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ON STANDARD NORM VARIETIES

 N A. KARPENKO  A S. MERKURJEV

A. – Let p be a prime integer andF a field of characteristic 0. LetX be the norm variety of
a symbol in the Galois cohomology group Hn+1(F, µ⊗n

p ) (for some n ≥ 1), constructed in the proof
of the Bloch-Kato conjecture. The main result of the paper affirms that the function field F (X) has the
following property: for any equidimensional variety Y , the change of field homomorphism CH(Y )→
CH(YF (X)) of Chow groups with coefficients in integers localized at p is surjective in codimensions
< (dimX)/(p − 1). One of the main ingredients of the proof is a computation of Chow groups of
a (generalized) Rost motive (a variant of the main result not relying on this is given in the appendix).
Another important ingredient isA-triviality ofX, the property saying that the degree homomorphism
on CH0(XL) is injective for any field extension L/F withX(L) 6= ∅. The proof involves the theory of
rational correspondences reviewed in the appendix.

R. – Pour un nombre premier p et un corps F de caractéristique 0, soit X la variété
de norme d’un symbole dans le groupe de cohomologie galoisienne Hn+1(F, µ⊗n

p ) (avec n ≥ 1)
construite au cours de la démonstration de la conjecture de Bloch-Kato. Le résultat principal de
cet article affirme que le corps des fonctions F (X) a la propriété suivante : pour toute variété
équidimensionnelle Y , l’homomorphisme de changement de corps CH(Y )→ CH(YF (X)) de groupes
de Chow à coefficients entiers localisés en p est surjectif en codimension < (dimX)/(p− 1). Une des
composantes principales de la preuve est le calcul de groupes de Chow du motif de Rost généralisé (un
variant du résultat principal indépendant de ceci est proposé dans l’appendice). Un autre ingrédient
important est la A-trivialité de X, la propriété qui dit que pour toute extension de corps L/F avec
X(L) 6= ∅, l’homomorphisme de degré pour CH0(XL) est injectif. La preuve fait apparaître la théorie
de correspondances rationnelles revue dans l’appendice.
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176 N. A. KARPENKO AND A. MERKURJEV

1. Introduction

Let n be a positive integer and p a prime integer. A smooth complete geometrically
irreducible variety X over a field F of characteristic 0 is a p-generic splitting variety for a
symbol s ∈ Hn+1(F ;µ⊗np ) if s vanishes over a field extension K/F if and only if X over K
has a closed point of degree prime to p. A norm variety of s is a p-generic splitting variety of
the smallest dimension pn − 1. Norm varieties played an important role in the proof of the
Bloch-Kato conjecture (see [35]).

Let Y be a smooth variety over F . Write CHi(Y ) for the Chow group with coefficients

in the integers localized at p and fiCHi(Y ) for the factor group of the Chow group CHi(Y )

modulo p-torsion elements and pCHi(Y ). In [36, Theorem 1.3], K. Zainoulline proved, using
the Landweber-Novikov operations in algebraic cobordism theory, that every Y and every
norm variety X of s enjoy the following property: if i < (pn − 1)/(p − 1), every class

α in fiCHi(YF̄ ), where F̄ is an algebraic closure of F , such that αF̄ (X) is F (X)-rational, is

F -rational itself, i.e., α belongs to the image of the map fiCHi(Y )→fiCHi(YF̄ ). This statement
is in the spirit of the Main Tool Lemma of A. Vishik [32].

In the present paper we improve this result by showing that every cycle in the Chow group
CHi(YF (X)) is already defined over F , i.e, it comes from CHi(Y ). More precisely, we prove
the following theorem (see Theorem 4.3 for a stronger statement and the proof):

T 1.1. – Let F be a field of characteristic 0 and let X be an A-trivial p-generic
splitting variety of a symbol in Hn+1(F, µ⊗np ). Then the change of field homomorphism
CHi(Y ) → CHi(YF (X)) is surjective if i < (pn − 1)/(p − 1) for any equidimensional (not
necessarily smooth) variety Y over F . Moreover, the bound (pn − 1)/(p− 1) is sharp.

The A-triviality property for X means that the degree map deg : CH0(XK)→ Z(p) is an
isomorphism (i.e., the kernelA(XK) of the degree map is trivial) for any field extensionK/F
such that X has a point over K. (We believe that the A-triviality condition should be also
imposed in the statement of [36, Theorem 1.3].) Our proof of Theorem 1.1 is “elementary"
in the sense that it does not use the algebraic cobordism theory. It is based on computation
of Chow groups of the corresponding Rost motive, an approach applied by A. Vishik in [33,
Remark on Page 665] in order to obtain the conclusion of Theorem 1.1 for Pfister quadrics
(with p = 2).

In Section 5 we prove that the standard norm varieties (corresponding to nontrivial
symbols) constructed in [30] are A-trivial, so that Theorem 1.1 can be applied to such
varieties. with p = 2, In fact, we prove more (see Theorem 5.8 for a more explicit statement
and the proof):

T 1.2. – Let X be a standard norm variety of a nontrivial symbol over a field F of
characteristic 0. Then for any field extension K/F , the degree map deg : CH0(XK)→ Z(p) is
injective.

In the proof we use the theory of rational correspondences developed by M. Rost (un-
published) and B. Kahn/R. Sujatha in [13]. We review this theory in Appendix RC. Another
ingredient of the proof, a computation of Chow groups of Rost motives, is presented in
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Appendix RM. A variant of the main theorem valid in any characteristic 6= p and involving
the Steenrod operations is given in Appendix SC.

In Sections 3 and 4 we develop a theory of (abstract) Rost motives.

We use the following notation and conventions. The base field F is of arbitrary character-
istic if not specified otherwise (it is of characteristic 6= p, p a fixed prime, most of the time,
and of characteristic 0 in several places). An F -variety over a field F is a separated scheme
of finite type over F .

We fix a commutative unital ring Λ and write CH = CH∗ for the Chow group with
coefficients in Λ. For any integer i and equidimensional F -variety Y , we write CHi(Y ) for
the Chow group CHdimY−i(Y ).

Many events in the paper happen in the category of Chow motives (with coefficients in Λ,
see [7]). A Chow motive is a pair (X, ρ), where X is a smooth complete variety over F and
ρ is a projector (idempotent) in the endomorphism ring of the motive M(X) of X. We say
that a motive M lives on X, if M ' (X, ρ) for some ρ as above.

A. The authors thank Markus Rost for useful comments and sugges-
tions.

2. A-trivial varieties

Let X be a smooth complete irreducible F -variety. Let d be its dimension, and let ρ be a
fixed element of the Chow group CHd(X ×X) (considered as a correspondence X  X).

L 2.1. – The following two conditions on ρ are equivalent:

1. for anyF -variety Y , the image of anyα ∈ CH(X×Y ) under the pull-back to CH(YF (X))

coincides with the image of α ◦ ρ;
2. ρ∗[ξ] = [ξ], where ξ is the generic point of X and [ξ] is its class in the Chow group

CH0(XF (X)).

Proof. – (2) ⇒ (1) The image of α is equal to α∗[ξ]. In particular, the image of α ◦ ρ is
equal to (α ◦ ρ)∗[ξ] = α∗(ρ∗[ξ]) = α∗[ξ] if ρ∗[ξ] = [ξ].

(1)⇒ (2) Apply (1) to Y = X and the class of the diagonal of X in place of α.

C 2.2. – If ρ satisfies the conditions of Lemma 2.1, then for any F -variety Y the
pull-back homomorphism CH(X × Y ) ◦ ρ→ CH(YF (X)) is surjective.

D 2.3. – A smooth complete F -varietyX isA-trivial, if for any field extension
L/F with X(L) 6= ∅, the degree homomorphism deg : CH0(XL)→ Λ is an isomorphism.

R 2.4. – The notion of A-triviality depends on Λ. A variety A-trivial for Λ = Z
is A-trivial for any Λ. If Λ 6= 0, any A-trivial variety is geometrically irreducible.

E 2.5. – Any projective homogeneous varietyX under an action of a semisimple
affine algebraic group is A-trivial. Indeed, if X(L) 6= ∅, the variety XL is rational and
therefore deg : CH0(XL)→ Λ is an isomorphism by Corollary RC.13.
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178 N. A. KARPENKO AND A. MERKURJEV

Multiplicity mult ρ of ρ is the element of Λ such that the push-forward of ρ with respect
to the first projection X ×X → X is equal to (mult ρ) · [X].

L 2.6. – Assuming thatX isA-trivial, ρ satisfies conditions of Lemma 2.1 if and only
if mult ρ = 1.

Proof. – Since X is A-trivial, the 0-cycle classes ρ∗[ξ], [ξ] ∈ CH0(XF (X)) coincide if and
only if their degrees coincide. It remains to notice that deg[ξ] = 1 and deg ρ∗[ξ] = mult ρ.

