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ROBUST TRANSITIVITY
IN HAMILTONIAN DYNAMICS

 M NASSIRI  E R. PUJALS

A. – A goal of this work is to study the dynamics in the complement of KAM tori with
focus on non-local robust transitivity. We introduce Cr open sets (r = 1, 2, . . . ,∞) of symplectic dif-
feomorphisms and Hamiltonian systems, exhibiting large robustly transitive sets. We show that theC∞

closure of such open sets contains a variety of systems, including so-called a priori unstable integrable
systems. In addition, the existence of ergodic measures with large support is obtained for all those sys-
tems. A main ingredient of the proof is a combination of studying minimal dynamics of symplectic it-
erated function systems and a new tool in Hamiltonian dynamics which we call “symplectic blender”.

R. – Un objectif de ce travail est d’étudier la dynamique sur le complémentaire des tores
KAM en mettant l’accent sur la transitivité robuste non locale. Nous introduisons les ensembles ou-
verts de difféomorphismes symplectiques et de systèmes hamiltoniens, présentant de grands ensembles
robustement transitifs. L’adhérence de ces ensembles ouverts (en topologie Cr, r = 1, 2, . . . ,∞)
contient un grand nombre de systèmes, y compris les systèmes intégrables a priori instables. En outre,
l’existence de mesures ergodiques avec un grand support est obtenue pour l’ensemble de ces sys-
tèmes. L’ingrédient principal des preuves est la combinaison de l’étude de systèmes itérés de fonctions
de dynamique minimale et d’un nouvel outil de la dynamique hamiltonienne que nous appelons
« mélangeurs symplectiques ».

1. Introduction and main results

The theory of Kolmogorov, Arnold and Moser (KAM) gives a precise description of the
dynamics of a set of large measure of orbits for any small perturbation of a non-degenerate
integrable Hamiltonian system. These orbits lie on the invariant KAM tori for which the
dynamics are equivalent to irrational (Diophantine) rotations. In the case of autonomous
systems in two degrees of freedom or time-periodic systems in one degree of freedom (i.e.,
1.5 degree of freedom), the KAM Theorem proves the stability of all orbits, in the sense that
the action variable does not vary much along the orbits. This, of course, is not the case if the
degree of freedom is larger than two, where the KAM tori has codimension of at least two.
A natural question arises: Do generic perturbations of integrable systems in higher dimensions
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192 M. NASSIRI AND E. R. PUJALS

exhibit instabilities? The first example of instability is due to Arnold [4], who constructed
a family of small perturbations of a non-degenerate integrable Hamiltonian system that
exhibits instability in the sense that there are orbits with large action variation. This kind
of topological instability is sometimes called the Arnold diffusion. Indeed, it was conjectured
[3, p. 176] that instability is a common phenomenon in the complement of integrable systems.
Aside the several deep contributions towards this conjecture, especially in recent years (see
e.g. [12], [17], [14], [21], [22], [28], [27], [37], and references therein), it is still one of the central
problems in Hamiltonian dynamics.

Here, we would like to suggest a different approach related to the instability problem.
We propose to focus on the existence and abundance of a dynamical phenomenon, more
sophisticated than instability, which is “large” robustly transitive sets. Roughly speaking, a
set is transitive if it contains a dense orbit inside, and it is robustly transitive if the same holds
for all nearby systems (see Definitions 1.6, 1.8).

The present paper is devoted to studying the non-local robust transitivity (global or non-
global) in symplectic and Hamiltonian dynamics with the goal of better understanding the
dynamics in the complement of KAM tori, and with application to the instability problem.

In the non-conservative context, there are many important recent contributions about
robust transitivity. Note that a diffeomorphism of a manifold M is transitive if it has a
dense orbit in the whole manifold. Such a diffeomorphism is called Cr robustly transitive
if it belongs to the Cr interior of the set of transitive diffeomorphisms. It has been known
since the 1960’s that any (transitive) hyperbolic diffeomorphism isC1 robustly transitive. The
first examples of non-hyperbolic C1 robustly transitive sets are credited to M. Shub [36] and
R. Mañé [25]. For a long time their examples remained unique. Then, C. Bonatti and L. Díaz
[7] introduced a semi-local source for transitivity, called blender, which is C1 robust. Using
this tool they constructed new examples of robustly transitive sets and diffeomorphisms.
For recent results involving blenders, see [8]. For the recent surveys on this topic and robust
transitivity on compact manifolds, see [10, Chapters 7,8], [33], [32].

In this paper, we develop the methods of robust transitivity within the context of sym-
plectic and Hamiltonian systems. We apply them for the nearly integrable symplectic and
Hamiltonian systems with more than two degrees of freedom. Following this approach,
we introduce open sets of such Hamiltonian or symplectic diffeomorphisms exhibiting
large robustly transitive sets and containing integrable systems in their closure. Then, the
instability (Arnold diffusion) is obtained as a consequence of the existence of large robustly
transitive sets. We want to point out that the results obtained also include systems not
necessarily close to integrable ones.

We also obtain good information about the structure and dynamics of the robustly transi-
tive sets that yield to topological mixing and even ergodicity. These are the scope of theorems
stated in Sections 1.2 - 1.6.

We would like to compare the usual notion of instability (i.e. Arnold diffusion as treated
in [14, 12, 37]) with robust transitivity (or topological mixing) obtained in the thesis of our
theorems. Observe that the usual notion of instability is aC0 robust property since it depends
only on a finite number of iterations. However, there are no topologically mixing or transitive
systems which are C0 robust (see also Section 6.2).
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ROBUST TRANSITIVITY IN HAMILTONIAN DYNAMICS 193

Let us emphasize that in this paper we deal with the Cr-topology for any r = 1, . . . ,∞.
We also work with non-compact manifolds.

Section 1.1 introduces some definitions and notations; in Sections 1.2–1.6 the main
theorems are stated. The two main ingredients used in the proofs are described informally
in Sections 1.7 and 1.8. Finally, Section 1.9 provides a heuristic explanation of how these
ingredients are combined and used.

1.1. Preliminaries and definitions

Some of the definitions below are standard in the literature so we only highlight the ones
that are not common.

Let M be a boundaryless Riemannian manifold (not necessarily compact) and
f : M −→M be a Cr diffeomorphism of a manifold M . From now on we assume that
r ∈ [1,∞]. We denote by Diffr(M) the space of Cr diffeomorphisms of M endowed with
the uniform Cr topology.

An f -invariant subset Λ is partially hyperbolic if its tangent bundle TΛM splits as a
Whitney sum of Df -invariant subbundles:

TΛM = Eu ⊕ Ec ⊕ Es,

and there exist a Riemannian metric on M , a positive integer n0 and constants 0 < λ < 1

and µ > 1 such that for every p ∈ Λ,

0 <‖ Dpf
n0 |Es ‖< λ < m(Dpf

n0 |Ec) ≤‖ Dpf
n0 |Ec ‖< µ < m(Dpf

n0 |Eu).

The co-norm m(A) of a linear operator A between Banach spaces is defined by
m(A) := inf{‖ A(v) ‖ : ‖ v ‖= 1}. The subbundles Eu, Ec and Es are referred to the
unstable, center and stable bundles of f , respectively.

A partially hyperbolic set is called hyperbolic if its center bundle is trivial, i.e. Ec = {0}.

D 1.1 (domination). – Let f and g be two diffeomorphisms on manifolds M
and N respectively. Suppose that Λ ⊂ M is an invariant hyperbolic set for f . We say that g
is dominated by f |Λ if Λ×N is a partially hyperbolic set for f × g, with Ec = TN .

The homoclinic class of a hyperbolic set is the closure of the transversal intersections
of its stable and unstable manifolds. In the case of a hyperbolic periodic point P of a
diffeomorphism F , we denote its homoclinic class by H(P, F ). Moreover, for any G nearby
F , we denote by PG the analytic continuation of P and by H(PG, G) its homoclinic class.

D 1.2 (weak hyperbolic point). – Let p be a hyperbolic periodic point of g of
period k; we say that p is δ-weak hyperbolic if

1− δ < m(Dpg
k|Esp) <‖ Dpg

k|Esp ‖< 1 < m(Dpg
k|Eup ) <‖ Dpg

k|Eup ‖<
1

1− δ
.
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194 M. NASSIRI AND E. R. PUJALS

Let X be a metric space and F : X → X a continuous transformation. A set Y ⊂ X (not
necessarily compact) is transitive for F if for any U1, U2 open in X, such that Ui ∩ Y 6= ∅,
there is some n with Fn(U1) ∩ U2 6= ∅. If in addition, for any open sets U1, U2 ⊂ Y (in
the restricted topology), there is some n with Fn(U1) ∩ U2 6= ∅, then we say Y is strictly
transitive. A stronger property is topological mixing, where Fn(U1) ∩ U2 6= ∅ holds for any
sufficiently large n. Similarly we define strictly topologically mixing.

In the next definitions we denote by Dr a subspace of Diffr(M) with the Cr topology.

D 1.3 (continuation). – A setX ⊂M of f has continuation in Dr if there exist
an open neighborhood U of f in Dr and a continuous map Φ : U → P(M) such that
Φ(f) = X, where P(M) is the space of all subsets of M with the Hausdorff topology. Then,
Φ(g) is called the continuation of X for g.

R 1.4. – Note that it is not assumed that the continuation is neither homeomor-
phic to the initial set nor invariant. Compare with Definition 4.4.

D 1.5 (exceptional set). – Let Λ be a partially hyperbolic set. We say thatX is
an exceptional subset of Λ if X ⊂ Λ and for any central leaf L of Λ, the closure of X ∩ L in
L has zero Lebesgue measure in L.

D 1.6 (large set). – We say that a set X contained in Λ is large inside Λ if the
Hausdorff distance of Λ and the interior of X in Λ is small.

D 1.7 (compact robustly transitive set). – A compact set Y ⊂ M is Dr

robustly (strictly) transitive for f ∈ Dr, if for any g ∈ Dr sufficiently close to f , the con-
tinuation of Y does exist and it is (strictly) transitive for g. In the same way one may define
robustly (strictly) topologically mixing.

D 1.8 (non-compact robustly transitive set). – If Y is not compact, then Y is
called Dr robustly (strictly) transitive if it is the union of an increasing sequence of compact
Dr robustly (strictly) transitive sets. In the same way one may define robustly (strictly)
topologically mixing for non-compact sets.

A periodic point p of f of period n is called quasi-elliptic ifDpf
n has a non-real eigenvalue

of norm one, and all eigenvalues of norm one are non-real. If in addition all eigenvalues have
norm one then it is called elliptic.

A point x is non-wandering for a diffeomorphism f if for any neighborhood U of x there
is n ∈ N such that fn(U) ∩ U 6= ∅. By Ω(f) we denote the set of all non-wandering point
of f . A point x is called (positively) recurrent for f if lim infn→+∞ dist(x, fn(x)) = 0. A
diffeomorphism is said recurrent if Lebesgue almost all points are recurrent.
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Notations

Throughout this paper sometimes we use the following notation:

– X b Y means that X is a compact subset of the interior of Y ;
– Un := (0, 1)n and Dn is the unit open ball in Rn.
– Tn is the n-dimensional torus (with the standard metric).

Let us recall some basic facts and definitions of symplectic topology. A symplectic man-
ifold is a C∞ smooth boundaryless manifold M together with a closed non-degenerate dif-
ferential 2-form ω. We denote it by (M,ω), but sometimes we just write M . Examples of
symplectic manifolds are orientable surfaces, even dimensional tori and cylinders, and the
cotangent bundle T ∗N of an arbitrary smooth manifold. A C1 diffeomorphism f is sym-
plectic if f preserves ω; i.e. f∗ω = ω. We denote by Diffrω(M) the space of Cr symplectic
diffeomorphisms of M with the Cr topology, 1 ≤ r ≤ ∞. If the symplectic form ω is exact,
that is, ω = dα for some 1-form α, and f∗α−α = dS for some smooth function S : M → R,
then we say that f is an exact symplectic diffeomorphism.

Let (M,ω) be a symplectic manifold and let H : R ×M → R be a Cr function called
the (time dependent) Hamiltonian. For any t ∈ R, the vector field XHt determined by the
condition

ω(XHt , Y ) = dHt(Y ) or equivalently iXHtω = dHt

is called the Hamiltonian vector field associated withHt := H(t, ·) or the symplectic gradient
of Ht. The Hamiltonian H is called time periodic if Ht = Ht+T for some T > 0.
A diffeomorphism is called Hamiltonian diffeomorphism if it is the time-one map of some
time periodic Hamiltonian flow.

An orbit is called quasi periodic if its closure, say T , is diffeomorphic to a torus and the
dynamics on T is conjugate to an irrational rotation on the torus.

A Hamiltonian on a 2n-dimensional manifold is called completely integrable if it has
n independent integrals in involution. Recall that an integral is a smooth real function onN
(or N ×R in the case of time dependent Hamiltonian) which is constant along the orbits of
the Hamiltonian flow.

A Hamiltonian is called integrable if it is locally completely integrable. A diffeomorphism
is called integrable if it is the time-T map (for T > 0) of some integrable Hamiltonian flow.
See Section 2.2 for more details and precise definitions.

Throughout this paper all diffeomorphisms and Hamiltonians on non compact manifolds
are assumed to have finite norm in their corresponding Cr topology.

1.2. Robustly mixing sets for symplectic diffeomorphisms

We now state our main result concerning robust mixing in the context of symplectic
diffeomorphisms. Roughly speaking, next theorem states that if the product of a hyperbolic
basic set with any non-wandering dynamics is partially hyperbolic, then we can perturb the
initial system in such a way that a large robustly topological mixing set is obtained.
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196 M. NASSIRI AND E. R. PUJALS

T A. – Let M and N be two symplectic manifolds so that N is compact, and
1 ≤ r ≤ ∞. Let F = f1 × f2 where f1 ∈ Diffrω(M), f2 ∈ Diffrω(N). Let V ⊂ M be
open and Γ = Λ×N such that

(a) Λ =
⋂
n∈Z f

n
1 (V ) is a topologically mixing non-trivial hyperbolic set,

(b) f2 is dominated by f1|Λ,
(c) f2 has a δ-weak hyperbolic periodic point, and δ > 0 is small enough.

Then, there exist a connected open set U ⊂ Diffrω(M ×N) and a periodic point P ∈ Λ ×N
of F such that

1. F is contained in the Cr closure of U.
2. For any G ∈ U, the set ΓG := H(PG;G)

⋂
n∈Z G

n(V ×N) verifies
(2.1) ΓG is a (partially hyperbolic) robustly topologically mixing set.
(2.2) ΓG tends to Γ in the Hausdorff topology as G tends to F.

Roughly speaking, the item (2.2) shows that the robustly transitive set ΓG is large alongN ,
since it is close in the Hausdorff topology to Λ × N . Observe that for the initial system F ,
the homoclinic class of P could be small along N . In fact, it could hold that Λ ×N is non-
transitive and H(P, F ) ∩ (Λ×N) = Λ× {q}, for some q ∈ N .

Related to the problem of instability, note that for the symplectic maps in the thesis of
Theorem A, trajectories do not only “drift” along the N but belong to a large transitive set,
and one obtains robustly transitive sets with “large variation of action” (see also Theorems C
and D).

The proof of Theorem A follows essentially from Theorem 4.1 which could be considered
as a parametric version of Theorem A. This parametric version gives a better description of
the open set U ⊂ Diffrω(M×N) involved in the thesis of Theorem A. Moreover, Theorem 4.1
considers the case where the manifold N is not compact.

R 1.9. – From a set of results proved in the C1 topology ([9, 16, 20, 35]) and the
theorem by Zehnder and Newhouse (about transversal homoclinic points in the presence
of non hyperbolic periodic points, cf. Theorem 5.1), we conjecture that the hypothesis of
Theorem A are optimal. For more details see Section 6.1.

D 1.10. – A diffeomorphism satisfies the H.S. condition if it has a nontrivial
transitive hyperbolic invariant set. A diffeomorphism f satisfies the A.H. condition if any
neighborhood of f (in the corresponding space with the Cr topology) contains a diffeomor-
phism satisfying H.S. condition. In other words, theCr closure of the set of diffeomorphisms
satisfying the H.S. condition coincides with the set of diffeomorphisms satisfying the A.H.
condition. Similar notions will be used for the Hamiltonian systems.

If the diffeomorphism f2 in Theorem A is integrable andN is compact then we can prove
that the (strong) continuation of Γ (which is a large subset) is in fact robustly transitive. So,
we have the following.

