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Abstract. — In this paper, we are concerned with the large n limit of the distri-
butions of linear combinations of the entries of a Brownian motion on the group of
n × n unitary matrices. We prove that the process of such a linear combination con-
verges to a Gaussian one. Various scales of time and various initial distributions are
considered, giving rise to various limit processes, related to the geometric construction
of the unitary Brownian motion. As an application, we propose a very short proof
of the asymptotic Gaussian feature of the entries of Haar distributed random unitary
matrices, a result already proved by Diaconis et al.

Résumé (Théorèmes centraux limite pour le mouvement brownien sur le groupe uni-
taire de grande taille)

Dans cet article, on considère la loi limite, lorsque n tend vers l’infini, de combi-
naisons linéaires des coefficients d’un mouvement Brownien sur le groupe des matrices
unitaires n× n. On prouve que le processus d’une telle combinaison linéaire converge
vers un processus gaussien. Différentes échelles de temps et différentes lois initiales sont
considérées, donnant lieu à plusieurs processus limites, liés à la construction géomé-
trique du mouvement Brownien unitaire. En application, on propose une preuve très
courte du caractère asymptotiquement gaussien des coefficients d’une matrice unitaire
distribuée selon la mesure de Haar, un résultat déjà prouvé par Diaconis et al.

Texte reçu le 23 août 2010, révisé et accepté le 4 mars 2011.

Florent Benaych-Georges, LPMA, UPMC Univ Paris 6, Case courier 188, 4, Place
Jussieu, 75252 Paris Cedex 05, France. • E-mail : florent.benaych@upmc.fr
2000 Mathematics Subject Classification. — 15A52, 60B15, 60F05, 46L54.
Key words and phrases. — Unitary Brownian motion, heat kernel, random matrices, central
limit theorem, Haar measure.
This work was partially supported by the Agence Nationale de la Recherche grant ANR-08-
BLAN-0311-03.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2011/593/$ 5.00
© Société Mathématique de France



594 F. BENAYCH-GEORGES

Introduction

There is a natural definition of Brownian motion on any compact Lie group,
whose distribution is sometimes called the heat kernel measure. Mainly due
to its relations with the object from free probability theory called the free
unitary Brownian motion and with the two-dimentional Yang-Mills theory, the
Brownian motion on large unitary groups has appeared in several papers during
the last decade. Rains, in [25], Xu, in [29], Biane, in [3, 4] and Lévy and Maïda,
in [18, 19], are all concerned with the asymptotics of the spectral distribution
of large random matrices distributed according to the heat kernel measure.
Also, in [12], Demni makes use of the unitary Brownian motion in the study of
Jacobi processes, and, in [2], Lévy and the author of the present paper construct
a continuum of convolutions between the classical and free ones based on the
conjugation of random matrices with a unitary Brownian motion. In this paper,
we are concerned with the asymptotic distributions of linear combinations of
the entries of an n× n unitary Brownian motion as n tends to infinity.

We first give the joint limit distribution, as n tends to infinity, of (possibly
rescaled) random processes of the type (Tr[A(Vt − I)])t≥0 for (e−t/2Vt)t≥0 a
Brownian motion staring at I on the group of unitary n × n matrices and A

an n × n matrix (Theorem 1.2). This theorem is the key result of the paper,
since specifying the choice of the matrices A and randomizing them will then
allow us to prove all other results. As a first example, it allows us to find out,
for any sequence (αn)n of positive numbers with a limit α ∈ [0,+∞], the limit
distribution of any upper-left corner of

√
n/αn(Vlog(αnt+1) − I)t≥0 (Corollary

1.4): for small scales of time (i.e. when α = 0), the limit process is purely skew-
Hermitian, whereas for large scales of time (α = +∞), the limit process is a
standard complex matricial Brownian motion. For intermediate scales of time
(0 < α < +∞), the limit process is an interpolation between these extreme
cases. The existence of these three asymptotic regimes can be explained by
the fact that the unitary Brownian motion is the “wrapping”, on the unitary
group, of a Brownian motion on the tangent space of this group at I (which
is the space of skew-Hermitian matrices), and that as the time goes to infinity,
its distribution tends to the Haar measure (for which the upper-left corners are
asymptotically distributed as standard complex Gaussian random matrices).

Secondly, we consider a unitary Brownian motion (e−t/2Vt)t≥0 whose ini-
tial distribution is the uniform measure on the group of permutation matri-
ces: its rows are exchangeable, as its columns. In this case, for any posi-
tive sequence (αn) and any positive integer p, the p × p upper left corner of
(
√
n/αnVlog(αnt+1))t≥0 converges to a standard complex matricial Brownian

motion (Corollary 1.9).
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LIMIT THEOREMS FOR THE UNITARY BROWNIAN MOTION 595

Since the unitary Brownian motion distributed according to the Haar mea-
sure at time zero has a stationary distribution, our results allow us to give very
short proofs of some well-known results of Diaconis et al, first proved in [10],
about the asymptotic normality of linear combinations of the entries of uniform
random unitary matrices (Theorem 1.11 and Corollary 1.12).

