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RELAXATION OF THE INCOMPRESSIBLE
POROUS MEDIA EQUATION

 L SZÉKELYHIDI J.

A. – It was shown recently by Córdoba, Faraco and Gancedo in [1] that the 2D porous
media equation admits weak solutions with compact support in time. The proof, based on the convex
integration framework developed for the incompressible Euler equations in [4], uses ideas from the
theory of laminates, in particular T4 configurations. In this note we calculate the explicit relaxation
of IPM, thus avoiding T4 configurations. We then use this to construct weak solutions to the unstable
interface problem (the Muskat problem), as a byproduct shedding new light on the gradient flow
approach introduced by Otto in [12].

R. – Il a récemment été démontré par Córdoba, Faraco et Gancedo dans [1], que l’équation
des milieux poreux en dimension 2 admet des solutions faibles avec support compact dans le temps.
La démonstration, qui fait appel à la méthode par intégration convexe telle qu’elle a été développée
dans [4], dans le contexte des équations d’Euler incompressibles, utilise certaines idées provenant de la
théorie des « laminates », et en particulier les configurations dites T4. Dans cette note, nous calculons
explicitement la relaxation du « IPM », évitant ainsi les configurations T4. Ceci nous permet ensuite
de construire des solutions faibles au problème des interfaces instables (problème de Muskat) et a pour
autre conséquence de clarifier l’approche par flot de gradient, introduite par Otto dans [12].

1. Introduction

We consider the incompressible porous media equation (IPM) in a 2-dimensional
bounded domain Ω ⊂ R2. The flow is described in Eulerian coordinates by a velocity
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492 L. SZÉKELYHIDI JR.

field v(x, t) and a pressure p(x, t) obeying the conservation of mass and the conservation of
momentum in the form of Darcy’s law:

∂tρ+ div (ρv) = 0,(IPM1)

div v = 0,(IPM2)

v +∇p = −(0, ρ).(IPM3)

Here we chose x1 as the horizontal and x2 as the vertical direction, with the gravitational
constant normalized to be 1. Equation (IPM2) amounts to the flow being incompressible,
and this is coupled with the assumption that there is no flux across the boundary ∂Ω, i.e.,
v · ν = 0 on ∂Ω.

The system (IPM1)-(IPM3) can be used to model the flow of two immiscible fluids of dif-
ferent densities in a porous medium, or, equivalently, in a Hele-Shaw cell [15]. If initially the
two fluids form a horizontal interface, with the heavier fluid on top, it is well known that
the initial value problem, known as the Muskat problem, is ill-posed in classical function
spaces [19, 17, 2]. Although some explicit solutions are known [7], there is no general exis-
tence theory, neither for the evolution problem for the interface, nor for weak solutions of
IPM.

After a normalization we may assume that the density ρ(x, t), indicating whether the pores
at time t near locationx ∈ Ω are filled with the lighter or the heavier fluid, takes the values±1.
Hence, for the Muskat problem the Equations (IPM1)-(IPM3) should be complemented by

(IPM4) |ρ(x, t)| = 1 for a.e.(x, t) ∈ Ω× (0, T ).

We remark in passing, that formally (IPM4) follows from (IPM1) if |ρ(x, 0)| = 1 a.e., since
the density ρ is simply transported by the flow. However, for weak solutions this transport
property need not hold, as shown for instance by Theorem 1.2 below.

As usual, a weak solution to the system (IPM1)-(IPM3) with initial data ρ0 ∈ L∞(Ω) is
defined as a pair (ρ, v) with

ρ ∈ L∞(Ω× (0, T )), v ∈ L∞(0, T ;L2(Ω)),

such that for all φ ∈ C∞c (R2 × R) we have∫ T

0

∫
Ω

ρ(∂tφ+ v · ∇φ) dxdt+

∫
Ω

ρ0(x)φ(x, 0) dx = 0,(1) ∫ T

0

∫
Ω

v · ∇φdxdt = 0,(2)

and for all ψ ∈ C∞c (Ω)

(3)
∫

Ω

(v + (0, ρ)) · ∇⊥ψ dx = 0.

We remark explicitly that (2) includes the no-flux boundary condition for v whereas in (3)
the pressure p has been eliminated (observe also that there is no boundary condition on p).

Our main result can be stated as follows
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RELAXATION OF THE INCOMPRESSIBLE POROUS MEDIA EQUATION 493

T 1.1. – Let Ω ⊂ R2 be the unit square, and

ρ0(x) =

{
+1 x2 > 0,

−1 x2 < 0.

For any T > 0 there exist infinitely many weak solutions ρ ∈ L∞(Ω × (0, T )) of (IPM1)-
(IPM4) with initial data ρ0.

Recently, D. Córdoba, D. Faraco and F. Gancedo showed in [1], that on the 2-dimensional
torus T2 the system (IPM1)-(IPM3) admits nontrivial weak solutions with compact support
in time. More precisely

T 1.2 (Theorem 5.2, [1]). – There exist infinitely many weak solutions to (IPM1)-
(IPM3) with (ρ, v) ∈ L∞(T2 × R) such that

|ρ(x, t)| =

{
1 a.e. (x, t) ∈ T2 × (0, T ),

0 for t < 0 or t > T .

