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KAROUBI’S RELATIVE CHERN CHARACTER
AND BEILINSON’S REGULATOR

 G TAMME

A. – We construct a variant of Karoubi’s relative Chern character for smooth varieties
over C and prove a comparison result with Beilinson’s regulator with values in Deligne-Beilinson
cohomology. As a corollary we obtain a new proof of Burgos’ Theorem that for number fields Borel’s
regulator is twice Beilinson’s regulator.

R. – Nous construisons une variante du caractère de Chern relatif de Karoubi pour les
variétés lisses sur C et prouvons un résultat de comparaison avec le régulateur de Beilinson à valeurs
dans la cohomologie de Deligne-Beilinson. En corollaire, nous obtenons une nouvelle preuve du
théorème de Burgos que, pour un corps de nombres, le régulateur de Beilinson est deux fois le régulateur
de Borel.

Introduction

In a series of papers [25, 26, 27, 29] Karoubi introduced relative K-theory for Banach
algebras A (the homotopy fibre of the map from algebraic to topological K-theory) and
constructed the relative Chern character

Chrel
i : Krel

i (A)→ HCcont
i−1 (A)

mapping relative K-theory to continuous cyclic homology. He also mentioned a geometric
version of his relative Chern character and the possible connection with regulators.

The objective of this paper is to make these relations precise in the case of smooth affine
varieties X over C. In this situation the cyclic homology decomposes into a product of
cohomology groups of the truncated de Rham complex and the relative Chern character
becomes a morphism

Chrel
n,i : K

rel
i (X)→ H2n−i−1(X,Ω<nX ).

We may formulate our main result as follows.
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602 G. TAMME

T. – Karoubi’s relative Chern character factors naturally through a morphism

Krel
i (X)→ H2n−i−1(X,C)/FilnH2n−i−1(X,C)

which we denote by the same symbol. The diagram

Krel
i (X) //

Chrel
n,i

��

Ki(X)

ChD
n,i

��
H2n−i−1(X,C)/FilnH2n−i−1(X,C) // H2n−i

D (X,Q(n)),

where ChD
n,i is Beilinson’s Chern character with values in Deligne-Beilinson cohomology, com-

mutes.

As an application we give a new proof for the comparison of Borel’s and Beilinson’s
regulators—the case X = Spec(C):

C (Burgos’ Theorem [6]). – Borel’s regulator

K2n−1(C)→ R(n− 1)

is twice Beilinson’s regulator.

This result plays an important role in the study of special values of L-functions: Borel [4]
established a precise relation between his regulator and special values of zeta functions of
number fields. In [1] Beilinson formulated far reaching conjectures describing special values
of L-functions of motives up to non-zero rational factors in terms of his regulator. He also
proved that for a number field his regulator coincides with Borel’s up to a non-zero rational
factor (see also Rapoport’s report [32]). This enabled him to view Borel’s computations as a
confirmation of his conjectures in the case of a number field.

However, in order to exploit Borel’s result further and remove the Q×-ambiguity it is
important to have a precise comparison result for the regulators as provided by Burgos’
Theorem.

In [12] Dupont, Hain, and Zucker proposed a strategy for the comparison of both regu-
lators based on the comparison of Cheeger-Simons’ and Beilinson’s Chern character classes.
While there remained some difficulties in carrying this out, they were led to the conjecture
that the precise factor would be 2. This was then proven by Burgos using Beilinson’s original
argument.

So far Karoubi’s relative Chern character has not much been studied in Arithmetics. One
of its possible advantages is that it is defined in complete analogy in the classical, p-adic, and
even non commutative situation and thus gives a unifying frame for the study of regulators
in these different contexts. In the p-adic setting analogues of the results presented here have
been obtained in [37, 38].

Karoubi’s principal idea is to describe relative K-theory in terms of bundles with discrete
structure group on certain simplicial sets together with a trivialization of the associated
topological bundle. The relative Chern character is induced by secondary classes for these
bundles constructed by means of Chern-Weil theory.
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The first problem one encounters when trying to compare these classes with Beilinson’s
is that they live in the cohomology of the truncated de Rham complex which does not map
naturally to Deligne-Beilinson cohomology. It is therefore necessary to construct refinements
of these classes which are then to be compared with the corresponding classes in Deligne-
Beilinson cohomology.

Our approach to this is to generalize Karoubi’s formalism to simplicial manifolds and
systematically use what we call topological morphisms and bundles. The Chern-Weil theoretic
construction of secondary classes in this setup is described in Section 1. In the second section
we make essential use of the notion of topological morphisms in order to construct the
above mentioned refinements (Proposition 2.10) and compare them with Beilinson’s classes
(Theorem 2.11).

Our construction of the relative Chern character onK-theory is presented in Section 3. It
differs slightly from Karoubi’s original one. The comparison with Beilinson’s regulator then
follows formally from the results of the second section.

The corollary is finally proven in Section 4. By the theorem it reduces to a comparison
of Karoubi’s relative Chern character for X = Spec(C) and Borel’s regulator. A simi-
lar result has been obtained previously by Hamida [22]. She constructs an explicit map
K2n−1(C)→ Krel

2n−1(C) and composes it with the relative Chern character to obtain a map
defined on the K-theory of C rather than the relative K-theory. This is then compared with
Borel’s regulator.

Related to ours is the work of Soulé [35] who showed that Beilinson’s Chern character
ChD

n,i : Ki(X) → H2n−i
D (X,Q(n)) factors through the multiplicative K-theory of X which

may also be described in terms of bundles and connections on certain simplicial algebraic
varieties. However, the relation with the relative Chern character or Borel’s regulator is not
treated in that paper.

The results presented here are part of my Ph.D. thesis [36] at the Universität Regensburg.
It is a pleasure to thank my advisor Guido Kings for his guidance. I would like to thank the
California Institute of Technology, where this paper was completed, and especially Matthias
Flach for their hospitality. Finally, I would like to thank the referee for his or her careful
reading of the manuscript and several valuable suggestions improving the exposition of the
paper.

Notation

For a complex manifold Y the sheaves of holomorphic functions, holomorphic n-forms,
and smooth n-forms are denoted by OY ,ΩnY , and A n

Y , respectively. Global sections are
denoted by Ωn(Y ), etc.

The ordered set {0, . . . , p} is denoted by [p]. Simplicial objects are usually marked with a
bullet like X•. The ith face and degeneracy of a simplicial object are denoted by ∂i and si,
respectively. The ith coface of a cosimplicial object is denoted by δi. The geometric realization
of a simplicial set S• is denoted by |S•|.

If f : A• → B• is a morphism of cochain complexes, we define Cone(f) to be the complex
given in degree n byAn+1⊕Bn with d(a, b) = (−da, db−f(a)). The complexA[−1] is given
in degree n by An−1 with differential −d.
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604 G. TAMME

1. Karoubi’s secondary classes

1.1. De Rham cohomology of simplicial complex manifolds

Here we recall Dupont’s computation of the de Rham cohomology of simplicial manifolds
[10] in the setting of complex manifolds. This is fundamental for simplicial Chern-Weil theory
in the following sections.

Let X• be a simplicial complex manifold and denote by Ω≥rX• for r ≥ 0 the naively
truncated de Rham complex of sheaves of holomorphic forms, i.e. the rth step of the bête
filtration. Then we have

H∗(X•,Ω≥rX•) = H∗(Tot FilrA ∗(X•)),

where Tot FilrA ∗(X•) is the total complex associated with the cosimplicial complex
[p] 7→ FilrA ∗(Xp) =

⊕
k+l=∗,k≥r A ∗(Xp) (cf. [9, (5.2.7)]). For the purpose of simpli-

cial Chern-Weil theory we need another version of the simplicial de Rham complex. Let

∆p :=
{

(x0, . . . , xp) ∈ Rp+1
∣∣ xi ≥ 0,

∑p

i=0
xi = 1

}
⊂ Rp+1

denote the standard simplex. Then [p] 7→ ∆p is a cosimplicial space in a natural way. A
function or form on ∆p is called smooth, if it extends to a smooth function, resp. form on a
neighborhood of ∆p in {

∑
xi = 1} ⊂ Rp+1. We recall from [10]:

D 1.1. – A smooth simplicial n-form on a simplicial complex manifold X• is
a family ω = (ωp)p≥0, where ωp is a smooth n-form on ∆p × Xp, and the compatibility
condition

(δi × 1)∗ωp = (1× ∂i)∗ωp−1 on ∆p−1 ×Xp

i = 0, . . . , p, p ≥ 0, is satisfied. The space of smooth simplicial n-forms on X• is denoted
by An(X•).

The exterior derivative d and the usual wedge product applied component-wise make
A∗(X•) into a commutative differential graded C-algebra.

Moreover, A∗(X•) is naturally the total complex associated with the triple complex
(Ak,l,m(X•), d∆, ∂X , ∂̄X) where Ak,l,m(X•) consists of the forms ω of type (k, l,m), that is,
eachωp is locally of the form

∑
I,J,K fI,J,Kdxi1∧· · ·∧dxik∧dζj1∧· · ·∧dζjl∧dζ̄k1

∧· · ·∧dζ̄km ,
where x0, . . . , xp are the barycentric coordinates on ∆p and the ζj are holomorphic coordi-
nates on Xp. d∆, ∂X , ∂̄X denote the exterior derivative in ∆-and the Dolbeault-derivations
in X-direction, respectively. Write FilrA∗(X•) =

⊕
k+l+m=∗,l≥r A

k,l,m(X•).
On the other hand we have the triple complex (A k,l,m(X•), δ, ∂X , ∂̄X), where

A k,l,m(X•) = A l,m(Xk) and δ =
∑k
i=0(−1)i∂∗i : A k,l,m(X•)→ A k+1,l,m(X•).

T 1.2 (Dupont). – LetX• be a simplicial complex manifold. For each l,m ≥ 0 the
two complexes (A∗,l,m(X•), d∆) and (A ∗,l,m(X•), δ) are naturally chain homotopy equivalent.
The equivalence is given by integration over the standard simplex:

I : Ak,l,m(X•)→ A k,l,m(X•), ω = (ωp)p≥0 7→
∫

∆k

ωk.

In particular, we get natural isomorphisms

H∗(X•,Ω≥rX•) ∼= H∗(Tot FilrA ∗(X•)) ∼= H∗(FilrA∗(X•)).
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Proof. – This is essentially [10, Theorem 2.3]. One only has to check that the integra-
tion I, the homotopy inverse, and the homotopies constructed by Dupont in the proof of [10,
Theorem 2.3] respect the (l,m)-type. This is left to the reader (or see [36, Theorem 1.3]).

1.2. Bundles on simplicial manifolds

This section introduces the formalism of algebraic, holomorphic, and topological bundles
on simplicial varieties. We follow Karoubi’s approach [27, 28] describing bundles in terms of
their transition functions. This is perfectly suited for computations and the construction of
Chern character maps in K-theory as in Section 3.

D 1.3. – The classifying simplicial manifold for GLr(C) is the simplicial com-
plex manifold B•GLr(C), where

BpGLr(C) = GLr(C)× · · · ×GLr(C) (p factors),

with faces and degeneracies

∂i(g1, . . . , gp) =


(g2, . . . , gp), if i = 0,

(g1, . . . , gigi+1, . . . , gp), if 1 ≤ i ≤ p− 1,

(g1, . . . , gp−1), if i = p,

si(g1, . . . , gp) = (g1, . . . , gi, 1, gi+1, . . . , gp), i = 0, . . . , p.

The universal principal GLr(C)-bundle is the simplicial complex manifoldE•GLr(C), where

EpGLr(C) = GLr(C)× · · · ×GLr(C) (p+ 1 factors),

with faces and degeneracies

∂i(g0, . . . , gp) = (g0, . . . , gi−1, gi+1, . . . , gp), i = 0, . . . , p,(1.1)

si(g0, . . . , gp) = (g0, . . . , gi, gi, . . . , gp), i = 0, . . . , p.(1.2)

The canonical projection p : E•GLr(C)→ B•GLr(C) is given in degree p by

(g0, . . . , gp) 7→ (g0g
−1
1 , . . . , gp−1g

−1
p ).

