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THE SIGNATURE PACKAGE ON WITT SPACES

BY PierrE ALBIN, Eric LEICHTNAM, RAFE MAZZEO
AND PaoLo PIAZZA

ABSTRACT. — In this paper we prove a variety of results about the signature operator on Witt
spaces. First, we give a parametrix construction for the signature operator on any compact, oriented,
stratified pseudomanifold X which satisfies the Witt condition. This construction, which is inductive
over the ‘depth’ of the singularity, is then used to show that the signature operator is essentially
self-adjoint and has discrete spectrum of finite multiplicity, so that its index—the analytic signature
of X -—is well-defined. This provides an alternate approach to some well-known results due to Cheeger.
We then prove some new results. By coupling this parametrix construction to a C;:T" Mishchenko
bundle associated to any Galois covering of X with covering group I', we prove analogues of the
same analytic results, from which it follows that one may define an analytic signature index class as
an element of the K-theory of CT". We go on to establish in this setting and for this class the full
range of conclusions which sometimes goes by the name of the signature package. In particular, we
prove a new and purely topological theorem, asserting the stratified homotopy invariance of the higher
signatures of X, defined through the homology L-class of X, whenever the rational assembly map
K.(BT')® Q — K.(C;T) ® Qis injective.

REsSUME. — Dans cet article nous prouvons plusieurs résultats pour I’opérateur de la signature sur
un espace de Witt X compact orienté quelconque. Nous construisons une paramétrix de ’opérateur
de la signature de X en raisonnant par récurrence sur la profondeur de X et en utilisant une analyse
trés fine de 'opérateur normal (prés d’une strate). Ceci nous permet de montrer que le domaine
maximal de ’opérateur de la signature est compactement inclus dans I’espace L? correspondant. On
peut alors (re)démontrer que 'opérateur de la signature est essentiellement self-adjoint et a un spectre
L? discret de multiplicité finie de sorte que son indice est bien défini. Nous donnons donc une nouvelle
démonstration de certains résultats dus a Jeff Cheeger. Nous considérons ensuite le cas ou X est muni
d’un revétement galoisien de groupe I'. Nous utilisons alors nos constructions pour définir la classe
d’indice de signature analytique a valeurs dans le groupe de K -théorie K. (C;T"). Nous généralisons
dans cette situation singuliére la plupart des résultats connus dans le cas ou X est lisse. C’est ce
qu’on appelle le « forfait signature ». En particulier, nous prouvons un nouveau théoréme, purement
topologique, qui permet de prouver l'invariance par homotopie stratifiée des hautes signatures de
X (définies a I'aide de la L—classe homologique de X) pourvu que I'application d’assemblement
rationnelle K. (BT") ® Q — K. (C;T') ® Q soit injective.
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1. Introduction

Let X be an orientable closed compact Riemannian manifold with fundamental group I'.
Let X’ be a Galois I'-covering and r : X — BT a classifying map for X’. The signature
package for the pair (X, r: X — BT') refers to the following collection of results:

1. the signature operator with values in the Mishchenko bundle * ET' xp CT" defines a
signature index class Ind(gsign) € K,(CT), x = dim X (mod 2);

2. the signature index class is a bordism invariant; more precisely it defines a group
homomorphism Q5 (BT) — K, (C;T);

3. the signature index class is a homotopy invariant;

4. there is a K-homology signature class [Jsign] € K.(X) whose Chern character is,
rationally, the Poincaré dual of the L-Class;

5. the assembly map § : K, (BI') — K, (C/T) sends the class 7,[0s;gn] into Ind(%sign);

6. if the assembly map is rationally injective, one can deduce from (1) - (5) that the
Novikov higher signatures

{L(X)Ur*a,[X]), « € H*(BT,Q)}
are homotopy invariant.

We call this list of results, together with the following item, the fu// signature package:

(7) there is a (C*-algebraic) symmetric signature oc-r(X,r) € K,(C;T"), which is topo-
logically defined, a bordism invariant ocsp : Q°(BT') — K, (C;T) and, in addition,
is equal to the signature index class.

For history and background see [16] [51] and for a survey we refer to [30].

The main goal of this paper is to formulate and establish the signature package for a class of
stratified pseudomanifolds known as Witt spaces. In particular, we prove by analytic methods
a new and purely topological result concerning the stratified homotopy invariance of suitably
defined higher signatures under an injectivity assumption on the assembly map for the group T'.

The origins of the signature package on a closed oriented manifold X can be traced back
to the Atiyah-Singer proof of the signature formula of Hirzebruch, oo, (X) = £(X) =
(L(X), [X]). In this proof the central object is the Fredholm index of the signature operator
which is proved to be simultaneously equal to the topological signature of the manifold
otop(X) and to its L-genus £(X):

Utop(X) = ind(6sign) = Z)(X) .

The idea of using index theory to investigate topological properties of X received new
impetus through the seminal work of Lusztig, who used the family index theorem of Atiyah-
Singer in order to establish the Novikov conjecture on the homotopy invariance of the higher
signatures of X when 71 (X) = ZF. Most of the signature package as formulated here can be
seen as a noncommutative version of the results of Lusztig. Crucial in the formulation and
proof of the signature package are the following issues:

— the Poincaré duality property for the (co)homology of X and more generally, the
Algebraic Poincaré Complex structure of its (co)chain complex;

— the possibility of defining bordism groups Q5°(T'), T' a topological space, with cycles
given by closed oriented manifolds endowed with a reference map to T’
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— an elliptic theory which allows one to establish the analytic properties of Ogign and then
connect them to the topological properties of X;

— the possibility of extending this elliptic theory to signature operators twisted by a bun-
dle of finitely generated projective A-modules, where A is a C*-algebra. The prototype
is the signature operator 5sign twisted by the Mishchenko bundle r*ET" xp CT'.

Once one moves from closed oriented manifold to stratified pseudomanifolds, many of
these issues need careful reformulation and substantially more care. First, it is well-known
that Poincaré duality fails on a general stratified pseudomanifold X. Next, the bordism group
Qpseudo(T) " the cycles of which are arbitrary stratified pseudomanifolds endowed with a
reference map to 7', is not the right one; indeed, as explained in [4], the coefficients of such a
theory, Q2P*ud°(point), are trivial. Finally, the analytic properties of the signature operator
on the regular part of a stratified pseudomanifold endowed with an ‘incomplete iterated edge
metric’ (which is a particularly simple and natural type of metric that can be constructed
on such a space) are much more delicate than in the closed case. In particular, this operator
may not even be essentially self-adjoint, and the possibility of numerous distinct self-adjoint
extensions complicates the possible connections to topology.

The first problem has been tackled by Goresky and MacPherson in the topological setting
[20] [21] and by Cheeger in the analytic setting [11] [12] (at least for the particular subclass
of stratified pseudomanifolds we consider below). The search for a cohomology theory on
such spaces with some vestiges of Poincaré duality led Goresky and MacPherson to their
discovery of intersection (co)homology groups, IH; (5(\ ,Q), where pis a ‘perversity function’,
and to the existence of a perfect pairing

IH(X,Q) x IH:(X,Q) — Q

where p and ¢ are complementary perversities. Notice that we still do not obtain a signature
unless the perversities can be chosen the same, i.e. unless there is a perfect pairing

IH,(X,Q) x IH};,(X,Q) — Q

for some perversity function m. Witt spaces constitute a subclass of stratified pseudomani-
folds for which all of these difficulties can be overcome.

A stratified pseudomanifold X is a Witt space if any even-dimensional link L satisfies
[HAm L/ 2(L, Q) = 0, where m is the upper-middle perversity function. Examples of Witt
spaces include any singular projective variety over C. We list some particularly interesting
properties of Witt spaces:

the upper-middle and lower-middle perversity functions define the same intersection
cohomology groups, which are then denoted by IH}, (X);
there is a perfect pairing

IH}(X,Q) x IH;,(X,Q) - Q;

in particular, there is a well defined intersection cohomology signature;
there are well-defined and nontrivial Witt bordism groups QWVit*(T") (for example, these
are rationally isomorphic to the connected version of K O-homology, ko(T") ®z Q);
there is a class of Riemannian metrics on the regular part of X for which

e the signature operator is essentially self-adjoint
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o its unique self-adjoint extension has discrete spectrum of finite multiplicity
e there is a de Rham-Hodge theorem, connecting the Hodge cohomology, the
L?-cohomology and the intersection cohomology IH?, (X, C).

The topological results here are due to Goresky-MacPherson and Siegel. The analytic results
are due initially to Cheeger, though there is much further work in this area, see, for example,
[9], [39], [27], [54]. Cheeger’s results on the signature operator are based on a careful analysis
of the heat kernel of the associated Laplacian.

We have a number of goals in this article:

we give a new treatment of Cheeger’s result on the signature operator based on the
methods of geometric microlocal analysis;

this approach is then adapted to the signature operator &ign with value in the
Mishchenko bundle r* ET' xr C;T;

we carefully analyze the resulting index class, with particular emphasis on its stability
property;

we collect this analytic information and establish the whole range of results encom-
passed by the signature package on Witt spaces. In particular, we prove a Novikov con-
Jecture on Witt spaces whenever the assembly map for the fundamental group is ratio-
nally injective. We note again that this is a new and purely topological result.

This article is divided into three parts. In the first one, we give a detailed account of
the resolution, through a series of blowups, of an arbitrary stratified pseudomanifold (not
necessarily satisfying the Witt condition) to a manifold with corners. This has been studied
in the past, most notably by Verona [59]; the novelty in our treatment is the introduction of
iterated fibration structures, a notion due to Melrose, as an extra structure on the boundary
faces of the resolved manifold with corners. We also show that a manifold with corners
with an iterated fibration structure can be blown down to a stratified pseudomanifold. In
other words, the classes of stratified pseudomanifolds and of manifolds with corners with
iterated fibration structure are equivalent. Much of this material is based on unpublished
work by Richard Melrose, and we are grateful to him for letting us use and develop these
ideas here. We then describe the (incomplete) iterated edge metrics, which are the simplest
type of incomplete metrics adapted to this class of singular space. We show in particular
that the space of such metrics is nonempty and path-connected. We also consider, for any
such metric, certain conformally related complete, and ‘partially complete’ metrics used in
the ensuing analysis.

The second part of this article focuses on the analysis of natural elliptic operators, specif-
ically, the de Rham and signature operators, associated to incomplete iterated edge metrics.
Our methods are drawn from geometric microlocal analysis. Indeed, in the case of simply
stratified spaces, with only one singular stratum, there is a very detailed pseudodifferential
theory [41] which can be used for problems of this type, and in the even simpler case of man-
ifolds with isolated conic singularities, one may use the somewhat simpler b-calculus of Mel-
rose, see [44]. In either of these cases, a crucial step is to consider the de Rham or signature
operator associated to an incomplete edge or conic metric as a singular factor multiplying
an elliptic operator in the edge or b-calculus, and then to study this latter, auxiliary, operator
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using methods adapted to the geometry of an associated complete metric g on the interior
of the resolved space X.

This idea was employed by Gil and Mendoza [19] in the conic case, where X is a manifold
with boundary and g is a b-(or asymptotically cylindrical) metric, and also by Hunsicker and
Mazzeo [27], for Witt spaces with simple edge singularities. We sketch this transformation
briefly in these two cases.

First suppose that ()/(\ ,9) is a space with isolated conic singularity. Then we can write
Osign = r~1D, where D is an elliptic differential b-operator of order 1; in local coordinates
r>0and zon F (so F = 0X),

(1.1) D = A(r, 2) (r0, + Osign,r) -

The second term on the right is the signature operator on the link F. Thus D defines a
b-operator on X. Mapping properties of the signature operator and regularity properties for
solutions of Oisnu = 0 are consequences of the corresponding properties for D, which can
be studied using the calculus of pseudodifferential b-operators.

Next, suppose that X has a simple edge singularity; then X is a manifold with fibered
boundary and § = r~2g is a complete edge metric, where r is the distance to the singular
stratum in (5(\ ,9). Here t00, dsign = r~' D where D is an elliptic edge operator. Locally, using
coordinates (r, y, z), where r is as above (hence is the radial variable in the cone fibres), and
z € F and y are coordinates on the edge, we have

(1.2) D= A(r,y, 2) (T&» + Z B;(r,y, 2)rdy, + 5sign7p) .

Thus D is an elliptic differential edge operator on X in the sense of [41], and the pseudodif-
ferential edge calculus from that paper can be used to obtain all necessary properties of Ggigp.

One of the main elements in the b-and edge calculi is the use of model operators associated
to an operator such as D. In the b-calculus, D is modeled near the cone point by its indicial
operator; in the edge calculus, D has two models: its indicial operator and its normal opera-
tor. The latter captures the tangential behavior of D along the edge, as well as its asymptotic
behavior in the 7 and z directions. Their mapping properties, as determined by the construc-
tion of inverses for them, are key in understanding the analytic properties of D and hence
of 5sign-

For iterated edge spaces, we proceed in a fairly similar way, using an inductive pro-
cedure. Let ()/(\ ,g) be an iterated edge space and Y a stratum of maximal depth, so that
Y is a compact smooth manifold without boundary and some neighborhood of Y in X
is a cone bundle over Y with each fibre a cone over a compact space F. If this maxi-
mal depth is greater than one, then F is an iterated edge space with depth one less than
that of X. If 7 is the radial coordinate in this cone bundle, then Oggn = r~1D where
D = A(r,y,z) (ro, + > Bi(r,y, 2)r0y, + Osign,r). Here Ogign r is the signature operator
on F, and is an iterated edge operator. The gain is that since F' is one step ‘simpler’ than
X , by induction we can assume that the analytic properties of Ogen r are already known,
and from these we deduce the corresponding properties for Jsign 0n X. Notice that we are
conformally rescaling in only the ‘final’ radial variable and appealing to the gecometry of the
partially complete metric 7~2g on the complement of Y in X.
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Ideally, at this stage we could appeal to a complete pseudodifferential calculus adapted to
this iterated edge geometry. Such a calculus does not yet exist, but we can take a shorter route
for the problems at hand. Rather than developing all aspects of this pseudodifferential theory
at each step of this induction, we develop only certain parts of the Fredholm and regularity
theory for the signature operator, and phrase these in terms of a priori estimates rather than
the sharp structure of the Schwartz kernel of a parametrix for it. By establishing the correct
set of estimates at each stage of the induction, we can prove the corresponding estimates for
spaces of one greater depth. This involves analyzing the normal and indicial operators of the
partial completion of Tien, and uses the Witt hypothesis in a crucial way.

As noted earlier, an important feature of this approach is that it carries over directly when
Osign is coupled to a C* bundle. Hence the main theorem in the higher setting can be deduced
with little extra effort from the techniques used for the ordinary case. This is a key motivation
for developing a geometric microlocal approach to replace the earlier successful methods of
Cheeger. The fact that such techniques are well suited to this higher setting has already played
arole, for example, on manifolds with boundary, cf. the work of Leichtnam, Lott and Piazza
[34] on the Novikov conjecture on manifolds with boundary and the survey [37].

This leads eventually to our main analytic and topological theorems:

THEOREM 1.1. — Let X be any smoothly stratified pseudomanifold satisfying the Witt
hypothesis. Let g be any adapted Riemannian metric on the regular part of X. Denote by
0 = d + ¢ either the Hodge-de Rham operator O4r, or the signature operator Ogign associated
to g. Then:

1) As an unbounded operator on C°(X,"°A*(X)) C L2,
closed extension, hence is essentially self-adjoint.
2) For any e > 0, the domain of this unique closed extension, still denoted 0, is contained in

P LA AT (X)) 1 Hibo (X3 7A" (X))

iie

(X;HeA* (X)), O has a unique

which is compactly included in L2, (X;1°A*(X)).
3) As an operator on its maximal domain endowed with the graph norm, 9 is Fredholm.

4) O has discrete spectrum of finite multiplicity.

Items 1), 3) and 4) have been proved by Cheeger [13] (using the heat-kernel) for metrics
quasi-isometric to a piecewise flat one.

THEOREM 1.2. — There is a well defined signature class [Ogign] € K*(X\) % = dim X
(mod 2), which is independent of the choice of the adapted metric on the regular part of X.
When dim X is even, the index of the signature operator is well-defined.

If X' — X is a Galois covering with group T and r : X — BT is the classifying map,
then the signature operator 5sign with coefficients in the Mishchenko bundle, together with the
CT'-Hilbert module L%Q7F(X ; i° A% X)) define an unbounded Kasparov (C, C;T)-bimodule and
hence a class in KK, (C, C;T") =K, (CT), which we call the index class associated to 5Sign and
denote by Ind(%sign) € K. (C!T). If [[Osign]] € KK, (C()/(\) ® CIT', CxT) is the class obtained
Sfrom [Ogign] € KK, (C (X),C) by tensoring with C;T, then Ind(%sign) is equal to the Kasparov
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product of the class defined by the Mishchenko bundle [C*T] € KK, (C, C()A() ® CIT') with
[[Osignl]-

(1.3) Ind(sign) = [C2T] ® [[Dsign]]

In particular, the index class Ind(%sign) does not depend on the choice of the adapted metric
on the regular part of X. Finally, if B : K.(BT') — K.(C}T) denotes the assembly map in
K-theory, then

(1.4) B(74[Dsign]) = Ind(Dgign) in K.(CIT).

These theorems establish property 1), the first part of property 4) and property 5) of the
signature package on Witt spaces. The rest of the signature package is proved in the third
part of this paper.

The Witt bordism invariance of the signature index class Ind(%sign) in K, (CT) is proved
using K K -techniques, just as in the closed case.

The proof that Ind(%sign) € K.(C}T) is a stratified homotopy invariant is more difficult.
In Section 9 we follow the strategy of Hilsum and Skandalis, but encounter extra complica-
tions caused by the smgular structure of X . To deal with these we use the 1nterplay between
the compact singular space X with its incomplete metric and its resolution X with the con-
formally related complete metric.

The equality of the Chern character of the signature K-homology class [Jsign] € K. ()/(\ )
with the homology L-class L*(j(\ ) had already been proved by Moscovici and Wu using
Cheeger’s methods, and we simply quote their result. The stratified homotopy invariance of
the higher signatures, defined as the collection of numbers

{{a, . (L.(X))), a€ H*(BT,Q)},

is proved in Section 10 under the hypothesis that the assembly map (3 is rationally injec-
tive. Finally, in Section 11 we prove the (rational) equality of our index class Ind(Osign)

in K,(C;T) with the C*T-symmetric signature o ¥it!(X) obtained from the one recently

defined by Banagl in L*(QT). The Witt-bordism invariance of Ind(dgiz,) and UW‘%t (X)
plays a fundamental role in the proof of this last item in the signature package.

In the brief final section, we explain where the proof of each item in the signature package
may be found in this paper.

Finally, we remark that since the appearance of this paper another approach to the
stratified homotopy invariance of the symmetric signature of a Witt space has appeared [18].
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2. Stratified spaces and resolution of singularities

This section describes the class of smoothly stratified pscudomanifolds. We first recall the
notion of a stratified space with ‘control data’; this is a topological space which decomposes
into a union of smooth strata, each with a specified tubular neighborhood with fixed product
decomposition, all satisfying several basic axioms. This material is taken from the paper of
Brasselet-Hector-Saralegi [7], but see Verona [59] and Pflaum [49] for more detailed exposi-
tions. We also refer the reader to [40], [26], [4] and [31]. Definitions are not entirely consistent
across those sources, so one purpose of reviewing this material is to specify the precise defini-
tions used here. A second goal here is to prove the equivalence of this class of smoothly strati-
fied pseudomanifolds and of the class of manifolds with corners with iterated fibration struc-
tures, as introduced by Melrose. The correspondence between elements in these two classes is
by blowup (resolution) and blowdown, respectively. We introduce the latter class in §2.2 and
show that any manifold with corners with iterated fibration structure can be blown down to a
smoothly stratified pseudomanifold. The converse, that any smoothly stratified pseudoman-
ifold can be blown up, or resolved, to obtain a manifold with corners with iterated fibration
structure, is proved in §2.3; this resolution was already defined by Brasselet et al. [7], cf. also
Verona [59], though those authors did not phrase it in terms of the fibration structures on the
boundaries of the resolution. The proper definition of isomorphism between these spaces is
subtle; we discuss this and propose a suitable definition, phrased in terms of this resolution,
in §2.4. This alternate description of smoothly stratified pseudomanifolds also helps to elu-
cidate certain notions such as the natural classes of structure vector fields, metrics, etc.

2.1. Smoothly stratified spaces

DEFRINITION 1. — A stratified space X is a metrizable, locally compact, second countable
space which admits a locally finite decomposition into a union of locally closed strata & = {Y, },
where each Yy, is a smooth (usually open) manifold, with dimension depending on the index a.
We assume the following:

) IfY,,Ys €GandY,NYs # O, thenY, C Y.
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il) Each stratum Y is endowed with a set of ‘control data’ Ty, wy and py; here Ty is a
neighborhood of Y in X which retracts onto Y, my : Ty — Y is a fixed continuous
retraction and py : Ty — [0, 2) is a proper ‘radial function’ in this tubular neighborhood
such that p;l(O) =Y. Furthermore, we require thatif Z € & and Z N Ty # O, then

(’H'y,py)ZTymZ—>YX [0,2)

is a proper differentiable submersion.
i) W)Y, Z € 6, andifp € Ty NTzNW and rz(p) € Ty N Z, then wy (wz(p)) = wy (p)
and py (1z(p)) = py (p).
) IfY,Z € G, then
YNZ#oeTyNZ#02,
TyNTz#20wYCZ,Y=Zo0rZCY.

v) For each’Y € G, the restriction my : Ty — Y is a locally trivial fibration with fibre
the cone C(Ly) over some other stratified space Ly (called the link over'Y ), with atlas
Uy = {(p, U)} where each ¢ is a trivialization w3, ' (U) — Ux C(Ly ), and the transition
functions are stratified isomorphisms (in the sense of Definition 4 below) of C(Ly ) which
preserve the rays of each conic fibre as well as the radial variable py itself, hence are
suspensions of isomorphisms of each link Ly which vary smoothly with the variabley € U.