There is a subtle but quite important difference between the solutions in Theorem 1.1 and
Theorem 1.2. In the latter the initial data (in the sense of Equation (1)) is ρ0 = 0, so that
although (IPM4) holds for t > 0, it is not satisfied by ρ0. An interpretation of this is that
the fluid is in an infinitely mixed state at time t = 0 (cf. discussion in Section 4). In contrast,
for Theorem 1.1 the fluid is not mixed at the initial time. As a consequence the solutions
are forced to have finite mixing speed, an effect that cannot be seen in the solutions from
Theorem 1.2. More precisely, the solutions in Theorem 1.1 all satisfy

(4) ρ(x, t) =

{
+1 x2 > 2t,

−1 x2 < −2t.

Moreover, the solutions in Theorem 1.1 are in good agreement and show interesting con-
nections to predictions concerning the coarse-grained density and the growth of the mixing
zone made in [12, 13]. In [12] F. Otto introduced a relaxation approach for (IPM1)-(IPM4), in
particular for the Muskat problem, based on a gradient flow formulation of IPM and using
ideas from mass transport. It was shown that under certain assumptions there exists a unique
“relaxed” solution ρ, representing a kind of coarse-grained density. Moreover, Otto showed
in [13, Remark 2.1] that, in general, the mixing zone (where the coarse-grained density ρ is
strictly between±1) grows linearly in time as in (4), with the possible exception of a small set
of volume fraction O(t−1/2).

The proof of both Theorem 1.2 in [1] and Theorem 1.1 is based on the framework devel-
oped in [4] for the incompressible Euler equations, although there are several places where
the authors in [1] had to modify the arguments. In technical terms, one of the crucial points
in the general scheme of convex integration is to show that the relaxation with respect to the
wave cone of a suitably defined constitutive set, the Λ-convex hull, contains the zero state in
its interior. In [1] it was observed, that due to a lack of symmetry induced by the direction
of gravity, this condition seems to fail for IPM; instead, a systematic method for obtaining a
suitably modified constitutive set was introduced, based on so-called degenerate T4 config-
urations. The advantage of the method used in [1] is that it is rather robust, and can be used
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494 L. SZÉKELYHIDI JR.

in situations where an explicit calculation of KΛ is out of reach due to the high complexity
(see also [9, 11]). Indeed, the same technique has been recently applied successfully to a large
class of active scalar equations by R. Shvydkoy [16].

On the other hand, there are certain advantages to obtaining an explicit formula for the
Λ-convex hullKΛ rather than just showing that a fixed state is in the interior. The explicit for-
mula allows one to identify “compatible boundary and initial conditions”, for which the con-
struction works. For the incompressible Euler equations, such initial conditions were called
“wild initial data” in [5]. For IPM the explicit formula for the Λ-convex hull is necessary for
studying the Muskat problem and leads to a concept of subsolution, analogously to Euler
subsolutions in [4, 5]. In Section 4 we show that the relaxed solution ρ from [12] is very closely
related to the concept of subsolution and in particular we construct weak solutions ρk such
that ρk

∗
⇀ ρ. The interpretation is that ρ is the coarse-grained density obtained from ρk. It is

interesting to note in this connection, that, although weak solutions are clearly not unique,
there is a way to identify a selection criterion among subsolutions which leads to uniqueness.

The paper is organized as follows. In Section 2 we recall from [1] how to reformulate
(IPM1)-(IPM3) as a differential inclusion, and then we calculate explicitly the relaxation,
more precisely the Λ-convex hull of the constitutive set. These computations form the main
contribution of this paper. If one is only interested in weak solutions as defined in this
introduction (where v can be unbounded), the “simpler” computations in Propositions 2.3
and 3.1 suffice. However, for completeness we include the computations that are required for
bounded velocity v in Propositions 2.4 and 3.3.

Then, in Section 3 we show how the explicit form of the Λ-convex hull can be used in
conjunction with the Baire category method to obtain weak solutions. For the convenience
of the reader we include the details of the Baire category method in the appendix.

Finally, in Section 4 we use the framework to construct weak solutions to the unstable
interface problem. In this section, Theorem 1.1 is restated and proved as Theorem 4.2.
Moreover, we show in Proposition 4.3 that if the coarse-grained density is independent of
the horizontal direction, the linear growth estimate of [13] is sharp, in the sense that there
is no exceptional set. As a consequence, we can interpret the uniqueness result of Otto
as selecting the subsolution with “maximal mixing”. In this light it is of interest to note
that the analogous criterion for the incompressible Euler equations would be “maximally
dissipating” [3, 6, 5].

2. The relaxation of IPM

We start by setting

(5) u := 2v + (0, ρ).

Then (IPM1)-(IPM3) can be rewritten as

∂tρ+ divm = 0,

div (u− (0, ρ)) = 0,

curl (u+ (0, ρ)) = 0,

(6)
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coupled with

m = 1
2 (ρu− (0, 1)),

|ρ| = 1
(7)

for almost every (x, t). As in [1], we interpret (6)-(7) as a differential inclusion: the state
variable

(ρ, u,m) : Ω× (0, T )→ R× R2 × R2

is subject to a linear system of conservation laws (6), and should take values in a constitutive
set determined by (7).

The reason for introducing u is purely cosmetic, it makes (6) symmetric. It also helps in
simplifying some of the calculations below. Observe that (6) can be easily written as a genuine
differential inclusion. Namely, we see that(

ρ− u2 u1

u1 ρ+ u2

)
is curl-free, hence (locally) equal to ∇2φ for some function φ. Then ρ = 1

2∆φ and
div ( 1

2∂t∇φ + m) = 0, hence m = − 1
2∂t∇φ + ∇⊥ψ for some ψ. In particular we deduce

that for any (x, t)-periodic solution

(ρ, u,m) : T3 → R× R2 × R2

of (6), there exist periodic functions

φ, ψ : T3 → R

such that

ρ = 1
2∆φ,

u = 1
2

(
2∂12φ, ∂22φ− ∂11φ

)
,

m = − 1
2∂t∇φ+∇⊥ψ.