Thus B•GLr(C) is the quotient of E•GLr(C) by the diagonal right action of GLr(C).
Obviously E•GLr(C) is a simplicial group and it operates from the left on B•GLr(C) ∼=
E•GLr(C)/GLr(C). Explicitly, this action is given by

(g0, . . . , gp) · (h1, . . . , hp) = (g0h1g
−1
1 , . . . , gp−1hpg

−1
p ).

We define B•G and E•G in the same way if G is a discrete group, a group scheme, etc.

D 1.4. – Let X• be a simplicial complex manifold. A holomorphic
GLr(C)-bundle on X• is a holomorphic morphism of simplicial complex manifolds

g : X• → B•GLr(C).

We also denote such a bundle by E/X• and call g the classifying map of E. The universal
GLr(C)-bundle Euniv is the bundle given by id : B•GLr(C)→ B•GLr(C).

A morphism α : g → h of GLr(C)-bundles on X• is a morphism of simplicial complex
manifolds α : X• → E•GLr(C), such that α · g = h with respect to the above mentioned
action. Every morphism is an isomorphism.
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606 G. TAMME

Note thatB•GLr(C) may also be viewed as the C-valued points of a simplicial C-scheme
which, by abuse of notation, will be denoted by the same symbol. We define an algebraic
GLr(C)-bundle on a simplicial C-scheme X• to be a morphism g : X• → B•GLr(C) of
simplicial C-schemes.

E 1.5. – Let Y be an arbitrary complex manifold and E a holomorphic vector
bundle of rank r. Choose an open covering U = {Uα, α ∈ A} of Y such that E

∣∣
Uα

is
trivial for each α ∈ A. A set of transition functions gαβ : Uα ∩ Uβ → GLr(C) defining
E yields a holomorphic map N1U =

∐
α,β∈A Uα ∩ Uβ → B1GLr(C) = GLr(C)

and the cocycle condition ensures that this map extends uniquely to a holomorphic map
g : N•U → B•GLr(C), where N•U denotes the Čech nerve of U , i.e. the simplicial
manifold which in degree p is given by NpU =

∐
α0,...,αp∈A Uα0

∩ · · · ∩ Uαp . Thus we get a
GLr(C)-bundle on N•U in the above sense.

E 1.6. – Again let Y be a complex manifold and in addition let S be a simplicial
set. Let O(Y ) denote the ring of holomorphic functions on Y and G the group GLr(O(Y )).
Then a G-fibre bundle (“G-fibré repéré”) on S in the sense of Karoubi [27, 5.1] may be
defined as a morphism of simplicial sets S → B•G (cf. the proof of [27, Théorème 5.4]).
But G = GLr(O(Y )) may be identified with the group of holomorphic maps Y → GLr(C)

and thus a morphism of simplicial sets S → B•G is equivalent to a morphism of simplicial
complex manifolds Y ⊗ S → B•GLr(C), where Y ⊗ S is the simplicial manifold given in
degree p by

∐
σ∈Sp Y with structure maps induced from those of S.

1.2.1. Topological morphisms and bundles. – The definition of a differential form on a sim-
plicial complex manifold leads to the following notion of what we call topological morphisms.

D 1.7. – A topological morphism of simplicial manifolds f : Y•  X• is a
family of smooth maps

fp : ∆p × Yp → Xp, p ≥ 0,

satisfying the following compatibility condition: For every increasing map φ : [p] → [q] the
diagram

∆q × Yq
fq // Xq

φX

��

∆p × Yq

φ∆×id
44

id×φY

**
∆p × Yp

fp // Xp

commutes. Here φ∆, φY , φX denote the (co)simplicial structure maps induced by φ.

Every holomorphic or smooth morphism of simplicial complex manifolds f : Y• → X•
induces a topological morphism f : Y•  X• by composition with the natural projections
∆p × Yp → Yp.
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Let f : Z•  Y• be a topological morphism. For every increasing φ : [p] → [q] we get a
commutative diagram

∆q × Zq
(pr∆q ,fq) // ∆q × Yq

∆p × Zq

φ∆×id
99

id×φZ

%%

(pr∆p ,fq◦(φ∆×id)) // ∆p × Yq

φ∆×id
99

id×φY

%%
∆p × Zp

(pr∆p ,fp) // ∆p × Yp.

(1.3)

D 1.8. – Let f : Z•  Y• and g : Y•  X• be topological morphisms. We
define the composition g ◦ f : Z•  X• to be the topological morphism given in degree p
by gp ◦ (pr∆p , fp) : ∆p × Zp → Xp.

For a simplicial form ω = (ωp)p≥0 ∈ An(Y•) we define the pullback of ω by f to be the
simplicial form f∗ω := ((pr∆p , fp)

∗ωp)p≥0 ∈ A
n(Z•).

From diagram (1.3) one sees that these are well defined.

D 1.9. – LetX• be a simplicial manifold. A topological GLr(C)-bundle onX•
is a topological morphism of simplicial manifolds

g : X•  B•GLr(C).

A morphism α : g → h of topological GLr(C)-bundles on X• is a topological morphism of
simplicial manifolds α : X•  E•GLr(C), such that α · g = h.

E 1.10. – Let S be a simplicial set, A a complex Fréchet algebra and A• the
simplicial algebra C∞(∆•)⊗̂πA, where C∞ denotes smooth complex valued functions
and ⊗̂π the projectively completed tensor product over C. The simplicial classifying set
B•GLr(A•) for the simplicial group GLr(A•) is by definition the diagonal of the bisim-
plicial set ([p], [q]) 7→ BpGLr(Aq). Karoubi defines a topological GLr(A)-bundle (= a
“GLr(A•)-fibré repéré”) on the simplicial set S to be a morphism S → B•GLr(A•) [27, 5.1,
proof of 5.4 and 5.26].

In the special case, where A is the ring of smooth complex valued functions C∞(Y ) on a
complex manifold Y , this gives a topological bundle on the simplicial manifold Y ⊗ S (cf.
Example 1.6) as follows:

First of all, there is a natural map C∞(∆p)⊗̂πC∞(Y ) → C∞(∆p × Y ). Next,
BpGLr (C∞(∆p × Y )) = C∞(∆p × Y,BpGLr(C)). Thus, a morphism of simplicial
sets f : S → B•GLr(A•) gives rise to a family of smooth morphisms

∆p × Y f(σ)−−−→ BpGLr(C), σ ∈ Sp, p ≥ 0.
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608 G. TAMME

That f is a morphism of simplicial sets is reflected in the fact that for every increasing
φ : [p]→ [q] and σ ∈ Sq the diagram

∆q × Y
f(σ) // BqGLr(C)

φB•G

��
∆p × Y

φ∆×id

OO

f(φ∗Sσ) // BpGLr(C)

commutes. Here φ∗S : Sq → Sp denotes the simplicial structure map induced by φ. Now the
collection of maps f(σ), σ ∈ Sp, defines a smooth morphism

f̃p : ∆p × (Y ⊗ S)p =
∐
σ∈Sp

∆p × Y
∐
f(σ)−−−−→ BpGLr(C)

and the commutativity of the above diagrams is equivalent to the fact that the family of maps
f̃p, p ≥ 0, defines a topological morphism Y ⊗ S  B•GLr(C) in our sense.

1.3. Chern-Weil theory

Chern-Weil theory on simplicial manifolds was developed by Dupont [11] and in the case
of simplicial sets (but more general structure groups) by Karoubi [27, 28]. We recall Karoubi’s
formalism and adapt it to the setting of topological bundles.

In order to define the notion of a connection, we have to introduce some more notation.
Any p-simplex x in the classifying space B•GLr(C) may be written as x = (g01, g12, . . . , gp−1,p).
Thus, if (g0, . . . , gp) ∈ EpGLr(C) is a p-simplex lying over x, then g01 = g0g

−1
1 etc. and

we define gji := gjg
−1
i for any 0 ≤ i, j ≤ p. If g : X•  B•GLr(C) is a topological

GLr(C)-bundle, we write gji for the smooth maps ∆p × Xp → GLr(C) obtained in the
above way. If g is a holomorphic bundle then gji factors through a holomorphic map
Xp → GLr(C) which, by abuse of notation, will also be denoted by gji.

D 1.11. – A connection in a topological GLr(C)-bundle g : X•  B•GLr(C)

is given by the following data: For any p ≥ 0 and any i ∈ [p] = {0, . . . , p} a matrix valued
1-form Γi = Γ

(p)
i ∈ A 1(∆p × Xp; Matr(C)) = Matr(A 1(∆p × Xp)) subject to the

conditions

(i) (φ∆ × id)∗Γ
(q)
φ(i) = (id× φX)∗Γ

(p)
i for any increasing map φ : [p]→ [q] and

(ii) Γi = g−1
ji dgji + g−1

ji Γjgji.

Here Matr denotes r× r-matrices. We view gji as a matrix of smooth functions on ∆p×Xp.
Thus dgji is a matrix valued 1-form on ∆p ×Xp.

If g is a holomorphic bundle, we call the connection holomorphic, if

Γi ∈ A 0,1,0(∆p ×Xp,Matr(C)) ⊂ A 1(∆p ×Xp; Matr(C))

(cf. the discussion before Theorem 1.2).

E 1.12. – Every topological GLr(C)-bundle g : X•  B•GLr(C) may be
equipped with the standard connection given by

Γi =
∑
k

xkg
−1
ki dgki,
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where x0, . . . , xp denote the barycentric coordinates of ∆p. If g is holomorphic, this connec-
tion is holomorphic.

D 1.13. – The curvature of the connection {Γi} is defined as the family of
matrix valued 2-forms

Ri := R
(p)
i := dΓ

(p)
i +

(
Γ

(p)
i

)2

∈ A 2(∆p ×Xp; Matr(C)),

p ≥ 0, i = 0, . . . , p.

Since in generalRi 6= Rj for i 6= j the entries of theR(p)
i , p ≥ 0, do not define a simplicial

form (but see Definition 1.15 below).

R 1.14. – (i) Let g, h : X•  B•GLr(C) be two bundles, α : g → h a morphism
of bundles and Γ = {Γi} a connection on h with curvature {Ri}. Then the pullback α∗Γ of
the connection Γ is defined by the family of forms

(α∗Γ)i = α−1
i dαi + α−1

i Γiαi,

where αi : ∆p × Xp → GLr(C) is the i-th component of the morphism α in simplicial
degree p. The curvature of α∗Γ is given by the family of 2-forms α−1

i Riαi.

(ii) IfE/X• is a topological bundle onX• given by g : X•  B•GLr(C), and f : Y•  X•
is a topological morphism, the pullback f∗E is given by g ◦ f . If Γ = {Γi} is a connection
on E, the induced connection f∗Γ on f∗E is given by

(f∗Γ)
(p)
i = (pr∆p , fp)

∗Γ
(p)
i .

Consequently, its curvature is given by the family of forms (pr∆p , fp)
∗R

(p)
i .

If Γ is the standard connection on E, then f∗Γ is the standard connection on f∗E, as
follows directly from the definitions.

D 1.15. – We define the n-th Chern character form Chn(Γ) of the connection

Γ = {Γi} to be the family of forms (−1)n

n! Tr
((
R

(p)
i

)n)
on ∆p ×Xp, p ≥ 0.

These forms do not depend on i since Ri = g−1
ji Rjgji by a straightforward computation.

We summarize the results of Chern-Weil theory:

T 1.16. – Let g : X•  B•GLr(C) be a topological bundle and Γ a connection
on g.

(i) Chn(Γ) is a closed 2n-form on X•, i.e. belongs to A2n(X•) and dChn(Γ) = 0.
(ii) The cohomology class of Chn(Γ) does not depend on the connection chosen.

(iii) If the bundle g and the connection are holomorphic, Chn(Γ) ∈ FilnA2n(X•). Moreover,
the class of Chn(Γ) in H2n(FilnA∗(X•)) = H2n(X•,Ω

≥n
X•

) does not depend on the
holomorphic connection chosen.

(iv) If h : X•  B•GLr(C) is a second bundle, and α : h → g is a morphism, then
Chn(α∗Γ) = Chn(Γ).