A trivial example of ρ satisfying the conditions of Lemma 2.1 is given by the class of the
diagonal of X. Here is one more example:

E 2.7. – IfX is a projective homogeneous variety under an action of a semisim-
ple affine algebraic group and ρ ∈ CHd(X×X) is a projector such that the summand (X, ρ)

of the Chow motive of X is upper in the sense of [17, Definition 2.10], then mult ρ = 1 and
therefore ρ satisfies conditions of Lemma 2.1 by Lemma 2.6 (X isA-trivial by Example 2.5).

P 2.8. – Assume that ρ satisfies conditions of Lemma 2.1 (the assumption is
satisfied, for instance, if mult ρ = 1 andX isA-trivial). Also assume that ρ is a projector. Given
an equidimensional F -variety Y and an integer m such that for any i and any point y ∈ Y of
codimension i the change of field homomorphism

ρ∗ CHm−i(X)→ ρ∗ CHm−i(XF (y))

is surjective, the change of field homomorphism

CHm(Y )→ CHm(YF (X))

is also surjective.

Proof. – Since ρ∗(x) × y = (x × y) ◦ ρ for any x ∈ CH(X), F -variety Y and
y ∈ CH(Y ) (where the composition of correspondences is taken in the sense of [3], see
also [7, §62]), the external product homomorphism CH(X)⊗ CH(Y )→ CH(X × Y ) maps(
ρ∗CH(X)

)
⊗ CH(Y ) to CH(X × Y ) ◦ ρ.

Let us check that in our situation the homomorphism⊕
i

(
ρ∗ CHi(X)

)
⊗Λ CHm−i(Y )→ CHm(X × Y ) ◦ ρ

is surjective.

Checking this, we may assume that Y is integral and proceed by induction on dimY using
the exact sequence⊕

Y ′
CHm−1(X × Y ′) ◦ ρ→ CHm(X × Y ) ◦ ρ→ ρ∗CHm(XF (Y )),

where the direct sum is taken over all integral subvarieties Y ′ ⊂ Y of codimension 1. The
sequence is exact because the sequence⊕

Y ′
CHm−1(X × Y ′)→ CHm(X × Y )→ CHm(XF (Y ))

is exact and ρ is a projector.
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Now we consider the following commutative diagram(
ρ∗ CH(X)

)
⊗Λ CH(Y ) −−−−→ CH(X × Y ) ◦ ρy y

CH(Y ) −−−−→ CH(YF (X))

where the left homomorphism is induced by the augmentation map CH(X) → Λ. The
right homomorphism is surjective by Corollary 2.2. As we checked right above, the top
homomorphism is surjective in codimension m. Therefore the bottom homomorphism is
also surjective in codimension m.

The following statement is a particular case of [22, Theorem 2.11 (3⇒ 1)]:

L 2.9. – Assume thatX isA-trivial and 1 ∈ deg CH0(X). Then for anyF -variety Y ,
the change of field homomorphism CH(Y )→ CH(YF (X)) is an isomorphism.

Proof. – To prove surjectivity, we note that any y ∈ CH(YF (X)) is the image of some
α ∈ CH(X × Y ). If x ∈ CH0(X) is an element of degree 1, then the correspondence
[X] × x ∈ CHd(X × X) satisfies by Lemma 2.6 the conditions of Lemma 2.1. Therefore
α ◦ ([X] × x) ∈ CH(X × Y ) is also mapped to y ∈ CH(YF (X)). On the other hand,
α ◦ ([X]× x) = [X]×α∗(x) is mapped to α∗(x)F (X) and it follows that α∗(x) is an element
of CH(Y ) mapped to y.

Injectivity follows by specialization (see [10, §20.3] or [28]).

C 2.10. – Assume that X is A-trivial. Then for any l ∈ deg CH0(X) ⊂ Λ and
any F -variety Y , the image of CH(Y )→ CH(YF (X)) contains lCH(YF (X)).

Proof. – It suffices to consider the case l = deg x for a closed point x ∈ X. Let L be the
residue field of x. The change of field homomorphism CH(YL) → CH(YL(X)) is surjective
by Lemma 2.9, and the transfer argument does the job.

3. Abstract Rost motives

In this section, the coefficient ring Λ is Z(p) (the ring of integers localized in a fixed prime p)
or Fp (the finite field of p elements).

For any integer n ≥ 1, an abstract Rost motive of degree n + 1 with coefficients in Λ

is a Chow motive R with coefficients in Λ living on a smooth complete geometrically irre-
ducible variety X such that for any field extension L/F with 1 ∈ deg CH0(XL) one has
RL ' Λ⊕ Λ(b)⊕ · · · ⊕ Λ((p− 1)b), where b := (pn − 1)/(p− 1).

In particular, dimX ≥ pn− 1 = (p− 1)b. Pulling back the projector of R with respect to
the diagonal of X, produces a 0-cycle class of degree p (cf. [17, Lemma 2.21]) showing that
deg CH0(X) ⊃ pΛ. It follows that the ideal deg CH0(X) ⊂ Λ of the coefficient ring Λ is
equal either to pΛ or to Λ.

The condition 1 ∈ deg CH0(XL) appearing in the definition means the same for Λ = Z(p)

as for Λ = Fp. In Λ-free terms, it means that the variety XL has a closed point of a prime
to p degree.
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By the very definition, the multiplicity of the projector of R (which we call an abstract
Rost projector) is equal to 1.

Note that for any field extension L/F such that 1 ∈ deg CH0(XL) we have

End RL = End Λ× End Λ(b)× · · · × End Λ((p− 1)b) = Λp.

In particular, End RL → End RL′ is an isomorphism for any field extension L′/L.
We fix an integer n ≥ 1 and consider only abstract Rost motives of degree n+ 1 below.

L 3.1. – An abstract Rost motive is indecomposable if (and only if) 1 6∈ deg CH0(X).
In particular, an abstract Rost motive with coefficients in Z(p) is indecomposable if and only if
the corresponding abstract Rost motive with coefficients in Fp is indecomposable.

Proof. – Assuming that R = R1 ⊕R2 with R1, R2 6= 0, we get (R1)F (X), (R2)F (X) 6= 0

by the nilpotence principle [34, Proposition 3.1]. It follows by the Krull-Schmidt principle of
[5] that (R1)F (X) is isomorphic to a direct sum of shifts of m copies of Λ where 0 < m < p.
Pulling back the projector of R1 via the diagonal of X, we get a 0-cycle of degree m ∈ Λ (cf.
[17, Lemma 2.21]). This contradicts 1 6∈ deg CH0(X).

L 3.2. – For any abstract Rost motive R one has

pEnd RF (X) ⊂ Im(End R → End RF (X)).

Proof. – The statement being vacuous for Λ = Fp, one may assume that Λ = Z(p) in the
proof. We also may assume that R is indecomposable.

Let L be the residue field of a closed point on X of degree not divisible by p2 (but, of
course, divisible by p). Since X(L) 6= ∅, End RL → End RL(X) is an isomorphism. For any
α ∈ End RF (X) the endomorphism pα is in the image of the composition End RF (X) →
End RL(X) → End RF (X) coinciding with multiplication by [L : F ] and therefore in the
image of the composition End RL → End RL(X) → End RF (X) which coincides with the
composition End RL → End R → End RF (X).

L 3.3. – Any multiplicity 1 endomorphism of an indecomposable abstract Rost
motive is an automorphism.

Proof. – We take some α ∈ End R of multiplicity 1. Since the ring End RF (X) is the
product of p copies of Λ, the endomorphism αF (X) ∈ End RF (X) is given by a p-tuple of
elements in Λ. This p-tuple starts with 1 (because the starting component of the p-tuple is
the multiplicity of α). Actually, every component of the p-tuple is congruent to 1 modulo p.
Indeed, if a component of αF (X) is λ 6≡ 1, the F -rational (i.e., coming from F ) endomor-
phism (α− λ · id)F (X) considered in (End RF (X))Λ⊗Fp has a nontrivial and a trivial com-
ponent. Rasing to (p− 1)th power, provides us with a nontrivial F -rational idempotent. By
the nilpotence principle mentioned in the proof of Lemma 3.1, this produces a nontrivial
idempotent in the ring (End R)Λ ⊗ Fp, contradicting Lemma 3.1.

So, every component of αF (X) is congruent to 1 modulo p (and this is the end of the
proof in the case of Λ = Fp). In particular, αF (X) is invertible. By Lemma 3.2, the inverse
ofαF (X) is rational (because each component of the inverse is also congruent to 1 modulo p).
Therefore we may assume that αF (X) = 1. In this case, α − 1 is nilpotent by nilpotence
principle applied one more time, and it follows that α itself is invertible.
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It turns out that R is determined by the class of X with respect to the following equiv-
alence relation: X ∼ X ′ if there exist multiplicity 1 correspondences X  X ′ and
X ′  X. (In slightly different terms, X ∼ X ′ means that for any field extension L/F

one has 1 ∈ deg CH0(XL) if and only if 1 ∈ deg CH0(X ′L). Note that the equivalence
relations for Λ = Z(p) and Λ = Fp coincide.) More precisely, we have

P 3.4. – Abstract Rost motives R and R′ living on varieties X and X ′ are
isomorphic if and only if the varieties are equivalent. If an indecomposable abstract Rost motive
lives on one of two equivalent varieties, then it also lives on the other one.

