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ON THE PICARD NUMBER OF DIVISORS
IN FANO MANIFOLDS

BY Cinzia CASAGRANDE

ABSTRACT. — Let X be a complex Fano manifold of arbitrary dimension, and D a prime divisor
in X. We consider the image A1 (D, X) of #1(D) in A" 1(X) under the natural push-forward of
1-cycles. We show that px — pp < codim 1 (D, X) < 8. Moreover if codim A"y (D, X)) > 3, then
either X & S x T where S is a Del Pezzo surface, or codim "1 (D, X) = 3 and X has a fibration in
Del Pezzo surfaces onto a Fano manifold 7" such that px — pr = 4.

RESUME. —Soient X une variété de Fano lisse et complexe de dimension arbitraire, et D un diviseur
premier dans X. Nous considérons I'image 'y (D,X) de #1(D) dans #A'1(X) par 'application
naturelle de push-forward de 1-cycles. Nous démontrons que px — pp < codim A '1(D,X) < 8.
De plus, si codim A1 (D, X) > 3, alors soit X = S x T ou S est une surface de Del Pezzo, soit
codim A1 (D, X) = 3 et X a une fibration en surfaces de Del Pezzo sur une variété de Fano lisse T,
telle que px — pr = 4.

1. Introduction

Let X be a complex Fano manifold of arbitrary dimension n, and consider a prime divisor
D C X. We denote by /"1 (X) the R-vector space of one-cycles in X, with real coefficients,
modulo numerical equivalence; its dimension is the Picard number px of X, and similarly
for D. Theinclusioni: D — X induces a push-forward of one-cycles i, : V1 (D) — N1 (X),
that does not need to be injective nor surjective. We are interested in the image

N1(D, X) =i (N1(D)) € V1(X),

which is the linear subspace of /"1 (X) spanned by numerical classes of curves contained
in D. The codimension of A1 (D, X) in /"1 (X) is equal to the dimension of the kernel of
the restriction H?(X,R) — H?(D,R).

If X is a surface, then it follows from the classification of Del Pezzo surfaces that
codim A1 (D, X) = px — 1 < 8. Our main result is that the same holds in any dimension.
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364 C. CASAGRANDE

THEOREM 1.1. — Let X be a Fano manifold of dimension n. For every prime divisor D C X,
we have

px — pp < codim Ny (D, X) < 8.

Moreover, suppose that there exists a prime divisor D with codim V"1 (D, X) > 3. Then one of
the following holds:

(1) X & S x T, where S is a Del Pezzo surface with pg > codim N'1(D,X) + 1, and
D dominates T under the projection;

(il) codim N1 (D, X) = 3 and there exists a flat surjective morphism p: X — T, with
connected fibers, where T is an (n — 2)-dimensional Fano manifold, and px — pr = 4.

Whenn > 4 and D is ample, one has A/ (D, X) = #'1(X) and also dim "y (D, X) = pp
by Lefschetz Theorems on hyperplane sections, see [17, Example 3.1.25]. However in general
dim A1 (D, X) can be smaller than px: for instance, if D = P~ is the exceptional divisor
of the blow-up X of any projective manifold at a point, we have pp = dim V1 (D, X) =1 < px.

In case (ii) of Theorem 1.1 the variety X does not need to be a product of lower dimen-
sional varieties, see Example 3.4.

Theorem 1.1 generalizes an analogous result in [9] for toric Fano varieties, obtained in a
completely different way, using combinatorial techniques.

We recall that the pseudo-index of a Fano manifold X is

tx = min{—Kx - C|C is arational curve in X },

and is a multiple of the index of X; one expects that Fano manifolds with large pseudo-index
are simpler. When ¢tx > 1 (i.e., when X does not contain rational curves of anticanonical
degree one), we show a stronger version of Theorem 1.1.

THEOREM 1.2. — Let X be a Fano manifold with pseudo-index vx > 1. For every prime
divisor D C X, we have codim "1 (D, X) < 1. More precisely, one of the following holds:

(i) tx = 2 and there exists a smooth morphism p: X — Y with fibers isomorphic to P*,
where Y is a Fano manifold with vy > 1;

(i) for every prime divisor D C X, we have N'1(D,X) = N1(X), px < pp, and the
restriction H?(X,R) — H?(D,R) is injective. Moreover for every pair of prime divisors
Dy, Dy in X, we have D1 N Dy # @.

The author was led to this subject by the study of Fano manifolds with large Picard num-
ber (see [10] for an account of this problem). Let us mention two straightforward conse-
quences of Theorem 1.1, which give bounds on px in some good situations. The first con-
cerns the case dim X < 5, while the second is about Fano manifolds having a morphism
onto a curve.

COROLLARY 1.3. — Let X be a Fano manifold, and suppose that there exists a prime divisor
D C X such that codim '1(D, X) > 3.

If dim X = 4 then either px < 6, or X is a product of Del Pezzo surfaces and px < 18.
If dim X =5 then either px <9, or X is a product and px < 19.
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ON THE PICARD NUMBER OF DIVISORS IN FANO MANIFOLDS 365

COROLLARY 1.4. — Let X be a Fano manifold, p: X — P! a surjective morphism with
connected fibers, and F' C X a general fiber. Then px < pp + 8.

Moreoverifpx > pp+4, then X =2 S x T where S is a Del Pezzo surface, ¢ factors through
the projection X — S, and F = P* x T.

Finally, we notice that some of the properties given by Theorem 1.1 are inherited by
varieties dominated by a Fano manifold. We give two applications, and refer the reader to
Lemma 4.1 for a more general statement.

COROLLARY 1.5. — Let X be a Fano manifold and ¢: X — Y a surjective morphism.
Suppose that there exists a prime divisor D C X such that dim (D) < 1 (this always holds if
dimY =2). Then py <9.

Moreover if py > 5 thendimY < 3and X 2 S x T, where S is a Del Pezzo surface.

COROLLARY 1.6. — Let X be a Fano manifold and ¢: X — Y a surjective morphism with
dimY = 3. Then py < 10.

Moreover if py > 6 then X = S x T where S is a Del Pezzo surface, T has a contraction
onto P, and ¢ factors through X — S x P*.

Outline of the paper

The idea that a special divisor should affect the geometry of X is classical. In [6] Fano
manifolds containing a divisor D = P"~! with normal bundle ¥ p/x = Opn-1(—1) are
classified. This classification has been extended in [20] to the case V' p/x = Opn-1(—a) with
a > 0; moreover [20, Proposition 5] shows that if X contains a divisor D with pp = 1, then
px < 3. More generally, divisors D C X with dim A" (D, X) = 1 or 2 play an important
role in [10, 11].

In Section 2 we treat the main construction that will be used in the paper, based on the
analysis of a Mori program for —D, where D C X is a prime divisor; this is a development of
a technique used in [11]. Let us give an idea of our approach, referring the reader to Section 2
for more details.

After [5, 13], we know that we can run a Mori program for any divisor in a Fano mani-
fold X. In fact we need to consider special Mori programs, where all involved extremal rays
have positive intersection with the anticanonical divisor (see Section 2.1).

Then, given a prime divisor D C X, we consider a special Mori program for —D, which
roughly means that we contract or flip extremal rays having positive intersection with D, until
we get a fiber type contraction such that (the transform of) D dominates the target.

If ¢ := codimA'1(D,X) > 0, by studying how the codimension of A';(D, X) varies
under the birational maps and the related properties of the extremal rays, we obtain ¢ — 1
pairwise disjoint prime divisors Ey,...,E._1 C X, all intersecting D, such that each E; is
a smooth P!-bundle with E; - f; = —1, where f; C E; is a fiber (see Proposition 2.5 and
Lemma 2.7). We call E, ..., E._; the P'-bundles determined by the special Mori program
for —D that we are considering; they play an essential role throughout the paper.

We conclude Section 2 proving Theorem 1.2 about the case with pseudo-index tx > 1.

In Section 3 we consider the following invariant of X:

cx := max{codim A1 (D, X) | D is a prime divisor in X }.
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366 C. CASAGRANDE

In terms of this invariant, our main result is that cx < 8, and if cx > 3, then either
X is a product, or cx = 3 and X has a flat fibration onto an (n — 2)-dimensional
Fano manifold (see Theorem 3.3 for a precise statement). The proof of this result is quite
long: it takes the whole Section 3, and is divided in several steps; see 3.5 for a plan. The
strategy is to apply the construction of Section 2 to prime divisors of “minimal Picard
number”, i.e., with codim V1 (D, X) = cx. We show that there exists a prime divisor Eqy
with codim A1 (Ey, X) = cx, such that Ey is a smooth P!-bundle with Ey - fo = —1, where
fo C Eyis afiber. Applying the previous results to Ey, we obtain a bunch of disjoint divisors
with a P!-bundle structure, and we use them to show that X is a product, or to construct a
fibration in Del Pezzo surfaces.

Finally in Section 4 we use this result (Theorem 3.3) to prove the remaining results stated
above: Theorem 1.1 and its Corollaries 1.3 to 1.6.
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Notation and terminology

We work over the field of complex numbers. A manifold is a smooth variety. A P1-bundle
is a projectivization of a rank 2 vector bundle.

Let X be a projective variety.

N1(X) (respectively, N 1(X )) is the R-vector space of one-cycles (respectively, Cartier
divisors) with real coefficients, modulo numerical equivalence.

[C] is the numerical equivalence class in /"1 (X) of a curve C C X; [D] is the numerical
equivalence class in /" (X)) of a Q-Cartier divisor D in X.

If E C X is an irreducible closed subset and C C E is a curve, [C]g is the numerical
equivalence class of C in V1 (E).

The symbol = stands for numerical equivalence (for both 1-cycles and Q-Cartier divisors).

For any Q-Cartier divisor D in X, D+ := {y € #"1(X)|D - v = 0}.

NE(X) C A'1(X) is the convex cone generated by classes of effective curves, and NE(X)
is its closure.

An extremal ray R of X is a one-dimensional face of NE(X); Locus(R) C X is the union
of all curves whose class is in R.

If R is an extremal ray of X and D is a Q-Cartier divisor in X, we say that D - R > 0,
respectively D - R = 0, etc. if for v € R~ {0} we have D - v > 0, respectively D - v = 0, etc.

Assume that X is normal.
A contraction of X is a surjective morphism with connected fibers ¢: X — Y, where Y is
normal and projective; NE(¢) is the face of NE(X ) generated by classes of curves contracted

by ¢.
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A contraction ¢: X — Y is elementary if px — py = 1.

We say that an elementary contraction ¢: X — Y (or the extremal ray NE(¢p)) is of type
(n — 1,n — 2)*™ if it is the blow-up of a smooth codimension 2 subvariety contained in the
smooth locus of Y (here n = dim X).

If Z C X is a closed subset and ¢: Z — X is the inclusion, we set

N1(Z,X) := i(N1(Z)) C N 1(X) and NE(Z,X) :=1,(NE(Z)) C NE(X) C ¥1(X).

2. Mori programs and prime divisors

2.1. Special Mori programs in Fano manifolds

In this section we recall what a Mori program is, and explain that by [13] and [5] we
can run a Mori program for any divisor on a Fano manifold. We also introduce and show
the existence of “special Mori programs”, where all involved extremal rays have positive
intersection with the anticanonical divisor.

We begin by recalling the following fundamental result.

THEOREM 2.1 ([5], Corollary 1.3.2). — Any Fano manifold is a Mori dream space.

We refer the reader to [13] for the definition and properties of a Mori dream space; in
particular, a Mori dream space is always a normal and Q-factorial projective variety. We also
need the following.

ProposITION 2.2 ([13], Proposition 1.11(1)). — Let X be a Mori dream space and B a
divisor in X. Then there exists a finite sequence
2.3) X=Xo- Xy - o0 - Xpq 25 Xy
such that:

— every X; is a normal and Q-factorial projective variety,

— foreveryi=0,...,k— 1 there exists an extremal ray Q; of X; such that B; - Q; < 0, where
B; C X, is the transform'V of B, Locus(Q;) € X, and o; is either the contraction of Q; (if
Q); is divisorial), or its flip (if Q; is small);

— either By, is nef, or there exists an extremal ray Qy in Xy, with a fiber type contraction
p: X — Y, such that By, - Qi < 0.

Moreover, the choice of the extremal rays Q; is arbitrary among those that have negative
intersection with B;.

A sequence as above is called a Mori program for the divisor B. We refer the reader to [16,
Definition 6.5] for the definition of flip.

An important remark is that when X is Fano, there is always a suitable choice of a Mori
program where all involved extremal rays have positive intersection with the anticanonical
divisor.

(O More precisely, B; is the transform of B;_1 if 05,1 is a flip, and B; = (05—1)«(Bi—1) if 051 is a divisorial
contraction.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



368 C. CASAGRANDE

PRrROPOSITION 2.4. — Let X be a Fano manifold and B a divisor on X. Then there exists a
Mori program for B as (2.3), such that —Kx, - Q; > 0 for every i = 0, ..., k. We call such a
sequence a special Mori program for B.

This is a very special case of the MMP with scaling, see [5, Remark 3.10.9]. For the
reader’s convenience, we give a proof. The idea is to choose a facet of the cone of nef divisors
Nef(X) ¢ ' (X) met by moving from [B] to [-K x] along a line in "' (X), and to repeat
the same at each step.

Proof of Proposition 2.4. — By Theorem 2.1 X is a Mori dream space, therefore Proposi-
tion 2.2 applies to X, and there exists a Mori program for B. We have to prove that we can
choose Qo, ...,Qr with B; - Q; < 0and —Kx, - Q; > 0foralli =0,...,k.

We can assume that B is not nef. Set
Xo :=sup{ € R|(1 — A\)(—Kx) + AB is nef},

sothat \g € Q,0 < Ao < 1, and Hy := (1 — \p)(—Kx) + AoB is nef but not ample. Then
there exists an extremal ray Qo of NE(X) such that Hy-Qo = 0 and B-Q < 0; in particular,
—Kx - Q() > 0.

If Qg is of fiber type, we are done. Otherwise, let og: X --» X; be either the con-
traction of Qo (if divisorial), or its flip (if small), and let B; be the transform of B. Then
(1 =Xo)(—Kx,)+ AoBy isnefin X;.

If B, is nef we are done. If not, we set

A1 :=sup{A € R|(1 — \)(—Kx,) + ABj is nef},

sothat A\; € Q, Mg < A < 1,and H; := (1 — A\1)(—Kx,) + A1 B is nef but not ample.
There exists an extremal ray @ of NE(X) such that H; - Q; = 0 and By - Q1 < 0, hence
—Kx, - @1 > 0. Now we iterate the procedure. O

2.2. Running a Mori program for —D

In this section we study in detail what happens when we run a Mori program for —D,
where D is a prime divisor. This point of view has already been considered in [11], and is
somehow opposite to the classical one: we consider extremal rays having positive intersection
with D. In particular, we are interested in how the number codim A"y (D, X) varies under the
Mori program.

We first describe the general situation for a prime divisor D in a Mori dream space
(Lemma 2.6), and then consider the case of a special Mori program for —D where D is a
prime divisor in a Fano manifold (Lemma 2.7). In particular, we will show the following.

PROPOSITION 2.5. — Let X be a Fano manifold and D C X a prime divisor. Suppose that
codim A1 (D, X) > 0.