(v) If f : Y•  X• is a topological morphism, Chn(f∗Γ) = f∗Chn(Γ).
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Proof. – (i) Condition (i) in Definition 1.11 ensures that (φ∆ × idXq )
∗Tr((R

(q)
φ(i))

n) =

(id∆p×φX)∗Tr((R
(p)
i )n), hence the forms (−1)n

n! Tr
((
R

(p)
i

)n)
, p ≥ 0, are indeed compatible

and define Chn(Γ) ∈ A2n(X•). For the closedness cf. the proof of [27, théorème 1.19].
(ii) This follows from a standard homotopy argument (cf. the construction of secondary

forms in Section 1.4).
(iii) With the notations of Section 1.1 write

FiliA ∗(∆p ×Xp) =
⊕

k+l+m=∗,l≥i

A k,l,m(∆p ×Xp)

and similarly for matrix valued forms. These are subcomplexes and the product maps
Fili×Filj to Fili+j . Now, if the connection is holomorphic, Γi ∈ Fil1A 1(∆p×Xp,Matr(C)),
hence Ri = dΓi + Γ2

i ∈ Fil1A 2(∆p ×Xp; Matr(C)) and then also Chn(Γ) ∈ FilnA2n(X•).
The independence of the associated cohomology class of the holomorphic connection

chosen follows from a homotopy argument as before, where one has to take care about the
filtration [36, Lemma 1.34].

(iv), (v) These follow directly from Remarks 1.14 (i) and (ii) respectively.

D 1.17. – IfE/X• is a topological bundle, we write Chn(E) for the cohomol-
ogy class of Chn(Γ) in H2n(A∗(X•)) = H2n(X•,C), where Γ is any connection on E. If E
is holomorphic, we also denote by Chn(E) the class of Chn(Γ) in H2n(X•,Ω

≥n
X•

), where Γ is
any holomorphic connection.

Characteristic classes of holomorphic vector bundles. – In order to compare these Chern-Weil
theoretic characteristic classes with other constructions we have to extend them to arbitrary
holomorphic vector bundles on simplicial manifolds.

Recall from [17, Ex. 1.1] that a holomorphic vector bundle on the simplicial complex
manifold X• is a sheaf E• of OX• -modules such that each Ep is locally free and for every
φ : [p]→ [q] the associated map φ∗XEp → Eq is an isomorphism.

There exists a canonical holomorphic rank r vector bundle on B•GLr(C) and it is well
known that pulling back along classifying maps induces a bijection

isomorphism classes of

holomorphic

GLr(C)-bundles on X•

 1−1−−→


isomorphism classes of

degreewise trivial

holomorphic rank r vector

bundles on X•


(for a proof see e.g. [36, Lemma 1.13]).

Now let E• be an arbitrary holomorphic vector bundle of rank r onX•. Let (Vα)α∈A be an
open covering ofX0 that trivializes E0 and putU0 :=

∐
α∈A Vα. ThenU• := coskX•0 U0 (cf. [9,

(5.1.1)]) is an open covering of X• such that E•|U• is degreewise trivial. Denote by NX•(U•)
its Čech nerve (cf. [14, p. 20]) and by ∆NX•(U•) its diagonal simplicial manifold. It follows
from the Theorem of Eilenberg-Zilber [9, (6.4.2.2)] and [9, (5.3.7), (6.4.3)] that the natural
maps

H∗(X•,Ω≥nX• )
∼=−→ H∗(NX•(U•),Ω

≥n
NX• (U•)

)
∼=−→ H∗(∆NX•(U•),Ω

≥n
∆NX• (U•)

)

are isomorphisms.
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Now E•|∆NX• (U•) is degreewise trivial, hence corresponds to a GLr(C)-bundle E

on ∆NX•(U•), and we define

Chn(E•) ∈ H2n(X•,Ω
≥n
X•

)

to be the preimage of Chn(E) under the above isomorphisms. Using the fact that two open
covers of X0 admit a common refinement one checks that this is well defined.

In order to apply the splitting principle later on, we need the

P 1.18 (Whitney sum formula). – Let 0 → E ′• → E• → E ′′• → 0 be a short
exact sequence of holomorphic vector bundles on X•. Then Chn(E•) = Chn(E ′•) + Chn(E ′′• ).

Proof. – Choosing suitable coverings we may assume without loss of generality that
0 → E ′0 → E0 → E ′′0 → 0 is a split short exact sequence of free OX0 -modules. If we denote
the components of the classifying maps of E ′•,E•, and E ′′• by g′ij , gij , and g′′ij , respectively, it
follows that gij is of the form (

g′ij ∗
0 g′′ij

)
.

Using the standard connections for the computation of the Chern character classes the result
follows easily from this.

1.4. Secondary classes

Here we give the construction of the secondary classes associated with a holomorphic
bundle together with a trivialization of its underlying topological bundle. These are the
classes we are primarily interested in since they are used in the construction of Karoubi’s
relative Chern character on relative K-theory.

Let X• be a simplicial complex manifold and E a holomorphic GLr(C)-bundle given by
the map g : X• → B•GLr(C). Assume that α : T → E is a morphism from the trivial bundle
T , given by the constant map X• → {1} ⊂ B•GLr(C), to E viewed as topological bundles.
According to the definitions this means that we have a commutative diagram

E•GLr(C)

p

��
X• g

//

α

99

B•GLr(C).

Fix a holomorphic connection ΓE on E. By Chern-Weil theory (Theorem 1.16) the
form Chn(ΓE) ∈ A2n(X•) is exact. In fact, we can make a particular choice of a form
Chrel

n (ΓE , α) ∈ A2n−1(X•) which bounds Chn(ΓE). It is constructed as follows: The stan-
dard homotopy operator from de Rham cohomology K : A2n(X• × C) → A2n−1(X•),
ω 7→

∫ 1

0
(i∂/∂tω)dt, where t is the coordinate on C and i∂/∂t is inner multiplication with

respect to the vector field ∂/∂t, satisfies

dK +Kd = i∗1 − i∗0
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with the obvious inclusions i0, i1 : X• ↪→ X•×C. Let π denote the projectionX•×C→ X•.
On the trivial bundle T on X• × C we have the trivial connection given by the zero matrix
and the connection π∗α∗ΓE , and we may also consider the connection

(1.4) Γt = tπ∗α∗ΓE

which is an affine combination of both.

D 1.19. – Chrel
n (ΓE , α) := K(Chn(Γt)) ∈ A2n−1(X•).

We collect some properties.

P 1.20. – (i) dChrel
n (ΓE , α) = Chn(ΓE)

(ii) The class of Chrel
n (ΓE , α) inH2n−1(A∗(X•)/FilnA∗(X•)) = H2n−1(X•,Ω

<n
X•

) does not
depend on the holomorphic connection chosen. We will denote it by Chrel

n (E,α).

Proof. – (i) follows directly from the constructions and the properties of the homotopy
operator. (ii) Let Γ̃E be a second holomorphic connection on E. Denote by π the projection
X•×C×C→ X• and by s, t the variables on C×C. On the trivial bundle on X•×C×C

consider the connection Γs,t = (1 − s)tπ∗α∗ΓE + stπ∗α∗Γ̃E . Denote by Ks and Kt the
homotopy operators with respect to s and t, respectively. Then

d(KsKt(Chn(Γs,t))) +Ks(d(Kt(Chn(Γs,t)))) = Kt(Chn(Γs,t))|s=1 −Kt(Chn(Γs,t))|s=0

= Chrel
n (Γ̃E)− Chrel

n (ΓE).

But dKt(Chn(Γs,t)) = Chn(Γs,1) − Chn(Γs,0) = Chn((1 − s)π∗α∗ΓE + sπ∗α∗Γ̃E) =

Chn((1− s)π∗ΓE + sπ∗Γ̃E) as one easily checks using Remark 1.14 where we still denoted
by π the projection X• ×C→ X•. But (1− s)π∗ΓE + sπ∗Γ̃E is a holomorphic connection
on π∗E and it is not hard to see that Ks(Chn((1 − s)π∗ΓE + sπ∗Γ̃E)) ∈ FilnA2n−1(X•)

completing the proof.

R 1.21. – (i) The definition of the relative Chern character form involves the
choice of a connection Γt on the trivial bundle on X• ×C satisfying i∗0Γt = 0, i∗1Γt = α∗Γ.
We stick to the choice (1.4) to have well defined forms which moreover satisfy a certain
functoriality (see below). However, an argument similar to the proof of Proposition 1.20 (ii)
shows that a different choice of Γt only alters Chrel

n (ΓE , α) by an exact form, hence leads to
the same class in cohomology.

(ii) The definition of the relative Chern character form makes sense for arbitrary topolog-
ical bundles E/X• together with a trivialization α : X•  E•GLr(C) and a connection ΓE .
If f : Y•  X• is a topological morphism the pullback f∗E admits the trivializationα◦f and
one can check that Chrel

n (f∗ΓE , α◦f) = f∗Chrel
n (ΓE , α) (cf. [36, Lemma 1.35]). If the bundle

E, the connection ΓE , and the map f are holomorphic we have a pullback f∗ on cohomology
and Chrel

n (f∗E,α ◦ f) = f∗Chrel
n (E,α).

(iii) One may ask whether the relative Chern character class for holomorphic bundles with
a topological trivialization is determined by functoriality and the fact that it transgresses the
Chern character class. This is not clear since there seems to be no good classifying space for
holomorphic bundles E together with a topological trivialization α in the sense that E and
α are obtained by pullback of a universal pair Euniv

top. triv., α
univ
top. triv. along a holomorphic map.
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This is in fact one of the main difficulties in the comparison of relative Chern character classes
and Deligne-Beilinson Chern character classes.

However, it turns out that we can work around this problem using the functorial-
ity of the relative Chern character form: The projection p : E•GLr(C) → B•GLr(C)

classifies the holomorphic bundle p∗Euniv which admits the tautological trivialization
αuniv : T → p∗Euniv given by αuniv = id: E•GLr(C)→ E•GLr(C). We equip p∗Euniv with
the standard connection and denote the corresponding relative form by
Chrel,univ

n := Chrel
n (Γp

∗Euniv

, αuniv).

P 1.22. – If E/X• is a holomorphic GLr(C)-bundle together with a topolog-
ical trivialization α : T → E, then

Chrel
n (ΓE , α) = α∗Chrel,univ

n ,

ΓE denoting the standard connection on E.

Proof. – This follows from Remark 1.21 (ii) and the fact that E = α∗p∗Euniv and that
the pullback of the standard connection is the standard connection.

R 1.23. – This description will be needed in Proposition 2.10 to compare the
class Chrel

n (E,α) for an algebraic bundle E with a topological trivialization α with the class

C̃h
rel

n (E,α) constructed by a completely different strategy. It will be this latter class, that
can be compared with the Deligne-Beilinson Chern character class ChD

n (E). Note that this
kind of “universal” description of relative Chern character forms would not be possible in
Karoubi’s setting of bundles on simplicial sets.

2. Secondary classes for algebraic bundles

The heart of this section is the comparison of relative and Deligne-Beilinson Chern char-
acter classes in the last subsection. To do this, we first construct a refinement of the secondary
classes of Section 1.4 for an algebraic bundle on a simplicial varietyX• together with a topo-
logical trivialization. These classes live inH2n(X•,C)/FilnH2n(X•,C). Using the so called
refined Chern character classes constructed in 2.3 the comparison will be reduced to the com-
parison of primary Chern character classes, which is done in 2.2. The first subsection recalls
the definition of the Hodge filtration on the cohomology of a simplicial variety.

2.1. Preliminaries

Recall that a simplicial object in a category C is a functor ∆op → C where ∆ denotes the
category of finite ordered sets and increasing maps. Denote by ∆str the subcategory of ∆ with
the same objects but only strictly increasing maps as morphisms. A strict simplicial object in C
is a functor (∆str)op → C .