It is clear that the same analysis would give similar results for the Brownian
motion on the orthogonal group. For notational brevity, we chose to focus on
the unitary group.

Let us now present briefly what problems underlie the asymptotics of linear
combinations of the entries of a unitary Brownian motion.

Asymptotic normality of random unit vectors and unitary matrices: The his-
torical first result in this direction is due to Émile Borel, who proved a century
ago, in [5], that, for a uniformly distributed point (X1, . . . , Xn) on the unit
euclidian sphere Sn−1, the scaled first coordinate

√
nX1 converges weakly to

the standard Gaussian distribution as the dimension n tends to infinity. As
explained in the introduction of the paper [10] of Diaconis et al., this says that
the features of the “microcanonical” ensemble in a certain model for statisti-
cal mecanics (uniform measure on the sphere) are captured by the “canonical”
ensemble (Gaussian measure). Since then, a long list of further-reaching re-
sults about the entries of uniformly distributed random orthogonal or unitary
matrices have been obtained. The most recent ones are the previously cited
paper of Diaconis et al., the papers of Meckes and Chatterjee [20, 6], the paper
of Collins and Stolz [9] and the paper of Jiang [17], where the point of view
is slightly different. In the present paper, we give a new, quite short, proof of
the asymptotic normality of the linear combinations of the entries of uniformly
distributed random unitary matrices, but we also extend these investigations
to the case where the distribution of the matrices is not the Haar measure but
the heat kernel measure, with any initial distribution and any rescaling of the
time.

Second order freeness: A theory has been developed these last five years
about Gaussian fluctuations (called second order limits) of traces of large ran-
dom matrices around their limits, the most emblematic articles in this theory
being [21, 23, 22, 8]. The results of this paper can be related to this the-
ory, even though, technically speaking, we do not consider the powers of the
matrices here(1).

Brownian motion on the Lie algebra and Itō map: The unitary Brownian
motion is a continuous random process taking values on the unitary group,

(1) The reason is that the constant matrices we consider here, like
√
n×(an elementary n×n

matrix), have no bounded moments of order higher than two: our results are the best ones
that one could obtain with such matrices.
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596 F. BENAYCH-GEORGES

which has independent and stationary multiplicative increments. The most
constructive way to define it is to consider a standard Brownian motion (Bt)t≥0

on the tangent space of the unitary group at the identity matrix and to take its
image by the Itō map (whose inverse is sometimes called the Cartan map), i.e.
to wrap(2) it around the unitary group: the process (Ut)t≥0 obtained is a unitary
Brownian motion starting at I. Our results give us an idea of the way the Itō
map alterates the process (Bt)t≥0 at different scales of time. Moreover, the
question of the choice of a rescaling of the time (depending on the dimension)
raises interesting questions (see Remark 1.1).

Notation. — For each n ≥ 1, Un shall denote the group of n × n unitary
matrices. The identity matrix will always be denoted by I. For each com-
plex matrix M , M∗ will denote the adjoint of M . We shall call a standard
complex Brownian motion a complex-valued process whose real and imaginary
parts are independent standard real Brownian motions divided by

√
2. For

all k ≥ 1, the space of continuous functions from [0,+∞) to Ck will be de-
noted by C([0,+∞),Ck) and will be endowed with the topology of the uniform
convergence on every compact interval.

1. Statement of the results

1.1. Brief presentation of the Brownian motion on the unitary group. — There are
several ways to construct the Brownian motion on the unitary group(3). For the
one we choose here, all facts can easily be recovered by the use of the matricial
Itō calculus, as exposed in Section 2.1.

Let n be a positive integer and ν0 a probability measure on the group of
unitary n × n matrices. We shall call a unitary Brownian motion with initial
law ν0 any random process (Ut)t≥0 with values on the space of n× n complex
matrices such that U0 is ν0-distributed and (Ut)t≥0 is a strong solution of the
stochastic differential equation

(1) dUt = idHtUt −
1

2
Utdt,

(2) For G a matricial Lie group with tangent space g at I, the “wrapping” wγ , on G, of a
continuous and piecewise smooth path γ : [0,+∞) → g such that γ(0) = 0 is defined by
wγ(0) = I and w′γ(t) = wγ(t) × γ′(t). It B is a Brownian motion on g and (Bn)n≥1 is a
sequence of continuous, piecewise affine interpolations of B with a step tending to zero as n
tends to infinity, then the sequence wBn converges in probability to a process which doesn’t
depend on the choice of the interpolations and which is a Brownian motion on G [16, Sect.
VI.7], [26, Eq. (35.6)], [14].
(3) See [15, 28, 16, 26]. A very concise and elementary definition is also given in [25].
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LIMIT THEOREMS FOR THE UNITARY BROWNIAN MOTION 597

where (Ht)t≥0 is a Brownian motion(4) on the space of n×n Hermitian matrices
endowed with the scalar product 〈A,B〉 = nTr(AB).