If'in addition we let X; be the union of all strata of dimensions less than or equal to j, and
require that

vi) X=X,2X,,.1=X, 22X, 32 -2 Xgand X \ X,,—2 is dense in X
then we say that X is a stratified pseudomanifold.

Some of these conditions require elaboration:

e The depth of a stratum Y is the largest integer k such that there is a chain of strata
Y = Y,...,YywithY; C Y forl < j < k. A stratum of maximal depth is always
a closed manifold. The maximal depth of any stratum in X is called the depth of X as a
stratified space. (Note that this is the opposite convention of depth from that in [7].)

We refer to the dense open stratum of a stratified pseudomanifold X asits regular set, and
the union of all other strata as the singular set,

reg()/(\) = 5(\\ sing(jf\), where sing(f(\) = U Y.

YeS
depth Y >0

e If X and X' are two stratified spaces, a stratified isomorphism between them is a
homeomorphism F : X — X’ which carries the open strata of X to the open strata of X’
diffeomorphically, and such that w%(y)) oF = Fomy, py = ppyyo FforallY € 6(X).
(We shall discuss this in more detail below.)

o If Z is any stratified space, then the cone over Z, denoted C(Z), is the space Z x R
with Z x {0} collapsed to a point. This is a new stratified space, with depth one greater than
Z itself. The vertex 0 := Z x {0}/ ~ is the only maximal depth stratum; 7 is the natural
retraction onto the vertex and pg is the radial function of the cone.

e There is a small generalization of the coning construction. For any ¥ € &, let
Sy = py'(1). This is the total space of a fibration my : Sy — Y with fibre Ly . Define
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the mapping cylinder over Sy by Cyl (Sy,my) = Sy x [0,2)/ ~ where (¢,0) ~ (c/,0) if
7y (¢) = my(c’). The equivalence class of a point (¢, ) is sometimes denoted [c, t], though
we often just write (c, ¢) for simplicity. Then there is a stratified isomorphism

Fy : Cyl(Sy,ny) — Ty;

this is defined in the canonical way on each local trivialization % x C(Ly) and since the
transition maps in axiom v) respect this definition, Fy is well-defined.

e Finally, suppose that Z is any other stratum of X with Ty N Z # &, so by axiom iv),
Y ¢ Z. Then Sy N Z is a stratum of Sy-.

We have been brief here since these axioms are described more carefully in the references
cited above. Axiom v) is sometimes considered to be a consequence of the other axioms. In
the topological category (where the local trivializations of the tubular neighborhoods are
only required to be homeomorphisms) this is true, but the situation is less clear for smoothly
stratified spaces, so we prefer to leave this axiom explicit. Let us direct the reader to [40] and
[26] for more on this.

We elaborate further on the definition of stratified isomorphism. This definition is strictly
determined by the control data on the domain and range, i.e. by the condition that F'
preserves the product decomposition of each tubular neighborhood. It is nontrivial to prove
that the same space X endowed with two different sets of control data is isomorphic in
this sense. There are other even more rigid definitions of isomorphism in the literature.
The one in [49] requires that the spaces X and X’ are differentiably embedded into some
ambient Euclidean space, and that the map F' locally extends to a diffeomorphism of these
ambient spaces. For example, let X be a union of three copies of the half-plane R x R,
as follows. The first and second ones are embedded as {(z,y,2) : z = 0,y > 0} and
{(z,y,2) : y = 0,z > 0}, while the third is given by {(z,y,2) : y = rcosa(x),
z = rsina(z),r > 0} where a : R — (0,7/2) is smooth. In other words, this last sheet
is the union of a smoothly varying family of rays orthogonal to the z-axis, with slope a(z) at
each slice. Requiring a stratified isomorphism to extend to a diffeomorphism of the ambient
R3 would make these spaces for different functions a(x) inequivalent. We propose a different
definition below which has various advantages over either of the ones above.

2.2. Iterated fibration structures

The definition of an iterated fibration structure was proposed by Melrose in the late ’90’s
as the boundary fibration structure in the sense of [43] associated to the resolution of an
iterated edge space (what we are calling a smoothly stratified space). It has not appeared
in the literature previously (though we can now refer to [1], which was finished after the
present paper), and we are grateful to him for allowing us to present it here. The passage to
this resolution is necessary in order to apply the methods of geometric microlocal analysis.
A calculus of pseudodifferential iterated edge operators, when it is eventually written down
fully, will yield direct proofs of most of the analytic facts in later sections of this paper.

Let X be a manifold of dimension n with corners up to codimension k. This means that
any point p € X hasa neighborhood % > p which is diffeomorphic to a neighbourhood of
the origin ¢/ in the orthant (R*)¢ x R"~* for some ¢ < k, with p mapped to the origin. There
are induced local coordinates (z1,...,Z¢, Y1, .., Yn—r), Where each z; > 0 and y; € (—e,€).
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There is an obvious decomposition of X into its interior and the union of its boundary faces
of various codimensions. We make the additional global assumption that each face is itself
an embedded manifold with corners in X, or in other words, that no boundary face intersects
itself.

We shall frequently encounter fibrations f : X — X' between manifolds with corners. By
definition, a map f is a fibration in this setting if it satisfies the following three properties: f is
a ‘b-map’, which means that if p’ is any boundary defining function in X', then f*(p)isa
product of boundary defining functions of X multiplied by a smooth nonvanishing function;
next, each ¢ € X’ has a neighborhood % such that f~!(%) is diffeomorphic to % x F
where the fibre F' is again a manifold with corners; finally, we require that each fibre F
be a ‘p-submanifold’ in X, which means that in terms of an appropriate adapted corner
coordinate system (z,y) € (RT)¢ x R"~¥, as above, each F is defined by setting some subset
of these coordinates equal to 0.

The collection of boundary faces of codimension one play a special role, and is denoted
I = {Hy}aca for some index set A. Each boundary face G is the intersection of some
collection of boundary hypersurfaces, G = H,, N --- N H,,, which we often write as H 4/
where A’ = {aq,...,04} C A.

DEFINITION 2 (Melrose). — An iterated fibration structure on the manifold with corners X
consists of the following data:

a) Each H, is the total space of a fibration f,, : H, — B, where both the fibre F,, and
base B, are themselves manifolds with corners.

b) If two boundary hypersurfaces meet, i.e. Hog := H, N Hg # @, then dim F,, # dim F.

c) If Hyg # D asinb), and dim F,, < dim Fjg, then the fibration of H,, restricts naturally
to H,p (i.e. the leaves of the fibration of H,, which intersect the corner lie entirely within
the corner) to give a fibration of Hqg with fibres F,,, whereas the larger fibres Fz must be
transverse to H, at Hng. Writing 0, Fg for the boundaries of these fibres at the corner,
i.e. 0o F3 := Fg N Hyg, then Hog is also the total space of a fibration with fibres 0o Fa.
Finally, we assume that the fibres F, at this corner are all contained in the fibres 0, Fpg,
and in fact that each fibre 0, Fp is the total space of a fibration with fibres F,.

Two spaces X and X' with iterated fibration structures are isomorphic precisely when there
exists a diffeomorphism ® between these manifolds with corners which preserves all of the
fibration structures at all boundary faces.

The index set A has a partial ordering: the ordered chains a; < --- < «, in A are in
bijective correspondence with the corners Hyr := H,, N--- N H, , A" = {a1,...,a.},
where by definition o; < «; if dimF,, < dimF,,. In particular, « < [ implies
H, N Hg # @. We say that H, has depth r if the longest chain 5, < B2 < -+ < G,
in A with maximal element 3, = « has length r. The depth of a manifold with corners
with iteration fibration structure is the maximal depth of any of its boundary hypersur-
faces, equivalently, the maximal codimension of any of its corners. The precise relationships
between the induced fibrations on each corner are not easy to describe in general, but these
do not play a role here.
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LeEmMA 2.1. — If a < (B, then the boundary of each fibre F,, C H,, is disjoint from the
interior of Hyg. Furthermore, the restriction of fo, to Hog has image lying within 0B, whereas
the restriction of fg to Hyg has image intersecting the interior of Bg. In particular, if o and (3
are, respectively, minimal and maximal elements in A, then the fibres F,, and the base Bg are
closed manifolds without boundary.

Proof. — Choose adapted local coordinates (x4, %3, Y1, - - - , Yn—2) in Hyg Which simulta-
neously straighten out these fibrations. Thus (z,y) are coordinates on H, = {z, = 0},
and there is a splitting y = (y',y"”) so that (zs,y’,y"”) — (x3,y”) represents the fibration
H, — B,. By part ¢) of the definition, since dim F,, < dim F, there is a further decompo-
sition ¥ = (y{,y5) so that the fibration of H,g with fibres 9, Fs is represented by y — 4.
Thus (zg,y”) and y' are local coordinates on B,, and each F,, and y5 and (z.,y’,y7) are
local coordinates on Bg and each Fjg, respectively. All the assertions are direct consequences
of this. O

Unlike for smoothly stratified spaces, the structure of control data has not been incorpo-
rated into this definition of iterated fibration structures, because its existence and uniqueness
can be inferred from standard facts in differential topology. Nonetheless, these data are still
useful, and we discuss them now.

DEFINITION 3. — Let X bea manifold with corners with an iterated fibration structure. Then
a control data set for X consists of a collection of triples {TH, JTH, PH }» one for each H € ¥,
where Ty is a collar neighborhood of the hypersurface H, py is a defining function for H and
Ty is a diffeomorphism from each slice pg = const. to H. Thus the pair (Tg,pH) gives a
diffeomorphism Ty — H x [0,2), and hence an extension of the fibration of H to all of Th.
These data are required to satisfy the following additional properties: for any hypersurface H'
which intersects H with H' < H, the restriction of pg to H' N Ty is constant on the fibres
of H'; finally, near any corner Har, A’ = {a,...,a,}, the extension of the set of fibrations
of H 4+ induced by the product decomposition

(TH., PH.,)

i
: THQ. EHA/ X [O,Q)T
OtjGA’ -1 J

J

preserves all incidence and inclusion relationships between the various fibres.

The existence of control data for an iterated fibration structure on a manifold with corners
X is discussed in [1, Proposition 3.7], so we make only a few remarks here. We can find some
set of control data by successively choosing the maps 7y and defining functions pg in order
of increasing depth, at each step making sure to respect the compatibility relationships with
all previous hypersurfaces. The uniqueness up to diffeomorphism can be established in much
the same way, based on the fact that there is a unique product decomposition of a collar
neighborhood of any H up to diffeomorphism.

PROPOSITION 2.2. — Let X be a manifold with corners with iterated fibration structure,
and suppose that {7y, pu} and {7y, Py} are two sets of control data on it. Then there is a
diffeomorphism fof X which preserves the iterated fibration structure, and which intertwines
the two sets of control data.
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The key idea in the proof'is that we can pull back any set of control data on X to a ‘univer-
sal’ set of control data defined on the union of the inward pointing normal bundles to each
boundary hypersurface which satisfies the obvious set of compatibility conditions. The fact
that any two such sets of ‘pre-control data’ are equivalent can then be deduced inductively
using standard results about uniqueness up to diffeomorphism of collar neighborhoods of
these boundary hypersurfaces.

Finally, note that if X has an iterated fibration structure, then any corner H 4/ inher-
its such a structure too (we forget about the fibration of its interior), with depth equal
to k — codim H 4.

ProOPOSITION 2.3. — Iff is a compact manifold with corners with an iterated fibration
structure, then there is a smoothly stratified space)? obtained fromjfv by a process of successively
blowing down the connected components of the fibres of each hypersurface boundary of X in
order of increasing fibre dimension (or equivalently, of increasing depth). The corresponding
blowdown map will be denoted 3 : X - X.

Proof. — We warm up to the general case by first considering what happens when Xisa
manifold with boundary, so 90X is the total space of a fibration with fibre F' and base space
Y and both F' and Y are closed manifolds. Choose a boundary defining function p and fix a
product decomposition dX x [0, 2) of the collar neighborhood % = {p < 2}. This defines a
retraction 7 : % — 9X, as well as a fibration of % over dX with fibre 7 YF)=F x[0,2).
Now collapse each fibre F' at x = 0 to a point. This commutes with the restriction to each
F'x[0,2), so we obtain a bundle of cones C(F') over Y. We call this space the blowdown of X
along the fibration, and write it as X/ F. Denote by Ty the image of % under this blowdown.
The map 7 induces a retraction map n(%) = Ty — Y, and p also descends to Ty . Thus
{Ty,m, p} are the control data for the singular stratum Y, and it is easy to check that these
satisfy all of the axioms in §2.1, hence X/F is a smoothly stratified space.

Now turn to the general case, which is proved by induction on the depth. As in the next
subsection, where we follow an argument from [7] and show how to blow up a smoothly strat-
ified space, we use a ‘doubling construction’ to stay within the class of stratified pseudoman-
ifolds while applying the inductive hypothesis to reduce the complexity of the problem. To
set this up, beginning with X , a manifold with corners with iterated fibration structure of
depth k, forms a new manifold with corners and iterated fibration structure of depth & — 1
by simultaneously doubling X across all of its maximal depth hypersurfaces. In other words,
consider

X'=((X x —1)U(X x +1)) / ~

where (p,—1) ~ (g,+1) if and only if p = ¢ € H € # where depth (H) = k. By standard
arguments in differential topology, one can give X' the structure of a manifold with corners
up to codimension k — 1. If H; € # is any face with depth j < k which intersects a face
Hj, of depth k, then as in Lemma 2.1, the boundaries of the fibres F; C H; only meet the
corners H;; for i < j, and do not meet the interior of H . In terms of the local coordinates
(x, 2k, y) in that lemma, we simply let zj vary in (—e, €) rather than just [0, €), and it is clear
how to extend the fibrations accordingly.
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The dimensional comparisons and inclusion relations at all other corners remain
unchanged. Therefore, X’ has an iterated fibration structure. This new space also car-
ries a smooth involution which has fixed point set the union of all depth k faces, where the
two copies of X are joined, as well as a function pj, which is positive on one copy of X,
negative on the other, and which vanishes simply on the interface between the two copies
of X. For simplicity, assume that there is only one depth & face, Hy. We can also choose p,
so that it is constant on the fibres of all other boundary faces, and a retraction 7 defined
on the set |px| < 2 onto Hy.

Now apply the inductive hypothesis to blow down the boundary hypersurfaces of X' in
order of increasing fibre dimension to obtain a smoothly stratified space X' of depth k& — 1.
The function pg descends to a function (to which we give the same name) on this space.
Consider the open set X+ := X’ N {p > 0}, and also 8, X := X’ N {px = 0}. Both of
these are smoothly stratified spaces; for the former this is because (in the language of [7])
we are restricting to a ‘saturated’ open set of X/ , though we do not need to appeal to this
terminology since the assertion is clear, whereas for the latter it follows by induction since it
is the blowdown of Hy, which has depth less than k. This space 8k5(\ , which we denote by I/ﬂ
is the total space of a fibration induced from the fibration of the face Hy in X. By Lemma
2.1, since the Hj, are maximal, the base By has no boundary, and the fibres Fk are manifolds
with corners with iterated fibration structures of depth less than k.

Hence after the blowdown, the base of the fibration of 8k5(\ is still By while the fibres
are the blowdowns I/T\IC of the spaces Fk, which are again well defined by induction. Finally,
using the product decomposition of a neighborhood of Hy, in X , collapsing the fibres of Hy,
identifies the blowdown of this neighborhood with the mapping cylinder for the fibration
of ak)? . This produces the final space X.

It suffices to check that the stratification of X satisfies the axioms of a smoothly strati-
fied space only near where this final blowdown takes place, since the inductive hypothesis
guarantees that they hold elsewhere. These axioms are not difficult to verify from the local
description of Xina product neighborhood of Hy. O

REMARK 2.4. — There is a subtlety in this result since there is typically more than one
smoothly stratified space X which may be obtained by blowing down a manifold with corners
X with iterated fibration structure. More specifically, there is a minimal blowdown, whzch
associates to each connected hypersurface boundary of X a stratum of the blowdown X.
However, it may occur that two strata of X of highest depth, for example, are diffeomorphic,
and after identifying these strata we obtain a new smoothly stratified space. It may not be easy
to quantify the full extent of nonuniqueness, but we do not attempt (nor need) this here.

2.3. The resolution of a smoothly stratified space

The other part of this description of the differential topology of smoothly stratified spaces
is the resolution process: namely, conversely to the blowdown construction above, if X is
any smoothly stratified space, one may resolve its singularities by successively blowing up its
strata in order of decreasing depth to obtain a manifold with corners X with iterated fibration
structure. Following Remark 2.4, two different smoothly stratified spaces X 1, X. o may resolve
to the same manifold with corners X.
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PROPOSITION 2.5. — Let X be a smoothly stratified pseudomanifold. Then there exists a
manifold with corners X with an iterated fibration structure, and a blowdown map (3 : XX
which has the following properties:

— there is a bijective correspondence Y < Xy between the strataY € G of X and the
(possibly disconnected) boundary hypersurfaces of X which blow down to these strata;

— B is a diffeomorphism between the interior of X and the regular set of X ; we denote by X
this open set, which is dense in either XorX; ;

— B is also a smooth fibration of the interior of each boundary hypersurface Xy with base
the corresponding stratum'Y and fibre the regular part of the link of Y in X : moreover,
there is a compactification of Y as a mamfold with corners Y such that lhe extension of 8
to all of Xy isa fibration with base Y and fibre Ly finally, each fibre Ly c Xyisa
manifold with corners with iterated fibration structure and the restriction of [3 to it is the
blowdown onto the smoothly stratified spaceY .

We sketch the proof, adapting the construction from [7], to which we refer for further
details. The proof is inductive: if X has depth k and we simultaneously blow up the umon
of the depth k strata to obtain a space X 1, then all the control data of the stratification on X
lifts to give X 1 the structure of a smoothly stratified space of depth k— 1. Iterating this k times
completes the proof. However, in order to stay within the category of smoothly stratified
pseudomanifolds, which by definition have no codimension one boundaries, we proceed as
in the proof of Proposition 2.3 (and as in [7]) and construct a space X 1 which is the double
across the boundary hypersurface of the blowup of X along its depth k strata, and show
that X 1 is a smoothly stratified pseudomanifold of depth & — 1. This space X 1 is equipped
with an involution 7; which interchanges the two copies of the double; the actual blowup
is the closure of one component of the complement of the fixed point set of this involution.
Iterating this & times, we obtain a smooth compact manifold X ;. equipped with k commuting
involutions {7;}%_,; the manifold with corners we seek is any one of the 2 fundamental
domains for this action.

Proof. — To begin, fix a stratum Y which has maximal depth k; this is a smooth closed
manifold. Recall the notation from §2.1, and in particular the stratified isomorphism
Fy from the mapping cylinder of (Sy,ny) to Ty and the family of local trivializations
¢yt (U) — Ux C(Ly) for suitable % C Y. Ifu € Ty N7yt (U), we write ¢(u) = (y, 2, t)
where y € U, z € Ly and t = py (u); by axiom v), there is a retraction Ry : Ty \ Y — Sy,
given on any local trivialization by (y, z,t) — (y, 2, 1) (which is well defined since ¢ # 0).

To construct the first blowup, assume for simplicity that there is only one stratum Y of
maximal depth k. Define

(2.1) X = ((X\Y) x {-1}) U ((X\Y) x {+1}) U (Sy x (-2,2))/ ~
where (if e = +1),
(2.2) (p,e) ~ (Ry(p),py(p)) if peTy\Y andet > 0.

Let X' = (X x {-1pHu (X x {+1})/ ~ where (u,€) ~ (v/,¢') ifand only if u = v’ € Y.
Note that X \ Sy x {0} is naturally identified with X’ \ Y, so this construction replaces ¥’
with Sy.
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There is a blowdown map S : X' 1= X' given by
Bi(u,€) = (u,e) if uéy, B1(u,0) = 7y (u).
Clearly 3, : X 1\ Sy x {0} — X' \ Y is an isomorphism of smoothly stratified spaces and
(Sy x (—2,2)) is a tubular neighborhood of (8;)~!Y = Sy x {0} in X/.

We shall prove that XV{ is a smoothly stratified space of depth & — 1 equipped with an
involution 71 which fixes Sy x {0} and interchanges the two components of the complement
of this set in X 1, and which fixes all the control data of X 1. To do all of this, we must fix a
stratification &1 of X 1 and define all of the corresponding control data and show that these
satisfy properties 1) - vi).

e Fix any stratum Z € & of X with depth (Z) < k, and define

(2.3) Zy = (Z x {£1}) U ((Sy N 2) x (=2,2)) / ~,

where ~ is the same equivalence relation as in (2.2). The easiest way to see that this is well-
defined is to note that Sy N Z is a stratum of the smoothly stratified space Sy and that the
restriction

2.4) Fy : Cyl (Sy 07, 71'y) —ZnN Ty

is an isomorphism. (This latter assertion follows from axiom ii).)
As above, let Z’ be the union of two copies of Z joined along ZNY'.
o Now define the stratification &; of X

(2.5) 6,:={Z,:Ze6\Y}.

We must now define the control data {77, associated to this stratification.

;77r5;7p§;}21e61
e Following (2.3), set

(2.6) Ty, =Tz x {£1} U((Sy NT7) x (-2,2)) / ~,

where (p,e) ~ (¢, t) if te > 0and p = Fy(c,|t|). Extending (or ‘thickening’) (2.4), by
axiom iii) we also have that Fy restricts to an isomorphism between Cyl (Tz N Sy, 7y) and
Tz NTy. In turn, using axiom ii) again, within the smoothly stratified space Sy, Frrynz is an
isomorphism from Cyl (Sy N Sz, mwz) to the tubular neighborhood of Z N Sy in Sy, which
is the same as T, ~z. Using these representations, the fact that (2.6) is well-defined follows
just as before.