(8)

The periodic solutions of (6) are characterized by the wave cone Λ. This is easy to calculate,
since it is clearly independent of m and the other two equations have a div-curl structure.
Hence

Λ = {(ρ, u,m) : |ρ|2 = |u|2}.
We conclude the existence of localized plane-waves, an observation which has already been
made in [1]:

L 2.1. – Let z̄ = (ρ̄, ū, m̄) ∈ Λ. There exists a sequence

wj = (ρj , uj ,mj) ∈ C∞c
(
B1(0)× (−1, 1); R× R2 × R2

)
solving (6) such that

1. dist (wj , [−z̄, z̄])→ 0 uniformly,
2. wj ⇀ 0 weakly in L2,
3.
∫∫
|wj |2 dxdt ≥ C|z̄|2.
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496 L. SZÉKELYHIDI JR.

Next, we calculate the Λ-convex hull of the set in state-space defined by (7). Recall (e.g.
from [9], see also [14, 8]) that for a closed set K the Λ-convex hull is defined to be the largest
closed set KΛ which cannot be separated from K: a state z does not belong to KΛ if there
exists a function f which is Λ-convex in the sense that

s 7→ f(w0 + sw) is convex for all w ∈ Λ

such that f ≤ 0 on K and f(z) > 0. It follows immediately from this definition that

z1, z2 ∈ K with z1 − z2 ∈ Λ =⇒ [z1, z2] ⊂ KΛ.

For further properties of Λ-convex hulls and functions, see [8].

Now, let

K = {(ρ, u,m) : |ρ| = 1, m = 1
2ρu}.

Observe that (7) is equivalent to

(9)
(
ρ, u,m+ 1

2 (0, 1)
)
∈ K a.e.

We note also that in the absence of spatial boundaries, any solution of (6) with (ρ, u,m) ∈ K
for a.e.(x, t) is also a solution of (6)-(7). In particular, for solutions on the torus we can ignore
the additional constant vector 1

2 (0, 1).

L 2.2. – The function

(10) f(ρ, u,m) :=
∣∣m− 1

2
ρu
∣∣+

1

4
(ρ2 + |u|2)

is convex.

Proof. – A short calculation and the triangle inequality shows that, for any (ρ, u,m) and
(ρ̄, ū, m̄)

f(ρ+ ρ̄t, u+ tū,m+ tm̄) ≥ f(ρ, u,m) + ct+
t2

4
(ρ̄2 + |ū|2 − 2|ρ̄ū|),

where

c =
1

2
(ρρ̄+ u · ū)− |m̄− 1

2 (ρ̄u+ ρū)|.

The convexity of

t 7→ f(ρ+ ρ̄t, u+ tū,m+ tm̄),

and hence of f : R× R2 × R2 → R follows.

P 2.3. – We have

KΛ =

{
(ρ, u,m) :

∣∣ρ∣∣ ≤ 1,
∣∣m− 1

2ρu
∣∣ ≤ 1

2 (1− ρ2)

}
.
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Proof. – Let |ρ0| < 1 and u0 ∈ R2. Fix e ∈ R2 with |e| = 1 and define

u1 = u0 + (1− ρ0)e ρ1 = 1(11)

u2 = u0 − (1 + ρ0)e ρ2 = −1.(12)

Then it is easy to see that for any m1,m2

(ρ1 − ρ2, u1 − u2,m1 −m2) ∈ Λ,

hence in particular by setting mi = 1
2ρiui we obtain that, with

m0 : = 1
2 (1 + ρ0)m1 + 1

2 (1− ρ0)m2

= 1
2ρ0u0 + 1

2 (1− ρ2
0)e,

the state (ρ0, u0,m0) is contained in KΛ. Thus any (ρ, u,m) with

|ρ| ≤ 1,
∣∣m− 1

2ρu
∣∣ = 1

2 (1− ρ2)

is contained in KΛ. Moreover, since for any m̄ ∈ R2 we have (0, 0, m̄) ∈ Λ, we deduce that
in fact any (ρ, u,m) with

|ρ| ≤ 1,
∣∣m− 1

2ρu
∣∣ ≤ 1

2 (1− ρ2)

is contained in KΛ.

To see that this set is in fact the whole hull, we note that

K ⊂ {z : g(z) ≤ 1/2},

where

(13) g(ρ, u,m) := f(ρ, u,m) +
1

4
(ρ2 − |u|2)

and f is the convex function in (10). On the other hand observe that ρ2−|u|2 is Λ-convex (in
fact Λ-affine). Therefore g is Λ-convex, and therefore necessarily KΛ ⊂ {z : g(z) ≤ 1/2}.
This completes the proof.

Remark 1. – Recalling (9), we see that if K denotes the constitutive set given by (7), then
(0, 0, 0) ∈ ∂ KΛ. This was the observation made in [1, Remark 4.1].

Although working with the set K would suffice to construct weak solutions to (IPM1)-
(IPM4), there is a slight drawback in that K is not bounded. More specifically, the solutions
constructed will have v ∈ L2 but not in L∞. For the details see the next section. To remedy
this problem we next consider a compact subset of K. Here the calculation of the Λ-convex
hull requires a bit more work.