It can be proved that for such a process (Ut)t≥0, for any t0 ≥ 0, Ut0 is almost
surely unitary and both processes (Ut0+tU

∗
t0)t≥0 and (U∗t0Ut0+t)t≥0 are unitary

Brownian motions starting at In and independent of the σ-algebra generated
by (Us)0≤s≤t0 .

Remark 1.1 (Communicated by Thierry Lévy). — There are other ways to
scale the time for the Brownian motion on the unitary group. Our scaling of
the time is the one for which the three limit regimes correspond respectively to
small values of t, finite values of t and large values of t and for which the limit
non commutative distribution of (Ut)t≥0 is the one of a free unitary Brownian
motion. It also has a heuristic geometrical meaning: with this scaling, for any
fixed t, the distance(5) between U0 and Ut has the same order as the diameter(6)

of the group. It means that for any fixed t > 0, large values of n, Ut is probably
no longer too close to its departure point, while it also probably hasn’t “orbited”
the unitary group too many times.

1.2. The three asymptotic regimes for the unitary Brownian motion starting at In.
— Let (αn)n≥1 be a sequence of positive numbers with a limit α ∈ [0,+∞].
Let us fix a positive integer k and let, for each n ≥ 1, An1 , . . . , Ank be a family
of non-random n× n matrices and (e−t/2V nt )t≥0 be a Brownian motion on Un
starting at I. Suppose that there exists complex matrices [al]

k
l=1, [pl,l′ ]

k
l,l′=1

and [ql,l′ ]
k
l,l′=1 such that for all l, l′ ∈ {1, . . . , k}, we have

1

n
Tr(Anl ) −→

n→∞
al,(2)

1

n
Tr(Anl A

n
l′) −→

n→∞
pl,l′ ,(3)

1

n
Tr(Anl A

n∗
l′ ) −→

n→∞
ql,l′ .(4)

For each n, let us define, for t ≥ 0,

Xn
t = α−1/2

n (Tr[An1 (V nlog(αnt+1) − I)], . . . ,Tr[Ank (V
n
log(αnt+1) − I)]).

(4) (iHt)t≥0 is in fact the skew-Hermitian Brownian motion that the process (UtU∗0 )t≥0 wraps
around the unitary group, as explained in Footnote 2.
(5) As explained in Footnotes 2 and 4, (Ut)t≥0 is the wrapping of (iHt)t≥0 on the unitary
group, hence the distance between U0 and Ut has the same order as the one between 0 and
iHt, which, by the Law of Large Numbers, has order

√
tn.

(6) By definition, the diameter of the group is the supremum, over pairs U, V of unitary
matrices, of the length of the shortest geodesic between U and V . Here, it is equal the length
of the geodesic t ∈ [0, nπ] 7→ exp(itIn/n) between In and −In, i.e. to nπ.
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Let µ be the probability measure on C([0,+∞),Ck) defined by the fact that
any process Xt = (Xt,1, . . . , Xt,k) distributed according to µ is a Gaussian
centered process with independent increments such that for all t > 0, for all
l, l′ = 1, . . . , k,

(5)

E(Xt,lXt,l′) = ql,l′t

E(Xt,lXt,l′) =


−pl,l′t if α = 0,
−pl,l′ log(αt+1)

α + alal′
log2(αt+1)

2α if 0 < α < +∞,
0 if α = +∞.

Theorem 1.2. — As n tends to infinity, the distribution of the process
(Xn

t )t≥0 converges weakly to µ.

Remark 1.3. — Theorem 1.2 can easily be extended, using standard topo-
logical arguments, to the case where for each n, the matrices An1 , . . . , Ank are
random, independent of (V nt )t≥0 and the convergences of (2), (3) and (4) hold
in probability (with non-random limits). It will be useful in the proofs of
Theorem 1.6 and Theorem 1.11.

Recall that a principal submatrix of a matrix is a matrix obtained by remov-
ing some columns, and the rows with the same indices.

Corollary 1.4. — Let us fix p ≥ 1 and let (Ht), (St) be two independent
standard Brownian motions on the euclidian spaces of p×p respectively Hermi-
tian and skew-Hermitian matrices endowed with the respective scalar products
〈X,Y 〉 = Tr(XY )/2, 〈X,Y 〉 = −Tr(XY )/2. Then, as n tends to infinity, the
distribution of the Cp×p-valued process of the entries of any p × p principal
submatrix of

√
n/αn(V

n
log(αnt+1) − I)t≥0 converges to the one of the random

process (Ht−fα(t) + St+fα(t))t≥0, where

fα(t) =


t if α = 0,
log(αt+1)

α if 0 < α < +∞,
0 if α = +∞.