In the following, a variety will be a smooth, separated scheme of finite type over C equipped
with the classical topology and OX ,Ω∗X will denote the sheaves of holomorphic functions
and differential forms, respectively. By abuse of notation we will denote the complex manifold
associated with a variety X by the same letter. A simplicial or strict simplicial variety X• is
called proper if each Xp is proper over C.
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Let X• be a simplicial variety. Using Nagata’s compactification theorem and Hironaka’s
resolution of singularities one inductively constructs an open immersion j : X• ↪→ X•
into a proper strict simplicial variety X• such that the complement Dp := Xp − Xp

is a divisor with normal crossings for each p [35, 1.2]. We call j a good compactifi-
cation. The nth step of the Hodge filtration is given as the image of the injective map
H∗(X•,Ω≥nX•(logD•)) ↪→ H∗(X•,Ω∗X•(logD•)) = H∗(X•,C). It may be computed as fol-

lows [8, (3.2.3)], [35, 1.3]: For each p let A k,l

Xp
(logDp) be the subsheaf Ωk

Xp
(logDp)⊗OXp

A 0,l

Xp

of jp∗A
k,l
OXp

and denote its global sections by A k,l(Xp, logDp). Denote by FilnA ∗(X•, logD•)

the complex which is given in degree ∗ by
⊕

k+l+p=∗,k≥n A k,l(Xp, logDp). There are natu-
ral isomorphisms H∗(FilnA ∗(X•, logD•)) ∼= FilnH∗(X•,C).

We have natural maps Ω≥n
X•

(logD•)→ j∗Ω
≥n
X•

which on cohomology induce

(2.1) H∗(X•,Ω≥nX•(logD•)) = FilnH∗(X•,C)→ H∗(X•, j∗Ω≥nX• ) ∼= H∗(X•,Ω≥nX• ).

If we compose this further with the map induced by Ω≥nX• ↪→ Ω∗X• we obtain the natural
inclusion FilnH∗(X•,C) ↪→ H∗(X•,C) = H∗(X•,Ω∗X•). Hence (2.1) is injective, too, and
we will view it as an inclusion.

R 2.1. – In the study of Chern character maps on higher K-theory, simplicial
schemes of the formX• = X⊗S, whereX is a variety and S a simplicial set, occur naturally.
These are in general not of finite type. Nevertheless, they admit a good compactification X•
defined as X ⊗ S, where X ↪→ X is a good compactification, and we can still consider the
map H∗(X•,Ω≥nX•(logD•)) → H∗(X•,Ω∗X•) = H∗(X•,C). It is not hard to see that this
map is still injective. We will denote its image by FilnH∗(X•,C) also in this case.

In the following, all the results and constructions that are formulated for simplicial vari-
eties are also valid for simplicial schemes of the form X ⊗ S and we will use them without
mentioning them explicitly.

2.2. Chern classes of algebraic bundles

Let E be an algebraic GLr(C)-bundle on the simplicial variety X•, i.e. a morphism
of simplicial varieties g : X• → B•GLr(C). Since E may be viewed as a holomorphic
bundle, we have the classes Chn(E) ∈ H2n(X•,Ω

≥n
X•

) constructed using Chern-Weil theory.
On the other hand, one may also construct Chern character classes in FilnH2n(X•,C) in the
style of Grothendieck and Hirzebruch. We recall the construction, and show that
these are mapped to the Chern-Weil theoretic classes under the natural map
FilnH2n(X•,C)→ H2n(X•,Ω

≥n
X•

).

2.2.1. The first Chern class of a line bundle. – Let X be a complex manifold, or more
generally a simplicial complex manifold. The group of isomorphism classes of holomorphic
line bundles on X is H1(X,O∗X) (cf. [17, Ex. 1.1]).

D 2.2. – The first Chern class c1 : H1(X,O∗X) → H2(X,Ω≥1
X ) is the map on

cohomology induced by the morphism of complexes d log : O∗X [−1]→ Ω≥1
X .
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L 2.3. – If L is an algebraic line bundle on the variety X, then

c1(L ) ∈ Fil1H2(X,C) ⊂ H2(X,Ω≥1
X ).

Proof. – We may assume that X = X• is a simplicial variety and that L is classified
by a morphism of simplicial varieties g(•) : X• → B•Gm(C). Then g(1) ∈ Γ(X1,O∗X1

)

represents a class in H1(Γ∗(X•,O∗X•)) whose image in H1(X•,O∗X•) is the class of L [17,
Ex. 1.1]. Thus c1(L ) ∈ H2(X•,Ω

≥1
X•

) = H2(TotFil1A ∗(X•)) is the class represented
by (d log(g(1))) ⊕ 0 ∈ Γ(X1,Ω

1
X1

) ⊕ Γ(X0,Ω
2
X0

) ⊂ Fil1A 1(X1) ⊕ Fil1A 2(X0). Let X1 be
any good compactification ofX1. Then g(1), being algebraic, is meromorphic alongX1−X1,
hence d log(g(1)) ∈ Fil1A 1(X1, log(X1 −X1)).

L 2.4. – Let X• be a simplicial complex manifold and L a holomorphic line bundle
on X•. Then

Ch1(L•) = c1(L•)

in H2(X•,Ω
≥1
X•

).

Proof. – Again, we may assume that L• is classified by a holomorphic morphism of
simplicial manifolds g(•) : X• → B•Gm(C). Then Ch1(L•) can be computed explicitly:
We equip the Gm(C)-bundle L classified by g(•) with the standard connection, given by
the family of matrices Γ

(p)
i =

∑p
k=0 xk(g

(p)
ki )−1dg

(p)
ki =

∑
k xkd log(g

(p)
ki ) where the nota-

tions are as in Section 1.3. The curvature is then given by R(p)
i =

∑
k dxkd log(g

(p)
ki ) +∑

k,l xkxld log(g
(p)
ki )d log(g

(p)
li ). This form does not depend on i, and the first Chern charac-

ter form Ch1(L) of L in Fil1A2(X•) is given by the family (Ch1(L)p)p≥0 = (−R(p)
i )p≥0.

The isomorphism H2(Fil1A∗(X•)) → H2(Fil1A ∗(X•)) = H2(X•,Ω
≥1
X•

) is given by
ω = (ωp)p≥0 7→ (

∫
∆1 ω1,

∫
∆0 ω0) ∈ Fil1A 1(X1)⊕ Fil1A 2(X0).

Since g(p)
ii is the constant map 1, d log(g

(p)
ii ) = 0 for all p ≥ 0, i = 0, . . . , p and in particular

Ch1(L)0 = 0. Next, Ch1(L)1 = −R(1)
1 = −dx0d log(g

(1)
01 ), and hence

∫
∆1 Ch1(L)1 =

d log(g
(1)
01 ) = d log(g(1)). Comparing with the computation in the proof of the last lemma,

this concludes the proof.

2.2.2. Higher Chern classes. – These are constructed in the style of Grothendieck using the
splitting principle.

Let X• be a simplicial variety and E• an algebraic vector bundle on X• of rank r. Denote
by π : P(E•)→ X• the associated projective bundle and by O(1) the tautological line bundle
on P(E•). Write ξ := c1(O(1)) ∈ Fil1H2(P(E•),C) ⊂ H2(P(E•),Ω

≥1
P (E•)).

L 2.5. – The maps
r−1∑
i=0

π∗( ) ∪ ξi :
r−1⊕
i=0

Hm−2i(X•,Ω
≥n−i
X•

)→ Hm(P(E•),Ω
≥n
P(E•)

) and(2.2)

r−1∑
i=0

π∗( ) ∪ ξi :
r−1⊕
i=0

Filn−iHm−2i(X•,C)→ FilnHm(P(E•),C)(2.3)

are isomorphisms.
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Proof. – By a spectral sequence argument as in [16, Lemma 2.4] the simplicial case
follows from the classical case. There the second isomorphism follows by Hodge theory
from the classical Leray-Hirsch Theorem, the first one is established in the proof of [18,
Proposition 5.2].

The higher Chern classes cn(E•) ∈ FilnH2n(X•,C) are now defined by the equation
r∑
i=0

π∗(cr−i(E•)) ∪ c1(OP(E•)(1))i = 0

and the conditions cn(E•) = 0 if n > r, c0(E•) = 1. Let Nn ∈ Z[X1, . . . , Xn] be the n-th
Newton polynomial. The nth Chern character class is defined as

C̃hn(E•) :=
1

n!
Nn(c1(E•), . . . , cn(E•)) ∈ FilnH2n(X•,C).

The theory of Chern character classes obtained in this way has the usual properties. In
particular they are functorial and the Whitney sum formula holds [21].

P 2.6. – Let E• be an algebraic vector bundle on the simplicial variety X•.
The natural morphism FilnH2n(X•,C) → H2n(X•,Ω

≥n
X•

) maps C̃hn(E•) to Chn(E•). In
particular, Chn(E•) ∈ FilnH2n(X•,C) ⊂ H2n(X•,Ω

≥n
X•

).

Proof. – Repeated use of the projective bundle construction gives a morphism of sim-
plicial varieties π : Q• → X• such that π∗E• has a filtration whose subquotients are
line bundles, and such that both maps π∗ : FilnH2n(X•,C) → FilnH2n(Q•,C) and
π∗ : H2n(X•,Ω

≥n
X•

)→ H2n(Q•,Ω
≥n
Q•

) are injective (Lemma 2.5).

By the Whitney sum formula it is thus enough to show, that for a line bundle L•, C̃hn(L•)

maps to Chn(L•). But C̃hn(L•) is just 1
n!c1(L•)n and similarly Chn(L•) = 1

n! (Ch1(L•))
n.

Indeed, for the Chern character classes C̃hn this follows from the explicit form of the Newton
polynomials and the fact that ci(L•) = 0 if i > 1, while for the classes Chn(L•) it follows
directly from the construction. Hence the claim follows from Lemma 2.4.

2.3. Relative Chern character classes

In this section we construct refinements of the secondary classes of Definition 1.19 for
algebraic bundles together with a trivialization of the associated topological bundle, which
take the Hodge filtration into account.

First recall the following notion: If A
f−→ C

g←− B is a diagram of complexes in an abelian

category, its quasi-pullback is the complex Cone(A⊕B f−g−−−→ C)[−1]. The natural projections
give maps from the quasi-pullback to A and B and the diagram

Cone(A⊕B f−g−−−→ C)[−1]
f ′ //

g′

��

B

g

��
A

f // C

commutes up to a canonical homotopy. Moreover, if g is a quasi-isomorphism so is g′. (For
more details see e.g. [36, Lemma A.1].)
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Now let E be an algebraic GLr(C)-bundle on the simplicial variety X• classified
by g : X• → B•GLr(C). Define the principal bundle E•

p−→ X• associated with E by
the pullback diagram

E• //

p

��
y

E•GLr(C)

p

��
X•

g // B•GLr(C).

Choose a good compactification j : X• ↪→ X• and write Dp = Xp − Xp. We define the
complex FilnA∗(X•, logD•) as the quasi-pullback of the diagram

A∗(X•)

Iqis

��
FilnA ∗(X•, logD•)

ιA // A ∗(X•).

Then the natural projection FilnA∗(X•, logD•) → FilnA ∗(X•, logD•) is a quasi-isomor-
phism and the diagram

FilnA∗(X•, logD•)

qis
��

ιA // A∗(X•)

Iqis

��
FilnA ∗(X•, logD•)

ιA // A ∗(X•),

is commutative up to canonical homotopy.

D 2.7. – For a given good compactification X•
j
↪→ X• write

HE,∗
rel (X•, n)X• := H∗

(
Cone(FilnA∗(X•, logD•)

p∗◦ιA−−−−→ A∗(E•))
)
,

H∗rel(X•, n)X• := H∗
(

Cone(FilnA∗(X•, logD•)
ιA−→ A∗(X•))

)
,

and define HE,∗
rel (X,n) := lim−→X•

HE,∗
rel (X•, n)X• , H

∗
rel(X,n) := lim−→X•

H∗rel(X•, n)X• where
the limit runs over the direct system of good compactifications of X•.

All the transition maps in the above direct systems are isomorphisms. In particu-
lar, for any good compactification X• the groups HE,∗

rel (X•, n)X• and H∗rel(X•, n)X•
are isomorphic to HE,∗

rel (X•, n) and H∗rel(X•, n), respectively. Moreover, H∗rel(X•, n) ∼=
H∗(X•,C)/FilnH∗(X•,C).