Then there exist pairwise disjoint smooth prime divisors FEi,...,Es C X, with
s = codimN1(D,X) — 1ors = codimN1(D,X), such that every E; is a P*-bundle
with E; - f; = =1, where f; C Ej is a fiber; moreover D - f; > 0 and [f;] € V'1(D,X). In
particular E; N D # @ and E; # D.
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It is important to point out that the P*-bundles E, ..., E, are determined not only by D,
but by the choice of a special Mori program for —D (see Lemma 2.7). In fact the divisors E;
are the transforms of the loci of some of the extremal rays of the Mori program, the ones
where codim /" (D, X) drops.

Finally we study in more detail the case where s = codim /"1 (D, X )—1 in the Proposition
above; in this situation we show that there is an open subset of X which has a conic bundle
structure (see Lemma 2.8).

We conclude the section with the proof of Theorem 1.2.

LEmMA 2.6. — Let X be a Mori dream space and D C X a prime divisor. Consider a Mori
program for —D:

Ok—1

X =X RN X1--» o+ - Xpq - Xg.

Let D; C X; be the transform of D, fori = 1,...,k, and set Dy := D, so that D; - Q; > 0
fori=0,..., k. We have the following.

(1) Every D is a prime divisor in X;, and the program ends with an elementary contraction of
fiber type ¢: Xy, — Y such that NE(p) = Qy and ¢(Dy) =Y.

2) #{i€{0,...,k}|Q:i & V1(D;, X;)} = codim N1 (D, X).

(3) Set ¢; := codim Ny (D;, X;) fori =0,...,k. Foreveryi=0,...,k—1we have

Ciy1 = {ci fQic (D Xa) {0 if Qr C N1 (Dr, Xk)
v ci—1 ifQi ¢ Ni(Di, X;) 1 ifQr & N1(Dy, Xg).

(4) Suppose that X is smooth. Let Ay C X be the indeterminacy locus of o 1 and for
i=2,...,k, if 0,1 is a divisorial contraction (respectively, if 0;_1 is a flip), let A; C X;
be the union of 0;_1(A;—1) (respectively, the transform of A;_1) and the indeterminacy
locus of o},

Then for all i = 1,...,k we have Sing(X;) C A; C D;, and the birational map
X; -—+ X is an isomorphism over X; \ A;.

Proof. — Most of the statements are shown in [11] (see in particular Remarks 2.5 and 2.6,
and Lemma 3.6); for the reader’s convenience we give a proof. We have D; - Q; > 0 for every
1 =0,...,k, just by the definition of Mori program for —D.

Leti € {0,...,k — 1} be such that o; is a divisorial contraction. Then D; # Exc(o;) (for
otherwise D;-Q; < 0),hence D, 1 = 0;(D;) C X, isa prime divisor. On the other hand D;
intersects every non-trivial fiber of o; (because D; - Q; > 0), in particular D; N Exc(c;) # @
and D; 41 D 0;(Exc(0;)). Notice that o;(Exc(o;)) is the indeterminacy locus of o} L

Consider the push-forward (o;).: N1(X;) — A '1(X;41). We have ker(o;). = RQ; and
WI(DH-I,XH—I) = (UZ)*(Wl(D“XZ)), therefore Cit1 = G if Qz C Wl(Di)Xi)a and
¢i+1 = ¢; — 1 otherwise.

Now leti € {0,...,k—1} be such that o; is a flip, and consider the standard flip diagram:
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where ¢; is the contraction of Q;, and ¢, is the corresponding small elementary contraction
of X;y1. We have D,;;;-NE(¢:) <0, in particular Exc(p,) C D;y; and
NE(¢}) C ¥1(Djs1, Xi+1). Notice that Exc(y)) is the indeterminacy locus of o; *.

Moreover p;(D;) = ¢;(D;i+1), so that
(i)s (N1(Dy, X3)) = N1(pi(Di),Y:) = (4;7;)* (N1(Diy1, Xit1)) -

Since ker(¢}). C N 1(Djt1, Xit+1), we have ¢;11 = codim A1 (p;(D;), Y;). We deduce again
that ¢; 11 = ¢; if Q; € NV '1(D;, X;), and ¢;41 = ¢; — 1 otherwise.

In particular the preceding analysis shows that for every i = 1,...,k the divisor D;
contains the indeterminacy locus of o ! so that A; C Dj;. By definition, A; contains the
indeterminacy locus of the birational map (o;_10---009)~!: X; --» X;in particular X;~\ A;
is isomorphic to an open subset of X, thus it is smooth if X is smooth. This shows (4).

Consider now the prime divisor Dy, C Xj. Clearly —Dy cannot be nef, therefore the
program ends with a fiber type contraction ¢: X — Y. Since Dy, - Qr > 0, Dy, intersects
every fiber of p, namely ¢(Dy) = Y, and we have (1).

In particular @, (N '1(Dg, Xi)) = N1(Y), hence either ¢, = 0 (ie., N1 (Dg, Xx) =
N1(Xk)),orex, = land Qr & N1 (Dg, Xi). Thus we have (3), which implies directly (2). O

LeEmMA 2.7. — Let X be a Fano manifold and D C X a prime divisor. Consider a special
Mori program for —D.
X=Xo % X -5 - - Xy 25 X
Then we have the following (we keep the notation of Lemma 2.6 ).

(1) Leti€{0,...,k— 1} be such that Q; ¢ N'1(D;, X;).
Then Q; isof type (n—1,n—2)°™, i.e., 0;: X; — X;11 is the blow-up of a smooth subvariety
of codimension 2, contained in the smooth locus of X ;1. Moreover Exc(o;)NA; = &, hence
Exc(o;) does not intersect the loci of the birational maps o for 1 < i.

(2) Set s:=#{ie€{0,...,k—1}|Q; € N1(D;, X;)}. We have two possibilities:
either s = codim N1 (D, X) and N 1(Dy, Xg) = N1 (Xk),
or s =codim N1 (D, X) -1, Qx & N1(Dg, Xk), and codim V"1 (Dy, Xi) = 1.

(3) Set {i1,...,is} = {i€{0,....,k—1}|Q; & N1(Di,X;)}, and let E; C X be the
transform of Exc(o;,) C Xy, foreveryj =1,...,s.
Then E; is a smooth P*-bundle, with fiber f; C E;, such that Ej - f; = —1, D - f; > 0,
and [f;] € N1(D, X). In particular E; N D # & and E; # D.

(4) The prime divisors E1, ..., Es are pairwise disjoint.

We call E,. .., E, the P-bundles determined by the special Mori program for — D that we
are considering. These divisors will play a key role throughout the paper.

Notice that Proposition 2.5 is a straightforward consequence of Proposition 2.4 and of
Lemma 2.7, more precisely of 2.7(3) and 2.7(4).
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Proof. — Statement (1) follows from [1 1, Lemma 3.9].
By 2.6(2) we have

oo codim A1 (D, X) if Qx C N1 (Dy, X),
codimW1(D,X) -1 lka ¢ Wl(Dkka)-

Together with 2.6(3) this yields (2).

Letj € {1,...,s}. By (1) we have E; = Exc(oy,), thus Ej is a smooth P!-bundle with
E;-fj = —1,where f; C Ejisafiber,and D-f; > 0 because D;,-Q;, > 0in X;,. In particular
E; N D # @ and E; # D. Moreover [f;] C A'1(D, X) would yield Q;; C N 1(Dy;, X5;),
which is excluded by definition. Therefore we have (3).

Finally Ey, ..., E, are pairwise disjoint, because for j = 1, ..., s the divisor Exc(c;; ) does
not intersect the loci of the previous birational maps. O

Here is a more detailed description of the case where s = codim A1 (D,X) — 1 in
Lemma 2.7.

LemMmA 2.8 (Conic bundle case). — Let X be a Fano manifold and D C X a prime divisor.
Consider a special Mori program for — D, we keep the same notation as in Lemmas 2.6 and 2.7.
Set ¢ := codim N1 (D, X), 0 :=0_10---000: X --+ Xy, andp :=poo: X --» Y.

- T - s
X=Xo-sz=X1-—=-==Xp15-5Xi

~
~
>~ < ¥
-
-~

P T T - _sY

We assume that Qi ¢ N'1(Dy, Xy), equivalently that s = ¢ — 1 (see 2.7(2) ). Then we have
the following.

(1) Every fiber of v has dimension 1, dimY = n — 1, and ¢ is finite on Dy,.

(2) Letj € {1,...,c—1} andconsider o;;(Exc(oy,;)) C Xy, 41. Foreverym = i;+1,...,k—1
the set Locus(Qm) C X, is disjoint from the image of o;;(Exc(0;,)) in X, so that
the birational map X;, 11 --+ Xy, is an isomorphism on o;,(Exc(oy,)), and o is regular
onE; C X.

(3) There exist open subsets U C X andV C Y, with Ey,...,E._1 C U, such that V and
@~ (V) are smooth, p|,-1vy: ¢~ H(V) — V and: U — V are conic bundles, and oy is

the blow-up of pairwise disjoint smooth subvarieties Ty, ..., T._1 C ¢~ *(V), of dimension
n — 2, with exceptional divisors E1, ..., E._1.
»
o

In  particular  we have Locus(Q.,) C X, N (0m—10---000)(U) for every
m € {0,...,k— 1} \{7;1,...,7:6_1}‘
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4) Set Z; :=(E;) CV foreveryj € {1,...,c—1}. Then Z1,...,Z._1 CY are pairwise
disjoint smooth prime divisors, andy*(Z;) = E;+E;, where E; C U is a smooth P*-bundle
with fiber f; C E;, f; + f; is numerically equivalent to a general fiber of 1, and

Ej-fi=-1, Ej-f;=E;-f;=1, and [f;] & ¥1(E;, X),

—~

Sforevery j € {1,...,c— 1}. In particular the divisors D, E1, ..., E._1, Ei,...,E._1 are
all distinct, and E1 U By, ..., E._1 U E._1 are pairwise disjoint.

We refer the reader to [9, p. 1478-1479] for an explicit description of the rational conic
bundle 1 in the toric case.

Proof of Lemma 2.§. — Let I C X} be a fiber of ¢. Then F' N Dy, # & because
Dy -Q > 0; on the other hand dim(F N Dy) = 0, because if there exists a curve C C FN Dy,
then [C] € Qi and [C] € N1 (Dx, Xk), thus Qi C N1 (Dx, Xx) against our assumptions.
Hence every fiber of ¢ has dimension 1, dimY = n — 1, and we have (1).

Recall from 2.6(4) that Sing(X%) C Ak, and notice that codim A, > 2, therefore Ay
cannot dominate Y. Restricting ¢ we get a contraction X \ ¢~ 1(p(Ax)) — Y N ¢(4y) of a
smooth variety, with — Kx, relatively ample (because —Kx, - Q > 0), and one-dimensional
fibers. We conclude that Y\ (A ) is smooth and that ¢ x, -1 ((4,)) 1S @ conic bundle (see
[3, Theorem 4.1(2)]).

By 2.6(4), 0: X --» X, is an isomorphism over X, \ Ay. If Uy := 071 (X, ~ o1 (0(A))),
then ¢: Uy — Y ~ ¢(Ag) is again a conic bundle; in particular it is flat, and induces an
injective morphism ¢: Y \ ¢(Ay) — Hilb(X). Let H C Hilb(X) be the closure of the image
of i, and & C H x X the restriction of the universal family over Hilb(X). We get a diagram:

€*C>ng>Xk

wheren: 6 — H ande: & — X are the projections, and ¢ is birational. We want to compare
the degenerations in X and in X, of the general fibers the conic bundle 9y, .

Fixj € {1,...,c—1}, and recall from 2.7(1) that Exc(o;,)NA;, = @, so that the birational
map X --» X, is an isomorphism over Exc(o;;). In X;, 1, we have
Ai,--i—l = Uz‘j (EXC(O’ij) U Azg) s
hence o;, (Exc(o;)) is a connected component of A; ;.

Let z € 0;;(Exc(oy;)) C Xi,41andlet! C E; C X be the transform of the fiber of oy,
over .

Let By C H be a general irreducible curve which intersects 7(e~1(1)). Since 7 is equidi-
mensional and the general fiber of 7 over By is P!, the inverse image 7= (By) C € is irre-
ducible. Set S := e(71(By)) C X, then S Nl # & by construction.
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Consider the normalizations B — By and G — 7 (By) of By and 71 (By) respec-
tively; we have induced morphisms eg: g — Sand ng: G — B.

€ ——71"1(By) C 6 —=XDS:=e(r"Y(By))

B By CH

Because By is general, Bg Ndom(:~!) # @, and +~! induces a morphism n: B — Y. Set
B;:=n(B)CY.

Again, since ¢ is equidimensional and the general fiber of ¢ over B; is P!, the inverse
image ¢~ (B;) C X} isirreducible; call Sy, this surface, which is just the transform of S C X
under o.

Recall that ¢ is finite on Dy by (1), and A C Dy by 2.6(4), hence no component of a
fiber of ¢ can be contained in Ai. On the other hand, by the generality of By, the general
fiber of ¢|g, does not intersect Ay. Therefore Sy can intersect Ay at most in a finite number
of points.

Consider now o5 := 0|g: S --+ S. Then o is an isomorphism over Sy \ (S, N Ax) and
dim(Sx N Ag) < 0, hence by Zariski’s main theorem £ := ogoep: G — S is a morphism.

3
/\
gB?SCX*;S>SkCXk

B B CY

Lety € B be such that C := eg(r3'(y)) C S intersects [; in particular C N E; # &,
because I C E;. Since C is numerically equivalent in X to a general fiber of 1), we have
—Kx -C = 2and E; - C = 0; in particular C has at most two irreducible components,
because — K x is ample.

Setr := ¢~ 1(n(y)). Since r is numerically equivalent in X}, to a general fiber of ¢, we have
—Kx, - = 2. Recall that no irreducible component of r can be contained in Ay; on the other
hand, r must intersect A, otherwise og would be an isomorphism over r, C = 051 (r), and
C N E; = @, acontradiction.

Let us show that r is an integral fiber of ¢. Indeed let C; be an irreducible component
of r. If C1 N Ay = @, then C is contained in the smooth locus of X, and —Kx, -C; > 1. If
instead C; N A, # @, then [11, Lemma 3.8] gives —Kx, - C1 > 1. Since —Kx, -7 = 2 and
r must intersect Ay, it must be irreducible and reduced.

Foreveryi € {0,...,k — 1} let 7; C X; be the transform of r C X (where Xy = X).
Again by [11, Lemma 3.8] we get —Kx - 79 < —Kx, -7 =2, hence —Kx -7 = 1.

Notice that £ (wgl(y)) C Sy is contained in r; on the other hand £ cannot contract to a
point a fiber of 7, hence £(75'(y)) = . Then 7y C C, because C = ep(n3z'(y)), and
we get C = 79 U C’, where C' C X is an irreducible curve (and possibly C' = 7g if C' is
non-reduced).
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Since r ¢ Ay, we have 7y ¢ Ej; in particular E; - 79 > 0. If E; - 79 = 0, then also
E;-C’" =0and C C Ej;, which is impossible. Hence E; - 7y > 0, and since E; - C = 0, we
have E; - C" < 0 and C’ # 7y.