Proof. – Mutually inverse isomorphisms between R and R′ living on varietiesX andX ′

are given by some correspondences f : X  X ′ and g : X ′  X. Since R = (X, g ◦ f), we
have mult(g ◦f) = 1. As mult(g ◦f) = mult(g) ·mult(f), the correspondences f and g have
prime to p multiplicities showing that X ∼ X ′.

Now given an indecomposable R living onX and given someX ′ equivalent toX, we show
that R is a direct summand of the motive M(X ′) of X ′. The equivalence X ∼ X ′ provides
us with multiplicity 1 correspondences f : X  X ′ and g : X ′  X. The composition
g ◦ f considered on R is a multiplicity 1 endomorphism of R. This endomorphism is an
automorphism by Lemma 3.3.

Finally, if we are given some R and R′ living on some equivalent X and X ′, and we want
to show that R ' R′, then we may assume that R and R′ are indecomposable and consider
morphisms R → R′ and R′ → R given by multiplicity 1 correspondences f : X  X ′ and
g : X ′  X. Repeating the above argument, we show that R is a direct summand of R′.
Therefore R ' R′ by indecomposability of R′.

C 3.5. – Abstract Rost motives with coefficients in Z(p), becoming isomorphic
after the change of coefficients Z(p) → Fp, are isomorphic.

We recall that canonical p-dimension cdpX of a smooth complete irreducible variety X is
the least dimension of a closed subvariety Y ⊂ X possessing a multiplicity 1 correspondence
X  Y , cf. [18]. One always has cdpX ≤ dimX, andX is called p-incompressible in the case
of equality. Canonical p-dimensions of equivalent varieties coincide:

L 3.6. – If X ∼ X ′, then cdpX = cdpX
′.

Proof. – Assuming that X ∼ X ′, it suffices to show that cdpX ≤ cdpX
′. Let Y ′ be

a closed irreducible subvariety of X ′ with a multiplicity 1 correspondence X ′  Y ′ and
with dimY ′ = cdpX

′. Then there exists a prime correspondence X ′  Y ′ of prime to p
multiplicity. Such a correspondence is given by an irreducible closed subvarietyZ ′ inX ′×Y ′
such that the projection Z ′ → X ′ is surjective and the field extension F (X ′) ↪→ F (Z ′) is of
finite prime to p degree. By minimality of Y ′, the projection Z ′ → Y ′ is also surjective.

The variety X ′ having an F (Y ′)-point, the variety XF (Y ′) has a 0-cycle of degree 1.
Consequently, there exists a closed subvariety Z ⊂ Y ′ × X surjective over Y ′ with
F (Y ′) ↪→ F (Z) of finite prime to p degree. Let Y ⊂ X be the image of the projection
Z → X.

We have obtained a diagram of fields, shown below on the left, in which the vertical
embeddings are of finite prime to p degrees. By [18, Lemma 3.1], it can be completed to a
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commutative diagram of fields, shown on the right, in which the vertical embeddings are still
of finite prime to p degrees:

F (Y ) −−−−→ F (Z)x
F (Y ′) −−−−→ F (Z ′)x

F (X ′)

F (Y ) −−−−→ F (Z) −−−−→ Lx x
F (Y ′) −−−−→ F (Z ′)x

F (X ′)

Taking a model U for L and considering the class of the closure of the image of the induced
rational map U → X ′ × Y , we get a prime correspondence X ′  Y of a prime to p

multiplicity, showing that there exists a multiplicity 1 correspondence X ′  Y . Composing
it with a multiplicity 1 correspondence X  X ′ (the composition is defined because
X ′ is smooth complete), we get a multiplicity 1 correspondence X  Y showing that
cdpX ≤ dimY ≤ dimZ = dimY ′ = cdpX

′.

R 3.7. – Lemma 3.6 is easier to prove out of the (equivalent) definition of canon-
ical p-dimension of a smooth complete variety X as the essential p-dimension of the class of
fields L/F with X(L) 6= ∅, given in [24, §1.6]. Indeed, enlarging the above class of fields to
the class of fields L/F with 1 ∈ deg CH0(XL) keeps its essential p-dimension. And, as we
already mentioned, such enlarged classes of fields given by equivalent varieties coincide.

L 3.8. – If an indecomposable abstract Rost motive (of degreen+1) lives on a variety
X, then cdpX ≥ pn − 1.

Proof. – For a closed subvariety Y ⊂ X with a multiplicity 1 correspondence X  Y ,
we consider the endomorphism α ∈ End R given by the composition of correspondences
X  Y ↪→ X. (More explicitly, α is the composition X  X  Y ↪→ X  X with
X  X being the projector of R.) Since multα = 1, α is invertible by Lemma 3.3. On the
other hand, the very last component ofαF (X) can be nonzero only if dimY ≥ pn−1. Indeed,
this last component is given by the action of α∗F (X) on CHpn−1( RF (X)) ⊂ CHpn−1(XF (X)),
but since α lies in the image of the push-forward CH(X × Y )→ CH(X ×X), the action on
the whole group CHpn−1(XF (X)) is trivial if dimY < pn − 1.

C 3.9. – If an indecomposable abstract Rost motive lives on a variety X of
dimension pn − 1, then X is p-incompressible.

The following lemma is inspired by [29, Lemma 9.3]:

L 3.10. – If X is p-incompressible, then for any i > 0 and any α ∈ CHi(X) and
β ∈ CHi(XF (X)), the degree of the 0-cycle class given by the productαF (X) ·β ∈ CH0(XF (X))

is divisible by p.
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Proof. – If deg(αF (X) · β) is not divisible by p for some α ∈ CHi(X) and
β ∈ CHi(XF (X)) with positive i, we can find a closed irreducible subvariety Y ⊂ X

of codimension i with deg([Y ]F (X) · β) not divisible by p. Since the product [Y ]F (X) · β
is represented by a 0-cycle class on YF (X), there exists a multiplicity 1 correspondence
X  Y showing that cdpX ≤ dimX − i < dimX contradicting the assumption that X is
p-incompressible.

C 3.11 (cf. [29, Lemma 9.3]). – If an abstract Rost motive lives on a variety X
of dimension pn − 1 and such that 1 6∈ deg CH0(X), then for any i > 0 and any α ∈ CHi(X)

and β ∈ CHi(XF (X)), the degree of the product αF (X) ·β ∈ CH0(XF (X)) is divisible by p.

4. Generic splitting varieties

In this section Λ is Z(p) or Fp and the base field F is of characteristic 6= p if not specified
otherwise.

For n ≥ 1, an element s ∈ Hn+1(F, µ⊗np ) is a symbol, if it is equal to the cup product of
an element of H1(F,Z/pZ) and n elements of H1(F, µp). A smooth complete geometrically
irreducible F -varietyX is a p-generic splitting variety of a symbol s, if for any field extension
L/F one has sL = 0 if and only if 1 ∈ deg CH0(XL) (it is a generic splitting variety of s, if
sL = 0⇔ X(L) 6= ∅).

Clearly, given a symbol s and a p-generic splitting variety X of s, a smooth complete
geometrically irreducible variety X ′ is also a p-generic splitting variety of s if and only if
X ∼ X ′.

A symbol s′ is similar to s, if s′ = as for a nonzero a ∈ Z/pZ. Similar symbols vanish over
precisely the same fields so that p-generic splitting varieties of similar symbols are equivalent.

According to [30], in characteristic 0, for any symbol s, there exists a p-generic splitting
variety of dimension pn − 1. The construction of such varieties is recalled in Section 5d.

An abstract Rost motive R = Rs living on a p-generic splitting variety of a symbol
s ∈ Hn+1(F, µ⊗np ) is called a Rost motive of the symbol.

T 4.1. – Assume that charF = 0. For any symbol s ∈ Hn+1(F, µ⊗np ), a Rost
motive Rs of s exists. Moreover, the isomorphism class of Rs determines and is determined by
the similarity class of s.

Proof. – The existence statement is proved in [35] and [30]. By Proposition 3.4, the iso-
morphism class of Rs is determined by the similarity class of s. Finally, if Rs′ ' Rs for
a symbol s′, the symbols s and s′ vanish over precisely the same field extensions of F and
therefore are similar by [23, Theorem 2.1].

R 4.2. – In characteristic 0 one may show using Theorem RM.10 that for any
Rost motive R of a nonzero symbol living on a variety X, the homomorphism of Z(p)-alge-
bras

End R → End RF (X) = (Z(p))
p

is injective and has as image the unital Z(p)-subalgebra of (Z(p))
p generated by p(Z(p))

p. This
explains Lemmas 3.2 and 3.3.
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Keeping the characteristic 0 assumption, it follows by Proposition 3.4 that any p-generic
splitting variety of s admits a Rost motive and the isomorphism class of a Rost motive on
such a variety only depends on s. It follows also that pn − 1 is the least dimension of a
p-generic splitting variety of a symbol. The p-generic splitting varieties of dimension pn − 1

are called norm varieties.