Obviously there is a morphism p∗ : H∗rel(X•, n)→ HE,∗
rel (X•, n) which yields a morphism

of long exact sequences

· · · // HE,i−1
rel (X•, n) // FilnHi(X•,C) // Hi(E•,C) // HE,i

rel (X•, n) // · · ·

· · · // Hi−1
rel (X•, n) //

p∗

OO

FilnHi(X•,C) // Hi(X•,C)

p∗

OO

// Hi
rel(X•, n)

p∗

OO

// · · · .

(2.4)

Let f : Y• → X• be a morphism of simplicial varieties and E/X• as before. Given good
compactifications X• ↪→ X• and Y• ↪→ Y •, we may construct inductively (similarly
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as in [35, 1.2]) a good compactification Ỹ• together with a morphism of compactifications
Ỹ• → Y •, such that f extends to a morphism Ỹ• → X•. Hence we can define pullback maps
f∗ : H∗rel(X•, n)→ H∗rel(Y•, n) and f∗ : HE,∗

rel (X•, n)→ Hf∗E,∗
rel (Y•, n).

P 2.8. – There is a unique way to assign to every algebraic GLr(C)-bundle E

on a simplicial variety X• a class C̃h
rel

n (E) ∈ H2n−1,E
rel (X•, n) which maps to the n-th Chern

character class Chn(E) in FilnH2n(X•,C) and which is functorial in X• in the sense that for
every morphism of simplicial varieties f : Y• → X• and every algebraic GLr(C)-bundle E

on X• we have f∗(C̃h
rel

n (E)) = C̃h
rel

n (f∗E).

Proof. – Consider the universal situation: Since the geometric realization ofE•GLr(C) is
contractible Hi(E•GLr(C),C) vanishes for all i > 0. Hence the natural map

HEuniv,2n−1
rel (B•GLr(C), n)→ FilnH2n(B•GLr(C),C) is an isomorphism by the exactness

of the top line in (2.4), and the proposition follows.

Now assume that the algebraic bundle E/X•, classified by g : X• → B•GLr(C), admits
a topological trivialization α : T → E, i.e. a topological morphism α : X•  E•GLr(C)

such that p ◦ α = g. Since E• is the pullback of E•GLr(C) along g, α induces a topo-
logical morphism α : X•  E• such that p ◦ α = idX• . Hence we can define a map
α∗ : HE,∗

rel (X•, n)→ H∗rel(X•, n) left inverse to p∗.

D 2.9. – C̃h
rel

n (E,α) := α∗C̃h
rel

n (E) ∈ H2n−1
rel (X•, n) ∼= H2n−1(X•,C)/Filn.

P 2.10. – The class C̃h
rel

n (E,α) maps to the class Chrel
n (E,α) by the natural

map H2n−1(X•,C)/FilnH2n−1(X•,C)→ H2n−1(X•,Ω
<n
X•

).

Proof. – Abbreviate GLr(C) to G. Let g : X• → B•G be the classifying map of E and
choose compatible good compactifications B•G ↪→ B•G and X• ↪→ X•.

Choose any representative c of Chn(Euniv) in FilnA 2n(B•G, logD•). Then
ιA (c) ∈ A 2n(B•G) lies in FilnA 2n(B•G) and represents Chn(Euniv) considered as a
class in H2n(B•G,Ω

≥n
B•G

). But this class is also represented by the form I(Chn(Γuniv)),
where Γuniv denotes the standard connection on the universal bundle. Hence there exists
η ∈ FilnA 2n−1(B•G) such that dη = ιA (c)− I(Chn(Γuniv)) and chn := (c,Chn(Γuniv), η)

is a representative for Chn(Euniv) in FilnA2n(B•G, logD•). With this choice we have
p∗(ιA(chn)) = p∗Chn(Γuniv) = dChrel,univ

n , where the form Chrel,univ
n was defined

before Proposition 1.22. Hence the universal class C̃h
rel

n (Euniv) is represented by the cycle
(chn,Chrel,univ

n ).

Let g′ : E• → E•G be the map induced by g on the principal bundles. Then C̃h
rel

n (E) is

represented by (g∗chn, g
′∗Chrel,univ

n ) and C̃h
rel

n (E,α) is represented by
(g∗chn, α

∗g′∗Chrel,univ
n ) = (g∗chn, α

∗Chrel,univ
n ) = (g∗chn,Chrel

n (ΓE , α)), where on the
left we view α as a morphism X•  E•, in the middle as a morphism X•  E•G, ΓE

denotes the standard connection, and we used Proposition 1.22.
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Now the natural map

H∗rel(X•, n)X•
∼= H∗

(
Cone(FilnA∗(X•, logD•)

ιA−→ A∗(X•))
)

→ H∗(X•,Ω<nX• ) = H∗(A∗(X•)/FilnA∗(X•))

is induced by the morphism of complexes

Cone(FilnA∗(X•, logD•)
ιA−→ A∗(X•))→ A∗(X•)/FilnA∗(X•),

(ω, η) 7→ η. In particular C̃h
rel

n (E,α) maps to the class represented by Chrel
n (ΓE , α), that is

to Chrel
n (E,α).

2.4. Comparison with Deligne-Beilinson Chern character classes

Let us first recall the definition and relevant facts about Deligne-Beilinson cohomology
[1, 13].

LetA be a subring of R and writeA(n) := (2πi)nA ⊂ C. LetX• be a simplicial algebraic
variety and choose a good compactification j : X• ↪→ X•.

The Deligne-Beilinson cohomology H∗D(X•, A(n)) of X• is by definition

H∗
(
X•,Cone

(
Rj∗A(n)⊕ FilnΩ∗

X•
(logD•)

ε−ι−−→ Rj∗Ω∗X•
)

[−1]
)
.

By construction we have long exact sequences

· · · → Hk
D(X•, A(n))→ Hk(X•, A(n))⊕ FilnHk(X•,C)

ε−ι−−→ Hk(X•,C)(2.5)

→ Hk+1
D (X•, A(n))→ · · · and

· · · → Hk−1(X•,C)/Filn → Hk
D(X•, A(n))→ Hk(X•, A(n))→ · · ·(2.6)

An algebraic vector bundle E on X• has Chern character classes ChD
n (E ) ∈ H2n

D (X•,Q(n)).
These are functorial and mapped to the usual Chern character classes in singular cohomol-
ogy (to be recalled in 2.4.2 below) by the natural map H2n

D (X•,Q(n)) → H2n(X•,Q(n)).
In fact, these two properties determine them uniquely [1, 1.7], [13, Prop. 8.2]. Since any
algebraic GLr(C)-bundle E may also be viewed as an algebraic vector bundle, we may also
consider the classes ChD

n (E).

T 2.11. – Let E be an algebraic GLr(C)-bundle on the simplicial variety X•
and α a trivialization of the associated topological bundle. The relative Chern character class

C̃h
rel

n (E,α) maps to ChD
n (E) under the natural map

H2n−1(X•,C)/FilnH2n−1(X•,C)→ H2n
D (X•,Q(n))

from sequence (2.6).

Before we enter the proof we provide concrete complexes computing Deligne-Beilinson
cohomology that are adapted to the setting of topological morphisms (Section 2.4.1) and
fix the normalization of Chern classes in singular and hence Deligne-Beilinson cohomology
(Section 2.4.2).
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2.4.1. Complexes. – First some notation. For an arbitrary manifold Y we denote by C ∗(Y,A)

the complex of smooth singular cochains with coefficients in A. We define the complex of
modified differential forms Ã ∗(Y,A(n)) to be the quasi-pullback of the diagram

A ∗(Y )

Iqis
��

C ∗(Y,A(n)) �
� incl // C ∗(Y,C),

where I denotes the de Rham quasi-isomorphism given by integration over simplices.

Now let X• be a simplicial manifold. Let C ∗(X•, A) be the total complex associated
with the cosimplicial complex [p] 7→ C ∗(Xp, A). Then we have a natural isomorphism
H∗(X•, A) = H∗(C ∗(X•, A)).

As in the case of de Rham cohomology, H∗(X•, A) may also be computed using compat-
ible singular cochains: We define the complex of compatible singular cochains C∗(X•, A) in
analogy with that of simplicial differential forms:

Cn(X•, A) :=
{

(σp)p≥0 | σp ∈ C n(∆p ×Xp, A),

(δi × id)∗σp = (id× ∂i)∗σp−1, i = 0, . . . , p, p ≥ 1
}
.

There is a natural quasi-isomorphism Φ: C∗(X•, A)→ C ∗(X•, A) given as follows (cf. [35,
2.1.3]): For a compatible n-cochain σ = (σp)p≥0, define Φ(σ)p,n−p ∈ C n−p(Xp, A) to be
the cochain that sends a singular (n − p)-simplex f : ∆n−p → Xp to σp(id∆p × f) ∈ A.
Here × denotes the cross product of singular chains and id∆p : ∆p → ∆p is the canonical
singular p-chain. More precisely, to every (p, n − p)-shuffle µ corresponds an n-simplex
µ∗ : ∆n → ∆p×∆n−p, and the singular chain id∆p×f is given by

∑
µ sgn(µ)(id∆p×f)◦µ∗

where the sum runs over all (p, n− p)-shuffles µ and the last × is the usual product of maps
(see [23, Section 3.B, p. 278–279]).

Integration over simplices induces an integration map I : A∗(X•)→ C∗(X•,C) and one
checks that the diagram

A∗(X•)

I

��

I // C∗(X•,C)

Φ

��
A ∗(X•)

I // C ∗(X•,C)

commutes (cf. [36, Lemma 2.15]).

As before we define the modified complex Ã∗(X•, A(n)) as the quasi-pullback of the

diagram C∗(X•, A(n))→ C∗(X•,C)
I←− A∗(X•).

The following follows quite directly from the definitions.

L 2.12. – LetX• be a simplicial variety andX•
j
↪→ X• a good compactification. The

Deligne-Beilinson cohomologyH∗D(X•, A(n)) is naturally isomorphic to the cohomology of the
complex

Cone
(
Ã∗(X•, A(n))⊕ FilnA∗(X•, logD•)

ε−ι−−→ A∗(X•)
)

[−1].
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The advantage of this description of the Deligne-Beilinson cohomology of simplicial
varieties is that we may define a pullback map α∗ : Ã∗(X•, A(n))→ Ã∗(Y•, A(n)), whenever
α : Y•  X• is a topological morphism:

L 2.13. – Let α : Y•  X• be a topological morphism of simplicial manifolds. Then
there is a well defined pullback map α∗ : Ã∗(X•, A(n))→ Ã∗(Y•, A(n)). It is compatible with
the natural maps Ã∗ → A∗.

Proof. – By definition Ã∗(X•, A(n)) is the quasi-pullback of the diagram

C∗(X•, A(n)) → C∗(X•,C)
I←− A∗(X•). Obviously, α∗ is well defined on each of the

three complexes (cf. (1.3) and Definition 1.8) and we only have to check, that it is compatible
with the maps between them. This is is clear for the left-hand map. For I this follows from
the commutativity of the diagram

A n(∆p ×Xp)
(id∆p ,αp)∗ //

I

��

A n(∆p × Yp)

I

��
C n(∆p ×Xp,C)

(id∆p ,αp)∗ // C n(∆p × Yp,C)

which is established as follows: Let ω ∈ A n(∆p ×Xp) and τ : ∆n → ∆p × Yp be a smooth
simplex. Then (id∆p , αp)

∗I (ω)(τ) =
∫

∆n((id∆p , αp) ◦ τ)∗ω =
∫

∆n τ
∗((id∆p , αp)

∗ω) =

I ((id∆p , αp)
∗ω)(τ).

2.4.2. Chern character classes. – We recall the definition of Chern classes in singular coho-
mology.

D 2.14. – Let X be a simplicial complex manifold. The first Chern class ctop
1

in singular cohomology for holomorphic line bundles is the connecting homomorphism

ctop
1 : H1(X,O∗X)→ H2(X,Z(1))

associated with the short exact sequence of sheaves on X

0→ Z(1)→ OX
exp−−→ O∗X → 0.

R 2.15. – If cMilnor-Stasheff
1 denotes the classical integer valued first Chern class as

constructed in [30] then ctop
1 = −2πicMilnor-Stasheff

1 . This follows e.g. from [30, Appendix C,
Theorem (p. 306)] together with [20, Ch. I §1, Proposition (p. 141)].