Consider now the blow-up o, : X;; — X, 1. We have Exc(oy,) -7, = E;-To > 1, hence
using the projection formula we get — K x i1 2 —K X, 7i; + 1. On the other hand
[11, Lemma 3.8] gives

ij+1

1:_KX'?OS_KX1-]."’A:1'J' and _KXij+1'7A:ij+1S_KX;C'T:2-

We conclude that Exc(oy,) -7, = 1, —Kx Ty = —KXij ‘T3, and —le.jJr1 i1 = —Kx, r,
and again by [11, Lemma 3.8] this implies that:

(2.9) for every m € {0, ...,k — 1}, m # i;, Locus(Q,,) is disjoint from 7.

We show that C” = [ (recall that | C X is the transform of o; "(z) C X;,). Since
C' intersects 7y (because C = 79 U C” is connected), and 7y N Locus(Qq) = & by (2.9),
we see that C’ is not contained in Locus(Qo). Iterating this reasoning for every o,, with
m € {0,...,3; — 1}, we see that C’ intersects the open subset where the birational map
X --» X, is an isomorphism; let ' c X, be its transform.

If oy, (5’ ) were a curve, then by the same reasoning it could not be contained in Locus(Q,,)
foranym =14, +1,...,k—1, and in the end we would get a curve 6*',g C X}, distinct from r,
which should belong to &(m5' (y)), which is impossible. Thus C’ must be a fiber of gi;. On
the other hand Exc(a;;) - 7;, = 1, thus 7, intersects a unique fiber of o, and C'=1.

In particular this yields that z € 7,11 N 0y, (Exc(0y,)). Since z € oy, (Exc(o;;)) was
arbitrary, (2.9) implies statement (2).

Let Tj C Xy, be the image of oy, (Exc(0;;)) C X;,11. By (2) the birational map X;, 11 --» Xy
yields an isomorphism between o, (Exc(0;,)) and T, hence T is smooth of dimension n—2,
and is contained in the smooth locus of Xj. Since o5, (Exc(0y,)) is a connected component
of A;, 1, we deduce that Tj is a connected component of Ay, and Ay \ T} is closed in Xj,.

By (2.9) the birational map X;,,1 --» X}, yields also an isomorphism between 7, ;1
andr,and r N (A N\ Tj) = @.

Consider the point 2 € Tj corresponding to z € oy, (Exc(o;,)). Then o’ € N T
because € 7,41, Le, r is the fiber of ¢ through =’ € T}. Again since x was arbitrary
in 0, (Exc(0;,)), from 7 N (A \ T;) = @ we deduce that ¢! (o(T})) N (Ax \T;) = @, and
hence that o(T;) N (A \T;) =@inY.

Summing up, we have shown that Ti,...,7T._; are connected components of Ay
(so that Ay ~ (T3 U --- U T,_q) is closed in X}), and the images o(T1),...,o(Te—1),
(A~ (Ty U---UT._1)) are pairwise disjoint in Y.

Now set

(2.10) Vi=Y~Np(Apg~(T1U---UT._1)).

Then V is open in Y, ¢=}(V) C o(dom(c)), and T3 U --- U T._y C ¢ (V). Set
U = o 1(p71(V)) C X. By definition, o=} (V) N (A ~ (T1 U --- U T._1)) = &; this
means that for every m € {0,...,k — 1} ~ {é1,...,%.—1}, Locus(Q,,) is disjoint from the
image of U in X,,.
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We have E1,...,E._1 C U,because E; = o~ !(T}),and ¢: U — V isregular and proper.
More precisely, every fiber of i) over V' is one-dimensional, and as before [3, Theorem 4.1(2)]
shows that this is a conic bundle and that V' is smooth. We have a factorization

P
T i T

and oy is just the blow-up of T} U --- U T._1, so we get (3). For every j € {1,...,c— 1}
we have Z; = Y(E;) = ¢(T}), so Z1,..., Z._1 are pairwise disjoint. Now let E\j C U be
the transform of ¢=!(Z;). Then v ~(Z;) = E; U /E\j, and the rest of statement (4) follows
from standard arguments on conic bundles. Just notice that if for some j € {1,...,c¢—1} we
have [f;] € W1 (E;, X), then [0(f;)] € N1 (Tj, Xi) C N 1(Ax, Xz) € V1(Dy, Xi), which
is impossible because 0(};) is a fiber of ¢ and NE(y) ¢ A1 (Dg, X) by assumption. O

Proof of Theorem 1.2. — If /'1(D, X) = N '1(X) for every prime divisor D C X, then we
have (ii) (just notice that if Dy, Dy C X are two disjoint divisors, then /"1 (D1, X) C Dy C A1(X),
see Remark 3.1.2).

Suppose now that there exists a prime divisor D C X with codim A1 (D, X) > 0, and
consider a special Mori program for — D (which exists by Proposition 2.4). Let Ey,...,E; C X
be the P!-bundles determined by the Mori program.

If s > 1, by 2.7(3) we have —K x - fi = 1, where f; C E; is a fiber of the P'-bundle; this
is impossible because tx > 1.

Therefore s = 0, and 2.7(2) yields that codim "1 (D, X) = 1 and Qx ¢ N 1(Dg, Xi), SO
that Lemma 2.8 applies.

We show that £ = 0 and X = X. Indeed if not, we have Ay, # @ in Xy, (see 2.6(4)). Take r
a fiber of ¢ intersecting Ay. Then, using [11, Lemma 3.8] as in the proof of Lemma 2.8, we
see that r is integral, and that the transform 7 C X of r has anticanonical degree 1 in X, a
contradiction.

Thus X = X} and we get a conic bundle ¢: X — Y, which is finite on D. Since X
contains no curves of anticanonical degree 1, ¢ must be a smooth fibration in P!. Then Y’
is Fano by [21, Proposition 4.3], and finally we have ¢y > tx = 2 by [7, Lemme 2.5]. O

3. Divisors with minimal Picard number

Let X be a Fano manifold, and consider
cx := max{codim A (D, X) | D is a prime divisor in X }.
We always have 0 < cx < px — 1. If S'is a Del Pezzo surface, then cs = ps —1 € {0, ..., 8}.
ExaMPLE 3.1. — Consider a Fano manifold X = S x T, where S is a Del Pezzo surface.
Then cx = max{pgs — 1, er}. More precisely, for any prime divisor D C X, we have three
possibilities:
— D =C x T where C C S is a curve, and codim A1 (D, X) = ps — 1;

— D = Sx Dy where Dy C T isadivisor, and codim A1 (D, X) = codim V1 (D, T) < er;
— D dominates both S and T under the projections, and codim A1 (D, X) < ps — 1.
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Indeed suppose that D C X is a prime divisor with codim Ay (D, X) > ps — 1. Then
dim A1 (D, X) < pr +1, so that D cannot dominate 7" under the projection, and
D=5 x Dr.

ExampPLE 3.2. — If X is a Fano manifold with pseudo-index tx > 3 (for instance
X =P" x ... x P withn; > 2foralli =1,...,r), then cx = 0 by Theorem 1.2.

We are going to use the results of Section 2.2 to prove the following.

THEOREM 3.3. — For any Fano manifold X we have cx < 8. Moreover:

— ifex >4 then X 2 S x T where S is a Del Pezzo surface, ps = cx + 1, and e < cx;
— if cx = 3 then there exists a flat, quasi-elementary contraction X — T where T is an
(n — 2)-dimensional Fano manifold, px — pr = 4, and ¢ < 3.

A contraction ¢ is quasi-elementary if ker ¢, is generated by the numerical classes of the
curves contained in a general fiber of ¢; we refer the reader to [10] for properties of quasi-
elementary contractions. In particular, in the case where cx = 3 in Theorem 3.3, the general
fiber of the contraction X — T is a Del Pezzo surface S with pg > 4.

ExaMPLE 3.4 (Codimension 3). — Letn > 3and Z = Ppn—2(0®2 ® ©(1)). Then Z is a
toric Fano manifold with pz = 2, and the P2-bundle Z — P"~2 has three pairwise disjoint
sections T, T5, T3 C Z which are closed under the torus action. Let X — Z be the blow-up
of Ty, T», T5. Then X is Fano with px = 5, and it has a smooth morphism X — P"~2 such
that every fiber is the Del Pezzo surface S with pg = 4. If E C X is one of the exceptional
divisors of the blow-up, one easily checks that px — pg = codim /1 (E,X) = 3, hence
cx > 3. However X is not a product, thus ¢cx = 3 by Theorem 3.3.

3.5. — The proof of Theorem 3.3 will take all the rest of Section 3; we will proceed in
several steps. Section 3.1 gathers some preliminary remarks and lemmas. In Section 3.2 we
treat the case cx > 4, and we show that X = S x T, where S is a Del Pezzo surface with
ps = cx + 1, and T a Fano manifold with ¢ < ¢x (see Proposition 3.2.1, and 3.2.3 for an
outline of its proof). In particular this implies that cx < 8, because pg < 9.

The case cx = 3 is more delicate, as we have to treat separately the two following cases:

(3.6.a) forevery prime divisor D C X with codim A1 (D, X) = 3, and for every special Mori
program for —D, we have "1 (Dy, Xi) = N1 (Xk) (notation as in Lemma 2.6);

(3.6.b) there exist a prime divisor D C X with codim /"y (D, X) = 3, and a special Mori
program for —D, such that A"y (Dy, Xi) C V1 (Xk).

The first case (3.6.a) is treated together with the case cx > 4, in Section 3.2. In the end
we reach a contradiction, hence a posteriori we conclude that (3.6.a) never happens (see
Corollary 3.2.2). The second case (3.6.b) is treated in Section 3.3, where we show the existence
of a flat, quasi-elementary contraction X — T, where T is an (n — 2)-dimensional Fano
manifold, px — pr = 4, and e < 3 (see Proposition 3.3.1, and 3.3.3 for an outline of its

proof).
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3.1. Preliminary results

In this section we collect some remarks and lemmas which will be used in the proof of
Theorem 3.3.

REMARK 3.1.1. — Let X be a projective manifold, ¢: X — Y a contraction such that
—Kx is g-ample and dimY > 0, and D a divisor in X such that ker o, C D=*. Then we
have the following:

(1) dimY =1+ dim ¢(Supp D) and D = ¢*(Dy), Dy a Cartier divisor in Y;

(2) if D is a prime divisor, then (D) is a prime Cartier divisor, and D = ¢*(¢(D));

(3) if D is a smooth prime divisor, let p(D)* — (D) be the normalization. Then the
morphism ¢p: D — ¢(D)” induced by ¢|p is a contraction, and —Kp is ¢ p-ample;

(4) if D is a smooth prime divisor and Y is smooth, then ¢(D) is a smooth prime divisor.

Proof. — By [16, Theorem 3.7(4)] there exists a Cartier divisor Dy on Y such that
D = ¢*(Dy). Then Supp Dy = ¢(Supp D), so we have (1).

If D is a prime divisor, then Dy is a prime divisor supported on ¢(D), namely
Dy = (D), and we have (2).

For (3), ¢p is surjective with connected fibers onto a normal projective variety, hence a
contraction. Let i: D — X be the inclusion and take v € NE(D) N ker(pp). with v # 0.
The restriction (—Kx)|p is ¢ p-ample, hence (—Kx)|p - v > 0. Moreover i,(y) € ker ¢,,
so that

—Kp-y=—(Kx +D)i.(y) = —Kx -ix(y) > 0,
and —Kp is pp-ample.

For (4), let y € (D) and let f € Oy, be a local equation for ¢(D). Then ¢*(f) is a
local equation for D near the fiber over y. Since D is smooth, the differential d,,(¢*(f)) is
non-zero, where z € ¢~ (y). Then d,, f is non-zero, hence ¢(D) is smooth at y. O

REMARK 3.1.2. — Let X be a projective manifold, Z C X a closed subset,and D C X a
prime divisor. If ZN D = @, then D - C' = 0 for every curve C C Z, hence A1 (Z, X) C D+.

REMARK 3.1.3. — Let X be a projective manifold, E C X a smooth prime divisor which
is a P'-bundle with fiber f C E, and D C X a prime divisor with D - f > 0. Then the
following holds:

() dm A1 (DNE,X)>dimA1(E,X)—1 and V1 (E, X) =R[f]+ V1 (DNE,X);

(2) either [fle V1 (DNE,X)and V1 (DNE,X) = N1(E,X),or [f] € V1(DNE,X)
and /1 (D N E, X) has codimension 1 in V"1 (E, X);

(3) for every irreducible curve C C E we have C = \f + puC’, where C’ is an irreducible
curve contained in DN E, A, € R, and p > 0.

Proof. — Letn: E — F be the P!-bundle structure on E, and consider the push-forward
e N1(E) — N1 (F). This is a surjective linear map with kernel R[f]g.

Since D - f > 0, we have 7(D N E) = F, thus m,(V1(D N E,E)) = A 1(F). Therefore
N1(E) = R[f]g + ¥1(D N E, E), and applying i, (where i: E — X is the inclusion) we
get (1) and (2). Statement (3) follows from [18, Lemma 3.2 and Remark 3.3]. O
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REMARK 3.1.4. — Let X be a Fano manifold and D, E C X prime divisors with
N1 (DNE,X)C E*.

Suppose that E is a smooth P*-bundle with fiber f C E,suchthat E-f = —land D- f > 0.
Then the half-line R>¢[f] € NE(X) is an extremal ray of type (n — 1,n — 2)°™, with
contraction ¢: X — Y where E = Exc(y) and Y is Fano.

Proof. — Notice first of all that (—Kx + E)- f = 0.

Let C C X be an irreducible curve. If C ¢ E, then (-Kx + E)-C > 0.IfC C DNE,
then F - C = 0, and again (—Kx + E) - C > 0.

Assume now that C C E. By 3.1.3(3) we have C = A f+uC’, where C’ is a curve contained
mDNE, A\ u€R,and pp > 0. Thus

(—Kx-f-E)'C:,U,(—Kx-FE)'CIZO,

and (—Kx+FE)-C = 0ifand only if u = 0, if and only if [C] € R>¢[f]. Therefore —-Kx + E
is nef, and (—Kx + E)t NNE(X) = R>¢[f] is an extremal ray.

Let ¢: X —>Y be the contraction of Rxo[f]; clearly Exc(¢)= E. Since
(-Kx +E)-C > 0foreverycurve C C DN E, pisfiniteon DN E. Thusif F C Fisa
fiber of ¢, then F N D # & (because D - NE(p) > 0), and dim(F N D) = 0. This yields that
dim F' = 1, and by [1, Theorem 2.3] R>¢[f] is of type (n — 1,n — 2)*™ and Y is smooth.

Finally - Kx + FE = ¢*(—Ky), thus —Ky is ample and Y is Fano (notice that NE(Y) is
closed, because NE(Y) = ¢, (NE(X))). O

LemmA 3.1.5. — Let X be a Fano manifold and D, E C X prime divisors with
N1(DNE,X)=N(E,X)nD+ C E+.

Suppose that E is a smooth P*-bundle with fiber f C E, such that E - f = —1 and D - f > 0.

Then E = P! x F where F is a Fano manifold, and D N E = {pts} x F. Moreover the
half-line R>¢[f] is an extremal ray of type (n—1,n—2)°™, it is the unique extremal ray having
negative intersection with E, and the target of its contraction is Fano.

Proof. — Consider the divisor D\ in E. We have Supp(D|g) = DNE,andif C C DNE
is an irreducible curve, then [C] € A'1(DN E,X) C D+, sothat Djp-C = D-C = 0.
Therefore D) is nef.