Note that Y has been stretched out into Sy x {0}, and TZi N (Sy x {0}) is isomorphic
to TZ; N (Sy x {t}) forany ¢t € (-2,2).

e The projection % is determined by w7 on each slice (Sy N Tz) x {t}, at least when
t # 0, and extends uniquely by continuity to the slice at ¢ = 0 in X 1. A similar consideration
yields the function Pz

e One must check that the space X 1 and this control data for its stratification satisfies
axioms i) - vi). This is somewhat lengthy but straightforward, so details are left to the reader.

e Finally, this whole construction is symmetric with respect to the reflection 7; defined
by t — —t in Ty and which extends outside of Ty as the interchange of the two components
of X'\ Y. The fixed point set of 7 is the slice Sy x {0}.
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This establishes that the space X 1 obtained by resolving the depth k£ smoothly stratified
space X along its maximal depth strata via this doubling-blowup construction is a smoothly
stratified space of depth k£ — 1, equipped with one extra piece of data, the involution 7.

This process can now be iterated. After j iterations we obtain a smoothly stratified space
X J’ of depth k—j which is equipped with j commuting involutions 7;, 1 < ¢ < j. In particular,
the space X .. 1s a compact closed manifold.

It is easy to check, e.g. using the local coordinate descriptions, that these involutions are
‘independent’ in the sense that for any point p which lies in the fixed point set of more than
one of the 7;, the —1 eigenspaces of the dr; are independent.

The complement of the union of fixed point sets of the involutions 7; has 2¥ components,
and X is the closure of any one of these components.

The construction is finished if we show that X carries the structure of a manifold with
corners with iterated fibration structure. We proved already that X has the local structure of
a manifold with corners, but we must check that the boundary faces are embedded. For this,
first note that all faces of the resolution of X 1 are embedded, and by its description in the
resolution construction, Hy, is as well; finally, all corners of X which lie in H 1, are embedded
since they are faces of the resolution of Sy where Y is the maximal depth stratum and we
may apply the inductive hypothesis. This proves that X is a manifold with corners.

Now examine the structure on the boundary faces inductively. The case k = 1 is obvious
since then X is a manifold with boundary; 0X is the total space of a fibration and there are
no compatibility conditions with other faces. Suppose we have proved the assertion for all
spaces of depth less than k, and that X is a smoothly stratified space of depth k. Let Y be the
union of all strata of depth & and consider the doubled-blowup space X 1. This is a stratified
space of depth k — 1, so its resolution is a manifold with corners up to codimension k£ — 1 with
iterated fibration structure. Since Sy is again a smoothly stratified space of depth k£ — 1, its
resolut1on Sy is also a manifold with corners with iterated fibration structure. The blowdown
of Sy along the fibres of all of its boundary hypersurfaces is a smoothly stratified space Sy
and this is the boundary Hy, of X 1, the ‘upper half” of X {

Once we have performed all other blowups, we know that the compatibility conditions are
satisfied at every corner except those which lie in Sy. The i images of the other boundaries
of X 1 by blowdown into X1 are the singular strata of this space. Furthermore, there is a
neighborhood of H}, in X, of the form Sy x [0, 2) (using the variable ¢ in this initial blowup
as the defining function py), so that near Hy, X has the product decomposition Sy x [0,2).
From this it follows that each fibre F}; of H;, j < k, lies in the corresponding corners Hy,NHj;
it also follows that each fibre Fj, of Hy, is transverse to this corner, and has boundary 9; F,
equal to a union of the fibres F;. This proves that conditions a) - ¢) of the iterated fibration
structure are satisfied. O

2.4. Smoothly stratified isomorphisms

We now return to a closer discussion of a good definition of isomorphism between
smoothly stratified spaces. Following Melrose, these isomorphisms are better understood
through their lifts to the resolutions.

To begin, we state a result which is a straightforward consequence of the resolution and
blowdown constructions above.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



258 P. ALBIN, E. LEICHTNAM, R. MAZZEO AND P. PIAZZA

PROPOSITION 2.6. — Let X and X' be two smoothly stratified spaces and X, X' their
resolutions, with blowdown maps 8 : X — X and B X — X', Suppose that ¥ : X - X
is a stratified isomorphism as in [7], $2. Then there is a unique diffeomorphism of manifolds
with corners f X — X' which preserves the iterated fibration structures and which satisfies

foB=pof.

Proof. — 1f such a lift exists at all, it must be unique simply because it is defined by
continuous extension from a map defined between the interiors of X and X'. Because of this
uniqueness, it suffices to prove the existence of the lift in local coordinates, and this is done in
[7], §2 Prop. 3.2 and Remark 4.2. Of course, since those authors are not using the notion of
iterated fibration structures, they do not consider the issue of whether the lift preserves the
fibrations at the boundaries; however, a cursory inspection of their proof shows that the map
they construct does have this property. O

The converse result is also true, up to a technical point concerning connectedness of the
links.

ProOPOSITION 2.7. — Given X Xv’, X and 5(\’, as above, suppose that f X - X
is a diffeomorphism of manifolds with corners which preserves the fibration structures at the
boundaries. Suppose furthermore that X and X' are the minimal blowdowns of X, X' in the
sense of Remark 2.4. Then Zhere extsts some choice of control data on the blown down spaces
and a stratified isomorphism f X — X' such that f B=p0o f

Proof. — As above, f is uniquely determined over the prmmpal dense open stratum of X.
The fact that f preserves the fibration structures means that f extends to a continuous
map X - X However, this extension is not a stratified isomorphism unless we use the
correct choices of control data on all these spaces. Thus fix control data on X; this may be
pushed forward to control data on X' via f Any set of control data for a manifold with
corners with iterated fibration structure can be pushed down to a set of control data on
its blowdown. Therefore we have now induced control data on X and X' , and it follows
from this construction that the induced map f intertwines these sets of control data, as
required. O

Combined with Proposition 2.2, this gives another proof of the result from [7] that any two
sets of control data on a smoothly stratified space X are equivalent by a smoothly stratified
isomorphism.

This discussion motivates the following

DEFINITION 4. — A4 smoothly stratified map f between smoothly stratified spaces X and X'
is a continuous map f : X - X sending the open strata of b'e smoothly into the open strata
ofX' and for which there exists a lift f X - X, f B=p0 of which is a b-map of manifolds
with corners preserving the iterated fibration structures.

This definition has the advantage that it is not inductive (even though many of the argu-
ments behind it are), and it provides a clear notion of the regularity of these isomorphisms
on approach to the singular set.
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3. Iterated edge metrics. Witt spaces

In this section we first introduce the class of Riemannian metric on smoothly stratified
spaces with which we shall work throughout this paper. These metrics are only defined
on reg (5(\ ), but the main point is their behavior near the singular strata. These metrics were
also considered by Brasselet-Legrand [8]; closely related metrics had been considered by
Cheeger [13]; they are most easily described using adapted coordinate charts (see pp. 224-5
of [8]) or equivalently, on the resolution X. In the second part of the section we introduce the
Witt condition and recall the fundamental theorem of Cheeger, asserting the isomorphism
between intersection cohomology and Hodge cohomology on these spaces. In the following,

we freely use notation from the last section.

3.1. Existence of iterated edge metrics

We begin by constructing an open covering of reg ()/(\ ) by sets with an iterated conic
structure. Let Y7 be any stratum. By definition, for each ¢; € Y7 there exist a neighborhood
9%, and a trivialization w;ll(‘lll) ~ 94, x C(Ly,). Now fix any stratum Y, C Ly,,
and a point g € Y. As before, there is a neighborhood %, C Y, and a trivialization
7r§21(‘ll2) ~ Uy x C(Ly,). Continuing on in this way, the process must stop in no more
than d = depth (Y1) steps when g, lies in a stratum Y; of depth 0 in Ly, , (which must,
in particular, occur when Ly, _, itself has depth 0). We obtain in this way an open set of the
form

3.1 %><C(‘Z¢2xC(%x---xC(ws))...),

where s < d, which we denote by W = W, .. ... Choose a local coordinate system y)
on %;, and let r; be the radial coordinate in the cone C(Ly; ). Thus (y™), r,y @, ry, ..., y(*))
is a full set of coordinates in W. Clearly we may cover all of X by a finite number of sets of
this form. We next describe the class of admissible Riemannian metrics on reg (5(\ ) by giving
their structure on each set of this type.

DEFINITION 5. — We say that a Riemannian metric g defined on reg (X) is an iterated edge
metric if there is a covering by the interiors of sets of the form Wy, . 4. so that in each such set,

g =h1+dri +13(hy +dry +r3(hs +dry +r3(ha + - +72_1hy))),
with 0 < r; < € for some € > 0 and every j, and where h; is a metric on U;. We also assume
that for every j = 1,...,s, h; depends only on y D e,y @ g,y Tj.

If each hj is independent of the radial coordinates r1, ... ,r;, then we call g a rigid iterated
edge metric. Note that this requires the choice of a horizontal lift of the tangent space of each
stratum'Y as a subbundle of the cone bundle Ty which is invariant under the scaling action of
the radial variable on each conic fibre.

PROPOSITION 3.1. — Let X be a smoothly stratified pseudomanifold. Then there exists a
rigid iterated edge metric g on reg (X).
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Proof. — We prove this by induction. For spaces of depth 0, there is nothing to prove, so
suppose that Xisa smoothly stratified space of depth & > 1, and assume that the result is
true for all spaces with depth less than k.

Let Y be the union of strata of depth &, each component of which is necessarily a closed
manifold; for convenience we assume that Y is connected. Consider the space X 1 obtained
in the first step of the resolution process in §2.3 by adjoining two copies of b'e along Y and
replacing the double of the neighborhood Ty by a cylinder Sy x (—2,2). This is a space of
depth & — 1, and hence it possesses a rigid iterated edge metric g;. We may in fact assume
that in the cylindrical region Sy x (—2,2), g1 has the form dt? + gs,, , where gg,, is a (rigid)
iterated edge metric on Sy which is independent of ¢. Recalling that Sy is the total space of
a fibration with fibre Ly, we can define a family of metrics gg . on Sy by scaling the metric
on each fibre by the factor r2. This leads to a rigid iterated edge metric gp, := dr? + 95,
on the tubular neighborhood Ty C X around Y, which by construction is also rigid. Now
use the induction hypothesis to choose a rigid iterated edge metric go on the complement
C of the region {r < 1/2} C Ty . Finally, choose a smooth partition of unity {¢(r), ¥ (r)}
relative to the open cover [0,2/3) U (1/3, 00) of R*; the metric ¢gr,, + gc on Ty extends
to go outside Ty, and satisfies our requirement. O

PROPOSITION 3.2. — 1) Any two iterated edge metrics on X are homotopic within the class
of iterated edge metrics.

2) Any two rigid iterated edge metrics on X are homotopic within the class of rigid iterated
edge metrics.

Proof. — We proceed by induction. The result is obvious when the depth is 0, so assume
it holds for all spaces of depth strictly less than & and consider a pseudomanifold of depth &
with two iterated edge metrics g and g¢’.

To begin, then, fix a stratum Y which has maximal depth k. Then Y is a smooth closed
manifold. Recall the notation from §2.1, and in particular the stratified isomorphism
Fy from the mapping cylinder of (Sy,ny) to Ty and the family of local trivializations
¢ : 7yt (U) — U x C(Ly) for suitable % C Y. If u € Ty Ny (%), we write ¢(u) = (y, 2, t)
wherey € U, z € Ly andt = py(u); in particular, by axiom v), there is a retraction
Ry : Ty \'Y — Sy, given on any local trivialization by (y, z,t) — (y, z,1) (which is well
defined since ¢ # 0).

In any of these trivializations, the metric g has the form
(6719 = guly,t) + dt* +t°g, (t,y, 2)
and the homotopy
s gy(y, s+ (1 — s)t) + dt* + t2gr, (s + (1 — s)t, y, 2)

removes the dependence of g and g, on ¢ while remaining in the class of iterated edge
metrics. Since the coordinate ¢ = py (u) is part of the control data, this homotopy can be
performed consistently across all of the local trivializations ¢.

Without loss of generality we may assume that

(0719 = guly) + dt* + t?gr, (y, 2), and (¢~ 1)*¢" = g4, (y) + dt* + t*gL, (v, 2).
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The metrics gg, and g7, are homotopic and, by inductive hypothesis, so are the metrics gr.,.
and g7 . Thus the metrics (¢~1)*g and (¢~1)*g’ are homotopic within the class of iterated
edge metrics on % x C(Ly). Using consistency of the trivializations ¢ we can patch these
homotopies together and see that g and g’ are homotopic in a neighborhood of Y.

We can thus assume that g and ¢’ coincide in a neighborhood of Y and, in this neighbor-
hood, are independent of py. As in the proof of Proposition 2.5 we consider the space

X1 = ((X\Y)x {-1}) U ((X\Y) x {+1}) U (Sy x (-2,2))/ ~.
Define the lift g of g to )?{ by g on each copy of X \'Y and

g’d(y) + 9Ly (y7 Z) + dt2

on each neighborhood of Sy X (—2,2) corresponding to the trivialization ¢ as above, and
define g’ similarly. Then g and g’ are iterated edge metrics on a space of depth & — 1 so
by inductive hypothesis are homotopic. Moreover since they coincide in Sy x (—2,2), the
homotopy can be taken to be constant in a neighborhood of Sy, and hence the homotopy
descends to a homotopy of g and ¢'.

If g and ¢’ are rigid, the homotopies above preserve this. O

Cheeger also defines [12] (p. 127) a class of admissible metrics g on the regular part of a
smoothly stratified pseudomanifold X. He uses a slightly different decomposition of X and
assumes that on each ‘handle’ of the form (0,1)"~¢ x C(N%*~1), g induces a metric quasi-
isometric to one of the form

(dy1)? + -+ + (dyn—i)® + (dr)* + r’gni-1;

see [12] for the details. Using the proof of Proposition 3.1 as well as [12] (page 127), we obtain
the following

PRrOPOSITION 3.3. — 1) Any rigid iterated edge metric as in Definition 5 is admissible in the
sense of Cheeger.

2) Any two admissible metrics are quasi-isometric.

Recall the manifold with corners with iterated fibration structure X. , which is the resolu-
tion of X. Its interior is canonically identified with reg (5(\ ), and we identify these without
comment. Let x,, be a global defining function for the boundary hypersurface H, of X (so
H, = {z, = 0}); the total boundary defining function of X is, by definition,

p= Hma.

acA

If g is an iterated edge metric on reg (5(\ ), then set

(3.2) 5=p2g.

It is not hard to check that this metric is complete.
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3.2. The Witt condition. Cheeger’s Hodge theorem on Witt spaces

In this paper, we consider only orientable Witt spaces, which are defined as follows.

DEFINITION 6. — A pseudomanifold X is a Witt space if, for some (and hence any ) stratifi-
cation, all links of even dimension have vanishing lower middle perversity intersection homology
in middle degree, i.e.,

Y €6, dimLy = fy even = IHJY/*(Ly) =0.

It is a theorem that on a Witt space X the lower and upper middle perversity intersection
homology groups are equal up to isomorphism: IH;, (X) = IH7(X).
A famous result concerning the L? cohomology of Witt spaces is due to Cheeger.

THEOREM 3.4 (Cheeger). — Let X be a Witt space endowed with an iterated edge metric g.
Denote by H (*2) (X) the cohomology of the L? de Rham complex with maximal domain; denote

by I ?2) ()A( ) the L? maximal Hodge cohomology. Then

(3.3) Hiyy (X) = #py(X) = H,(X, ©),

with m denoting either the upper or lower middle perversity.

In particular, if Y is a stratum with link Ly, and fy = dim Ly is even, then

(3.4) HEP(Ly) =H1/?(Ly) = 0.

4. Iterated edge vector fields and operators

On a closed manifold, L2 and Sobolev spaces are defined using a Riemannian met-
ric but the spaces themselves are metric-independent. A differential operator induces a
bounded map between suitable ones of these spaces, and ellipticity guarantees that this map
is Fredholm. All of this fails when the manifold is not closed, and in this section we describe
some of what is true for iterated edge metrics.

The space X := reg ()/(\ ) with complete metric g is an example of what is called a Rieman-
nian manifold with bounded geometry. There are natural classes of L? and Sobolev spaces on
any such space, as well as a class of ‘uniform’ differential operators, which induce bounded
maps between these function spaces. There is also a calculus of uniform pseudo-differential
operators which contains parametrices of uniform elliptic operators, and which can be used
to prove certain uniform elliptic regularity results. Using that X compactifies to X , We can
also define weighted L2 and Sobolev spaces in this setting, and the uniform calculus gives
some results for operators mapping between these as well. This uniform calculus does not
establish that these mappings are Fredholm, and indeed, that requires more delicate argu-
ments.

In this section we describe these ideas and explain how they can be applied to the de Rham
operator of the edge iterated metric g. The uniform pseudodifferential calculus can also be
used to obtain a parametrix even after twisting by a bundle of projective finitely generated
modules over a C*-algebra.
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4.1. Edge vector fields on X
Associated to the complete metric g on X is the space of ‘iterated edge’ vector fields
(4.1) Vie ={V € C®(X,TX): X 3 q— §,(V,V) € R* is bounded}.

In the notation of §3, on a neighborhood of the form W, ,., this is locally spanned over

€ (X) by vector fields of the form
T1... ’I‘s_larl sT1 ... rs_18y<1) s ... 7‘8_26T2, r1... rs_26y<2>, ‘e ,8y(s).

It is easy to see that ;. forms a locally finitely generated, locally free Lie algebra with respect
to the usual bracket on vector fields; furthermore, Swan’s theorem shows that there is a vector
bundle **T'X over X whose space of sections is ¥,

4.2) G2 (X, TX) = Vs

This bundle T X coincides with the usual tangent bundle T X over the interior of X and is
isomorphic to T X, though there is no canonical isomorphism. It is easy to see that g defines
a metric on °TX.

ProrosITION 4.1. — (X, 9) is a complete Riemannian manifold of bounded geometry.

Proof. — Recall the theorem of Gordon-de Rham-Borel, which states that a manifold
is complete if and only if it admits a nonnegative, smooth, proper function with bounded
gradient. For this metric g, such a function is — log(p), where p is the total boundary defining
function. To prove that g has bounded geometry one must check that the curvature tensor
of g, and its covariant derivatives, are bounded and that the injectivity radius of g has a
positive lower bound. The former follows from the compactness of X, and the latter can be
shown as in [2]. O

The set of ie-differential operators is the enveloping algebra of Ve i.€., it consists of linear
combinations (over E?Oo(f )) of finite products of elements of ¥/;.. We denote by Diff¥ (X)
the subset of differential operators that have local descriptions involving products of at most
k elements of V.. If E and F are vector bundles over X , then the space of ie-differential
operators acting between sections of E and sections of F' is defined similarly, by taking linear
combinations over §°°(X,Hom(E, F)).

We define Sobolev spaces for ie metrics by
Hy(X) = Li,(X) = L*(X, dvol(3))
HE(X) = {u e LE(X) : Au € L% (X), forevery A € Difff,(X)}, ke N;

then define HY, (X)) using Calderon interpolation for ¢t € R and duality for ¢t € R™. Sobolev
spaces for sections of bundles over X are defined similarly.

We will also allow for operators to act between sections of certain bundles of projective
finitely generated modules over a C*-algebra; see [56] for the basic definitions. We assume
that we have a continuous map ro : X — BT which extends continuously to

r:f—»BF
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where ' is a countable finitely generated, ﬁmtely presented group. This determmes a
I'-covering, X X' — X and we will denote by C’*I‘ the corresponding bundle, over X of free
left C*T"-modules of rank one:

(4.3) C:T:=C'T xp X'

Observe that this bundle induces, after pull back by the blowdown map XX , a bundle
on X (for which we keep the same notation). Given vector bundles E and F’ over X of rank k
and £, we define bundles & and & over X by tensoring E and F' by E’\EF; we obtain in this way
bundles of projective finitely generated C;I'-modules of rank k and ¢ . We shall briefly refer
to & and & as CI'-bundles. An iterated edge differential operator acting between sections
of & and & is defined as above, but allowing the coefficients to be CT'-linear. The space of
such operators will be denoted
Dift{, n(X; &, 9).
Finally, we denote by H{, (X; &) the corresponding Sobolev C;T-module, see [45].

4.2. Uniform pseudodifferential operators

We showed above that ie metrics have bounded geometry. This allows us to use the calculus
of uniform pseudo-differential operators as described in the work of Meladze-Shubin (see
[42] and [32]).

We single out the space BC*°(X) of functions which are uniformly bounded with uni-
formly bounded derivatives of all orders. Smooth functions on X are in B € (X), but the
latter space is larger since general elements are not smooth at the boundary faces of X. A
vector bundle over X is said to be a bundle of bounded geometry if it has trivializations whose
transition functions are (matrices with entries) in B6°°(X). Vector bundles that extend
smoothly to X have bounded geometry.

The spaces of operators Diff(X; E, F') and, more generally, Diffy (X &, 7), are
defined by requiring the coefficients to be in BC*. These spaces contain Dift},(X; E, F)
and Diff§, (X; &, &), respectively.

Next, the bounded geometry of (X, g) implies that it is possible to find a countable cover
of X by open sets, each of which are normal coordinate charts for the complete metric g
and which all have fixed radius ¢ > 0. Calling these charts %.(¢;), then it is also possible
to arrange that 9. ({;) has uniformly bounded, finite multiplicity as a cover of X. We can
then choose partitions of unity d)z, ¢; subordinate to {%2.(¢;)} and {‘Ll (&)} respectively
such that ¢Z, ¢; have bounded derivatives uniformly in 4, and such that ¢Z = 1 on supp ¢;.
These functions can be used to transplant constructions from R™ to X.