T B. – Let r ≥ 1, f1 ∈ Diffrω(M) satisfying the H.S. condition and
f2 ∈ Diffrω(N) be an integrable diffeomorphism on a compact boundaryless symplectic
manifold N . Then f1 × f2 is in the C∞ closure of an open set U ∈ Diffrω(M × N) such that
any F ∈ U has a robustly (strictly) transitive set whose projection on N is onto.

4 e SÉRIE – TOME 45 – 2012 – No 2



ROBUST TRANSITIVITY IN HAMILTONIAN DYNAMICS 197

Observe that in the thesis of Theorem A we do not state that the robustly transitive
set projects onto N ; actually, exceptional set outside the homoclinic class could appear.
This is not the case in Theorem B. This stronger conclusion follows from the fact that the
diffeomorphism f2 in the hypothesis of Theorem B is integrable, which is not the case for
Theorem A. To highlight the differences, compare Theorem 2.13 and Theorem 2.11. On the
other hand, observe that in Theorem B the hypotheses on f1 are weaker than the ones in
Theorem A.

R 1.11. – To highlight the broad range of application of Theorem B observe that
the following systems satisfy the H.S. condition:

– any Cr generic perturbation of a symplectic diffeomorphism with an elliptic or quasi-
elliptic periodic point,

– any Cr generic perturbation of an integrable system (i.e. generic nearly integrable
diffeomorphism),

– any diffeomorphism in a C1 open dense subset of Diff1
ω(M),

– any Cr surfaces diffeomorphism with positive entropy, if r > 1.

These are consequences of the results in [31] (cf. Theorem 5.1) and [23]. In fact, it is expected
that the A.H. condition holds for any diffeomorphism in Diffrω(M). See also Section 6.1.

We would like to observe that in all our main results the robustly transitive sets are in fact
robustly topological mixing for some power of the diffeomorphism.

1.3. Robust transitivity and instability of nearly integrable Hamiltonian systems

Theorems A and B could be stated in the context of exact symplectic and Hamiltonian dif-
feomorphisms, and also time-dependent Hamiltonians. The following theorem concerns the
class of Hamiltonian systems that contains the so-called a priori unstable integrable Hamil-
tonian systems. This theorem can be considered as a Hamiltonian version of Theorem B.

T C. – Let H0(p, q, x, y, t) = h1(x, y, t) + h2(p) be a time-periodic Hamiltonian,
where t ∈ T := R/Z is the time, (p, q) ∈ A2m = Dm × Tm, and (x, y) ∈ A2n = Dn × Tn.
Suppose that h1 satisfies the A.H. condition and h2(p) = p · tp (where tp means transpose
of p). Then for any compact set K ⊂ A2m, there exists a Cr (r = 2, . . . ,∞) open set H of
time periodic Hamiltonians that contains H0 in its C∞ closure and any Hamiltonian H ∈ H
exhibits a robustly transitive invariant set such that its projection on A2m contains K.

This theorem is related to the results in [14], [12] and [37], where the casem = n = 1 andh1

integrable (with a saddle loop) were considered. By quite different methods (and under extra
conditions) it was shown that generic time-periodic perturbations of H0 exhibit instability
along the variable p (i.e. along the interval Dm, (m = 1)).

Here,H0 is relaxed from such conditions and it is shown thatH0 is in the closure of some
open set H of Hamiltonians, in which all systems exhibit robustly transitive (or topological
mixing) sets, which contains arbitrary large regions of A2m. In particular, a very strong form
of instability is present for all systems in H .
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T D. – Let h1 and h2 be two time periodic Hamiltonians acting on manifolds M
and N respectively, both with finite volume. Assume that h1 satisfies the H.S. condition and h2

has an elliptic periodic point. Let Hε = h1 + εh2.
Then, for a sufficiently small ε > 0 and any α > 0, there exists a Cr open set V of time

periodic Hamiltonians on M × N that contains Hε in its C∞ closure and any Hamiltonian
H ∈ V exhibits an invariant set Υ such that

1. the projection of Υ on N has volume > vol(N)− α,
2. Υ is robustly transitive.

The type of systems that appear in Theorem D resembles the sometimes called “slow-fast
systems” (see e.g. [5]).

1.4. Ergodic measures with large support

The existence of ergodic measures with large supports is a very interesting phenomenon,
specially for nearly integrable systems and for compact sets in the complement of KAM tori
(recall that KAM tori are ergodic components). In this direction we have the following result.

C E. – The robustly transitive (or topologically mixing) sets obtained in Theo-
rems A, B, C and D are contained in the support of an ergodic measure.

This is a direct consequence of our main theorems together with the results in [1, Theo-
rem 3.1], where a nice property of homoclinic classes was discovered: any homoclinic class is
the support of an ergodic measure. See also Section 6.3 for more discussions about ergodicity.

1.5. Hausdorff dimension of the transitive sets and ergodic measures

It is clear from the statement of Theorem A (as well as from the other main theorems) that
dimH(Γ) = dimH(Λ)+2n, where dimH is the Hausdorff dimension. As a matter of fact, the
Hausdorff dimension of certain hyperbolic sets (e.g. some hyperbolic sets in the vicinity of
elliptic points) may be arbitrarily close to the dimension of the ambient manifold. So, one
may find examples for which dimH(Γ) is close to 2n + 2m. Consequently, in the context of
Corollary E, there exist ergodic measures with large (non-local) supports and with Hausdorff

dimension arbitrarily close to the (full) dimension of the ambient manifold.

1.6. A dichotomy: transitivity vs. escaping to infinity

Observe that once we remove the hypothesis on the compactness of N (and hence let it
have infinite volume) in Theorem A then a diffeomorphism G near F may have wandering
points in the continuation of Γ. However, the proof of Theorem A leads to the following
dichotomy: there exist either large robustly transitive sets or wandering orbits converging to
infinity. See Section 5.6 for the proof and more details.

In the next two subsections we explain the main tools involved in the proofs of the previous
theorems. These tools, namely symplectic blenders and iterated functions systems, could be
interesting in themselves.
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ROBUST TRANSITIVITY IN HAMILTONIAN DYNAMICS 199

1.7. Symplectic blender

A fundamental ingredient in the proofs is a new tool in symplectic dynamics called sym-
plectic blender, a semi-local source of robust transitivity. It is based on the seminal work of
Bonatti and Díaz [7]. The symplectic blender provides robustness of the density of the stable
and unstable manifolds of a hyperbolic periodic point, in any compact region, which implies
robustness of transitivity or even topological mixing. Theorem 3.16 is the main result in this
direction. We believe that the construction of symplectic blenders presented in this paper
could have more applications in symplectic dynamics. For more details, see the introduction
of Section 3.

1.8. Iterated function systems

By an iterated function system we mean the action of a semi-group generated by a (finite)
family of diffeomorphisms. Another main ingredient in the proofs is that we reduce the
problem of transitivity to one about iterated function systems. That is, the problems related
to instabilities and (robust) transitivity can be formulated for iterated function systems. This
approach is very convenient to deal with the whole structure of homoclinic intersections
associated to a normally hyperbolic submanifold. Moreover, iterated function systems are
used to obtain symplectic blenders. Consequently, part of this work is devoted to the study
of certain iterated function systems. The main novelties in this part—beyond the above
mentioned reduction—are the results on global and local dynamics of iterated function
systems (cf. Theorems 2.13 and 2.11). We believe this type of problems is in itself worth of
study.

1.9. Heuristic model

As a basic model to understand the strategies of the proofs of Theorems A and B, one
may consider perturbations of the product of a horseshoe and an integrable twist map,
where applying results on the iterated function systems of recurrent diffeomorphisms lead
to the minimality of (strong) stable and unstable foliations (giving instability as well). Then,
using the symplectic blender one can show that transitivity (or even topological mixing)
appears in a robust fashion. Observe that the hypotheses of Theorem B are in the framework
of the described strategy. Similar arguments are applicable in the more general context of
Theorem A that includes non-integrable systems.

Note specially that we do not use any KAM-type invariant sets in the proof. Instead,
recurrence has an important role. Therefore, some difficulties such as appearance of large
gaps between Diophantine tori (known as the large gap problem) are not present here.

The paper is organized as follows. In Section 2, we study transitivity of two different
kinds of iterated function systems (IFS). Namely, the IFSs of expanding maps, and the IFSs
of recurrent diffeomorphisms. In certain cases, the minimality of the IFSs is obtained, which
is essential in the proof of Theorem B. In Section 3, we introduce the symplectic blenders
and we use the expanding IFSs to build them. In Section 4 we prove a parametric version
of Theorem A. We use this theorem and its proof in Section 5 where we prove our main
theorems and also the dichotomy stated in Section 1.6. Finally, in Section 6 several remarks
and open problems related to the main results are discussed. In particular, in Section 6.5, we
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discuss the possibility of extending the methods and results introduced here to many fruitful
contexts, including non-artificial mechanical and geometric problems.

Acknowledgments

The authors would like to thank Lorenzo Díaz, Vadim Kaloshin, Patrice Le Calvez,
Rafael de la Llave, Mike Shub and Marcelo Viana for helpful conversations and comments.
The authors are grateful to the referee(s) form many suggestions on the presentation. M.N.
would like to express his deepest thanks to Jacob Palis for enormous encouragement, and to
Marcelo Viana for constant support. Most parts of this work was done while M.N. was at
IMPA.

2. Iterated function system

In this section we study the transitivity of some iterated function systems (IFS). Loosely
speaking, in the IFS, instead of taking iterations by only one map, all the possible composi-
tions and iterations of several maps are considered. As a consequence, a point xmay have an
infinite number of orbit branches. The transitivity of an iterated function system of expand-
ing maps has a fundamental role in the construction and properties of blenders (see Sec-
tion 3). And the transitivity of an iterated function system of symplectic maps shall be used in
the proof of the density of the (strong) stable and unstable manifolds of partially hyperbolic
skew products (see Section 4).

Let g1, g2, . . . , gn be maps defined on a metric space X. The iterated function system
G(g1, g2, . . . , gn) is the action of the semi-group generated by {g1, g2, . . . , gn} on X. We
use the notion of multi-index σ = (σ1, . . . , σk) ∈ {1, 2, . . . , n}k for gσ = gσk ◦ · · · ◦ gσ1

. We
also denote the length of the multi-index σ by |σ| = k.

An orbit of x ∈ X under the iterated function system G = G(g1, g2, . . . , gn) is a sequence
{g

Σk
(x)}∞k=1 where Σk = (σ1, . . . , σk) and {σi}∞i=1 ∈ {1, 2, . . . , n}N.

The G-orbit of x denoted by O+
G (x) is the set of points lying on some orbit of x ∈ X

under the IFS G. The G-orbit of a subset U ⊂ X is defined as the union of all its orbits, i.e.
O+

G (U) =
⋃
x∈U O+

G (x).

Similarly, we denote O−G (x) as the set of points such that x lies on (some of) their orbits.

Results similar to the one proved here can be found in [2], [29], [30], [18] and [24].

D 2.1. – The IFS G(g1, g2, . . . , gn) is said transitive if the G-orbit of any open
set is dense. A set U is called transitive for G if the G-orbit of any open subset of U is dense
in U . This is equivalent to the existence of some point with a dense G-orbit in U .

R 2.2. – In similar way one defines the IFS of maps gi : Ui ⊂ X → X. In this
case, the possible compositions of gi’s depend on each point: gi(Ui) is not necessarily a subset
of Uj and so gj ◦ gi is only defined on Ui ∩ g−1

i (Uj).
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2.1. IFS of contracting and expanding maps

In this section we study the transitivity of the iterated function systems of contracting and
expanding maps. In Section 2.1.1 we give the results for contracting ones and the theorem for
expanding are sketched in Section 2.1.2 (the details are left to the reader).

2.1.1. IFS of contracting maps. – A map φ on a metric space (X, d) is called contracting if
there is a constant 0 < K < 1 such that d(φ(x), φ(y)) < Kd(x, y), for all x, y ∈ X. The
contraction bound, if it exists, is a number λ > 0 for which φ satisfies λd(x, y) < d(φ(x), φ(y))

for all x, y ∈ X. This constant does not necessarily exist for any contracting map. For a
generic smooth contracting map φ on Rn, the contraction bound does exist if we consider its
restriction on a compact domain U . In this case, the constant is equal to inf{m(Dφz) : z ∈ U}.

P 2.3. – Let U ⊂ Rn be an open disk containing 0 and φ : U → U be a
contracting map with the contraction bound λ and φ(0) = 0. Then there exists k ∈ N such that
for any ε > 0 small there exist vectors c1, . . . , ck ∈ Bε(0) and a number δ > 0 such that

Bδ(0) ⊂ O+
G (0),

where G = G(φ, φ+ c1, . . . , φ+ ck).
Moreover, these properties are robust in the following sense:

Let φ0 = φ and φi = φ+ ci. Let Ui be a set of contracting maps C0 close to φi such that their
contraction bounds are also close to that of φi. Then the same is true if at each iteration in the
G-orbit of 0 one replaces the corresponding φi by any φ̃i ∈ Ui.

Observe that if φ is smooth, all constants depend only on m(Dφ(0)).
In order to prove this proposition, we start with a non-perturbative version of it, which

also clarifies the robustness of transitivity.

D 2.4. – We say that an iterated function system G(φ1, . . . , φk) of contracting
maps has the covering property if there is an open set D such that

D ⊂
k⋃
i=1

φi( D).

We say that the set of (unique) fixed points zi’s of φi’s is well-distributed if any open ball of
diameter d and centered in D contains some zi, where

d ≥ max{r | ∀x ∈ D,∃i, Br(x) ⊂ φi( D)}.

P 2.5. – Let φi : Rn −→ Rn, i = 1, 2, . . . , k, be contracting maps, and let zi
be their unique fixed points. Suppose that the iterated function system G = G(φ1, . . . , φk) has
the covering property on D. Then for any x ∈ D there exists a sequence {σj}∞j=1 such that for
all j ∈ N, σj ∈ {1, 2, . . . , k}, and

φ−1
σj ◦ φ

−1
σj−1
◦ · · · ◦ φ−1

σ1
(x) ∈ D.

In addition, if the set of fixed points {zi}ki=1 is well-distributed in D then

D ⊂ O+
G (0).
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F 1. The covering and well-distributed properties. The disk D is the largest
one and the other disks are its images under φi’s.

Proof. – To prove the first part notice that given a point x ∈ D, the covering property
says that there is σ1 ∈ {1, 2, . . . , k} such that φ−1

σ1
(x) ∈ D. Then, inductively, one constructs

a sequence {σj}∞j=1 such that φ−1
σj ◦ φ

−1
σj−1
◦ · · · ◦ φ−1

σ1
(x) ∈ D.

Now we prove the second part. The well-distributed property yields that for any small
ball Br(x0) in D, either it belongs to some φi( D) or it contains the fixed point of some φi.
Let 0 < K < 1 such that d(φi(x), φi(y)) < Kd(x, y) for any i ∈ {1, 2, . . . , k}. If the ball
Br(x0) is very small then it belongs to the domain of some φi, i.e. Br(x0) ⊂ φi( D), and so
there is x1 ∈ D such that BK−1·r(x1) ⊂ φ−1

i (Br(x0)) ⊂ D. We may continue this process
inductively. Since the ratio of the balls is increasing exponentially at rateK−1 > 1, after some
iteration, it would be large enough to contain the fixed point of some φi. This completes the
proof.

R 2.6. – The well-distributed property yields that for any small ballBr(x0) in D,
either it belongs to some φi( D) or it contains the fixed point of some φi.

Proof of Proposition 2.3. – It is enough to show that there exist a number k, and certain
(small) translations of the map φ, such that the covering property and the well-distributed
hypothesis hold in some open ball Bε(0). Then using Proposition 2.5 we obtain the density
of the G-orbit of 0. To show that, we consider a cover of the unit ball by k balls of radius λ.
There is a number C(n) such that for any r < 1, there is a cover of the unit ball in Rn by
C(n)r−n number of balls of radius r. So there is a k1 = C(n)2n · λ−n number of points
ci ∈ Dn (where Dn = B1(0)), such that

Dn ⊂
⋃
i

Bλ/2(ci),

and so

Dn ⊂
⋃
i

(φ(Dn) + ci).

Moreover, any ball of radius smaller than λ/2 is contained in some φ(Dn) + ci.
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We also choose a set of zi, i = 1, . . . , k1 which is λ-dense in the unit ball. So, any ball of
radius greater than λ/2 in the unit ball contains some zi. Let ci+k1

= (id − φ)(zi). Indeed,
zi is the unique fixed point of the contraction φ+ ci+k1

.
Now, let k = 2k1 = C(n)2n+1 · λ−n, φ0 = φ and for i = 1, . . . , k, φi = φ + ci.

