ Zp[ζp].
In one of his articles ([2] p. 548), Deligne gives a description of the
ε-factors in terms of ε0-factors; in our settings this gives:

ε(σE/Kv ⊗ σ, ψ, dxψ) = ε0(σE/Kv ⊗ σ, ψ, dxψ) det(−ν(φ) |W I(v)),

where φ is the geometric Frobenius at v and I(v) = Gal(K̄v/K
ur
v ).

Recall that, since lv 6= p, the inertia group of D2p is Iv = Cp.
(i) If E has additive reduction, denote by F the smallest Galois

extension of Kur
v such that E has good reduction over F and

set Φ = Gal(F/Kur
v ); then the restiction of σE/Kv to I(v)

factors through Φ.

It is known that:
• For lv ≥ 5, Φ is cyclic of order e = 12

pgcd(δ,12) .
• For lv = 3, |Φ| ∈ {2, 3, 4, 6, 12} .
• For lv = 2, |Φ| ∈ {2, 3, 4, 6, 8, 24} .

For a more precise description of Φ, see, for example, [1] or
[6].
The representation σE/K ⊗ σ (σ = τv or (1⊕ η)v) restricted
to I(v) factors through a quotient H of I(v) which admits Φ

and Cp as quotients.
We have:

(V ⊗ Vσ)
I(v)

= (V ⊗ Vσ)
H

= HomH(V ∗, Vσ) = Hom((V Φ)∗, V Cpσ )

because H acts on V (resp. on Vσ) through its quotient Φ

(resp. Cp) and |Φ| is prime to p.
Futhermore, V H = V Φ = {0} since E has additive reduction,
hence

(V ⊗ Vσ)
I(v)

= 0, det
Ä
−
Ä
σ′E/Kv ⊗ σ

ä
(φ) | (V ⊗ Vσ)

I(v)
ä

= 1

and

(3) W (E/Kv, σ) = ε0(σE/Kv ⊗ σ, ψ, dxψ) (σ = τv, (1⊕ η)v).

Deligne also gives congruence results for these ε0 ([2] p. 556-
557). Since χ ≡ 1 mod(1− ζp), we deduce
I(χ) ≡ I(1) mod(1− ζp) and σ′E/Kv ⊗ τv ≡ σ

′
E/Kv

⊗ (1⊕ η)v
mod(1−ζp). So according to Deligne, ε0(σ′E/Kv⊗τv, ψ, dxψ)

and ε0(σ′E/Kv ⊗ (1⊕ η)v , ψ, dxψ) are two elements of {±1}
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(by (3)), which are congruent modulo (1 − ζp), hence they
are equal. As a result,

W (E/Kv, τv)

W (E/Kv, (1⊕ η)v)
= 1.

(ii) If E has good reduction, then σE/Kv is unramified.
Then we have:

ε(σE/Kv ⊗ τv, ψ, dx) = ε(τv, ψ, dx)dimσE/Kv detσE/Kv (Φm(τv,ψ)),

where m(τv, ψ) ∈ N depends on conductors of both τv and
ψ, and the dimension of τv (see [15] 3.4.6 p. 15), therefore:

W (E/Kv, τv) = W (σE/Kv ⊗ τv) =
ε(σE/Kv ⊗ τv, ψ, dx)∣∣ε(σE/Kv ⊗ τv, ψ, dx)

∣∣ = 1,

since detσE/Kv = 1, W (τv) = ε(τv,ψ,dx)
|ε(τv,ψ,dx)| = ±1 (because

det τv = 1, see Proposition p. 145 [9]) and dimσE/Kv = 2.

Similarly, W (E/Kv, (1⊕ η)v) = 1, so W (E/Kv,τv)
W (E/Kv,(1⊕η)v) = 1.

In both cases i) and ii) we also have (−1)ordp(Cv) = 1 by 2.a. (in
section 2.3.4.1).

To sum up, we have, for each finite prime v of K,

W (E/Kv, τv)

W (E/Kv, (1⊕ η)v)
= (−1)ordp(Cv).