We next recall how to transfer pseudodifferential operators from R™. Let E and F' be vec-
tor bundles over X , and denote by d = d; the distance function associated to the complete
metric g. An operator A : 6. (X;E) — Go°(X;F) is called a uniform pseudodifferential
operator of order s € R,

AeVy(X;EF),
if its Schwartz kernel X 4 € €~ °°(X?; Hom(E, F)) satisfies the following properties.
1) For some Cy > 0,

Ka(C, ) =0ifd(¢, ') > Ca.
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ii) For every § > 0, and any multi-indices «, 3 there is a constant C, gs > 0 such that
|DEDE K 4(¢,¢)] < Caps, Whenever d(¢,¢) > 6.

iii) For any 4, and using the normal coordinate chart to identify %s.(¢;) with Ba.(0)
in R™, ¢; A¢; is a pseudodifferential operator of order s in By, (0), whose full symbol o
satisfies the usual symbol estimates uniformly in 4,

DgDYo($iA:)(C,€)| < Capy (1 + 62 2717D;
here |€ |,§ is the norm of § € T X with respect to g.

We always assume that the symbols are (one-step) polyhomogeneous. Uniform pseudo-
differential operators form an algebra. There is a well defined principal symbol map, with
values in BC>(S* X, hom(r*E, n*F)). Ellipticity is defined in a natural way (one requires
the principal symbol to be uniformly invertible, i.e. invertible with inverse in BC°). The
principal symbol o (P) of a uniform pseudodifferential operator P is a section of *T* X (the
bundle dual to T X) restricted to X . In general, o (P) does not extend to be a smooth section
of eT*X — X.

For a bundle of bounded geometry F and s € R, define the -Sobolev space

(44) HZ(X;E)
={ue & °(X;E): ¢;u € H*(R"; E) with norm bounded uniformly in 4}.

The same definition holds for C;I'-bundles and we denote by H %I(X ; &) the corresponding
CT'-module. Uniform pseudodifferential operators extend to bounded operators between
B-Sobolev spaces.

Ifamapr: X — BTis given, then we can define uniform pseudo-differential operators
between sections of & and sections of & by combining the above definition and the classic
construction of Mishchenko and Fomenko; we denote by \I/’%,F(X ; &, ) the corresponding
algebra. Notice that the principal symbol is in this case a CT'-linear map between the lifts
of & and & to the cotangent bundle.

The intersection over s € R of the V5 .(X; &, 7) is denoted by ¥, T (X; &, ) and
consists of smoothing operators whose integral kernel in X x X is in BC*.

Elements of the uniform calculus also define bounded maps between weighted C:T'-Sobo-
lev spaces. Let p be the total boundary defining function for X.

LemMMmA 4.2, — If A € V5, (X6, T), then for any a,t € R, A induces a bounded operator
A pHi, (X5 6) — p"His 7(X; F).

1e

Proof. — Itis enough to check that p=* Ap® € A € ¥, .(X; &, T) for any a. The integral
kernel of p~%Ap? is

p(¢) )a ’
KalC,¢
< p(¢’) Al6.6)
and the lemma follows by noting that ( 5 ((CC’)) )a is a bounded smooth function on the support
of jCA. O
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An important property of the uniform pseudodifferential calculus is that it has a symbolic
calculus. By standard constructions, this implies that any elliptic element in Diff %,F (X;6,9)
has a symbolic parametrix, i.e. an inverse modulo smoothing operators. In particular, using
the above proposition, we see that an elliptic ie operator A € Diff ike,r (X; 6, F) hasa symbolic
parametrix

Qe q/%j;(x; 7,8) st ldg—QP € ¥R (X;8), Idg —PQ e ¥R (X; 7).

The symbolic calculus also yields the standard characterization of Sobolev spaces. For
instance, if N € N, then
HY(X) ={u e 6 (X) : Au € L*(X) for all A € Diff§;(X)}
= {u € € °(X) : Au € L*(X) for some uniformly elliptic A € Diff5} (X)};
in fact, if A € Dng(X) is uniformly elliptic, then Hg (X) equals the maximal domain of A
as an unbounded operator on L?(X). This characterization, applied to an elliptic operator
A € Diff} (X), shows that HY (X) = HJ (X). Using Calderén interpolation and duality,

we see that H{ (X) = Hy(X) for all ¢ € R, and the same is true for sections of bundles of
bounded geometry and the corresponding C}:I"-bundles.

4.3. Incomplete iterated edge operators

The set of incomplete iterated edge differential operators, Difff}, r(X; &, &) is defined in
terms of Difff, (X &, &) by
Diff§, r(X; 8, 9) = p~* Difff, n(X; 6, ),

where p = - -Tm_1. As an operator between weighted L? spaces with appropriate
different weights, an operator A € DiffﬁeI(X ; &, F) is unitarily equivalent to an iterated
edge operator. Thus, for instance, for any a € R, A defines an unbounded operator

A paL?e,F(X; 5) - paikLize,F(X; g)

which has a unique closed extension whose domain is p“Hi’;F(X ; &); moreover, A defines
bounded operators

P Hir(X; 8) — p* P HEF (X )
for every a and ¢t € R. However, it is the more complicated behavior of A as an unbounded
operator

4.5) A:pLZ (X;6) — p"L n(X; F)

that we will be concerned with. We point out that the operator (4.5) is unitarily equivalent
to the unbounded operator

A= pFRPApM? : p* LY (X5 8) — p* TP LY, (X5 ).

Since A € Dift, r(X; &, 7), this shows that the study of incomplete iterated edge operators
acting on a fixed Hilbert space is the same as the study of complete ie-operators acting
between different Hilbert spaces.
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We point out that the L? spaces of the incomplete iterated edge metric g and the associated
complete ie metric § = p~2g are related by

Li2e,F(Xa 5) = pn/QLiQie,F(Xa 6)

with n equal to the dimension of X, so switching between them only involves a shift of the
weight. Similarly, we introduce the spaces Hf;, (X; &) fort € R by

HY, 1(X;6) = p"/*Hf, p(X; 6).

Thus, for instance, if N € N then HY (X, &) is the set of elements u € L%, (X, &) such
that for any vector fields V4, ..., V}, € ¥i. where p < N, we have Vi ... Vu € L3, (X, 6).

We say that A € Diffikie’F(X ; &, F) is elliptic if A= p¥ A is an elliptic ie operator. Elliptic
ie operators always have a symbolic parametrix (see §4.2). A symbolic parametrix @ for A
yields a symbolic parametrix Q = p*/2Qp"/? for A. Recall that a continuous adjointable
C)T-linear operator K is called C}T'-compact if both K and K* are uniform limits of
sequences of C)I'-linear operators whose ranges are finitely generated C;I"'—modules. As
is well-known, since smoothing operators are not necessarily CI'-compact, a symbolic

parametrix is generally not enough to determine when an operator is C;\I"-Fredholm, so one
also needs to know about the behavior at the boundary.

However, the uniform calculus does establish elliptic regularity in the sense that, whenever
B e Diffﬁe,r(X; &, ) is elliptic and a € R, we have

(46) u € paL?ie,F(X7 6)’ Bu € paLiQie,F(X7 g) == uc paHiji\ec,I‘(Xv 6)

4.4. The de Rham operator
We are interested in analyzing the de Rham operator of an iie metric,
Oar=d+6:0*X - Q*X.
As with the tangent bundle, it is convenient to replace the bundle of forms
0 (X) = 67(X, A*(T* X)) with the bundle of iie-forms,
e (X) = € (X, A*(°T* X)),
where 1°T* X — X is the rescaled bundle (cf. [44, Chapter 8]) defined by
6=(X,5T* X) = p6™(X,°T* X).
We set 1°A* X = A*(ieT*X), and we have
dar € Diff}, (X; 1A% (X), H A% (X))
as we now explain.

First note that whether or not dqg is an element of Diff{;, (X; "*A*(X), "®A*(X)) can be

checked locally in coordinate charts. There is nothing to check in the interior of the manifold.
Then, with the notations of §3, we consider a distinguished neighborhood W of a point of a
stratum Y. Thus W is diffeomorphic to B x C(Z) where B is an open subset of Y which is
diffeomorphic to a vector space and C(Z) is the cone whose base Z is a stratified space. The
‘radial’ coordinate of the cone will be denoted by .
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As in §3, the fibration over B extends to W,

7 x [O,l)x—WiB,
and using = and a choice of connection for this fibration we can write
T*X|W ={dey®eT'Y®T*Z.
With respect to this splitting the metric g restricted to W has the form
g=di® + ¢"gy +a%gz
and the differential forms on X can be decomposed as
NX =(NYANNZ)Dde N(AY NN Z)
“.7) e A* X — (A*Y A 2NA*Z) @ da A (MY A 2NA*Z)

where N is the ‘vertical number operator’, i.e., the map given by multiplication by k& when
restricted to forms of vertical degree k. This allows us to split the exterior derivative into

d=¢4;0, D d¥ @ d?
where ¢4, denotes the exterior product by dz and correspondingly
6=+ legpOp x Dx L dy x®x  dgk =+ ey 0, x DY ®6Z

where the z-dependence in Y and §Z comes from the z-dependence of the Hodge star
operator, . A straightforward computation shows that with respect to the splitting (4.7)

of "*A* X, (and with f = dim Z),
L@d?+6Z2)+d¥ +6Y —+x19,x—1(f—N)

4.8) Odr = 1 1,47 Z Y Y
0 + ;N —2(d” +67) —d" -,

As in [27, (19)] one can write this in terms of operators related to the fibration, however for
our purposes it is more important to point out that the leading order term with respect to =
(as an iie operator) is given by
(4.9) Ddr ~ (alnagR + E%/R —0p — %(f - N))
O + %N _%6§R - 63/11

where f denotes the dimension of Z, 9%, and 9% are the de Rham operators of ¢*gy .o
and g% ’z:O’ respectively. In effect, because of the weighting of the vertical forms, the Hodge
star operator is asymptotically acting like the Hodge star operator of the product metric
at {z = 0}.

By induction on the depth of the stratification and using (4.9) one proves without difficul-

ties the following:

LeMMA 4.3. — The operator Dgg is in Dift},,, i.e., pOqg is in Diff},.

We are also interested in the behavior of 04g after twisting to get C*-algebra coefficients.
Thus we assume, as before, that we have a continuous map

1":5(\—>BF.
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We compose r with the blow-down map 5 and we pull back the universal bundle ET to X
using f o 3. We obtain a Galois I'-covering X X' over X and the associated bundle C*F — X
with

CiT :=CT xpr X'.
We restrict 5:1“ to X. Endowing C;T" x X', as a trivial bundle over X', with the trivial
connection induces a (non-trivial) flat connection on the bundle CT" — X; we also obtain
a flat connection on the restriction of CT' to X (and it is obvious that this connection

will automatically extend to X ). Using the latter connection we can define directly Odr, the
twisted de Rham operator on the sections of the vector bundle

iieA;(X) _ e p* y ® 67:1-\

By construction Ogg € Difff, . i.e. pOar is an element in Diff}, r

5. Inductive analysis of the signature operator

In this section we analyze the behavior of the de Rham operator near the singular part
of X. This is done inductively. The base case is that of a closed manifold, which is classical.
Stratifications of depth one are analyzed in the work of Hunsicker and the third author [27],
where the relationship between intersection cohomology and Hodge cohomology is treated
in detail. Our results for depth one stratifications is implicitly contained in [27]. However,
the treatment in [27] relies heavily on the edge calculus [41] which allows refined results, such
as finding conormal representatives of cohomology classes. Though we cannot use the edge
calculus directly, we proceed by adapting certain arguments from [41] to our context. More
precisely, we define a model for this operator at each point of a singular stratum and then we
establish that these model operators are invertible when acting on the appropriate Sobolev
spaces. Taken together, ellipticity and this asymptotic invertibility are enough to establish the
Fredholm properties we seek.

The main advantage of the de Rham operator over an arbitrary iie operator lies in (4.9).
Indeed this shows that, at a given point g on the boundary, the leading order behavior of dgr
involves the fibre Z over g only through its de Rham operator 8%;. To take advantage of
this structure we multiply this operator by a (symmetrically distributed) power of the radial
distance x to the highest depth stratum Y. Since this is closely related to the de Rham
operator for the metric z~2g, which we regard as a ‘partial completion’ of g (i.e. we have
made it complete near Y, but the link Z of the associated cone bundle with its induced metric
remains incomplete). This allows us to set up an inductive scheme.

5.1. The partial completion of the de Rham operator

Recall that (4.9) was written in a distinguished neighborhood W of a point of a stratum Y’
and that W is diffeomorphic to B x C(Z) where B is an open subset of Y diffeomorphic to a
vector space and C(Z) is the cone with smoothly stratified link Z. The ‘radial’ coordinate of
the cone is still denoted by x, which we identify with one the boundary defining functions
x; and thereby extend globally to X. To take advantage of the structure of the de Rham
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operator in W, as it appears in (4.9), we define the ‘partial conformal completion’ of the
signature operator
DO = m1/26de1/2'

The advantage of using z'/284rz'/? over, say, 04r is that the former is symmetric as an

operator
e 2LE, p(X,TOAR(X)) — &P LE p(X, AR (X))

(with respect to the natural pairing between the spaces on the right and left here), since Ogqr
is a symmetric operator on L, (X; A} (X)) with core domain Cg°.

To analyze dgg it is useful to consider the operator it induces on various weighted L?
spaces. For later use we point out first that dqr satisfies

(5.1 Oar (zv) = [0ar, #]v + 2*0qrv = z%[ae(%E) — ai(%) + dar]v,
where ¢ and i denote exterior and interior product respectively, and, second, that we have a
unitary equivalence of unbounded operators (V)

Oar : %L p(X, AR (X)) — 2L, p(X, AR (X))
o Dy = &2 gyt a7 V2LE, L(X, AL(X)) — 2202, (X, AR (X)).

1 1

In order to adapt arguments from [41] it is more natural to work with the operator
21254 2)/*T as an unbounded operator from the space g7 V2L2 (X, BAR(X) to
itself. Thought of in this way, we denote it as P,,

(5.2) Pz V202 (X, TOANX)) — 27 VLR (X, TPAR(X)).

1

Our analysis of 04g will proceed in two steps: in the first step we will analyze the behavior
of P, by adapting two model operators from [41]—the normal operator and the indicial
family. Then, in the second step, we will use the information gleaned about P, to analyze
6dR~

REMARK 5.1. — These two steps can be thought of in the following way. We first analyze
2'/284rx'/? as a partially complete edge operator on W; complete in the (z, ) variables with
values in iie-operators on Z. Then, as a second step, we analyze it as an incomplete edge
operator in the (z,y) variables with values, again, in iie-operators on Z.

5.2. The normal operator of P,

Recall that every point ¢ € Y has a neighborhood W which we identify using the stratified
diffeomorphism % with the product % x C(Z), where % is a neighborhood of the origin
in R® = T,Y. If this neighborhood is small enough that #A*(X) |W can be identified with
the pull-back of some vector bundle over Z and similarly for 'A% (X)|y, then we call W
a basic neighborhood. In such a W, let us fix smooth nonnegative cutoff functions x and ¥,
both independent of the Z variables, with supports in W and equaling one in a neighborhood
of ¢, and such that xxy = x. We refer to W, v, x, X as a basic setup at g € Y.

We can identify a basic neighborhood W with a subset of the product of Z with
T,Y+t = R x RY and use this identification to model the operator P, near g by an

(M Note that in [27], for a stratification of depth one, D, denotes the de Rham operator of the complex (xaL?ie,
while here D, denotes the de Rham operator of the complex (L2 _, d) as an operator on 2% L2

iie’ iie”

d)
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operator on Z x T,Y™*, the normal operator of P, at ¢ € Y. Notice that the bundles
A% (X)] > A7 (X)|w as pull-backs of bundles over Z, extend naturally to Z x T,Y'¥,
and that the dilation maps R, : T,Y " — T, Y for any ¢ > 0 preserve the space of sections
of these bundles.

DEFINITION 7. — The normal operator N,(P,) is the operator whose action on any
u€ G(Z x T,YT, U AR (Z x T,Y™T)) is given by

Ny(Pa)u = lim R} (™) X Pa ¢* xR}, u.

Thus in local coordinates (s, y, z) the action of the normal operator of P, on a section
u is obtained by evaluating v at (s/r,y/r, z), applying P,, dilating back by a factor of r,
and then letting » — 0. It is easy to see that this procedure takes a vector field of the form
a(s,y, 2)(s0s) + b(s,y, 2)(s0y) to the vector field a(0, 0, 2)(s0s) + b(0,0, z)(s0,), while for
a vertical vector field V, this procedure returns V|s:0,y:0' In fact, it is easy to see that this
procedure replaces the metric

9l = gulz,y) + dz* + 2%gz(z,y, 2)

which is a submersion metric with respect to the projection % x C(Z) — %, with the product
of an iie metric on C(Z) and the flat metric on %,

9zxt,y+ = 9u(0,0) + ds® + s%92(0,0, 2).

It follows that any natural operator associated to gj. is taken by this procedure to the
corresponding natural operator of gz r,y+ —in particular this is true for Ogr.

LEMMA 5.1. — The normal operator of Py at q € Y is equal to s'/>~%dqg s*/?T* where d4g
is the de Rham operator of the metric gz, y+. Thus in local coordinates,

(P = ( 0%, + s0%p, —365—(f0—N+a+1/2)>

(5.3 N, b
) ! 50s + N +a+1/2 —0%, — s05R-

REMARK 5.2. — Asexplained above, this expression follows by naturality of the de Rham
operator. Alternately, one can compute (5.3) directly from (4.9).

5.3. Localizing the maximal domain

The following lemma will allow us to “localize the maximal domain” of O4r near the
singular locus.

LEmMMA 5.2. — Let W, 4, x, X be a basic setup at q € Y.
Let u € x_l/zLﬁe’F(X;iieA}i(X)) be such that Pyu € x'/2L%

iie,I’
xu € z72L2 (X5 5°AL(X)) and Py(xu) € o'/2LE, 1(X; 5 AL (X)).

(X;U°A%(X)). Then

Proof. — Clearly P,(xu) = x(Psu) + [Pa,x]u, and, since x is independent of the
Z-variables, (4.9) allows us to see that [Py, x] = 0(P,.)(dx) = =H where H is a multiplication
operator by smooth bounded functions. Since v € x~%/2L2_ .(X;%A%(X)) we see that

iie,I"
[Pa, x]u € z'/? L, (X; A} (X)), which establishes the lemma. O
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2 (X;HeAL(X)) with compact support included
in W and such that x = 1 on supp u. Then Pyu € o202 (X;HeAL(X)) if and only if
Ny(P)(uoyp™) € sV/2L2 (Z x T,Y ™+, AL(Z x T,YT)).

11e

PROPOSITION 5.3. — Let u € z~1/2[2

Proof. — We prove only one implication, the other one is similar. Since we work in the
distinguished chart W, we may identify u with w o 91,

Let p denote a total boundary defining function. The operator £ P, is an elliptic ie differ-
ential operator, so elliptic regularity (4.6) yields u € z71/2H}_(X;* AL (X)).

We observe that, in the expression (4.8), z(d¥ + 6 ) sends z /2 H} (X ;A% (X)) into
Z'/2[2 (X; 1A% (X)) and a similar observation is true for s9E , so using formulas (4.8) and

(5.3), we get P,u — N, (P,)(uo™t) € s¥/2L2_, which proves the lemma. O

11e?

5.4. Injectivity of N,(P,)

We take as an inductive hypothesis that the signature operator on Z is self adjoint with
discrete spectrum. We make two further assumptions:

a) Spec(dZz) N (—1,1) C {0},

5.4
4 b) If k = £ then 9, (Z) = 0.

By Theorem 3.4, b) is a topological condition on Z.

PROPOSITION 5.4. — 1) There exists a (rigid) iterated edge metric (cf. Theorem 3.1) such
that condition a) is satisfied on all links in X. Such a metric will be called adapted (rigid)
iterated edge.

2) Any two adapted (rigid) iterated edge metrics are homotopic within the class of adapted
(rigid) iterated edge metrics.

Proof. — 1) Observe that condition a) can be arranged to hold along a given stratum by
scaling the metric on Z. To check that this can be done coherently for all links in the Witt
space X , one must retrace the proof of Theorem 3.1 concerning the existence of rigid iterated
edge metrics. Following the inductive step there, we see that we can scale the metric on the
link of the highest depth stratum so that a) is satisfied without disturbing the corresponding
property for all the links of lower depth strata.

2) Retrace the proof of Proposition 3.2 along the lines of the previous proof. O

LEMMA 5.5. — Let a € (0,1) and assume the conditions (5.4) and that Theorem 1.1 has
been proven for Z. Then N (P,) acting on
sTY2LE (Z x T,Y T, 5 AL(Z x T,Y 1))
is injective on its maximal domain.

Proof. — Define R = s~Y/2N,(Py)s~1/? (this is effectively N,(Jqr)), so that

R (16& + 055 —0s — 1(fo - N>>

R
Since N,(P,) = s'/27Rs'/2%4 if u solves N,(P,)u = 0 then
T
V=82 u
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_f‘); . fo—-1
solves Rs~~ 2 v = 0. Clearly u € s~'/2L2 (T,) precisely when we have v € 52

11e
so it suffices to solve

+aL'2‘ (Tq)a

11e

fo—1 fo—1 ..
Rs™ 2 v=0, ves z t°L2 (s dsdydz,°Q) = sTater?2

11e

(ds dy dz,°Q).