Again, robustness follows from the fact that the covering property and the well-distributed
hypothesis are C0 robust properties if the contraction bounds of the nearby maps are close
to the initial ones.

2.1.2. IFS of expanding maps. – A map φ on a metric space (X, d) is called expanding if
and only if it is invertible and its inverse is a contracting map. Observe that in the expanding
case, instead of the density of the forward orbit under the IFS, we look for the density of the
backward orbits under the IFS. In particular, the covering property is also formulated for
the inverse maps. Similar propositions to the one for contracting maps can be formulated
for expanding maps, and although translation of a map is not a translation of its inverse, the
proof of the equivalent propositions for expanding maps is done in the same way.

2.2. IFS of recurrent diffeomorphisms

In this section we study the transitivity of an iterated function system of recurrent diffeo-
morphisms. Here, by recurrent diffeomorphism we mean a diffeomorphism for which almost
all points are recurrent. Recall that the Poincaré Recurrence Theorem asserts that any diffeo-
morphism preserving a finite volume form is recurrent.

The results of this section shall be used in the proof of Theorem A and other main the-
orems. We first prove several results for integrable systems and then we generalize them to
general recurrent diffeomorphisms. In fact, in Proposition 2.8 we work with the IFS of inte-
grable symplectic diffeomorphisms and in Theorem 2.13 we extend the previous proposition
to the case of recurrent ones.

Let us first recall the statement of the Liouville-Arnold Theorem that allows us to re-define
integrable systems as the following.

We say that f ∈ Diffrω(N) is integrable if there exist open sets Ni such that

– N = ∪Ni,
– Ni’s are mutually disjoint open sets,
– for any i, Ni is invariant and diffeomorphic to Un × Tn by a (symplectic) diffeomor-

phism hi,
– any torus h−1

i ({x} × Tn) is f -invariant and its dynamics is conjugate to a rotation.

Addendum

We also assume the following assumptions:

– bunching condition:

lim sup
n→∞

1

n
log(||Dfn||/m(Dfn))

is sufficiently close to zero. (Observe that the limit is always zero on ∪Ni and if there
exists a periodic point in the boundary of any Ni, then the larger and smaller eigen-
values are close.)
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– the family {Ni} is locally finite in N , that is, any compact subset of N intersects with
only finite number of {Ni}.

– the map Un 3 x 7→ ωx ∈ Tn is a local diffeomorphism, where ωx is the rotation vector
of f on h−1

i ({x} × Tn).

L 2.7. – Let f1 be an integrable symplectic diffeomorphism on the symplectic man-
ifold N . Then Cr-arbitrarily close to f1 there exists another integrable symplectic diffeomor-
phism f2 which is conjugate to f1 by a smooth change of coordinates on N such that

1. any f1-invariant torus intersects transversally some f2-invariant torus, and vice versa,
2. given two open sets U, V ⊂ N , there is a chain of tori T j , j = 1, 2, . . . , s, invariant

for fσj , σj = 1 or 2, such that, each T j (for j < s) intersects transversally T j+1; T 1

intersects U and T s intersects V .

Proof. – We construct a symplectic diffeomorphism φ ∈ Diffrω(N) close to the identity
such that f2 = φ ◦ f1 ◦ φ−1 has the desired properties.

By the assumptions, N = ∪Ni, where Ni is diffeomorphic to Un × Tn by a symplectic
diffeomorphism hi. It is convenient to consider the polar coordinate system on Un × Tn,
that is, any point is represented by

(r1, . . . , rn, θ1, . . . , θn),

where 0 < ri < 1 and θi ∈ T1.
The construction of φ has two steps.

Step 1. Let ψτ ∈ Diffrω(U1 × T1) be the time τ map of a completely integrable Hamiltonian
flow such that in the polar coordinates we have

– ψτ (r, θ) = (r, θ), for any τ if r ≥ 1,
– ψ1({r = c}) 6= {r = c}, if 0 ≤ c < 1.

In addition, given an open set W0 in the annulus U1 × T1 containing a curve that connects
the two boundary components of the annulus we have:

– any two open sets in the unit disk {r < 1} are connected by a finite chain of circles
{r = cj} and ψ1({r = ci}) such that the transition points are contained in W0.

The Hamiltonian flow ψτ can be defined explicitly by the Hamiltonian

hε(r, θ) := η(r) · r
2 sin(θ) + r2 cos(θ)(1 + ε · η(r))2

1 + ε · η(r)
,

where ε > 0 is small and η is a (suitable) non-negative C∞ bump function on the real line
such that η(x) > 0 if and only if x ∈ (0, 1).

Now let

ψτ =

n times︷ ︸︸ ︷
ψτ × · · · × ψτ .

Define ϕ ∈ Diffrω(N) by

ϕ =

{
h−1
i ◦ ψτi ◦ hi on Ni

id on N \ ∪Ni
where τi is small enough and depends on Ni.
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The smoothness of ϕ on eachNi is obvious. The smoothness of ϕ on the boundary ofNi’s
follows from the following facts: (1) the time τi is small enough and depends on Ni; (2) the
sets Ni are mutually disjoint and (3) ψ is equal to the identity on the boundary of Un × Tn.
In order to get ϕ close to the identity, it is enough to take τ small enough.

The items (1) and (2) of the lemma hold for the pair of diffeomorphisms f1 andϕ◦f1◦ϕ−1,
at least on each Ni. Moreover, given any pair of open sets in Ni and any open set W1 that
intersects all the f1-invariant tori in Ni, there exists a chain as in item (2) of the lemma such
that the intersections between the tori are contained in W1.

Step 2. Let i > j such that ∂Ni ∩ ∂Nj contains a regular hypersurface (codimension one
submanifolds)Sij . Then for any such i, j we consider a small open neighborhoodUij of some
point of the hypersurface Sij . The setsUij are pairwise disjoint. We chooseUij small enough
such that W := N \ ∪Uij intersects all the f1-invariant tori.

Let us define U+
ij = Uij ∩ Ni and U−ij = Uij ∩ Nj . Then consider a symplectic

diffeomorphism ϕij supported in Uij and close to the identity such that

ϕij(U
−
ij ) ∩ U+

ij 6= ∅ and ϕij(U
+
ij ) ∩ U−ij 6= ∅.

Now we take the composition of all the above diffeomorphisms to define φ ∈ Diffrω(N),
that is

φ := (◦ijϕij) ◦ ϕ.

Now, we define

f2 := φ ◦ f1 ◦ φ−1.

Observe that φ = ϕ on the open set W , and as mentioned before it follows that the items (1)
and (2) hold on each Ni. So, given any two open sets U, V in N , if they intersect the same
Ni, there is nothing left to prove. Otherwise, there exist j1, j2, such that U ∩ Nj1 6= ∅ and
U ∩Nj2 6= ∅. Then, one may find a chain of Ni from Nj1 to Nj2 by taking iteration by f2.
Consequently, f2 has the desired properties.

P 2.8. – Let T1 be an integrable symplectic diffeomorphism on the symplectic
manifold N . Then, arbitrarily close to T1 there exists an integrable symplectic diffeomorphism
T2 on N such that the iterated function system G(T d1 , T

d′

2 ) has a dense orbit, for any d, d′ ∈ Z.
Moreover, almost all points have dense G-orbits.

Proof. – Let T2 be an integrable diffeomorphism. Let S0 be the set of all quasi periodic
points of T1 and observe that the set is T1-invariant. Similarly, let S′0 be the set of all quasi
periodic points of T2, which is T2-invariant. The complement of S0 ∩ S′0 has zero Lebesgue
measure. Let S be the set of all points whose orbits under the iterated function system
G(T1, T2) belong to S0 ∩ S′0.

C. The complement of S is contained in a countable union of codimension one subman-
ifolds. So, S has total Lebesgue measure.
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Proof of Claim. – Let B0 := N\ S0 and B := N\ S. Then, B0 is contained in a countable
union of codimension one submanifolds. On the other hand, B is the orbit of B0 under the
IFS G(T1, T2). So, it is a countable union of the iterates of ( B0). This proves the claim.

Now we apply Lemma 2.7 for T1 and we obtain φ ∈ Diffrω(N) close to the identity. Now
we set T2 := φ◦T1 ◦φ−1. Define S as above and observe that S has total Lebesgue measure.
We want to show that the orbit of any point of S is dense.

Given two open sets U, V , there is a chain of tori T j , j = 1, 2, . . . , s, invariant for Tσj ,
σj = 1 or 2, such that each T j intersects (transversally) T j+1, T 1 intersects U and T s
intersects V . It is not difficult to find an orbit of G which shadows this chain. For any z ∈ S,
there is nz such that Tnzσj (z) is close to T j+1 if z is sufficiently close to T j . The set S is
G(T1, T2)-invariant. So if z ∈ S is sufficiently close to T 1, then it has a G-orbit shadowing
all T j , and therefore there is an orbit from U to V . Moreover, given any point x ∈ S and
any open set U , there is a finite sequence of tori T i, i = 1, . . . , n, invariant for T1 or T2

(alternatively), such that x ∈ T 1, T n ∩ U 6= ∅, and for any i, T i intersects transversally
T i+1. Then it follows that there exists Σ = (σ1, . . . , σm) such thatTΣ(x) ∈ U . This completes
the proof.

R 2.9. – If the set of quasi periodic points is residual then following the same
argument in the proof of Proposition 2.8, we conclude that the set of all points with dense
orbit for G(T1, T2) is also residual.

The following example helps to understand the above described techniques.

E 2.10. – Let N = R× (R/2πZ) and

T1 : (I, θ) 7−→ (I, θ + h(I)).

In this case, we choose the change of coordinates

φ : (I, θ) 7−→ (I + ε cos θ, θ).

Then we define T2 = φ ◦ T1 ◦ φ−1.

T 2.11 (Minimal IFS). – Let T1 be an integrable diffeomorphism on the symplec-
tic manifold N . Let m = dim(N) + 2. Then, arbitrarily close to T1 there exist integrable sym-
plectic diffeomorphisms T2, . . . , Tm onN such that the iterated function system G(T1, . . . , Tm)

is minimal (i.e. every point has a dense orbit).

Proof. – Let T2 be the integrable diffeomorphism given by Proposition 2.8. It follows
from the claim in the proof of Proposition 2.8 that the complement of S is contained in a
countable union of codimension one submanifolds of N . Let L1 := {Li}i be the family of
those submanifolds and so B := N \ S =

⋃
L1. (Here we use the union

⋃
as the unitary

operator, as well.)
Since any point in S has a dense orbit, to prove minimality, it is enough to show that there

exist integrable diffeomorphisms T3, . . . , Tm close to T1, such that any point x ∈ N \ S has
an iterate in S for the iterated function system G(T3, . . . , Tm).

We give a proof of this statement using transversality theory. It is known that the set
of diffeomorphisms transversal to a submanifold L is Cr residual. On the other hand, if
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L and L′ are two submanifolds of codimensionsm andm′, respectively, then the transversal
intersection of them has codimension m+m′.

Therefore, for any i, j, there is a residual setR1,i,j ⊂ Diffrω(N) such that for any f ∈ R1,i,j

and Li, Lj ∈ L1, the submanifolds Li and f(Lj) are transversal and so the intersection
Li∩f(Lj) is a countable union of codimension two submanifolds. Letφ3 ∈ R1 :=

⋂
i,j R1,i,j

sufficiently close to the identity, then
⋃
i,j(Li∩φ3(Lj)) is a countable union of submanifolds

L′j , j ∈ N, of codimension two. Let L2 := {L′i}i be the family of those submanifolds. We
have B ∩ φ3( B) =

⋃
L2.

We repeat this argument for any pair of Li ∈ L1 and L′j ∈ L2 to get the residual set of
diffeomorphismsR2,i,j . By choosing φ4 ∈ R2 :=

⋂
i,j R2,i,j sufficiently close to the identity,

then
⋃
i,j(Li ∩ φ4(Lj)) is a countable union of submanifolds L′′j , j ∈ N, of codimension 3.

We define L3 of such codimension 3 submanifolds. We have

B ∩ φ3( B) ∩ φ4( B ∩ φ3( B)) = B ∩ φ3( B) ∩ φ4(
⋃

L2) =
⋃

L3.

Repeating this argument inductively, we get φ3, . . . , φm−1 and the countable set Lm−2,
(i.e., a countable set of codimension dim(N) submanifolds), such that

B
m−1⋂
j=3

φj(
⋃

Lj−2) =
⋃

Lm−2.

Now, for a generic diffeomorphism φm which we assume to be sufficiently close to the
identity, we have B∩φm(

⋃
Lm−2) = ∅. This means that for any x ∈ B there exist j1, . . . , ji

such that φj1 ◦ · · · ◦φji(x) ∈ S. Now, we define Tj := φi ◦T1 ◦φ−1
i . It follows that any point

x ∈ N \ S has an iterate in S for the iterated function system G(T3, . . . , Tm). Clearly, all Tj
are integrable (Hamiltonian) diffeomorphisms and close to T1. This completes the proof.

R 2.12. – To apply Theorem 2.11 to the proof of the main theorems, it is essential
that the numberm of generators is finite and independent of T1. However, one may ask about
the optimal numberm of generators needed to obtain minimality. In fact, one may prove that
three generators are enough. To see this, just observe that given k ∈ N and a codimension one
submanifold L in N , and for a Cr generic diffeomorphism f ∈ Diffrw(N), fk is transversal
to L, for any k ∈ N. Then, one may easily prove that for aCr generic f , the diffeomorphisms
Ti := f i−2, i = 3, . . . ,m, satisfy the transversality conditions in the proof of Theorem 2.11.
We choose T3 = f to be close to T1. Notice that in this argument we do not assume T3 being
integrable.

Now, we establish a result about transitivity of the IFS of recurrent diffeomorphisms.

T 2.13. – Let T ∈ Diffrω(N) be a recurrent diffeomorphism. Then for every ε > 0,

1. there exist T1, T2 ∈ Bε(T ) ⊂ Diffrω(N) such that G(T, T1, T2) is transitive;
2. for any open ball V ⊂ N and any bounded domain Nc ⊂ N , there exist k ∈ N and

T1, T2, . . . , Tk ∈ Bε(T ) ⊂ Diffrω(N) such that Nc ⊂ O−G (V ), where G = G(T, T1, T2, . . . , Tk).
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Proof. – If T = id, then we choose φ1 to be an integrable symplectic diffeomorphism
on the manifold N such that almost all points are quasi periodic, and dCr (φ1, id) < 1

2ε.
Proposition 2.8 implies that for any open set V there exists φ2 in Diffrω(N) and ε-close to
the identity in the Cr topology, such that O−Gφ(V ) ∩ O+

Gφ
(V ) is open and dense in N , where

Gφ = G(φ1, φ2). In other words, Gφ is transitive. This completes the proof of (1) in the case
where T = id.

For an arbitrary recurrent T , let R be the set of recurrent points of T , which is also
invariant by φ1 and φ2. This set is dense. In fact, following an argument similar to the claim
in the proof of Proposition 2.8 this set is residual and of total Lebesgue measure.

Let V be an open set inN , and z ∈ R∩ O−Gφ(V ). This intersection is obviously non-empty.
Then, there are d ∈ N and Σ = (σ1, . . . , σd), σi = 1, 2, such that

z ∈ (φ
Σ

)−1(V ).

Moreover, for any i = 1, 2, . . . , d, and any lj ∈ Z, j = 1, 2, . . . , i,

z̃i := (T li ◦ φσi) ◦ · · · ◦ (T l1 ◦ φσ1
)(z) ∈ R.

So, using recurrence, for some (large) lj ∈ N, the orbit (z̃i)i shadows (zi)i, where
zi = φσi ◦ · · · ◦ φσ1(z). This shows that for some lj ∈ N, the point z̃d belongs to V .
But (z̃i)i is an orbit of z under the iterated function system of

G2 = G(T, T ◦ φ1, T ◦ φ2).

In other words, z̃d ∈ V ∩ O+
G2

(z). Recall that R ∩ O−Gφ(V ) is dense in N . So, the G2-orbit of

any point in a dense set intersects V . The same is true for backward G2-orbits. Thus, O±G2
(V )

is (open and) dense in N , and G2 is transitive. This completes the proof of (1).

Given Nc b N bounded, and V ⊂ N open, we let X = B1(Nc) \ O−G2
(V ). Observe

that X is a compact set with empty interior. So for any x ∈ X there exists hx in Diffrω(N)

and ε-close to the identity in the Cr topology, such that h−1
x (x) ∈ V − := O−G2

(V ). Since
V − is an open set, there is a neighborhood Ux of x such that h−1

x (Ux) ⊂ V −. The family
{Ux} is an open cover of the compact set X. So there exist k ∈ N, x1, x2, . . . , xl ∈ X and
hx1

, hx2
, . . . , hxk ∈ Bε(id) ⊂ Diffrω(N) such that

X ∩ h−1
x1

(X) ∩ · · · ∩ h−1
xk

(X) = ∅.