Let i: E — X be the inclusion and take v € NE(E) N (D|g)* with v # 0. Then
i(7) € M1(E,X)N D+ C E*, hence:

~Kg-v=—-(Kx +E)-i.(7) = —Kx - i.(y) = (-Kx)jg -7 > 0.

By the contraction theorem, there exists a contraction g: £ — Z such that —Kg is g-ample
and NE(g) = NE(E) N (D|E)L (see [16, Theorem 3.7(3)]). Notice that D\ - f = D - f > 0,
hence g does not contract the fibers of the P!-bundle on F, and dim Z > 1. On the other
hand g sends D N E to a union of points, so that dim Z = 1 by 3.1.1(1). More precisely, since
g(f) = Z, we get Z = P, The general fiber F of g is a Fano manifold of dimension n — 2,
because — K g is g-ample.

By [11, Lemma 4.9] we conclude that E = P! x F and g is the projection onto P!. Since
D - f >0, DN E dominates F' under the projection, and is sent by g to a union of points;
therefore D N E = {pts} x F.
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Using Remark 3.1.4, we see that R>¢[f] is an extremal ray of type (n — 1,n — 2)°™, and
the target of its contraction is Fano.

Finally let R be an extremal ray of X with E - R < 0. Then R C NE(F, X) C NE(X),
thus R must be a one-dimensional face of NE(E, X).? Since E = P! x F, we have
NE(E) = Rso[f]e + NE({pt} x F,E) and NE(E, X) = Rs¢[f] + NE({pt} x F, X). On
the other hand NE({pt} x F, X) C X" 1({pt} x F,X) = #1(D N E,X) C E*, therefore
R = Ro[f]. 0

REMARK 3.1.6. — Let X be a projective manifold and Ey C X a smooth prime divisor
which is a P'-bundle with fiber fy C Ey. Let Ey,..., E; C X be pairwise disjoint prime
divisors such that £y # E; and Eg N E; # @ forevery ¢ = 1,...,s. Then either
E1~f0:~-~:Es-f0:O,OI'Ei~f0>Of01‘i=1,...,8.

Proof. — Foreveryi=1,...,swehave E; - fo > 0, because Ey # FE;.

Suppose that there exists j € {1,...,s} such that E; - fo = 0. Since Ey N E; # o, this
implies that F; contains a fiber fo of the P-bundle structure on Ey. If i € {1,...,s},i # j,
we have E; N E; = @, in particular E; N f, = @ and hence E; - fo = 0. O

LemMma 3.1.7. — Let X be a Fano manifold and D C X a prime divisor with
codim ANy (D,X) = cx. Let Ey,...,E; C X be pairwise disjoint prime divisors such
that:

DNE,#9, D#E;, and codimN1(DNE;,X)<ecx+1, forevery i=1,...,s.
If s > 2, then codim V| (DN E;, X) =cx + 1 foreveryi=1,... s, and
N1(DNE;, X) :7V1(D,X)ﬂEjl for every i # j.

If s > 3, then there exists a linear subspace L C N '1(X), of codimension cx + 1, such that
L=N1{(DNE;X)=N(D,X)NE foreveryi=1,...,s.

Proof. — Assume that s > 2, and let4,j € {1,...,s} with i # j. Since E; N E; = @,
we have A1 (DN E;, X) C E]l by Remark 3.1.2. On the other hand, since D N E; # @ and
D # E;, there exists some curve C C D with E;-C > 0,so that /"1 (D, X) € EJl Therefore
we get:

N1(DNE;, X)CHN(D,X)NE+ CN(D,X),
hencer —Cx — 1< dlle(DﬂE“X) < dlle(D,X) QEJL = dlle(D,X) —1=
px — cx — 1, and this yields the statement.

Assume now that s > 3, and set L := A1 (D N Ej, X); the first part already gives that
codim L = cx + 1 and that L = A" (D, X) N E;* foreveryi =2,...,s. Ifi,j € {2,...,s}
are distinct, again by the first part we get

L=N1(D,X)NE}=N1(DNE;,X)=N1(D,X)NE;. O
@ Since F and E are Fano, the cones NE(F'), NE(E), NE(E, X), etc. are closed and polyhedral.
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LEmMma 3.1.8. — Let X be a Fano manifold and D C X a prime divisor with
codim V1 (D, X) = cx. Let E1,...,Es C X be pairwise disjoint smooth prime divisors,
and suppose that E; is a P -bundle with fiber f; C E;, such that E; - fi = —1 and D - f; > 0,
foreveryi=1,...,s.

Assume that s > 2. Then codim V1 (E;, X) = c¢x and codim N1 (DN E;, X) =cx + 1
foreveryi=1,... s moreover N'1(DNE;, X)=N1(D,X)N Ejlfor every i # j.

Proof. — Leti € {1,...,s}. Wehave DN E; # @ and D # E; because D - f; > 0 and
E;- fi=—1.Since D - f; > 0, by 3.1.3(1) and by the definition of cx we have

(3.1.9) codim N1 (DNE;, X) <codimN;(E;,; X)+1<ecx +1.

Therefore Lemma 3.1.7 yields that "y(D N E;, X) = A1(D,X) N Ej ifi # j, and
codim V1 (DNE;, X)=cx + 1. By (3.1.9) we get codim V"1 (E;, X) = cx. O

LEmMA 3.1.10. — Let X be a Fano manlfold and D C X a prime divisor with
codlmjlfl(D X) = ¢x. Let Eq,... Es,El,.. E C X be prlme dlwsors such that E;
and E are smooth P*-bundles, with fibers respectively f; C E; and fl C EZ, and moreover:

Ei-fi=E;-fi=—=1, D-f;>0, E;-fi>0, E;-fi>0, [fi]¢W1(Ei,X),

andnoﬁberﬁ is containedin D, foreveryi = 1,. .., s. We assume also that Eluﬁl, cee ESUES
are pairwise disjoint, and that s > 2.

Then codim V1 (E;, X) = codimjlfl(E\i,X) = cx and [f;] ¢ Wl(E,X) for every
t=1,...,s

Proof. — Lemma 3.1.8 (applied to D and Ey, ..., E,) shows that codim V"1 (E;, X) = cx
foreveryi=1,...,s.

Fixi € {1,. s} Since V1 (E; N E;, X) C Wl(Ez,X) we have [f;] & V1 (E; N El,X)
Because E; - fz > 0, 3.1.3(2) yields that A" (E; N El, X) has codimension 1 in A" 1(EZ, X).
Recall that by the definition of c¢cx we have codim A 1(EZ, X)<cx, so that
codim V1 (E;NE;, X) <cx + 1.

Let us show that

(3.1.11) codim V1 (E; N E;, X) = cx + 1 and codim V1 (E;, X) = cx.

IfDnNn E = o, then V1 (E; N E-, X) C N1 (E;, X) N D* (see Remark 3.1.2); on the other
hand "1 (E;, X)ND+ C N1 (E;, X), because D- f; > 0. This yields codimﬁl(EmE\i,X) =
cx + 1.

If instead D N E # @, then D - ﬁ > 0, because D cannot contain any curve ﬁ Thus we
can apply Lemma 3.1.8 to the divisors D and Ey, ..., E;_1, E\Z—, E;i1,...,Es, and we deduce
that codim /"1 (E;, X) = cx. Hence we have (3.1.11).

Since/E\i - fi > 0 and codim V1 (E;, X) = cx = codim N1 (F; ﬂE,,X) 1, again
by 3.1.3(2) we get [fi] & N1(E; N E;, X). For dimensional reasons 1 (E; N E,,X) =
N1(E;, X) N N1 (E;, X), and we conclude that [f;] € V' 1(E;, X). O
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3.2. The case where X is a product

The main results of this section are the following.

ProrosITION 3.2.1. — Let X be a Fano manifold such that either cx > 4, or cx = 3 and
X satisfies (3.6.a).

Then X =2 S x T, where S is a Del Pezzo surface with ps = c¢x + 1, and ey < cx. In
particular, cx < 8.

COROLLARY 3.2.2. — Let X be a Fano manifold with cx = 3. Then X satisfies (3.6.b).

Proof of Corollary 3.2.2. — By contradiction, suppose that X satisfies (3.6.a). Then by
Proposition 3.2.1 we have X = § x T and ps = 4, i.e.,, S is the blow-up of P2 in three
non-collinear points. Consider the sequence:

X2SXxT — 8 xT —F xT —P xT,

where S is the blow-up of P? in two distinct points. Let C C F; be the section of the
P!-bundle containing the two points blown up under S — F;. Let moreover C C Sbeits
transform, and D := C x T C X. Then codim N1(D,X) = 3, and the sequence above is a
special Mori program for —D. The image of DinFy x T'is C x T, and /1 (C x T,F1 xT) C
N'1(F1 x T). Thus we have a contradiction with (3.6.a). O

3.2.3. — Outline of the proof of Proposition 3.2.1. There are three preparatory steps, and
then the actual proof.

The first step is to apply the construction of Section 2.2 to a prime divisor D C X with
codim A1 (D, X) = cx. We consider a special Mori program for —D, and this determines
pairwise disjoint P'-bundles E1,...,E, C X asin Lemma 2.7; we denote by f; C F; a
fiber. The crucial property here is that s > 3: indeed s > codim AV (D,X) — 1 = c¢x — 1,
so that s > 3 if cx > 4. On the other hand if cx = 3 we have s = 3 by (3.6.a). Then
fori =1,...,s weshow that codim "1 (E;, X) = cx and that R>¢[f;] is an extremal ray of
type (n—1,n—2)*™, such that the target of its contraction is again Fano. Thisis Lemma 3.2.4.

In particular, this shows that X has at least one extremal ray Ry of type (n — 1,n — 2)*™
such that if £y := Locus(Ryp), then codim "1 (Ey, X) = cx, and the target of the contrac-
tion of Ry is Fano.

Now we replace D by Ej, and apply again the same construction. Let p: Fy — F be
the P'-bundle structure. Since E1, ..., E, are pairwise disjoint, either Fq N E; is a union of
fibers of p for everyi = 1,...,s, or p(Eg N E;) = F forevery: = 1,...,s. The second
preparatory step is to show that if F4, ..., E, intersect Ey horizontally with respect to the
P-bundle (i.e., p(Ey N E;) = F), the divisors Ey, ..., E, have very special properties; in
particular, for every i = 0,...,s, E; & P! x F where F is an (n — 2)-dimensional Fano
manifold. This is Lemma 3.2.7.

The third preparatory step is show that we can always choose the extremal ray Ry, and the
special Mori program for — Fy, in such a way that E, ..., E actually intersect Ey horizon-
tally with respect to the P*-bundle, so that the previous result applies. This is Lemma 3.2.10.

Then we are ready for the proof of Proposition 3.2.1. We use the properties given
by Lemma 3.2.7 to show that Fi,..., Es are the exceptional divisors of the blow-up
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o: X — X, of a Fano manifold X, in s smooth codimension 2 subvarieties. Moreover there
is an elementary contraction of fiber type p: Xy — Y such thatify := poo: X — Y,
then v(Ey) = Y, and ¢ is finite on {pt} x F C Ej (recall that Ey = P! x F'). We have then
two possibilities: either 1 is not finite on Ey and dimY = n — 2, or % is finite on Ey and
dimY =n—1.

We first consider the case where 1 is not finite on Ey, in 3.2.21. We use the divisors
Ey, ..., E, to define a contraction X — S onto a surface, such that the induced morphism
m: X — S x Y is finite. Finally we show that in fact 7 is an isomorphism; here the key
property is that Ey, ..., Es are products.

Then we consider in 3.2.24 the case where 1) is finite on Ejy. In this situation Y is smooth,
and both ¢ and ¢ are conic bundles. If T3, ...,Ts C X, are the subvarieties blown up by o,
the transforms Ey, ..., E, C X of ¢~ Y(¢(T3;)) are smooth P!-bundles.

Similarly to what previously done for Ey, ..., Es, we show that E =~ P! x F for every
1=1,...,s.

Since ¥(Ey) = Y, Y is covered by the family of rational curves (P! x {pt}). We use a
result from [8] to show that in fact these rational curves are the fibers of a smooth morphism
Y —Y’', wheredimY’' =n — 2.

In this way we get a contraction X — Y, and we proceed similarly to the previous case:
we use the divisors Fg, E1, ..., E;, /E\l, ey Es to define a contraction X — S onto a surface,
and show that the induced morphism X — S x Y is an isomorphism.

Let us start with the first preparatory result.

LEmMA 3.2.4. — Let X be a Fano manifold such that either cx > 4, or cx = 3 and
X satisfies (3.6.a).

Let D C X be a prime divisor with codim N1 (D, X) = cx, consider a special Mori
program for —D, and let Ey, ..., E; C X be the P*-bundles determined by the Mori program.
Fori=1,...,slet fi C E; be a fiber of the P*-bundle, and set R; := Rxq[f;]. Then we have
the following:

(1) se{ex —1,ex}tands > 3;

(2) R; is an extremal ray of type (n — 1,n — 2)°™, the target of the contraction of R; is Fano,
and codim N1 (E;, X) = cx, foreveryi=1,...,s;

(3) there exists a linear subspace L C N'1(X), of codimension cx + 1, such that

L=N(DNE;,X)=N1(D,X)NE} =N1(E;,X)NEj foreveryi=1,...,s.

We will call Ry,...,Rs the extremal rays determined by the special Mori program
for —D that we are considering. Notice that differently from the case of the P!-bundles
Ey,..., E,, the extremal rays Ry, ..., R are defined only when X satisfies the assumptions

of Lemma 3.2.4, and D C X is a prime divisor with codim "1 (D, X) = cx.

Proof. — We know by Lemma 2.7 that: E; - f; = —land D - f; > Ofori = 1,...,s,
E,..., E, are pairwise disjoint, and s € {¢x — 1,¢x} because codim V1 (D, X) = cx.
Moreover, if cx = 3, then s = 3 by (3.6.a), so that in any case s > 3, and we get (1).

Therefore, by Lemma 3.1.8, we have codim A1 (E;, X) = ¢x and codim V"1 (DNE;, X) =
cx+1foreveryi =1,...,s. Inparticular, Lemma 3.1.7 applies; let L C A1 (X) be the linear
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subspace such that codim L = cx +1and L = V1 (DN E;, X) = A1 (D, X) N E;- for every
1=1,...,s.

Fixi € {1,...,s}. Since E; - f; = -1, we have V'1(E;,X) ¢ E;, therefore
dim V1 (E;, X) N B = dimA1(E;,X) — 1 = px — cx — 1 = dim L. On the other
hand we have L C E and L = A '{(D N E;, X), in particular L C A"1(E;, X). Thus
L C V1(E;, X) N E;+, so the two subspaces must coincide, and we get (3).

Finally, (2) follows from Remark 3.1.4 applied to D and F;. O

LEMMA 3.2.5. — Let X be a Fano manifold such that either cx > 4, or cx = 3 and
X satisfies (3.6.a).

Let D C X be a prime divisor with codim V"1 (D, X) = cx, and R an extremal ray of type
(n—1,n—2)*" such that D - R > 0, R ¢ N'1(D, X), and the target of the contraction of R
is Fano.

Set E := Locus(R). Then N'1(DNE,X) =N 1(D,X)NE+ =A1(E,X)N EL.

Proof. — Consider the contraction ¢: X — Y of R, so that by the assumptions Y is a
Fano manifold, and consider the prime divisor (D) C Y.