The advantage of this formulation is that v is also in the null space of

1 1 Z R® _ _Jo _ 1
Sf02 (sR)s_ f02 _ ( 6dR + Séij 1 50 —;N ?Rb 2)
883+N_7+§ _5dR_86dR
K1 —2d?
262 K_1 )’
where K, = AZ + 2 AF — (59,)? + (N — Lo 4 £)2,

—

5.5 fo—1 fo—
- ands 2 (s°R?%)s™ 2 =<

To analyze these systems, we point out that L2 forms on Z satisfy a strong Kodaira
decomposition, i.e., every L? form on Z can be written in a unique way as a sum of a form
in the image of d%, a form in the image of 6% and a form in the joint kernel of d4 and
6% . As explained in [27, §2] weak Kodaira decompositions are a general feature of Hilbert
complexes. Inductively, we are assuming that d+¢ is essentially self-adjoint and that its closed
extension has closed range; this implies, see [27, Proposition 4.6], that d has a unique closed
extension and that this extension has closed range (for instance, because d coincides with d+6
on (ker d)*). Hence the weak Kodaira decomposition is a strong Kodaira decomposition.

The upshot is that if v = («, 8), then we can write
a=d?a1 +6%ay+as, ag € (kerdZ)J‘,ozz € (keréZ)J‘, as € ker d? Nker 6%

and similarly for 3.

fo—1

Inserting this decomposition into s (sR)s™ 7z v =0 and using
d?N = (N -1)d?, §’N=(N+1)?

yields

- 35§;ﬂ3 + s0sa3 + (N — % +3)a3 =0
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and hence another application of the Kodaira decomposition shows that

8%z + sOipan — 50,01 + (N — £+ 1) =0
b
d% oy + s05pan — 59,02 + (N — £ — 2)3, =0

(5.6)
—67 By — s8p 1 + 8851 + (N — £ 4 3)a; =0
—d? 1 — s0%p B2 + 50,00 + (N — 2 — Lyay = 0
(5.7) sﬁ%}éa3 — 50503 + (N — % — %)ﬁ:3 =
—35%53 + s0sas + (N — % + %)0&3 =0.

We also insert the Kodaira decomposition of v into s¥(32R2)3_¥v, and since
deCg = j([_gdz, (SZKg = j(e+25z, this yields
dZ(jC,?,Oél - 2(5Z52) + (52(%_1042) + K103 =0,
d?(K1Br) + 07 (K 32 — 2d% ) K _183 = 0.

Once again another application of the Kodaira decomposition shows that

(5.8) Kzoq = 2676,
(5.9) 2d%a; = K _3
(5.10) K109 = K13 = K161 = K_103 = 0.

We are looking for solutions of (5.6)-(5.10) in s~ 2+ L2 _(dsdydz, °().
Let us find the null space of X,. Conjugating by the Fourier transform in R® (with dual
variable 7 to y) and introducing the new variables ¢t = s|n|, = |Z—|, takes K, to
Ko =A% + 12— (19,)* + (N — Lo 4 £)2.
By assumption AZ has discrete spectrum and, since AZ commutes with K ¢, We can restrict
to the \ eigenspace of AZ,

Kop=A+12 — (t0,)> + (N — L2 4 £)2.
The null space of this operator can be described directly in terms of Bessel functions of an
imaginary argument
AL(t)+ BK,(t), v=+yA+(N-L£+54)2 tcR"

The functions I, increase exponentially with ¢, so to stay in a (polynomially weighted) L2
space, we must have A = 0. The functions K, decrease exponentially with ¢ as ¢ — oo, while
t=Ivl ifv#0

K,(t) ~ ] ast — 0.
—logt ifr=0

1
We are interested in avoiding K, € t*~2 L?( dt), which means we need to have

1<|l+a=a+ A+ (N—L+L)2 foralla>0,
hence 1 < A+ (N — L2 4 £)2,

If A # 0, then our assumption is that A > 1, so this is automatic. If A = 0 then we are
looking for elements in the null space of &, that are also in the null space of AZ, so this
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corresponds to ag and (3. From (5.7) we see that a3 = 0 if and only if 83 = 0 : indeed if

fo_1 . . . . .
a3 = 0 then 5 = s~ 2 ~2 F with F independent of s, but this is never in a polynomially

weighted L? in s, and similarly if 33 = 0. The same reasoning shows that 6]}};(13 = 0if and
only if B3 = 0 and vice-versa. Thus, since ag is in the null space of X'; and (35 is in the null
space of K _1, to avoid elements of the null space with A = 0 we need to have either

I<IN-L 4+ florl<|N=- L 1)

This is automatic unless N = %, but this case does not happen since by assumption there
are no middle degree harmonic forms on Z.

This implies, from (5.10), that as, as, 81, and B3 do not contribute to the null space
of Ny (FP,) for a > 0, and we only need to rule out a; and (5. First note that if &; = 0, then
from (5.9) X _3682, = 0, but since K _3 does not have non-zero null space in
s_%“‘aL?ie(dsdydz, lie()), this implies B2 = 0. Similarly 3 = 0 implies a;; = 0.

Next, substituting (5.9) into the second equation of (5.6) we have

K,3ﬂ2 + 2s3§;a2 —_ 2885ﬁ2 =+ 2(N — % — %)ﬂg = 0
Applying K ;571 kills the second term by (5.10), so
K15 H( Ky — 250, + 2(N — & — 3))3, =0,
but
K5 — 2505 +2(N — Lo — 2)
— A7 4 PAR (50, + (N = Lo — 3)2 259, 4 AN — Lo — 3) — 571k,

so this says K _1(s72K _1s)B>2 = 0. Since we know that & _; does not have non-zero null
space in s~ 212 L2 _(dsdydz, °Q), we must have

S_2jf_18ﬂ2 =0.
Similarly substituting (5.8) into the third equation of (5.6) and then applying £ s~ ! yields
K1(s72K1sap) = 0 and hence

s 2K 1500 = 0.

By the reasoning above, the projection onto the A eigenspace of AZ of 3, is (after changing
variables to ¢ and 7)) of the form

(5.11) %@:c"t’iff ()

by

and the corresponding projection of «; is of the form

(5.12) %m:d@K (t).

1
AN-Loyly

Thus to avoid elements of the null space we need to have either

1<l4a+VA+(N—£ 4 2or1<1+a+ A+ (N L — 1)

and these are automatic for all a > —1. O
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5.5. Indicial roots

Another model operator of P, is its indicial family, defined using the action of P, on
polyhomogeneous expansions. The indicial family is a one parameter family of operators
onY, I(P,; () defined by

Py(a*f) = a*1(Pa; ) f[ g + O(=*T1).

The base variables at the boundary enter into the indicial family as parameters, so we can
speak of the indicial family at the point ¢ € Y by restricting not just to = 0 but to the fibre
over ¢. This refinement of the indicial family is denoted by I,(P,; ¢); from (4.9) it is given by

0 ~(—(fo-N+a+1/2)
¢+N+a+1/2 ~0%k ’

which coincides with the indicial family of the normal operator at ¢ € Y. The values of ¢ for
which I, (P,; ¢) fails to be invertible (on L2 (Z)) are known as the indicial roots of P, at g,
or the boundary spectrum of P, at g,

spec, (Ng(P,)).

As we show below, this set depends on specdZy, and hence relies on the inductive hypothesis
on Z.

Iq(Pa§ C) = <

An equivalent model of P, is the indicial operator:

() = 0% —t0; — (fo— N+a+1/2)
9, + N+a+1/2 ~0%. '

I,

q

It is related to the indicial family by the Mellin transform,
M(Iq(Pa)u)(C) = Iq(Pa; —i¢)M(u) ().
Recall that this transform is defined, e.g., for u € Go° (RT) by

(5.13) Mu(C) = / u(z)z ! da,
0
and extends to an isomorphism between weighted spaces
d ™~
(5.14) oL (W, ﬁ) =, L2 ({n = a}; de)
x

where n = 3¢ and £ = RC. The inverse of the Mellin transform as a map (5.14) is given by

H0)@) = o [ w(Qa de

T om

LEMMA 5.6. — The indicial roots of P, are contained in the union of

U {-%-atpe-%=3}, U {-%-axVr+0-%+97},
616 % 70
SPRUR (B S ey )
Ak#£0

where k € {0,..., fo}, A is in the spectrum of AZ acting on k-forms, £ € {£1,43} and
0 e {£1}.
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The indicial operator of P, has a bounded inverse on the space t*/?L2 (Z x R}) for all
a € (0,1).

Proof. — An analysis similar to—but simpler than—that above applies to the equation
I,(P,)u = 0. Indeed, it suffices to replace (t9;)? — ? in the ‘equations to solve’ by (t9;)?.
Since the solutions to (t;)?u = v?u are linear combinations of t” and ¢t~, the solutions
of I,(P,)u = 0 are obtained from the solutions to Ny(P,)u = 0 by replacing each I,(¢)
by ¢ and each K, (t) by ¢t~¥. Both of these contribute indicial roots, since for the indicial
family we do not impose growth restrictions.

For the indicial operator, we are imposing growth restrictions and, as before, asking for
solutions to be in t~*/2L2(¢t/ dt) excludes those involving #*, hence conditions (a) and (b)
show that there are no solutions involving t—* for a > 0. Thus the proof of Lemma 5.5 shows
that the indicial operator I,(P,) is injective on t~/2L2(Z x R*) as long as a > 0.

Similarly, the proof of Lemma 5.5 shows that if there is a non-zero solution to I,(Py; {)u =0
then ¢ must be in one of the sets in (6.16). An advantage of the indicial family is that we can
bring to bear our inductive hypotheses about 875. Indeed, decompose I, (P,) as

B 0%k ~(—(fo—-N+a+1/2)
flf)le) = (C+N+a+1/2 ~0Z, )
_ §R<Id 0 >+< 0 —{—(fo—N+a+1/2)>:A+B.
0 —1Id C+N+a+1/2 0

Inductively we know that A is essentially self-adjoint, has closed range, and its domain,
D(A), includes compactly into L2 (Z). It follows that the operator B : D(A) — L% (Z)
(where 9(A) is endowed with the graph norm) is compact, i.e., B is relatively compact with
respect to A, and so I, (P,; ¢) has a unique closed extension, has closed range, and its domain

is also D(A).
Since 9%y is essentially self-adjoint, the adjoint of I,(P,)(¢) on L%(Z) is

o A (+N+at1f2
Iq(PaaC) - <_C_f+N_a—1/2) _8gR )
=I,(Py;—(( + f +2a+1)).

Notice that ¢ is in one of the sets in (6.16) if and only if —(¢ + f + 2a + 1) is. Thus we see
that if ¢ is not in one of these sets, then I, (P,; {) is in fact invertible with bounded inverse.
In fact, since the domain of I,(Py; () is D(A), its inverse is a compact operator. This proves
that (6.16) contains the indicial roots of Ny (P, ). Denote the inverse of I (P,; () by

Q) : Lie(2) — D(A) = L (2).

We obtain an inverse for I, (P,) as an operator on t"Y/2L%_(R* x Z) by applying the inverse
Mellin transform to Q(¢) along the line n = —g — 1, which we can do as long as —% —1is
not an indicial root. If (a) and (b) hold, then this is true for all a € (0, 1). O
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5.6. Bijectivity of N,(P,)

We now show that the normal operator N, (P,) is a bijection between its maximal domain
ins~Y2L2 (Z x T,Y*)and s~Y/2L2% (Z x T,Y*) when0 < a < 1.

Observe first that by Lemma 5.5, assuming conditions a) and b), this mapping is injective
for these values of a. Therefore, a simple duality argument shows that it suffices to show that
it has closed range. Indeed, since Jqg is symmetric on L (X;°A*X), the operator

Do :x Y202 (X; 1 A" X) — o/ L2 (XA X)

11e

coincides with its formal adjoint. It is then straightforward that the formal adjoint of P is

(PO)* — $_1/26dR$3/2 . ZU_I/QL-Q (X;iieA*X) - ac_l/QL? (X;iieA*X),

iie iie
and similarly,

(515) (Pa)* _ (x1/2—a6dR$1/2+a)* — x—1/2+a8de3/2—a =P _,.

LEMMA 5.7. — The normal operator Ng(P,) is bijective as an operator on
sTY2L2 (Z x T,Y) acting on its maximal domain, for all a € (0,1).

11e

Proof. — For the duration of this section we write L%, simply as L? and also omit the
bundle i°A*(Z x T,Y*) to simplify notation.

Following the proof of Lemma (5.5), we pass to the Fourier transform in the horizontal
variables, introducing the variable n dual to y, and then rescale by setting t = s|n|, 7 = n/|n|.

This leads to the family of operators

¥ (P 7) = 0%+t (@) —t0 — (fo—N+a+1/2)
VT, A Nvat1/2 —0% —td ()

where ¢/ (77) = i~+ e;is a Clifford multiplication and 7 lies in the unit sphere Sb—1. Notice
that

(5.16) Ny(Pa, ) = I(P,) + tA(m)

where A is a bounded matrix. These operations are all reversible, so it is enough to study this
simpler family of operators, and in particular to show that it is a bijection from its maximal
domain in t—/2L? to t—'/2L2. We have already shown in Lemma 5.5 that this operator is
injective, and by duality, i.e. using injectivity for Nq(Pa7 mn* = qu(Pl,a, —n), it also has
dense range. Thus it suffices to show that it has closed range, and to prove this we follow
a standard procedure by constructing local parametrices for qu(Pa, 7)) in the two regions
(0,2T) x Z and (T, 00) x Z for any fixed T'. Notice that we only need to construct a right
parametrix for N, 1(Pa, 1), since a left parametrix is obtained as the dual of a right parametrix
for Ny(Py_q, —1).

First consider the region ¢ < 2T. We have indicated in §5.5 that I,(P,) has an inverse
Hy = I,(P,)"' ont~'/2L2, and hence

Ny(P,,7) o Hy = 1d + tA(7}) Hy.

Since Hy maps into the domain of I,(P,), and the restriction of this domain to forms with
bounded support in ¢ includes compactly in t ~1/2 L2, we see that the second term on the right
is a compact operator on this subspace.
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For forms supported in¢ > T, as in [4], Lemma 5.5], consider the partial symbol
o~ . AZ 12 4 272 0
F(Ny(Pay)?) = L
0 — (A% +t* +t°7%)
where 7 is the variable dual to 9;. Clearly,
[(F(Ng)u, u) | > ¢2(1 + 72)Jull;

the inner product and norm are those of t=*/2L?. The operator norm of 5(NZ2) ! is bounded
by t72(1 + 7) 72, so that

Hoo(u) = /ei”g(Ng)*la dr

defines a parametrix for Ng (m) in the large region. As before, ng oHy = qu o (qu oHy) =
Id + B where B is compact, hence ]vq(Pa, 7)) o Hy is the parametrix we seek.

Now choose a partition of unity {xo, xco } relative to the open cover (0,27") U(T, o0), and
fix smooth functions x; such that x; = 1 on the support of x; and which vanish outside a
slightly larger neighborhood. The right parametrix is then given by

H = XoHoxo + Xoo (Ng(Pa, ) 0 Hoo) Xoo-

The last thing we need to check is that ]Vq(Pa, n) o H = 1d — Q, where Q is compact.
However,

Q = [Ny(Pa, M), X0l HoXo + [Ng(Pay 1) Xoo) (Ng(Pas 710 Hoo)Xoo + Xoo BXoo-

The two commutator terms are operators of order 0, i.e. multiplication operators, with
compact support, and using the mapping properties of these two parametrices, we conclude
that @ is compact, as claimed.

This proves that ]vq(Pa, 7)) is Fredholm, which completes the argument. O

5.7. Integration by parts identity for N,(P,)

In computing the indicial roots of P,, we have made strong use of the symmetries of the
normal operator of P,, namely the translation invariance along horizontal directions (i.e.,
those tangent to Y) and dilation invariance in T, Y . In this section we exploit this invariance
to establish an integration by parts identity, which will ultimately allow us to show that any
‘extra’ vanishing of N,(P,)u at = 0 translates to some degree of vanishing of u at z = 0,
the latter degree bounded by the indicial roots of Ny (FP,).

We will need the Sobolev spaces on Z x T,Y+ analogous to those on X.

DEFINITION 8. — Let N € N. We define HJ|(Z x T,Y*;1°A*) to be the set of
u € L2,(Z x T,Y T;i°A*) such that for any positive integer p < N,
Xi... Xpu€ L3 (Z x T,Y T 1eA%)
where the X are vector fields which are either of the form s0s, 50y, (1 < j < bo) or of the form
X(z,8,u) = X(2) for each (z,s,u) € Z x T,Y ™, where X (2) is an edge vector field of the
fibre Z = Z,. Notice that these vector fields s0s, s0,,; X (z) generate a Lie algebra.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



280 P. ALBIN, E. LEICHTNAM, R. MAZZEO AND P. PIAZZA

As we have already used in §5.4, if a function in L2 (X) is &(z”) near z = 0 then we must
have 2y + fo > —1. As the L2 cut-off will be very important below we introduce the function

(517) foly) = - L,
thus a function in ©(z7) is in z*L?(z%° dz) precisely when v > §o(a).

Briefly, let us abbreviate L2_(Z x T,Y T,"°A*(Z x T,Y*)) by L2, (q). Let C be a fixed
numberin [—1/2,1]ande € (0, 1). Let now R be the unbounded operator induced by N, (FPp)
on s¢*+¢L2 (g) with domain CS°; with a small abuse of notation we denote also by R the
operator induced by N, (Pp) on s°~¢L2_(q) (acting distributionally). We consider the natural

11e

pairing (-,-) : s°T¢L2 (q) x s“"°L2 (q) — C between these two spaces *. Let R? be the

formal transpose of R with respect to this pairing. R! is a differential operator and we let it
act, distributionally, on s ¢ L2 _(q).

We will establish that, if

u e SCL?ie(q)7 v e SCieL‘2 (Q)a and RU, Rtv € SC+6Li2ie(q)

iie
then, with respect to the natural pairing (-, -) above, we have
(v, Ru) = (u, R'v) .
Notice that, although both pairings make sense, this is not an instance of the definition of R?,

since both u and v are thought of as elements of s° L2 _(q).

11e
Assume inductively that we have shown Dyax(0dr) = Dmin(Oar) for stratifications of
depth at most m — 1 so that in particular

<5§Ru,v> = <u, 5§Rv>
for any two elements of @max(?)gR).
2

(u,v) = /siZCu A %V

and, on the other, the normal operator is given by

On the one hand we know that, for u,v € s° L2_(q), the natural inner product is given by

0%, + 0% —58,+N— f— (a+1/2)
Nq:Nq(Pa): ar ar 7 RP )
50, + N+ (a+1/2) —04r — sO4r

so as anticipated we only have to justify integrating by parts the sds and SEQR;.

We can assume that we are working with sections compactly supported in a basic neigh-
borhood W.

Our main tool is the Mellin transform (5.13). Using the inclusions z®L? C 2?L? whenever
b < a it follows that the Mellin transform of a function in z¢L?(R*, dz) is holomorphic in
the half-plane {n < a — 1/2}. The Mellin transform is very useful for studying asymptotics.
For instance, if u is polyhomogeneous then Mu extends to a meromorphic function on the
whole complex plane with poles at locations determined by the exponents occurring in the

@ Recall that this pairing is given by (u,v) := (u’,v") o2 ifu = s¢u’ and v = s™<v’.
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expansion of u. Switching from L?(R™) to L2 (X), assume that w is supported in a basic
neighborhood W of ¢ € Y, then we have

w € s*LE(X) <= Mw € L? ({n = do(a)}, d&; L*(dy dvoly))

where 1 denotes Mellin transform in s (in the usual coordinates), dy denotes the Lebesgue
measure of R?, and dvoly denotes the volume form associated to the edge iterated metric
of Z. Notice that Mw extends to a holomorphic function on the half-plane {n < do(ao)}
with values in L?(dy dvoly).

Elliptic regularity (via the symbolic calculus) tells us that elements in the null space of an
elliptic edge-operator are in H3S (X ; °A*), and hence smooth in the interior of the manifold.

11e

However, the derivatives of elements in H3o (X; &) will typically blow up at the boundary,

which is just to say that knowing pd,u € L% (X;1°A*) tells us that ,u € p~1 L2 (X;1°A*).
Using the Mellin transform we can turn this around: if u is in the null space of an elliptic
ie-operator, A, as a map

A :paL?ie(X;iieA*) _)paL?ie(X;iieA*)
then, in the absence of indicial roots, we can view u as an element of a space with a stronger
weight at the cost of giving up tangential regularity at the boundary. We shall concentrate
directly on the normal operator of P,, even though much of what we prove could be extended

to more general differential operators.

LEMMA 5.8. — Let W be a basic neighborhood for the point ¢ € Y. Set R = Ny(P,) and
assume that, for some o € Rand e € (0,1),

(5.18) {(R¢+ L +1:¢espec,(R)}IN[a—¢,a+e] C{a}.

1. Assumev € s*L2,

(Z x T,Y T;1°A*) is supported in W and
Rv € s°T°L2 (Z x T,Y +;1eA%),

iie
then
v € s*TEL2 (570 ds dvoly, H™(dy) ® "°A*)

= {5y : u € Diff (V) L&, (W; °A%)}.

Moreover, as a map into L?(dvolz, H=1(dy) ® 1€A*) the Mellin transform of v is
holomorphic in the half-plane {n < éo(a + €)}.

2. Assume that uw € s*L3 (Z x TYT;5°A*) and w € s* HZ,

Definition 8 ) are such that

(Z x T,Y+;ieA") (cf

suppu C W
Ru, R'w € s*T° L2 (Z x T,Y T;1°A*),

11e

then with respect to the natural pairing

<" > : SaisLiZie

(Z x T,Y T;°A*) x s*T€L2

iie

(Z x T,Y T;HeA*) — C
we have (w, Ru) = (u, R'w).
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Proof. — (1) Since v is supported in a normal neighborhood of ¢ € Y, we can write
I,(Rjv=Hv+h

where I,(R) is the indicial operator of R and H contains all of the ‘higher order terms’ at
the boundary, e.g., s20;, s0,,.