Thus

T−1(X) ∩ (hx1
◦ T )−1(X) ∩ · · · ∩ (hxk ◦ T )−1(X) = ∅.

Therefore,

Nc b T−1(V −) ∩ (hx1
◦ T )−1(V −) ∩ · · · ∩ (hxk ◦ T )−1(V −).

If we define

G := G(T, T ◦ φ1, T ◦ φ2, hx1
◦ T, . . . , hxk ◦ T ),

then we have that Nc b O−G (V ).
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2.3. Skew products and IFS

In this section we explain the relation between iterated function systems and skew
products over shifts. This relation has been used extensively in random dynamical systems
(cf. [2]). Similar approach to the one we present here has been used by R. Moeckel in [29]
where he studies the IFS of monotone twist maps on annulus, relating it to the instability
(drift) for skew products of such maps over shift.

Here, we state a series of propositions (see Propositions 2.16 and 2.17) that describe the
trajectories of the action of a semigroup of diffeomorphisms as the dynamics of the unstable
sets of an appropriate skew product over shifts.

Let τ be the full shift with d symbols.

τ : dZ → dZ

x = (. . . , x−1, x0;x1, . . . ) 7→ (. . . , x0, x1;x2, . . . ).

It is natural to define the local and global unstable manifolds of a point x ∈ dZ for τ as the
following

Wu
loc(x; τ) = {(zi) | ∀i ≤ 0, zi = xi}

Wu(x; τ) =
⋃
i≥0

τ i(Wu
loc(τ−i(x); τ)) = {(zi) | ∃i0 ∈ Z,∀i ≤ i0, zi = xi}.

Let Φ : dZ × Y → dZ × Y be a skew product such that

Φ(x, y) = (τ(x), φx(y)),

where φx is a homeomorphism on Y , for any x ∈ dZ. Assume that the family of φx’s is
uniformly bi-Lipschitz, i.e., there exists L > 1 such that ∀x ∈ dZ, ∀y, y′ ∈ Y,

1

L
distY (y, y′) ≤ distY (φx(y), φx(y′)) ≤ L · distY (y, y′)

and let us assume that the Lipschitz constant varies continuously with respect to x.

We consider the following metric on dZ,

dist(x, z) =
∑
i∈Z

e−|i|L|xi − zi|.

One may define the strong unstable manifold as follows:

Wuu(x, y; Φ) := {(a, b) | dist(Φi(x, y),Φi(a, b)) ∼ exp(iL) as i→ −∞}.

Assume that φx depends only on [x≤i0 ] := (. . . , xi0−1, xi0), and denote it by φ[x≤i0
]. To

avoid complications we also assume that i0 = 0.

Therefore, Φ is the product τ × φx on the set {z ∈ dZ | zi = xi, i ≤ 0} × Y . So, the
local unstable manifold of (x, y) for Φ contains Wu

loc(x; τ) × {y}. Then we have proved the
following proposition.
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P 2.14. – For any (x, y) ∈ dZ × Y and n ∈ N,

Φn(x, y) =(τn(x), φ[x≤n−1
] ◦ · · · ◦ φ[x≤0

](y)),

Φ−n(x, y) =(τ−n(x), φ−1
[x≤−n ] ◦ · · · ◦ φ

−1
[x≤−1

](y)).

Wuu
loc (x, y; Φ) =Wu

loc(x; τ)× {y} = {(zi) | ∀i ≤ 0, zi = xi} × {y},

Wuu(x, y; Φ) =
⋃
i≥0

Φi(Wuu
loc (Φ−i(x, y); Φ)).

SinceWuu
loc (x, y; Φ) is a product set and Φ is a product on it, so Φi(Wuu

loc (x, y; Φ)) is a finite
union of some local strong unstable manifolds. Therefore, we have proved the following.

P 2.15. – For any (x, y) ∈ dZ × Y , the global strong unstable manifold
Wuu

loc (x, y; Φ) is a countable union of some local unstable manifolds Wuu
loc ((xi, yi); Φ).

Locally constant skew products. – From now on we assume that φx depends only on x0,
where x = (. . . , x−1, x0;x1, . . . ). Then, Φ = τ × φj on the set {z ∈ dZ | z0 = j} × Y , for
any j ∈ {1, 2, . . . , d}. The next propositions shed some light on the relation between (locally
constant) skew products over shifts and iterated function systems.

Let G = G(φ1, φ2, . . . , φd). Proposition 2.14 implies that for any (x, y) ∈ dZ × Y and
n ∈ N,

Φn(x, y) = (τn(x), φxn−1
◦ · · · ◦ φx0

(y)).

This shows that by taking different base points x, one can realize the orbit of y under the
IFS G. Since the skew product Φ does not depend on xi, i > 0, so we get the entire
positive G-orbit of y by taking all points on Wu

loc(x; τ). So, we have obtained the following
proposition.

P 2.16. – For any (x, y) ∈ dZ×Y , the projection of
⋃
n>0 Φn(Wuu

loc (x, y; Φ))

on Y is equal to O+
G (φx0

(y)). In particular, if (x, y) is a fixed point of Φ, then the projection of

Wuu(x, y; Φ) on Y is equal to O+
G (y).

As we said, this proposition turns out to be very useful in the study of dynamical proper-
ties of strong stable/unstable manifolds of certain partially hyperbolic skew product systems.
For instance, to obtain the density of the strong unstable manifolds (see Section 4.2.3). More
precisely let us mention the geometric meaning of this fact: by each iteration the length of
Wuu

loc (x, y; Φ) grows exponentially and it intersects the domain of all φi’s. Therefore, all pos-
sible compositions ofφi’s do appear in the positive orbit ofWuu

loc (x, y; Φ). Indeed, we have the
following proposition which gives a precise description of the global strong unstable mani-
folds for Φ.

P 2.17. – For any (x, y) ∈ dZ × Y ,

Wuu(x, y; Φ) =
⋃
σ∈Σ

Wuu
loc (xσ, φx,σ(y); Φ),

where
Σ = {σ = (σ1, . . . , σn) | n ∈ N, 1 ≤ σi ≤ d},

φx,σ = φσn−1
◦ · · · ◦ φσ1

◦ φ−1
x−n+1

◦ · · · ◦ φ−1
x−1

and φx,(σ1) = id,

xσ = (. . . , x−n, σ1, . . . , σn;x1, . . . ).
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Proof. – It is easy to see that for any σ, σ′ ∈ Σ, Wu
loc(xσ; τ) = Wu

loc(xσ
′
; τ) if and only if

σ = σ′. Moreover, τn(xσ) ∈Wu
loc(x; τ) if σ = (σ1, . . . , σn). Therefore,

Wu(x; τ) =
⋃
σ∈Σ

Wu
loc(xσ; τ).

On the other hand, the projection of Wuu(x, y; Φ) on dZ is equal to Wu(x; τ), since Φ is
a skew product.

Wuu(x, y; Φ) =
⋃
n≥0

Φn(Wuu
loc (Φ−n(x, y); Φ)).

Φ(Wuu
loc (Φ−1(x, y); Φ)) = Φ(Wu

loc(τ−1(x); τ)× {φ−1
x−1

(y)})

= (τ × φx−1
)(Wu

loc(τ−1(x); τ)× {φ−1
x−1

(y)})

= τ(Wu
loc(τ−1(x); τ))× {y}

=
⋃
|σ|=1

Wuu
loc (xσ, y; Φ).

From the definition of global unstable manifolds and Proposition 2.14 it follows that for
any n ∈ N,

Φn(Wuu
loc (p, q; Φ)) =

⋃
a∈Wu

loc
(p;τ)

{(τn(a), φan−1
◦ · · · ◦ φa0

(q))}

=
⋃

η=(p0,a1,...,an−1)
a=(...,p0;a1,a2,...)

{(τn(a), φη(q))}.

Now let (p, q) = Φ−n(x, y), then pi = xi−n, (∀i ∈ Z), and q = φ−1
x−n ◦ · · · ◦ φ

−1
x−1

(y). Thus,
τn(a) = (..., p0, a1, . . . , an; a>n) = (..., x−n, a1, . . . , an; a>n) and η = (x−n, a1, . . . , an−1).
Therefore,

φη(q) = φηn ◦ · · · ◦ φη1
◦ φ−1

x−n ◦ · · · ◦ φ
−1
x−1

(y)

= φan−1
◦ · · · ◦ φa1

◦ φx−n ◦ φ−1
x−n ◦ φ

−1
x−n+1

◦ · · · ◦ φ−1
x−1

(y)

= φan−1 ◦ · · · ◦ φa1 ◦ φ−1
x−n+1

◦ · · · ◦ φ−1
x−1

(y).

It yields that,

Φn(Wuu
loc (Φ−n(x, y); Φ)) =

⋃
η=(p0,a1,...,an−1)
a=(...,p0;a1,a2,...)

{(τn(a), φη(q))}

=
⋃
|σ|=n

Wuu
loc (xσ, φx,σ(y); Φ).

This completes the proof.

The stable manifolds of these maps are defined as the unstable manifolds of corresponding
inverse maps. Similar results hold for stable manifolds.
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3. Blenders, double blenders and symplectic blenders

The definition, existence and properties of blenders, double blenders and symplectic
blenders are discussed in this section.

Bonatti and Díaz in [7] introduced the notion of blender, which is a geometric model for
certain hyperbolic sets that play an important role as a mechanism for creation of cycles and
a semi-local source of transitivity. Although their methods may be easily modified for the
conservative case, the symplectic one is more delicate.

In [7] a cu-blender, roughly speaking, is a hyperbolic (locally maximal) invariant set with
a splitting of the form Ess ⊕ Eu ⊕ Euu, dimEu = 1, such that a convenient projection
of its stable set has larger topological dimension than the dimension of the subbundle (cf.
Lemma 3.7). This phenomenon is robust in the C1 topology. Similarly, one may define a
cs-blender.

Their constructions essentially use a hyperbolic set with a one-dimensional weakly hyper-
bolic subbundle. On the other hand, to apply this local tool for systems with higher dimen-
sional central bundles they use a chain of blenders with one-dimensional central bundles with
different indices (i.e. dimension of the stable bundle) connected to each other. This allows
them to use such blenders in more general situations. This approach, of course, is impossi-
ble in the symplectic case, since all eigenvalues are pairwise conjugate and so all hyperbolic
periodic points have the same index. So, to build blenders in the symplectic case, we need to
involve higher central dimensions. We construct a new class of such blenders in the symplectic
(or Hamiltonian) systems that works like a chain of cs-blenders and a chain of cu-blenders
simultaneously.

In Section 3.1.1, regardless of the symplectic case, we give the definition of cs-blenders
and we study an abstract model for blenders with arbitrary central dimensions. Using the
inverse map, we can define the cu-blenders (see Section 3.2). For their construction we use the
results in Section 2.3 and the ones about contracting (expanding) IFS stated in Section 2.1.
Then, in Section 3.1.2 we consider a geometric model of cs-blender and prove in Section 3.1.4
that their main feature of being a blender is a robust property. To do that, first we recast
the hypothesis of Proposition 2.5 for IFS in terms of properties of the geometric model of
cs-blender (see Section 3.1.3).

In Section 3.3, we consider the case where the central bundle splits into two stable
and unstable subbundles, that is, the maximal invariant set is hyperbolic of the form
Ess ⊕ Es ⊕ Eu ⊕ Euu. We call it double-blender. Then we introduce an abstract model
which exhibits the feature of both cu-and cs-blenders (see Section 3.3.1). Note that this case
is very compatible with the symplectic case where the eigenvalues of periodic points are
pairwise conjugate.

In Section 3.4, we introduce the above phenomenon in the context of symplectic diffeo-
morphisms. That is what we call symplectic blender. Moreover, in Theorem 3.16 we show how
the symplectic blenders appear in the context of Theorem A . In Section 3.5 we give a series
of results about the role of blenders inside partially hyperbolic sets. These results are essential
in the proof of our mains theorems.
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3.1. The cs-blenders

In this section we introduce the definition of cs-blender.

D 3.1 (s-strip). – Let F be a diffeomorphism on the manifoldM . Let B be an
open embedded ball with three cone-fields C ss, C s, Cu, invariant under the derivative DF
defined in a compact neighborhood of B.Observe that the cone fields induce three invariant
subbundles Ess, Es, Eu. A horizontal strip (or s-strip) is an embedded (s+ ss)-dimensional
disk in B tangent to Ess ⊕ Es and which contains the ss-leaves of each of its points.

D 3.2 ( cs-blender). – The pair (P, B) is a cs-blender for the diffeomor-
phism F if it satisfies the following features:

B-1 P is a hyperbolic saddle periodic point of F contained in B;
B-2 B is an open embedded ball on which there are three hyperbolic cone fields C ss, C s

and Cu invariant under the derivative DF ;
B-3 any G sufficiently close to F in the C1 topology verifies that any s-strip in B inter-

sects the unstable manifold of PG whose backward orbit is in B. Here PG is the con-
tinuation of P .

From the definition of cs-blender follows immediately the next lemma (the proof is left to
the reader).

L 3.3. – Let (P, B) be a cs-blender. Let BG =
⋂
n∈Z G

n(closure( B)) for G close
to F. Then it follows thatBG is a hyperbolic set such that for any s-strip S in B there is x ∈ BG
such that Wu

loc(x) ∩ B 6= ∅, where Wu
loc(x) denotes the local unstable manifold of x.

R 3.4. – Using the inverse map, and defining properly a u-strip (see Defini-
tion 3.9), we can define the notion of cu-blender (see details in Section 3.2). In this case, the
three hyperbolic cone fields are C s, Cu, Cuu and it is required that the stable manifold of
the saddle periodic point intersects any u-strip.

3.1.1. Symbolic cs-blender. – In this section we use the language of Section 2.3 to introduce
a symbolic interpretation and construction of cs-blenders.

Let S be the space of all skew products Φ : kZ × Rn → kZ × Rn such that

Φ(x, y) = (τ(x), φx(y)),

where τ : kZ → kZ is the full shift with k symbols and for any x ∈ kZ, φx = φWu
loc

(x) is a
contracting map on Rn with positive contraction bound.

Let Φ = (τ, φx),Ψ = (τ, ψx) in S. We say that Φ is close to Ψ if for any x ∈ kZ, φx and
its contraction bound are close to ψx and its contraction bound, respectively.

By a s-strip we mean the set W s
loc(x; τ)×U for some x ∈ kZ and some open set U ⊂ Rn.

D 3.5. – Let D be an open set in Rn. The set B = kZ × D is a symbolic
cs-blender of Φ ∈ S if there exists a fixed point (p, q) of Φ such that for any Φ̃ ∈ S close to
Φ the following hold:

1. (p, q) has a unique continuation (p, q̃) for Φ̃,
2. the unstable manifold of (p, q̃) for Φ̃ intersects any s-strip in B.

A symbolic cu-blender is defined as a symbolic cs-blender for Φ−1.
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Observe that the existence of a symbolic cs-blender is not trivial, specially its robustness
property. The next proposition guarantees the existence of a symbolic cs-blender.

P 3.6. – Let Φ(x, y) = (τ(x), φx0
(y)) be a locally constant skew product,

where x0 ∈ {1, . . . , k} and x = (. . . , x−1, x0;x1, . . . ). Assume that φi : Rn −→ Rn,
i = 1, 2, . . . , k, are contracting maps, and φi(zi) = zi are their unique fixed points. Suppose
that the iterated function system G = G(φ1, . . . , φk) has the covering property onD ⊂ Rn and
the set {zi}ki=1 is well-distributed inD. Then the set B = kZ×D is a symbolic cs-blender of Φ.

Proof. – First we are going to prove the properties of the cs-blender for the initial system
and later we deal with the perturbations.

Let (p, q) be a fixed point of Φ, for instance, p = (. . . , 1, 1; 1, 1, . . . ) and q = z1 is the
unique fixed point of φp = φ1.

Recall that the unstable manifold of (p, q) is defined as the set of all points (x, y) such that
dist(Φi(x, y),Φi(p, q)) → 0 as i → −∞. Since the dynamic on Rn is contracting, then the
unstable manifold of (p, q) coincides with Wuu(p, q; Φ). By Proposition 2.16, the projection

of Wuu(x, y; Φ) on Rn is equal to O+
G (y). Proposition 2.5 yields that D ⊂ O+

G (q). In other
words, the unstable manifold of (p, q) for Φ intersects any s-strip in B.