This completes the proof of Theorem 2.2.

Remark 2.10. — This proof can be adjusted to work in the case
Gal(L/K) ' D2pn , the computations are almost the same. The idea to
reduce the proof to the case of a D2p-extension, using Galois invariance of
Rohrlich [11], was suggested to me by Tim Dokchitser.

3. Appendix

The purpose of this appendix is to make a small improvement on Theorem
6.7 of [5]. The interest of this improvement is that Proposition 6.12 of [5]
(which is the same statement as Theorem 1.10 for p ≡ 3 mod 4) will no longer
rely on the “truly painful case of additive reduction” anymore (see [3] p. 53).
In fact, we use the passage to the global case to avoid all places of additive
reduction, not just those above 2 and 3. Since we have proved the result for
p ≥ 5 (Theorem 1.10) without using any global parity results at all, for us this
is of interest essentially in the case p = 3.
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We start by recalling the definition of an elliptic curve being close to another
one:

Proposition 3.1. — Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 be

an elliptic curve over a non archimedean local field K (with valuation v and
residue characteristic p) and F /K a finite Galois extension.

There exists ε > 0 such that every elliptic curve E′ : y2 + a′1xy + a′3y =

x3 + a′2x
2 + a′4x + a′6 over K satisfying ∀i |a′i − ai|v < ε, has the following

properties:
Over all intermediate fields F ′ of F /K , E and E′ have the same:

– conductor
– valuation of the minimal discriminant
– local Tamagawa factors, C(E/ F ′, dx

2y+a1x+a3
)

– root numbers
– the Tate module as a Gal( K/K )-module (for each l 6= p).

We will say that E′ is close to E/K .

Proof. — This is Proposition 3.3 of [5].

We now state the minor improvement of Theorem 6.7 of [5]:

Theorem 3.2. — Let K a local non archimedean field of characteristic 0 and
F /K a finite Galois extension. Let F/K be a Galois extension of totally real
fields and v0 a place of K such that:

• v0 admits a unique place v̄0 of F above it
• Kv0 ' K and Fv̄0 ' F .

Such an extension exists (see Lemma 3.1 of [5]).
Let E/K be an elliptic curve with additive reduction.
Then there exists an elliptic curve E/K such that:

• E has semi-stable reduction for all w 6= v0

• j(E) is not an integer (i.e. j(E) /∈ OK)

• E/Kv0 is close to E/K .

Proof. — We first choose an elliptic curve E/K such that E/Kv0 is close to
E/K (this is possible, by Proposition 3.1).

Now the goal is to remove all places of additive reduction by changing E/K
to an elliptic curve satisfying the three conditions of the theorem.

Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with ai ∈ OK .

If we want a place w not to be of additive reduction we have to impose one
of the two following conditions:

• The valuation w(∆) is zero (in this case w is of good reduction).
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• The valuation w(c4) is zero (in this case w is of good or multiplicative
reduction depending on w(∆) = 0 or > 0).

Let v 6= v0 be a place of K not above 2.
To get the condition “j(E) is not an integer” it is sufficient to make v a

multiplicative place (v is multiplicative ⇔ v(j(E)) < 0). We will do this in
Step 2 below. But before doing this, we will show in Step 1 how to make
semistable all places above 2.

Step 1: Make semi-stable all places w 6= v0 above 2.
Denote by v2,1, ..., v2,r these places.
In this case:

[
v2,i(a1) = 0⇒ v2,i(c4) = 0 (c4 = (a2

1 + 4a2)2 − 24a1a3 − 48a4)
]
.

Let p0 and p2,i be the primes ideals associated to v0 and v2,i.

By the Chinese remainder theorem, there exists d1 ∈ OK such that:
• d1 ≡ 0 mod pn0 (i.e. v0(d1) ≥ n).