Remark 1.5. — Note that when α = 0, the limit process is simply a standard
Brownian motion on the space of p×p skew-Hermitian matrices, whereas, as α
grows from zero to +∞, the Hermitian part of the limit process keeps growing,
and at last, when α = +∞, the limit process is a standard Brownian motion on
the space of p× p complex matrices. As said in the introduction, the existence
of these three asymptotic regimes can be explained by the fact that the unitary
Brownian motion is the “wrapping”, on the unitary group, of a Brownian motion
on the tangent space at I (which is the space of skew-Hermitian matrices), and
that as the time goes to infinity, its distribution tends to the Haar measure (for
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LIMIT THEOREMS FOR THE UNITARY BROWNIAN MOTION 599

which, as stated by Corollary 1.12, the upper-left corners are asymptotically
distributed as standard complex Gaussian random matrices).

1.3. The particular case of unitary Brownian motions with exchangeable rows and
columns. — Let (αn)n≥1 be a sequence of positive numbers (no hypothesis is
made on its convergence). Let us fix a positive integer k and let, for each n ≥ 1,
An1 , . . . , A

n
k be a family of non-random n × n matrices and (e−t/2V nt )t≥0 be a

Brownian motion on Un such that V n0 is uniformly distributed on the group of
matrices of permutations of {1, . . . , n}. We suppose that there exists a complex
matrix [ql,l′ ]

k
l,l′=1 for all l, l′ ∈ {1, . . . , k},

1

n
Tr[Anl A

n∗
l′ ] −→

n→∞
ql,l′ ,(6)

1

n2
]{(i, j) ; ((i, j)-th entry of Anl ) 6= 0} −→

n→∞
0(7)

and that there exists a probability measure µ0 on Ck such that

α−1/2
n (Tr[An1V

n
0 ], . . . ,Tr[AnkV

n
0 ]) −→

n→∞
µ0 (conv. in distribution).(8)

For each n, let us define, for t ≥ 0,

Xn
t = α−1/2

n (Tr(An1V
n
log(αnt+1)), . . . ,Tr(AnkV

n
log(αnt+1))).

Let P be an Hermitian matrix such that P 2 = [ql,l′ ]
k
l,l′=1, (Z1, . . . , Zk) be an

independent family of standard complex Brownian motions and C be a µ0-
distributed random variable, independent of the Zl’s. Let us define µ to be the
distribution, on C([0,+∞),Ck), of the process (C + (Z1,t, . . . , Zk,t)P )t≥0.

Theorem 1.6. — As n tends to infinity, the distribution of Xn converges
weakly to µ.

Remark 1.7. — As Theorem 1.2, Theorem 1.6 can be extended to the case
where for each n, the matrices An1 , . . . , Ank are random, independent of (V nt )t≥0

and the convergences of (6) and (7) hold in probability (with non-random
limits). In several examples given below, the matrices Anl ’s are actually random.

Examples 1.8. — Let us give a few examples of sequences An which satisfy
the hypotheses (6), (7) and (8) (or their probabilistic versions mentioned in
Remark 1.7).

a) Firstly, if (αn) is bounded from below by a positive constant, if (6) holds
and if for all l, n−1]{(i, j) ; ((i, j)-th entry of Anl ) 6= 0} −→ 0, then (8) holds
for µ0 the Dirac mass at zero (this can easily be deduced from Lemma 2.3
bellow).

b) Secondly, if, αn tends to one and if, for all n, the matrices Anl , 1 ≤ l ≤ k,
are random real n×n matrices which satisfy (6) and (7) for the convergence in
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probability, then (8) holds for µ0 the Gaussian measure with covariance matrix
[ql,l′ ]

k
l,l′=1. This follows easily from [27]. As an example, if k = 1 and if, for

each n, the entries of An1 are i.i.d. with distribution τn such that as n tends to
infinity,

τn({0}) −→ 1 and n(1− τn({0}))
∫
t2dτn(t) −→ 1,

then (6), (7) and (8) hold for q1,1 = 1 and µ0 the standard Gaussian law.

c) Other examples can be found using [7, Th. 5.1], where the laws µ0 are
other infinitely divisible laws.

Both following corollaries are direct applications of the previous theorem, the
first one using implicitly the fact that any entry of V n0 is null with probability
1 − n−1, and the second one using implicitly the fact that the distribution
of the number of fixed points of a uniform random permutation of {1, . . . , n}
converges weakly, as n tends to infinity, to the Poisson distribution with mean
one [13].

Corollary 1.9. — Let (αn) be a sequence of positive numbers. For any p, q ≥
1, as n tends to infinity, the distribution of any p× q submatrix of(»

n/αnV
n
log(αnt+1)

)
t≥0

converges weakly to the one of an independent family of pq standard Brownian
motions on the complex plane, i.e. a Brownian motion on the space of p × q
complex matrices.

