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DIFFUSION FOR THE
PERIODIC WIND-TREE MODEL

 V DELECROIX, P HUBERT
 S LELIÈVRE

A. – The periodic wind-tree model is an infinite billiard in the plane with identical
rectangular scatterers placed at each integer point. We prove that independently of the size of scatters
and generically with respect to the angle, the polynomial diffusion rate in this billiard is 2/3.

R. – Le vent dans les arbres périodique est un billard infini construit de la manière suivante.
On considère le plan dans lequel sont placés des obstacles rectangulaires identiques à chaque point
entier. Une particule (identifiée à un point) se déplace en ligne droite (le vent) et rebondit de manière
élastique sur les obstacles (les arbres). Nous prouvons qu’indépendamment de la taille des obstacles
et génériquement par rapport à l’angle initial de la particule le coefficient de diffusion polynomial des
orbites de ce billard est 2/3.

1. Introduction

The wind-tree model is a billiard in the plane introduced by P. Ehrenfest and T. Ehren-
fest in 1912 ([7]). We study the periodic version studied by J. Hardy and J. Weber [14]. A
point moves in the plane R2 and bounces elastically off rectangular scatterers following
the usual law of reflection. The scatterers are translates of the rectangle [0, a] × [0, b] where
0 < a < 1 and 0 < b < 1, one centered at each point of Z2. We denote the complement of
obstacles in the plane by T(a, b) and refer to it as the wind-tree model or the infinite billiard
table. Our aim is to understand dynamical properties of the wind-tree model. We denote
by φθt : T(a, b)→ T(a, b) the billiard flow: for a point p ∈ T(a, b), the point φθt (p) is the
position of a particle after time t starting from position p in direction θ.

It is proved in [14] that the rate of diffusion in the periodic wind-tree model is log t log log t

for very specific directions (generalized diagonals which correspond to angles of the
form arctan(p/q) with p/q ∈ Q). Their result was recently completed by J.-P. Conze and
E. Gutkin [6] who explicit the ergodic decomposition of the billiard flow for those directions.
K. Frączek and C. Ulcigrai recently proved that generically the billiard flow is non-ergodic.
P. Hubert, S. Lelièvre and S. Troubetzkoy [17] proved that for a residual set of parameters a
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1086 V. DELECROIX, P. HUBERT AND S. LELIÈVRE

and b, for almost every direction θ, the flow in direction θ is recurrent. In this paper, we com-
pute the polynomial rate of diffusion of the orbits which is valid for almost every direction θ.
We get the following.

T 1. – Let d(., .) be the Euclidean distance on R2. Then for all parameters
(a, b) ∈ (0, 1)2, Lebesgue-almost all θ and every point p in T(a, b) (with an infinite forward
orbit)

lim sup
T→+∞

log d(p, φθT (p))

log T
=

2

3
.

By the Z2-periodicity of the billiard table T(a, b), our problem reduces to understand
deviations of a-Z2 cocycle over the billiard in a fundamental domain. On the other hand,
as the barriers are horizontals and verticals, an orbit in T(a, b) with initial angle θ from the
horizontal takes at most four different directions {θ, π−θ,−θ, π+θ} (the billiard is rational).
By a standard construction consisting of unfolding the trajectories [29], called the Katok-
Zemliakov construction, the billiard flow can be replaced by a linear flow on a (non compact)
translation surface which is made of four copies of T(a, b) that we denote X∞(a, b) (see
Section 3.2 for the construction). The surface X∞(a, b) is Z2-periodic and we denote X(a, b)

the quotient of X∞(a, b) under the Z2 action. As the unfolding procedure of the billiard flow
is equivariant with respect to the Z2 action, X(a, b) can also be seen as the unfolding of the
billiard in a fundamental domain of the action of Z2 on the billiard table T(a, b).

The position of the particle in X∞(a, b) can be tracked from X(a, b). More precisely, the
position of the particle starting from p ∈ X∞(a, b) in direction θ can be approximated by
the pairing of a geodesic γt(p) of X(a, b) seen as an element of the homology with a cocycle
f ∈ H1(X(a, b);Z2) describing the infinite cover X∞(a, b)→ X(a, b). The growth of pairing
of a fixed cocycle with geodesics in a translation surface is equivalent to the growth of certain
Birkhoff sums over an interval exchange transformation. The estimation can be obtained
from the action of SL(2,R) on strata of translation surfaces H g(α) and more precisely of

the Teichmüller flow which corresponds to the action of diagonal matrices gt =
(
et 0
0 e−t

)
(see Section 2 for precise definitions). As proved by A. Zorich [35, 36] the Kontsevich-Zorich
cocycle over the Teichmüller flow can be used to estimate the deviations of Birkhoff sums
for generic interval exchange transformations with respect to the Lebesgue measure. More
precisely, he proved that the Lyapunov exponents of the Kontsevich-Zorich cocycle is the
polynomial rate of deviations. G. Forni [12] relates this phenomenon to obstructions to solve
cohomological equations and extends Zorich’s proof to a more general context (see Section 9
of [12]).

The surface X(a, b) is a covering of the genus 2 surface L(a, b) which is a so called L-shaped
surface that belongs to the stratum H (2). The orbit of X(a, b) for the Teichmüller flow
belongs to a sub-locus of the moduli space H (24) that we call G.

We now formulate a generalization of A. Zorich’s and G. Forni’s theorems about devi-
ations of ergodic averages that is a central step in the proof of Theorem 1. Let H (α) be
a stratum of Abelian differentials and Y ∈ H (α) a translation surface. The Teichmüller
flow (gt) can be used to renormalize the trajectories of the linear flow on Y . The Kontsevich-
Zorich cocycle B(t)(Y ) : H1(Y ;R) → H1(gt · Y ;R) (or KZ cocycle) measures the growth
of cohomology vectors along the Teichmüller geodesic (gt · Y )t. Let µ be a gt-invariant
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ergodic probability measure on H (α). It follows from [12], that the KZ cocycle is integrable
for the measure µ. From Oseledets multiplicative ergodic theorem, there exist real numbers
ν1(µ) > ν2(µ) > · · · > νk(µ) > 0, such that for µ-almost every non zero Abelian differential
Y ∈ H (α) there exists a unique flag

H1(Y ;R) = Fu1 ⊃ Fu2 ⊃ · · · ⊃ Fuk ⊃ Fuk+1 = F c ⊃ F sk ⊃ · · · ⊃ F s1 ⊃ F s0 = {0}

such that for any norm ‖.‖ on H1(Y ;R), for all 1 ≤ i ≤ k
1. if f ∈ Fui \ Fui+1, then

lim
t→∞

log ‖B(t)(Y ) · f‖
log t

= νi(µ),

2. if f ∈ F si \ F si−1, then

lim
t→∞

log ‖B(t)(Y ) · f‖
log t

= −νi(µ),

3. if f ∈ F c \ F sk , then

lim
t→∞

log ‖B(t)(Y ) · f‖
log t

= 0.

There exist also positive integersmi for i = 1, . . . , k and an integerm such that for µ almost
all translation surface Y the filtration satisfies

– the dimension of F si is m1 + · · ·+mi,
– the dimension of F c is m1 + · · ·+mk + 2m,
– the dimension of Fui is m1 + · · ·+mi−1 + 2mi + · · ·+ 2mk + 2m.

From the definition of the Teichmüller flow and the KZ cocycle, it follows that ν1 = 1. Forni
proved thatm1 = 1 [12]. The Lyapunov spectrum of the KZ cocycle is the multiset of numbers

ν1 = 1 ν2 . . . ν2︸ ︷︷ ︸ . . . νk . . . νk︸ ︷︷ ︸ 0 . . . 0︸ ︷︷ ︸ −νk . . .− νk︸ ︷︷ ︸ . . . −ν2 . . .− ν2︸ ︷︷ ︸ −1 = −ν1.

m2 times . . . mk times 2m times mk times . . . m2 times

The numbers νi(µ) for i = 1, . . . , k are called the positive Lyapunov exponents (with respect
to µ). The subspace F s = F sk is called the stable space (at Y ) of the KZ cocycle.

In order to state a precise statement for deviations, one needs genericity with respect
to Lyapunov exponents but also an extra assumption on recurrence. Let µ be a gt ergodic
measure on some stratum H (α). We say that a surface Y ∈ H (α) is generic recurrent for µ
if there exist compact neighborhoods Ui ⊂ H (α) of Y such that

⋂
i Ui = {Y } and

lim
t→∞

Leb({s; s ∈ [0, t] and gsY ∈ U})
t

= µ(U).

Birkhoff theorem ensures that this condition is satisfied for almost every surface.

T 2. – Let µ be a gt-ergodic measure on a stratum of Abelian differentials. Let νi
for i = 1, . . . , k denote the positive Lyapunov exponents of the KZ cocycle for µ and denote, for
an Oseledets generic surface Y , Fui (Y ), F c(Y ) and F si (Y ) the components of the flag of the
Oseledets decomposition.