Now we show the robustness of this property. Let Φ̃ ∈ S be close to Φ. Since φ̃p is
a contracting map close to φp = φ1, it follows that it has a unique fixed point q̃ close
to q. We want to show that Wuu(p, q̃; Φ̃) is dense. Observe that each φ̃x is close to φx0 .

Now, given x0 ∈ {1, . . . , k} we take x̄0 = (. . . , x0, x0;x0 . . . ) and we consider the IFS
G̃ = G({φ̃x̄0

}x0∈{1,...,k}). The proof of the density of the unstable manifold of (p, q̃)

follows from the density of the G̃-orbit of q̃ which holds from the robustness of G (see
Propositions 2.3 and 2.16). This yields that the unstable manifold of (p, q̃) for Φ̃ intersects
any s-strip in B.

3.1.2. Geometric model of a symbolic cs-blender. – Using the skew product construction it
is easy to build a geometric model of the symbolic blender.

Let φi : Rn −→ Rn, i = 0, 1, . . . , k, be an affine contracting map as in Proposition 2.3.
Let D be an open disk in Rn such that φi(D) ⊂ D.

Let f : Rm → Rm be a diffeomorphism with a horseshoe type hyperbolic set
Λ =

⋂
n∈Z f

n(U), and with the splitting of the form Ess ⊕ Eu. Then it has a Markov
partition with k+ 1 symbols by rectanglesR0, . . . , Rk such that for any i 6= j, Ri∩Rj = ∅.
We also assume that the contraction rate on Ess is stronger than the contraction of φi’s.

We take a diffeomorphism F : Rm × Rn → Rm × Rn such that

F |Ri×Rn = f × φi.

Observe that H :=
⋂
n∈Z F

n(U ×D) is a hyperbolic basic set with splitting Ess⊕Es⊕Eu.
Now we apply Proposition 3.6 for F . It yields that the set Λ × D is a symbolic blender

with a fixed point (p, q) of F .

The following lemma is an immediate consequence of the definition of blender. It high-
lights the distinguished property of a blender.
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L 3.7. – Let Λ×D be the geometric model of the symbolic cs-blender as above. Then,
for any (x1, x2) ∈ U ×D, there exists (y1, y2) ∈ H such that

W ss
loc(x1, x2;F ) ∩Wu

loc(y1, y2;F ) 6= ∅.

This lemma says that the topological dimension ofWu
loc(H) is larger than the topological

dimension of the local unstable manifold of each point in H.

Proof. – Let {Un}n∈N be a sequence of nested open neighborhood of x2, such that⋂
n∈N Un = {x2}.
By definition, for any n, W s

loc(x1; f) × Un is a s-strip containing W ss
loc(x1, x2;F ) and

intersecting Wu(p, q;F ). Now, let zn ∈ H ∩Wu(p, q;F ) such that

(W s
loc(x1; f)× Un) ∩Wu

loc(zn;F ) 6= ∅.

Let z be an accumulation point of the sequence {zn}. Then z ∈ H. Now, let n → ∞, then
from the election of the s-strips (i.e.

⋂
n∈N Un = {x2}) it follows that

W ss
loc(x1, x2, F ) ∩Wu

loc(z;F ) 6= ∅.

The following remark allows to recast the essential property of a cs-blender.

R 3.8. – Given a blender (p, B) and its maximal invariant set B, from Lemma 3.11
it follows that for any x ∈ B we have thatW ss

loc(x)∩Wu
loc(B) 6= ∅. Moreover, the same holds

for any G close to F.

3.1.3. Covering and well distributed properties of the geometric model of a cs-blender. – Now
we would like to recast the hypothesis of Proposition 2.5, i.e., the covering and well distributed
properties provided in Definition 2.4, in terms of properties of the geometric model of a
cs-blender. Observe that the Markov partition R0, . . . , Rk for Λ, and given by rectangles in
Rm, provides a Markov partition R̂0, . . . , R̂k for Λ×D in Rm × Rn where R̂i = Ri ×D.

Let D be the disk that is covered by the union of φi( D). Let us also defineR D := ∪iRi× D.
Now, given a point x in R̂i we define W ss

R̂i
(x) as the connected component of W ss(x) ∩ R̂i

that contains x. Then, for any x ∈ R D and taking j such that x ∈ R̂j it follows that

W ss
R̂j

(x) ∩ ∪iF (R D ∩ R̂i) 6= ∅,(1)

Moreover, observe that the Markov property implies that D ⊂ ∪iφi( D); it follows that if
W ss
R̂j

(x) intersects F (R D ∩ R̂i) then

F−1(W ss
R̂j

(x) ∩ F (R D ∩ R̂i)) ∩ ∪iF (R D ∩ R̂i) 6= ∅.(2)

Conditions (1) and (2) are the covering property for the geometric model.

The well-distributed property is recasted in the following way: let z0, · · · , zk be the set of a
unique fixed point ofF in each R̂i, if any open ball of diameter d and centered inR D contains
some zi, where

d ≥ max{r | ∀x ∈ R D,∃i, Br(x) ⊂ F (Ri × D)}.
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3.1.4. Geometric model of a symbolic cs-blender is a cs-blender. – In this section we show
that the property that the unstable manifold of any point intersects any s-strip also holds
for any perturbation. It is natural to think that any small perturbation of a geometric model
of a symbolic cs-blender is also a geometric model of a symbolic cs-blender, in particular,
that it is a skew-product locally constant over contracting IFS. But this is not generically
true. In fact, if (under a change of coordinates if necessary) we get a skew-product locally
constant over contracting IFS, it would follow that the laminations associated to the strong
stable and unstable subbundles are Lipschitz, which is generically false. So, to prove that
perturbations of a geometric model verify condition B-3 in Definition 3.2 we can not reduce
to skew-product locally constant. However, the proof of Proposition 2.5 is easily adapted to
the context of perturbations of the geometric model of a symbolic cs-blender, proving in this
way that they are cs-blenders.

The proof runs as follows: First, given G C1-close to F in a neighborhood of Λ×D, we
consider the set BG which is the maximal invariant set of G in that neighborhood. Observe
that the covering and well-distributed property also holds for BG. This is immediate from
the fact that G(R D ∩ R̂i) is C0-close to F (R D ∩ R̂i) and W ss

R̂j ,G
(x) is C1-close to W ss

R̂j ,F
(x).

So, given x in R D we consider a s-strip S around W ss
R̂i

(x,G) (where i is such that x ∈ R̂i)

and we take S ∩ G(R̂j ∩ R D), where j verifies that S ∩ G(R̂j ∩ R D) 6= ∅. Observe that
G−1(S ∩G(R̂j ∩R D)) is again an s+ ss-embedded disk tangent to Ess⊕Es that intersects
R D and therefore we can choose new indexes i, j as before; since theDG−1

|Ess⊕Es is expanding,
in the same way that in Proposition 2.5 it follows that a backward orbit of a subdisk inside
S eventually intersects the local unstable manifold of some fixed point ziG (where ziG is the
analytic continuation of some zi). Since all the fixed points are homoclinic connected for G,
we prove in that way that the unstable manifold of any fixed point intersects any s-strip. This
finishes the proof.

3.2. The cu-blenders

Using the inverse map, we can introduce the notions of cu-blender and symbolic
cu-blender, its geometric model and also the properties of covering and well distribu-
tion. In the same way we see that the geometric models of symbolic cu-blenders are in fact
cu-blenders. The details are left to the reader.

3.3. Double-blender

In this section we introduce the definition of double blender.

D 3.9 (u-strip). – Let F be a diffeomorphism on the manifoldM . Let B be an
open embedded ball with four cone-fields C ss, C s, Cu, Cuu, invariant under the derivative
DF defined in a compact neighborhood of B. A vertical strip (or u-strip) is an embedded
(u+ uu)-dimensional disk in B, which contains the uu-leaves of each of its points.

D 3.10 (double blender). – The pair (P, B) is a double blender for the diffeo-
morphism F if it satisfies the following features:

4 e SÉRIE – TOME 45 – 2012 – No 2



ROBUST TRANSITIVITY IN HAMILTONIAN DYNAMICS 217

B-1 P is a hyperbolic saddle periodic point of F contained in B;
B-2 B is an open embedded ball on which there are four hyperbolic cone fields C ss, C s,

Cu and Cuu invariant under the derivativeDF defined in a compact neighborhood
of B.

B-3 Any G sufficiently close to F in the C1 topology verifies the following:
1. any u-strip in B intersects some s-strip contained in the stable manifold of
PG whose forward orbit is in B;

2. any s-strip in B intersects some u-strip contained in the unstable manifold of
PG whose backward orbit is in B.

Here PG is the continuation of P .

The next lemma follows immediately from Definition 3.10 and the proof of Lemma 3.7.

L 3.11. – Let (P, B) be a double blender. Let BG =
⋂
n∈Z G

n(closure( B)) for G
close to F. Then it follows that BG is a hyperbolic set such that for any s-strip S in B there is
x ∈ BG such that Wu

loc(x) ∩ B 6= ∅, where Wu
loc(x) denotes the local stable manifold of x.

A similar statement holds for any u-strip.

The following remark allows to recast the essential property of a blender.

R 3.12. – Given a blender (p, B) and its maximal invariant set B, from Lemma
3.11 it follows that for any x ∈ B holds:

– W ss
loc(x) ∩Wu

loc(B) 6= ∅,
– Wuu

loc (x) ∩W s
loc(B) 6= ∅.

Moreover, the same holds for any G close to F.

3.3.1. Symbolic double-blender. – Here we introduce an abstract model with the features of
symbolic cu-and cs-blenders, simultaneously. We call it a symbolic double-blender.

Let A be the space of all skew products of the form Φ : kZ ×Rn ×Rm → kZ ×Rn ×Rm

such that
Φ(x, y, z) = (τ(x), φx(y), ψx(z)),

where τ : kZ → kZ is the full shift with k symbols; and for any x ∈ kZ, φx = φ
Wu

loc
(x)

is a contracting map on Rn with contraction bound larger than a fixed positive number,
and ψx = ψ

Ws
loc

(x)
is an expanding map on Rm with expansion bound smaller than a fixed

number.
Let us fix Φ = (τ, φx, ψx), Φ̃ = (τ, φ̃x, ψ̃x) in A. We say that Φ is close to Φ̃ if for any

x ∈ kZ, φx and its contraction bound are close to φ̃x and its contraction bound, respectively,
and ψx and its expansion bound are close to ψ̃x and its expansion bound, respectively.

For Φ = (τ, φx, ψx) in A, we set Φcs = (τ, φx), and Φcu = (τ, ψx).

D 3.13. – Let U and V be open sets in Rn and Rm, respectively. The set
B = kZ×U × V is a symbolic double-blender of Φ ∈ A if kZ×U is a cs-blender of Φcs and
kZ × V is a cu-blender of Φcu.

A similar proposition to the one formulated for a symbolic cs-blender (Proposition 3.6)
can be formulated in the context of a symbolic double blender.
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P 3.14. – Let Φ ∈ A be a locally constant skew product such that
Φ(x, y, z) = (τ(x), φx0

(y), ψx1
(z)), where x = (. . . , x−1, x0;x1, . . . ) ∈ kZ. Assume that φi

and ψ−1
i , i = 1, 2, . . . , k, are contracting maps. Suppose that the iterated function systems

G = G(φ1, . . . , φk) and G = G(ψ−1
1 , . . . , ψ−1

k ) have covering and well-distributed properties
on D1 ⊂ Rn and D2 ⊂ Rm, respectively. Then the set B = kZ × D1 × D2 is a symbolic
double-blender of Φ.

The proof is similar to the proof of Proposition 3.6 and it is left to the reader.

3.3.2. Geometric model of symbolic double-blender. – Using the skew product construction it
is easy to build a geometric model of a symbolic double-blender. The idea is the same exposed
in Section 3.1.1 where the geometric model of a symbolic cs-blender was considered. But
instead of considering a set of affine contracting maps we use a set of pairs of affine maps,
one contracting and one expanding. In a few words, we consider the skew productF such that
F |Ri×Rn×Rn = f×φsi ×φui , where for any i, φsi : Rn → Rn is contracting and φui : Rn → Rn

is expanding.

The geometric idea behind this definition is the following. In the 3-dimensional cs-blenders
of [7], if one projects the cube and its pre-image along a stable direction, a figure like a Smale
horseshoe appears but the right and left rectangles overlap. With this in mind, consider a
4-dimensional horseshoe with the splitting of the form Ess ⊕ Es ⊕ Eu ⊕ Euu where the
projection along Ess gives a figure like a 3-dimensional horseshoe such that its two wings
overlap and the same feature holds for the inverse map. Let F be such a diffeomorphism on
the open set B. Then, the maximal invariant set in B, i.e., Λ =

⋂
n F

n( B) is a cs-blender,
if we consider Ess ⊕ Es as the stable direction, Eu as the central unstable direction and
Euu as the strong unstable direction. Similarly Λ is a cu-blender if we consider Ess as the
strong stable direction, Es as the central stable direction and Eu ⊕ Euu as the unstable
direction. Therefore, Λ is a double-blender. Note that using the results in Section 3.1.1,
we may consider multi-dimensional central bundles, i.e., both of center stable and center
unstable bundles of arbitrary dimensions.

In a similar way as it was done in Section 3.1.2 the notion of covering and well distributed
properties, can be formulated for double-blenders.

3.3.3. Geometric model of a symbolic double-blender is a double-blender. – The proof is essen-
tially the same as the one provided for a cs-blender in Section 3.1.4 but working simultane-
ously along the center stable and center unstable directions.

3.4. Symplectic blender

D 3.15. – A symplectic blender is a double-blender for a symplectic (or Hamil-
tonian) diffeomorphism.

Observe that if we want to consider geometric models of symplectic blenders as it was
done for the double-blenders, it is necessary to chose the pairs of contracting and expanding
affine maps, in such a way that a symplectic relation is satisfied. For instance, φui = (φsi )

−1.

The following theorem introduces a construction which yields the existence of a symplec-
tic blender in the context of Theorem A.
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T 3.16. – Let M and N be two symplectic manifolds (not necessarily compact).
Let r = 1, 2, . . . ,∞. Suppose that f1 ∈ Diffrω(M) has a hyperbolic periodic point p̂ with
transversal homoclinic intersections and f2 ∈ Diffrω(N) has a δ-weak hyperbolic periodic point q̂
with δ = δ(f1,dim(N)) > 0 small enough.

Then, there is a Cr arc {Fµ}µ∈[0,1] of Cr symplectic diffeomorphisms on M ×N such that,

1. F0 = f1 × f2.
2. There is a neighborhood V of {Fµ}µ∈(0,1] in Diff1(M ×N) such that for anyG ∈ V , the

pair (PG, B) is a double blender, where PG is the continuation of hyperbolic P0 = (p̂, q̂)

and B is an embedded open disk in M ×N .

Proof. – Let V ⊂ M be a small open disk which contains p̂ and a point of transversal
homoclinic intersection associated to p̂, such that for some k ∈ N, Λ :=

⋂
n∈Z f

kn
1 (V ) is an

invariant hyperbolic compact set of saddle type for fk1 . By choosing V suitable and k large
enough, we may suppose that fk1 |Λ is conjugate to a shift of d + 1 symbols {0, 1, . . . , d}.
Moreover, we can assume that the elements of Markov partition of Λ are contained in open
sets such that their closures are pairwise disjoint. Also observe that if k is large enough and
V is suitably chosen, then d = d(f1, k) can be taken arbitrarily large. Therefore if k is large
enough, by taking fk1 , and fk2 instead of f1 and f2, we may assume that P0 = (p̂, q̂) is a fixed
point of F0 = f1 × f2 and Λ is f1-invariant and f1 on Λ :=

⋂
n∈Z f

n
1 (V ) is conjugate to

the shift of symbols {0, 1, . . . , d}. Moreover, we may assume that f2 is dominated by f1|Λ.
Indeed, we may replace f2 by a map which is identity in the complement of Û , where we
choose Ũ b Û small neighborhoods of the fixed point q̂, and in such a way that Ũ is much
smaller than Û .

For a (linear) contraction map of Rn, (2n = dim(N)) with contraction bound equal to
1/2, Proposition 2.3 gives a number l as a required number of elements of the IFS to obtain
transitivity in some small disk.

Now we choose k large enough such that d ≥ 2l.

Once we substitute f2 by fk2 it follows that m(Dfk|Es) > (1 − δ)k. Therefore,
δ = δ(f1,dim(N)) is chosen close to zero in such a way that (1− δ)k > 1/2.