For later reference we note that Burgos [6] uses Milnor-Stasheff ’s normalization for his
integer valued Chern classes bi and defines the “twisted Chern classes” cBurgos

i := (2πi)ibi.
In fact, the construction in [6, Section 4.2] is exactly the same as that in [30, §14] (alternatively,
one may look at the Chern-Weil theoretic approach in [6, Proposition 5.27]). In particular,
ctop
1 = −cBurgos

1 and we have corresponding signs for the higher Chern and Chern character
classes.

The splitting principle also holds for singular cohomology and one constructs higher
Chern and Chern character classes ctop

n (E ) ∈ H2n(X•,Z(n)), Chtop
n (E ) ∈ H2n(X•,Q(n))

for holomorphic vector bundles E as in Section 2.2.2.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



622 G. TAMME

R 2.16. – It is easy to see that for a holomorphic line bundle L the classes c1(L )

and ctop
1 (L ) have the same image in H2(X,C). In particular, if E is a holomorphic vector

bundle, the higher Chern and Chern character classes ctop
n (E ), Chtop

n (E ) map to cn(E ),
C̃hn(E ) ∈ FilnH2n(X,C) under the natural map H2n(X,Z(n))→ H2n(X,C).

Proof of Theorem 2.11. – LetX•, E, and α be as in the statement of the theorem andX•
some good compactification of X•. The natural morphism

H∗−1
rel (X•, n) = H∗−1(X•,C)/FilnH∗−1(X•,C)→ H∗D(X•,Q(n))

is induced on the defining cones by the maps in the commutative diagram

FilnA∗(X•, logD•)
ι //

incl.
��

A∗(X•)

−id

��
Ã∗(X•,Q(n))⊕ FilnA∗(X•, logD•)

ε−ι // A∗(X•).

Denote by E•
p−→ X• the principal bundle associated with E and define

HE,∗
D (X•,Q(n)) :=

lim−→X•
H∗
(

Cone
(
Ã∗(E•,Q(n))⊕ FilnA∗(X•, logD•)

ε−p∗◦ι−−−−→ A∗(E•)
)

[−1]
)
,

the limit running over the good compactifications of X•. As in the case of relative coho-
mology groups, we have a natural map p∗ : H∗D(X•,Q(n)) → HE,∗

D (X•,Q(n)) and a left
inverse α∗ of p∗ for a topological trivialization α of E. Moreover, there is a natural map
HE,∗−1

rel (X•, n)→ HE,∗
D (X•,Q(n)) fitting in a commutative diagram (in the obvious sense)

HE,∗−1
rel (X•, n) //

α∗

��

HE,∗
D (X•,Q(n))

α∗

��
H∗−1

rel (X•, n)

p∗

OO

// H∗D(X•,Q(n)).

p∗

OO

We claim that the refined class C̃h
rel

n (E) maps to p∗ChD
n (E) by the upper horizontal

map. Since both classes are functorial it suffices to treat the case of the universal bun-
dle Euniv/B•GLr(C). Write G := GLr(C). Since the cohomology of E•G vanishes in
positive degrees and the cohomology of B•G vanishes in odd degrees we have the following
commutative diagram with exact rows:

0 // HEuniv,2n
D (B•G,Q(n)) // FilnH2n(B•G,C) // 0

0 // H2n
D (B•G,Q(n)) //

p∗

OO

H2n(B•G,Q(n))⊕FilnH2n(B•G,C)
ε−ι//

pr2

OO

H2n(B•G,C).

By definition, ChD
n (Euniv) maps to Chtop

n (Euniv) in H2n(B•G,Q(n)). Since
ε(Chtop

n (Euniv)) = ι(Chn(Euniv)) (cf. Proposition 2.6 and Remark 2.16), it follows from the
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above diagram that p∗ChD
n (Euniv) maps to Chn(Euniv) in FilnH2n(B•G,C). The defining

property of C̃h
rel

n (Euniv) and the commutativity of the diagram

HEuniv,2n−1
rel (B•G,n)

��

∼=

))
HEuniv,2n

D (B•G,Q(n))
∼= // FilnH2n(B•G,C)

imply that C̃h
rel

n (Euniv) maps to p∗ChD
n (Euniv), whence our claim.

But then C̃h
rel

n (E,α) = α∗C̃h
rel

n (E) maps to α∗p∗ChD
n (E) = ChD

n (E).

3. Relative K-theory and regulators

LetX = Spec(A) be a smooth affine scheme of finite type over C. Then the algebraic and
topological K-theory of X resp. its underlying complex manifold are given (for i > 0) by

Ki(X) = πi(BGL(A)+) resp. K−itop(X) = πi(BU
X)

and there is a natural morphism BGL(A)+ → BUX in the homotopy category of spaces.
We define the relative K-group Krel

i (X) as the i-th homotopy group of the homotopy
fibre of this map. The goal of this section is to construct relative Chern character maps
Chrel

n,i : K
rel
i (X) → H2n−i−1(X,C)/FilnH2n−i−1(X,C) and to compare these with the

Chern character in Deligne-Beilinson cohomology.

3.1. Topological K-theory

Our first task is to give an adequate simplicial model for the topological K-groups of a
manifold X in terms of smooth maps ∆p × X → GLr(C) in order to be able to apply our
theory of topological bundles.

Let X be a smooth manifold having the structure of a finite dimensional CW com-
plex. We call a singular p-simplex in the mapping space GLr(C)X smooth if the associated
map ∆p × X → GLr(C) is smooth. Denote by S∞• (GLr(C)X) the simplicial set of
smooth singular simplices in GLr(C)X . This is a simplicial group in a natural way. Write
G• = lim−→rS

∞
• (GLr(C)X) and let B•G• be its classifying simplicial set, i.e. the diagonal of

the bisimplicial set [p], [q] 7→ BpGq.

P 3.1. – There are natural isomorphisms K−itop(X) = πi(B•G•).

Proof. – It is well known that for a manifold Y the inclusion S∞• (Y ) ↪→ S•(Y ) of smooth
singular simplices in the full simplicial set of singular simplices is a homotopy equivalence.
Similarly one shows that the inclusion S∞• (GLr(C)X) ↪→ S•(GLr(C)X) is a homotopy
equivalence (see [36, Prop. 3.2] for details). Hence we have isomorphisms

πi(B•G•) ∼= πi−1(G•) ∼= lim−→rπi−1(S∞• (GLr(C)X)) ∼= lim−→rπi−1(S•(GLr(C)X))

∼= lim−→rπi−1(GLr(C)X) ∼= lim−→rπi−1(U(r)X) ∼= lim−→rπi(BU(r)X),

where we used the fact, thatBU(r)X is a classifying space for U(r)X (cf. the argument in the
proof of [19, Lemma in Section 6.1]). Since X is a finite dimensional CW complex it follows
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by cellular approximation that lim−→rπi(BU(r)X) = πi(BU
X) = K−itop(X) finishing the proof

of the proposition.

3.2. Relative K-theory

Now let X = Spec(A) be a smooth affine scheme of finite type over C. By abuse of
notation we denote the associated complex manifold by the same letter. Note thatX has the
structure of a finite dimensional CW complex, so our above description of the topological
K-theory of X applies.

The natural map from A to the ring of smooth complex valued functions C∞(X) on X
induces a map from the constant simplicial group GLr(A) to S∞• (GLr(C)X) and hence,
taking the limit over r and classifying simplicial sets, B•GL(A)→ B•G•.

The algebraic K-groups of X are by definition

Ki(X) = πi(|B•GL(A)|+), i > 0,

where |B•GL(A)|+ denotes Quillen’s plus-construction with respect to the commutator
subgroup GL(A)′. A functorial version is given by the integral completion functor Z∞
of Bousfield and Kan [5] (see [15, Theorem 2.16]): Ki(X) = πi(Z∞B•GL(A)). Since
B•G• has the homotopy type of an H-space the natural map B•G• → Z∞B•G• is a weak
homotopy equivalence [15, 2.15]. The desired map from algebraic to topological K-theory
Ki(X)→ K−itop(X) is the map induced by Z∞B•GL(A)→ Z∞B•G• on homotopy groups.

Define F and F̃ by the pull-back diagrams

F

y

��

// F̃

y

//

��

Z∞E•G•

Z∞p

��
B•GL(A) // Z∞B•GL(A) // Z∞B•G•.

(3.1)

According to [5, I 4.2] Z∞p is a fibration and so are the other two vertical arrows. Then, since
B•GL(A) → Z∞B•GL(A) is acyclic, so is F → F̃ [2, (4.1)]. Since E•G• is contractible, so
is Z∞E•G• and hence F̃ is weakly homotopy equivalent to the homotopy fibre of the map
Z∞B•GL(A)→ Z∞B•G• and we define the relative K-groups

Krel
i (X) := πi(F̃ ), i > 0.

By construction we have a long exact sequence

(3.2) · · · → K−i−1
top (X)→ Krel

i (X)→ Ki(X)→ K−itop(X)→ · · · .

E 3.2. – Consider the case of a point: X = Spec(C). The topological K-groups
of X equal Z in even degrees and vanish in odd degrees. Hence we get exact sequences

0→ Krel
2n (X)→ K2n(X)→ Z→ Krel

2n−1(X)→ K2n−1(X)→ 0, n > 0.

We can say even more: One knows that for any smooth, projective C-scheme Y and i > 0

the image of Ki(Y ) in K−itop(Y ) is torsion [19, 6.3] . For X = Spec(C) this and the above
sequence imply that we have isomorphisms

Krel
2n (X) ∼= K2n(X), n > 0,
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in even degrees and short exact sequences

0→ Z→ Krel
2n−1(X)→ K2n−1(X)→ 0, n > 0,

in odd degrees.

We resume the discussion before Example 3.2. We need the following description of the
homology of F̃ . Define F by the pull-back diagram of simplicial sets:

F

y

��

// E•G•

p

��
B•GL(A) // B•G•.

Then the natural map F → F is a weak homotopy equivalence, too, and since F → F̃ is
acyclic, we have isomorphisms in homology

H∗(F ,Z)
∼=−→ H∗(F,Z)

∼=−→ H∗(F̃ ,Z).

3.3. The relative Chern character

Let X = Spec(A) be as before. We define relative Chern character maps

Chrel
n,i : K

rel
i (X)→ H2n−i−1(X,C)/FilnH2n−i−1(X,C)

as follows: By definition, Krel
i (X) = πi(F̃ ), and we have the Hurewicz map

Krel
i (X) → Hi(F̃ ,Z) ∼= Hi(F ,Z). It is thus enough to construct a homomorphism

Hi(F ,Z) → H2n−i−1
rel (X,n) = H2n−i−1(X,C)/FilnH2n−i−1(X,C). We will use the

following

L 3.3. – Let S be a simplicial set and X an algebraic variety. Form the simplicial
variety X• := X ⊗ S as in Example 1.6. Then we have natural isomorphisms

Hk
rel(X•, n) ∼=

⊕
p+q=k

Hom(Hp(S,Z), Hq(X,C)/FilnHq(X,C)),

Hk
D(X•,Q(n)) ∼=

⊕
p+q=k

Hom(Hp(S,Z), Hq
D(X,Q(n))).

Proof. – This is standard and follows easily from the explicit form of the complexes in
question.

R 3.4. – A similar statement also holds for the group Hk(X•,Ω
<n
X•

), which is
computed by the complex A∗(X•)/FilnA∗(X•). We have a commutative diagram

Hk(X•,C)/FilnHk(X•,C)

��

// Hk(X•,Ω
<n
X•

)

��
Hom(Hp(S,Z), Hk−p(X,C)/Filn) // Hom(Hp(S,Z),Hk−p(X,Ω<nX ))

and the right vertical arrow is given explicitly as follows: A class in Hk(X•,Ω
<n
X•

) may be
represented by a form ω ∈ Ak(X•), closed modulo FilnAk+1(X•). The simplicial form ω is
given by a family of k-forms on ∆q × (X ⊗ S)q, q ≥ 0, and in particular we can consider
the restriction σ∗ω of ωp to the copy of ∆p × X corresponding to σ ∈ Sp. Integration
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along ∆p gives the (k − p)-form
∫
σ
ω =

∫
∆p σ

∗ω ∈ A k−p(X). By linearity this extends
to a map ZSp → A k−p(X), σ 7→

∫
∆p σ

∗ω, which induces a well defined homomorphism
Hp(S,Z)→ Hk−p(A ∗(X)/FilnA ∗(X)) = Hk−p(X,Ω<nX ).