Corollary 1.10. — As n tends to infinity, the distribution of
(Tr(V nlog(t+1)))t≥0 converges weakly to the one of (C + Zt)t≥0, where C is
a Poisson random variable with mean one and (Zt)t≥0 is a standard complex
Brownian motion, independent of C.

1.4. Application to the asymptotics of the uniform measure on the unitary group. —
Since the Brownian motion on the unitary group distributed according to the
Haar measure at time zero has a stationary distribution, our results allow us
to recover certain results of asymptotic normality of linear combinations of the
entries of uniform random unitary matrices.

The following theorem is not new [9, 6]. However, our method allows to give
a very direct proof, even under these general hypotheses.
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Theorem 1.11. — Let us fix k ≥ 1 and let, for each n ≥ 1, An1 , . . . , Ank be n×n
non-random matrices and Un be a random matrix with uniform distribution on
the group of n× n unitary matrices. Suppose that for all l, l′, there is ql,l′ ∈ C
such that

1

n
Tr(Anl A

n∗
l′ ) −→

n→∞
ql,l′ .

Then as n tends to infinity, the distribution of the random vector
(Tr[An1Un], . . . ,Tr[AnkUn]) converges weakly to the one of a Gaussian cen-
tered family (Z1, . . . , Zk) of complex random variables such that for all
l, l′ = 1, . . . , k, E(ZlZl′) = 0 and E(ZlZl′) = ql,l′ .

The following corollary is immediate.

Corollary 1.12. — Let us fix k ≥ 1 and let, for each n, Zn1 , . . . , Znk be k
different entries of a random n × n matrix with uniform distribution on the
unitary group. Then the joint distribution of

√
n(Zn1 , . . . , Z

n
k ) converges weakly,

as n tends to infinity, to the one of a family of independent standard complex
Gaussian random variables.

2. Proofs

2.1. Preliminaries on matricial Itō calculus. — a) Let n be a positive integer. Let
( F t)t≥0 be a filtration and (Hn

t )t≥0 be an ( F t)t≥0-standard Brownian motion
on the space of n × n Hermitian matrices endowed with the scalar product
〈A,B〉 = nTr(AB), i.e. a process with values in the space of n× n Hermitian
matrices such that the diagonal and upper diagonal entries of (

√
nHn

t )t≥0 are
independent random processes, the ones on the diagonal being standard real
Brownian motions and the ones above the diagonal being standard complex
Brownian motions. If one considers two matrix-valued semimartingales X,Y
such that

dXt = At(dH
n
t )Bt + Ctdt, dYt = Dt(dH

n
t )Et + Ftdt,

for some ( F t)t≥0-adapted matrix-valued processes A,B,C,D,E, F , then, by
Itō’s formula,

d(XY )t = (dXt)Yt +XtdYt +
1

n
Tr(BtDt)AtEtdt,

d〈Tr(X),Tr(Y )〉t =
1

n
Tr(BtAtEtDt)dt.

We shall use these formulas many times in the paper, without citing them every
time.
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602 F. BENAYCH-GEORGES

b) With the same notation, let us now consider a deterministic C1 function f
with positive derivative such that f(0) = 0. Then for X the process introduced
above, the process X̃t := Xf(t) satisfies

dX̃t =
»
f ′(t)Af(t)(dH̃

n
t )Bf(t) + f ′(t)Cf(t)dt,

where H̃n is the ( F f(t))t≥0-Brownian motion defined by the formula H̃n
t =∫ t

0
1√
f ′(s)

d(Bf(·))s.

Proof of Theorem 1.2. — Let us first state some matricial inequalities we shall
often refer to in the following. Let X,Y be two complex matrices and G,H be
two Hermitian nonnegative matrices. Then we have

|Tr(XY )| ≤
»

Tr(XX∗)
»

Tr(Y Y ∗),(9)

Tr(G2) ≤ (TrG)2,(10)
|Tr(GH)| ≤ Tr(G) Tr(H).(11)

Inequality (11) follows from (9) and (10), which are obvious.

Lemma 2.1. — Let us fix n ≥ 3, an n × n matrix A and a Brownian mo-
tion (e−t/2Vt)t≥0 on Un starting at I. Then there exists some real num-
bers C1, C2, C3, C4, independent of t, whose absolute values are bounded by
100(TrAA∗)2/n2 and such that for all t ≥ 0,

E[Tr(AVtAVt)] = Tr(A2) cosh(t/n)− (TrA)2 sinh(t/n),(12)

E[|Tr(AVtAVt)|2] = |Tr(A2)|2 +

ß |TrA|4

2n4
+

C1

n3/2

™ß
cosh

Å
2t

n

ã
− 1

™
(13)

−
¶
<[(TrA)2Tr(AA)] + n3/2C2

©
sinh

Å
2t

n

ã
+nC3(e

t − 1) + C4(e
2t − 1).