Fix γ > 1 and let

(14) Kγ = {(ρ, u,m) : |ρ| = 1, m = 1
2ρu, |u| ≤ γ}.
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498 L. SZÉKELYHIDI JR.

P 2.4. – For the set Kγ above with γ > 1, (Kγ)Λ is given by the set of
inequalities

|ρ| ≤ 1,(15)

|u|2 ≤ γ2 − (1− ρ2),(16)

|m− 1
2ρu| ≤

1
2 (1− ρ2),(17)

|m− 1
2u| ≤

γ
2 (1− ρ),(18)

|m+ 1
2u| ≤

γ
2 (1 + ρ).(19)

Proof. – Step 1. — Observe that (15), (18) and (19) define convex sets whereas (16) and
(17) define sublevel-sets of Λ-convex functions. Since states in Kγ satisfy all 5 inequalities, it
follows that (Kγ)Λ is certainly contained in the set defined by (15)-(19).

Conversely, let Uγ be the set of all states (ρ, u,m) with all inequalities (15)-(19) strict. We
need to show that Uγ ⊂ (Kγ)Λ. To this end it suffices to show that

for all z ∈ ∂Uγ \Kγ , there exists z̄ ∈ Λ \ {0} such that

z ± z̄ ∈ Uγ .
(20)

Indeed, from this it follows that extr Uγ ⊂ Kγ , so that Uγ ⊂ (Kγ)Λ (cf. the Krein-Milman
type theorem in the context of Λ-convexity [8, Lemma 4.16]). Thus, let z = (ρ, u,m) ∈ ∂Uγ \Kγ .

Step 2. — If (17) is an equality, i.e.,

m =
1

2
ρu+

1

2
(1− ρ2)e

for some e ∈ S1, then z lies on a Λ-segment connecting z1, z2 ∈ Kγ . More precisely, let

(21) z̄ :=
(
1, e, 1

2 (u− ρe)
)
.

Then z̄ ∈ Λ and
z1 := z + (1− ρ)z̄, z2 := z − (1 + ρ)z̄

satisfy z1, z2 ∈ Kγ and z = 1
2 (1 + ρ)z1 + 1

2 (1− ρ)z2, just like in Proposition 2.3.
Step 3. — Assume now that (17) is a strict inequality, i.e.,

(22) |m− 1
2ρu|

2 < 1
2 (1− ρ2).

By elementary computations we verify the following identity:

(23)
[

(1− ρ2)2

4
− |m− 1

2
ρu|2

]
+

(1− ρ2)

4

[
γ2 − |u|2 − (1− ρ2)

]
=

=
1 + ρ

2

[
γ2

4
(1− ρ)2 − |m− 1

2
u|2
]

+
1− ρ

2

[
γ2

4
(1 + ρ)2 − |m+

1

2
u|2
]
.

Observe that the terms in square brackets are all non-negative in Uγ , and since we assumed
(22), the left hand side is strictly positive. Therefore, by symmetry we may assume without
loss of generality that also (19) is a strict inequality, i.e.,

(24) |m+ 1
2u| <

γ
2 (1 + ρ).

Next, we claim that there exists ē ∈ S1 such that, with

ρt = ρ+ t, ut = u+ tē
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the inequality (16) will remain valid for |t| < 1
4 (γ2 − 1). Indeed,

|ut|2 − ρ2
t = |u|2 − ρ2 + 2t(u · ē− ρ).

Therefore, if |u| < |ρ| this is true for any ē ∈ S1, whereas if |u| ≥ |ρ|, then choose ē ∈ S1 so
that u · ē = ρ.

With this choice of ē let

(25) z̄ =
(

1, ē, 1
2 ē−

1
1−ρ (m− 1

2u)
)
∈ Λ,

and consider zt = (ρt, ut,mt) := z + tz̄. Then

|mt − 1
2ut| =

1−ρt

1−ρ |m−
1
2u| ≤

γ
2 (1− ρt),

so that (18) is satisfied by zt. Since we assumed (22) and (24), the inequalities (17) and (19)
will continue to hold for zt provided |t| is small. Thus, with this choice of z̄ ∈ Λ we can ensure
that

z + tz̄ ∈ Uγ
for all t with |t| sufficiently small. This implies (20) and thus the proof is completed.

Remark 2. – The condition γ > 1 is sharp. Indeed, if γ < 1, then it is not difficult to see
(using standard technology on gradient Young measures) that approximate solutions to the
corresponding inclusion are compact. In fact, if Ω = T2, by just looking at (IPM2)-(IPM3) we
deduce easily that any weak solution (ρ, u,m) of (6)-(7) with ‖u‖L∞ < 1 is constant (see for
instance [10, 18]).

Remark 3. – The computations in Proposition 2.3 and 2.4 do not depend on the vectors u,m
in state-space to be 2-dimensional. Therefore, the same formulae continue to hold for the
relaxation of the IPM equation in n space dimensions with any n ≥ 2.

3. Construction of weak solutions

There are several ways of constructing weak solutions to differential inclusions, depending
on the particular problems at hand. For the system (6)-(7) the relaxation is sufficiently large
so that a relatively simple iteration procedure, involving single localized plane-waves, suffices.
As always, the crucial ingredient is to show that there exists an open set U where states are
stable only near K (cf. [8, Definition 3.16]). This is expressed by conditions (H1)-(H2) in the
appendix. The methodology of how to pass from this property to weak solutions via the Baire
category theorem is well known [8, 1, 4, 5], but for the convenience of the reader we present
the details in Theorem 5.1 in the Appendix.