T 4.3 (Version for Λ = Z(p) and Λ = Fp). – Let F be a field of characteristic 0.
Given an A-trivial p-generic splitting variety X of a symbol s ∈ Hn+1(F, µ⊗np ), the change of
field homomorphism CH(Y ) → CH(YF (X)) is surjective in codimensions < (pn − 1)/(p − 1)

for any equidimensional variety Y . It is also surjective in codimension = (pn − 1)/(p− 1) for
a given Y provided that sF (ζ) 6= 0 for each generic point ζ ∈ Y .

Proof. – If s = 0, then 1 ∈ deg CH0(X) and the statement of Theorem 4.3 is a particular
case of Lemma 2.9. Below in the proof we are assuming that s 6= 0.

Let ρ be a projector on X giving the Rost motive. By Proposition 2.8, to prove the first
statement of Theorem 4.3, it suffices to check that for any field extension L/F the change of
field homomorphism

ρ∗CH(X)→ ρ∗CH(XL)

is surjective in codimension < m := (pn − 1)/(p − 1). This condition is satisfied by
Theorem RM.10.

To prove the second statement of Theorem 4.3, it suffices to additionally check that for
any generic point ζ ∈ Y the change of field homomorphism

ρ∗ CHm(X)→ ρ∗CHm(XF (ζ))

is surjective. Since sF (ζ) 6= 0, this condition is satisfied by Theorem RM.10 as well.

Our main example of X for which Theorem 4.3 can be applied is given by the standard
norm variety of a symbol in Hn+1(F, µ⊗np ), constructed in Section 5d. Such a variety is
A-trivial by Theorem 5.8.

The standard norm varietyX of a nonzero symbol also provides an example showing that
the boundary b := (pn−1)/(p−1) of the first (and main) statement of Theorem 4.3 is sharp.
Indeed, the element H ∈ CHb(XF (X)) considered in Section SC, does not come from F .

A construction similar to [33, Proof of Theorem 3.4], proves

C 4.4. – For any field F of characteristic 0, any prime p and any integer n ≥ 1,
there exists a field extension F ′/F such that Hn+1(F ′, µ⊗np ) = 0 and CH(Y ) → CH(YF ′) is
surjective in codimensions < (pn − 1)/(p− 1) for any equidimensional F -variety Y .

As indicated in [33, Remark after Theorem 3.4], Corollary 4.4 shows that “modulo p and
degree > n cohomological invariants of equidimensional algebraic varieties could not affect
rationality of cycles of codimension < (pn − 1)/(p− 1)”.
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T 4.5 (Version for Λ = Z). – We have Λ = Z in this statement. Let F be a field of
characteristic 0. Given anA-trivial p-generic splitting varietyX of a symbol s ∈ Hn+1(F, µ⊗np )

such that p ∈ deg CH0(X), the homomorphism CH(Y ) → CH(YF (X)) is surjective in
codimensions < (pn − 1)/(p − 1) for any equidimensional variety Y . It is also surjective in
codimension = (pn − 1)/(p − 1) for a given Y provided that sF (ζ) 6= 0 for each generic point
ζ ∈ Y .

Proof. – By Theorem 4.3, CH(Y )→ CH(YF (X)) is surjective modulo p in the codimen-
sions considered. Since p ∈ deg CH0(X), the image of CH(Y ) → CH(YF (X)) contains
pCH(YF (X)) by Corollary 2.10.

E 4.6. – For p = 2, let a0, . . . , an ∈ F×, s the symbol s := (a0) ∪ · · · ∪ (an), and
X the norm quadric 〈−a0〉⊥ 〈〈a1, . . . , an〉〉 = 0. Then X is an A-trivial (see Example 2.5)
norm variety of s with 2 ∈ deg CH0(X) so that Theorem 4.5 applies. The result obtained
has been originally established by A. Vishik in [33, Corollary 3.3]. Using [14] in place
of Appendix RM, the characteristic 0 assumption can be replaced by characteristic 6= 2

assumption in this statement.

E 4.7. – Let charF = 0, p = 3, and let X be any (among 15) nontrivial pro-
jective homogeneous F -variety under an action of a given absolutely simple affine algebraic
group of type F4 over F . Then the conclusion of Theorem 4.3 holds for X with n = 2.
Indeed, X is A-trivial (for any coefficient ring) by Example 2.5. The modulo 3 portion of
the Rost invariant (see [21]) provides us with an element s ∈ H3(F, µ⊗2

3 ). This element is a
symbol by [31, p. 303] (see also [11, p. 21]). Moreover, X is a 3-generic splitting variety of s
(see [11, §15.5]), so that Theorem 4.3 applies. The result obtained is an enhancement (in sev-
eral respects) of [36, Case p = 3 of Corollary 1.4)].

If F has no finite extensions of degree prime to 3, we have 3 ∈ deg CH0(X) for Λ = Z,
and Theorem 4.5 applies.

5. A-triviality of standard norm varieties

5a. Retract rational varieties

A varietyX overF is called retract rational if there exist rational morphismsα : X 99K Pn

and β : Pn 99K X for some n such that the composition β ◦ α is defined and is equal to the
identity of X.

The following proposition is due to D. Saltman.

P 5.1. – Let A be a central simple algebra of prime degree. Then the variety
of the algebraic group SL1(A) is retract rational.

Proof. – As deg(A) is prime, the group SK1(AK) is trivial for every field extensionK/F
[6, §23, Corollary 4]. Taking K = F (G), we can write the generic point ξ ∈ SL1(A)(K) as
product of commutators

ξ = [f1, f
′
1] · [f2, f

′
2] · · · · · [fn, f ′n]
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in (AK)×, where fi, gi ∈ (AK)×. The 2n-tuple of functions (f1, f
′
1, . . . , fn, f

′
n) can be viewed

as a rational morphism α from G to the affine space A(A2n) of the direct sum of 2n copies
of the vector space of the algebra A. Define the rational morphism β : A(A2n) 99K G by

β(a1, a
′
1, . . . , an, a

′
n) = [a1, a

′
1] · · · · · [an, a′n].

By construction, the composition β ◦ α is defined and is equal to the identity of G.

5b. A-trivial varieties revisited

Recall that a smooth complete variety X over F is called A-trivial if for every field
extension K/F such that X(K) 6= ∅, the degree homomorphism CH0(XK) → Λ is an
isomorphism.

E 5.2. – A retract rational smooth complete variety X is A-trivial. Indeed, it
suffices to prove this for Λ = Z. Let α : X 99K Pn and β : Pn 99K X be rational
morphisms such that the composition β ◦α is defined and is equal to the identity of X, then
the composition (see Appendix RC)

CH0(XK)
α∗−−→ CH0(PnK)

β∗−→ CH0(XK)

is the identity for any field extension K/F . As CH0(PnK) = Z, α∗ is an isomorphism that is
equal to the degree map.

P 5.3. – A smooth complete varietyX overF isA-trivial if and only if for every
field extension K/F and every two points x, x′ ∈ X(K), we have [x] = [x′] in CH0(XK).

Proof. – ⇒: As deg[x] = 1 = deg[x′], we have [x] = [x′] in CH0(XK).
⇐: Let K/F be a field extension such that X(K) 6= ∅. Let x ∈ XK be a rational point
and y ∈ XK a closed point of degree m. It suffices to show that [y] = m[x] in CH0(XK).
Let L = K(y) and y′ a rational point of XL over y. By assumption [y′] = [xL] in CH0(XL).
Applying the push-forward homomorphism CH0(XL)→ CH0(XK), we get [y] = m[x].

P 5.4. – (1) If X is an A-trivial variety over F , then so is XK for any field
extension K/F .
(2) If X and X ′ are A-trivial varieties over F , then so is X ×X ′.
(3) Let E/F be a separable field extension and Y a variety over E. If Y is A-trivial, then so is
the Weil transfer RE/F (Y ).

Proof. – (1) is trivial.
(2) Let K/F be a field extension and y1, y2 ∈ (X × X ′)(K). We have y1 = (x1, x

′
1) and

y2 = (x2, x
′
2) for x1, x2 ∈ X(K), x′1, x

′
2 ∈ X ′(K). As X and X ′ are A-trivial, we have

[x1] = [x2] in CH0(XK), [x′1] = [x′2] in CH0(X ′K) and hence

[y1] = [x1]× [x′1] = [x2]× [x′2] = [y2]

in CH0(X ×X ′)K .
(3) Let K/F be a field extension and write E ⊗F K ' E1 × · · · × Es, where Ei are field

extensions of K. We have RE/F (Y )K = RE⊗FK/K(YE⊗FK) =
∏
REi/K(YEi).Write two

points y, y′ ∈ RE/F (Y )(K) = Y (E ⊗F K) =
∏
Y (Ei) in the form y = (y1, . . . , ys) and
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y′ = (y′1, . . . , y
′
s), where yi, y′i ∈ Y (Ei) = REi/K(YEi)(K). By assumption, [yi] = [y′i]

in CH0(YEi) for all i. Applying the canonical maps

CH0(YEi)→ CH0

(
REi/K(YEi)

)
(see [16]) we get [yi] = [y′i] in CH0(REi/K(YEi)) for all i. It follows that [y] = [y′]

in CH0(RE/F (Y )K).