Proof. Since the formulas we have to state are invariant under multiplication
of A by a scalar, we can suppose that Tr(AA∗) = n.

Note that for Hn
t as in Section 2.1, (Vt) is a strong solution of dVt =

i(dHn
t )Vt. Hence by the matricial Itō calculus,

d Tr(AVtAVt) = 2iTr(VtAVtAdHn
t )− n−1 Tr(AVt) Tr(AVt)dt,

d Tr(AVt) Tr(AVt) = 2iTr(AVt) Tr(VtAdHn
t )− n−1 Tr(AVtAVt)dt.

It follows that for x(t) = E[Tr(AVtAVt)] and y(t) = E[Tr(AVt) Tr(AVt)], we
have

x′ = −n−1y and y′ = −n−1x.

Equation (12) follows.
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Now, let us define, for C,D some n×n matrices, uC,D(t) = E[Tr(VtCV
∗
t D)]

and vC,D(t) = E[Tr(VtC) Tr(V ∗t D)]. By the matricial Itō calculus again, one
has

(14)
uC,D(t) =

1

n
(et − 1) TrC TrD + Tr(CD),

vC,D(t) =
1

n
(et − 1) Tr(CD) + Tr(C) Tr(D).

Let us now prove (13). We introduce the functions

f(t) = E(|Tr(AVtAVt)|2),
g(t) = <{E[Tr(AVt) Tr(AVt) Tr(A∗V ∗t A

∗V ∗t )]},
h(t) = E[|Tr(AVt)|4].

By the matricial Itō calculus again (using the hypothesis Tr(AA∗) = n),

n× f ′(t) = −2g(t) + 4etuA∗A,AA∗(t),(15)
n× g′(t) = −f(t)− h(t) + 4et<[vA,A∗AA∗(t)],

n× h′(t) = −2g(t) + 4netvA,A∗(t).

It follows, by (14), that g′′(t)− 4
n2 g(t) = 8e2t

n κ+ 4et

n θ, for

κ = n−1 Tr(AA∗AA∗)− 1,

θ = 2− n−1 Tr(AA∗AA∗)− n−1 Tr(AAA∗A∗)− |TrA|2 + <{TrATr(A∗AA∗)},

hence g(t) = µ cosh
(

2t
n

)
+ ν sinh

(
2t
n

)
+ 2nκ

n2−1e
2t + 4nθ

n2−4e
t, with

µ = <[TrATrATr(A∗A∗)]− 2nκ

n2 − 1
− 4nθ

n2 − 4
,

ν = −1

2
|TrA2|2 − 1

2
|TrA|4 + 2<[TrATr(A∗AA∗)]− 2n2κ

n2 − 1
− 2n2θ

n2 − 4
.

From (15), it follows that

f(t) = −|TrA2|2 − µ sinh

Å
2t

n

ã
− ν

Å
cosh

Å
2t

n

ã
− 1

ã
+ w(t),

where

w(t) = − 2κ

n2 − 1
(e2t − 1)− 8θ

n2 − 4
(et − 1) + 2(e2t − 1) + 4(n−1 Tr(AA∗AA∗)− 1)(et − 1).

Now, the conclusion follows from the fact that since Tr(AA∗) = n, the
inequalities (9), (10) and (11) allow to prove that |TrA|, |TrA2| ≤ n,
Tr(AA∗AA∗), |Tr(AAA∗A∗)| ≤ n2 and |Tr(A∗AA∗)| ≤ n3/2. �
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Lemma 2.2. — Let (an), (bn), (cn) be sequences of real numbers such that (an)

tends to +∞ and (bn) and (cn) are both bounded. Then we have

(16) un :=
n2bn
an

Å
cosh

Å
log an
n

ã
− 1

ã
+
ncn
an

sinh

Å
log an
n

ã
−→
n→∞

0.

Proof. Let us define

K = max

®
sup
n≥1
|bn| , sup

n≥1
|cn| , sup

0<x≤1

cosh(x)− 1

x2
, sup

0<x≤1

sinh(x)

x

´
.

Then (16) follows from the fact that, since un can also be written

un =
n2bn

2a
1− 1

n
n

+
n2bn

2a
1+ 1

n
n

− n2bn
an

+
ncn

2a
1− 1

n
n

− ncn

2a
1+ 1

n
n

,

we have the upper-bound: |un| ≤ 5K n2

en−11an>en + 2K2 log2 an+log an
an

1an≤en . �

Proof of Theorem 1.2. — For all n, Xn is a Ck-valued continuous centered
martingale. To prove that its distribution tends to µ, by Rebolledo’s Theorem
(see [24] or [1, Th. H.14]), it suffices to prove that the bracket of Xn converges
pointwise, in L1, to the one of a µ-distributed process. Hence it suffices to fix
λ1, . . . , λk ∈ C, to define the process Y nt = λ1X

n
t,1 + · · ·+ λnX

n
t,k and to prove

that as n tends to infinity,

(17)

〈Y n, Y n〉t
L2

−→ qt

and 〈Y n, Y n〉t
L2

−→


−pt if α = 0,
−p log(αt+1)

α + a2 log2(αt+1)
2α if 0 < α < +∞,

0 if α = +∞.

for q =
∑k
l,l′=1 λlλl′ql,l′ , p =

∑k
l,l′=1 λlλl′pl,l′ and a =

∑k
l=1 λlal.