Recall the definition of K and Kγ from Section 2, and let

(26) U = int KΛ, Uγ = int (Kγ)Λ,

so that

(27) U =

{
(ρ, u,m) :

∣∣ρ∣∣ < 1,
∣∣m− 1

2ρu
∣∣ < 1

2 (1− ρ2)

}
,

and Uγ is analogously given by the inequalities (15)-(19) all being strict.
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P 3.1. – There exists a constant c > 0 with the following property. For any
(ρ, u,m) ∈ U there exists (ρ̄, ū, m̄) ∈ Λ with |ρ̄|2 + |m̄|2 = 1 such that

(ρ, u,m) + t(ρ̄, ū, m̄) ∈ U for |t| < c(1− ρ2).

Proof. – From the explicit Formulas (11)-(12) it follows that for any (ρ, u,m) with |ρ| < 1

and |m− 1
2ρu| =

1
2 (1− ρ2) there exists (ρ̄, ū, m̄) ∈ Λ with ρ̄ = 1 such that

(ρ, u,m) + t(ρ̄, ū, m̄) ∈ KΛ for |t| < c0(1− ρ2)

for some c0 > 0. From this we deduce by continuity the claim (with 0 < c < c0) in the case
where

1
4 (1− ρ2) < |m− 1

2ρu| <
1
2 (1− ρ2).

In the remaining case, where |m− 1
2ρu| <

1
4 (1− ρ2), we can take (ρ̄, ū, m̄) = (0, 0, m̄) with

m̄ parallel to m− 1
2ρu.

As a first application we obtain the following variant of [1, Theorem 5.2]:

T 3.2. – There exist infinitely many periodic weak solutions to (IPM1)-(IPM3)
with

ρ ∈ L∞(T2 × R), v ∈ L∞(R;L2(T2)),

such that

|ρ(x, t)| =

{
1 a.e. (x, t) ∈ T2 × (0, T ),

0 for t < 0 or t > T .

Proof. – We construct solutions (ρ, u,m) of (6) such that

(ρ, u,m) ∈ K a.e. (x, t).

For any such solution |ρ| = 1 and m = 1
2ρu almost everywhere by definition of K and,

therefore, on the torus T2 satisfies

∂tρ+ 1
2div (ρu− (0, 1)).

Therefore, recalling that v = 1
2 (u−(0, ρ)) we deduce that (ρ, v) is a weak solution of (IPM1)-

(IPM3).
Next, define the space of subsolutions as follows. Let

D = T2 × R,

U = T2 × (0, T ),

and

X0 =
{
z = (ρ, u,m) ∈ C∞c (U ) : (6) holds and z(x, t) ∈ U ∀ (x, t) ∈ U

}
.

Note that (0, 0, 0) ∈ U , hence X0 is nonempty. Any (ρ, u,m) ∈ X0 satisfies |ρ| ≤ 1.
Therefore, whenever (ρ, u,m) ∈ X0, we have

‖ρ‖L∞t L2
x(D) ≤ 1,

hence, using standard elliptic estimates and (6),

‖u‖L∞t L2
x(D) ≤ C
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for some constant C. Together with the definition of U this implies that X0 is a bounded
subset of L2

x,t(D) and in particular X0 satisfies condition (H3) in the appendix. Moreover,
Lemma 2.1 and Proposition 3.1 imply that (H1)-(H2) in the appendix are satisfied, and
consequently Theorem 3.2 follows from applying Theorem 5.1 to X0.

P 3.3. – Let γ > 1. If Kγ and Uγ are as defined in (14) and (26), then for any
z ∈ Uγ with dist (z,Kγ) ≥ α > 0 there exists z̄ ∈ Λ with |z̄| = 1 such that

z + tz̄ ∈ Uγ whenever |t| < β,

where β > 0 depends only on α and γ.

Proof. – Since ∂Uγ is compact and locally the graph of a Lipschitz function, it suffices to
prove the following quantitative version of (20):

for all z0 ∈ ∂Uγ \K there exists ε > 0, r > 0 so that

for all z ∈ Bε(z0) ∩ ∂Uγ there exists z̄ ∈ Λ with

|z̄| = r and z ± z̄ ∈ Uγ .
(28)

In fact, since the wave-cone Λ only restricts ρ, u but notm, in the statement (28) it suffices to
restrict to z ∈ Bε(z0) ∩ ∂Uγ with at least one of the inequalities (17)-(19) being an equality.

Let z0 = (ρ0, u0,m0) ∈ ∂Uγ \ Kγ . If |m0 − 1
2ρ0u0| < 1

2 (1 − ρ2
0), then using (23) as in

Step 3 of the proof of Proposition 2.4 we may assume that |m0 + 1
2u0| < γ

2 (1+ρ0). But then
the Λ-direction given in (25) works uniformly for a whole neighborhood of (ρ0, u0,m0).

Conversely, assume that |m0 − 1
2ρ0u0| = 1

2 (1− ρ2
0), so that

m0 = 1
2ρ0u0 + 1

2 (1− ρ2
0)e0 with |e0| = 1.