Then, for a surface Y ∈ H (α) which is generically recurrent and Oseledets generic for µ, for
every point p ∈ Y with an infinite forward orbit
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1. along the unstable space the growth is polynomial: for all 1 ≤ i ≤ k, for all f ∈ Fui \Fui+1

lim sup
T→∞

log |〈f, γT (p)〉|
log T

= νi,

2. along the central space the growth is sub-polynomial: for all f ∈ F c \ F sk

lim sup
T→∞

log |〈f, γT (p)〉|
log T

= 0,

3. along the stable space the growth is bounded: there exists a constant C such that for all
f ∈ F s

∀T ≥ 0, |〈f, γT (p)〉| ≤ C‖f‖.

Theorem 2 has first been proved by A. Zorich [34, 35, 36] for the Lebesgue measure
on a connected component of a stratum or equivalently for a generic interval exchange
transformation. G. Forni [12] extended the theorem for a very large class of functions and
for certain measures. More precisely, his proof of the lower bound relies on the existence of
a particular translation surface in the support of the measure. A. Bufetov [3] gave a proof of
Case 1 of Theorem 2 (when the cocycle f is associated with a positive Lyapunov exponent)
in the general context of symbolic dynamics which applies in particular to translation flows
(Propositions 2 and 5 of [3]). Our approach uses Veech’s zippered rectangles [31] and gives a
concrete version of the renormalization process by the Teichmüller flow and the Kontsevich-
Zorich cocycle in the flavor of [35, 36] and [12].

On the other hand, from results of A. Eskin, M. Kontsevich and A. Zorich [9] about
sum of Lyapunov exponents in hyperelliptic loci, we deduce that the Lyapunov exponent
for X(a, b) which controls the deviation in the wind-tree model equals 2/3. The value 2/3

comes from algebraic geometry. More precisely, it corresponds to the degree of a subbundle
of the Hodge bundle over the moduli space of complex curves (or Riemann surfaces) in which
the wind-tree cocycle belongs.

Using only Birkhoff and Oseledets theorems, one can prove that the conclusion of Theo-
rem 1 holds for almost every parameters a, b. In order to obtain all parameters we use a recent
result of J. Chaika and A. Eskin [5] which asserts that Birkhoff theorem for regular functions
and Oseledets theorem for the Kontsevich-Zorich cocycle are more regular for SL(2,R)-in-
variant measures: they hold for all surfaces in almost every directions. The work of Chaika
and Eskin strongly relies on previous work of A. Eskin and M. Mirzhakani [10] and A. Eskin,
M. Mirzakhani and M. Mohamadi [11] on SL(2,R)-invariant measures on strata of Abelian
differentials.

The paper is organized as follows. In Section 2 we introduce the tools from Teichmüller
theory which are involved in our proof of Theorem 1. In Section 3, we detail the unfolding
procedure and prove that the distance in Theorem 1 corresponds to a pairing between a
geodesic in X(a, b) with an integer cocycle. Then we reformulate Theorem 1 in the language
of translation surfaces (see Theorem 6). In Section 4 we compute the Lyapunov exponents
relative to every measure on H (24) which is supported on the closure of the SL(2,R)-orbit
of a surface X(a, b). Section 5 is devoted to the proof of Theorem 2.
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The preprint [5] appeared after preliminary versions of this paper. In earlier versions, the
conclusion of Theorem 1 was weaker and we rely heavily on classification of SL(2,R)-invari-
ant measures in genus 2 by K. Calta [4] and McMullen [24, 25, 26].

Acknowledgments. – The authors heartily thank A. Avila, A. Bufetov, G. Forni and
A. Zorich for very fruitful discussions.

2. Background

The main objects in this paper are:

– closed compact translation surfaces—equivalently, closed compact Riemann surfaces
endowed with a holomorphic 1-form;

– infinite-area periodic translation surfaces.

For general references on translation surfaces and interval exchange transformations we refer
the reader to the survey of A. Zorich [37], J.-C. Yoccoz [33] or the notes of M. Viana [32].

A translation surface is a surface which can be obtained by edge-to-edge gluing of polygons
in the plane using translations only. Such a surface is endowed with a flat metric (the one
from R2) and a canonical direction. There is a one to one correspondence between compact
translation surfaces and compact Riemann surfaces equipped with a non-zero holomorphic
1-form. If (Y, ω) is a Riemann surface together with a holomorphic one-form, the flat metric
corresponds to |ω|2. In particular, the area of (Y, ω) is i/2

∫
ω ∧ ω.

In a translation surface, directions are globally defined. Hence the geodesic flow in a direc-
tion can be defined on the surface. There is a canonical vertical direction in each translation
surface and we refer to the flow in this direction as the linear flow. The flow in the direction
θ ∈ [0, 2π) for the differential ω on Y is the linear flow of e−iθω on Y . Note that the flow is
not defined at the zeros of ω.

Now we define the moduli space of translation surfaces. We use a marking in order to
avoid symmetries which create singularities in the moduli space. Let α = (α1, . . . , αs) and g
be integers such that α1 + · · · + αs = 2g − 2. Let S be a compact (topological surface) of
genus g and let Σ = {x1, x2, . . . , xs} be a set of s points in S. The stratum H g(α) is the set
of (equivalence classes) translation structure on S with

1. zeros of degree αi at xi, and regular out of Σ,
2. a horizontal separatrix is fixed at each xi.

Two translation structures ω and η on S are identified if there exists a diffeomorphism
φ : S → S that fixes pointwise the set Σ maps ω to η and maps the marked horizontal
separatrix of ω at xi to the marked horizontal separatrix of η at xi. We often use expo-
nential notation for α, for example H (24) means H (2, 2, 2, 2) in our context. These strata
can have up to three connected components, which were classified by M. Kontsevich and
A. Zorich [20], and distinguished by two invariants: hyperellipticity and parity of spin struc-
ture. We denote by H (1)(α) ⊂ H (α) the codimension 1 subspace which consists of area 1

translation surfaces.
Each stratum H g(α) carries a natural affine structure which makes it a manifold (if we

forget markings, we obtain an orbifold). The affine structure is obtained from the association
of (S, ω) ∈ H g(α) 7→ [ω] ∈ H1(S,Σ;C) (the period map). On translation surfaces obtained
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by polygon gluings, this map may be seen as the edges (as element of C). In that model, two
surfaces are nearby if they are obtained from the same gluings and the edges are nearby for
the natural topology on finite dimensional vector spaces.

There is a natural action of SL2(R) on components of strata H (α) coming from the linear
action of SL(2,R) on R2. More precisely, let (Y, ω) be a translation surface obtained by
gluing a finite family of polygons (Pi) and g ∈ SL2(R). Then the surface g · (Y, ω) is the
surface obtained by gluing the polygons (g · Pi). The Teichmüller geodesic flow on H g is the

action of the diagonal matrices gt =

(
et 0

0 e−t

)
. The image of the orbits (gt · (X,ω))t in Mg

is geodesic with respect to the Teichmüller metric. Each stratum H g(α) carries a natural
Lebesgue measure, invariant under the action of SL(2,R). Moreover, this action preserves
the area and hence H (1)(α). H. Masur [23] and independently W. Veech [31] proved that on
each component of a normalized stratum H (1)(α) the total mass of the Lebesgue measure is
finite and the geodesic flow acts ergodically with respect to this measure. Another important

one parameter flow on H (α) is the horocycle flow given by the action of hs =

(
1 s

0 1

)
.

More generally, one can consider the strata of quadratic differentials with at most simple
poles Qg(α) where α is an integer partition of 4g − 4. The degree αi corresponds to a conic
point of angle (2 +αi)π. A translation surface associated to a quadratic differential may has
non trivial holonomy with value in {1,−1}. The action of SL(2,R) on Abelian differentials
extends to quadratic differentials.

Stabilizers for the action of SL(2,R) on H g or Qg, called Veech groups, are discrete non-
cocompact subgroups of SL2(R); they are trivial (i.e., either {Id} or {Id,− Id}) for almost
every surface in each stratum component, and in exceptional cases are lattices (i.e., finite-
covolume subgroups) in SL2(R). In such cases, the surface satisfies the Veech dichotomy:
in every direction, the linear flow is either uniquely ergodic, or decomposes the surface into
a finite union of cylinders of periodic trajectories (see [31]). Closed compact translation
surfaces with a lattice Veech group are exactly those whose SL2(R)-orbit is closed in the
corresponding stratum component. They are called Veech surfaces. Their orbits project to
Teichmüller curves in the moduli space Mg of closed compact Riemann surfaces of genus g.
A translation surface is a square-tiled surface if it is a ramified cover of the torus R2/Z2

with only 0 as ramification point. Square-tiled surfaces are examples of Veech surfaces. Their
Veech groups are commensurable to SL2(Z).