Passing to the Mellin transform, and using that I,(R; ¢) depends polynomially on ¢, we
have an equality
(5.19) Mv(¢) = I(R;i¢) ™" (M(Hv + h)(())

as meromorphic functions {n < §(a)} — L?(dy dvolz; A*),

of course since the left hand side is holomorphic on this half-plane so is the right hand
side. On the other hand, “#(h) is a holomorphic function into this space on the half plane
{n < do(a + €)}, and, reasoning as in [41], M(Hv) extends holomorphically to this half
plane but we have to give up tangential regularity,

M(Hv) : {n < 6o(a +€)} — L*(dvolz; H ' (dy) ® A*) holomorphically.
This gives us an extension of (5.19) to
(5.20) Mw(C) = I(R;i¢) ™" (M(Hv + h)(C))
as meromorphic functions {n < y(a + &)} — L*(dvolz; H ' (dy) ® A*).

The possible poles occur at indicial roots of R, so the first possibility would occur at
¢ = do(a), and by hypothesis this is the only potential indicial root with real part less than
or equal to §p(a + €). However we know that

1 )
o(s,,2) = / Hole,y, 2)s— € de
n=0do ()

T on
so in particular (as 1/£2 is not integrable) “Mv does not have any poles on this line. Hence
Mu(¢) = I(R;i¢) ™" (M(Hv + h)(())
as holomorphic functions {n < §y(a +¢)} — L?(dvolz; H ' (dy) ® A*)

and we conclude that
v € s°L%(s7ds dvolz; H™1(dy) ® A*).

(2) This follows as in [41, Corollary 7.19] by analyzing the Mellin transform. Without loss
of generality we can arrange, by conjugating R with an appropriate power of s, to work with
the measure < (dsdy dvolz). We will assume, for the duration of the proof, that this has been
done without reflecting it in the notation. This has the advantage that the Parseval formula
for the Mellin transform has the form®

o ds
[ aene T =] mn mm-od
0 s n=C
with C chosen so that the integral on the right makes sense.

®) For the measure sf0 ds the Parseval formula for the Mellin transform takes the form

I 91(9)g2(s)s70 ds = [ Mg1(¢) Mga(~(fo +1)i = ¢) de.
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Notice that from knowing u,w € s™¢L%_ and R(u), R*(w) € s°L

11e 1ie
transforms are defined on the half-planes

M(w)(¢) on {n < —e}, M(Ru)(=¢) on {n > —¢}
M(R'w)(¢) on {n < e}, M(u)(=C) on {n > e}

so that a priori there is in each case only one choice for the constant C appearing in Parseval’s
formula. More precisely, C = —¢ for the first pair and C' = ¢ for the second pair.
Using part 1) of this lemma we know we can extend

M(u)(=¢) to {n = —¢}

albeit with a loss in tangential regularity. Fortunately this loss in tangential regularity is
compensated by a gain in tangential regularity in #(R'w) in this same region. Indeed,
since w € s™°HZ,, we know that R'w € s°HJ;, hence we have 9, R'w € s™'*°L3 . It
follows that the Mellin transform of 9, R'w is a holomorphlc map from {n < —1+ €}
into L?(dy dvolz; A*) and hence on this same half-plane #(R!w) maps holomorphically
into L?(dvolz, H' (dy) ® A*). Again applying Calderén’s complex interpolation method, we
conclude that

(5.21) M(R'w)(¢) € L*(dz, H* ") fore —1 < n<e.

the respective Mellin

The same reasoning applies to w.
Thus if we start out with (u, Rtw) which we can write as

// M(Rw)(C) M{u)(—C) dé dy dvolz,

we can deform the contour from {n = ¢} to {n = —e} and throughout this deformation the
integrand stays holomorphic with the loss in tangential regularity of /% (u) exactly compen-
sated by a gain in regularity by M (R'w), i.e. the integrand makes sense as a pairing through-
out the deformation. Moreover the integrand is holomorphic in this region and so the value
of the integral does not change during the deformation. Hence we can write (u, Rtw) as

J| R Q) A(a(0) de dy ol
Now integrating each terr?l_by parts we write this as
[ ) nra=0) de dy avoy.
which by another applicatino_n of Parseval’s formula we recognize as (w, Ru). O

5.8. End of induction: d4p, is essentially self-adjoint and Fredholm

Our next task is to use the information gleaned in the previous section to show that
elements of the maximal domain of dqr as an operator on L2_(X; "®A* X)) are automatically
in p° L3, (X; A% X).

PROPOSITION 5.9. — Up to rescaling suitably the metric, the following is true.
1) Let u be in the maximal domain of Dar as an operator on L (X;"°A*X) then for any
(O 1) = psHllle( ueA* )

2) The maximal domaln Dinax (0ar) is compactly embedded in L%,.
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Proof. — We can immediately localize and assume that u has support in a locally trivial-
ized neighborhood % x C(Z) of the highest depth stratum.
We begin with the following intermediate result.

PROPOSITION 5.10. — Let u have compact support in U x C(Z) and lie in the maxi-
mal domain of Dar as an operator on L% (X;U°A*X). Then, for any € € (0,1), we have
u € 2° L2 (X ;A X).

Proof. — Fix g € (0, 1) small enough such that
{RC+ L+ 3 : ¢ especy(R)} N[—1/2 — g0, —1/2+ 0] C {—1/2}.

Let u € s~ Y2L2 (Z x T,Y*;1eA*) satisfy N,(Po)(u) € sY2L2.(Z x T,Y+;ieA*);
by Proposition 5.3, we only need check that u € s~/2*e0[2 (Z x T,Y*;%eA*). Fix such
a u, and write L2, (Z, T,Y 7;°A*) in place of L?(q).

Applying 5.5 and 5.7, we know that R = N,(F,) is bijective as a map from szt L2(q)
to itself (on its maximal domain). Thus R? is certainly surjective from sTEc0 L?(q) (on its
minimal domain).

Let G be the bounded generalized inverse of R; G is a bounded map from s /2750 2(q)
to itself, with image contained in the domain of R?, and satisfies

RIG =T, 1/2qpa(q) -
Let ¢ be any element of s—1/2+2o H(Z x T,Y*;5eA*). Then v = G¢ satisfies
v e 3_1/2_6‘)[/2(&), Rv=R'Gp=¢ € 3_1/2+60L2(q),
the latter statement and elliptic regularity allows us to strengthen the former to
v e sTY2m0H2 (Z x T,Y*;#A*). On the other hand, we know that Ru € s'/2L?(q) C
s~1/2+20[2(g), so by part 2) of Lemma 5.8 (with a = —1/2) we conclude that
(Ru,v) = (R'v,u).

But then we also have

(5.22) (Ru,v) = (Ru,Go) = <GtRu, ¢>

where we recall that Ru € s'/2L2(q) C s~Y/?*0[2(q), G¢ € s~1/20[2(q) and where G*
denotes the functional analytic transpose of the bounded operator G; G* acts continuously
on s~1/2+e0 [2(g), so in fact G'Ru € s~1/2+0 [2(q).

Moreover, we have:
(5.23) (Ru,v) = (R'v,u) = (R'Go,u) = (¢, u).

By comparing the last terms of (5.22) and (5.23) we see that (v — G*Ru, ¢) = 0 and since ¢
was arbitrary we finally get: u = G*Ru. Therefore u € s~1/2+te0 [2(q).

Next, taking e; € (0,1) small enough such that
{(R¢+ L +1:¢espec,(R)}N[-1/2+e0—e1,—1/2+e0+e1] =@ C {~1/2+ &0},
we can repeat the argument above and conclude u € s~1/2+%0+¢1[2(4); continuing in this

way we conclude that u € s™1/2+¢L2(q) for any € € (0, 1) as required. O
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Proof of Proposition 5.9. 1) Proceed by induction on depth. For depth zero, there is nothing
to prove. Let k£ > 0 and assume that the result is true for any Witt space of depth less than k.
If u € Dmax(ar) has support in a locally trivialized neighborhood % x C(Z) at the highest
depth stratum, then Proposition 5.10 gives the stated decay and regularity in the final radial
variable. Since the link Z has depth k& — 1, we already know the result for it.

2) This follows since p® H}, (X ;1°A* X) is compactly embedded in L2, O

iie

We now know that elements of the maximal domain have some ‘extra’ degree of vanishing,
and we can then apply an argument of Gil-Mendoza [19].

PrOPOSITION 5.11 (Gil-Mendoza). — If Dmax(0ar) < pCLE (X;1°A*X) for some
C > 0, then, as an operator on L2, (X;1°A* X),

max(6dR) N n ,01 ELie ;iieA*X) g @min(6dR)-
e>0

REMARK 5.3. — Since we have actually shown not only that

@max(5dR) g PCHl ( ;iieA*X)

11€e
but in fact

max 6dR ﬂ ,01 EHl:ie ;iieA*X)v
e>0
this proposition implies Diax(Fdr) = Dmin(Odr)-

Proof. — We point out the following simple consequence of the formal self-adjointness
of O4r and the definitions of the minimal/maximal domains and weak derivatives:

LEMMA 5.12. — An element u € Doy (0gr) is in Diin (Oar) if and only if
(5.24) (04ru,v) = (u, 0qrv), for every v € Diax(Oar)-
Proof. — For any operator D with formal adjoint D* one has
u € D(Dmin) <= u € D(((D")max)")
<= (Du,v) = (u, D*v) forevery v € D((D*)max)-
If D is symmetric so that D* = D, then this is (5.24). O

Letu € Q)max(ﬁdR) N ﬂ€>0 p1 €L (X; iieA*_X)7 NeJ

1€

ue [)p T Hi (X; A" X).

e>0
Set u, = p*/™uforn € N, so that for each n, u,, C pH}_(X;®A*), and, for every ¢ € (0,1),
(5.25) Uy — win pt CHE (X;5°A*) and Ogrun — Ogru in p L2, (X;1°A%).

Lete € (0,1) so that Dpmax(0ar) € p°HL (X;1°A*). Then, for any v € Diax(ar), (5.25)
implies

(0drRUn, V)2 = (p°OdRUN, p~ V)12 — (p°OdrU, p~ V)12 = (OqrYU, V)2
and (’U,T“ 5dR’U) — (u, 6dR’U).

Moreover, by the previous Lemma, u,, € Dpin(9qr ) implies (Dgrtn, v) = (un, Oarv).
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It follows that (Oqru, v) = (u, 0qrv) for every v € Dimax(dar) and hence u € Diyin (Ogr)-
O

Altogether, we have now proved Theorem 1.1. We summarize for the benefit of the reader.

Proof. — Parts 1) and 2) are direct consequences of the last proposition. Let us show
that dgg is self-adjoint on its maximal domain. Denote by O4r,max the operator dgg on
its maximal domain. If v is in the domain of J4r max then integration by parts, which is
allowed because of the extra vanishing, implies that v is in the domain of (O4r,max)* and
that 94r, max? = (0dr,max)*v. Conversely, let v lie in the domain of (J4r,max)*. Observe that
Yu € C°, (Ogru, v) = (u, 0qrv), with 94 acting as a distribution on v. From the definition
of adjointness we also know that (Jqru,v) = (u, (0dr,max)*v) and since this is true for all
u € C2° we infer that Ogro is in LZ,. Indeed, by definition, (0dr, max)*v € L2,. Thus v is in
the domain of O4r max aNd Od4r max¥ = (OdR,max)*v. This proves that dgr max is self-adjoint.

To prove 3), since dgr is self-adjoint, (¢ Id + J4gr) is invertible. Since Dyax(Tgr) is com-
pactly embedded into L2 (X;1°A*X), (iId + O4r) ' defines a parametrix for d4r acting
on Diax(Jgr) With compact reminder.

Finally, for 4), since dgr is Fredholm, there exists ¢ > 0 such that (e Id+ 94 ) is invertible.
Since the maximal domain is compactly embedded in L2, (e Id+304gr ) ! is compact and self-
adjoint. Thus, the spectrum of (e Id + dqr)~* is discrete with finite multiplicity. Therefore,

the spectrum of dqg is discrete and has finite multiplicity. O
6. The signature operator on Witt spaces

We now turn from the de Rham operator to the signature operator, first on forms with
scalar coefficients and then with C*-algebra coefficients. We show first that these are Fred-
holm operators, but more importantly, that they define classes in the groups K. *(5(\ ) and
K. (C*T), respectively. The index of these operators is independent of the choice of metric
and defines a topological invariant. We will show later that this class enjoys even stronger
properties: it is a Witt bordism invariant, a stratified homotopy invariant and it is equal,

rationally, to a topologically defined invariant, the symmetric signature.

6.1. The signature operator Ogigy,

If X is even-dimensional, the Hodge star induces a natural involution on the differential
forms on X,
I (X)) - (X)), S =Id
whose +1, —1 eigenspaces are known as the set of self-dual, respectively anti-self dual, forms
and are denoted Q% , Q* . The involution 4 extends naturally to “°Q* (X)) and with respect
to the splitting "°Q*(X) = °Q* @ 1°Q* | the de Rham operator decomposes

0 55_“1
o = (6;gn 0g>

=d+d:"Q% (X) - Q" (X), 05,, = (0%

sign = ( sign)*'

where
3-&-

sign
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If instead the manifold X is odd-dimensional, the signature operator of an (adapted) edge
iterated metric is

8sig;n = _Z(dj + jd) = —Zj(d - (5) = —Z(d - 5)j

We point out for later use that in either case, given a continuous map r : X - BT, we
also obtain a twisted Mishchenko-Fomenko signature operator g acting on sections of
the bundle A% (X).

THEOREM 6.1. — Up to rescaling suitably the metric the following is true. If X satisfies (5.4)
Jor all strata, then the iterated incomplete edge signature operator Ogign is essentially self-adjoint
with maximal domain contained in

ﬂ p1_6H~1' (X, iieA*X).

11€e
e>0

Its unique self-adjoint extension is Fredholm on its maximal domain endowed with the graph-
norm; moreover it has discrete L?-spectrum of finite multiplicity.

Proof. — If X is even-dimensional, it is immediate to see that

@min(ési_gn) = @min(6dR) n Li2ie (X7 iieAj— (X))a
Drmax (6;gn = Dmax(0ar) N Li2ie (X; iieA: (X))
so the result follows from the corresponding results for dqg.

For X odd-dimensional, we point out that one can characterize the maximal domain
of d— ¢ through the same analysis used for d+4§. Alternately, we can use the result for d+4 to
deduce it for d — ¢ as follows. As explained above, a byproduct of our results is the existence
of a strong Kodaira decomposition

L2.Q* = L2# @ Image d @ Image &

where L2 is the intersection of the null spaces of d and 6. The de Rham operator d + §
decomposes into

(d : Image § — Imaged) ® (J : Imaged — Imaged),
hence d and § individually have closed range and

Dmax(0ar) N Image § = Diax(d) N Image §
Dmax(0ar) N Image d = Dpnax(d) N Imaged

hence i(d — §) has closed range with domain contained in (hence, by symmetry, equal to)
Dmax(04ar ). Applying Proposition 5.11 to i(d — §) then shows that it too is essentially self-
adjoint. O
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.

6.2. The K-homology class [0gien] € K, (X)

The results proved so far for the signature operator Jgen on a Witt space X allow one
to define the K-homology class [Jsign] € K.(X) = KK,(C(X),C). The K-homology
signature class already appears in the work of Moscovici-Wu [47]; the definition there is based

on the results of Cheeger.

Recall that an even unbounded Fredholm module for the C*-algebra C()/(\ ) is a pair
(H, D) such that:

— H is a Hilbert space endowed with a unitary *-representation of C(f(\ ); D is a self-
adjoint unbounded linear operator on H;

— thereis a dense *-subalgebra &% C C ()/(\ ) such that Va € & the domain of D is invariant
by a and [D, a] extends to a bounded operator on H;

— (1+ D?)~1is a compact operator on H;

— H is equipped with a grading 7 = 7, 72 = I, such that 7f = fr and 7D = —Dr.

An odd unbounded Fredholm module is defined omitting the last condition.

An unbounded Fredholm module defines a Kasparov (C (5(\ ), C)-bimodule and thus an
element in K K, (C(X), C). We refer to [3] [6] for more on this foundational material.

Recall that adapted edge iterated metrics were defined in Proposition 5.4. The following
theorem already appears in [47], where it is proved using Cheeger’s results. Here we give a
proof using our approach.

THEOREM 6.2. — The signature operator Osign associated to a Witt space X endowed with
an adapted edge iterated metric g defines an unbounded Fredholm module for C (5(\ ) and thus a
class [Osign] € KK, (C(f(\), C), * = dim X mod 2. Moreover, the class [Ogign| does not depend
on the choice of the adapted edge iterated metric on X.

Proof. — We take H = L2 (X;"°A*X), endowed with the natural representation
of C ()/(\ ) by multiplication operators. We take D as the unique closed self-adjoint extension
of Osign. These data depend of course on the choice of the adapted edge iterated metric. We
take & equal to the space of Lipschitz functions on X with respect to g; & does not depend
on the choice of g, since two adapted edge iterated metrics are quasi-isometric. Finally, in
the even dimensional case we take the involution defined by 4. All the conditions defining
an unbounded Kasparov module are easily proved using the results of the previous section:
indeed, if f is Lipschitz then it is elementary to see that multiplication by f sends the max-
imal domain of g into itself; moreover [f, Osign] is Clifford multiplication by df which
exists almost everywhere and is an element in L‘X’(j(\ ); in particular [f, Ogign| extends to a
bounded operator on H; finally we know that (1 + D?)~1! is a compact operator (indeed, we
proved this is true for (& + D)~1). Thus there is a well defined class KK, (C(X), C) which
we denote simply by [Js;gn); this class depends a priori on the choice of the metric g. Recall
however that two adapted edge iterated metrics gg and g; are joined by a path of adapted
edge iterated metrics g;. Let 6gign and 0}, be the corresponding signature operators, with

domains in Hy and H;. Proceeding as in the work of Hilsum on Lipschitz manifolds [23]
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one can prove that the l-parameter family (Ht,ﬁgign) defines an unbounded operatorial

homotopy; using the homotopy invariance of K K-theory one obtains

[@%..]=[0L,.] in KK.(C(X),C).

sign sign

We omit the details since they are a repetition of the ones given in [23]. O

6.3. The index class of the twisted signature operator 5sign

Let X be a Witt space endowed with an adapted edge iterated metric. Assume now that
we are also given a continuousmapr : X — BTl'andletT" — X’ — X be the Galois I'-cover
induced by ET' — BT'. We consider the Mishchenko bundle

CiT:=C T x X/,
N

and the signature operator with values in the restriction of a?l‘ to X, which we denote
by 5signo

PROPOSITION 6.3. — The twisted signature operator Oggn Is essentially self-adjoint
as an operator on L, p(X; " AL X), with maximal domain contained in (.5 p*~° Hj, p(X; "°AF X)
which is in turn C;T-compactly included in the Hilbert C;T-module LY, (X; " A X).

Proof. — We briefly point out how the proof given for dqr and Osgn extends to the case
of Ogr and Jsjgy,. Recall that a C}T'-distribution on X = reg (X) is a C—linear form
T : C°(reg (X),"°ALX) — C*T

—

satisfying the following property. For any compact K C reg (X), there exists a finite set S of

elements of Diff}, . such that:

Vu € O (reg (X), AL X), [(T;u)|

iie,I"

cxr < sup [[(Qu)| Lz
Qes

Of course, any element of L%, (X; A} X) defines a C;T-distribution on reg (X). It is
clear that 34r sends L%, -(X; A X) into the space of C;T-distributions. Therefore, the

notion of maximal domain for 5dR is defined. The notion of minimal domain is also well
defined (this is simply the closure of C2° with respect to the norm ||Ju| + || 3arul)). Notice
that these two extensions are closed. Our first task is to show that these two extensions
coincide. To this end we shall make use of the fundamental hypothesis that the reference
map r : X — BT extends continuously to the whole singular space X. Therefore, for any
distinguished neighborhood W ~ R® x C(Z), the induced I'-coverings over W and over Z
are trivial. This implies that for any g € Y, N, (am) is conjugate to Ny (J4r) ® Id5, .- Once
this has been observed we have, immediately, that Proposition 5.3 and Lemma 5.3 extend
to the case of dar. Then, Proposition 5.10 also extends easily to the present case showing
that the maximal domain of 3¢y is included in (.5 p*~° Hii, 1 (X; A X). Once the extra
vanishing is obtained, we can apply the argument given in the proof of Theorem 1.1 in order
to show that the maximal extension is in fact self-adjoint. The argument of Gil-Mendoza can
also be extended, showing the equality of the maximal and the minimal domain. The details
of all this are easy and for the sake of brevity we omit them. Finally, proceeding as in [35],
one can prove that p° Hyj, p(X; A} X) is CyT-compactly included into L, n(X; A} X).
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The proposition is proved for dar. The extra step needed for the signature operator is proved
as in Theorem 6.1. O

From now on we shall only consider the closed unbounded self-adjoint C}I"-operator of
Proposition 6.3 and with common abuse of notation we continue to denote it by Jgjgn.

We now proceed to show the following fundamental

PROPOSITION 6.4. — The operator 5Sign is a regular operator. Consequently (i :I:%sign) and
(1 +02_.) are invertible.

sign

Proof. — Recall that a closed unbounded self-adjoint operator D on a Hilbert C\T"-mod-
ule is said to be regular if 1+ D? is surjective. One can show, see [33], that D is regular if and
only if 1 4+ D? has dense image if and only if (i & D) has dense image if and only if (i + D)
is surjective. Moreover, if D is regular then both (i & D) and 1 + D? have an inverse. For a
simple example of an unbounded self-adjoint operator on a Hilbert module such that (i+ D)
and (¢ — D) are not invertible see [24, page 415].