We know from Step 2 of the proof of Proposition 2.4 that there is a Λ-segment in ∂Uγ of
length min(1− ρ0, 1 + ρ0) centered at (ρ0, u0,m0), but now we need to show that the length
of the segment can be chosen uniformly large for a whole neighborhood. In other words we
need to show that this Λ-segment is stable.

|u|2 − ρ2 ≥ γ2 − 1− δ |u|2 − ρ2 < γ2 − 1− δ

1
2ρu

1
2ρu

m

m

m′

m′

C2

C1
C1

C2

α

F 1. The choice of m′
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To this end let z = (ρ, u,m) ∈ ∂Uγ nearby and consider the three circles

C1 := {m ∈ R2 : |m− 1
2ρu| =

1
2 (1− ρ2)},

C2 := {m ∈ R2 : |m− 1
2u| =

γ
2 (1− ρ)},

C3 := {m ∈ R2 : |m+ 1
2u| =

γ
2 (1 + ρ)}.

If m lies on C1, then we are done as in Step 2 of the proof of Proposition 2.4 by choosing
z̄ ∈ Λ as in (21). Otherwise, we may assume without loss of generality that m lies on C2. In
this case the Λ-segment through z necessarily has the form

z̄ =
(

1, ē, 1
2 ē−

1
1−ρ (m− 1

2u)
)

for some ē ∈ S1 still to be chosen, as in Step 3 of the proof of Proposition 2.4. Let
zt = (ρt, ut,mt) := z + tz̄. We need to choose ē ∈ S1 so that the inequalities (16)-(19)
remain valid for an interval of t whose size is independent of |z − z0|. Observe, however,
that (18) will remain an equality by our choice of z̄, therefore, in light of the identity (23),
(19) will remain valid as long as (16) and (17) are valid.

In order to choose ē we distinguish two cases. Let

δ := 1
2 (1− ρ2)(γ − 1) > 0.

If |u|2−ρ2 > γ2−1−δ, letm′ ∈ C1∩ C2 be the point of intersection of the two circles closer
tom (sincem is assumed to be close tom0, this determinesm′ uniquely). See Figure 1. Then
m′ can be written as

(29) m′ = 1
2ρu+ 1

2 (1− ρ2)ē,

and this gives our choice of ē ∈ S1. To check that with this choice of ē the inequalities (16)
and (17) remain valid for zt = z+ tz̄, note that (16) remains valid for all t ∈ (−(1+ρ), 1−ρ)

by the same argument as in Step 2 of Proposition 2.4. Concerning (17), a short calculation
shows that

mt − 1
2ρtut = 1

2 ē(1− ρ
2
t ) +

1− ρt
1− ρ

m̃,

where m̃ := m−m′. In particular |mt − 1
2ρtut| =

1
2 (1− ρ2

t ) if either ρt = 1 or ρt satisfies

(30) (1 + ρt)(1− ρ)ē · m̃ = −|m̃|2.

But now we claim that, with our choice of δ, the angle between C1 and C2 at the point of
intersection m′ is bounded away from zero, depending only on γ. Indeed, it can be easily
verified that this angle α satisfies

cosα ≤ 1
γ (1 + δ

2(1+ρ) ) ≤ 1
2 ( 1
γ + 1).

This implies

(31) − ē · m̃ ≥ ε|m̃|,

where ε > 0 depends only on γ > 1. Using (31) and (30) we deduce that whenever |ρ− ρ0|,
|u−u0|, |e−e0|, |m̃| is sufficiently small, zt ∈ ∂Uγ for all twith |t| < 1/2 min(1−ρ0, 1+ρ0).

In the remaining case, when |u|2 − ρ2 ≤ γ2 − 1 − δ, the inequality (16) will obviously
remain valid for |t| < 1

2(γ+1) . Therefore, by choosing m′ to be the radial projection of m
onto C1 (see Figure 1), we choose ē again according to (29). With this choice ofm′ and ē the
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inequality (31) is valid with ε = 1, therefore we can repeat the same argument as before. This
concludes the proof.

Using the same argument as in the proof of Theorem 3.2 but replacing K,U by Kγ , Uγ
with γ > 1, we obtain another proof of Theorem 1.2 (Theorem 5.2 of [1]).

4. Evolution of microstructure

In this section we show how to construct solutions to (IPM1)-(IPM4) in the spatial
domain

Ω := (−1, 1)× (−1, 1),

which exhibit the type of mixing behavior that is expected ([2, 12, 13]), when one starts with
a horizontal interface with the heavier fluid on top. Thus, let

(32) ρ0(x) =

{
+1 x2 > 0

−1 x2 < 0

and define subsolutions as follows.
Let

D = Ω× (0, T ).

We consider triples (ρ, v,m) ∈ L∞(D) such that for all φ ∈ C∞c (Ω× [0, T ))

(33)
∫ T

0

∫
Ω

∂tφρ+∇φ ·mdxdt+

∫
Ω

φ(x, 0)ρ0(x) dx = 0,

∫
Ω

v · ∇ψ dx = 0 ∀ψ ∈ C∞(Ω),(34) ∫
Ω

(v + (0, ρ)) · ∇⊥ψ dx = 0 ∀ψ ∈ C∞c (Ω),(35)

and

(36) |m− ρv + 1
2 (0, 1− ρ2)| ≤ 1

2 (1− ρ2) in D .

We assume that there exists an open subset U ⊂ D such that

|ρ| = 1 a.e. D \U ,(37)

(ρ, v,m) is continuous in U ,(38)

|m− ρv + 1
2 (0, 1− ρ2)| < 1

2 (1− ρ2) in U .(39)

D 4.1. – Let us call any (ρ, v,m) ∈ L∞(D) satisfying (33)-(39) an admissible
subsolution and the corresponding subset U ⊂ D the mixing zone.