The simplest stratum besides the one of tori is H (2) which consists of equivalence classes
of 1–forms with a double zero (in flat surfaces terms a cone point of angle 6π) on Riemann
surfaces of genus two. Important examples of such surfaces are given by the family of surfaces
L(a, b) with 0 < a < 1, 0 < b < 1 which are built as follows (see also Figure 1). Let 0 < a < 1

and 0 < b < 1. Consider the polygon with extremal points (0, 0), (1− a, 0), (1, 0), (1, 1− b),
(1− a, 1− b), (1− a, 1), (0, 1), (0, 1− b) and glue the opposite sides together:

1. [(0, 0), (1− a, 0)] with [(0, 1), (1− a, 1)] (the side h1 labeled on Figure 1),
2. [(1− a, 0), (1, 0)] with [(1− a, 1− b), (1, 1− b)] (the side h2),
3. [(0, 0), (0, 1− b)] with [(1, 0), (1, 1− b)] (the side v1),
4. [(0, 1− b), (0, 1)] with [(1− a, 1− b), (1− a, 1)] (the side v2).
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1

1

a

b

h1 h2

v1

h2

v2

h1

v2

v1

F 1. The surface L(a, b) built from a L-shaped polygon.

The stratum H (2) is connected and is the best understood. It was proven that the Teich-
müller curves are generated by surfaces of the form L(a, b).

T 3 (Calta [4], McMullen [24, 25]). – The surface L(a, b) is a Veech surface if and
only if

1. either a, b ∈ Q in which case L(a, b) is square-tiled,
2. or there exist x, y ∈ Q and D > 1 a square-free integer such that 1/(1− a) = x+ y

√
D

and 1/(1− b) = (1− x) + y
√
D.

Moreover, any Teichmüller curve in H (2) contains (up to rescaling the area) a surface of the
form L(a, b).

In his fundamental work, C. McMullen [26] proved a complete classification theorem
for SL2(R)-invariant measures and closed invariant set.

T 4 (McMullen, [26] Theorems 10.1 and 10.2 p. 440–441)

The only SL(2,R)-invariant irreducible closed subsets of H (2) are the Teichmüller curves
and the whole stratum. The only SL(2,R)-invariant probability measures are the Haar measure
carried on Teichmüller curves and the Lebesgue measure on the stratum.

Let g ≥ 2 and α = (α1, α2, . . . , αs) an integer partition of 2g − 2. The Hodge bundle Eg
is the real vector bundle of dimension 2g over H g(α) where the fiber over (S, ω) ∈ H g(α)

is the real cohomologyH1(S;R). Each fibreH1(X;R) has a natural latticeH1(X;Z) which
allows identification of nearby fibers and definition of the Gauss-Manin (flat) connection.
The holonomy along the Teichmüller geodesic flow provides a symplectic cocycle called the
Kontsevich-Zorich cocycle. It is formally defined as a mapB(t) : H1(X;R)→ H1(gt ·X;R).
As each holonomy element corresponds to the action in homology of an element of the
mapping class group of X, the map B(t) is symplectic. For a small transversal U of the
Teichmüller flow on Mg for which there exists a trivialization of the Hodge bundle, we
identify all fibers with a fixed H1(X;R) where X ∈ U . The sequence of first return times
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0 = t0 < t1 < · · · of gt ·X in U gives a sequence of symplectic matrices in H1(X;R) that we
still denote B(tn)(X).

For each gt-invariant ergodic probability measure for the Teichmüller geodesic flow
on H g, this cocycle has associated Lyapunov exponents. Based on computer experimenta-
tions, M. Kontsevich [21] conjectured a formula for the sum of positive Lyapunov exponents
of the cocycle for Lebesgue measures on strata as well as for Veech surfaces. These formulas
are now fully proven [8, 9].

An automorphism of a translation surface (S, ω) is a diffeomorphism φ : S → S that
preserves ω (in other words, it acts by translations in the natural charts of ω). We warn the
reader that with our convention of markings, even if a point (S, ω) in H g(α) admits some
automorphisms, it has trivial stabilizer as element of H g(α). In some concrete situations,
as the one of the wind-tree model described in that article, the existence of automorphisms
provides an SL2(R)-equivariant splitting of the Hodge bundle. Under suitable assumptions
for the SL(2,R)-subbundles (relative to variations of Hodge structure), it appears that
for each of them there is a formula for the sum of positive Lyapunov exponents of the
restricted Kontsevich-Zorich cocycle. Sometimes even individual Lyapunov exponents can
be computed (see [2], [13], [8]). We recall a theorem of [9] which is a formula for the sum of
Lyapunov exponents for the so called hyperelliptic loci of a stratum.

Quadratic differentials with at most simple poles on a Riemann surface are natural gen-
eralizations of translation surfaces. In that case, the holonomy is not necessarily trivial and
may have values in {+1,−1}. On a Riemann surface with a quadratic differential, directions
are still globally defined and there is an action of PSL(2,R). The stratum Q(d1, . . . , dn)

denotes the moduli space of area 1 quadratic differentials with singularities of angles
(2 + d1)π, . . . , (2 + dn)π which are not squares of an Abelian differential.

Let q be a quadratic differential on some Riemann surface S. The foliation on S in some
direction θ is not orientable. There is a canonical way to define a double cover π : S̃ → S

ramified at the singularities for which the degree di is odd and for which π∗q is the square of
an Abelian differential on S̃. The locus of such double covers when the pair (S, q) moves in its
stratum gives an SL(2,R) invariant locus in an Abelian stratum called orientation cover locus.
When S is a sphere, the orientation cover locus is called a hyperelliptic locus. For Lyapunov
exponents of hyperelliptic loci, the following general theorem holds.

T 5 (Eskin-Kontsevich-Zorich [9], Corollary 1 p. 14). – Let µ be an SL(2,R)-in-
variant ergodic probability measure on a stratum H g(α) of Abelian differential. Assume that µ
comes from the orientation covering morphism of an SL(2,R)-invariant (regular) measure µ on
a stratum of quadratic differentials on the sphere Q(d1, d2, . . . , dn). Then, the sum of positive
Lyapunov exponents ν1 ≥ · · · ≥ νg for the measure µ is given by

ν1 + · · ·+ νg =
1

4

∑
j with dj odd

1

dj + 2
.

In particular the value of the sum does not depend on the measure but only on the stratum
Q(d1, d2, . . . , dn). For the condition of regular measure which appears in the statement of
Theorem 5 we refer to Definition 1 p. 9 of [9]. We emphasize that all known SL(2,R)-ergodic
measures on strata of Abelian differentials are regular.
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For infinite-area translation surfaces, it is not clear what the good notions of moduli
spaces are. However, the action of SL2(R) still makes sense, and Veech groups can be de-
fined [27, 30]. An infinite periodic translation surface is an infinite area translation surface
which is an infinite normal cover of a finite area translation surface. We say Γ-infinite trans-
lation surface to specify the Deck group Γ. Examples of Z-infinite translation surfaces are
studied by P. Hubert and G. Schmithüsen in [18] and a general formalism is introduced by
P. Hooper and B. Weiss in [16]. For some particularly symmetric examples, it is possible to
get a very complete picture of the dynamics [15]. The family of surfaces X∞(a, b) obtained
by unfolding the billiard tables T (a, b) are Z2-infinite translation surfaces.

3. From infinite billiard table to finite surface

First of all, the flow in the billiard table T(a, b) is invariant underZ2 translation. Secondly,
the angles between the scatterers are multiples of π/2 and the Katok-Zemliakov construc-
tion conjugates the billiard flow on T (a, b) to a linear flow on an infinite translation sur-
face X∞(a, b). Using these two ingredients, we reduce the study of the billiard flow into the
study of a Z2-cocycle over the linear flow of a finite translation surface X(a, b). The surface
X(a, b) obtained by unfolding a fundamental domain of the table T(a, b) is an intermediate
cover between the finite surface L(a, b) of genus 2 and the infinite surface X∞(a, b). The sur-
face X(a, b) is the main actor of this paper.

Notation. – For the whole section, we fix 0 < a < 1 and 0 < b < 1.

3.1. Unfolding the fundamental domain

A fundamental domain for the Z2 action on the infinite billiard T (a, b) can be seen ei-
ther as a torus with a square obstacle inside (see Figure 2a) or as a surface L = L(a, b)

with barriers on its boundary (see Figure 2b). The Katok-Zemliakov construction (or un-
folding procedure) of the billiard in the fundamental domain gives a surface X(a, b) made of
4 reflected copies of the fundamental domain (see Figure 3). The surface X(a, b) was studied
in the particular case a = b = 1/2 by different authors [22], [28], [13], [8] and is called in this
particular case the 6-escalator (see Figure 3b for the origin of the name).

L 1. – The surface X(a, b) is a genus 5 surface in H (24). It is a normal unram-
ified cover of the surface L(a, b) with a Deck group K isomorphic to the Klein four-group
K = Z/2× Z/2.