By Proposition 2.4, there exists a special Mori program for —p(D) in Y. Together with ¢,
this gives a special Mori program for —D in X, where the first extremal ray is precisely
Qo =R:

Ok—1

X LY:% _0'_0_) Y]_ -——> -—> Yk*l -=> Yk"

We apply Lemmas 2.7 and 3.2.4; since R ¢ A'1(D, X), E is one of the P!-bundles deter-
mined by this special Mori program for —D. Thus the statement follows from 3.2.4(3). O

REMARK 3.2.6. — Let X be a Fano manifold such that eithercx > 4, orcx = 3 and X
satisfies (3.6.a). Recall from Proposition 2.4 that there exists a special Mori program for any
divisor in X.

The first consequence of Lemma 3.2.4 (applied to any prime divisor D C X with
codim A1 (D, X) = cx) is that X has an extremal ray Ry of type (n — 1,n — 2)*™ such
that if Ey := Locus(Ryp), then codim A1 (Ey, X) = cx, and the target of the contraction
of Ry is Fano.

In particular, we can consider a special Mori program for —FEj, and apply again
Lemma 3.2.4. Let Ry,...,Rs; be the extremal rays determined by the Mori program,
with loci Ey,..., E,. Since, by 2.7(3) and 2.7(4), Ey,..., E, are pairwise disjoint and
Ey# E,,EgNE; # ofori =1,...,s, by Remark 3.1.6 we have two possibilities: either
E,-Ry=---=FE;-Ry=0,0orE;- Ry >0foreveryi=1,...,s.

In the next lemma we are going to show that in the second case (i.e., when E; - Ry > 0)
the extremal rays Ry, ..., Rs have very special properties, in particular that the divisors
Ey, ..., E4 are products.
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LEmMma 3.2.7. — Let X be a Fano manifold such that either cx > 4, or cx = 3 and X
satisfies (3.6.).

Let Ry be an extremal ray of X, of type (n—1,n—2)%™, such that the target of the contraction
of Ry is Fano, and codim V"1 (Ey, X) = cx, where Eq := Locus(Ry).

Consider a special Mori program for —Ey, let Rq, ..., Rs be the extremal rays determined
by the Mori program, and set E; :== Locus(R;) fori =1,...,s.

Assume that E1 - Ry > 0. Then we have the following:

(1) codim N1 (E;, X) = cx, and E; =2 P! x F with F an (n — 2)-dimensional Fano manifold,
fori=0,...,s. Weset F; .= {pt} x F C E;;

(2) R; is the unique extremal ray of X having negative intersection with E;, and the target of
the contraction of R; is Fano, for every i =0,...,s;

(3) Eu,..., E; are pairwise disjoint, and Eg N E; = {pts} x F foreveryi=1,...,s;

4) E;-Ry>0and Ey-R; >0 foreveryi=1,...,s/

(5) there exists a linear subspace L C N'1(X), of codimension cx + 1, such that

L :Wl(EoﬂEi,X) :Wl(Fj,X) and Wl(Ej,X) =RR;®L
foreveryi =1,...,sandj = 0,...,s, and moreover dim(R(Ry + --- + Rs) + L) =

s+1+dimL;
(6) L C Ey N---NEZ, and equality holds if s = cx.

Proof. — By 2.7(3) and 2.7(4) we know that Ey - R; > 0 (in particular By # E; and
EyNE; # @)and R, ¢ N1(Fo,X) fori = 1,...,s, and that Ey,..., E; are pairwise
disjoint.

Secondly, Lemma 3.2.4 shows that s € {cx — 1,cx } and s > 3, that codim V4 (E;, X) = ¢x

fori =1,...,s, and that there exists a linear subspace L C "1 (X), of codimension c¢x + 1,
such that

(3.2.8) L=N1(ByNE;, X)=N1(Eo,X)NE} =N 1(E;, X) N E;-

for every ¢ = 1,...,s. Moreover Remark 3.1.6 yields E; - Ry > 0 foreveryi = 1,...,s,

because E; - Ry > 0, so we get (4).
Fixie {1,...,s}. Wehavedim V"1 (Eg N E;, X)=dimL=px —cx — 1< px —cx =
dim A1 (Ey, X), and since F; - Ry > 0, 3.1.3(2) gives Ry ¢ N '1(Ep N E;, X). Moreover
N1(Fo ﬂEi,X) C N1 (Eo, X)NN1(E;, X) © Wl(Eo,X)
(because R; ¢ NV'1(Ey, X)), and since V"1 (EgN E;, X) has codimension 1 in "1 (Ey, X), we
deduce that V1 (Eo N E;, X) = N1 (Eo, X) NN 1 (E;, X). This yields that Ry ¢ A1 (E;, X).
Now we can apply Lemma 3.2.5 to E; and Ry, and deduce that
(3.2.9) L=N1(EyNE;X)=N(E;,X)NEj.
Thanks to (4), (3.2.8), and (3.2.9), we can use Lemma 3.1.5 to show (1). First of all we
apply Lemma 3.1.5 with D = E; and E = E,, and we deduce that Ey = P! x F where F

is an (n — 2)-dimensional Fano manifold, and Ey N E; = {pts} x F C Ey. Moreover we
get (2) for Ry.
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Then we apply Lemma 3.1.5 again, with D = Ey and E = E;, and we get E; = P! x F*
and Eo N E; = {pts} x F* C E;;in particular, F* = F, and we have (3). Moreover we get (2)
for R;.

We have L C Ey N---N E+ by (3.2.8) and (3.2.9). To get (5), it is enough to show that
[fol, .., [fs] € N1(X) are linearly independent and that (R[fo] + - -- + R[fs]) " L = {0}.
So suppose that there exist A, ..., As € R such that

Zs: Azfz e L.
1=0

Intersecting with E; for j € {1,...,s} we get \; = AoE; - fo, and intersecting with E, we
get A\o(D i1 (Ei - fo)(Eo - fi) —1) = 0. Since E; - fo and Ey - f; are positive integers by (4),

and s > 3, we get A\g = 0 and hence \; =0 fori=1,...,s, and we are done.
We are left to show (6). Similarly to what we have done for [fo], ..., [fs], one checks that
[Eo], ..., [Es] are linearly independent in /" (X), so that codim(Eg N--- N EL) = s + 1.

Since L C Ef N---N EF and codim L = cx + 1, if s = cx the two subspaces coincide. [

LEmMA 3.2.10. — Let X be a Fano manifold such that either cx > 4, or cx = 3 and
X satisfies (3.6.a). Then X has an extremal ray Ry with the following properties:

— Ry is of type (n — 1,n — 2)°™, the target of the contraction of Ry is Fano, and
codim N1 (Eg, X) = cx, where Ey := Locus(Ry);

— there exists a special Mori program for —Eq such that, if Ry, ..., Rs are the extremal rays
determined by the Mori program, we have Locus(R;) - Ry > 0 for everyi=1,...,s.

Proof. — Let J = {S%,...,S"} be an ordered set of extremal rays of X, and set
E' := Locus(S?). Consider the following properties:

(P1) S® is of type (n — 1,n — 2)°™, the target of the contraction of S* is Fano, and
codim V1 (E?, X) = cx, foreveryi=1,...,h;

(P2) E71.S">0and S ¢ A (B, X), forevery i = 2,...,h;

(P3) foreveryl < j<i<hwehave E*- S =0and E'NEJ £ @.

We notice first of all that by Remark 3.2.6, there exists an extremal ray S' of X, of type
(n — 1,n — 2)*™, such that codim Locus(S') = cx, and the target of the contraction of S*
is Fano. Then = {S'} satisfies properties (P1), (P2), and (P3).

Consider now an arbitrary ordered set of extremal rays = {S!,...,S"} satisfying
properties (P1), (P2), and (P3). We show that h < px.

Let 4; € S be a non-zero element, for i = 1,...,h. We have E* - v; # 0 for every
i=1,...,h,and E*-v; = 0 forevery 1 < j < i < h by (P3). This shows that y1,...,~, are
linearly independent in "1 (X): indeed if there exist ay, . .., ar, € R such that Z?:l a;v; =0,
then intersecting with Ej;, we get ap, = 0, and so on. Thus h < px.

Then Lemma 3.2.10 is a consequence of the following claim. O

Cram 3.2.11. — Assume that = {S',...,S"} is an ordered set of extremal rays
having properties (P1), (P2), and (P3). Then either Ry := S™ satisfies the statement of
Lemma 3.2.10, or there exists an extremal ray S+ such that J' .= {S*,...,S" SM1} still
has properties (P1), (P2), and (P3).
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Proof of Claim 3.2.11. — By (P1) the ray S” is of type (n — 1,n — 2)*™, the target of

its contraction is Fano, and codim %"y (E", X) = cx. Consider a special Mori program
for —E" (which exists by Proposition 2.4), and let S{”’l, ..., S be the extremal rays
determined by the Mori program, as in Lemma 3.2.4. Notice that s > 3 by 3.2.4(1). We set
E[' = Locus(S}™) for I = 1,...,s, so that E}"' ... E!! are the P!-bundles
determined by the Mori program. By 2.7(3) we have
(3.2.12) E". 8! >0 and S ¢ V1 (E", X) foreveryl=1,...,s,
and EMTY . EM1 are pairwise disjoint by 2.7(4).

Remark 3.2.6 shows that the intersections E]'" - S (for I = 1,..., s) are either all zero,
or all positive. In the latter case, S* satisfies the statement of Lemma 3.2.10.

Thus let us assume that EP 1. 87 = ... = Eh+1. 6" — 0, and set S"*! := SP*! and

EMt = P

Since by assumption ¢ has properties (P1) and (P2), in order to show that f’ still satisfies
(P1) and (P2), we just have to consider the case i« = h + 1. Then (P2) is given by (3.2.12), and
(P1) follows from 3.2.4(2).

Now let us show the following:
(3.2.13) Eth .87 =0 and Eth NE'#@ foreveryj=1,...,handl=1,...,s.

In particular, for [ = 1, (3.2.13) implies that ¢J’ satisfies (P3).
Letl € {1,...,s}. Since E" - S/ > 0 by (3.2.12), we have E" N E'""* # @; moreover
we have assumed that E}™ - §* = 0. Therefore (3.2.13) holds for j = hand I = 1,..., .
We proceed by decreasing induction on j: we assume that (3.2.13) holds for some
j € {2,...,h} and for every I = 1,...,s, and we show that E™' . $9=1 = 0 and
EM'NEI"Y £ oforeveryl=1,...,s.

Fixl € {1,...,s}. Since E*' .S/ = 0and E"** N EY # @ by the induction assumption,
Elh+1 contains a curve C with class in S/, in particular
(3.2.14) S4 c N1 (EM X).
Since E9~1-S7 > 0 by (P2), we have E/~'NC # @ and hence E]'"** N E/~! # @. Moreover
EM!. 87 = 0 implies that E/'t* # B, thus E*' - §9—1 > 0.

Recall from (P1) that 7~ is the locus of the extremal ray S/, of type (n—1,n—2)*™;in

particular £/~ is a P'-bundle. Since E" !, ..., E**1 are pairwise disjoint, by Remark 3.1.6
the intersections Elh+1 -87=1 (forl =1,...,s) are either all zero or all positive.
By contradiction, suppose that E/"*! - §9=1 > 0 for every I = 1,...,s. We have

codim A1 (E7~1, X) = cx by (P1), hence 3.1.3(1) gives
codim A1 (BN EMY, X)) < codim A1 (B!, X)+1=cx +1 foreveryl =1,...,s.

Since s > 3, we can apply Lemma 3.1.7 to B/~ and EM ... EM?! and deduce that
codim A1 (B~ NEMY X) = cx + 1and A1 (B "1 N EML X) C (EM1)L . In particular

W1(Ej_1 N Eh_H,X) C Wl(Eh+1,X) N (Eh+1)l.
On the other hand /1 (E"*1, X) ¢ (E" 1)L because EM1 . Sh+1 < 0, therefore
codim (V1 (E"™, X) N (E"™)1) = ex + 1 = codim V1 (BI ' N E", X)),
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and the two subspaces coincide.
By (3.2.14) and by the induction assumption we have S7 C A"y (E"?!, X) N (EM )L,
therefore S7 C 1 (E7~1, X), and this contradicts property (P2). O

Proof of Proposition 3.2.1. — Let Ry be the extremal ray of X given by Lemma 3.2.10,
and set Ey := Locus(Rp). Then codim A1 (Ey, X) = cx, and there exists a special Mori
program for — Ey which determines extremal rays Ry, ..., R, such that E; - Ry > 0 for all
i=1,...,s, where E; := Locus(R;). Thus Lemma 3.2.7 applies.

If R is an extremal ray of X different from R;y,..., Rs, by 3.2.7(2) we have F; - R > 0
for every i = 1,...,s, hence (-Kx + E1 + --- + E5) - R > 0. On the other hand
(-Kx+E1+---+E;)-R;=0foreveryi=1,...,s (recall from 3.2.7(3) that E4, ..., E
are pairwise disjoint), therefore — K x + FEq + - - - + E, is nef and

(-Kx +E1+---+E)*"NNE(X)=R; +---+ R,

is a face of NE(X), of dimension s by 3.2.7(5).

Let 0: X — X be the associated contraction, so that ker o, = R(R; + - -+ + R;). Since
E, ..., E, are pairwise disjoint, we see that Exc(c) = E; U --- U E, X, is smooth, and
o is the blow-up of s smooth, pairwise disjoint, irreducible subvarieties 77, ...,Ts; C X, of
codimension 2, where T; := o(E;) fori = 1,...,s. Moreover X is again Fano, because
—Kx+E;+--+ E, = 0*(—Kyx,). Recall from 3.2.7(1) that E; = P* x F, and notice that
0|, 1s the projection onto F' = T;.

Set (Eg)s := 0(Ep) C Xs.Since Eg 2 P! x Fand EgNE; = {pts} x Ffori=1,...,s
by 3.2.7(1) and 3.2.7(3), the morphism 0|, : Eo — (Ejp)s is birational and finite, i.e., it is the
normalization. Moreover fori = 1,...,s we have T; = o(Eo N E;) C (Ey)s, so that

(3.2.15) N 1(T5, Xs) = 00 (V1(Eg N Ey, X)) = 04(L),

where L C J/1(X) is the linear subspace defined in 3.2.7(5). Again by 3.2.7(5) we know that
N1(Ep, X) = RRy® L, and that dim(ker o, + V1 (Fo, X)) = dimker o, + dim V1 (Eyp, X),
therefore:

(3.2.16) ker o, N N1 (Eo, X) = {0} and A1 ((Eo)s, Xs) = Ro.(Ro) ® 0 (L).
Finally, since 0*((Eo)s) = Eo + > ;-1 (Eo - fi)E; (as usual we denote by f; C E; a fiber
of the P'-bundle), by 3.2.7(4) and 3.2.7(6) we see that

(3.2.17) (Eo)s - o(fo) = > (Eo- fi)(Ei - fo) —1>0 and 0.(L) € (Eo)+

i=1

(recall that s > 3and s € {¢x — 1,cx } by 3.2.4(1)).