Let us define, for each n, An =
∑k
l=1 λlA

n
l . We have

Y nt = α−1/2
n Tr[An(V nlog(αnt+1) − I)].

Hence by Section 2.1 b), Y n satisfies

dY nt =
i√

αnt+ 1
Tr[V nlog(αnt+1)A

ndHn
t ],

whereHn
t is an Hermitian Brownian motion as introduced in Section 2.1. Thus,

since V nlog(αnt+1)V
n∗
log(αnt+1) = (αnt+1)I, by the matricial Itō calculus, we have

d〈Y n, Y n〉t =
1

n
Tr(AnAn∗)dt,
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so that the first part of (17) follows directly from (4). Let us now prove the
second part. By the matricial Itō calculus again, we have

d〈Y n, Y n〉t =
−1

n(αnt+ 1)
Tr[AnV nlog(αnt+1)A

nV nlog(αnt+1)]dt.

Hence it suffices to prove that as n tends to infinity, we have the convergence
(18)
−1

n(αnt+ 1)
Tr[AnV nlog(αnt+1)A

nV nlog(αnt+1)]
L2

−→

{
−p
αt+1 + a2 log(αt+1)

αt+1 if 0 ≤ α < +∞,
0 if α = +∞,

uniformly as t varies in any compact subset of [0,+∞). This follows easily from
Lemma 2.1 (with Lemma 2.2 in the case where α = +∞).

Proof of Corollary 1.4. — By Theorem 1.2 and formula (5), applied with ma-
trices Anl of the type

√
n×(an elementary n × n matrix), the distribution of

any p× p principal submatrix of
√
n/αn(V

n
log(αnt+1) − I)t≥0 converges weakly

to the one of the random process (Mt)t≥0 with independent increments such
that for all p× p complex matrices X,Y and all t ≥ 0,

E[Tr(MtX)Tr(MtY )] = tTr(XY ∗),

E[Tr(MtX)Tr(MtY )] = − log(αt+ 1)

α
Tr(XY ),

where if α = 0 or +∞, the second right-hand term has to be replaced by
respectively −tTr(XY ) or 0. Since a standard Brownian motion (Bt) on an
euclidian space (E, 〈·, ·〉) satisfies, for all u, v ∈ E, E(〈Bt, u〉〈Bt, v〉) = 〈u, v〉t,
the result can easily be verified.

Proof of Theorem 1.6. — Lemma 2.3. — Let us fix n ≥ 2, let S be the matrix
of a uniform random permutation of {1, . . . , n} and let A,B be n × n non-
random matrices. Then we have

E{|Tr(AS)|} ≤ 1

n

√
CA

»
Tr(AA∗),

E{|Tr(ASBS)|} ≤ n− 1 +
√
CACB

n(n− 1)

»
Tr(AA∗)

»
Tr(BB∗),

where for each matrix X = [xi,j ]
n
i,j=1, CX denotes ]{(i, j) ; xi,j 6= 0}.

Proof. Let us denote by respectively [ai,j ], [bi,j ], [si,j ] the entries of A,B, S.
By Hölder’s inequality, we have

E{|Tr(AS)|} ≤
∑
i,j

|ai,j |E(si,j) =
1

n

∑
i,j

|ai,j | ≤
1

n

√
CA

»
Tr(AA∗).
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Moreover, we have

E{|Tr(ASBS)|} ≤
∑
j,k

|ak,jbk,j |E(s2j,k) +
∑
i,j,k,l

j 6=l or k 6=i

|ai,jbk,l|E(sj,ksl,i)

≤ 1

n

∑
j,k

|ak,jbk,j |+
1

n(n− 1)

∑
i,j,k,l

|ai,jbk,l|,

and the conclusion follows from Hölder’s inequality again. �

Proof of Theorem 1.6. — We consider C,Z1, . . . , Zk, P as introduced above
the statement of the theorem. For each t ≥ 0, let us define Kt =

(Z1,t, . . . , Zk,t)P . It suffices to prove that as n tends to infinity, the joint
distribution of (Xn

0 , (X
n
t −Xn

0 )t≥0) converges weakly to the one of (C, (Kt)t≥0).