Proof. – The billiard table T(a, b) is invariant under horizontal and vertical reflections as
well as the billiard in a fundamental domain. It is then straightforward to show that X(a, b)

is an unramified normal cover of L(a, b) with group Z/2×Z/2. A direct computation shows
that X(a, b) has 4 singularities of angle 6π (see Figure 3).
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(−1,−1)
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(−1,1)

(0,−1)

(0,0)

(0,1)

(1,−1)

(1,0)

(1,1)

A

A

B B

() Fundamental domain of
the billiard table T(a, b) as a
torus with a rectangle scat-
terer.

(−1,−1)

(−1,0)

(−1,1)

(0,−1)

(0,0)

(0,1)

(1,−1)

(1,0)

(1,1)

C

C

D D

() Fundamental domain of
the billiard table T(a, b) as a
L shaped surface with barri-
ers.

F 2. Two versions of the fundamental domains for the billiard table T(a, b).
The boundaries of the scatterers are thick and the arrows together with letters
indicate the gluings.

A00

B00

A00

B00

A10

B10

A10

B10

A01

B01

A01

B01

A11

B11

A11

B11

() Unfolding the toric funda-
mental domain of Figure 2a.

() Unfolding the L shaped
fundamental domain of
Figure 2b.

F 3. Two versions of the surface X(a, b) obtained by unfolding the billiard
in a fundamental domain. The gluings of edges are indicated by labels in case of
ambiguity.

3.2. The surface X∞(a, b) as a Z2 cover of X(a, b)

As we did for unfolding the fundamental domain of the infinite billiard, we consider the
unfolding of the whole billiard table T(a, b). The unfolding leads to a non-compact surface
that we denote X∞(a, b) which is made of four copies of the initial billiard. As the unfolding
commutes with the action ofZ2 the surface X(a, b) is also theZ2 quotient of X∞(a, b). We use
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this description to rewrite the distance in Theorem 1 as a pairing between a geodesic segment
in X(a, b) with a cocycle in H1(X;Z2).

h00

h00

v00 v00

h10

h10

v10 v10

h01

h01

v01 v01

h11

h11

v11 v11

cx0

cx1

c0x c1x

F 4. Homology generators for X(a, b).

We first build a system of generators for
the homology of X(a, b). We label each copy
of the torus fundamental domain in X(a, b)

by 00, 01, 10 and 11 (see Figures 3a and 4).
Forκ ∈ {00, 10, 01, 11} lethκ (resp. vκ) be the
horizontal (resp. vertical) simple closed curve
that delimit each copy (the exterior bound-
ary). The curves hκ (resp. vκ) have holo-
nomy 1 (resp. i). The automorphism group
K ' Z/2 × Z/2 of X(a, b) acts on the in-
dices of hκ and vκ by addition (where we con-
sider 0 and 1 as elements of Z/2). The in-
tersection form 〈., .〉 on X(a, b) is such that
〈hκ, vκ′〉 = δκ,κ′ where δij is the Kronecker
symbol. In other words, the module gener-
ated by the elements hκ and vκ is a symplec-
tic submodule and {(hκ, vκ)}κ is a symplectic
basis. Moreover, this Z-submodule is invariant under the action ofK (but not irreducible, see
Lemma 4 below).

We consider four more elements of H1(X;Z). Let cx0 (resp. cx1) be the circumferences of
the horizontal cylinder that intersects the two copies 00 and 10 (resp. 01 and 11) of the torus
fundamental domain. The curves cx0 and cx1 have both holonomy (2− 2a, 0). We define as
well the curves c0x and c1x with respect to the vertical cylinders. The curves c0x and c1x have
both holonomy (0, 2 − 2b). As before the action of K as automorphism group of X(a, b)

corresponds to an action on indices of cij if we set 0 · x = 1 · x = x.

There are two relations in H1(X;Z) among the curves defined above

(1)
cx0 − cx1 = h00 − h01 + h10 − h11

c0x − c1x = v00 − v10 + v01 − v11.

We have the following elementary

L 2. – The relations (1) are the only relations in the family {hij , vij , cxj , cix}. LetEh
(resp. Ev) be the span of {hij , cxk}i,j,k∈{0,1} in H1(X(a, b);Z) (res. of {vij , ckx}i,j,k∈{0,1}
in H1(X(a, b);Z)); then H1(X(a, b);Z) = Eh ⊕ Ev and the sum is orthogonal with respect to
the intersection form.

The infinite cover X∞(a, b)→ X(a, b) corresponds to a certain subgroupH of π1(X(a, b))

such that π1(X(a, b))/H ' Z2. But as the cover is normal and Deck(X∞(a, b)/X(a, b)) ' Z2

is an Abelian group, there exists a factorisation through the Abelianisation H1(X(a, b);Z)

of π1(X(a, b)) (see also [16] for the description of Z-cover). In other terms the cover is
defined by an element of H1(X(a, b);Z2) and more precisely we have the following explicit
description.
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L 3. – The Z2 covering T(a, b)/X(a, b) is given by the dual f ∈ H1(X;Z2) with
respect to the intersection form of the cycle(

v00 − v10 + v01 − v11
h00 − h01 + h10 − h11

)
∈ H1(X;Z2).

In other words, the subgroup of π1(X(a, b)) associated to the covering is the kernel of

π1(X(a, b))
Ab−−→ H1(X(a, b);Z)

f−→ Z2.

Proof. – As before we consider the surface decomposed into four copies of the torus fun-
damental domain labeled 00, 10, 01 and 11. The labeling fits the action of the Klein 4 group
on the surface. Let γ be a smooth curve in T(a, b) which follows the law of reflection when
it hits an obstacle. Let γ be its image in X(a, b). There is an ambiguity for the starting point
of γ and we assume that we start in the copy 00. Each time the curve γ hits a side associ-
ated to a vertical (resp. horizontal) scatter the curve γ switches from the copy κ to (1, 0) · κ
(resp. (0, 1) · κ). At the same time, in the infinite table T(a, b) the curve γ is reflected verti-
cally (resp. horizontally). When the curve crosses a vertical (resp. a horizontal) boundary of
the fundamental domain (labelled A (resp. B) in Figure 2a) the curve γ remains in the same
copy. In other words, the endpoint of γ in T (a, b) only depends on the monodromy of γ with
respect to X∞/X and we need to consider only the case of the curves γ = hij , vij for i = 0, 1

and j = 0, 1.

As the copies 00 and 01 in X(a, b) correspond to the absence of vertical reflection, the
monodromy of v00 and v01 is (1, 0). Whereas for the copies 10 and 11, the curve γ has been
reflected and the monodromy of h10 and h11 is (−1, 0). The same analysis can be made for
the curves vij and the lemma follows from duality between {hκ} and {vκ}.

Now, we use the description of X∞(a, b)→ X(a, b) in terms of homology to approximate
the distance d(p, φθt (p)) of Theorem 1 in terms of intersection. But first of all, we need to
approximate the geodesic segment by elements of H1(X,Z).

For each triple (p, θ, t) ∈ X×S1×R+ we define an element γθt (p) ∈ H1(X;Z) as follows.
Consider the geodesic segment of length t from p in the direction θ and close it by a small
piece of curve that does not intersect any curvehκ nor vκ. The curve used to close the geodesic
segment can be chosen to be uniformly bounded.

The proposition below shows that the distance of the particle in the billiard T(a, b) can
be reduced to the study of the pairing of the approximative geodesic γθt (p) in X(a, b) and the
cocycle f ∈ H1(X;Z2) defined in Lemma 3.

P 1. – Let ‖.‖2 be the Euclidean norm on R2. Let p ∈ X(a, b) and p̃ ∈ T (a, b)

be the lift of p which belongs to the translate of the fundamental domain that contains the
point (0, 0). Let f ∈ H1(X;Z2) be as in the previous lemma. Then∥∥〈f, γθt (p)

〉
− φθt (p̃)

∥∥
2
≤
√

2.

In particular ∣∣‖〈f, γθt (p)〉‖2 − d(p̃, φθt (p̃))
∣∣ ≤ √2.
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Proof. – The distance between the point φθt (p) ∈ R2 and the associated level
〈f, γθt (p)〉 ∈ Z2 is bounded from above by the diameter of the fundamental domain. The
latter is uniformly bounded by

√
2 (with respect to the parameters a and b).

As a consequence of the above proposition we reformulate our main result (Theorem 1).

T 6. – Let 0 < a < 1, 0 < b < 1 and γθT (p) be the approximative geodesic starting
from p in direction θ in X(a, b).

1. If a and b are rational numbers or can be written as 1/(1 − a) = x + y
√
D and

1/(1− b) = (1−x) + y
√
D with x, y ∈ Q andD > 1 a positive square-free integer, then

for almost every θ and every point p in X(a, b) (with an infinite forward orbit under the
linear flow)

lim sup
T→∞

log
∣∣〈f, γθT (p)

〉∣∣
log T

=
2

3
.