• d1 ≡ 1− a1 mod p2,i ∀i ∈ {1, .., r} (i.e. v2,i(a1 + d1) = 0).
• d1 ≡ −a1 mod p (p associated to v 6= v0).
So, if we let a′1 = a1 +d1 for n big enough we get the curve y2 +a′1xy+a3y =

x3 + a2x
2 + a4x + a6 which is close to E/K , v2,i(a

′
1) = v2,i(a1 + d1) = 0

∀i ∈ {1, .., r} and v(a′1) > 0.

Step 2: Make v semi-stable.
By the Chinese remainder theorem, there exist d2, d3, d4 ∈ OK such that:

• d2 ≡ 0 mod pn0 (i.e. v0(d2) ≥ n) d2 ≡ 1− a2 mod p (so v(a2 + d2) = 0).

• d3 ≡ 0 mod pn0 (i.e. v0(d3) ≥ n) d3 ≡ −a3 mod p (so v(a3 + d3) > 0).

• d4 ≡ 0 mod pn0 (i.e. v0(d4) ≥ n) d4 ≡ −a4 mod p (so v(a4 + d4) > 0).

So, if we let a′i = ai + di, i ∈ {2, 3, 4}, for n big enough we get:
E′ : y2 + a′1xy + a′3y = x3 + a′2x

2 + a′4x + a6 is close to E/K (Proposition
3.1).

Futhermore : • c′4 = (a′21 + 4a′2)2 − 24a′1a
′
3 − 48a′4

• v(a′1) > 0

• v(a′3) > 0

• v(a′4) > 0

• v(a′2) = 0,
so v(c′4) = 0.
The curve E′ : y2 + a′1xy + a′3y = x3 + a′2x

2 + a′4x + a6 is close to E/K ;
∀w 6= v0 above 2, w(c′4) > 0, and v(c′4) = 0. Since c′4 does not depend on a6,
we can modify a6 to allow places w 6= v0 such that w(c′4) > 0 to become places
of good reduction (since c′4 will be unchanged, some places of good reduction
can become of multiplicative reduction but not of additive reduction) and such
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that v is of multiplicative reduction (v(j(E)) < 0). We will do this in the next
step.

Step 3: Turn additive reduction places into good reduction ones and make v
multiplicative.

Let v1, ..., vr, vr+1, ..., vt be the places where vi(c′4) > 0, vi 6= v0 ( 6= v and
not above 2).

Above, v1, ..., vr are places of good reduction and vr+1, ..., vt places of addi-
tive reduction of the curve E′ constructed in step 2.

Let b2, b4, b6, b8 and ∆ be the following classical quantities associatied to
E′:

b2 = a′21 + 4a′2

b4 = 2a′4 + a′1a
′
3

b6 = a′23 + 4a6

b8 = a′21 a6 + 4a′2a6 − a′1a′3a′4 + a′2a
′2
3 − a′24

and ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

= α+ βa6 + 16a2
6,

where α = [−b22(−a′1a′3a′4 + a′2a
′2
3 − a′24 )− 8b34 − 27a′43 + 9b2b4a

′2
3 ]

and β = [−b32 − 216a′23 + 36b2b4]

Let γ = β+32a6; we know that 16 is invertible mod pi ∀i ∈ {1, .., t} (because
pi is not above 2).

By the Chinese remainder theorem, there exists c such that:

• c ≡ 0 mod pn0 (i.e. v0(c) ≥ n)

• c ≡ 0 mod pi ∀i ∈ {1, .., r} (i.e. vi(c) > 0)
• 16c ≡ αi − γ mod pi ∀i ∈ {r + 1, .., t} (where αi 6= 0, γ mod pi) (i.e.
∀i ∈ {r + 1, .., t}, vi(γ + 16c) = 0 and vi(c) = 0)
• c ≡ −a6 mod p (i.e. v(a′6) > 0).

Finally, if we let a′6 = a6 + c for n big enough, we get:

E′′ : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6

and we see that with this choice:

• v1, ..., vt are all places of good reduction for E′′.
• v is a place of multiplicative reduction for E′′.

This completes the proof.
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