Next, given an admissible subsolution (ρ, v,m), let

X0 =
{

(ρ, u,m) ∈ L∞(D) : (ρ, v,m) = (ρ, v,m) a.e. D \U

and satisfies (38)-(39) in U
}
.

As in the proof of Theorem 3.2, the space X0 is bounded in L2(D), hence weak L2 conver-
gence is metrizable on X0. Let X be the closure of X0 with respect to the induced metric.
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T 4.2. – There exists a residual set in X consisting of weak solutions (ρ, v) to
(IPM1)-(IPM4) in Ω× (0, T ) with initial condition ρ0.

Proof. – Recall from (5) that v = 1
2 (u− (0, ρ)), so that (39) is equivalent to(

ρ, u,m+ (0, 1
2 )
)
∈ U for all (x, t) ∈ U ,

where U is defined in (26). Therefore X0 satisfies condition (H3) in the appendix. Moreover,
(H1) and (H2) are satisfied by Lemma 2.1 and Proposition 3.1. Consequently Theorem 4.2
follows from Theorem 5.1.

Remark 4. – If we replace (36) and (39) by the full set of inequalities (15)-(19) in Proposi-
tion 2.4 for some γ > 1, and replace U by Uγ in the proof above, then Theorem 4.2 remains true
with the added information that the weak solutions satisfy v ∈ L∞(D).

Remark 5. – As a consequence of the residuality in X we obtain, given an admissible
subsolution (ρ, v,m), the existence of a sequence of weak solutions (ρk, vk) of (IPM1)-(IPM4)
such that

ρk = ρ a.e. in D \U and ρk
∗
⇀ ρ in L∞(U )

as k →∞. In other words ρ represents a kind of coarse-grained density. This justifies calling U

the mixing zone.

To conclude this section we exhibit examples of (nontrivial) admissible subsolutions. In
particular we set

v ≡ 0, m = (0,m2),

and assume that (ρ, v,m) are just functions of t and the “height” x2, i.e.,

ρ = ρ(x2, t), m2 = m2(x2, t).

Then (34) and (35) are automatically satisfied, whereas (33) can be written as

∂tρ+ ∂2m2 = 0 in (−1, 1)× (0, T ),(40)

m2 = 0 for x2 = ±1,(41)

ρ =

{
−1 x2 < 0

+1 x2 > 0
for t = 0,(42)

interpreted in the weak formulation. Furthermore, (36) becomes

(43) − (1− ρ2) ≤ m2 ≤ 0 in (−1, 1)× (0, T ).

Note also in connection with Remark 4 that in this case (16), (18) and (19) follow automati-
cally from (43) provided γ > 3.

An obvious way to construct admissible subsolutions is then to prescribe

m2 = −α(1− ρ2)
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for α ∈ (0, 1). The resulting equation from (40) is essentially the inviscid Burgers’ equation,
with the (unique) entropy solution given by

(44) ρ(x2, t) =


−1 x2 < −2αt,
x2

2αt |x2| < 2αt,

+1 x2 > 2αt

for times t < 1/(2α). The corresponding mixing zone is

U = {(x, t) ∈ D : |x2| < 2αt}.

Since at t = 1/(2α) we have |ρ| < 1 for all x2 ∈ (−1, 1), the functions ρ,m can easily be
extended continuously to later times so that (40)-(43) continue to hold.

It is interesting to note that in the borderline case α = 1 the subsolution ρ is precisely
the unique solution of the relaxation approach to the problem (IPM1)-(IPM4) introduced by
F. Otto in [12]. Thus, although weak solutions are clearly not unique, there seems to be a way
to recover uniqueness at least for subsolutions. We plan to explore further this connection
elsewhere. Here we contend ourselves with showing that among all subsolutions, for which
ρ is a function of t and the vertical direction x2 only, the case α = 1 in (44) corresponds to
the one with “maximal mixing”. This gives a new interpretation to the results in [12].

P 4.3. – Let (ρ, v,m) be an admissible subsolution to the unstable initial
condition (32) such that ρ = ρ(x2, t). Then the mixing zone U is contained in {(x, t) : |x2| < 2t}.

Proof. – We start by observing that since ∂1ρ = 0, (34)-(35) imply that v = 0. Next, let

χ(s) =

{
0 s < 0,

s s > 0,

and consider the test function φ(x, t) = χ(x2−2t) in (33) (it is easy to see by approximation
that this is a valid test function). We obtain∫∫

{(x,t)∈D: x2>2t}
m2 − 2ρ dxdt+

∫
{x∈Ω: x2>0}

x2ρ0(x)dx = 0.

Therefore ∫∫
{(x,t)∈D: x2>2t}

(m2 − 2ρ+ 2) dxdt = 0.

On the other hand (36) implies

(45) m2 ≥ −(1− ρ2).

We deduce that

ρ = 1 a.e. (x, t) ∈ {x2 > 2t}.

Analogously we also find

ρ = −1 a.e. (x, t) ∈ {x2 < −2t}.
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5. Appendix

We consider general systems in a domain D ⊂ Rd of the form
d∑
i=1

Ai∂iz = 0 in D(46)

z(y) ∈ K a.e. y ∈ D(47)

where
z : D ⊂ Rd → RN

is the unknown state variable, Ai are constant m×N matrices, and K ⊂ RN is a closed set.
We make the following assumptions.