2. For almost all (a, b) ∈ (0, 1)2, for almost all θ and for every point p in X(a, b) (with an
infinite forward orbit)

lim sup
T→∞

log
∣∣〈f, γθT (p)

〉∣∣
log T

=
2

3
.

3.3. Deck group action on X(a, b)

We study the covering X(a, b)/L(a, b) which is normal with Deck group the Klein four
group K = Z/2× Z/2 by Lemma 1.

Let vij , hij , cxj and cix for i, j ∈ {0, 1} be the generators of H1(X;Z) defined in Sec-
tion 3.2. We identify them to vectors in the cohomology H1(X;Z) by duality. The action
of the Klein four group K on X(a, b) splits the homology in four subspaces. For the gener-
ators τv = (1, 0) and τh = (0, 1) of K we define the subspace E+− to be the set of vec-
tors v ∈ H1(X;Z) such that τv(v) = +1 and τv(v) = −1. We define similarly E++, E−+

and E−−.
We denote hK = h00 + h01 + h10 + h11 and vK = v00 + v01 + v10 + v11.

L 4. – The action of the Deck group of X(a, b)→ L(a, b) splits the cohomology into
four subspaces

H1(X(a, b);Q) = E++ ⊕ E+− ⊕ E−+ ⊕ E++,

where each subspace Eκ is defined over Q as follows

• E++ = Q [hK ]⊕Q [cx0 + cx1]⊕Q [vK ]⊕Q [c0x + c1x] ' H1(L(a, b);Q),

• E+− = Q [h00 − h01 + h10 − h11]⊕Q [v00 − v01 + v10 − v11],

• E−+ = Q [h00 + h01 − h10 − h11]⊕Q [v00 + v01 − v10 − v11],

• E−− = Q [h00 − h01 − h10 + h11]⊕Q [v00 − v01 − v10 + v11].

We emphasise that the invariant part of H1(X(a, b);Z) under the subgroup 〈τv〉 ⊂ K

is identified with H1(X(a, b)/〈τv〉;Z). This is the main reason for which we consider each
quotient of X(a, b) by the three subgroups of order two generated by τv, τh and τh τv.

L 5. – The surfaces X(a, b)/〈τv〉 and X(a, b)/〈τh〉 belong to the hyperelliptic
component H hyp(2, 2) while the surface X(a, b)/〈τvτh〉 belongs to the hyperelliptic locus
L ⊂ H odd(2, 2).
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Proof. – We see on the two figures below that the central symmetry in each polygonal
representation of the surfaces X(a, b)/〈τv〉 and X(a, b)/〈τvτh〉 gives rise to an involution
that does not preserve the directions: the direction θ is sent to −θ. The quotient by such
involution gives rise to quadratic differentials. In both cases the quotient is a sphere endowed

a0 a0

b0

b0

a1 a1

b1

b1

A

B

A

D

C

D

C

B

() Quotient of X(a, b) by τh.

a0 a0

b0

b0

a1 a1

b1

b1

A

B

C

D

C

D

A

B

() Quotient of X(a, b) by τhτv.

F 5. The quotients of degree 2 of X(a, b).

with a quadratic differential and hence the surfaces X(a, b)/〈τv〉 and X(a, b)/〈τvτh〉 are
hyperelliptic. In the first quotient, the two singularities are exchanged and hence X(a, b)/〈τv〉
belongs to H hyp(2, 2) which corresponds to the orientation cover of quadratic differentials
in Q(4,−18) (this is the definition of H hyp(2, 2), see [20]). While for X(a, b)/〈τvτh〉 the zeros
are fixed by the involution and the surface belongs to the hyperelliptic locus L ⊂ H odd(2, 2)

which corresponds to the orientation cover of quadratic differentials in Q(12,−16).

4. Moduli space and Lyapunov exponents

In this section, using McMullen classification of SL(2,R)-invariant closed set and proba-
bility measures in H (2), we classify the possible closures SL(2,R) ·X(a, b) of SL(2,R)-orbits
of the surfaces X(a, b) in H (24). Each closure carries a unique SL(2,R)-invariant ergodic
probability measure and we compute the Lyapunov exponents of the Kontsevich-Zorich co-
cycle with respect to it.

4.1. Moduli space and X(a, b)

We recall that X(a, b) ∈ H (24) is a cover of L(a, b) ∈ H (2) (Lemma 1). This property is
preserved by the action of SL(2,R) and more precisely the action of SL(2,R) is equivariant:
for any g ∈ SL(2,R) the surface g ·X(a, b) is a cover of g ·L(a, b). Hence, all SL(2,R)-orbits
of X(a, b) belong to the sublocus of H (24) which corresponds to the particular covering of
surfaces in H (2). This locus, which we denote by G, is a closed SL(2,R)-invariant subvariety
of H (24) which is a finite cover of H (2). In particular, McMullen’s classification Theorem
for SL(2,R)-invariant closed subset and probability measures (Theorem 4) holds for closures
of SL(2,R)-orbits of X(a, b).

The action of the Klein four-group K on surfaces X(a, b) and the splitting of Lemma 4
hold for any surface Y in G. For any Y ∈ G we denote by Y = Y/K its quotient in H (2).
We have maps H1(Y ;R) → H1(Y ;R) (resp. H1(Y ;R) → H1(Y ;R)) which are equivariant
with respect to the Kontsevich-Zorich cocycle. In particular the explicit decomposition in
the first part of Lemma 4 remains valid for any surface Y in G as it depends only of the
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action of K. In particular, we get an SL2(R)-equivariant splitting of the Hodge bundle. But,
as H1(X(a, b);Z) and H1(Y ;Z) can only be identified locally, the explicit basis of homology
we have exhibited for X(a, b) has no meaning for Y .

4.2. Computation of Lyapunov exponents

In this section we compute the individual Lyapunov exponents of the KZ cocycle for all
SL(2,R)-invariant ergodic measures on G. We denote by E → G the Hodge bundle over
H (24) restricted to G.

Recall, that the KZ cocycle is symplectic. Hence, the Lyapunov exponents come by
pair of opposites (ν,−ν). In the following we call non negative spectrum of the KZ
cocycle the non-negative numbers 1 = ν1 > ν2 ≥ · · · ≥ νg such that the multiset
(ν1, ν2, . . . , νg,−νg, . . . ,−ν1) is the Lyapunov exponents of the KZ cocycle. In our case,
for any surface Y in G the Oseledets decomposition of H1(Y ;R) respects the splitting
E = E++ ⊕ E+− ⊕ E−+ ⊕ E−−. Moreover, the maximal Lyapunov exponent of the
KZ cocycle, which equals 1, belongs to E++. Hence the non-negative spectrum can be
written {1, ν++, ν+−, ν−+, ν−−} where {1, ν++} (resp. {ν+−}, {ν−+} and {ν−−}) is the
non negative Lyapunov spectrum of the KZ cocycle restricted to E++ (resp. E+−, E−+

and E−−).

T 7. – For any SL(2,R)-invariant ergodic probability measure on G:

ν++ = ν−− = 1/3 and ν+− = ν−+ = 2/3.

Proof. – We first consider the case of the rank 4 subbundleE++ which corresponds to in-
variant vectors under the action of the Klein four groupK.E++ identifies with the pullback
of the Hodge bundle over H (2) and in particular, we deduce from results of M. Bainbridge [1]
(see also Theorem 5) that ν++ = 1/3.

We now consider the case of the rank 2 subbundlesEκ for κ ∈ {−−,+−,−+}. Lemma 5
implies that the subbundleE++⊕E−− (resp.E++⊕E+− andE++⊕E−+) can be identified
to a pullback of bundles over different covering loci in H hyp(2, 2) and L ⊂ Hodd(2, 2). More
precisely, the quotient map Y 7→ Y/〈τhτv〉 (resp. Y 7→ Y/〈τv〉 and Y 7→ Y/〈τh〉) induces an
isomorphism between E++ ⊕ E−− (resp E++ ⊕ E+− and E++ ⊕ E−+) and respectively
H1(Y/〈τhτv〉;Z) (resp. H1(Y/〈τh〉;Z) and H1(Y/〈τv〉;Z)).

To compute the remaining Lyapunov exponents, we use Theorem 5 twice. The loci
H hyp(2, 2) and L comes from orientation coverings of surfaces in the quadratic strata
respectively Q(4,−18) and Q(12,−16). For those two components, using Theorem 5, we get
that the sum of positive Lyapunov exponents are respectively

ν1 + ν2 + ν3 =
2/3 + 6

4
= 5/3 for L ⊂ H odd(2, 2)

ν1 + ν2 + ν3 =
8

4
= 2 for H hyp(2, 2).

By subtracting 4/3 = 1 + 1/3 to each of them that corresponds to the contribution of E++

we get that ν−− = 1/3 and ν+− = ν−+ = 2/3.
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Notice that the assumption of regularity for the measures in Theorem 5 is automatically
satisfied. The regularity property is stable under taking covering locus and is satisfied for
Haar measures on Veech surfaces and Lebesgue measure on a stratum (see [9]).