From now on, we assume that q̂ of f2 is a δ-weak hyperbolic fixed point of f2 with δ < 1/2,
p̂ ∈ Λ is a hyperbolic fixed point of f1, and Λ is f1-invariant and it is conjugate to a shift with
d+ 1 symbols as above.

We want to perturb F0 to construct a family Fµ such that each one has a symbolic double
blender as a sub-system, and we will show how this leads to the existence of a symplectic
blender.

Perturbations. – Let ζ > 0 be small enough (it will be chosen later) and ε : [0, 1] −→ [0, ζ]

be a smooth simple curve such that ε(0) = 0.

Let us define F0 = f1 × f2.
For µ ∈ (0, 1],

Fµ := Ψε(µ) ◦ F0 ◦ Φ−ε(µ),

where Ψt and Φt are the time tmaps of the Hamiltonians h̃1 and h̃2, respectively, to be chosen
later.
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l + 10 2l

0

1

Supp(h̃2)

Su
pp

(h̃
1
)

A∗,j

Ai,∗

l

F 2. Support of local perturbations projected to Λ. No perturbation is made
in white blocks.

In order to define the local perturbation, we first consider open sets Aij and pairwise

disjoint open sets ‹Aij in a small neighborhood of Λ, such that,

Aij ∩ Λ = {(xi)i∈Z | x0 = i, x1 = j} and Aij b ‹Aij(3)

where (xi)i∈Z is the itinerary of a point in the Markov partition.
In addition, we set

Ai,∗ =
d⋃
j=0

Aij and A∗,j =
d⋃
i=0

Aij .(4)

If J , I ⊂ {0, 1, . . . , d} then we set

Ai, J =
⋃
j∈ J

Aij .(5)

Similar notations shall be used for A I ,j , A I , J ,
‹Ai,∗,‹A∗,j and ‹A I , J .

Using the Darboux Theorem we select local coordinates in a neighborhood Ũ of q̂ inN , of
the form (a1, . . . , an; b1, . . . , bn) such that on Ũ the symplectic form is Σni=1dai ∧ dbi. These
coordinates will be useful to define our local perturbation.

Let U b Ũ be a small neighborhood of q̂ such that f2(U) b Ũ .
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Given a sufficiently small vector (u, v) = (u1, . . . , un; v1, . . . , vn) ∈ R2n, let the Hamilto-
nian h(u,v) on N be a bump function such that h(u,v)(y) = 0 if y ∈ N \ Ũ and if y ∈ U ; then
h(u,v) is expressed in the local coordinates as (y = (a, b) ∈ U ) h(u,v)(a, b) := a · v − b · u.

Note that the time t map of the Hamiltonian flow of h(u,v) in U is the translation

(a, b) 7→ (a, b) + t(u, v).

We identify a neighborhood of zero in TxN and N in the local coordinates on Ũ , and let
q̂ = 0 in the local coordinates. So Df2(q̂) is very close to f2 on the neighborhood U of q̂,
provided that U is small enough.

Let ϕs = Df2(q̂)|Es
q̂
. By the assumption, the contraction bound of ϕs is 1 − δ > 1/2.

Then, from Proposition 2.3 we get small vectors c1, . . . , cl in Esq̂ ⊂ Tq̂N such that the linear
maps ϕs0 := ϕs, ϕs1 := ϕs+ c1, . . . , ϕ

s
l := ϕs+ cl on Esq̂ generate an iterated function system

which is transitive in some small disk Ds ⊂ Esq̂ (satisfying the covering and well-distributed
properties).

We denote the vectors ci in the local coordinates by (ui, vi) ∈ Ũ . So we may define the
Hamiltonians h(ui,vi) on N as above.

Now, we define the Hamiltonian perturbation h̃1 : M ×N → R, as a bump function such
that

h̃1(x, y) = h(ui,vi)(y) if x ∈ Ai,∗, i = 1, . . . , l,

h̃1(x, y) = 0 if x /∈
l⋃
i=1

‹Ai,∗.
Similarly, we get a family of contracting maps ϕu0 := Df−1

2 (q̂)|Eu
q̂
, ϕu1 := ϕu + c′1,

. . . , ϕul := ϕu+c′l onEuq̂ that generate a transitive iterated function system in a small diskDu.
We denote the vectors c′i in the local coordinates by (u′i, v′i) ∈ Ũ .

The Hamiltonian perturbation h̃2 : M ×N → R is a bump function such that

h̃2(x, y) = h(u′i,v′i)(y) if x ∈ A∗,j , j = l + 1, . . . , 2l,

h̃2(x, y) = 0 if x /∈
2l⋃

j=l+1

‹A∗,j .
The symplectic blender. – Now we explain how this construction creates a symplectic
blender: First, observe that by the construction we get a geometric model of a symbolic
double-blender and therefore its perturbations can be treated like the perturbations of a
double-blender. Thus the proof reduces to the argument in Section 3.3.3. Since we preserve
a symplectic structure, the double-blender becomes a symplectic blender.

Moreover, we have the following proposition which is a consequence of the first part of
Proposition 2.5. The details of the proof are left to the reader.

P 3.17. – Under the hypotheses of Theorem 3.16 it is possible to create a
symplectic blender with the following additional property:

B-4 Any forward and backward iteration of auu-leaf (ss-leaf) intersecting Λ×U , intersects
Λ× U in a uu-segment (ss-segment, respectively).

Consequently, the set of all points whose strong (un)stable manifolds intersect Λ × U , is an
invariant set.
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3.5. Blender inside partial hyperbolic sets

In the present section we give a series of lemmas about the role of blenders in obtaining
robust transitivity. Roughly speaking, Lemmas 3.20 and 3.21 state that the points in a par-
tially hyperbolic set connected to the blender through the strong leaves are contained in a
homoclinic class. These lemmas are essential in the proof of Theorem 4.1.

D 3.18. – Given a (not necessarily compact) partially hyperbolic invariant
set Λ with splittingEss⊕Ecs⊕Ecu⊕Euu, for any z ∈ Λ we define the strong stable (unstable)
manifold of z with diameter L as the set

W ss
L (z) := f−L(W ss

loc(fL(z))) (Wuu
L (z) := fL(W ss

loc(f−L(z)))).

R 3.19. – Recall that for a blender (p, B), if W ss(uu)
L (x) ∩Wu(s)(B) 6= ∅ then

for any y sufficiently close to x it also holds thatW ss(uu)
L (y)∩Wu(s)(B) 6= ∅, whereB is the

maximal invariant set generated by B.

L 3.20. – Let Λ be a (not necessarily compact) partially hyperbolic invariant set with
splitting Ess ⊕ Ecs ⊕ Ecu ⊕ Euu. Assume that

1. there exists a symplectic blender (p, B), such that its maximal invariant hyperbolic setB
is contained in Λ and has unstable dimension equal to dim(Ecu ⊕ Euu);

2. there exists a non empty set R ⊂ Λ such that if x ∈ R then there are infinitely many
forward and backward iterates of x in B.

Then, the homoclinic class of B contains the closure of R.

Proof. – Let us fix x ∈ R. From the fact that there are infinitely many backward iterates
of x in B and from Remark 3.12, it follows that there is a sequence of points accumulating on
x that belong to the intersection of the unstable manifold ofB with the strong stable manifold
of x. In the same way, and using now that there are infinitely many forward iterates of x in B
it follows that there is a sequence of points accumulating on x that belong to the intersection
of the stable manifold of B with the strong unstable manifold of x. Using Remark 3.19 we
conclude that there is a sequence of points accumulating on x that belongs to the intersection
of the stable and unstable manifold of B.

L 3.21. – Let Λ be a (not necessarily compact) partially hyperbolic invariant set with
splitting Ess ⊕ Ecs ⊕ Ecu ⊕ Euu. Assume that

1. there exists a symplectic blender (p, B), such that its maximal invariant hyperbolic setB
is contained in Λ and has unstable dimension equal to dim(Ecu ⊕ Euu);

2. there exists a non empty set R ⊂ Λ contained in the recurrent set of f such that if x ∈ R
then
(2.1) W ss(x) ∩Wu

loc(B) 6= ∅,
(2.2) Wuu(x) ∩W s

loc(B) 6= ∅.

Then, the homoclinic class of the B contains the closure of R.
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Proof. – If W ss(x) ∩Wu
loc(B) 6= ∅, there is an L sufficiently large such that

W ss
L (x) ∩ Wu

loc(B) 6= ∅. From Remark 3.19 and the fact that x is recurrent, it follows
that there is a sequence {f−nk(x)} such that W ss

L (f−nk(x)) ∩Wu(B) 6= ∅ and therefore,
there is a sequence of points accumulating on x that belong to the intersection of the unsta-
ble manifold of B with the strong stable manifold of x. Arguing in the same way, it follows
that there is a sequence of points accumulating on x that belong to the intersection of the
stable manifold of B with the strong unstable manifold of x. The lemma is now obtained as
in the proof of Lemma 3.20.

4. Parametric version of Theorem A

In this section, we prove a parametric version of Theorem A in a more general context.
The proof of our main theorems is based on this theorem and its proof.

T 4.1. – Let M and N be two symplectic manifolds (not necessarily compact),
and 1 ≤ r ≤ ∞. Let f1 ∈ Diffrω(M) such that there exists an open set V ⊂M whose maximal
invariant set Λ is a nontrivial topologically mixing hyperbolic compact set. Let f2 ∈ Diffrω(N)

such that:

(a) f2 is dominated by f1|Λ, and f2 has a δ-weak hyperbolic periodic point for some positive
δ = δ(f1,dim(N)) close to zero.

(b) For any f̃2 sufficiently Cr close to f2, Ω(f̃2) = N .

Then there is a Cr arc {Fµ}µ∈[0,1] of Cr symplectic diffeomorphisms on M × N , such that
F0 = f1 × f2, and there exists a periodic orbit P such that for all µ ∈ (0, 1] the following hold,

1. P is periodic for Fµ, H(P ;Fµ)
⋂
n∈Z F

n
µ (V × N) = Λ × N and it is robustly strictly

topologically mixing (See Definition 1.8).
2. If G is close to Fµ, the set ΓG := H(PG;G)

⋂
n∈Z G

n(V × N) is robustly strictly
topologically mixing.

3. For any compact neighborhood Nc ⊂ N the map G ∈ U 7→ ΓG
⋂

(V × Nc) defines a
continuation of Λ×Nc, for some neighborhood U of Fµ.

R 4.2. – We want to highlight that in Theorem 4.1 it is not assumed that the
manifolds M and N are compact. However the hypotheses of Theorem 4.1 are contained
in the hypotheses of Theorems A, B, C and D. In particular, observe that in Theorem 4.1
we assume that for any f̃2 sufficiently Cr close to f2 it holds that Ω(f̃2) = N , which is
immediately satisfied whenever either M is compact or has finite volume.

R 4.3. – First observe that for any diffeomorphism Fµ, with µ > 0, it holds
that the whole set Λ × N is transitive. In this sense, those maps satisfy a stronger property
than the ones in the thesis of Theorem A. In fact, the ones in the thesis of Theorem A
are obtained as perturbations of the family map {Fµ}µ∈(0,1]. Also observe, that the non-
wandering hypothesis (b) is obviously satisfied if the manifold N is compact or has a finite
volume.
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Before giving the proof of Theorem 4.1 we need some results stated in Section 4.1, about
the persistence of normally hyperbolic laminations. This gives us the right framework to
obtain the continuation of the set in the thesis of Theorem 4.1. The proof of Theorem 4.1
is postponed to Section 4.2.

4.1. Persistence of normally hyperbolic laminations

Now, we recall a technical version of the main results of Hirsch-Pugh-Shub [19] on per-
sistence of normally hyperbolic laminations, extended to the non-compact embedded case.
As we said before, the result provides the existence and precise characterization of the con-
tinuation of a partially hyperbolic set (for the definition of continuation used in the present
context, see Section 4.4).

D 4.4 (strong continuation). – An invariant set X ⊂ M of f has strong con-
tinuation in Dr, if there exist an open neighborhood U of f in Dr, and a continuous map
Φ : U → P(M) such that, Φ(f) = X, and for any g ∈ U, the set Φ(g) ⊂ M is homeomor-
phic to X and invariant for g. Then, Φ(g) is called the strong continuation of X for g. Here,
P(M) is the space of all subsets of M with the Hausdorff topology.

Compare this definition with Definition 1.3. In the present one, it is required that Φ(g) is
homeomorphic to X.

T 4.5 (HPS). – Let M and N be two boundaryless manifolds (not necessarily
compact). Let 1 ≤ r ≤ ∞ and let f1 ∈ Diffrω(M) such that there exists an open set V ⊂ M

whose maximal invariant set Λ is a nontrivial topologically mixing hyperbolic compact set. Let
f2 ∈ Diffr(N) be dominated by f1|Λ. Then the invariant set Λ × N of F0 = f1 × f2 has a
unique strong continuation for any small perturbation of F0 in Diffr(M ×N).

More precisely, the following hold,

H-1 There is a neighborhood U ⊂ Diff1(M × N) of F such that every G ∈ U has a
(locally maximal) invariant ΓG homeomorphic to Λ × N and is a continuation of
ΓF0

.
H-2 There is a G-invariant lamination on ΓG by manifolds diffeomorphic to N . So G

induces a homeomorphism G̃ on the quotient of ΓG such that G̃ is conjugate to f1|Λ.
H-3 From previous item, G restricted to ΓG is conjugate to a skew product

G∗ : (x,w) 7−→ (f1(x), gx(w)) on Λ×N , which depends continuously on G.

This result, in a more general setting, is proved in [19] in the compact case. However, as
remarked there, the compactness is used only to obtain uniform estimates on the functions
involved in the proof (i.e. the rate of contraction and expansion) and the results carry over
as long as such uniform estimates hold. This is the case in our context since we consider the
uniform Cr topology. See [11], [15, Appendix B] and [13, Appendix A] in which a similar
situation is treated.
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4.2. Proof of Theorem 4.1

The main idea of the proof is to find perturbations of F0 = f1 × f2 so that the following
hold:

(i) the existence of a symplectic blender,

(ii) the “minimality” of (strong) stable and unstable foliations in the partially hyperbolic
set Λ×N .

These properties imply the transitivity (or even topological mixing) of the set Λ×N in a
robust fashion. Following this approach, the proof is constructive and it is divided into four
parts. First, in Section 4.2.1 we introduce the perturbations which are similar to the ones
used in the construction of the family Fµ in the proof of Theorem 3.16. The perturbations
are done using the result stated in Section 4.1. Then in the following subsections we prove that
the perturbed systems satisfy the desired properties. In Section 4.2.2, applying Theorem 3.16
we show the existence of a symplectic blender. Then in Section 4.2.3 we use the results of
iterated function systems of recurrent diffeomorphisms (see Section 2.2) to prove that the
strong stable and unstable manifolds of almost all points in the central manifold intersect
the constructed blender. In Section 4.2.4, using the lemmas in Section 3.5, we show that this
property is robust under small perturbations.

Proof of Theorem 4.1. – Let p̂ be a hyperbolic periodic point of f1 with transversal homo-
clinic intersection, and q̂ be a δ-weak hyperbolic periodic point of f2. Let P0 = (p̂, q̂). Let
V ⊂M be a small open disk which contains p̂ and a transversal homoclinic point associated
to it, such that for some k ∈ N, Λ0 :=

⋂
n∈Z f

kn
1 (V ) is an invariant hyperbolic compact set of

saddle type for fk1 . By choosing V suitable and k large enough, we may suppose that fk1 |Λ0

is conjugate to a shift of d+ 1 symbols {0, 1, . . . , d}. Moreover, we can assume that the ele-
ments of the Markov partition of Λ0 are contained in open sets such that their closures are
pairwise disjoint. If k is large then d can be taken large. If k is large enough, by taking fk1 ,
and fk2 instead of f1 and f2, we may assume that P0 = (p̂, q̂) is a fixed point of F0 = f1× f2

and Λ0 ⊂ Λ are f1-invariant. Moreover on Λ0 :=
⋂
n∈Z f

n
1 (V ), f1 is conjugate to the shift

of symbols {0, 1, . . . , d}.
As in the proof of Theorem 3.16 recall that for a (linear) contraction map of Rn

(2n = dim(N)), with contraction bound equal to 1/2, Proposition 2.3 gives a number l
as the required number of elements of the IFS needed to obtain transitivity in some small
disk.

We choose k large enough so that d ≥ 2l + 4 (observe that the number d here is larger
than the one in Theorem 3.16).

Again, as in the proof of Theorem 3.16, once we substitute f2 by fk2 it follows that
m(Dfk|Es) > (1− δ)k. Therefore, the constant δ = δ(f1,dim(N)) is chosen close to zero in
such a way that (1− δ)k > 1/2.