Factoring o as a sequence of s blow-ups, we can view 0: X — X, as a part of a
special Mori program for —Fy in X, with s steps, and by (3.2.16) at each step we have
Qi ¢ M1((Eo)i, X;). In particular 2.6(3) yields that

codim V1 ((Ep)s, Xs) = codim V1 (Eg, X) — s = cx — s,
hence either s = cx and A1 ((Ep)s, Xs) = N'1(X;), or s = ¢x — 1 and codim V1 ((Ep)s, Xs) = 1.
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3.2.18. — Suppose that there exists an extremal ray R of X with (Ep)s - R > 0 and
Locus(R) € X,. Thens=cx —land R ¢ V'1((Ep)s, Xs).

Since we have shown that "1 ((Ep)s, Xs) = NV 1(Xs) when s = cx, it is enough to show
that R ¢ '1((Eo)s, Xs).

We first show that R ¢ NE((Ep)s, Xs). Otherwise, since NE((Ep)s, Xs) € NE(Xj),
R should be a one-dimensional face of NE((Ejp)s, Xs). We have NE(Ey, X) = Ry + NE(Fp, X)
and NE((Ep)s, Xs) = 0«(Ro) + 0.(NE(Fp, X)). On the other hand 3.2.7(5) and (3.2.17)
give

. (NE(Fo, X)) C 0(W1(Fo, X)) = 0.(L) C (Eo)y,
while (Ey)s - R > 0, therefore we get R = 0. (Ryp). But (Ey), is covered by the curves o (fo),
so that Locus(R) 2 (Ep)s, which is impossible.

Therefore R ¢ NE((Ep)s, Xs), and in particular the contraction of R is finite on (Ep)s.
Since (Ep)s - R > 0, this means that the contraction of R has fibers of dimension < 1,
therefore R is of type (n — 1,n — 2)%™ by [1, Theorem 2.3] and [21, Theorem 1.2].

In particular, Er := Locus(R) is a prime divisor covered by curves of anticanonical
degree 1. Moreover these curves have class in R, thus they cannot be contained in 73 U- - -UT%,
because Th U --- U T, C (Ep)s. By a standard argument (see for instance [10, Remark 2.3])
we deduce that Ep N (T3 U --- UT,) = &, hence by (3.2.15) and Remark 3.1.2 we have

U*(L) = Wl(TlaXs) - E]Jz_

Moreover Eg - o(fo) > 0, because Er # (Ep)s (as (Ep)s - R > 0).

We show that R ¢ A1 ((Eo)s, Xs). By contradiction, suppose that R C A1 ((Ep)s, Xs),
and let C be an irreducible curve with class in R. Then by (3.2.16) we have [C] = Mo (fo)]+7,
with A € Rand v € o0.(L). Using (3.2.17) we get 0 < (Ep)s - C = A(Ep)s - o(fo) and
(Eo)s - o(fo) > 0, thus A > 0. On the other hand —1 = Er - C = AER - o(fo), which gives
a contradiction. Thus R ¢ A1 ((Eo)s, Xs).

3.2.19. — Weshow that we can assume that there exists an extremal ray R of X such that
(Eo)s - R > 0 and Locus(R) = X;.

This is clear if s = cx, by 3.2.18. Suppose that s = ¢x — 1, and consider an extremal ray
R of X with (Ep)cyx—1 - R > 0. If Locus(R) = X, _1, we are done; otherwise, by 3.2.18,
we have R ¢ N1 ((Eo)ex -1, Xex—1)-

Letoc,—1: Xc—1 — X., be the contraction of R, and consider the sequence

Tex—1

X 5 Xop 1 25 Xoy

Again, factoring o as a sequence of cx — 1 blow-ups, we can view this as a part of a special
Mori program for —Ej in X, with cx steps, and at each step Q; & A1 ((Eo)s, X;).

The Pl-bundles determined by this special Mori program are Ei, ..., E., 1, and the
transform of Er in X; the associated extremal rays (see Lemma 3.2.4) are Ry,..., R., —1,
and an additional extremal ray R, .

Since E; - Ry > 0, Lemma 3.2.7 still applies, thus we can just replace Ry, ..., R., 1 with
Ri,...,R.,,and restart. Since now the extremal rays are cx (instead of cx —1), we are done
by what precedes.
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3.2.20. — By 3.2.19 there exists an elementary contraction of fiber type ¢: X; — Y such
that (Fg)s - NE(p) > 0;set v := poo: X — Y, and notice that o((Eg)s) = ¥(Ep) =Y.

P
X - X,—>Y
o ®

The sequence above is a Mori program for —FE,, with s steps, and at each step
Q; ¢ M1((Fo)i, X;). By 2.7(2) we have two possibilities: either A1 ((Ep)s, Xs) = N1(Xs)
and s = c¢x, or NE(p) ¢ V1((Ep)s, Xs) and s = c¢x — 1.

Since V1 (Ty, Xs) € (Eo)L by (3.2.15) and (3.2.17), ¢ must be finite on 73, so that
dimY >n—2.

3.2.21. — First case: @ is not finite on (Ep)s. In this case NE(¢) C N '1((Eo)s, Xs)s
therefore "1 ((Eo)s, Xs) = N'1(X,) and s = cx. This also shows that L = E-N---NE.,
by 3.2.7(6).

Recall that Y = v(Ep), and that Ey = P! x F is smooth and Fano by 3.2.7(1). Moreover
if FO = {pt} x F C Eo, then Wl(Fo,X) =L by }27(5) Flnally Wl(U(FQ),XCX) =
o.(L) C (Eo)Z, by (3.2.17), so that ¢ is finite on o (Fp). Since o is finite on Ey, we deduce
that # is finite on Fj.

Let Ey %Y — Y be the Stein factorization of Y|, - Since @ is not finite on (Ep)c,, isa
non-trivial contraction of Fy. On the other hand « is finite on Fj: the only possibility is that
Y = F and a is the projection.

We deduce that dimY = n — 2 and that ¢ contracts fy, hence NE(¢) = o.(Ro).
Thus NE(¢) is a (cx + 1)-dimensional face of NE(X) containing Ry, ..., R.,; in particular
py = px —cx — L.

Let us consider the divisor o

H:=2E,+ Y E
i=1
on X.By3.2.7(4) we have H - R; > O foreveryi =0,...,cx, and
L=Eyn---NnE; CH".

Recall from 3.2.7(1) and 3.2.7(5) that for every i = 0,...,cx we have E; = P! x F,
and if F; := {pt} x F C E;, then /'(F;,X) = L C H*. In particular NE(E;, X) =
R; + NE(FZ',X) CR;+ L.

Let C C X be an irreducible curve with C C Supp H = EgU---U E,,,. Then C C E;
forsomei € {0,...,cx}, hence [C] € R;+Land H-C > 0.

On the other hand, since H is effective, we have H - C’ > 0 for every irreducible curve C’
not contained in Supp H. Therefore H is nef and defines a contraction £: X — S such that

NE(¢) = HY NNE(X).
X —2-X,,
N
s Y

Leti € {0,...,cx}. Since 'y (F;, X) C H*, the image &(F;) is a point, and £(E;) = £(fi)
is an irreducible rational curve (because H - f; > 0). Therefore {5, : E; — &(fi) factors
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through the projection E; — P!. In particular dim £(Supp H) = 1, hence S is a surface by
3.1.1().
Let us show that

(3.2.22) NE(¢) = L N NE(X).

We already have NE(¢) = HY N NE(X) O L N NE(X). Conversely, let C; C X be an
irreducible curve such that £(C;) = {pt}, i.e, H-C; =0.

If C4 is disjoint from Supp H = EgU---UE,,,thenCy - E; =0fori=0,...,cx, hence
[Cl] € L.

If instead C intersects Ey U --- U E,.,, then it must be contained in it, and we have
C: C E; for some i. Since §|g, factors as the projection onto P! followed by a finite map,
we get Cy C F;, and again [C1] € N1 (F;, X) = L. Therefore we have (3.2.22).

In particular, for every i = 0,...,cx we have NE(¢) C E, therefore E; = £*(£(E;)) by
3.1.12).

Let n: X —-S5xY be the morphism induced by ¢ and . We have
keri. = R(Ro + -+ + R¢y), and kerp, N L = {0} by 3.2.7(5). Moreover ker{, C L
by (3.2.22), therefore = is finite.

In particular, £ must be equidimensional, hence S is smooth by [2, Proposition 1.4.1] and
[10, Lemma 3.10]. We need the following remark.

REMARK 3.2.23. — Let W be a smooth Fano variety and suppose we have two contrac-

tions
RN
W1 W2
such that W is smooth and the induced morphism w: W — W; x W5 is finite. Consider the
relative canonical divisor Ky w, = Kw — mi Kw,. If ker(m2), € (Kww,)t in A1 (W),
then 7 is an isomorphism.

This is rather standard, we give a proof for the reader’s convenience. Let d be the degree
of m,and F C W a general fiber of my; the restriction f := (m1)p: F — W is finite of
degree d. We observe that F' is Fano, hence numerical and linear equivalence for divisors in F
coincide, and by assumption (K ,w, )|r = 0. Then

Kr = (Kw)ir = (miKw,)|r = f*Kw,,

so that f is étale. Therefore W7 is Fano too, in particular it is simply connected, thus f is an
isomorphism and d = 1.

We carry on with the proof of Proposition 3.2.1. We want to apply Remark 3.2.23 to
deduce that 7: X — S x Y is an isomorphism; for this we just need to show that Kx/g - R; = 0
fori =0,...,cx, because ker ., = R(Ro + - - - + R., ). But this follows easily because E;
are products.

Indeed since both S and E; are smooth, 3.1.1(4) yields that £(E;) is a smooth curve.
Therefore £(E;) = P! and &g, is the projection, hence

Kx/s- fi=(Kx/s)ig, - fi = Kg,jeg) - Ji = 0.
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Thus we conclude that 7 is an isomorphism and X & S x Y. Moreover since py = px —cx — 1,
we have ps = cx + 1.

3.2.24. — Second case: p is finite on (Epy)s. Then dimY = n — 1 and every fiber of ¢ is
one-dimensional; moreover every fiber of ¢ has an irreducible component of dimension 1.
Since X and X are Fano, [3, Lemma 2.12 and Theorem 4.1] show that Y is smooth and that
o and v are conic bundles.

P

X—=X——Y

Set Z; := o(T;) = Y(E;) C Y fori = 1,...,s. By standard arguments on conic bundles
(as at the end of the proof of Lemma 2.8), we see that Z;, ..., Z, C Y are pairwise disjoint
smooth prime divisors, and that ¢ is smooth over Z;U---UZ;. Fori =1,...,slet E C X be
the transform of ~1(Z;) C X,, so that y~—1(Z;) = E; U E;. Then E; is a smooth P!-bundle
with fiber ﬁ c /E\i, such that E‘l . ﬁ = —1. Moreover f; + ﬁ is numerically equivalent to a
general fiber of ¢, and E; - ﬁ = E’Z -fi=1

In particular, the divisors Ey, E1, ..., E;, E‘\l, e /E\s are all distinct (recall that ¢(Ey) = Y),
and F; U E\l, ...,EsU E\s are pairwise disjoint.

Let us show that [Ey], [E4],. .., [Es], [E\l] are linearly independent in /"' (X). Indeed
suppose that

aFo+ Y b;E; +dE; =0,
i=1

with a,b;,d € R. Intersecting with a general fiber of ¢: X — Y, we get a = 0. Intersecting
with fo,..., fs, we get by = - - - = by = 0. Finally intersecting with f; we get d = by, that is,
d(E; + E;) = 0, which yields d = 0, and we are done.

Ifi,j € {1,...,s} with i # j, we have E; ﬂEj = @, and hence L C A1 (E;,X) C E\jl
(see Remark 3.1.2). Therefore by 3.2.7(6)

LCEfNELN---NESNELN---NnECEFNEMN---NESNEL.
Since the classes of Fy, ..., E;, El in A 1(X ) are linearly independent and s > cx — 1, we
get
cx+1=codimL >s+2>cx +1,

which yields s = ¢x — 1 and

L=EfNE n---NE- _NnEf=EfnEfn---nEL_NnEfn---nEX

ex—1 ex—1 ex—1

Leti € {1,...,cx — 1}. Observe that [fi] & #'1(E;, X): otherwise by 3.2.7(5) we would
have f; = Afi + 7. with A € Randy € L C Ei N E;i-. Intersecting with E; we get
A = —1, hence Ej - ﬁ = —Ey - f; < 0, which is impossible because Fy # /E\Z We also
notice that Ey cannot contain any curve ﬁ, because a(ﬁ-) is a fiber of ¢, and ¢ is finite
on (Ep)cx—1 = o(Ep).

Therefore we can apply Lemma 3.1.10 to Ey and E, ..., E., _1, E\l, e E\Cx_l, and we
get:

codile(E,X):cX and R; ngVl(]/E\i,X) foreveryi=1,...,cx — 1.
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Fix againi € {1,...,cx — 1}. Lemma 3.2.5, applied to E and R;, yields that
N1(E;NE, X) = N1(E;, X)NEF =41 (B, X)NE} = L

(see (3.2.8) for the last equality). Finally we apply Lemma 3.1.5to D = E; and F = E, and
we deduce that R; := Rzo[ﬁ-] is an extremal ray of type (n — 1,n —2)*™, E, 2 P! x F', and
E;n E = {pts} x Fic E\z On the other hand again Lemma 3.1.5, applied now to D = E
and E = FE;, shows that E; N EZ = {pts} x F C E; 2 P! x F, hence Fi=F.

Observe that NE(¢) = Ry + ﬁl + -+ Reyo1 + ﬁCX_l has dimension cx, and that
Vg, : Bo = P! x Fy — Y is finite. We need the following lemma.

LEmMMA 3.2.25. — Let E be a projective manifold and n: E — W a P'-bundle with
fiber f C E. Moreover let ¥o: E — Y be a morphism onto a projective manifold Y,
such that dimo(f) = 1. Suppose that there exists a prime divisor Z; C Y such that
N1(Z1,Y) CN1(Y) and v§(Z1) - £ > 0. Then there is a commutative diagram:

ELY

W\L J/(
W ——Y"'

where Y is smooth and ( is a smooth morphism with fibers isomorphic to P*.

Proof of Lemma 3.2.25. — Consider the morphism ¢: £ — W x Y induced by 7 and v,
set B/ := ¢(E) C W x Y,and let 7’: E' — W be the projection. For every p € W we have
77 (p) = ¢~ 1((7")~(p)), hence (7') ~1(p) = (7~ (p)) C Y is an irreducible and reduced
rational curve in Y.

Now 7’: E/ — W is a well defined family of algebraic one-cycles on Y over W (see [15,
Definition 1.3.11 and Theorem 1.3.17]), and induces a morphism ¢: W — Chow(Y"). Set
V = (W) C Chow(Y). Then V is a proper, covering family of irreducible and reduced
rational curves on Y, so that V' is an unsplit family (see [15, Definition 1V.2.1]).

The family V' induces an equivalence relation on Y as a set, called V-equivalence; we refer
the reader to [12, §5] and references therein for the related definitions and properties.

We have Z; - ¢¥o(f) > 0; in particular Z; intersects every V-equivalence class in Y. This
implies that

W1(Y) = Rl ()] + V1 (Z1,Y)
(see for instance [18, Lemma 3.2]). On the other hand by assumption A1 (Z1,Y) C A1 (Y),
therefore [¢o(f)] € V'1(Z1,Y).