To construct the relative Chern character map on K-theory we thus have to construct
classes inH2n−1(X⊗F ,C)/FilnH2n−1(X⊗F ,C). This is achieved as follows. First write
Gr,• := S∞• (GLr(C)X), so that G• = lim−→rGr,•, and define Fr by the cartesian diagram of
simplicial sets

Fr

y

��

// E•Gr,•

p

��
B•GLr(A) // B•Gr,•.

(3.3)

Then F = lim−→rFr, H∗(F ,Z) = lim−→rH∗(Fr,Z) and by the lemma

H∗(X ⊗F ,C)/Filn = lim←−rH
∗(X ⊗Fr,C)/Filn.

By construction, a p-simplex in the simplicial group Gr,• is a smooth map
∆p × X → GLr(C), and a p-simplex in E•Gr,• may be viewed as a smooth map
∆p × X → EpGLr(C). On the other hand, every p-simplex in B•GLr(A) may be seen
as a morphism of varieties X → BpGLr(C). As in Example 1.10 diagram (3.3) then gives
rise to a commutative diagram

E•GLr(C)

p

��
X ⊗Fr

αr

88

gr // B•GLr(C),

where gr is a morphism of simplicial varieties.

Phrased differently, if we denote by Er the algebraic bundle classified by
gr : X ⊗ Fr → B•GLr(C) and by Tr the trivial GLr(C)-bundle, we have the trivial-
ization αr : Tr → Er of the underlying topological bundles and corresponding relative
Chern character classes

C̃h
rel

n (Er, αr) ∈ H2n−1
rel (X ⊗Fr, n) = H2n−1(X ⊗Fr,C)/FilnH2n−1(X ⊗Fr,C).

It is easy to see that these classes are compatible for different r [36, Lemma 3.7]. Hence the

family (C̃h
rel

n (Er, αr))r≥0 defines a class in H2n−1(X ⊗F ,C)/FilnH2n−1(X ⊗F ,C). By
Lemma 3.3 this class gives morphisms Hi(F ,Z) → H2n−i−1(X,C)/FilnH2n−i−1(X,C),
i = 0, . . . , 2n− 1.

D 3.5. – LetX be a smooth, affine C-scheme of finite type as before. We define
the relative Chern character Chrel

n,i on Krel
i (X) to be the composition

Chrel
n,i : K

rel
i (X) = πi(F̃ )

Hur.−−−→ Hi(F̃ ,Z) ∼= Hi(F ,Z)→

→ H2n−i−1(X,C)/FilnH2n−i−1(X,C).
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R 3.6. – (i) If in the above construction one replaces C̃h
rel

n (Er, αr) with
the Chern-Weil theoretic classes Chrel

n (Er, αr) one gets relative Chern character maps
Krel
i (X) → H2n−i−1(X,Ω<nX ), which are essentially Karoubi’s original ones. Obviously,

these are just the composition of Chrel
n,i with the natural map H2n−i−1(X,C)/Filn →

H2n−i−1(X,Ω<nX ).

(ii) LetX = Spec(A) be an affine variety as above. Karoubi [27, 26] developed a theory of
bundles, connections, and characteristic classes for GLr(A)-fibre bundles on simplicial sets
S which enabled him to construct the relative Chern character on relative K-theory. In our
setting, these bundles correspond to GLr(C)-bundles on the simplicial variety X ⊗ S (cf.
Example 1.6). To compare the relative Chern character with the Chern character in Deligne-
Beilinson cohomology however, it is necessary to extend the theory to general simplicial
varieties.

3.4. Comparison with the Chern character in Deligne-Beilinson cohomology

The Chern character in Deligne-Beilinson cohomology is constructed in exactly the same
way as the relative Chern character above (cf. e.g. [34, 2.3]):

Let X = Spec(A) be a smooth affine C-scheme of finite type as in the previous section.
Again we have the natural morphisms of simplicial varieties X ⊗B•GLr(A)→ B•GLr(C).
Call the corresponding algebraic bundle Gr. As in the relative case the Chern character
classes ChD

n (Gr) ∈ H2n
D (X ⊗ B•GLr(A),Q(n)) are compatible for different r and thus

yield a well defined class in H2n
D (X ⊗ B•GL(A),Q(n)). This class in turn yields maps

Hi(B•GL(A),Z) → H2n−i
D (X,Q(n)) and, for i > 0, we define the Chern character maps

ChD
n,i on K-theory to be the composition

ChD
n,i : Ki(X) = πi(Z∞B•GL(A))

Hur.−−−→ Hi(Z∞B•GL(A),Z) ∼=
∼= Hi(B•GL(A),Z)→ H2n−i

D (X,Q(n)).

T 3.7. – Let X be a smooth affine C-scheme of finite type. The diagram

Krel
i (X) //

Chrel
n,i

��

Ki(X)

ChD
n,i

��
H2n−i−1(X,C)/FilnH2n−i−1(X,C) // H2n−i

D (X,Q(n))

commutes.

Proof. – This is now an easy consequence of Theorem 2.11 and the constructions.

We use the notations of the last two sections. Then Er/X ⊗ Fr is just the pullback
of Gr/X ⊗ B•GLr(A) by the morphism X ⊗ Fr → X ⊗ B•GLr(A). It follows from

Theorem 2.11 and functoriality that C̃h
rel

n (Er, αr) ∈ H2n−1(X ⊗ Fr,C)/Filn and
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ChD
n (Gr) ∈ H2n

D (X ⊗ B•GL(A),Q(n)) map to the same class in H2n
D (X ⊗ Fr,Q(n)),

namely to ChD
n (Er). Hence we have commutative diagrams

Hi(Fr,Z)
C̃h

rel

n (Er,αr) //

��

ChD
n (Er)

,,

H2n−i−1(X,C)/FilnH2n−i−1(X,C)

��
Hi(B•GLr(A)),Z)

ChD
n (Gr)

// H2n−i
D (X,Q(n)),

where the arrows are induced by the specified classes. Going to the limit r → ∞ and using
the commutativity of diagram (3.1) the claim follows.

3.5. Extension to non-affine schemes

Using Jouanolou’s trick we extend the construction of the relative Chern character to all
smooth, separated schemes of finite type over C (cf. [40, §4], [19, §6]).

By a Jouanolou torsor over a scheme X we mean an affine scheme W together with an
affine map W → X which is a torsor for some vector bundle on X. According to Jouanolou
and Thomason every smooth, separated scheme of finite type over a field admits a Jouanolou
torsor [40, Proposition 4.4].

Let X be a smooth variety over C and fix a Jouanolou torsor π : W → X. By
the homotopy invariance of Quillen’s K-theory for regular schemes [31, §7 Proposi-
tion 4.1] and the homotopy invariance of topological K-theory π induces isomorphisms
π∗ : K∗(X)

∼=−→ K∗(W ) and π∗ : K∗top(X)
'−→ K∗top(W ). It follows that, if we define

Krel
∗ (X)W := Krel

∗ (W ), we get exact sequences

· · · → K−i−1
top (X)→ Krel

i (X)W → Ki(X)→ K−itop(X)→ · · ·

as in (3.2). To get a definition of relative K-theory which does not depend on the partic-
ular choice of W we proceed as follows: If W ′ → X is a second Jouanolou torsor, so is
W ′′ := W ×X W ′ and both maps W ← W ′′ → W ′ induce isomorphisms on algebraic,
topological and hence also relativeK-groups. To avoid set theoretic problems we replace the
category of Jouanolou torsors overX by a small skeletal subcategory. Then we can consider
the set J of all finite sets of Jouanolou torsors overX. This is partially ordered by inclusion.
For any A ∈ J write Krel

i (X)A := Krel
i (
∏
W∈AW ) where

∏
denotes the fibered product

over X. Any inclusion A ⊆ B induces an isomorphism Krel
i (X)A

∼=−→ Krel
i (X)B .

D 3.8. – We define the relative K-groups of X as

Krel
i (X) := lim−→

A∈ J

Krel
i (X)A.

For every A ∈ J the projection πA :
∏
W∈AW → X induces an isomorphism

π∗A : Ki(X)
∼=−→ Ki(

∏
W∈AW ) and for varying A the compositions

Krel
i (X)A → Ki(

∏
W∈A

W )
(π∗A)−1

−−−−−→ Ki(X)

assemble to give a map Krel
i (X)→ Ki(X).
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The relative Chern character is now constructed as follows: Let π : W → X be any
Jouanolou torsor. By the homotopy invariance of singular cohomology π induces an iso-
morphism π∗ : H∗(X,C)

∼=−→ H∗(W,C). Since π∗ is in fact a morphism of mixed Hodge
structures, the induced maps FilnH∗(X,C) → FilnH∗(W,C) and H∗D(X,Q(n)) →
H∗D(W,Q(n)) are isomorphisms, too.

Hence, for A ∈ J as above, we can consider the composition

Krel
i (X)A = Krel

i (
∏
W∈A

W )
Chrel

n,i−−−→ H2n−i−1(
∏
W∈A

W,C)/FilnH2n−i−1(
∏
W∈A

W,C)

(π∗A)−1

−−−−−→ H2n−i−1(X,C)/FilnH2n−i−1(X,C).

For varying A ∈ J these maps induce the relative Chern character

Chrel
n,i : K

rel
i (X)→ H2n−i−1(X,C)/FilnH2n−i−1(X,C).

Similarly, the Chern character in Deligne-Beilinson cohomology is the composition

ChD
n,i : Ki(X)

π∗−→ Ki(W )
ChD

n,i−−−→ H2n−i
D (W,Q(n))

(π∗)−1

−−−−→ H2n−i
D (X,Q(n))

where π : W → X is any Jouanolou torsor for X.

T 3.9. – Let X be a smooth, separated scheme of finite type over C. The diagram

Krel
i (X) //

Chrel
n,i

��

Ki(X)

ChD
n,i

��
H2n−i−1(X,C)/FilnH2n−i−1(X,C) // H2n−i

D (X,Q(n))

commutes.

Proof. – This follows directly from Theorem 3.7 and the constructions.

E 3.10. – Let X be a smooth, projective C-scheme. Then the image of Ki(X)

in K−itop(X) is torsion [19, 6.3]. Hence, upon tensoring with Q, the long exact sequence (3.2)
breaks up into short exact sequences

0→ K−i−1
top (X)Q → Krel

i (X)Q → Ki(X)Q → 0, i > 0.

On the other hand, the sequence of cohomology groups (2.6) breaks up into short exact
sequences for weight reasons [33, Lemma p. 8] so that for i > 0 we have the following picture:

0 // K−i−1
top (X)Q

��

// Krel
i (X)Q

Chrel
n,i

��

// Ki(X)Q

ChD
n,i

��

// 0

0 // H2n−i−1(X,Q(n)) // H2n−i−1(X,C)/Filn // H2n−i
D (X,Q(n)) // 0.

The unlabeled vertical arrow turns out to be the usual Chern character from topological
K-theory to singular cohomology. This follows similarly as the analogous assertion in [27,
Théorème 6.23]. We skip the details.
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4. Application: the regulators of Beilinson and Borel

The goal of this section is to use the above results to give a new proof of Burgos’ Theorem
that Borel’s regulator is twice Beilinson’s regulator.

4.1. Definition of the regulators

D 4.1. – The Beilinson regulator is by definition the Chern character with
values in real Deligne-Beilinson cohomology:

rBe : K2n−1(C)
ChD

n,2n−1−−−−−−→ H1
D(Spec(C),Q(n))→ H1

D(Spec(C),R(n)).

Here H1
D(Spec(C),R(n)) is the cohomology in degree 1 of the complex R(n) → C, hence

canonically isomorphic to C/R(n) which in turn is isomorphic to R(n−1) via the projection
πn−1 : C → R(n − 1), z 7→ 1

2 (z + (−1)n−1z̄), and we will view rBe as a map with values
in R(n− 1).