From now on, we assume that q̂ is a δ-weak hyperbolic fixed point of f2 with δ < 1/2,
p̂ ∈ Λ0 is a hyperbolic fixed point of f1, and Λ0 is f1-invariant and it is conjugate to a shift
with d+ 1 symbols as above.

In what follows, we are going to focus on the set Λ0 ×N.
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4.2.1. The perturbations. – Let ζ > 0 be small enough (it will be chosen later) and
ε : [0, 1] −→ [0, ζ] such that ε : x 7→ x/ζ.

For µ ∈ [0, 1],
Fµ := Ψε(µ) ◦ F0 ◦ Φ−ε(µ),

where Ψt and Φt are the time tmaps of the Hamiltonians h1 and h2, respectively, to be chosen
later. It is clear that F0 = f1 × f2.

As in Theorem 3.16 using the Darboux Theorem we select local coordinates in a neigh-
borhood Ũ of q̂ inN , of the form (a1, . . . , an; b1, . . . , bn) such that on Ũ the symplectic form
is Σni=1dai ∧ dbi. This coordinates will be useful to define our local perturbation.

Let U b Ũ be a small neighborhood of q̂ such that f2(U) b Ũ .
As in the proof of Theorem 3.16, we set

Ai,∗ =
d⋃
j=0

Aij and Ai, J =
⋃
j∈ J

Aij

where J ⊂ {0, 1, . . . , d}. Similar notations shall be used for A∗,j , A I ,j , A I , J ,
‹Ai,∗, ‹A∗,j and‹A I , J .

Now, we separate the support of perturbations in two groups:

1. one composed by Ai,∗, i = 1, . . . , l, and A∗,j , j = l + 1, . . . , 2l;

2. the other composed by A J 1, J 1
∪ A J 2, J 2

, where J 1 = {0, 2l + 1, 2l + 2} and
J 2 = {0, 2l + 3, 2l + 4}.

In the first group of sets, the same perturbations done in the proof of Theorem 3.16 are
performed along the center direction. This shall provide us with a blender (see Section 4.2.2).
In the second ones, other perturbations (explained below) are introduced such that they
provide the minimality of the unstable and stable foliations (see Section 4.2.3).

So, using the same definitions as those given in the proof of Theorem 3.16 we define the
Hamiltonian perturbation h̃1 : M ×N → R, as a bump function such that

h̃1(x, y) = h(ui,vi)(y) if x ∈ Ai,∗, i = 1, . . . , l,

h̃1(x, y) = 0 if x /∈
l⋃
i=1

‹Ai,∗.
Similarly, the Hamiltonian perturbation h̃2 : M ×N → R is a bump function such that

h̃2(x, y) = h(u′i,v′i)(y) if x ∈ A∗,j , j = l + 1, . . . , 2l,

h̃2(x, y) = 0 if x /∈
2l⋃

j=l+1

‹A∗,j .
Now we explain the perturbation performed in the set

A J 1, J 1
∪ A J 2, J 2

( J 1 = {0, 2l + 1, 2l + 2}, J 2 = {0, 2l + 3, 2l + 4}).

Let ĥ1 and ĥ2 be two integrable Hamiltonians on N , close to the identity, such that the
time one maps of their corresponding Hamiltonian flows satisfy the properties (1) and (2) in
Lemma 2.7.
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We define the Hamiltonian h̃3 : M ×N → R as a bump function such that

h̃3(x, y) = ĥ1(y) if x ∈ A2l+1,j , j ∈ {0, 2l + 1, 2l + 2},

h̃3(x, y) = ĥ2(y) if x ∈ A2l+2,j , j ∈ {0, 2l + 1, 2l + 2},

h̃3 = 0 if x /∈ ‹Ai,j , i ∈ {2l + 1, 2l + 2}, j ∈ {0, 2l + 1, 2l + 2}.

Similarly, we define the Hamiltonian h̃4 : M ×N → R as a bump function such that

h̃4(x, y) = −ĥ1(y) if x ∈ Ai,2l+3, i ∈ {0, 2l + 3, 2l + 4},

h̃4(x, y) = −ĥ2(y) if x ∈ Ai,2l+4, i ∈ {0, 2l + 3, 2l + 4},

h̃4 = 0 if x /∈ ‹Ai,j , i ∈ {0, 2l + 3, 2l + 4}, j ∈ {2l + 3, 2l + 4}.

Observe that the support of these Hamiltonians are disjoint from the supports of h̃1 and
h̃2. Now we are able to define the Hamiltonians h1 and h2. Let ε > 0 be small enough; we
set

h1 = h̃1 + εh̃3,

h2 = h̃2 + εh̃4.

In the next two sections, we show how the above perturbation maps exhibit symplectic
blenders and “almost” minimality of the strong foliations.

4.2.2. The symplectic blender. – We may repeat the proof of Theorem 3.16 for the family Fµ
constructed in Section 4.2.1 to obtain a symplectic blender B. In addition, Proposition 3.17
also holds for this family.

4.2.3. Almost minimality of stable and unstable foliations. – In this section it is shown that
the strong stable and unstable manifolds of an open and dense set of points in the central
manifoldN0 := {p̂}×N intersect the constructed blender. From that, we obtain the existence
of an open and dense set of points in Λ × N such that their strong (stable and unstable)
manifolds are connected to the blender. We refer to this property by the almost minimality
of the strong stable and strong unstable foliations.

P 4.6. – Let us fix µ > 0. Then there is an open and dense set Rµ ⊂ N

such that for every q ∈ Rµ and for any n ∈ Z it follows that Wuu(Fnµ (p̂, q)) ∩ B 6= ∅ and
W ss(Fnµ (p̂, q)) ∩ B 6= ∅.

Proof. – The key elements in the proof are the symbolic dynamics, the results of Sec-
tion 2.2 and Proposition 3.17.

Here again we consider restriction of f1 to Λ0. For any p = (pi)i∈Z ∈ Λ0 = {0, 1, 2,
. . . , d}Z, the local and global unstable manifolds of p for f1 are

Wu
loc(p ; f1|Λ0

) = {(xi) | ∀n ≤ 0, xi = pi},

Wu(p ; f1|Λ0
) = {(xi) | ∃n0 ∈ Z,∀n ≤ n0, xi = pi}.

So, the local and global strong unstable manifolds of (p, q) for Fµ are

Wuu
loc (p, q;Fµ|Γ) = Wu

loc(p; f1|Λ0
)× {q} = {(xi) | ∀n ≤ 0, xi = pi} × {q},

Wuu(p, q;Fµ|Γ) =
⋃
n≥0

Fnµ (Wuu
loc (F−nµ (p, q);Fµ|Γ)).
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l + 1 2l + 10

l

2l + 3

A∗,j

A∗,j

Supp(h̃2)

Su
pp

(h̃
1
)

0

F 3. Support of local perturbations projected to Λ0. The blocks with the
same color are in the support of the same Hamiltonians. No perturbation is made
in white blocks.

Let T1 = f2, T2 = φ1 ◦ f2 and T3 = φ2 ◦ f2, where φ1 and φ2 are the time t = ε(µ) maps
of the Hamiltonian flows of εĥ1 and εĥ2, respectively. Then the proof of Theorem 2.13 yields
the transitivity of the IFS G(T1, T2, T3).

Let q ∈ Rec(f2) ⊂ N such that there is a finite sequence (σi)
n
i=1 (σi ∈ {1, 2, 3}) and

Tσn ◦ Tσn−1 ◦ · · · ◦ Tσ1(q) ∈ T−2
1 (D).

We denote the set of all such points by Rµ.

Now, we consider

x = (xi) = (

Wu
loc(p̂)︷ ︸︸ ︷

. . . , 0, 0, 0 ;

IFS︷ ︸︸ ︷
a1, a2, . . . , an0 , 0, 0,

arbitrary︷ ︸︸ ︷
xn0+3, . . .),
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where for i = 1, 2, . . . , n0,

ai =


0, if σi = 1;

2l + 1, if σi = 2;

2l + 2, if σi = 3.

The elements of the sequence (xi) are chosen in such a way that fn0+1
1 (x) ∈ A0,0,

x ∈ Wu
loc(p̂, f1|Λ0

), and so (x, q) ∈ Wuu(p̂, q;Fµ|Γ). Moreover, the choice of a1, a2, . . . , an0

permits us to realize the IFS G(T1, T2, T3).

We now take the iterations of the point (x, q) under Fµ. Since Fµ restricted to Aai, J 1
×N

( J 1 = {0, 2l + 1, 2l + 2}) is equal to f1 × Tσi , inductively we have:

(f i1(x), Tσi ◦ Tσi−1 ◦ · · · ◦ Tσ1(q)) = F iµ(x, q) ∈Wuu(F iµ(p̂, q);Fµ).

In particular, for i = n0 + 1, Fn0+1
µ (x, q) ∈ B. So,

Wuu(Fn0+1
µ (p̂, q);Fµ) ∩ B 6= ∅.

Now we apply Proposition 3.17 which implies that for all n ∈ Z,

Wuu(Fnµ (p̂, q);Fµ) ∩ B 6= ∅.

Let Rµ be the set of all points q ∈ N such that the above intersection holds. Observe that we
just proved that Rµ ⊂ Rµ. The set Rµ is open, because B is open and the strong stable and
unstable manifolds depend continuously on the points. This completes the proof.

R 4.7. – Observe that the set Rµ has total Lebesgue measure. This follows from
the results proved in Section 2.2.

C 4.8. – Let µ > 0. Then there is an open and dense set R̂µ ⊂ Λ × N such
that for every x ∈ R̂µ and for any n ∈ Z it follows that Wuu(Fnµ (x)) ∩ B 6= ∅ and
W ss(Fnµ (x)) ∩ B 6= ∅.

Proof. – First observe that Theorem 4.5 and the minimality of the stable and unstable
foliations in the hyperbolic set Λ imply that W ss({p̂} ×N ;Fµ) and Wuu({p̂} ×N ;Fµ) are
dense in Λ×N . On the other hand, the strong unstable foliations (with leavesWuu(p̂, q;Fµ))
inside Wuu({p̂} × N ;Fµ) are continuous. Moreover, it follows from Proposition 4.6 that a
dense open subset of uu-leaves inWuu({p̂}×N ;Fµ) intersects B. The same statements hold
for the strong stable foliation.

Now, the density of Wuu({p̂} × N ;Fµ) and W ss({p̂} × N ;Fµ) in Λ × N and Proposi-
tion 3.17 imply the corollary.

Observe that Corollary 4.8 and Lemma 3.20 imply that H(P ;Fµ)
⋂
n∈Z F

n
µ (V ×N) = Λ×N ,

for any µ > 0. So it remains to show that the set H(P ;Fµ)
⋂
n∈Z F

n
µ (V × N) is robustly

topologically mixing.
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4.2.4. Robustness of H(P ;Fµ)
⋂
n∈Z F

n
µ (V ×N). – By the definition, we have to construct

an increasing sequence of compact invariant robust transitive sets, such that its union gives
Λ × N. For any positive integer L large enough, we consider the set R̂µ,L given by the
points in R̂ such that for any iterate, it holds that the strong stable and strong unstable
manifolds of diameter L are connected to the blender. Let us denote this set by ΓFµ,L. It
follows immediately that the set is compact invariant and is contained in the homoclinic class
of p. By the definition it also holds that

⋃
L>0 R̂µ,L = R̂. In the same way, and following the

details of the proof of Lemma 3.21 it holds that
⋃
L>0 ΓFµ,L = H(P ;Fµ)

⋂
n∈Z F

n
µ (V ×N).

To show that ΓFµ,L is robustly transitive for any L, observe that for any G nearby to Fµ
it holds that ΓG,L, defined as the set of trajectories with strong stable and strong unstable
manifolds of diameter L connected to the continuation of the blender for G, is in fact a
continuation of ΓFµ,L.

4.2.5. Continuation of compact parts. – Following the argument described in the previous
subsection, to conclude the last item of Theorem 4.1 it is enough to show that for any
compact subset K ⊂ Rµ, there exists L > 0 such that any point in K is connected to the
blender through the strong (stable and unstable) manifolds with diameter less thanL. In fact,
the invariant compact parts are given by Γµ,L

⋂
n∈Z F

n
µ (V ×N).

The proof of Theorem 4.1 is completed.

5. Proof of main theorems

5.1. Proof of Theorem A

Here we complete the proof of Theorem A.

Proof of Theorem A. – Observe that if F = f1×f2 satisfies the hypothesis of Theorem A
then it satisfies the hypothesis of Theorem 4.1. So, from Theorem 4.1 there exists a family
Fµ, µ ≥ 0 such that F0 = f1 × f2. Moreover, for any µ > 0, there exists a neighborhood Uµ
of Fµ such that any G ∈ Uµ satisfies the (1)-(3) of Theorem 4.1 and so (2) of Theorem A.
Let U =

⋃
µ>0 Uµ. Then U verifies (1) and any G ∈ U verifies (2). The proof of Theorem A

is completed.

5.2. Theorem B: Robust transitivity in nearly integrable diffeomorphisms

The proof is similar to the proof of Theorem A. However, using strongly the fact that the
map f2 is integrable, it is obtained that no exceptional set appears. More precisely, the stronger
conclusion follows from applying Theorem 2.11 instead of Theorem 2.13.

Proof of Theorem B. – By the assumption, f1 satisfies the H.S. hypothesis. So there exists
a neighborhood V ⊂M such that its maximal invariant set Λ is a transitive hyperbolic basic
set. Let f̃2 be an integrable diffeomorphism sufficiently close to f2 with a δ-weak hyperbolic
saddle point (with small δ > 0). Then, the diffeomorphisms f1, f̃2 satisfy the hypothesis of
Theorem 4.1. Here observe that we are assuming that f̃2 is integrable.

So, in order to prove Theorem B we adapt the proof of Theorem 4.1 (and Theorem A).
In fact, we do repeat the proof of Theorem 4.1 word by word, except in a few points to get a
slightly stronger conclusion. In the following we point out where the proof of Theorem 4.1
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needs changes. Beyond that part, the rest of the proof of Theorem 4.1 is repeated without
any change.

First, we choose an iterate k large enough such that fk1 |Λ is conjugate to a shift with
d symbols and d ≥ 2l + 2 dim(N) + 2.

Second, in the definition of perturbations (cf. Section 4.2.1), we modify the second group
of perturbations in order to apply Theorem 2.11 instead of Theorem 2.13 in the proof of
Proposition 4.6.

Since T0 := f̃2 is integrable, it follows from Theorem 2.11 that there are T1, . . . , Tm,
m := dim(N) + 1, arbitrarily close to f̃2 such that the IFS G(T0, T1, . . . , Tm) is minimal.
Similarly, we define T̂1, . . . , T̂m such that the IFS G(T−1

0 , T̂−1
1 , . . . , T̂−1

m ) is minimal.
We set J 1 = {0, 2l + 1, 2l + 2, . . . , 2l +m} and J 2 = {0, 2l +m+ 1, . . . , 2l + 2m}.
Then, we define the perturbation performed in the set A J 1, J 1

∪ A J 2, J 2
such that Fµ

restricted on A2l+j, J 1
× N is equal to f1 × Tj , for any j ∈ {1, . . . ,m}; and Fµ restricted

on A2l+m+j, J 1
×N is equal to f1 × T̂j , for any j ∈ {1, . . . ,m}.

Now, by adapting the proof of Proposition 4.6 we apply the minimality of the IFS
G(T0, T1, . . . , Tm) to prove the slightly stronger conclusion that Rµ = N . Consequently, in
Corollary 4.8 we obtain R̂µ = Λ × N which is a compact set. On the other hand, the sets
R̂µ,L are open in R̂µ. From

⋃
L>0 R̂µ,L = R̂ and compactness, it follows that for some large

L0 > 0, R̂µ,L0
= R̂µ = Λ × N . Therefore, ΓFµ,L0

= H(P ;Fµ)
⋂
n∈Z F

n
µ (V × N). Thus,

for any G close to Fµ, the strong continuation ΓG = ΓG,L0
is well defined and topologically

mixing (from Theorem 4.1), and it is homeomorphic to Γ.
In other words, we obtain the family of diffeomorphisms Fµ that F0 = f1 × f̃2, and for

µ > 0 the set Γ = Λ × N is robustly topologically mixing. This implies that there is a
neighborhood U f̃2

of the arc {Fµ|µ > 0} such that for anyG ∈ U f̃2
the (strong) continuation

ΓG of Γ is robustly topologically mixing and is a relative homoclinic class. It is clear that the
projection of ΓG to N is onto (it is homeomorphic to Λ×N ). Now let

U =
⋃
f̃2

U f̃2
,

where the union is taken over all integrable diffeomorphisms f̃2 sufficiently close to f2 and
with a saddle periodic point.