Let T C Y be a V-equivalence class; notice that T is either a closed subset, or a countable
union of closed subsets. Let Ty C T be an irreducible closed subset with dim 77 = dim T'. We
have V"1 (T1,Y) = Rlo(f)] by [15, Proposition IV.3.13.3], and T} N Z; # @. This implies
that dim(7h N Z;) = 0 and dim7T = dim T} = 1, that is: every V-equivalence class has
dimension 1. Then by [8, Proposition 1] there exists a contraction {: Y — Y’ whose fibers
coincide with V-equivalence classes.

Since Y is smooth, Y is irreducible, and ¢ has connected fibers, the general fiber I of { is
irreducible and smooth. But [ is a V-equivalence class and dim! = 1, hence I = P! and
—Ky -1 = 2. Moreover NE(¢) = Rxl[l], so —Ky is ¢-ample; this implies that ¢ is an

4¢ SERIE - TOME 45 —2012 - N° 3



ON THE PICARD NUMBER OF DIVISORS IN FANO MANIFOLDS 393

elementary contraction and a conic bundle, and that Y’ is smooth (see [1, Theorem 3.1]).
Finally ¢ cannot have singular fibers, because the family V' is unsplit. O

Let us carry on with the proof of Proposition 3.2.1. We have v*(Z1) - fo = (E1 + E1) - fo > 0,
and V'1(Z1,Y) C Z3 C N'1(Y) because Z; N Zo = & (see Remark 3.1.2). Therefore we
can apply Lemma 3.2.25 to Ey and ¢ := (%) g, : Eo — Y. This shows that [¢(fo)] belongs
to an extremal ray of Y, whose contraction is a smooth conic bundle (: Y — Y.

We consider the composition ¥’ :=(o: X —Y’; the cone NE(¢/) is a
(cx + 1)-dimensional face of NE(X) containing Ro, R1,...,Rex—1,R1,...,Rex—1, and
pyr =px —cx — L.

Now we proceed similarly to the previous case. Let us consider the divisor

onX.Wehave H - Ry > 0, H - R; > 0 and H' - R, > 0foreveryi = 1,...,ex — 1,
and (H')L D L. As before, H' is nef and defines a contraction onto a surface ¢: X — S,
such that &'(Ey), ¢'(E;), and 5’(1/?\1-) are irreducible rational curves and Ey = (¢')*(¢'(Ey)),
E; = (&) (€' (Ey)), E; = (&)*(¢'(Ey)) foralli =1,...,cx — 1.

X T ch—l

NG

S Y’

Then we consider the morphism 7/: X — S x Y’ induced by & and ’. As in the
previous case, one sees first that #’ is finite, and then that it is an isomorphism, applying
Remark 3.2.23. Finally we have pg = cx + 1, because py = px —cx — 1.

3.2.26. — We have shown in 3.2.21 and 3.2.24 that X = S x T, where S is a Del Pezzo
surface with ps = ¢x + 1 (and T = Y in 3.2.21, while T = Y” in 3.2.24). In particular
cx < 8,as pg < 9. Finally cr < c¢x by Example 3.1, and this concludes the proof of
Proposition 3.2.1. O

3.3. The case of codimension 3

In this section we show the following.

PropPOSITION 3.3.1. — Let X be a Fano manifold with cx = 3. Then there exists a flat,
quasi-elementary contraction X — T where T is an (n — 2)-dimensional Fano manifold,
PX — PT =4, andcT S 3.
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Proof. — By Corollary 3.2.2, there exist a prime divisor D C X with codim A", (D, X) = 3,
and a special Mori program for — D, such that Qr ¢ A1 (Dg, Xk).

(3.3.2) X:XO:CTO>X17 — > e — 7>Xk lgkzngk
\\\\\ J/SD
TZ\\\‘-———>Y

We apply Lemmas 2.7 and 2.8. By 2.7(2) and 2. 7(3) there exist exactly two indices
i1,i2 € {0,...,k — 1} such that Q;, ¢ A'1(Dy,,X;,); the P'-bundles E1, E; C X
determined by the Mori program are the transforms of Exc(cf“) Exc(o,) respectively. Let
moreover El, Eg C X be as in 2.8(4). Recall that for i = 1,2 E; (respectlvely, E, ) is a
smooth P!- bundle with fiber f; C E; (respectlvely, fz CE; ) such that E;,-f;= E fz = -1,
E;- fl > 0, and E - fi > 0. Moreover (E; U El) (B2 U E2)

3.3.3. — Before going on, let us give an outline of what we are going to do.

Our goal is to show that £ = 2 and o is just the composition of two smooth blow-ups with
exceptional divisors F; and Fs. The proof of this fact is quite technical, and will be achieved
in several steps.

We first show in 3.3.4 some properties of V"1 (E;, X) and A (E, X) which are needed in
the sequel.

In 3.3.6 we prove that if I C X is a prime divisor whose class in 7/ 1(X ) spans a one-
dimensional face of the cone of effective divisors Eff(X) c 4! (X) (see 3.3.5), then F must
intersect both £; U E; and E; U Es.

Then we show in 3.3.7 that the Mori program (3.3.2) contains only two divisorial contrac-
tions, the ones with exceptional divisors E; and E5. We proceed by contradiction, applying
3.3.6 to the exceptional divisor of a divisorial contraction (different from o;, and o;,) in the
Mori program.

—

which are smooth P'-bundles with fibers | C F, Tc Fsuchthat F-1 = F -
which are horlzontal for the rational conic bundle ¥: X --» Y, and intersect the divisors
Eq, Es, El, E2 in a suitable way.

In 3.3.9 and 3.3.10 we prove the existence of two disjoint prime divisors FF C X ,
Il =

’

Finally in 3.3.11 and 3.3.13 we use F' and F to show that the Mori program (3.3.2)
contains no flips. This means that k¥ = 2, X5 and Y are smooth, o is just a smooth blow-
up with exceptional divisors £ and Es, and ¢ and v are conic bundles.

The situation is now analogous to the one in 3.2.24, and similarly to that case we prove
that there is a smooth conic bundle Y — Y, where dimY’ = n — 2 (see 3.3.15). We have
px — py' = 4, and the contraction X — Y is flat and quasi-elementary.

To conclude, in 3.3.16 we show that the conic bundle ¢: Xs — Y is smooth. This implies
that every fiber of the conic bundle ¢y: X — Y is reduced, and hence by a result in [21] both
Y and Y’ are Fano.
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3.3.4. — Fori =1, 2 we have:
codim 'y (E;, X) = codim W1 (E;, X) = 3, [fi] ¢ V1(E;, X), and [f;]) & V1 (E;, X);

in particular 'y (E;, X) # V1 (E;, X).
Indeed [ﬁ] g N1(E;, X) by 2.8(4). Moreover D cannot contain any curve ﬁ-, because
o(f;)isafiber of ¢, and ¢ is finite on Dy, C X. Therefore Lemma 3.1.10 yields the statement.

3.3.5. — Let Z bea Mori dream space, and Eff (Z) c " (Z) the convex cone spanned by
classes of effective divisors. By [13, Proposition 1.11(2)] Eff (Z) is a closed, convex polyhedral
cone. If F' C Z is a prime divisor covered by a family of curves with which F' has negative
intersection, then it is easy to see that [F] € 4" (Z) spans a one-dimensional face of Eff(Z),
and that the only prime divisor whose class belongs to this face is F' itself. In particular, this
is true for F1, Es, E\l, /E\g C X (recall that X is a Mori dream space by Theorem 2.1).

3.3.6. — Consider a prime divisor F' C X such that [F] spans a one-dimensional face
of Eff(X). We show that if F' is different from E;, Es, F1, E», then F must intersect both
E1 @] E1 and E2 @] EQ.

Indeed if for instance F is disjoint from F; U E\l, then
W 1(Er, X)UN 1(E1, X) C By nEy NF+
(see Remark 3.1.2). However this is impossible, because since [Es], [Es], [F] € V' (X)
span three distinct one-dimensional faces of Eff (X), they must be linearly independent, thus

Esn E} N F+ has codimension 3, while /"1 (E;, X) and /", (E\l, X) are distinct subspaces
of codimension 3 by 3.3.4.

3.3.7. — Let us show that o; is a flip for every ¢ € {0, ...,k — 1} \ {41, 2}, namely that
0;, and o;, are the unique divisorial contractions in the Mori program (3.3.2).

By contradiction, suppose that there exists ¢ € {0,...,k — 1} ~ {i1,42} such that
o; is a divisorial contraction. By 3.3.5 Exc(o;) C X; is a prime divisor whose class spans
a one-dimensional face of Eff(X;), and it is the unique prime divisor in X; with class
in Rzo[EXC(O’i)].U)

Let G C X be the transform of Exc(o;). By 2.8(3) and 2.8(4) there exists an open subset
U C X, containing E, Fs, E\l, /E\Q, such that o is regular on U, and Exc(o;) is disjoint from
the image of U in X;. Therefore G N U = &, in particular the divisor G is disjoint from
Ey, B, Ey, E.

Then 3.3.6 shows that [G] € "' (X) cannot span an extremal ray of Eff (X). This means
that [G] = 37, A;[G;] with \; € R and G; C X prime divisors such that [G] € Rxo[G];
in particular G; # G.

On the other hand, the map £ := o;_1 0---00g: X --» X, induces a surjective linear
map &, : A (X) — A (X;) such that £, (Eff (X)) = Eff(X) Then in /™ (X;) we get

[Exc(o;)] = [£.(Q))] Z)\ [£.(G

(3 Notice that X; is again a Mori dream space.
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hence [£.(G;)] € R>o[Exc(o;)] for every j. If £,(G;) # 0 for some j, then &, (G;) is a prime
divisor, and we get £, (G;) = Exc(o;) and hence G; = G, a contradiction. Thus £,(G;) =0
for every j, therefore [Exc(o;)] = 0, again a contradiction.

3.3.8. — Let F C X be a smooth prime divisor which is a P!-bundle with F - [ = —
where | C F'is a fiber. Suppose that F' is different from F4, Fo, E, F5. Then:

— F must 1ntersect both E; U E1 dnd Ey U E2,
— either E; - l—El l=FE,- l—E2 =0, 0r(E1+E1) Il >0and (E2+ E3) -1 > 0.

By 3.3.5 [F] spans a one-dimensional face of Eff (X), so that 3.3.6 gives the first statement.

Recall that (E; U El) N(EyU E\g) =o. If (B, + El) -1 =0, since F intersects F U El,
there exists a fiber [ of the P!-bundle structure of F which is contained in E; U E\l. Thus
N (EQ U E,) = @, and we get (E; 4+ E5) - 1 = 0. In this way we see that the intersections
(E1 + El) L, (Es + Eg) [ are either both zero or both positive, and this gives the second
statement.

3.3.9. — We show that there exist two disjoint smooth prime divisors F, Fcx , different
from E4, E5, Eq, Es, such that:

~ Fand F are P'- bundles, w1th fibers! C F andl cF respectlvely, such that Fl=F-1=-
— the intersections (E; + El) L, (Ey+ El) l (B2 + Ez) I, (Es + Eg) T are all posmve

We have codim A1 (F1,X) = 3 (see 3.3.4). Consider a special Mori program for —F;
(which exists by Proposition 2.4), and let G4,...,Gs, C X be the P*-bundles determined
by the Mori program. Recall from Lemma 2.7 that G4, . . ., G5 are pairwise disjoint smooth
prime divisors, with 2 < s < 3, such that every G; is a P!-bundle with G; - r; = —1, where
r; C G;is aﬁber moreover E - i > 0. In particular G; # E1 and G;NE; # J,thus G; # FE»
and G; # E2 Finally, if G; # El, by 3.3.8 we have (E; +E1) r; > 0and (Eg +E2) r; > 0.

Suppose that {G, . .., G} contains at least two divisors distinct from El, say G1 and Gs.
Then we set F' := G and F .= G2, and we are done.

Otherwise, we have s = 2 and Gy = E'\l. Then Lemma 2.8 applies, and by 2.8(4) there
exists a smooth prime divisor @2, having a P'-bundle structure with fiber 7, such that:

62-?2:—1, Glﬂ/G\QZQ, é\z#El, and E\l“/f‘\gzl

In partlcular G2 #* El and Gg N E1 # &, therefore Gz # Fs and G2 7& Eg By 3.3.8 we have
(B + El) 72 > 0and (Fy + EQ) 75 > 0, thus we set F' := G and F .= Gg

3.3.10. — Assoonas F (respectlvely F) mtersects one of the divisors El, then F- f; >0
and E; - [ > 0 (respectively F- fi>0and E; - 7> 0), and similarly for E;. In particular we
have F'- f > 0and F' - f > 0, where f is a general fiber of 1.

Suppose for instance that F N E; # @. If Ey -1 = 0, then E; contains some curve [, but
this is impossible because (Eq + Eg) -1 > 0while £y N (Ey U Eg) = @;thus E; -1 > 0.

If F-f; = 0, then F contains an irreducible curve f, which is a fiber of the P! -bundle struc-
ture on FE;. Let 7:F—G be the P!bundle structure on F, and
me: N1(F) — N 1(G) the push-forward. Notice that w(f;) is a curve, because f; and
[ are not numerically equivalent in X, and hence neither in F'.
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Consider the surface S := 7 1(n(f;)). Then m.(AV1(S,F)) = Rm.([f1]r), hence
H1(S, F) =kerm. ® R[f1]r = R[l]r ® R[f;]F, and V1 (S, X) = R[I] ® R[f1].

Since J/E’\l - f, > 0, we have SN /E\l # &, and there exists an irreducible curve C C SN El.
Thus [C] € 1(S, X), so that C = M + pf; with A, u € R. On the other hand C N (B, U Ey) = @
(because C C F4) and

0=(E2+E)-C=\Ez+EB) -1,
which by 3.3.9 yields A = 0, p # O and [f1] = (1/p)[C] € Wl(ﬁl,X), a contradiction with
3.3.4.

Therefore F' - f; > 0. We have f = f; + fl (see 2.8(4)), and F - fl > 0 because F' # El

(see 3.3.9), hence F' - f > 0.

3.3.11. — Foreveryi € {0,...,k}let F;, F, C X, be the transforms of F, F. Let us show
that for any i € {0,...,k — 1} \ {41, 2}, the divisors F; and F; are disjoint from Locus(Q);).

By contradiction, suppose for instance that this is not true for F, and let
j € {0,...,k — 1} ~ {41,492} be the smallest index such that F; intersects Locus(Q;).
Recall from 3.3.7 that o, is a flip for every i € {0, ...,k — 1} \ {¢1, ¢2}; in particular, Q; isa
small extremal ray, and o is a flip.

After 2.8(3), o is regular on the divisors F1, Es, E\h E\g, and Locus(Q);) is disjoint from
their images in X;.

Recall from 2.6(4) the definition of 4; C X;, fori € {1,...,k}: Ay C X is the
indeterminacy locus of o ! and fori > 2, if o;_; is a divisorial contraction (respectively,
if o;_1 is a flip), A; is the union of o;_1(A;_1) (respectively, the transform of A;_;) and the
indeterminacy locus of o; .

If j > 0, by the minimality of j, F; does not intersect the loci of the previous flips, hence
it can intersect A; only along the images of E; and E5. Therefore

(3.3.12) Locus(Q;) N F; NA; = @.