First, Lemma 2.3 and the hypothesis (6) and (7) allow us to claim that as
n tends to infinity, 1

n Tr(An,lVn,0) and 1
n Tr(An,lVn,0An,l′Vn,0) both converge

to zero in probability. Moreover, by a standard topological argument, one can
suppose that (αn) admits a limit α ∈ [0,+∞].

Now, note that for all n, (e−t/2V n∗0 V nt )t≥0 is a unitary Brownian motion
starting at I, independent of V n0 . By Theorem 1.2 and Remark 1.3, it implies
that the joint distribution of (Xn

0 , (X
n
t −Xn

0 )t≥0) converges weakly to the one
of (C, (Kt)t≥0), which closes the proof of the theorem.

Proof of Theorem 1.11. — Lemma 2.4. — Let U be Haar-distributed on Un
and A be an n× n matrix, with n ≥ 3. Then

E{|Tr(AU)|2} = Tr(AA∗)/n,(19)
E{|Tr(AUAU)|2} ≤ 100(Tr(AA∗))2/n2.(20)

Proof. Set U = [ui,j ]
n
i,j=1. One can write A = V A′W , with V,W unitary

matrices and A′ a diagonal matrix whose diagonal entries a1, . . . , an are the
eigenvalues of

√
AA∗. Since the law of U is invariant under the left and right

actions of the unitary group, one can suppose that A = A′. These invariances
of the law of U also imply that for all i, j, E(ui,iuj,j) = δji /n. Equation (19)
follows. Equation (20) follows from (13) and the fact that the Haar measure
on the unitary group is the limit of the distribution of e−t/2Vt as t tends to
infinity. �

Proof of Theorem 1.11.. — Step I. Firstly, by Lemma 2.4, for all l, l′,
n−1 Tr(Anl Un) and n−1 Tr(Anl UnA

n
l′Un) both tend in probability to zero

as n tends to infinity.
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Step II. Following [11, Th. D8], we fix a bounded real function f on Ck
which is 1-Lipschitz for the canonical hermitian norm || · || on Ck, and we shall
prove that

(21) E{f(Tr[An1Un], . . . ,Tr[AnkUn])} −→
n→∞

E{f(Z1, . . . , Zk)}.

Let us fix ε > 0.
a) Let, for each t ≥ 0, (Z1,t, . . . , Zk,t) be a Gaussian family of centered com-

plex random variables such that for all l, l′, E[Zl,tZl′,t] = 0 and E[Zl,tZl′,t] =

ql,l′(1− e−t) (such a family exists because the matrix [ql,l′ ]l,l′ is nonnegative).
The distribution of (Z1,t, . . . , Zk,t) tends to the one of (Z1, . . . , Zk) as t tends
to infinity. Hence there is t0 > 0 such that

|E{f(Z1, . . . , Zk)} − E{f(Z1,t0 , . . . , Zk,t0)}| ≤ ε,(22)

e−
t0
2 sup
n≥1
{n−1 Tr[An1A

n∗
1 + · · ·+AnkA

n∗
k ]}1/2 ≤ ε.(23)

b) For each n, up to an extension of the probability space where Un is
defined, one can suppose that there exists a unitary Brownian motion (Unt )t≥0,
starting at I, independent of Un. Let us define, for each n,

Xn = (Tr[An1UnU
n
t0 ], . . . ,Tr[AnkUnU

n
t0 ])

Y n = e−
t0
2 (Tr[An1Un], . . . ,Tr[AnkUn])

Dn = Xn − Y n = e−
t0
2 (Tr[An1Un(e

t0
2 Unt0 − I)], . . . ,Tr[AnkUn(e

t0
2 Unt0 − I)])

By Step I and the randomized version of Theorem 1.2 stated in Remark 1.3, as n
tends to infinity, the distribution ofDn converges to the one of (Z1,t0 , . . . , Zk,t0).
It follows that for n large enough,

(24) |E{f(Z1,t0 , . . . , Zk,t0)} − E{f(Dn)}| ≤ ε.

c) At last, since f is 1-Lipschitz for || · ||, for all n, we have

|E{f(Dn)} − E{f(Xn)}| ≤ E{||Dn −Xn||}
≤ (e−t0E{|Tr[An1Un]|2 + · · ·+ |Tr[AnkUn]|2})1/2

≤ e−t0/2(n−1 Tr[An1A
n∗
1 ] + · · ·+ n−1 Tr[AnkA

n∗
k ])1/2,

the last inequality following from (19). By (23), it allows us to claim that for
all n,

(25) |E{f(Dn)} − E{f(Xn)}| ≤ ε.

d) To conclude, note that by the right invariance of the law of Un, Xn and
the random vector (Tr[An1Un], . . . ,Tr[AnkUn]) have the same distribution. By
(22), (24) and (25), it follows that for n large enough,

|E{f(Z1, . . . , Zk)} − E{f(Tr[An1Un], . . . ,Tr[AnkUn])}| ≤ 3ε.
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It closes the proof of the theorem.
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