Applying the main result of Chaika-Eskin [5] one obtains directly from Theorem 7 the
following.

C 1 ([5]). – For all surfacesY in G, for almost every θ ∈ [0, 2π), the surface eiθY
is Oseledets generic: the Lyapunov exponents exist and their values are described by Theorem 7.

4.3. A remark on the equality ν+− = ν−+

In Theorem 7, we have equality of Lyapunov spectrum in E+− and E−+. In that section
we deduce the equality from the symmetries of the wind-tree model.

An automorphism (respectively anti-automorphism) of a translation surface (S, ω) is an
affine diffeomorphism φ : S → S such that φ∗ω = ω (resp. φ∗ω = −ω). Quotient by
automorphisms or anti-automorphisms corresponds to cover of translation surfaces (with
either an Abelian or a quadratic differential). Automorphisms and anti-automorphisms
commute with the SL(2,R) actions (they are precisely the affine diffeomorphisms for which
the derivative belongs to the center of SL(2,R) which is ±id) and this was used in the
preceding sections to build the decompositionE = E++⊕E+−⊕E−+⊕E−− (see Lemma 4).

An elliptic symmetry of a translation surface (S, ω) is a diffeomorphism φ : S → S such
that φ∗ω = eiθω for some θ ∈ [0, 2π) \ {0, π/2, π, 3π/2}. Such map φ necessarily preserves
the underlying complex structure of ω and implies that φ is of finite order. Identically, a
translation surface has an elliptic symmetry if it comes from an orientation cover of higher
order differentials. Elliptic symmetries do not commute with the SL(2,R)-action but only
with SO(2).

An elliptic locus is an orientation cover of a connected component of differential of order
larger than > 2. Equivalently, it is a subset of a connected component of stratum with an
elliptic symmetry which is locally constant.

In H (24), we consider the locus of surfaces which is cover of L-shaped surfaces with
a rotation symmetry of order 4. Examples of such surfaces are the surfaces X(a, a). The
quotient of an element of that locus is a quartic differential on the sphere with angles π, π,
−3/4π and −1/4π. The real dimension of that locus is 4 (or 3 in H (1)(24)). The following
lemma may be used to conclude to equality of Lyapunov exponents in E+− and E−+.

L 6. – Let X ⊂ H g(α) be a closed SL(2,R)-invariant affine locus in H g(α) of real
dimension 2d that supports an ergodic measure µ. Let Y ⊂ X be an elliptic locus of real
dimension d and denote by G the associated action on H1(S,R) over an element (S, ω) in Y .
LetEi andEj be two subbundles of the Hodge bundle that are SL(2,R) invariant and such that
for some g ∈ G we have gEi = Ej in the intersection of a neighborhood of (S, ω) and Y . Then
the spectrum of the Kontsevich-Zorich cocycle restricted to Ei and Ej coincides.
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Proof. – We prove that in the intersection of the neighborhood of (S, ω) with Y there is
a generic surface for µ.

Let φ be an elliptic symmetry of (S, ω). In other words

φ∗(ω) = eiθω = cos(θ) Re(ω)− sin(θ) Im(ω) + i(sin(θ) Re(Ω) + cos(θ) Im(ω)).

It is clear that if sin(θ) 6= 0, then this equation is not preserved along the stable variety of ω
(i.e., along a deformation of Im(ω) only) and along the geodesic flow. Hence, at each point
(S, ω) of Y the subspace Y , the stable variety of (S, ω) and its geodesic are transverse. From
the dimension condition, almost all geodesics encounter the stable variety of some element
in Y . In particular, almost all points in Y (for its d− 1-dimensional Lebesgue measure) have
generic Teichmüller geodesics.

To conclude to equality, let us consider a generic surface in Y . There exists a generic
direction θ′ in G such that θ + θ′ is also generic (θ is such that φ∗ω = eiθω). Because
φ∗Ei = φ∗Ej at (S, ω) we do have equality of exponents in Ei and Ej .

5. Deviations for translation surfaces

In this section, we prove Theorem 2 which concerns growth of geodesics.

We recall the notation from the introduction. Let H (α) be a stratum of Abelian differen-
tial and µ a gt-invariant ergodic measure on H (α). We denote by 1 = ν1 > ν2 > · · · > νk
the positive Lyapunov exponents of the KZ cocycle and for X ∈ H (α) which is Oseledets
generic

(2) H1(X;R) = Fu1 ⊃ Fu2 ⊃ · · · ⊃ Fuk ⊃ Fuk+1 = F c ⊃ F sk ⊃ · · · ⊃ F s1 ⊃ F s0 = {0}

the associated Oseledets flag. By Oseledets theorem, the decomposition (2) is measurable and
is invariant under the Teichmüller flow.

We want to prove the following statement: for µ-almost allX which are Oseledets generic,
for all p ∈ X with infinite forward orbit and any norm on H1(X;R)

1. for all f ∈ Fui \ Fui+1

lim sup
T→∞

log |〈f, γT (p))〉|
log T

= νi,

2. for f ∈ F c

lim sup
T→∞

log |〈f, γT (p)〉|
log T

= 0,

3. there exists a constant C, such that for f ∈ F si \ F si−1

∀T ≥ 0, |〈f, γT (p)〉| ≤ C.

We first notice that to prove Theorem 2, by ergodicity of the Teichmüller flow, it is enough
to prove it for surfaces X belonging in a small open set of H (α) of positive measure. The
strategy is as follows. We build a small open set in which we have uniform estimates for the
linear flows. Next, for a surface in this small open set we consider long pieces of trajectory
under the linear flow that we decompose using the KZ cocycle. Then, using the uniform
estimates, we get the lower and upper bounds.
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5.1. Transversals for the Teichmüller flow

In order to code geodesics in an individual surface we use Veech’s construction of zippered
rectangles [31]. We recall our convention of markings (see Section 2) that each translation
structure in H (α) carries a choice of a horizontal separatrix at each singularity.

A surface in H (α) is called regular if there is no saddle connection in both horizontal and
vertical directions. In a regular surface the linear flow in vertical direction is minimal (Keane’s
Theorem [19]). If there is a connection in vertical (resp. horizontal) direction then the forward
(resp. backward) orbit for the Teichmüller flow goes to infinity. In particular, using Poincaré
recurrence theorem, we get that the set of regular surfaces is a set of full measure for µ.

Let X be a regular surface in the support and Σ ⊂ X the finite set of singularities of X.
Following [31], we decompose the surface into zippered rectangles. Recall that there is a
marked outgoing separatrix in X. We consider the initial segment of length 1 on this sepa-
ratrix that we identify with [0, 1]. The Poincaré map of the linear flow in this segment is an
interval exchange transformation. There exists a canonical segment I ⊂ X built from Rauzy
induction ([31, Proposition 9.1], see also [32]). The rectangles above each domain of conti-
nuity of the interval exchange transformation on I give a decomposition X =

⋃
Rj where

Rj are geodesic rectangles with horizontal sides inside I and vertical sides which contain
singularities or hit a singularity in the future. The number of rectangles is d = 2g − 2 + s− 1

where g is the genus of X and s the number of singularities.
Let X be a regular surface in the support of µ and X =

⋃
Rj its decomposition into

zippered rectangles. The parameters of the zippered rectangles (lengths and heights of the
rectangles) give local coordinates for H (α) in a neighborhood of X. In particular, we get
zippered rectangles construction for surfaces near X that are not regular. Let U ⊂ H (κ) be
an open set which contains X and for which the zippered rectangles obtained from X give a
chart of H (α). In U , we have a trivialization of the Hodge bundle and we identify all fibers
with H1(X;R).

To each rectangle Rj of a zippered rectangle decomposition of a surface Y in U is associ-
ated a curve ζj ⊂ Y \Σ (up to homotopy in Y \Σ) which corresponds to the Poincaré map
on the canonic interval of Y . The vertical holonomy of ζj is the height of Rj . The following
is a classical fact.

L 7. – The set {ζj}j=1,...,d forms a basis of H1(Y \ Σ;Z).

Let Y ∈ U and I ⊂ Y be the canonical transversals for the linear flow of Y . To a point p
in I, we associate the sequence of return times Tn = Tn(p) of the linear flow into I. Each
curve γTn

(p) has both ends in I and we close it using a small piece of the horizontal segment
contained in I. For any p ∈ I with infinite orbit and any n we have a unique decomposition
as concatenation of curves

γTn
(p) = ζj1(p) ζj2(p) ζj3(p) . . . ζjn(p)

and hence, there exist some non negative numbers mTn,j(p) for j = 1, . . . , d such that, in
homology

γTn
(p) =

d∑
j=1

mTn,j(p)ζj ∈ H1(S \ Σ).
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Let p ∈ Y with infinite backward and forward orbits. There is a unique point p′ ∈ I such
that the orbit of p′ under the linear flow goes to p before returning to I. For T ≥ 0, we denote
by γT (p) the curve γTn

(p′) where Tn−1(p′) < T ≤ Tn(p′).