5c. Symmetric powers

Let p be an integer and let Y be a quasi-projective variety over F . Write Sp(Y ) for the
symmetric pth power of Y , i.e., the factor variety of Y p by the natural action of the symmetric
group Sp. A K-point of SpY is an effective 0-cycle on YK of degree p.

Write ‹Y p for Y p with all the diagonals removed and write S̃p(Y ) for the factor variety‹Y p/Sp. If Y is smooth, then so is S̃p(Y ). Every F -point z of S̃p(Y ) gives rise to an effective
0-cycle y1 + y2 + · · · + yk on Y of degree p with distinct closed points y1, y2, . . . , yk on Y .
We will write F{z} for the F -algebra F (y1)× F (y2)× · · · × F (yk) of dimension p.

Consider the natural morphism g : Y × Sp−1(Y ) → Sp(Y ). By [30, §2], the sheaf
L = g∗( OY×Sp−1(Y ))|S̃p(Y )

is a locally free O
S̃p(Y )

-algebra of rank p. The sheaf L deter-

mines a rank p vector bundle J over S̃p(Y ) such that the fiber of J over a point z in S̃p(Y )

is the vector space of the algebra F{z}.
Consider the pull-back diagram‹Y p∐ . . .

∐‹Y p −−−−→ ‹Y py h

y
g−1(S̃p(Y )) −−−−→ S̃p(Y ),

where the left top corner is disjoint union of p copies of ‹Y p, the upper map is the identity
on each copy and the left vertical morphism on the ith copy takes a point (y1, . . . , yp)

to (yi, y1 + · · · + ŷi + · · · + yp). It follows that the sheaf h∗( L) of modules on ‹Y p is free.
Therefore, the vector bundle h∗(J) on ‹Y p is trivial.

Let E be an étale F -algebra of dimension p. Consider the natural morphism
f : RE/F (YE)→ Sp(Y ) (see [12, pp. 267–268]). The map f takes a point y in
RE/F (YE)(F ) = Y (E) to the 0-cycle y1 + · · · + yp, where yi are the images of y under
all the embeddings of E into Fsep. If E is split, f is the natural morphism Y p → Sp(Y ). In
general, f can be obtained via the twist of this morphism by the Sp-torsor corresponding to
the étale algebra E. Moreover, the étale group scheme G = Aut(E/F ) (the twisted form of
the symmetric group Sp by the same Sp-torsor) acts naturally on RE/F (YE) and f identifies
Sp(Y ) with the factor variety of RE/F (YE) by G.

Write R̃E/F (YE) for the preimage f−1
(
S̃p(Y )

)
and f̃ for the morphism R̃E/F (YE) →

S̃p(Y ).

L 5.5. – If z is a rational point of S̃p(Y ) and E = F{z}, then z lifts to a rational
point in R̃E/F (YE).
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Proof. – We may assume that E is a field. Over Fsep, z is the cycle y1 + · · · + yp, where
the distinct points y ∈ Y (Fsep) are permuted transitively by the Galois group of Fsep/F .
Choose a point y ∈ Y (E) = R̃E/F (YE) and an embedding of E into Fsep such that the map
Y (E)→ Y (Fsep) takes y to y1. Then f̃(y) = y1 + · · ·+ yp = z.

Twisting the diagram above by the Sp-torsorE, we see that the pull-back f̃∗(J) is a trivial
vector bundle over R̃E/F (YE) with the fiber E, i.e., we have the following fiber product
diagram:

R̃E/F (YE)× E −−−−→ R̃E/F (YE)y f̃

y
J −−−−→ S̃p(Y ).

5d. A-triviality of standard norm varieties

We need chF = 0 here. We recall the construction of certain norm varieties given in [30, §2].
Let p be a prime integer, Y a variety over F and a ∈ F×. Recall that we have a vector

bundle J of rank p over S̃p(Y ). Write V (Y, a) for the hypersurface in J defined in the fiber
over every point z of S̃p(Y ) by the equation N = a, where N is the norm map for the
algebra F{z}. If Y is a smooth geometrically irreducible variety, then so is V (Y, a) and
dimV (Y, a) = p(dimY + 1)− 1 by [30, Lemma 2.1].

Let E be an étale F -algebra of dimension p and let Ea be the hypersurface in the affine
space A(E) given by the equationNE/F (x) = a. We have the following fiber product diagram

R̃E/F (YE)× Ea −−−−→ R̃E/F (YE)y f̃

y
V (Y, a) −−−−→ S̃p(Y ).

The étale group scheme G = Aut(E/F ) acts naturally on the varieties in the top row and
the vertical morphisms are G-torsors.

Let L be a cyclic étale F -algebra of degree p and let a1, a2, . . . , an (where n ≥ 1) be a
sequence of elements in F×. We define a standard norm variety W (L, a1, a2, . . . , an) for the
sequence (L, a1, a2, . . . , an) inductively as follows. Let W (L, a1) be the Severi-Brauer vari-
ety for the cyclic algebra (L/F, a1) of degree p and for n > 1 let W (L, a1, a2, . . . , an)

be a smooth compactification of the smooth variety V
(
W (L, a1, a2, . . . , an−1), an

)
.

Note that W (L, a1, a2, . . . , an) is a smooth projective geometrically irreducible variety
over F of dimension pn − 1. Note that the birational class of a standard norm variety
W (L, a1, a2, . . . , an) is uniquely determined by the sequence (L, a1, a2, . . . , an).

Note that if F contains a primitive pth root of unity ξp, we have L = F (a
1/p
0 ) for some

a0 ∈ F× and W (L, a1, a2, . . . , an) = W (a0, a1, a2, . . . , an) as defined in [30, §2].
For small n one can identify the standard norm varieties as follows (see [25] or [26]):

E 5.6. – By definition, W (L, a1) is the Severi-Brauer variety for the cyclic alge-
bra A = (L/F, a1). If W (L, a1)K has a point over a field extension K/F , it is isomorphic to
the projective space Pp−1

K . Hence it is rational over K and therefore W (L, a1) is A-trivial.
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E 5.7. – The variety W (L, a1, a2) is birationally isomorphic to the SL1(A)-tor-
sor given by the equation Nrd = a2 in the cyclic algebra A = (L/F, a1), where Nrd is the
reduced norm map for A. If W (L, a1, a2) has a rational point, it is birationally isomorphic
to the variety of the group SL1(A) and hence is retract rational by Proposition 5.1. It follows
that W (L, a1, a2) is A-trivial (see Example 5.2).

A sequence (L, a1, a2, . . . , an) as above determines the symbol

{L, a1, a2, . . . , an} := (L) ∪ (a1) ∪ · · · ∪ (an)

in Hn+1(F, µ⊗np ), where (L) ∈ H1(F,Z/pZ) and (ai) ∈ H1(F, µp) are the obvious classes.
By [30], the standard norm variety of the sequence (L, a1, a2, . . . , an) is a norm variety of
the symbol {L, a1, a2, . . . , an}.

T 5.8. – Let F be a field of characteristic 0, p a prime integer, L/F a cyclic field
extension of degree p and a1, . . . , an ∈ F×. If the symbol {L, a1, a2, . . . , an} is nontrivial,
then a standard norm variety X := W (L, a1, a2, . . . , an) is A-trivial for the coefficient ring
Λ = Z(p). Moreover, the degree map deg : CH0(X)→ Z(p) is injective.

Proof. – In the proof we may assume that n ≥ 2 (see Example 5.6). We induct on n.

Write for simplicity

Y = W (L, a1, a2, . . . , an−1) and U = V (Y, an).

Thus, X is a smooth compactification of U .

Claim: Let K/F be a field extension such that the symbol {L, a1, . . . , an−1} is nontrivial
and x1, x2 ∈ U(K). Then [x1] = [x2] in CH0(X) (with the coefficient ring Λ = Z(p)).

Replacing F by K, we may assume that K = F . Moreover, we can also assume that F is
p-special, in particular, F contains ξp. We shall write {a0, a1, . . . , an−1} for {L, a1, . . . , an−1}.