(H1) The Wave Cone: There exist a closed cone Λ ⊂ RN and a constant C such that for
all z̄ ∈ Λ there exists a sequence wj ∈ C∞c (B1(0); RN ) solving (46) such that

1. dist (wj , [−z̄, z̄])→ 0 uniformly,
2. wj ⇀ 0 weakly in L2,
3.
∫
|wj |2dy > C|z̄|2.

(H2) The Λ-convex hull: There exists an open set U ⊂ RN with U ∩K = ∅, and such that
for all z ∈ U with dist (z,K) ≥ α > 0 there exists z̄ ∈ Λ ∩ SN−1 such that

(48) z + tz̄ ∈ U for all |t| < β,

where β = β(α) > 0.

(H3) Subsolutions: X0 is a nonempty bounded subset of L2(D) consisting of functions
which are “perturbable” in an open subdomain U ⊂ D . This means that any z ∈ X0 is
continuous on U with

(49) z(y) ∈ U for y ∈ U ,

and moreover, if z ∈ X0 and w ∈ Cc(U ) such that w solves (46) and (z + w)(y) ∈ U for all
y ∈ U , then z + w ∈ X0.

Finally, let X be the closure of X0 with respect to the weak L2 topology. Since X0 is
bounded, the topology of weakL2 convergence is metrizable onX, making it into a complete
metric space. Denote its metric by dX(·, ·).

T 5.1. – Assuming (H1)-(H3), the set

{z ∈ X : z(y) ∈ K a.e. y ∈ U }

is residual in X.

The proof relies on the following lemma, where, for notational convenience we set

F (z) := min(1,dist (z,K)).

L 5.2. – Let z ∈ X0 with
∫

U F (z(y))dy ≥ ε > 0. For all η > 0 there exists z̃ ∈ X0

with dX(z, z̃) < η and
∫

U |z − z̃|
2dy ≥ δ, where δ = δ(ε) > 0.
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Proof of Lemma 5.2. – Since z ∈ X0 is continuous and z(y) /∈ K on U , for any y0 ∈ U

there exists r0 = r0(y0) > 0 such that

(50)
1

2
F (z(y0)) ≤ F (z(y)) ≤ 2F (z(y0))

for all y ∈ Br0(y0) ⊂ U . Then, by a simple domain exhaustion argument, we find disjoint
balls Bi := Bri

(yi) ⊂ U for i = 1 . . . k such that

m :=

∣∣∣∣ k⋃
i=1

Bi

∣∣∣∣ ≥ 1

2
|U |,(51)

∑
i

∫
Bi

F (z(y)) dy ≥ 1

2

∫
U

F (z(y)) dy.(52)

Next, observe that (H2) implies the existence of a continuous function φ : [0, 1] → [0, 1]

such that φ(0) = 0, φ(t) > 0 for t > 0 and such that for any z ∈ U there exists z̄ ∈ Λ∩SN−1

with

(53) z + tz̄ ∈ U whenever |t| < φ
(
F (z(y))

)
.

By considering its convexification if necessary, we may assume without loss of generality that
φ is convex and monotone increasing. Using (50), (52) and the convexity of φ we obtain

φ

(
1

4|U |

∫
U

F (z(y))dy

)
≤ φ

(∑
i

F (z(yi))
|Bi|
m

)
≤
∑
i

φ
(
F (z(yi))

) |Bi|
m

.

Moreover, using (53), (H1) and a simple rescaling, there exist z̃i ∈ C∞c (Bi; RN ) such that

1. z(y) + z̃i(y) ∈ U for all y,
2. d(z̃i, 0) < η/k,
3.
∫
Bi
|z̃i|2dy > Cφ

(
F (z(yi))

)
|Bi|,

where C is the constant in (H1). Therefore,

w :=
∑
i

z̃i ∈ Cc(U )

and z(y) + w(y) ∈ U for all y ∈ U , hence z̃ := z + w ∈ X0 by (H3). Moreover, z̃ ∈ X0

satisfies

dX(z̃, z) ≤
∑
i

dX(z̃i, 0) < η∫
U

|z − z̃|2dy ≥ C
∑
i

φ
(
F (z(yi))

)
|Bi|

≥ C

2|U |
φ

(
1

4|U |

∫
U

F (z(y))dy

)
.

This concludes the proof.
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Proof of Theorem 5.1. – First of all the functional I(z) =
∫

U |z(y)|2 dy is a Baire-1
function on X. Indeed, observe that

Ij(z) :=

∫
{y∈U :dist (y,∂U )>1/j}

|z ∗ ρj(y)|2dy,

where ρj ∈ C∞c (B1/j(0)) is the usual mollifier sequence, is continuous as a map X → R,
and moreover

Ij(z)→ I(z) as j →∞.
Therefore, by the Baire category theorem the set

Y := {z ∈ X : I is continuous at z}

is residual in X. We claim that z ∈ Y implies
∫

U F (z(y))dy = 0.

If not, let ε :=
∫

U F (z(y))dy > 0 for some z ∈ Y , and let zj ∈ X0 be a sequence such

that zj
d→ z in X. Since I is continuous at z, it follows that zj → z strongly in L2(U ), and

in particular we may assume that
∫

U F (zj(y))dy > ε/2.

Then, by applying Lemma 5.2 to each zj , we obtain a new sequence z̃j ∈ X0 such that

z̃j
d→ z in X (and hence strongly in L2), but

∫
U |zj − z̃j |

2dy ≥ δ > 0, where δ only depends
on ε. This contradicts the strong convergence of both sequences to z.
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