L 8. – We can chooseU in such a way that there exist constantsK1 andK2 such that
for all Y ∈ U

1. for j = 1, . . . , d, the length lj and height hj of the rectangle Rj = Rj(Y ) satisfy
K−1

1 < hj < K1 and K−1
1 < lj < K1 ,

2. for every point p ∈ I, the decomposition of the geodesic γK2
(p) =

∑
cjζj inH1(Y \Σ;Z)

where the sum for j between 1 and d is such that no cj is zero. In other words, any geodesic
longer than K2 goes through all rectangles Rj .

Proof. – We consider the interval exchange transformation on the segment I associated
to surfaces Y in a neighborhood ofX. We recall from [19], that doubling all points of I which
are preimages of a discontinuity of the interval exchange gives a Cantor set. The interval
exchange transformation has a prolongation to this Cantor set and is a homeomorphism
which is semi-conjugated to the initial transformation on T .

Around X, the lengths `j and heights hj are continuous functions of Y . Hence, to fulfill
the first condition it is enough to consider a relatively compact open set U inside the chart
given by the zippered rectangles of X.

We prove that it is possible to satisfy the second one. Because of the regularity condition,
the linear flow ofX is minimal (Keane’s Theorem [19]). Let I ⊂ X be the segment associated
to X. For any p ∈ I with infinite future orbit, there exists a time T = T (p) such that the
curve γT (p) has visited all rectangles. We choose T (p) to be the first return time of p in I with
this property. The map p 7→ T (p) is locally constant on I and hence also on the associated
Cantor set Ĩ. By minimality,T (p) is uniformly bounded, otherwise there would exist a point p
for which its future does not cross some rectangle. Hence, on X, any curve of length longer
thanK = maxp∈I T (p) <∞ goes through all rectangles. In a small neighborhood ofX, the
rectangles associated to the time K are still rectangles and their heights have been modified
continuously with respect to the surface. By choosing U small enough we may ensure that
all rectangles of length less than K in Y are still rectangles in Y ′ ∈ U and their heights are
uniformly bounded by K2 = K + ε with ε > 0.

By taking smallerU if necessary, we assume that it is “flow box” that containsX. Namely,
U is identified with a transversal P to the Teichmüller flow containing X times an inter-
val ]− ε; ε[. For Y ∈ P , we consider the return times tn = tn(Y ) of the surface Y in P . By
ergodicity of µ, this is well defined for µ-almost all Y in P . The segment I in gtnY becomes
a segment of length e−tnI in Y . We define the curves ζ(n)

j as the first return time associated

to e−tnI in Y . In homology, we have ζ(n)
j =

(
B(tn)

)∗
(ζj).

5.2. Upper bound

Let X be a regular surface and P a transversal to the Teichmüller flow containing X as
in Section 5.1. In particular we assume that Lemma 8 holds for all surfaces Y in P .

Let Y ∈ P be a surface which is recurrent for the Teichmüller flow and let ζ(n)
j , j = 1, . . . , d,

n = 0, 1, . . . be the curves defined at the end of the previous section as first return times into
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I(n) = e−tnI ⊂ Y . By linear algebra, we know that the pairings
〈
f, ζ

(n)
j

〉
=
〈
B(tn)f, ζj

〉
is bounded by ‖B(tn)f‖ times a constant. To prove that the bound still holds for a geodesic
not necessarily of the form ζ

(n)
j we use the following lemma.

L 9 ([12] Lemma 9.4, [35] Proposition 8). – Let X be a regular surface and P a
transversal containingX as above. Let Y ∈ P be recurrent for the Teichmüller flow and ζ(n)

j be
the curves defined by first return times. Let p ∈ I ⊂ Y be a point with infinite future orbit. For
each T ≥ 0 there exist an integer n = n(T ) and a decomposition

γT (p) =

n∑
k=0

d∑
j=1

m
(k)
j ζ

(k)
j in H1(Y ;Z),

which satisfies

1. the m(k)
j are non negative integers for k = 1, . . . , n and j = 1, . . . , d,

2.
∑
jm

(n)
j 6= 0 and K−1

1 etn < T ,

3. K−1
1 etk ≤ `

(
ζ
(k)
j

)
≤ K1 e

tk for j = 1, . . . , d, where ` denotes the length,

4.
∑
jm

(k)
j ≤ 2(K1)2etk+1−tk .

Proof. – Let I = I(0) ⊂ Y be the segment of the interval exchange transformation
associated to the zippered rectangles decomposition of Y . For k ≥ 1, let I(k) be the
subintervals of Y which are the images of I(gtkY ) ⊂ gtk(Y ) under g−tk . We recall that this
segment is the segment with the same left extremity as I but whose length is e−tk times the
one of I.

We describe the so called prefix-suffix decomposition in symbolic dynamics for γT (p). We
assume that T is a return time of the linear flow in I and note γ = γT (p). Letn be the largest k
such that the closed curve γ crosses I(k) twice. We may decompose γ = r

(n)
− γ(n) r

(n)
+ where

• r(n)
− starts from p and ends in I(n),

• γ(n) is a non empty concatenation of γ(n)
j ,

• r(n)
+ starts from I(n) and ends at p.

We choose r(n)
− and r

(n)
+ to be minimal and hence their length are smaller than K1e

tn by

Lemma 8, Property 1. On the other hand, by definition, each curve γ(n)
j is of length larger

thanK−1
1 etn and hence T > K−1

1 etn . This proves Equation 2 and also 1 and 3 for the special
case k = n.

We now proceed by induction and decompose r(n)
− and r

(n)
+ with respect to the other

recurrence times 0 < tk < tn. We assume that we built two curves r(k)− and r(k)+ and two

sequences γ(k)
− , γ

(k+1)
− , . . . , γ

(n−1)
− and γ(k)

+ , γ
(k+1)
+ , . . . , γ

(n−1)
+ such that

γ = r
(k)
−

(
γ

(k)
− γ

(k+1)
− . . . γ

(n−1)
−

)
γ(n)

(
γ

(n−1)
+ . . . γ

(k+1)
+ γ

(k)
+

)
r
(k)
+

with

• γ(m)
− starts from I(m), ends in I(m+1) and does not cross I(m+1) before its endpoint,

• γ(m)
+ starts from I(m+1), ends in I(m) and does not cross I(m+1) after its start point,

• r(k)− starts from I(0) and ends in I(k) and does not cross I(k) before its endpoint,

4 e SÉRIE – TOME 47 – 2014 – No 6



DIFFUSION FOR THE PERIODIC WIND-TREE MODEL 1105

• r(k)+ starts from I(k) and ends in I(0) and does not cross I(k) after its start point.

Repeating the same procedure, we end with the decomposition

γ = γ
(0)
− γ

(1)
− . . . γ

(n−1)
− γ(n) γ

(n−1)
+ . . . γ

(1)
+ γ

(0)
+ .

From the construction, we know that both γ(k)
− and γ(k)

+ may be written as concatenations

of curves ζ(k)
j with positive coefficients. Let γ(k)

− + γ
(k)
+ =

∑
m

(k)
j ζ

(k)
j in H1(Y ;Z). The

Property 1 is clearly satisfied. By maximality γ(k)
− satisfies `

(
γ

(k)
−

)
< K1e

tk+1 and the same

is true for γ(k)
+ . On the other hand each ζ(k)

j is of length at least K−1
1 etk by Property 1 of

Lemma 8 and hence Property 3 is satisfied. From the latter inequalities, we obtain

K−1
1 etk

∑
m

(k)
j <

∑
m

(k)
j `(ζ

(k)
j ) < 2K1e

tk+1 .

which implies that
∑
m

(k)
j < 2(K1)2etk+1−tk which is Property 4.

Now, we prove the upper bound in Theorem 2. We restrict to the Case 1 relative to one of
the unstable subspace Fui of the Oseledets flag. The same proof works for the other cases.
We follow mainly Section 9 of [12] (see also Section 6 of [35] and Section 4.9 of [36]). In
what follows Ki for i = 3, 4, . . . denotes constants which do not depend on the time T or
the number n = n(T ).

We fix Y ∈ P which is generically recurrent and Oseledets generic. We also fix p a point
in Y with infinite forward orbit for the linear flow. By Lemma 9 and Oseledets’ theorem (see
Section 1), for any ε > 0, there exists a constantK3 such that for T big enough the following
estimation holds

(3) |〈f, γT (p)〉| ≤ K3

n∑
k=1

etk+1−tk e(νi+ε)tk .

Moreover, if Y is generically recurrent for the Teichmüller flow, one can ensure that

lim
k→∞

tk
k

= M

where M is the inverse of the transverse µ-measure of P . As Y is generically recurrent, for
any δ the following estimation holds for k big enough

(4) (M − δ) k ≤ tk ≤ (M + δ) k.