We shall prove that our operator is regular by employing unpublished ideas of Georges
Skandalis, explained in detail in work of Rosenberg-Weinberger [52]. We have seen in the
previous subsection that g, defines an unbounded Kasparov (C’()? ), C)-bimodule and

.

thus a class [Ogign] € KK, (C(X),C). Consider now
&= L} (X; A" X) ®c C;T;

tensoring Osign With Idc:r we obtain in an obvious way an unbounded Kasparov
(C(X) ® C:T,C;T)-bimodule that we will denote by (&, @). For later use we denote

the corresponding KK-class as
(6.1) [Osign]] € KK.(C(X) ® C*T,CIT).
Consider A := C (5(\ ) ® CT and set
@ :={a € A:a(Dom D) C Dom P and [a, D] extends to an element of £(&)}.

It is a non-trivial result ([52]) that & is a dense *-subalgebra of A stable under holomorphic
functional calculus. Consider now the Mishchenko bundle 6;:1“ and its continuous sections
CO()/(\ ; /C’\T;F) =: P.Itis obvious that P is a finitely generated projective right A-module. The
result cited above, together with Karoubi density theorem ([28] exercise 11.6.5), implies that
there exists a finitely generated projective right &-module & such that P = P®4 A. Consider
for £ € P the operator Tt : & — P® 46 defined by T¢(n) := € ® . Tt is a bounded operator
of C7T" Hilbert modules with adjoint 7. Recall now, see [52], that a ¢-connection in the

present context is a symmetric C*I'-linear operator 9
D:P ®gu Dom(D) — PR4E

such that V¢ € & the following commutator, defined initially on (Dom(9))® ?® ¢ Dom(D),
extends to a bounded operator on & ® PR 4 &:

(2) ()
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Rosenberg and Weinberger have proved [52] that every @-connection is a self-adjoint
regular operator. We can end the proof of the present proposition as follows: first we observe
that as C*T" Hilbert modules P® 4 & = L, r(X; fie A% X); next we consider iign and prove
the following.

LEMMA 6.5. — The operator Osigy, defines a D-connection.

Proof. — Tt will suffice to prove the following. Let U be an open subset of X over which
C/’Ef is trivial. Then the restriction of £ € & to U is a finite sum of terms of the form 6 ® u
where 6 is a flat section and u is a C' —function. So we shall assume that ¢ = # ® u. Then for
any n € L% (U;"A*X|y) ® C;T, one has:

1ie

(Bsign © T — Te 0 D)(n) = 0 ® c(du)y + 0 © u(Bsign — D) (n),
where ¢/ (du) is a Clifford multiplication. Recall that the restrictions to U of aign and
9 are differential operators of order one having the same principal symbol. Therefore,

(Osign © Te — Te © D) is bounded on L2 (U;"*A*X|;) ® C;T. One then gets immediately

1e

the lemma by using a partition of unity. O

Finally, we check easily that  ® y Dom(9D) C Dommax(ésign). Since (i + aign) has dense
image with domain ® ¢ Dom(9), we see that, a fortiori, the image of (i+0s;gn ) With domain

Domypax (Jsign) must also be dense. O
These two propositions yield at once the following

THEOREM 6.6. — The twisted signature operator 5sign and the C}I-Hilbert module

L. r(X;5°A}X) define an unbounded Kasparov (C,C;T)-bimodule and thus a class
in KK.(C,CiT') = K,(C;T). We call this the index class associated to 5Sign and denote
it by Ind (Dgign) € K.(CT).
Moreover, if as in (6.1) we denote by [[Tsign]] € KK, (C(X)® C:T,C:T) the class obtained
Jrom [Ogign| € KK, (C ()A( ), C) by tensoring with C;T, then Ind(%sign) is equal to the Kasparov
product of the class defined by Mishchenko bundle [C:T] € KKo(C,C(X) ® C*T) with
[[Osign])-

(6.2) Ind(Gsign) = [C;T] @ [[Osignl]-

In particular, the index class Ind(Osign) does not depend on the choice of the adapted edge
iterated metric.

Proof. — We already know that 5Sign is self-adjoint regular an~d Zo-graded in the even
dimensional case. It remains to show that the inverse of (1 + 0Z,) is a C;T-compact
operator. However, the domain of 9y, is compactly included in L3, 1 (X;"°A}. X); thus (i +
5Sign)_1 and (—i+ 5Sign)_1 are both compact. It follows that (1 + 5§ign)_1 is compact. Thus
(Osigns Lo 0 (X; AL X)) defines an unbounded Kasparov (C, C;T)-bimodule as required.
The equality Ind(Dgign) = [C3T] ® [[Osign]] is in fact part of the theorem, attributed to
Skandalis in [52], on P-connections. Finally, since we have proved that [Jgign], and thus
[[Osign]], is metric independent, and since [/C\’EF] is obviously metric independent, we conclude

that Ind(Jgign) has this property too. The theorem is proved. O
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COROLLARY 6.7. — Let f : K,.(BI') — K,.(C:T') be the assembly map, let
7+[Osign] € K. (BT) be the push-forward of the signature K-homology class. Then
(6.3) B(74[Bsign]) = Ind(Dgign) in K. (CIT).

Proof. — Since Ind(%slgn) = [ Il ® [[Osign]], this follows immediately from the very
definition of the assembly map. See [29] [30]. O

7. Witt bordism invariance

Let Y be an oriented odd dimensional Witt space with boundary Y = X. We assume
that Y is a smoothly stratified space having a product structure near its boundary. We
endow Y with an edge iterated metric having a product structure near Y = X and
inducing an adapted edge iterated metric g (Proposition 5.4) on X. Consider a reference map
r:Y — BT; its restriction to X and g induces a C;T"—linear signature operator on X.In
this section only we shall be very precise and denote this operator by 551@(5(\ ).

THEOREM 7.1. — We have Ind 6Slgn( ) =0in Ko(C:T) ®z Q.

PlOOf We follow [38, Section 4.3] and Higson [22, Theorem 5. 1] Denote by Y Y
and X’ — X the two T'— coverings associated to the reference map r : Y — BI.

The analysis of Section 7 shows that the operator 63@( ) induces a class [5Slgn()/(\ )] in
the Kasparov group K K 0(00(6?), C’T). In terms of the constant map 7Y .8y - {pt},
one has:

Ind%sign( )= way([c’)mgn(f)]) € KK°(C,C!T) ~ Ky (CT).
Now let Co (/};) ccC (/)7) denote the ideal of continuous functions on Y vanishing on the

boundary. Let ¢ : 8Y — Y denote the inclusion and consider the long exact sequence
in KK (-, CT') associated to the semisplit short exact sequence:

(7.1) 0—Co(Y) L)% 0©Y) -0
(see Blackadar [6, page 197]). In particular, we have the exactness of
KK'(C,o(Y),C:T) % KK°(C(9Y),CiT) 5 KK°(C(Y), CiT)

and thus i, 06 = 0. Recall that the conic iterated metric on Y’ (with product structure
near Y = X ) allows us to define a C;T"—linear twisted signature operator 551gn onY with
coefficients in the bundle Y’ x rC:IT'— Y. This twisted signature operator allows us to define
a class [Dyign] € KEK'(Cyy (Y),C:1).

LEMMA 7.2. — One has (5[5Sign] = [255ign()A()].

Proof. — We are using the proof of Theorem 5.1 of Higson [22]. We can replace Y by a
collar neighborhood W (~ [0, 1[xdY’). Consider the differential operator d :

- d
- d
—’L% 0
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acting on [0, 1]. It defines a class in KK*(Cy(0, 1), C;T). Recall that the Kasparov product
[d] ® - induces an isomorphism:

[d] ® - : KK°(C(9Y),C;T) — KK (Cys (W), C;T).
As in [22], the connecting map ¢ :

KK'(C,o(W),C;T) > KK°(C(8Y),C;T)

is given by the inverse of [d] ® -. Denote by Dy the restriction of 5sign to W and recall
that X = Y is even dimensional. Then one checks (using [22] and [48, page 296]) that the
K K—class [Dw] is equal to [d]® 2[5Sign()/(\ )], and one finds that 6[ D] = 2[5Sign(5(\ )] which
proves the result. O

Let7Y ;Y — {pt} denote the constant map. By functoriality, one has:

ny = 7TZ 0 Ty.

Since i, 0 § = 0, the previous lemma implies that:
2 Tnd Buign (X) = 727 ([20sign(X)]) = 7 0 6([Dw]) = 77 0 s 0 6([Dw]) = 0.

Therefore, Theorem 7.1 is proved. O

We shall denote by Qyitt’s(BF) the bordism group in the category of smoothly stratified
oriented Witt spaces. This group is generated by the elements of the form [)/(\ T X - BT
where [)/(\ X — BT} is equivalent to the zero element if X is the boundary of a smoothly
stratified Witt oriented space Y (asin Theorem 7.1) such that the map r extends continuously
to Y. It follows that the index map

(1.2) QWS (BT) - K.(C;T) © Q,

sending [5(\ X o BT € QY"5(BT) to the higher index class Ind(%sign) (for the twisting
bundle 7*ET" xr CT'), is well defined. As in the closed case, see [53], it might be possible
to refine this result and show that the index map actually defines a group homomorphism
QVi*S(Br) — K, (CT)

Recall that Siegel’s Witt-bordism groups QWit*(BT) are given in terms of equivalence
classes of pairs (5(\ U X — BT"), with X a Witt space which is not necessarily smoothly
stratified.

We also recall that, working with PL spaces, Sullivan [57] has defined the notion of
connected KO-Homology ko, (see also [55, page 1069]). Siegel [55, Chapter 4], building on
work of Sullivan and Conner-Floyd, has shown that the natural map Q5°(BT) ®; Q —
QWVitt(BT") ®7 Q is surjective by showing that the natural map Q5°(BI') ®z Q — ko.(BT) ®z Q
is surjective and the natural map ([55]) QWi (BT)®2Q — ko, (BT)®zQ is an isomorphism.
We need to extend these results for the corresponding groups associated with the category
of smoothly stratified spaces.

PROPOSITION 7.3. — The natural map Q5° (BT) @z Q — QV'"(BT) @4 Q is surjective.
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Proof. — Theorem 4.4 of [55] is still valid (by inspection) if one works in the category of
smoothly stratified oriented Witt spaces. Namely, if X is an 1rredu01ble smoothly stratified
Witt space of even dimension > 0 such that w(X ) =0, with w(X ) € W(Q), then X is Witt
cobordant to zero in the category of smoothly stratified Witt spaces. The arguments of [55,
Chapter 4] show that Siegel’s map:

QWVitts(BI") @7 Q — ko.(BT) ®z Q
is an isomorphism and, using the surjectivity of the map
05°(BT) ®7 Q — ko.(BT) ®7 Q,

one gets the proposition. O

8. The homology L-class of a Witt space. Higher signatures

The homology L-class L, ()/(\ )eH *(5(\ , Q) of a Witt space X was defined independently
by Goresky and MacPherson [20], following ideas of Thom [58], and by Cheeger [13]. See
also Siegel [55]. In this paper we shall adopt the approach of Goresky and MacPherson. We
briefly recall the definition: if X has dimension n, k € Nissuch that 2k — 1 > n, and A~
denotes the ‘north pole’ of S¥, one can show that the map o : 7Tk(5(\ ) — Z that associates
to [f: X - S*] the Witt-signature of f~1 () is well defined and a a group homomorphism.
Now, by Serre’s theorem, the Hurewicz map 7% (X ) Q— H k(X Q) is an isomorphism
for 2k — 1 > n and we can thus view the above homomorphism, ¢ ® Idg, as a linear func-
tional in Hom(H*(X),Q) ~ Hy(X,Q). This defines L(X) € Hy(X, Q). The restriction
2k —1 > n can be removed by crossing with a high dimensional sphere in the follow-
ing way. Choose a positive integer £ such that 2(k +¢) — 1 > n+ fand k + ¢ > n.
Then by the above construction, Lyio(X x S%) is well defined in Hy (X x S, Q).
Since £ + ¢ > n, the Kiinneth Theorem shows that there is a natural isomorphism
I: Hypo(X x §¢,Q) — Hi(X,Q). One then defines: Ly, (X) := I(Lpi (X x §%)).

Once we have a homology L-class we can define the higher signatures as follows.

DEFINITION 9. — Let X bea Witt space and T’ := m; (5(\) Letr: X — BT bea classifying
map for the universal cover. The ( Witt-Novikov) higher signatures of X are the collection of
rational numbers:

(8.1) {{a,r.L.(X)),a € H*(BT,Q)}.
We set 0o(X) = (o, 7. Ly (X)).

The Witt-Novikov higher signatures have already been studied, see for example [14]. If X
is an oriented closed compact manifold and r : X — B (X) is the classifying map, it is not
difficult to show that

(o, 7 L(X)) = (L(X) Ur* e, [X]) = /L(X) Urta.

Thus the above definition is consistent with the usual definition of Novikov higher signatures
in the closed case.

The Novikov conjecture in the closed case is the statement that all the higher signatures
{L(X)Ur*a,[X]), a € H*(BT',Q)} are homotopy invariants.
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The Novikov conjecture in the Witt case is the statement that the Witt-Novikov higher
signatures {{c, r*L*()/(\ )), a € H*(BT,Q)} are stratified homotopy invariants. Notice that
the intersection homology is not a homotopy invariant theory; however, it is a stratified
homotopy-invariant theory, see [17].

We shall need to relate the homology L-class of Goresky-MacPherson to the signature
class [Ogign| € K*(j('\)

THEOREM 8.1 (Cheeger/Moscovici-Wu). — The topological ~ homology  L-class
L.(X) € H.(X,Q) is the image, under the rationalized homology Chern character, of
the signature K-homology class [Osign]g € K+(X) ® Q; in formule

(8.2) ch, [Osignlo = Lu(X) in H.(X,Q).

This result is due to Cheeger, who proved it for piecewise flat metric of conic type, and to
Moscovici-Wu, who gave an alternative argument valid also for any metric quasi-isometric
to such a metric [13], [47]. It is worth pointing out here that our metrics do belong to the
class considered in [47]. Notice that Moscovici-Wu prove that the straight Chern character
of [Ogign]o € K. ()/(\) ® Q is equal to L*()/(\) € H*()?, Q); the straight Chern character has
values in Alexander-Spanier homology; the equality with L*(X\ ) € H *(5(\ ,Q) is obtained
using the isomorphism between Alexander-Spanier and singular homology [47].

9. Stratified homotopy invariance of the index class: the analytic approach

One key point in all the index theoretic proofs of the Novikov conjecture for closed
oriented manifolds is the one stating the homotopy invariance of the signature index class
in K, (C;T). By this we mean that if r : X — BI as above, f : X’ — X is a smooth
homotopy equivalence and ' := r o f : X’ — BT, then the index class, in K,(CxT),
associated to 5sign (i.e., associated to the signature operator on X, Ogjgn, twisted by 7* ET" x
CrT) is equal to the one associated to ! (i.e., associated to the signature operator on X',

sign
Olign twisted by (r')* ET xp C;T). There are two approaches to this fundamental result:

1. one proves analytically that Ind(gsign) = Ind(%éign) in K, (C;T);

2. one proves that the index class is equal to an a priori homotopy invariant, the
Mishchenko (C*-algebraic) symmetric signature.

In this section we pursue the first of these approaches. We shall thus establish the stratified
homotopy invariance of the index class on Witt spaces by following ideas from Hilsum-
Skandalis [25], where this property is proved for closed compact manifolds. See also [50].

9.1. Hilsum-Skandalis replacement of f

If X and Y are closed Riemannian manifolds, and f : X — Y is a homotopy equivalence,
it need not be the case that pull-back by f induces a bounded operator in L2. Indeed, suppose
f is an embedding and ¢, is a function which equals 1 on the ¢ tubular neighborhood of the
image of X. The L?-norm of ¢, is bounded by CedimvX and hence tends to zero, while
f*¢. = 1 on X and so its L? norm is constant. Thus the closure of the graph of f*, say
over piecewise constant functions, contains an element of the form (0, 1), and is not itself
the graph of an operator.
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On the other hand, if f is a submersion, and the metric on X is a submersion metric,
then f* clearly does induce a bounded operator on L. Since the latter property is a quasi-
isometry invariant, and any two metrics on X are quasi-isometric, it follows that pull-back
by a submersion always induces a bounded operator in L?2.

As one is often presented with a homotopy equivalence f and interested in properties
of L? spaces, it is useful to follow Hilsum and Skandalis [25] and replace pull-back by f
by an operator that is bounded in L2. We refer to this operator as the Hilsum-Skandalis
replacement of f* and denote it by HS(f).

Such a map is constructed as follows. Consider a disk bundle 7y : Dy — Y and the
associated pulled back bundle f*Dy by the map f : X — Y. Denote by 7x : f*Dy — X
the induced projection. Then f admits a natural lift D(f) such that

D)
f*Dy —— Dy

L,

X Y
commutes. Moreover, we consider a (smooth) map e:Dy —Y such that
p = eoD(f) : f*Dy — Y is a submersion, and a choice of Thom form & for 7x.

The Hilsum-Skandalis replacement of f* is then the map
HS(f) = HS7 ppy pye(f) 1 EF(Y;A7) — GF(X;A%)
ub—= (7x)« (T Ap*u).

Notice that HS(f) induces a bounded map in L? because p* = (e o D(f))* does.

For example, as in [25], one can start with an embedding j : ¥ — R and a tubular
neighborhood % of j(Y) such that j(¢) +D C %, and thentake Dx = X xD, Dy =Y x D,
D(f) = f x id, and e({,v) = 7(¢ + v) where 7 : % — Y is the projection. Alternately, one
can take Dy to be the unit ball subbundle of T'Y and e((,v) = expy¢)(v). We will extend
the latter approach to stratified manifolds.

In any case, one can show that HS(f) is a suitable replacement for f*. Significantly, using
HS(f) we will see that the K-theory classes induced by the signature operators of homotopic
stratified manifolds coincide.

9.2. Stratified homotopy equivalences

Let X and Y denote stratified spaces, X and Y their regular parts, and #(X) and J(Y)
the corresponding sets of strata. Following [17] and [31, Def. 4.8.1 ff] we say that a map
f: X — Y is stratum preserving if

S e JY) = f(S)isa union of strata of X
and codimension preserving if also
codimf~1(S) = codim.

We will say that a map is strongly stratum preserving if it is both stratum and codimension
preserving.
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In these references, a stratum- -preserving homotopy equivalence between stratified spaces
is a strongly stratum preservmg map f: X — Y such that there exists another strongly
stratum preserving map g : Y — X with both fogand go f homotopic to the appropriate
identity maps through strongly stratum preserving maps. It is shown that stratum-preserving
homotopy equivalences induce isomorphisms in intersection cohomology.

Notice that the existence of a homotopy equivalence between closed manifolds implies that
the manifolds have the same dimension, so it is natural to impose a condition like strong stra-
tum preserving on stratified homotopy equivalences. We shall also assume that f is a smooth
strongly stratified map, see Definition 4, and that it is a smooth strongly stratified homo-
topy equivalence. (Once again, in the index-theoretic approach to the Novikov conjecture
on closed manifolds, this additional hypothesis of smoothness is also made.)

We shall often omit the reference to the smoothness of f, given that our methods are obviously
suited for these kinds of maps only.

A smooth strongly stratified map lifts, according to Definition 4, to a smooth map between
the resolutions of the stratified spaces f XY preserving the iterated boundary fibration
structures. In partlcular f is a b-map and the differential of f sends tangent vectors to the
boundary fibrations of X to tangent vector to the boundary fibrations of Y.

This implies that there exist linear maps
f* . goo(Y, ieA*) N gm(X, ieA*), and f* . gm(y7 iieA*) N E?OO(X, ﬁeA*),

though, as on a closed manifold, these do not necessarily induce bounded maps in L2.

9.3. Hilsum-Skandalis replacement on complete edge manifolds
Suppose X and Y are both manifolds with boundary and boundary fibrations

Let X and Y denote the interiors of X and Y respectively.

Endow Y with a complete edge metric § = p~2g (3.2) such that g is adapted in the sense
of Proposition 5.4. Let Dy C ¢TY be the edge vector fields on Y with pointwise length
bounded by one, and let exp : Dy — Y be the exponential map on Y with respect to
the edge metric. The space Dy is itself an (open) edge manifold with boundary fibration
¢py, : 0Dy — Y — Hg;. Notice that exp extends to a b-map that sends fibers of q&D;
to fibers of ¢3; and hence induces a map

exp, : ‘TDy — °TY

which is seen to be surjective.

Let f: X — Y be a smooth b-map that sends fibers of ¢ to fibers of ¢;. Pulling back
the bundle Dy — Y to X gives a commutative diagram

7
(CAY f*Dy ——= Dy
=T
x—1 .y
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which we use to construct the Hilsum-Skandalis replacement for pull-back by f. Namely,
define e = exp : Dy — Y, let 7 be the pull-back by f of a Thom form for Dy, and let
9.2) HS(f) = (mx)o(T Ap*) : G (Y;°A") — 6(X;°A%)

with p = e o D(f). Observe that p is a proper submersion and hence a fibration. Then, as
above, HS(f) induces a map between the corresponding L? spaces.