The definition of Borel’s regulator ([3], see also [6, Ch. 9], [32]) needs some preparation.
Consider GLr(C) as a real Lie group with maximal compact subgroup U(r). Denote the
corresponding Lie algebras by glr and ur, respectively. We have the van Est isomorphism

(4.1) H∗cts(GLr(C),R) ∼= H∗(glr, ur; R)

between continuous group cohomology and relative Lie algebra cohomology. The right-
hand side of (4.1) is computed as follows (cf. e.g. [32]): The compact real form of glr ⊗ C

is ur ⊕ ur, so we have isomorphisms H2n−1(glr, ur; C) ∼= H2n−1(ur ⊕ ur, ur; C) ∼=
H2n−1(ur,C) ∼= H2n−1(U(r),C) ∼= H2n−1(GLr(C),C) carrying the R-cohomology
to i2n−1H2n−1(GLr(C),R). Combining this with the van Est isomorphism and the natural
map from continuous to discrete group cohomology yields natural maps

H2n(B•GLr(C),R(n))
suspension−−−−−−→ H2n−1(GLr(C),R(n)) ∼=

∼= H2n−1(glr, ur; R(n− 1)) ∼= H2n−1
cts (GLr(C),R(n− 1))→

→ H2n−1
grp (GLr(C),R(n− 1)) = H2n−1(B•GLr(C)δ,R(n− 1)).

Here and in the following GLr(C)δ denotes the group GLr(C)δ equipped with the dis-
crete topology. Denote by Bon the image of the n-th universal Chern character class
Chtop

n (Euniv) ∈ H2n(B•GLr(C),R(n)) under the above composition.

D 4.2. – The Borel regulator is the composition

rBo : K2n−1(C)
Hur.−−−→ H2n−1(B•GL(C)δ,Z) ∼= H2n−1(B•GLr(C)δ,Z)

Bon−−→ R(n− 1)

(r large enough).

T 4.3 (Burgos). – We have rBo = 2rBe.

R 4.4. – Beilinson [1] proved that both regulators coincide up to a non zero
rational factor. Many details of Beilinson’s proof were provided by Rapoport [32]. Dupont,
Hain, and Zucker [12] conjectured that the factor should be 2. This was finally proven by
Burgos [6] using Beilinson’s original argument.
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Using the comparison of Karoubi’s relative Chern character and Beilinson’s regulator
(Theorem 3.7) in the case X = Spec(C) our proof of Burgos’ Theorem will be reduced to a
comparison of Borel’s regulator and the relative Chern character. This in turn will be done
comparing explicit cocycles.

4.2. An explicit cocycle for Karoubi’s relative Chern character

In the notations of Section 3 we fix A = C, X = Spec(C). In particular, we have the
simplicial groups Gr,• = S∞• (GLr(C)), whose realization is equivalent to GLr(C) with the
usual topology, and the simplicial set Fr, defined by diagram (3.3) and homotopy equivalent
to the homotopy fibre of B•GLr(C) → B•Gr,•. Recall that by construction the relative
Chern character factors through the homology of the simplicial set F = lim−→rFr.

In the present situation the model for Fr used by Karoubi in [27] is more convenient: We
have a commutative diagram of simplicial sets

Fr

y
��

αr
// E•Gr,•

p

��
GLr(C)\Gr,•

ηr

77

βr
))

ρr // B•GLr(C)δ // B•Gr,•,

βr(σ) = (σ(e0)−1σ, . . . , σ(ep)
−1σ), ρr(σ) = (σ(e0)−1σ(e1), . . . , σ(ep−1)−1σ(ep)) for

σ ∈ Gr,p, and the map ηr, induced by βr and ρr, is a weak homotopy equivalence (cf.
[27, Proposition 6.16], [36, Lemma A.6]). Here ei denotes the i-th standard basis vector
(0, . . . , 1, . . . , 0). This translates into a commutative diagram of topological morphisms of
simplicial manifolds

E•GLr(C)

p

��
X ⊗GLr(C)\Gr,•

ηr //

βr

33

X ⊗Fr
gr //

αr

88

B•GLr(C).

P 4.5. – The composition

H2n−1(GLr(C)\Gr,•,Z)
∼=−→ H2n−1(Fr,Z)

C̃h
rel

n (Er,αr)−−−−−−−−→ H0(X,C)/Filn = C

is given by the cocycle

σ 7→ − (n− 1)!

(2n− 1)!
Tr

∫
∆2n−1

(σ−1dσ)2n−1.

R 4.6. – Hamida obtained a similar result [22].

Proof. – Since r is fixed, we drop the subscript r in the following. Since X is proper, it

makes no difference if we work with C̃h
rel

n (E,α) or with Chrel
n (E,α). It is clear from the

commutativity of the above diagram that the composition in the statement of the proposition
is induced by Chrel

n (η∗E, β). This class can be computed explicitly: Since X is a point,
the standard connection on the bundle η∗E is given by the zero matrix (cf. the formula
in Example 1.12). Then the pullback to the trivial bundle via β is given by β−1

i dβi (see
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Remark 1.14 (i)). On the p-simplex σ ∈ GLr(C)\Gr,p the function βi is given by the matrix
σ(ei)

−1σ ∈ Gr,p = C∞(∆p,GLr(C)), hence β−1
i dβi = σ−1dσ on the simplex σ. We denote

the corresponding simplicial form simply by σ−1dσ.

By construction Chrel
n (Γη

∗E , β) is given by
∫ 1

0
(i∂/∂tChn(Γ))dt, where Γ is the connection

given by Γi = tβ−1
i dβi = tσ−1dσ on the trivial GLr(C)-bundle on (X ⊗ (GLr(C)\Gr,•))×C,

t denoting the coordinate on C.

The curvature of Γ is given by

Ri = dΓi + Γ2
i = dt(σ−1dσ)− t(σ−1dσ)2 + t2(σ−1dσ)2

= dt(σ−1dσ) + (t2 − t)(σ−1dσ)2.

Hence Rni = (t2 − t)n(σ−1dσ)2n + ndt(t2 − t)n−1(σ−1dσ)2n−1 and

Chrel
n (Γρ

∗E , β) =
(−1)n

n!

∫ 1

0

i∂/∂tTr(Rni )dt

= (−1)n
n

n!
Tr

∫ 1

0

(t2 − t)n−1(σ−1dσ)2n−1dt

=
(−1)n

(n− 1)!
(

∫ 1

0

(t2 − t)n−1dt)Tr
(
(σ−1dσ)2n−1

)
= − (n− 1)!

(2n− 1)!
Tr
(
(σ−1dσ)2n−1

)
.

Here we used that
∫ 1

0
(t2 − t)n−1dt = (−1)n−1

∫ 1

0
tn−1(1 − t)n−1dt = (−1)n−1B(n, n) =

(−1)n−1 Γ(n)·Γ(n)
Γ(n+n) = (−1)n−1 ((n−1)!)2

(2n−1)! , where B is Euler’s Beta function [7, Section 4.2]. Now
the claim follows from Remark 3.4.

4.3. The van Est isomorphism

Recall that the relative Lie algebra cohomology H∗(glr, ur; R) is the cohomology of
the complex A ∗(GLr(C)/U(r); R)GLr(C) of invariant real valued differential forms on the
homogeneous space GLr(C)/U(r).

To compare Borel’s regulator with the relative Chern character we need the follow-
ing description of the composition of the van Est isomorphism with the natural map
H∗cts(GLr(C),R)→ H∗grp(GLr(C),R) = H∗(B•GLr(C)δ,R) from continuous to discrete
group cohomology.

P 4.7. – We have a commutative diagram

H∗cts(GLr(C),R) // H∗(B•GLr(C)δ,R)
ρ∗r // H∗(GLr(C)\Gr,•,R),

H∗(glr, ur; R)

van Est ∼=

OO

// H∗(glr; R)

φ

44

where φ is induced by the chain map φ sending a left invariant form ω to the simplicial cocycle

(4.2) GLr(C)\S∞p (GLr(C)) 3 σ 7→
∫

∆p

σ∗ω.
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Proof. – This is a modification of Tillmann’s argument in [39, Theorem 4.3].

Write G = GLr(C), U = U(r), and π for the projection G → G/U . We have a
commutative diagram of complexes of continuous G-modules

R
' //

'

%%

C (E•G,R) // C (E•G,A ∗(G,R))

A ∗(G/U,R)
π∗ // A ∗(G,R),

'

OO

all modules apart from R being injective and' denoting quasi-isomorphisms (cf. [24, p. 370,
p. 385] and [39, proof of Theorem 4.3]). The right vertical arrow is the inclusion as constant
“functions” and C (E•G, ) denotes continuous functions. Taking continuous group coho-
mology the quasi-isomorphisms on the left induce the van Est isomorphism and we get the
commutativity of the lower left square of the diagram

H∗(C (B•G,R)) // H∗(C (B•G
δ,R)) H∗(B•G

δ,R)

��
ρ∗r

vv

H∗cts(G,R) // H∗(C (B•G,A ∗(G,R))) // H∗(C (B•G
δ,C (G•,R))

H∗(glr, ur; R)

van Est ∼=

OO

// H∗(glr; R)

∼=

OO

φ // H∗(G\G•,R).

∼=

OO

Here C (G•,R) denotes the complex of simplicial cochains onG• (= the complex of singular
cochains on G) and the unlabeled arrows are induced by the natural map Gδ → G and the
de Rham map (integration of differential forms) respectively.

The commutativity of the remaining parts is established in [39, Theorem 4.3, (4.4)] (ρ∗r and
φ are called eval and deR there) finishing the proof of the proposition.

4.4. Proof of Theorem 4.3

Since the odd topological K-theory of Spec(C) vanishes, the map Krel
2n−1(C)→ K2n−1(C)

is surjective. By construction of the regulators resp. the relative Chern character and the
comparison result of Theorem 3.7 it then suffices to show that the diagram

H2n−1(GLr(C)\Gr,•,Z)
ρ∗r //

Chrel
n,2n−1

��

H2n−1(B•GLr(C)δ,Z)

1
2 Bon

��

H0(Spec(C),C)/Filn // H1
D(Spec(C),R(n))

C // C/R(n)
πn−1

∼=
// R(n− 1)

commutes.

Recall the definition of Bon in Section 4.1. By abuse of notation we also denote by Bon
the image of Chtop

n (Euniv) in the relative Lie algebra cohomologyH2n−1(glr, ur; R(n− 1)).
We need Burgos’ description of its image in absolute Lie algebra cohomology:
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L 4.8. – The image of Bon inH2n−1(glr,R(n−1)) is represented by the left invariant
differential form

−2
(n− 1)!

(2n− 1)!
πn−1 ◦ Tr((g−1dg)2n−1),

g−1dg denoting the Maurer-Cartan form on GLr(C) and πn−1 the projection C→ R(n− 1).

Using Proposition 4.7 we conclude that the composition 1
2Bon ◦ ρ∗r is induced by the

cocycle

GLr(C)\Gr,• 3 σ 7→ −
(n− 1)!

(2n− 1)!
πn−1Tr

∫
∆2n−1

(σ−1dσ)2n−1

and finish the proof of the theorem using Proposition 4.5.

Proof of the lemma. – Obviously, the form in the statement is left invariant. At the unit
element the Maurer-Cartan form is just the identity glr → glr. Hence the above form
corresponds to the alternating form on glr that is given by

x1 ∧ · · · ∧ x2n−1 7→ −2
(n− 1)!

(2n− 1)!
πn−1

 ∑
τ∈S2n−1

sgn(τ)Tr(xτ(1) · · ·xτ(2n−1))

 ,

where S2n−1 denotes the symmetric group on 2n− 1 elements.
It follows from [6, Proposition 9.26] that this represents the image of Bon in

H2n−1(glr,R(n − 1)). Note that Burgos’ cocycle differs from ours by the factor (−1)n.
This is explained by the fact that Burgos uses another normalization of the Chern classes.
His “twisted Chern character class” chn is (−1)nChtop

n , cf. Remark 2.15.
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