Let Ei = F{zi}, i = 1, 2, where zi is the image of xi under the morphism
U → S̃p(Y ). EachEi is a cyclic field extension of F of degree p. By Lemma 5.5, Y (Ei) 6= ∅,
and hence Ei splits the symbol {a0, a1, . . . , an−1} as Y is a splitting variety for this sym-
bol. By [30, Theorem 5.6], there are b0, b1 ∈ F× such that the symbol {b0, b1} divides
{a0, a1, . . . , an−1} and both Ei split {b0, b1}. Let Y ′ be the Severi-Brauer variety for the
cyclic algebra (F (b

1/p
0 )/F, b1). Let U ′ = V (Y ′, an) and let X ′ be a smooth compactification

of U ′, i.e. X ′ is a standard norm variety for the 3-sequence (b0, b1, an).

The function field F (Y ′) splits the symbol {b0, b1} and hence also splits {a0, a1, . . . , an−1}.
As Y is a p-generic splitting variety of the symbol {a0, a1, . . . , an−1}, there is a finite field
extension M/F (Y ′) of degree prime to p such that Y has a point over M . Choose a smooth
projective model Y ′′ of M over F . There are two rational maps

Y ′ L99 Y ′′ 99K Y,

where the left map is dominant of degree prime to p. The right one is not constant as Y has
no F -point. Therefore, the image of the induced rational map Sp(Y ′′) 99K Sp(Y ) intersects
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S̃p(Y ) nontrivially and hence we have two rational maps R̃Ei/F (Y ′′Ei) 99K R̃Ei/F (YEi) (for
i = 1, 2). Thus, there are two commutative diagrams:

R̃Ei/F (Y ′Ei)× E
an
i

��

R̃Ei/F (Y ′′Ei)× E
an
i

��

oo // R̃Ei/F (YEi)× E
an
i

��
U ′ U ′′oo // U,

where U ′′ = V (Y ′′, an).
The variety Eani is a torsor under the norm one torus Ti for the cyclic extension Ei/F of

degree p. AsTi ' REi/F (Gm,Ei)/Gm andEani has a rational point, we can embed the variety
Eani ' Ti as an open subset into the projective space P(Ei). Thus, we have the following
commutative diagram of rational maps of smooth projective varieties:

REi/F (Y ′Ei)× P(Ei)

β′i
��

REi/F (Y ′′Ei)× P(Ei)

β′′i
��

ε′ioo εi // REi/F (YEi)× P(Ei)

βi

��
X ′ X ′′

ν′oo ν // X,

where X ′′ is a smooth compactification of U ′′.
By Proposition RC.14, we have the equality (ν′)t ◦ β′i = β′′i ◦ (ε′i)

t of rational correspon-
dences. Hence we get a commutative diagram of rational correspondences between smooth
projective varieties:

REi/F (Y ′Ei)× P(Ei)

β′i
��

αi // REi/F (YEi)× P(Ei)

βi

��
X ′

δ // X,

where αi = εi ◦ (ε′i)
t and δ = ν ◦ (ν′)t.

Note that the correspondences β and βi are of multiplicity 1 and the correspondences αi
and δ are of multiplicity prime to p.

Choose rational points wi in REi/F (Y ′Ei)×P(Ei). As X ′ is A-trivial by Example 5.7 and
the 0-cycles β′i∗([wi]) both have degree 1, we have β′1∗([w1]) = β′2∗([w2]) in CH0(X ′). It
follows that

(5.9) β1∗(α1∗([w1])) = δ∗(β
′
1∗([w1])) = δ∗(β

′
2∗([w2])) = β2∗(α2∗([w2])).

By Lemma 5.5, there are rational points yi in R̃Ei/F (YEi) × Ean over xi. It follows from
Lemma RC.10 that βi∗([yi]) = [xi] in CH0(X).

Since by the induction hypothesis Y is A-trivial, it follows from Proposition 5.4 that the
varieties REi/F (YEi)× P(Ei) are A-trivial, hence

(5.10) αi∗([wi]) = m[yi],

where m = mult(δ) = mult(αi) = degαi∗([wi]). It follows from (5.9) and (5.10) that

m[x1] = mβ1∗([y1]) = β1∗(α1∗([w1])) = β2∗(α2∗([w2])) = mβ2∗([y2]) = m[x2]

in CH0(X). Since m is prime to p, the claim is proved.
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Now we finish the proof of the first part of the theorem. LetK/F be a field extension and
x1, x2 ∈ X(K). By Proposition 5.3, it suffices to show that [x1] = [x2] in CH0(XK).

Consider the field L = F (X × X) and the two "generic" points ξ1 and ξ2 in X(L).
Note that ξi ∈ U(L) and the field F (X × X) does not split the symbol {a1, . . . , an−1}:
otherwise the variety Y would be equivalent (in the sense of Section 3) to the vari-
eties X ∼ X × X and we would have cdp Y = cdpX by Lemma 3.6 contradict-
ing cdp Y = pn−1 − 1 < pn − 1 = cdpX (see Corollary 3.9). By the claim, [ξ1] = [ξ2]

in CH0(XL). Specializing ξi to xi (see [10, §20.3] or [28]), we get the result.

We prove now that the degree map deg : CH0(X)→ Z(p) is injective. We may assume that
F is a p-special field. We claim that if x and x′ are two closed points of X of degree p, then
[x] = [x′] in CH0(X). To prove the claim, as in the first part of the proof, we find a Severi-
Brauer variety Y over F , that is split by the two field extensions L := F (x) and L′ := F (x′)

of F , and a correspondence δ : Y  X of degreem prime to p. Let y and y′ be closed points
of Y with residue fields isomorphic to L and L′ respectively.

Consider the correspondence δL : YL  XL and rational points y1 ∈ YL, x1 ∈ XL over y
and x respectively. As δ∗([y1]) is a 0-cycle onXL of degreem and the varietyX isA-trivial by
the first part of the proof, we have (δL)∗([y1]) = m[x1]. Taking the norms for the extension
L/F , we get δ∗([y]) = m[x] in CH0(X). Similarly, δ∗([y′]) = m[x′]. As [y] = [y′] in CH0(Y )

by [27] or [20], we have [x] = [x′] in CH0(X). The claim is proved.

Take any closed point x ∈ X and set deg(x) = pk for some k > 0. As deg CH0(X) = pZ(p)

and F is p-special, there is a closed point x′ ∈ X of degree p. It suffices to show that
[x] = pk−1[x′] in CH0(X). Choose a field K with F ⊂ K ⊂ F (x) and [F (x) : K] = p.
Let x1 be a closed point in XK over x with deg(x1) = p. We shall show that [x1] = [x′]K
in CH0(XK) and then taking the norms for the extension K/F we get the desired equality.
As both cycles [x1] and [x′]K have degree p, they are equal in the case X(K) 6= ∅ as X is
A-trivial. In the case X(K) = ∅ the cycles [x1] and [x′]K are equal by the claim as x1 and
x′K are points in XK of degree p.

Appendix RC

Rational correspondences

We review the construction of the category of rational correspondences due to M. Rost
(unpublished) and B. Kahn/R. Sujatha in [13]. We give Rost’s approach using cycle modules.

RC-I. Integral correspondences

Let M be a cycle module over a field F and let X be an algebraic variety over F . The
groups

Cp(X;M) =
∐

x∈X(p)

M(x),

whereM(x) = M
(
F (x)

)
, form a cycle complexC(X;M) [28, 3.2]. Denote byAp(X;M) the

homology groups of C(X;M). If X is equidimensional of dimension dX we set

Aq(X;M) = AdX−q(X;M).
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E RC.1. – If M = K is given by Milnor’s K-theory of fields, Ap(X;K) are the
Milnor K-cohomology groups of X, in particular, the Chow groups of X (see [7, Chap-
ter IX]).

Let X,Y and Z be algebraic varieties over F with X irreducible smooth and complete.
We define a pairing (∪-product)

CHr(X × Y )⊗Ap(Z ×X;M)
∪−→ Ar+p−dX (Z × Y ;M), (v, a) 7→ v ∪ a

as the composition

CHr(X × Y )⊗Ap(Z ×X;M)
×−→ Ar+p(X ×X × Z × Y ;M)

(∆×idY×Z)∗−−−−−−−−→ Ar+p−dX (X × Z × Y ;M)
q∗−→ Ar+p−dX (Z × Y ;M),

where × is the external product, ∆ : X → X ×X is the diagonal embedding and
q : X × Z × Y → Z × Y is the projection. (See [28] for the definitions. We need X

smooth to get ∆ a regular embedding and X complete to have q proper.)

E RC.2. – Let f : X → Y and g : Y → X be morphisms with the graphs
Γf ⊂ X × Y and Γg ⊂ Y ×X. Then [Γf ]∪ = (idZ × f)∗ and [Γg]

t∪ = (idZ × g)∗ (here t is
the transposition involution).

In particular, we have the product

CHr(X × Y )⊗ CHp(Z ×X)
∪−→ CHr+p−dX (Z × Y ).

It is taken as the composition law for the category of integral correspondences Cor(F ) (see
[19] and [7, Chapter XII]) with the objects smooth complete varieties over F and morphisms

MorCor(F )(X,Y ) =
∐
i

CHdi(Xi × Y ),

where Xi are irreducible (connected) components of X with di = dimXi.