It is clear from definition that f1 × f2 is in the closure of U, and for any F ∈ U, there
exists a robustly topologically mixing set homeomorphic to the set Λ×N . So its projection
to N is surjective. This completes the proof.

5.3. Theorem C: Instabilities in nearly integrable Hamiltonians.

To prove Theorem C, we use the fact that the time one map of H0 satisfies the hypotheses
of Theorem A.

Proof of Theorem C. – Let M = Dm × Tm and N = Dn × Tn.
First we perturb the Hamiltonian h1 on M to obtain a transversal homoclinic intersec-

tion. Since h1 satisfies the A.H. condition, then there is a small perturbation h̃1 of h1 such
that the time one map f̃1 of its Hamiltonian flow has a nontrivial transitive hyperbolic invari-
ant set.
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Note that the time one map of the Hamiltonian flow of h2 is dominated by the restriction
of f̃1 to its hyperbolic basic set.

Then, we take another small integrable perturbation h̃2 of the integrable Hamiltonian h2

on N to create a δ-weak hyperbolic periodic point, for δ > 0 small enough.

Note that since the perturbations done in the proof of Theorem 4.1, A and B are per-
formed by Hamiltonian diffeomorphism and by symplectic changes of coordinates, those
theorems and proofs can easily be adapted for Hamiltonians.

Now we repeat the proof of Theorem A with the same changes we made in the proof of
Theorem B. Note that here the manifoldN is not compact so we obtain robust transitivity on
(strong) continuation of any compact subset of Γ. This completes the proof of Theorem C.

5.4. Theorem D: Slow-fast systems

Before giving the proof of Theorem D, let us recall a result due to Zehnder and Newhouse.

5.4.1. Theorem of Zehnder and Newhouse. – Recall that a periodic point p of f of period n
is called quasi-elliptic if Tpfn has a non-real eigenvalue of norm one, and all eigenvalues of
norm one are non-real. Indeed, Cr generically every periodic point is either hyperbolic or
quasi-elliptic (cf. [34], [31]). Note also that if f is Anosov, then robustly there is no quasi-
elliptic periodic point.

T 5.1 ([38, 31]). – There is a residual set R ⊂ Diffrω(M), 1 ≤ r ≤ ∞, such that if
f ∈R, then any quasi-elliptic periodic point of f is a limit of transversal homoclinic points of f .

Moreover, Cr generically, any elliptic point is the limit of a sequence of hyperbolic orbits
{pn} such that pn is a δn-weak hyperbolic point where δn → 0 as n → ∞ (cf. [31] and [6]).
Thus, Cr generically, existence of an elliptic periodic point implies the existence of a δ-weak
hyperbolic periodic point with arbitrarily small δ > 0.

Proof of Theorem D. – In order to prove Theorem D, it is enough to show that for a
sufficiently small ε > 0, Hε is approximated by a sum of two Hamiltonians whose time one
maps satisfy the hypotheses of Theorem A.

By assumption, h1 satisfies the H.S. condition. So, the time one map f1 of its Hamiltonian
flow has a hyperbolic basic set Λ. Then, there exists ε0 > 0 such that for any ε ∈ (0, ε0), the
time one map of the Hamiltonian flow of εh2, which we denote by f2, is dominated by f1|Λ.
Since, the domination is an open property, the same holds for any small perturbation of h2.

By assumption, the time one map of h2 has an elliptic periodic point, and so does time
one map of any small perturbation of h2. On the other hand, it follows from Section 5.4.1
that the time one map of the Hamiltonian flow of any generic perturbation h̃2 of h2, has an
elliptic periodic point which is the limit of a sequence of δ-weak hyperbolic periodic points
for arbitrarily small δ > 0.

Now, we choose ε = 1/k, where k ∈ N ∩ (1/ε0,∞). Then, f̃2, the time one map of the
Hamiltonian flow of εh̃2, has an elliptic periodic point which is the limit of a sequence of
δ-weak hyperbolic periodic points, for arbitrarily small δ > 0.
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Therefore, f1 and f̃2 satisfy the hypothesis of Theorem 4.1. Thus, there exists a smooth arc
of Hamiltonians beginning on h1 + εh̃2 such that the corresponding time one maps verify
the conclusion of Theorem 4.1.

Let H be the union of all such smooth arcs as h̃2 tends to h2. Clearly, Hε belongs to the
C∞ closure of H .

To finish the proof, we will show that for any α > 0, there is an open neighborhood V of
H that verifies (1) and (2) in thesis of the theorem.

Let H ∈ H , then its corresponding time one map verifies all the properties of some Fµ in
the proof of Theorem 4.1. Therefore, it is enough to show that the continuation of the set Γ

(in the proof of Theorem 4.1) satisfies (1), whenever the neighborhood V is sufficiently small.
This is a direct consequence of the following:

Let Rµ,L be the set of points in Rµ such that their strong stable and unstable manifolds
of diameter L are connected to the blender. Then, the same holds for the continuation of this
set for any nearby system.

Using Remark 4.7, the set Rµ =
⋃
L>0 Rµ,L =

⋃
L>0 ΓFµ,L ∩ ({p̂}×N) is not open and

dense but has total Lebesgue measure in {p̂} ×N . So, for L > 0 large enough, vol( Rµ,L) >

vol(N)− α/3.
In addition, the normally hyperbolic manifold {p̂}×N and its continuations areCr close.

Consequently, the volume of continuation of Rµ,L is close to vol( Rµ,L). So its projection to
N has volume > vol(N)− α.

Now, let Υ be the continuation of ΓFµ,L. So it is robustly topologically mixing and
contains the continuation of Rµ,L ⊂ ΓFµ,L. Therefore, the projection of Υ onN has volume
> vol(N)− α. This completes the proof of Theorem D.

5.5. Corollary E: Existence of ergodic measures

Proof of Corollary E. – In the proof of Theorem 4.1 we prove that the large transitive
set ΓG is in fact contained in the homoclinic class of some hyperbolic periodic point. In
[1, Theorem 3.1] it is proved that any homoclinic class coincides with the support of some
ergodic measure (with zero entropy). Consequently, the set ΓG is contained in the support of
some ergodic measure.

It seems interesting that the support of ergodic measures varies (lower-semi) continuously
in Hausdorff topology as the diffeomorphisms vary in Cr topology. This phenomenon sug-
gests a notion of “stable ergodicity”, weaker that the usual one (see also Section 6.3).

5.6. Dichotomy: wandering and instability versus recurrence and transitivity

In this section we are discussing the following dichotomy: Suppose that the assumption
(b) in Theorem 4.1 fails. Then, either there exist large robustly transitive sets as in Theorem 4.1
or there exist wandering orbits converging to infinity.

Before proving it, we need to state some lemmas.

L 5.2. – There is a residual subset R of int(Ω(f)) such that any point in R is a
(positively and negatively) recurrent point.
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Proof. – LetB = {Ui : i ∈ N} be a countable topological base in int(Ω(f)). For every
i ∈ N, there is ni ∈ N such that fni(Ui) ∩ Ui = ∅. Let xi ∈ Vi := f−ni(Ui) ∩ Ui. Since
Bk = {Ui : i ≥ k} is also a topological base, the set {xi}∞r=k is dense in int(Ω(f)). So⋃∞
i=k Vi is an open and dense subset of int(Ω(f)). Then, R+

:=
⋂∞
k=1

⋃∞
i=k Vi is residual.

We claim that R+ ⊂ Rec+(f). SinceB is a topological base, for any ε > 0 there is a kε such
that, if i > kε then diam(Ui) < ε. Now, for any x ∈ R+ and for i > kε, x ∈ Vi. So there
is ni ∈ N such that, d(fni(x), x) < diam(Ui) < ε. Since ε > 0 was arbitrary, this implies
that x is a positively recurrent point. We could do it for f−1 to obtain a residual subset R−

of negatively recurrent points. Any point in the residual set R = R− ∩ R+ is positively and
negatively recurrent.

R 5.3. – It follows from this lemma that if the non-wandering set of a diffeomor-
phism has (large) non-empty interior, as in the case of Theorem 2.13, there is an iterated func-
tion system of its nearby systems exhibiting transitivity in the interior of the non-wandering
set.

We say that a point x converges to infinity if for any compact set U there is a number n0

such that for any n > n0, fn(x) /∈ U .
The following lemma is a corollary of a variation of Poincaré Recurrence Theorem for

unbounded measures (due to Hopf, cf. [26]) which yields that for conservative homeomor-
phisms on manifolds with unbounded measure, almost all points either are recurrent or con-
verge to infinity.

L 5.4. – Let f be a conservative homeomorphism on a non-compact manifold with
unbounded volume. Then almost all points in Ω(f){ converge to infinity, in the future and also
past iterations.

Proof of the dichotomy. – It follows from Lemma 5.4 that almost all points in N \Ω(f2)

converge to infinity (for future and past iterations). Assume that Ω(f2) = N , but for some
f̃2 close to f2, Ω(f̃2) ( N .

We show that the same statement about transitivity and topologically mixing as the one in
Theorem 4.1 (or Theorem A) holds in the interior of Ω(G) for anyG close to the constructed
family Fµ. Indeed, we use the hypothesis Ω(f̃2) = N only in the last step of the proof of
Theorem 4.1, where we apply Lemma 3.21 which requires recurrence.

So we may repeat the proof of Theorem 4.1 to construct the family Fµ. Let us fix
L > 0 large enough and define ΓFµ,L as in Section 4.2.4. For a G close to Fµ, we may apply
Theorem 4.5, and so ΓG, the continuation of Λ × N , is well defined. As in Section 4.2.4,
let ΓG,L be the set defined by the set of trajectories with strong stable and strong unstable
manifolds of diameter L connected to the blender. By the continuity of the strong stable and
unstable foliations we see that ΓG,L is close to ΓFµ,L in the Hausdorff topology.

Let Γ̃L be the interior of ΓG,L ∩Ω(G) in ΓG. We show that Γ̃L is (robustly) topologically
mixing.

If Γ̃L = ΓG,L, then we may apply Lemma 5.2 for G restricted to the continuation of
{p̂} × N , and the proof of Theorem 4.1 without any change can be repeated, obtaining
therefore the transitivity (and topological mixing) of ΓG.
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Otherwise, assume that Γ̃L ( ΓG,L. Now, recall that the periodic center fibers are dense in
ΓG. For any periodic fiber Ñx of period j in ΓG, almost all points in the interior of Ω(Gj |Ñx)

in Ñx are recurrent. So ΓG,L
⋂

int(Ω(Gj |Ñx)) is contained in the homoclinic class of the
periodic point PG. This implies that Γ̃L is contained in the homoclinic class of the periodic
pointPG and so it is topologically mixing. This means in particular that topologically mixing
property holds in the interior of non-wandering set of G.

In fact, we have proved a stronger statement: it holds in the interior of Ω(G) in ΓG. On
the other hand, almost all points in the complement of these sets converge to infinity. This
completes the proof of the dichotomy.

6. Some remarks and open problems

Several natural questions arise from the main results of this paper. Here we just mention
a few of them.

6.1. Are hypotheses of Theorem A optimal?

As we mentioned after the statement of Theorem A we wonder if its hypotheses are
optimal. These speculations are based upon several results proved in the C1 topology:

1. It has been shown that any robustly transitive invariant sets of symplectic diffeomor-
phisms on compact manifolds are partially hyperbolic [9, 16, 20, 35]. This means that,
the hypothesis (b) is not avoidable to obtain robustness of transitivity (see also Sec-
tion 6.2).

2. It has been conjectured that any symplectic diffeomorphism isCr approximated either
by an Anosov or by a diffeomorphism with a quasi-elliptic periodic point. The case
r = 1 has been proved by Newhouse [31]. On the other hand, from Theorem 5.1 it
follows that any diffeomorphism having a quasi-elliptic periodic point is Cr approx-
imated by one exhibiting a transversal homoclinic point. Consequently, a C1 generic
diffeomorphism f1 satisfies the hypothesis (a). Moreover, if dim(N) = 2, a generic dif-
feomorphism f2 either satisfies the hypothesis (c) or is an Anosov system and so the
conclusions of Theorem A follow. This means that, up to the mentioned conjecture,
for generic systems the only essential assumption in Theorem A is the hypothesis (b).

6.2. Transitivity and partial hyperbolicity

The first question concerns the genericity of robustly mixing partially hyperbolic sets.
Theorem A suggests that the answer of the following problem would be positive.

P 6.1. – Does there exist a residual set R ⊂ Diffrω(M), 1 ≤ r ≤ ∞, such that if
f ∈R, then any normally hyperbolic invariant submanifoldN for f with transversal intersection
between its stable and unstable manifolds is topologically mixing, provided thatN ⊂ int(Ω(f))?

As in the case of C1 topology (see [16], [9] and [20]), we believe that the partial hyperbol-
icity condition is necessary for Cr robustness of mixing.

P 6.2. – Let (M,ω) be a symplectic manifold. Suppose that Γ is a robustly topo-
logically mixing invariant set for f in Diffrω(M). Is it a partially hyperbolic set?
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The previous problem is also related to the Cr stability conjecture which is still open for
r ≥ 2.

6.3. Ergodicity and stable ergodicity

In the context of Theorem A, it follows that for any symplectic diffeomorphism G close
to f1 × f2, there is a natural invariant measure ρ

G
supported on the continuation of Λ×N ,

which has the form of skew product of the volume on the central fibers over the Bernoulli
measure on shift. So, one may ask about the ergodicity of this measure:

P 6.3. – Is it possible to approximate the product f1× f2 of Theorem A in the C∞

topology by a symplectic diffeomorphism G for which the invariant measure ρ
G

supported on
the continuation of Λ×N is ergodic or stably ergodic?

In most works about stable ergodicity, a main step is proving (stable) accessibility (cf. [32],
[11]). Accessibility, roughly speaking, means that any pair of points of a partially hyperbolic
set are joined by a piecewise smooth arc that locally lies in the stable or unstable manifolds
of its points. The “global” partial hyperbolicity is a fundamental assumption in all results
involving “stable” accessibility. So, Problem 6.3 asks for new methods. More generally, it
highlights the need of a theory for non-global stable ergodicity.

6.4. Iterated function systems

Motivated by results in Section 2.2, it is possible to formulate a series of problems for
generic IFS.

P 6.4. – Is the iterated function system of any Cr-generic pair of symplectic
diffeomorphisms robustly transitive (or topologically mixing, robustly topologically mixing,
minimal)?

Some progress on this problem has been done very recently in [24] for the case of surface
diffeomorphisms.

P 6.5. – Is the iterated function system of any Cr-generic pair of conservative or
symplectic diffeomorphisms ergodic (or stably ergodic, mixing, etc.)?

Results in this direction would be very helpful to study the dynamics of certain partially
hyperbolic sets.
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6.5. Other contexts

We believe that the methods developed here could be applied in other contexts, somehow
with mechanical meanings. We list a few ones.

Analytic symplectic and Hamiltonian systems. The perturbations involved in the present
paper are typically Cr for any r ≥ 1. However, we believe that some of them could be
performed in the analytic context, specially the ones involving the creation of blenders.

The dynamics near the (quasi) elliptic periodic points in dimensions ≥ 4. The dynamic
near elliptic periodic points could display transversal homoclinic intersections associated to
a hyperbolic periodic point (with a hyperbolic part dominating a δ−weaker hyperbolic one).
This situation is similar to the one in Theorem A.

Perturbations of time independent Hamiltonian systems by periodic potentials. Observe that
in Theorem C, the second Hamiltonian is time independent and it is perturbed by a time
periodic one. It is natural to wonder if the same approach can be performed for the case that
the perturbation is given by a time periodic potential.

Generic energy levels of time independent Hamiltonian systems. Observe that some of the
Hamiltonians involved in Theorem C are time periodic. The goal, therefore, would be to
extend some of the present results to the time independent context.

Specific mechanical problems. Of course, it would be essential to try to apply the present
theorems to a concrete mechanical problem. We wonder if improvement of our results can
be useful in these mechanical models with the goal to obtain robust transitivity. Of course,
a major challenge would be to apply the present approach to the context of the restricted
3-body problem.

Perturbations of geodesic flows on surfaces by periodic potentials. It is natural to try to
extend the results about robust transitivity to the case of a metric perturbed by a time periodic
potential.

Geodesic flows on manifolds of dimensions larger than two. A natural context for this
problem is to consider warped product (close to a direct product) between a metric of
negative curvature with the spherical metric. Locally, the new metric resembles the product
of a hyperbolic system with an integrable one.
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