Using (3) and (4) we get that for T big enough we get

|〈f, γT (p)〉| ≤ K4

n∑
k=1

exp ((M + δ)(k + 1)− (M − δ)k) exp (νi + ε)(M + δ)k)

≤ K5

n∑
k=1

exp ((νi + ε)(M + δ) + 2δ)k)

≤ K6 exp(((νi + ε)(M + δ) + 2δ)n).

Now, by equation (4) and the choice of n = n(T ) in the estimate 2 in Lemma 9 we have for
T big enough

exp ((M − δ)n) ≤ exp(tn) ≤ K1 T.
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Hence we get that for T big enough

log |〈f, γT (p)|
log T

≤ (νi + ε)(M + δ) + 2δ

M − δ
.

As δ and ε can be chosen arbitrarily small we get the upper bound.

5.3. Lower bound

We now prove the lower bound in Theorem 2. The only non trivial case is the one of a
cocycle in unstable part Fui or the central part F c of the Oseledets flag (2). The proof is
identical for both of them.

Let X be a regular surface and P be a transversal containing X as in Section 5.1. Let
Y ∈ P be recurrent for the Teichmüller flow and Oseledets generic. We denote by tn the
sequence of return times in P . We fix a point p ∈ Y with infinite future orbit and a cocycle
f ∈ Fui \ Fui+1 in the unstable part of H1(X;Z).

We use a similar decomposition as in the proof of Lemma 9. For all n, we consider
the sequence of return times of p into I(n). For the m-th return time T in I(n) we have a
decomposition

γT (p) = γ
(1)
− γ

(2)
− . . . γ

(n−1)
− ζ

(n)
j1
ζ
(n)
j2

. . . ζ
(n)
jm
,

where the sequence (jk) = (jk(n)) does only depend on p and n and the sequence γ(k)
− only

on p. The length of the initial segment γ(1)
− γ

(2)
− . . . γ

(n−1)
− corresponds to the first hitting

time T−n of I(n) starting from p.
Let ε > 0; we want to prove that the following holds

lim sup
T→∞

log |〈f, γT (p)〉|
log T

≥ νi − ε.

We are done if the above equality holds for infinitely many prefixes γ(1)
− . . . γ

(n−1)
− of γT (p).

We assume that the latter condition does not hold and prove that the above inequality still
holds. From that hypothesis, we get

(5) log
∣∣∣〈f, γT−n (p)

〉∣∣∣ = log
∣∣∣〈f, γ(1)

− γ
(2)
− . . . γ

(n−1)
−

〉∣∣∣ ≤ (νi − ε/2) log T−n .

L 10. – Let K1 and K2 be the constants of Lemma 8. There exist an index
` ∈ {1, . . . , bK1K2c}, a constant C > 0 and an infinite subset N ⊂ N such that for all
n ∈ N

∀`′ ∈ {1, . . . , `− 1},
∣∣〈B(tn)f, ζj`′ (n)

〉∣∣∥∥B(tn)f
∥∥ ≤ C

K1K2
and

∣∣〈B(tn)f, ζj`(n)

〉∣∣∥∥B(tn)f
∥∥ ≥ C.

Proof. – From equivalence of norms on the finite dimensional vector space H1(X;R),
there exists a constant C ′ > 0 such that

∀v ∈ H1(X;Z), max
j=1,...,d

|〈v, ζj〉| ≥ C ′‖v‖.

Now, since the length of each curve ζj is at least K−1
1 and that after time K2 all curves ζj

appear (see Lemma 8), we know that before bK1K2c return times in I any geodesic γT (p)

passes through all rectangles. In particular for at least one of the curves ζj1(n), . . .ζjK1K2
(n)

we have a uniform lower bound on the pairing with f .
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Now, consider the sequence of pieces in first position ζj1(n) as n ∈ N. If

lim sup
n→∞

∣∣〈B(tn)f, ζj1(n)

〉∣∣∥∥B(tn)f
∥∥ > 0

then we are done by choosing C to be the half of the lim sup above. If not, we consider the
sequence of pieces in second position ζj2(n) and repeat the dichotomy. We know from the first
part of the proof, that this process stops before the (K1K2)-th position. We get a position `,
a constant C, and a subsequence N ⊂ N that satisfy the right inequality of the statement
of the lemma. By starting the subsequence far enough (i.e., considering N ∩ {m,m+ 1, . . .}
for m big enough), by our construction since each of the lim inf for l′ = 1, . . . , k− 1 is 0, we
may ensure by our construction that the `− 1 inequalities on the left hold.

Let `, C and N ⊂ N that satisfy the conclusion of Lemma 10. Let n ∈ N and pn ∈ I(n)

be the endpoint of the prefix γ(1)
− . . . γ

(n−1)
− . Then

〈f, γTn(p)〉 =
〈
f, γT−n (p)

〉
+
〈
f, γTn−T−n (pn)

〉
=
〈
f, γ

(1)
− . . . γ

(n−1)
−

〉
+
〈
f, ζ

(n)
j1(n)

〉
+ · · ·+

〈
f, ζ

(n)
jl−1(n)

〉
+
〈
f, ζ

(n)
jl(n)

〉
=
〈
f, γ

(1)
− . . . γ

(n−1)
−

〉
+
〈
B(tn)f, ζj1(n)

〉
+ · · ·

+
〈
B(tn)f, ζjl−1(n)

〉
+
〈
B(tn)f, ζjl(n)

〉
.

Using triangular inequality, we get

|〈f, γTn
(p)〉| ≥

∣∣∣〈B(tn)f, ζjl(n)

〉∣∣∣− l−1∑
k=1

∣∣∣〈B(tn)f, ζjk(n)

〉∣∣∣− ∣∣∣〈f, γT−n (p)
〉∣∣∣

≥ C
∥∥∥B(tn)f

∥∥∥− (l − 1)C

K1K2

∥∥∥B(tn)f
∥∥∥− ∣∣∣〈f, γT−n (p)

〉∣∣∣
≥ C

K1K2

∥∥∥B(tn)f
∥∥∥− ∣∣∣〈f, γT−n (p)

〉∣∣∣ .
We use twice Lemma 8 to prove that Tn grows like etn . First of all, as Tn is a time for
which the orbit of p under the linear flow has reached at least twice the interval I(n) we have
Tn > K−1

1 etn . Moreover, by construction, Tn < K1(l+1)etn <= K1(K1K2 +1)etn . Hence

(6) lim
n→∞

log Tn
tn

= 1.

From our assumption (5), for n ∈ N big enough, the term |〈f, γT−n 〉| is exponentially smaller
than ‖B(tn)f‖. We hence get that

lim sup
T→∞

|〈f, γT (p)〉|
log T

≥ lim sup
n∈N

log
(
C/(K1K2)

∥∥B(tn)f
∥∥− ∣∣∣〈f, γT−n (p)

〉∣∣∣)
tn

= lim sup
n∈N

log
∥∥B(tn)f

∥∥
log tn

= νi,

where the last inequality holds, as we assume Y to be Osseledets generic. In other words,
under assumption (5) we exhibit a subsequence on which the lim sup is achieved.
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5.4. Theorem 6 for the whole locus G

We now prove our main theorem about the wind-tree model in the following form

L 11. – Let 0 < a < 1 and 0 < b < 1. Let f ∈ H1(X(a, b);Z2) be the cocycle that
defines the wind-tree model. For Y ∈ U , let Yθ = e−iθY . Then for all Y ∈ U , Lebesgue almost
every θ ∈ S1, every point p ∈ Yθ with infinite forward orbit for the linear flow

lim sup
T→∞

log |〈f, γT (p)〉|
log(T )

=
2

3
.

Proof. – By Chaika-Eskin result [5], generic recurrence and Oseledets hold for almost
every θ. We only need to analyze to which components of the Oseledets splitting f belongs.

From Lemma 3 and Lemma 4, we know that the cocycle f ∈ H1(X(a, b);Z2) decomposes
into two pieces f+− ∈ E+−(Q) and f−+ ∈ E−+(Q) where each ofE+−(R) andE−+(R) are
rank 2 subbundles stable under the Kontsevich-Zorich cocycle. From Theorem 7 and Corol-
lary 1, the Lyapunov exponents of the KZ cocycle for eiθY exist and are 2/3 and −2/3 in
both ofE+−(R) andE−+(R). The only thing to prove in Lemma 11 is that f+− (resp. f−+)
does not belong to the stable subspace of E+−(R) (resp. E−+(R)) associated to −2/3. If
f belongs to the stable subspace, then ‖B(t)f‖ goes to zero as t tends to infinity. But re-
call that the Kontsevich-Zorich cocycle takes values in the set of integer matrices of deter-
minant 1. In particular it preserves the setE+−(Z). On the other hand, f is a rational vector
and there exists N such that Nf ∈ E+−(Z). In particular, the quantity ‖B(t)f‖ is bounded
below by

1

N
min

v∈E+−(Z)\{0}
‖v‖

which is different from 0 as the integer vectors E+−(Z) form a lattice in E+−(R).
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