Denote by Var(F ) the category of smooth complete varieties over F and morphisms of
varieties. There is a natural functor

Var(F )→ Cor(F ), X 7→ X, f 7→ [Γf ].

The functors Var(F ) → Ab, X 7→ Ap(X;M) and X 7→ Ap(X;M) factor through a
covariant functor Cor(F )→ Ab,

(RC.3) X 7→ Ap(X;M), a 7→ a∪

and a contravariant functor

(RC.4) X 7→ Ap(X;M), a 7→ at ∪ .
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RC-II. The cycle module A0[Y,M ]

For a cycle module M over F and an algebraic variety Y over F define the cycle module
A0[Y,M ] over F by

A0[Y,M ](L) = A0(YL,M)

(see [28, §7]). There is a canonical map of complexes

θY,M : C(X × Y ;M)→ C(X;A0[Y,M ]),

that takes an element in M(z) for z ∈ (X × Y )(p) to zero if dimension of the projection x
of z inX is less than p and identically to itself otherwise. In the latter case we consider z as a
point of dimension 0 in Yx := YF (x) under the inclusion Yx ⊂ X × Y . Thus, θY,M “ignores”
points in X × Y that lose dimension being projected to X.

We study various compatibility properties of θ.

RC-II.1. Cross products. – Let N ×M → P be a bilinear pairing of cycle modules over F .
For a variety Y over F we can define a pairing

A0[Y,N ]×M → A0[Y, P ]

in an obvious way.

L RC.5. – LetM be a cycle module,X,Y andZ varieties over F . Then the following
diagram is commutative:

C(X × Y ;N)⊗ C(Z;M)
×−−−−→ C(X × Y × Z;P )

θY,N⊗id

y yθY,P
C(X;A0[Y,N ])⊗ C(Z;M)

×−−−−→ C(X × Z;A0[Y, P ]).

Proof. – Let z ∈ Z(k) and µ ∈ C(Z;M). Consider the following commutative diagram

C(X × Y ;N)
π′z
∗

−−−−→ C
(
(X × Y )z;N

) m′µ−−−−→ C
(
(X × Y )z;P

) i′z∗−−−−→ C(X × Y × Z;P )

θY,N

y θY,N

y θY,P

y θY,P

y
C(X;A0[Y,N ])

π∗z−−−−→ C(Xz;A0[Y,N ])
mµ−−−−→ C(Xz;A0[Y, P ])

iz∗−−−−→ C(X × Z;A0[Y, P ]),

where πz : Xz → X and π′z : (X × Y )z → X × Y are the natural projections, mµ and m′µ
are the multiplications by µ, iz : Xz → X × Z and i′z : (X × Y )z → X × Y × Z are the
inclusions. By the definition of the cross product, the compositions in the two rows of the
diagram are the multiplications by µ.

RC-II.2. Pull-back maps. – Let f : Z ↪→ X be a regular closed embedding, NX/Z the
normal bundle over Z. Choose a coordination τ ofNX/Z [28, §9]. For a variety Y , the closed
embedding

f ′ = f × idY : Z × Y ↪→ X × Y
is also regular and the normal bundle NX×Y/Z×Y is isomorphic to NX/Z × Y . We choose
the induced coordination τ ′ = τ × Y of NX×Y/Z×Y .
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L RC.6. – For every cycle module M the following diagram commutes:

C(X × Y ;M)
I(f ′)−−−−→ C(Z × Y ;M)

θY,M

y yθY,M
C(X;A0[Y,M ])

I(f)−−−−→ C(Z;A0[Y,M ]),

where the pull-back maps I(f) and I(f ′) are chosen with respect to the coordinations τ and τ ′

respectively (see [28, §12]).

Proof. – Let q : X×Gm → X and q′ : X×Y ×Gm → X×Y be the natural projections.
The following diagram is clearly commutative:

C(X × Y ;M)
q′∗−−−−→ C(X × Y ×Gm;M)

θY,M

y yθY,M
C(X;A0[Y,M ])

q∗−−−−→ C(X ×Gm;A0[Y,M ])

(here q∗ and q′∗ are the flat pull-back maps [28, 3.5]).

Let t be the coordinate function on Gm. The map θY,M clearly commutes with the multi-
plication by t, i.e. the following diagram is commutative:

C(X × Y ×Gm;M)
(t)−−−−→ C(X × Y ×Gm;M)

θY,M

y yθY,M
C(X ×Gm;A0[Y,M ])

(t)−−−−→ C(X ×Gm;A0[Y,M ]).

LetD = D(X,Z) be the deformation space of the embedding f [28, §10]. There is a closed
embedding i : NX/Z ↪→ D with the open complement j : X ×Gm ↪→ D. Then D′ = D× Y
is the deformation space D(X × Y,Z × Y ) with the closed embedding

i′ = i× idY : NX×Y/Z×Y ↪→ D′

and the open complement j′ = j × idY : X × Y ×Gm ↪→ D′.

The commutative diagram of complexes with the exact rows

0 −−−−→ C(NX/Z × Y ;M)
i′∗−−−−→ C(D′;M)

j′∗−−−−→ C(X × Y ×Gm;M) −−−−→ 0

θY,M

y yθY,M θY,M

y
0 −−−−→ C(NX/Z ;A0[Y,M ])

i∗−−−−→ C(D;A0[Y,M ])
j∗−−−−→ C(X ×Gm;A0[Y,M ]) −−−−→ 0

induces the commutative diagram

C(X × Y ×Gm;M)
∂−−−−→ C(NX/Z × Y ;M)

θY,M

y yθY,M
C(X ×Gm;A0[Y,M ])

∂−−−−→ C(NX/Z ;A0[Y,M ]).
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The coordinations τ and τ ′ induce the commutative diagram [28, §9]

C(NX/Z × Y ;M)
r(τ ′)−−−−→ C(Z × Y ;M)

θY,M

y yθY,M
C(NX/Z ;A0[Y,M ])

r(τ)−−−−→ C(Z;A0[Y,M ]).

By the definition of the pull-back map, the diagram in question is the composition of the
four commutative square diagrams considered in the proof.

RC-II.3. Push-forward maps. – Let f : X → Z be a morphism of varieties over F . For a
variety Y set

f ′ = f × idY : X × Y → Z × Y.

L RC.7. – The following diagram is commutative:

C(X × Y ;M)
f ′∗−−−−→ C(Z × Y ;M)

θY,M

y yθY,M
C(X;A0[Y,M ])

f∗−−−−→ C(Z;A0[Y,M ]).

Proof. – Let u ∈ (X × Y )(p), a ∈ M(u). Set v = f ′(u) ∈ Z × Y . If dim(v) < p then
(f ′∗)u(a) = 0. In this case the dimension of the projection y of u in Y is less than p and hence
θu(a) = 0.

Assume that dim(v) = p. Then F (u)/F (v) is a finite field extension and

b = (f ′∗)u(a) = cF (u)/F (v)(a) ∈M(v),

where cF (u)/F (v) is the norm map. If dim(y) < p, then θu(a) = 0 and θv(b) = 0.

Assume that dim(y) = p. Then

(θ ◦ f ′∗)u(a) = cF (u)/F (v)(a) = b

considered as an element of A0[Y ;M ](z) = A0(Yz;M), where z is the image of v in Z. On
the other hand,

(f∗ ◦ θ)u(a) = ϕ∗(a),

where ϕ : Yx → Yz is the natural morphism (x is the image of u in X) and a is considered as
an element of A0[Y ;M ](x). It remains to notice that

ϕ∗(a) = cF (u)/F (v)(a) = b.
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RC-III. The category of rational correspondences

Let X and Y be varieties over F and let M be a cycle module over F . By Lemma RC.5,
for the pairing K ×M →M and Z = X we have the commutative diagram

CHdX (X × Y )⊗A0(X;M)
×−−−−→ AdX (X ×X × Y ;M)

θY,M⊗id

y yθY,M
AdX (X;A0[Y,K0])⊗A0(X;M)

×−−−−→ AdX (X ×X;A0[Y,M ]).

Assume that X is smooth. Let ∆ : X → X × X be the diagonal embedding and
∆′ = ∆× idY . By Lemma RC.6, the following diagram is commutative:

AdX (X ×X × Y ;M)
∆′∗−−−−→ A0(X × Y ;M)

θY,M

y yθY,M
AdX (X ×X;A0[Y,M ])

∆∗−−−−→ A0(X;A0[Y,M ]).

Finally, assume that X is complete. Let f : X → SpecF be the structure morphism and
f ′ = f × idY . Lemma RC.7 gives the following commutative diagram:

A0(X × Y ;M)
f ′∗−−−−→ A0(Y ;M)

θY,M

y ∥∥∥
A0(X;A0[Y,M ])

f∗−−−−→ A0(SpecF ;A0[Y,M ]).