The generalization to manifolds with corners and iterated fibrations structures is straight-
forward: we just replace the edge tangent bundle with the iterated edge tangent bundle.
Indeed, it is immediate that if Dy C ®TY is the set of iterated edge vector fields on Y with
pointwise length bounded by one, the exponential map exp : Dy — Y with respect to a
(complete) iterated edge metric induces a map exp, : °TDy — TY. That this map is
surjective can be checked locally and follows by a simple induction. Then given a smooth
b-map f : X — Y with the property that, whenever H € 7%1(X )is sent to K € My (Y)
the fibers of the fibration on H are sent to the fibers of the fibration on K, we end up with a
map

HS(f): (Y, °A*) - 6(X,°A*)
that induces a bounded map between the corresponding L2, spaces.
Next, recall that
G (Y;1°A) = pp 67°(V;°AY)
where pg; is a total boundary defining function for dY . Hence, if f: X — Y induces
f* i GF(Y;ieAY) - §%°(X;i°AL), it will also induce a map
76XV A — 6 (X oA

if f*(ps) is divisible by p5;. That is, we want f to map the boundary of X to the boundary
of Y (a priori, it could map a boundary face of X onto all of EN/'). For maps f coming from
pre-stratified maps, this condition holds and hence the map H.S(f) induces a bounded map

between iterated incomplete edge L? spaces. Of course, once f* induces a map on €Al it
extends to a map on HeA*,

9.4. Stratified homotopy invariance of the analytic signature class

Suppose we have a stratum-preserving smooth homotopy equwalence between stratified
spaces f : X - Y Recall that X and Y denote the regular parts of X and Y respectlvely
Recall themapr : Y — BT and the flat bundle 9’ of finitely generated C;\I"-modules over Y:

V' = C'T xp r*(ET).

Notice that using the blowdown map Y - ?, 9 induces a flat bundle, still denoted by ¢/’
onY. Consider ¥/ = f*9 the corresponding flat bundle over X. We have a flat connection
on Y/, Vg, over Y (and ?) and associated differential d¢~, and corresponding connection
V¢ and differential d¢y on X (and X). It is straightforward to see that the Hilsum-Skandalis
replacement of f constructed above extends to

HS(f) . <<§<><J(Y*7 iieA* ® (2//) N gOO(X;iieA* ® (V)
and induces a bounded operator between the corresponding L? spaces.
We now explain how the rest of the argument of Hilsum-Skandalis extends to this context.
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Suppose (fi)o<i<1 : X 5 Yisa homotopy of stratum-preserving smooth homotopy
equivalences, let Dy be as above. Assume that (es)o<s<1 : Dy — Y is a homotopy of
smooth maps such that, for any s € [0,1], p, = es o D(fs) : fiDy — Y induces a
surjective map on iie vector fields. Choose a smooth family of bundle isomorphisms (over
X) A : fiDy — fiDy, (0 < s < 1),such that Ag = Id. Set s = A%Y where ¥
is a Thom form for the bundle fiDy — X. Consider V a flat unitary connection on 9.
It induces an exterior derivative dq¢/ on the bundle A*T*Y ® V. Choose a smooth family
of C*I'—bundle isomorphism U, from the bundle (ps 0 A;1)*9" — fDy onto the bundle
5 V' - foDy such that Uy = Id. Implicit in the statement of the next lemma is the fact that,
for each s € [0,1], ps o A;! induces a morphism from the space of sections of the bundle
9" — 'Y on the space of sections of the bundle (p 0 A71)*V — fiDy.

LEMMA 9.1. — Under the above hypotheses and notation, there exists a bounded operator
T: L2 (YV;ieA* @ V') — L2 (fiDy;eA* @ pi V') such that

Id@Uy) o (ToA(p1oATH)*) — (To Aps) = pi(dey) Y + Tdy.
Proof. — We follow Hilsum-Skandalis. Consider the map
H: fiDy x[0,1]] = Y
(z,8) — H(z,s) = pso A (z).
Then the required map T is defined by, Vw € L2 (Y;°A* @ V'),

1
TW)Z/'%ﬂUﬂNMOA;U}®6%AEFw”ﬁ. O
0

We need to see how this construction handles composition. Recall that given f : XY
we are taking Dy to be the ie vectors over Y with length bounded by one, D(f) : f*Dy — Dy
the natural map (9.1), e : Dy — Y the exponential map, p = e o D(f), and ¥ a Thom form
on f*Dy, and then

HS(f)u= (1x)«(T Ap*u).

Now suppose X , ?, and Z are manifolds with corners and iterated fibration structures,

and

xXLyLz
are smooth b-maps that send boundary hypersurfaces to boundary hypersurfaces and the
fibers of boundary fibrations to the fibers of boundary fibrations. Assume that the map
r : X — BT above is of the form r = ry o f for a suitable map ry : 7 — BT. We then
get a flat C*T—bundle 9 over Z (and Z) such that 9" = £*9". Denoting the various 7.’s
by 7’s, we have the following diagram

(f OPI)*DZ

-

o h*Dy
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where X, Y, Z are the interiors of )?, )7, Z, p(¢,&,m) = (P'(¢,€),n), and, with & standing
for a Thom form, we define

HS(f): 6%(Z; A @ V") - 67 (V; A © V'),
HS(h) : 6=V A @ V') = 67 (X; A @ V)
HS(f,h) : €%(Z; A @ V") —» 67 (X; AT @ V),
HS(f)(w) = (10)<(Tr, Ap™w),
HS(h)(u) = (72)+(T r, A (0') ")
HS(f,1)(u) = 7u(Trs N (D) T g A (2")"0).
LEMMA 9.2. — HS(f,h) = HS(h) o HS(f) and HS(f,h) — HS(f o h) = dyX + Ydq»

for some bounded operator Y.

Proof. — For simplicity, we give the proof only in the case I' = {1}. Using the specific
definitions of 71, p, p’, 7o one checks easily that (71).p* = (p')*(70)«. Therefore, (p)*7 ., is
indeed a Thom form associated with 7;. Since p”’ = p o p, one gets:

HS(f,h) = (12)(11)(T vy NP (T 7 A D))
Then replacing (71).p* by (p’)*(70)« one gets:
HS(f,9) = (12)«(Tr A (07)"((70) (T 7o A (P)7))) = HS(R) 0 HS().
Next, notice that the maps
(t’ Ca 57 77) = epr(exph(Q (t€)) (77)
are a homotopy between p” : (fop')*Dz — Zandp: (f oh)*Dz — Z within submersions.
Hence we can use the previous lemma to guarantee the existence of 1. O

Instead of the usual L? inner product, we will consider the quadratic form
Qx : 6°(X;°A* ® V) x 6F°(X;°A* ® V) — CIT

Qx(u,v) :/ u A v*
X

and also the analogous Qy, Qp, , Q f+n, - Recall that any element of & (X;°A* ® 9/) van-
ishes at the boundary of X so that Q) x is indeed well defined. (We point out that the corre-
sponding quadratic form in Hilsum-Skandalis [25, page 87] is given by i/“/(=1*DQ x (u, v).)
We denote the adjoint of an operator T' with respect to Q x (or Qy) by T". Thus, for instance,
dyy = —dy.

From Theorem 6.6, we know that the signature data on X defines an element of
Kiim x(CXT') and similarly for the data on Y. Hilsum and Skandalis gave a criterion
for proving that two classes are the same which we now employ.

PROPOSITION 9.3. — Consider a stratum-preserving homotopy equivalence f : X — Y
where dim X = n is even. Denote still by f the induced map X — Y. The bounded operator

HS(f) : L3(Y;5A* @ V') — L2, (X; 1A% @ V)

satisfies the following properties:
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a) HS(f)dy = dyHS(f) and HS(f)(Domd,) C Domdy

b) HS(f) induces an isomorphism HS(f) : ker doy /Sdqy — ker do /Sdy

c) There is a bounded operator Y on a Hilbert module associated to Y such that
T(Dom sz/) C Dom dry/ and 1d —HS(f)IHS(f) = dq//T —+ qu//

d) Thereis a bounded self-adjoint involution e onY such that e(Dom dq) € Dom dq, which
commutes with1d —HS(f)' HS(f) and anti-commutes with d .

Hence the signature data on X andY define the same element of Ko(C;T).

Proof. — The final sentence follows from (a)-(d) and Lemma 2.1 in Hilsum-Skandalis [25].

In Section 7 we showed that the signature operator has a unique closed extension, it
follows that so do dy and dq~ (see, e.g., [27, Proposition 11]). Since this domain is the
minimal domain, as soon as we know that an operator is bounded in L2_ and commutes or
anticommutes with these operators, we know that it preserves their domains.

a) Since HS(f) is made up of pull-back, push-forward, and exterior multiplication by a
closed form, HS(f)dq = dyHS(f).

b) From (a) we know that HS(f) induces a map ker d¢»/Sdqs — kerdqy/Sdy. Let b
denote a homotopy inverse of f and consider

HS(h) : L, (X; A" @ V) — LE,(Y; A" @ V).

We know from Lemma 9.2 that HS(f o h) and HS(h) o HS(f) induce the same map in
cohomology and, from Lemma 9.1, that HS(f o h) induces the same map as the identity.
Since the same is true for HS(f o h) we conclude that HS(h) and HS(f) are inverse maps
in cohomology and hence each is an isomorphism.

¢) Recall that p : f*Dy — Y, being a proper submersion, is a fibration. Choose a Thom
form § for the fibration 7y : Dy — Y so that Dy ( f)*§ defines a Thom form for the
fibration 7x : f*Dy — X. These two facts allow us to carry out the following computation,
where u € C®(Y;#°A* ® 9') and v € C°(X; A" ® V).

Qx (HS(f)u,v) = Qx ((mx)«(Dy (£)*T Ap*u),v)

= Qgny Dy (f)*T Ap*u,mxv)

= (=)™ DQpp, (0w, Dy ()" T Axv)

= (=1)"""DQy (u, p.(Dy (f)* T A Txv)).
Since n is even this shows that HS(f)'v = p.(Dy (f)*7 A 7%v) and hence

HS(f) HS(f)u = p.(Dy (£)*T Ak (rx)(Dy (£)* T Ap*u))).
Next one checks easily that, for any differential form w on Dy,
Dy (f)*my (my )sw = 7k (mx ). Dy (f)*w

* %

and so, from the identity p* = Dy (f)*e*,

HS(f)HS(f)u = (e o Dy (f))«(Dy (f)* (T A (my)(T Ae*u))).
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Now observe that Dy (f) : f*Dy — Dy, being a homotopy equivalence of manifolds
with corners, sends the relative fundamental class of f*Dy to the relative fundamental class
of Dy and so

Qs-y (Dy (f)*a, Dy (f)*B) = Quy (@, B)-

From this identity, the previous equation, and the fact that e induces a fibration, one checks
easily that

Qv (HS(f) HS(f)u,w) = Qy(ex( T A% (1y) (T A e*u)), w)
and hence _ B
HS(fY HS(f)u = ex(T At (ny)e(T A ew)).

Finally, e is homotopic to 7y, and since
()« (T A7y (my ) (T Amyu)) = (Ty ) (T Amyu) = u,

Lemma 9.1, Id —HS(f)' HS(f) = d¢y T + Ydy» as required.
d) It suffices to take eu = (—1)!“lu. O

REMARK 9.1. — Consider now the case of an odd dimensional Witt space X endowed
with an edge adapted iterated metric g and a reference map r : X — BT. We have defined
in Section 7 the higher signature index class Ind (5515,1) € KK, (C,CiT') ~ K (C:T)
associated to the twisted signature operator defined by the data (5(\ ,g,7). Recall that there is
a suspension isomorphism ¥ : K;(C;T') < %0(0:1“ ® C(S')) which is induced by taking
the Kasparov product with the Dirac operator of S*. Consider the even dimensional Witt
space X x S! endowed with the obvious stratification and with the reference map

rxIdgi: X x S' = B(I' x Z) ~ BT x S'.

As explained in [34, p. 624], [36, §3.2], the suspension of the odd index class
Ind (Dgign) € KK;(C,C*T) ~ K, (C:T) is equal to the even signature index class associated
to the data (X x St g x (d)?,r x Idg1). If now f : X — Y is a stratified homotopy equiv-
alence of odd dimensional Witt spaces, then f induces a stratified homotopy equivalence
from X xS'toY x St By the previous proposition the signature index classes of X x St
and Y x S! are the same. Then using the suspens10n 1somorphlsm 3, we deduce finally that
the odd signature index classes associated to X and Y are the same. Thus, the (smooth)
stratified homotopy invariance of the signature index class is established for Witt spaces of
arbitrary dimension.

10. Assembly map and stratified homotopy invariance of higher signatures

Consider the assembly map 8 : K.(BT') — K,(C;T). The rationally injectivity of this
map is known as the strong Novikov conjecture for I'. In the closed case it implies that the
Novikov higher signatures are oriented homotopy invariants. The rational injectivity of the
assembly map is still unsettled in general, although it is known to hold for large classes of
discrete groups; for closed manifolds having these fundamental groups the higher signatures
are thus homotopy invariants. The following is the main topological result of this paper:
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THEOREM 10.1. — Let X be an oriented Witt space, T : X - B7r1(5(\) the classifying
map for the universal cover, and let T' := m1(X). If the assembly map K, (BT') — K,(C!T) is
rationally injective, then the Witt-Novikov higher signatures

{{a,r.L.(X)),a € H*(BT,Q)}

are stratified homotopy invariants.

Proof. — The proof proceeds in four steps and is directly inspired by Kasparov’s proof in
the closed case, see for example [30] and the references therein:
1. Consider()/(\’ r X! —>BI‘)and(5(\ r'jf\—>BI‘) withr =10 fand f: X — X
a stratified homotopy equivalence between (smoothly stratlﬁed) orlented Witt spaces.
Denote by 651gn the twisted signature operator associated to (X', r X',r': X' — BT). We
have proved that

Ind(Bsign) = Ind(l,,) in K.(C;T) @ Q.
2. We k~now that the assembly map sends 7, [Oggn] € K.(BI') to the Witt index class
Ind(3sign ). More explicitly:
B(ru[Osgn]) = Ind(@ign) in K.(C;T) @ Q.
3. We deduce from the assumed rational injectivity of the assembly map that
7+[Osign] = (r")«[04iga] In  K.(BI)® Q.
4. Since we know from Cheeger/Moscovici-Wu that Ch, (r.[0sign]) = r*(L*(X\ )
in H,(BTI', Q) we finally get that
ro(Lo(X)) = (")u(L.(X")) in H.(BT,Q)
which obviously implies the stratified homotopy invariance of the higher signatures

{< a,r,L,(X) > o € H*(BT,Q)}. O

Examples of discrete groups for which the assembly map is rational injective include:
amenable groups, discrete subgroups of Lie groups with a finite number of connected
components, Gromov hyperbolic groups, discrete groups acting properly on bolic spaces,
countable subgroups of GL(K) for K a field.

11. The symmetric signature on Witt spaces

11.1. The symmetric signature in the closed case

Let X be a closed orientable manifold and let » : X — BT be a classifying map for the uni-
versal cover. The symmetric signature of Mishchenko, o (X, r), is a purely topological object
[46]. In its most sophisticated presentation, it is an element in the L-theory groups L*(ZI).
In general one can define the symmetric signature of any algebraic Poincaré complex, i.e., a
cochain complex of finitely generated ZI'-modules satisfying a kind of Poincaré duality. The
Mishchenko symmetric signature corresponds to the choice of the Poincaré complex defined
by the cochains on the universal cover. In the treatment of the Novikov conjecture one is
in fact interested in a less sophisticated invariant, namely the image of o(X,r) € L*(ZT)
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under the natural map gz : L*(ZI') — L*(C;T'). Recall also that there is a natural isomor-
phism v : L*(C}T') — K,.(C}T) (which is in fact valid for any C*-algebra). The C*-alge-
braic symmetric signature is, by definition, the element o_. (X, ) := v(Bz(c(X,r)); thus
0. (X,r) € K,(C;T). The following result, due to Mishchenko and Kasparov, generalizes
the equality between the numeric index of the signature operator and the topological signa-
ture. With the usual notation:

(11.1) nd(Dsign) = 0. (X,7) € Ko (CT).

As a corollary we see that the signature index class is a homotopy invariant; this is the topo-
logical approach to the homotopy invariance of the signature index class that we have men-
tioned in the introductory remarks in Section 9. The equality of the C*-algebraic symmetric
signature with the signature index class (formula (11.1) above) can be restated as saying that
the following diagram is commutative

QSO(BT) 4%, K (CiT)

(11.2) |- |

where 7 = * mod 2.

11.2. The symmetric signature on Witt spaces

The middle perversity intersection homology groups of a Witt space do satisfy Poincaré
duality over the rationals. Thus, it is natural to expect that for a Witt space X endowed
with a reference map r : X — BT it should be possible to define a symmetric signature
a(‘QﬂVFi“(X ,7) € L*(Qr'). And indeed, the definition of symmetric signature in the Witt con-
text, together with its expected properties, such as Witt bordism invariance, does appear in
the literature, see for example [60], [10], [61]. However, no rigorous account of this definition
was given in these references, which is unfortunate, given that things are certainly more
complicated than in the smooth case and for diverse reasons that for the sake of brevity we
shall not go into.

Fortunately, in a recent paper Markus Banagl [5] has given a rigorous definition of the
symmetric signature on Witt spaces® using surgery techniques as well as previous results of
Eppelmann [15]. Banagl’s symmetric signature is an element o):** (X,r) e L* (QI); we refer
directly to Banagl’s interesting article for the definition and only point out that directly from
his construction we can conclude that

— the symmetric signature a&itt (5(\ ,7) is equal to (the rational) Mishchenko’s symmetric

signature if X is a closed compact manifold;
— the Witt symmetric signature is a Witt bordism invariant; it defines a group homomor-
phism U&jtt : QWi (BT) — L*(QT).

) Banagl actually concentrates on the more restrictive class of IP spaces, for which an integral symmetric signature,
i.e. an element in L*(ZT'), exists; it is easy to realize that his construction can be given for the larger class of Witt
spaces, producing, however, an element in L*(QT").
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On the other hand, it is not known whether Banagl’s symmetric signature o " (X,r) is
a stratified homotopy invariant.

We define the C*-algebraic Witt symmetric signature as the image of a(‘g’ri“(jf\ ,7) under
the composite

L*(Qr) 2% r*(c'm) % K. (C'T).
We denote the C*-algebraic Witt symmetric signature by az‘iirtt(X 7).

11.3. Rational equality of the Witt symmetric signature and of the signature index class

Our most general goal would be to prove that there is a commutative diagram
QN (BI) 5 K(C)T)
(11.3) H;F V—ll

L*(@Qr) —=— L*(CT)

or, in formulae
agi;t(x, r) = Ind(Osign) in K;(CIT)

with Ind(3s;gn) the signature index class described in the previous sections. We shall be happy
with a little less, namely the rational equality.

PROPOSITION 11.1. — Let o¥it#(X,7)q and Ind(Dsign)q be the rational classes, in the
rationalized K-group K;(C}T")®Q, defined by the Witt symmetric signature and by the signature

index class. Then
(11.4) oM (X,m)g = Ind(Osign)g in  Ki(C;T)® Q.

Proof. — We already know from [5] that the rationalized symmetric signature defines a
homomorphism from (QVi*(BI))q to K;(C;T) ® Q. However, it also clearly defines a
homomorphism (QY'*"*(BT'))g — K;(C:T) ® Q, exactly as the signature index class. For
notational convenience, let & : (QV"™*(BI'))g — K;(C*T) ® Q be the (Witt) signature
index morphism; let /' : (QV"*"*(BI'))q — K;(C*T) ® Q be the (Witt) symmetric signature
morphism. We want to show that

I=4".
We know from Proposition 7.3 that the natural map Q5°(BT') — QV'**(BI) induces a
rational surjection
s (Q50(BI))g — (QV*(BI))q.

In other words, a smoothly stratified Witt space X with reference map r : X — BI'is
smoothly stratified Witt bordant to k-copies of a closed oriented compact manifold M with
reference map p : M — BI'. Moreover, we remark that the Witt index classes and the
Witt symmetric signature of an oriented closed compact manifold coincide with the classic
signature index class and the Mishchenko symmetric signature. Then

I([X,r]) = (KM, p]) = ' (KM, p]) = J'([X,7])

with the first and third equality following from the above remark and the second equality
obtained using the fundamental result of Kasparov and Mishchenko on closed manifolds.
The proof is complete. O
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The above proposition together with Proposition 9.3 implies at once the following result:

COROLLARY 11.2. — The C*-algebraic symmetric signature defined by Banagl is a rational
stratified homotopy invariant.

This corollary does not seem to be obvious from a purely topological point of view. We add
that very recently Friedman and McClure have given an alternative definition of symmetric
signature on Witt spaces; while its relationship with Banagl’s definition is for the time being
unclear, we point out that the symmetric signature of Friedman and McClure is a stratified
homotopy invariant; moreover, with the same proof given above, its image in K, (C}T') is
rationally equal to our signature index class.

12. Epilogue

Let X be an o orientable Witt pseudomanifold with fundamental group I". We endow the
regular part of X w1th an adapted iterated edge metric g (Proposition 5.4). Let X X' be a Galois
I'-coveringand r : X — BTa class1fylng map for X', X'. We now restate once more the signature
package for the pair (X ST X — BT') indicating precisely where the individual items have
been established in this paper.

(1) The signature operator defined by the edge (adapted) iterated metric g with values in
the Mishchenko bundle 7*ET xp C}T' defines a signature index class
Ind(%sign) € K, (C:T), x = dim X mod 2. Established in Theorem 6.6.

(2) Thesignature index class is a (smooth) Witt bordism invariant; more precisely it defines
a group homomorphism Q)V'*“*(BI') — K, (C*T) ® Q. This is Theorem 7.1, together
with (7.2).

(3) The signature index class is a stratified homotopy invariant. Proposition 9.3.

(4) There is a K-homology signature class [0gign] € K. (X) whose Chern character is,
rationally, the homology L-Class of Goresky-MacPherson. Theorem 6.2 and Theorem
8.1.

(5) The assembly map § : K,(BI') — K,(C;T) sends the class r,[Jggn] into Ind(%sign).
Corollary 6.7.

(6) If the assembly map is rationally injective one can deduce from the above results the
homotopy invariance of the Witt-Novikov higher signatures. Theorem 10.1.

(7) There is a topologically defined C*-algebraic symmetric signature aw‘“(X r) € K.(C:T)

which is equal to the analytic index class Ind(%sign) rationally. This is Banagl’s con-
struction together with our Proposition 11.1.
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