Let o;: X; — Y; be the contraction of @;. Suppose first that o is finite on F;. Then
Locus(Q,) = Exc(a;) ¢ Fj, and since F; N Locus(Q;) # @, we have F; - Q; > 0. Hence
every non trivial fiber of o;; must have dimension 1, otherwise o;; would not be finite on Fj.

If j = 0, then «q is a small contraction of a smooth Fano variety with one-dimensional
fibers, which is impossible, see [3, Theorem 4.1].

Suppose that j > 0. If Cy C Xj is an irreducible curve in a fiber of «;, then Cp must
intersect Fj, hence Cy ¢ A; by (3.3.12); in particular Cy ¢ Sing(X,) (recall that
Sing(X;) C A; by 2.6(4)). Then [14, Lemma 1] yields —Kx, - Co < 1, and [1 ], Lemma 3.8]
implies that C’O NA; = @. We conclude that Locus(Q;) C X; \ A;, and this is again impos-
sible by [3, Theorem 4.1], because —Kx, - Q; > 0 and (o) x,~ 4, Xj ~ Aj — Y~ a;(4;)
is a small contraction of a smooth variety with one-dimensional fibers.

Suppose now that ¢ is not finite on F}. Then there exists an irreducible curve Cy C Fj
with [C1] € Q; R in particular C1 is disjoint from the images of F, Fs, El, E2 in X;. Consider
the transform C1 C F C X of Cy, so that C’1 is disjoint from Fy, Es, El, E2
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Recall that F' intersects both E; U E\l and Ey U ]/57\2 by 3.3.8. We assume that F' intersects
E, and E», the other cases being analogous. Then E; -1 > 0 by 3.3.10, so that using 3.1.3(3)
we get

51 = AN+ pCs,
where Cy C FN Eyisacurve, A\, u € R, and p > 0. In particular Co N By = &, therefore
0=E,- 51 = AEj5 - I. On the other hand E5 - I > 0 by 3.3.10, and this implies that A = 0
and 51 = pCy. Recall that the map X --» X is regular on F' by the minimality of j, and
call C the image of C5 in X ;. We deduce that C; = pCj in X, so that [C)] € Q;. But Cj is
contained in the image of E4, which is disjoint from Locus(@Q);), and we have a contradiction.

3.3.13. — We show that k = 21in (3.3.2), so that 4; = 0 and i» = 1.

By contradiction, suppose that k > 2. Recall from 3.3.7 that o; is a flip for every
i € {0,...,k — 1} ~ {i1,42}, so equivalently we are assuming that the Mori program
(3.3.2) contains some flips.

We define an integer m € {k—3,k—2,k—1} and a morphismn: X,,,11 — X as follows:

— if o_y isaflip,setm =k — 1and n := Idx,;
— if o1 is a contraction and o_o isaflip,set m :=k —2and n := o _1: Xp_1 — Xg;
— if both o;_1 and o,_ are contractions, set m := k—3 and n := ox_g00%_1: Xx_2 — Xx.

It follows from these definitions that @, is a small extremal ray of X, and
Om: Xm -+ Xmmg1 is aflip; let @, be the corresponding small extremal ray of X, 1.
Set moreover @ :=pon: Xy — Y.

We keep the same notations as in the proof of Lemma 2.8; in particular we set
T; .= o(E;) C Xy fori = 1,2. Notice that when m = k — 2 (respectively, m = k — 3), n is
just the smooth blow-up of 7o C X, (respectively, of T3 U Ty C Xy).

Recall that for j = 1,2 we have Q;; ¢ N '1(D;;, Xy, ), in particular oy, is finite on D;_; this
implies that 7 is finite on D, 1.

We show that every fiber of ¢ has dimension 1. Indeed this is true for ¢ by 2.8(1). Moreover
n is an isomorphism over X ~ (T} U T5), therefore ¢ has one-dimensional fibers over
Y \ ¢(T1 UT3). On the other hand, we know by 2.8(3) that there exist open subsets U C X
and V' C Y such that (T, UTy) C V,both¢: U — V and pj,-1vy: ¢ (V) — V are
conic bundles, and oyy: U — ¢~ (V) is just the blow-up of T} and T,. This implies that
6‘5_1 Rk @ 1(V) — V is a conic bundle, in particular it has one-dimensional fibers over
(p(Tl @] T2) cV.

Recall from 2.8(1) that ¢ is finite on Dy, = n(D,,+1), and since 7 is finite on Dy, 41, We
deduce that ¢ must be finite on D,,;1. Notice also that Dy, 1 D Apy1 2 Locus(@Q),4 1)
(see 2.6(4)). As in the proof of Lemma 2.8, using [1 |, Lemma 3.8] we see that every fiber of @
which intersects Locus(Q;,,, 1) is an integral rational curve.
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Let C C X,,41 be an irreducible curve with [C] € Q).+, and set S := ¢~1($(C)), so
that S is an irreducible surface.

Since, by 3.3.10, F and F have positive intersection with a general fiber of ¢ in X, F,, 11
and ﬁm—i—l have positive intersection with every fiber of ¢ in X,,,+1. In particular, F,,; and
I/J‘\mﬂ intersect S.

On the other hand by 3.3.11 the divisors F},, and Z/T\m in X, are disjoint from Locus(Q,,),
therefore 41 and F,, 1 are disjoint from Locus(Q, ). We deduce that:

(33.14) Fn1NC=FpnnC=2 and dim(FnsqnS) = dim(FpynS) =1

For i = 1,2 call G; the image of E; in X,,1, so that T; = n(G;) and o(T;) = @(G;).
Notice that A ~ (T1 U TQ) = ’I](Am+1 N (G1 U GQ))
Recall that the open subset V' C Y was defined in (2.10) as

V=Y Nl (1UT) =Y N @ (Ans ~ (G1UGR)).

By 2.7(1) and 2.8(2) we have Locus(Q,,;)N(G1UG:2)=a. In particular
C C Locus(@,41) € Amt1 ~ (G1 U Gy), thus

G(C)CY V.

On the other hand we also have ¢(G1 U G2) = ¢(T1 UT,) C V, therefore we deduce that
»(G1 UG2) N@(C) = @ and hence

(G1UG2)QS:@.

Finally by 3.3.9 we have F' N F = oin X, and by 3.3.11 the divisors F' and F
are disjoint from the locus of every flip in the Mori program (3.3.2). This implies that
Foi1 N Frqp1 € Gy U G, therefore:

Fm+1 n ﬁm—i—l N S = .

Together with (3.3.14), this yields that C, F;,,+1NS, and F\mﬂ NS are pairwise disjoint curves
inS.

Let C’ be an irreducible component of F\mﬂ N S. Since p|s: S — ¢(C) is a fibration in
integral rational curves, we have C' = AC + pf where A\, x € Rand f C S is a fiber. Then
0= Fpt1-C' = pFpqq - fwhile Frpp g - f >0, hence p = 0 and [C'] € Q. Therefore
C’" C Locus(Q}, 1) N Finy1, a contradiction because Locus(Q), 1) N Frpy1 = 9.

3.3.15. — Since k = 2, X5 is smooth and o: X — X5 is just the blow-up of two disjoint
smooth subvarieties 77,75 C X5, of codimension 2. In fact, we have A, = T; U T (see
2.6(4)), and by (2.10) the description in 2.8(3) and 2.8(4) holds with V =Y and U = X. In
particular, Y is smooth, ¢p: Xo — Y and ¢: X — Y are conic bundles, px — py = 3, and
the divisors Z; = ¢(FE1) and Z3 = 1(FEs) are disjoint in Y. Moreover we have ¢(F') =Y by
3.3.10.

The situation is very similar to the case where ¢ is finite on (Ep)s in 3.2.24, with the
difference that the F;’s do not need to be products. In the same way we use Lemma 3.2.25 to
show that [¢(1)] € NE(Y') belongs to an extremal ray of Y, whose contraction is a smooth
conic bundle ¢: Y — Y, finite on Z; and Z,; in particular Y’ is smooth of dimension n — 2.
The contraction ¢’ := (o1: X — Y is equidimensional and hence flat, and px — py+ = 4.
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Moreover the general fiber of ¢’ is a Del Pezzo surface S containing curves f1, ﬁ, f2, ]?2, l,
hence "1 (S, X) = ker(¢’), and ¢’ is quasi-elementary.

X*O>X2

¥ @
Y/ <T Y
3.3.16. — We show that the conic bundle ¢: X5 — Y is smooth.

By contradiction, suppose that this is not the case, and let A, C Y be the discriminant
divisor of ¢. Recall that this is an effective, reduced divisor in Y such that ¢ ~!(y) is singular
ifand only ify € A,,.

Consider also the discriminant divisor A, C Y of the conic bundle ): X — Y. Since ¢ is
smooth over Z; and Z,, the divisors Ay, Z1, Z are pairwise disjoint, and Ay, = A,UZUZ;.

The fibers of ¢ over Z; U Z, are singular but reduced, hence ¢~ (y) is non-reduced if and
only if ¢! (y) is. Let W C A, be the set of points y such that ¢~ (y) (equivalently, o~ (y))
is non-reduced. Then W is a closed subset of Y, and W C Sing(A,,) (see for instance [19,
Proposition 1.8(5.¢)]). Moreover by [21, Proposition 4.3] we know that —Ky - C' > 0 for
every irreducible curve C' C Y not contained in W.

For ¢ = 1,2 we have codim#'1(Z;,Y) < 1, because ((Z;) = Y’ and hence
CG(N1(Z:,Y)) = N1(Y'). This yields Zi* = Z3 = AL = N1(Z1,Y) = N1(Zp,Y)
(see Remark 3.1.2). The three divisors A, Z1, Z, are numerically proportional, nef, and
cut a facet of NE(Y'), whose contraction 3: Y — P! sends Ay, Z1, Z5 to points (see [10,
Lemma 2.6]). Even if a priori we do not know whether every curve contracted by § has
positive anticanonical degree, the general fiber of 8 does not meet W, therefore it is a Fano
manifold. Moreover NE(3) is generated by finitely many classes of rational curves (see
[10, Lemma 2.6]). Thus the same proof as [11, Lemma 4.9] yields that Y = P! x Y’, and
A, = {pts} xY".

In particular A, is smooth, hence W = @ and Y is Fano. Because Y = P! x Y', V' is
Fano too, so that each connected component of A, is simply connected. However this is
impossible, because by a standard construction the conic bundle ¢ defines a double cover of
every irreducible component of A, obtained by considering the components of the fibers in
the appropriate Hilbert scheme of lines, see [4, §1.5] and [19, §1.17]. Since ¢ is an elementary
contraction, this double cover is non-trivial; on the other hand it is also étale, because every
fiber of ¢ is reduced, and we have a contradiction.

3.3.17. — Since p: X5 — Y is smooth, every fiber of the conic bundle ¥: X — Y is
reduced. Then [21, Proposition 4.3] shows that Y and Y’ are Fano. Finally ¢y < 3 by the
following remark, which concludes the proof of Proposition 3.3.1. O

REMARK 3.3.18. — Let X be a Fano manifold, ¢: X — Y a surjective morphism, and
DcX a prime divisor We have WNV1(o(D),Y)=p.(VN1(D,X)), hence
codim A1 (D, X) > codim N '1(p(D),Y). In particular, if Y is a Fano manifold, then
Cy < Cx.
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4. Applications
In this final section we prove the results stated in the introduction.

Proof of Theorem 1.1. — We have cx > codimAN(D,X) > 3.If cx = 3, The-
orem 3.3 yields (ii). If instead cx > 4, applying iteratively Theorem 3.3, we can write
X =8; x---x 8, x Z, where S; are Del Pezzo surfaces, » > 1, and Z is a Fano manifold
with ¢z < 3.

If D dominates Z under the projection, up to reordering Sy, ...,S, we can assume that
D dominates Sy X - -+ x S, x Z. Then codim A1 (D, X) < ps, — 1 (see Example 3.1), and
we get (1).

Suppose instead that D = S; x --- x S, x Dz, where Dz C Z is a prime divisor. Then

3>cz > codimN'1(Dyz, Z) = codim N1 (D, X) > 3,

and the inequalities above are equalities. Therefore again by Theorem 3.3 we have a flat,
quasi-elementary contraction Z — W, where W is a Fano manifold with
dim W = dim Z —2, and pz — pw = 4. Then the induced contraction X — S; x---x S, xW
satisfies (i1). O

Proof of Corollary 1.3. — We have cx > codimA;(D,X) > 3. Suppose that X is
not a product of a Del Pezzo surface with another variety. Then Theorem 3.3 shows that
cx = 3 and there is a quasi-elementary contraction X — T where T is a Fano manifold,
dimT =n — 2, and px — pr = 4. If n = 4, [10, Theorem 1.1] implies that p < 2, hence
px < 6. The case n = 5 follows similarly. O

LemMaA 4.1. — Let X be a Fano manifold, D C X a prime divisor, and ¢: X — Y a
contraction. Then codim V1 (p(D),Y) < 8.

Suppose moreover that codim N1 (¢(D),Y) > 4. Then X 2 SX T andY = W X Z, where
S is a Del Pezzo surface, W is a blow-down of S, and codim ¢(D) < 2. More precisely, one of
the following holds:

(1) (D) is a divisor in'Y, and dominates Z under the projection;
(i) ¢(D) ={p} x Zand D = C x T, where C C S is a curve contractedtop € W.

Proof. — We have codim A1 (p(D),Y) < codimA'1(D,X) < 8 by Remark 3.3.18
and Theorem 1.1. Suppose that codim V1 (¢(D),Y) > 4. Then, again by Theorem 1.1,
X = S x T where S is a Del Pezzo surface, and D dominates T' under the projection.
Therefore Y =2 W x Z, ¢ is induced by two contractions S — W and f: T — Z, and
(D) dominates Z under the projection.

In particular dim W < 2 and dim "1 (¢(D),Y) > pz, hence py > codim A1 (¢(D),Y) > 4.
This implies that dim W = 2, thus W is a blow-down of S, and ¢(D) has codimension 1 or
2inY.

If ¢(D) is a divisor, we have (i). Suppose that codim (D) = 2, and consider the

factorization of p as S x T YW T S WxZ. Then ¢ = (Idw, f) induces an isomorphism
W x{t} - W x{f(t)} foreveryt € T.Iftis general, we have dim p(D)N (W x {f(t)}) =0
and (D) N (W x {t}) =2 (D) N (W x {f(¢)}). This implies that ¢)(D) has codimension 2
in W x T, hence D is an exceptional divisor of ¢, which gives the statement. O
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Corollary 1.4 follows from Theorem 1.1, while Corollary 1.5 is a straightforward applica-
tion of Lemma 4.1 (just take the Stein factorization of ¢).

Proof of Corollary 1.6. — By taking the Stein factorization, we can assume that ¢ is a
contraction; we also assume that py > 6. By [10, Lemma 2.6] we know that Y has some
elementary contraction ¢: Y — Z, and dim Z > 2 because pz > 5.

We define a prime divisor D C X depending on 1, as follows. If dim Z = 2,let D € X
be any prime divisor such that dim ¢(¢(D)) = 1. If ¢ is birational and divisorial, let D C X
be a prime divisor such that ¢(D) C Exc(¢). If ¢ is birational and small, its lifting in X (see
[10,§2.5]) must be an elementary contraction of type (n—1, n—2)*™; let D be its exceptional
divisor: then again we have (D) C Exc(v).

In any case dim /A" (¢(D),Y) < 2, so that Lemma 4.1 implies the statement. O
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