P RC.8. – Let X and Y be varieties over F , let X be irreducible smooth and
proper and let M be a cycle module over F . Then the pairing

CHdX (X × Y )⊗A0(X;M)
∪−→ A0(Y ;M)

is trivial on all cycles in CHdX (X × Y ) that are not dominant over X. In other words, the
∪-product factors through a natural pairing

r : CH0(YF (X))⊗A0(X;M)
∪−→ A0(Y ;M).

Proof. – Composing all three diagrams in Section RC-III and taking into account that

AdX (X;A0[Y,K0]) = CH0(YF (X)),

we get the commutative diagram

CHdX (X × Y )⊗A0(X;M)
∪−−−−→ A0(Y ;M)

r×id

y ∥∥∥
CH0(YF (X))⊗A0(X;M)

∪−−−−→ A0(Y ;M),

whence the statement.
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In the conditions of Proposition RC.8, for an irreducible variety Z over F the diagram

CHdX (X × Y )⊗A0(Z ×X;M)
∪−−−−→ A0(Z × Y ;M)y y

CHdX (X × Y )⊗A0(XF (Z);M)
∪−−−−→ A0(YF (Z);M)

r×id

y ∥∥∥
CH0(YF (X))⊗A0(XF (Z);M)

∪−−−−→ A0(YF (Z);M)

is commutative.

In particular, we have a well defined pairing

CH0(YF (X))⊗ CH0(XF (Z))
∪−→ CH0(YF (Z))

that can be taken for the composition law in the category of rational correspondences
RatCor(V ) with the objects smooth complete varieties over F and the morphisms

MorRatCor(F )(X,Y ) =
∐
i

CH0(YF (Xi)),

where Xi are all irreducible (connected) components of X.
There is an obvious functor κ : Cor(F )→ RatCor(F ).

T RC.9. – For a cycle module M there are well defined:
(1) The covariant functor

RatCor(F )→ Ab, X 7→ A0(X;M), a 7→ a∪,

i.e. the functor (RC.3) factors through κ if p = 0.
(2) The contravariant functor

RatCor(F )→ Ab, X 7→ A0(X;M), a 7→ at∪,

i.e. the functor (RC.4) factors through κ if p = 0.

Proof. – The first statement follows from Proposition RC.8. To prove the second part
consider an irreducible variety Y and an open subset j : U ↪→ Y . For a smooth complete X
in the commutative diagram

CHdY (X × Y )⊗A0(X;M)
∪−−−−→ A0(Y ;M)

(j⊗id)∗
y yj∗

CHdY (X × U)⊗A0(X;M)
∪−−−−→ A0(U ;M)

the right vertical homomorphism is injective. Hence the pairing in the top row of the diagram
is trivial on the cycles in CHdY (X × Y ) that are not dominant over Y . Thus we have a well
defined pairing

CHdY (XF (Y ))⊗A0(X;M)
∪−→ A0(Y ;M)

that defines a contravariant functor

X 7→ A0(X;M), a 7→ at ∪ .
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By Theorem RC.9, for a cycle module M and a rational correspondence α : X  Y , we
have the two natural homomorphisms

α∗ := α∪ : A0(X;M)→ A0(Y ;M)

and

α∗ := αt∪ : A0(Y ;M)→ A0(X;M).

Let f : X 99K Y be a rational morphism of irreducible varieties. It defines a rational
point of YF (X) over F (X) and hence a morphism in MorRatCor(X,Y ) that we still denote
by f : X  Y . In fact, the rational correspondence f is the image of the class of the graph
of f under the natural homomorphism CHdX (X × Y )→ CH0(YF (X)).

L RC.10. – Let f : X 99K Y be a rational morphism of smooth complete varieties
and let x ∈ X be a rational point such that f(x) is defined. Then f∗([x]) = [f(x)] in CH0(Y ).

Proof. – Let Γ ⊂ X × Y be the graph of f . The preimage of {x} × Γ under the
morphism ∆X × idY : X × Y → X × X × Y is the reduced scheme {x} × {f(x)}. It
follows from [7, Corollary 57.20] that (∆X × idY )∗([x] × [Γ]) = [x] × [f(x)] and hence
f∗([x]) = q∗([x]× [f(x)]) = [f(x)], where q : X × Y → Y is the projection.

C RC.11. – Let f : X 99K Y and g : Y 99K Z be composable rational
morphisms of smooth complete varieties and let h : X 99K Z be the composition of f and g.
Then g ◦ f = h in MorRatCor(X,Z).

Proof. – Let y be the rational point of YF (X) corresponding to f . By assumption, the
rational morphism gF (X) : YF (X) 99K ZF (X) is defined at y. By Lemma RC.10, the
composition of correspondences f and g takes [y] to [gF (X)(y)] ∈ CH0(ZF (X)). Note that
the latter class is given by h.

C RC.12. – For every two composable rational morphisms f : X 99K Y and
g : Y 99K Z of smooth complete varieties, we have (g ◦ f)∗ = g∗ ◦ f∗ and (g ◦ f)∗ = f∗ ◦ g∗.

C RC.13 (cf. [28, Corollary 12.10]). – The groups A0(X;M) and A0(X;M)

are birational invariants of the smooth complete variety X.

P RC.14. – Let

X ′

β

��

α // X

γ

��
Y ′

δ // Y

be a commutative diagram of dominant rational morphisms of smooth complete irreducible
varieties with dim(X) = dim(Y ) and dim(X ′) = dim(Y ′). Suppose that the natural ring
homomorphism F (X)⊗F (Y ) F (Y ′)→ F (X ′) is an isomorphism. Then γt ◦ δ = α ◦ βt.
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Proof. – The generic fibers of the dominant rational morphisms γ and β are the single
point schemes {x} and {x′} respectively. We have the following diagram:

{x′}� _

��

{x′}� _

��

// {x}� _

��
X ′F (Y ′)

��

// XF (Y ′)

��

// XF (Y )

��
SpecF (Y ′) SpecF (Y ′) // SpecF (Y ).

Note that as schemes, {x} = SpecF (X) and {x′} = SpecF (X ′). It follows from the
assumption that the right part of the diagram is cartesian and hence so is the top right square.
In particular, {x′} is closed in both X ′F (Y ′) and XF (Y ′).

By [7, Proposition 62.4(2)], the composition γt ◦ δ is equal to the image of [x] under the
pull-back homomorphism CH0(XF (Y )) → CH0(XF (Y ′)) and hence is equal to [x′] as {x′}
is the fiber product of {x} and XF (Y ′) over XF (Y ).

The composition α ◦ βt is equal to the image of [x′] under the push-forward homomor-
phism α∗ : CH0(X ′F (Y ′)) → CH0(XF (Y ′)). The rational map αF (Y ′) : X ′F (Y ′) → XF (Y ′)

is defined at x′ and αF (Y ′)(x
′) = x′ as x′ is the closed point in both X ′F (Y ′) and XF (Y ′). It

follows from Lemma RC.10 that α∗([x′]) = [x′] in CH0(XF (Y ′)).

Appendix RM

Chow groups of Rost motives

We assume that chF = 0 here.

RM-I. The binary motive

Let n be a positive integer, p a prime integer and s a symbol in Hn+1(F, µ⊗np ). Set

b = (pn − 1)/(p− 1) = 1 + p+ · · ·+ pn−1,

c = (pn+1 − 1)/(p− 1) = 1 + p+ · · ·+ pn = bp+ 1 = b+ pn,

d = pn − 1 = b(p− 1) = c− b− 1.

Let X be the object in the triangulated category of motivic complexes DM(F,Z) given
by the simplicial scheme of a norm variety of s. (Sometimes we will write X as well for the
corresponding object in DM(F,Z(p)).) Write Qi for the Milnor operation in the motivic
cohomology of bidegree (2pi − 1, pi − 1) (see [35]) and set

µ = (Q1 ◦Q2 ◦ · · · ◦Qn−1)(δ) ∈ H2b+1,b( X ,Z)

and

γ = (Q1 ◦Q2 ◦ · · · ◦Qn−1 ◦Qn)(δ) = ±Qn−1(µ) ∈ H2c,c−1( X ,Z),

where δ ∈ Hn+2,n( X ,Z) is the element corresponding to the symbol s (see [23]).
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The binary motive M of s is defined by the exact triangle

X(b)[2b]
x−→ M y−→ X µ−→ X(b)[2b+ 1]

in DM(F,Z).

RM-II. Symmetric powers

As in [35], consider the symmetric powers Symi( M) for i = 0, 1, . . . , p−1 in DM(F,Z(p))

of the binary motive M. There are the morphisms

ai : Symi( M)→ Symi−1( M)⊗ M and bi : Symi−1( M)⊗ M → Symi( M),

defined by

ai(m1 . . .mi) =
i∑

j=1

m1 . . . m̂j . . .mi ⊗mj and bi(m1 . . .mi−1 ⊗m) = m1 . . .mi−1m.

Consider the compositions:

xi : Symi−1( M)(b)[2b]
1⊗x−−−→ Symi−1( M)⊗ M bi−→ Symi( M),

yi : Symi( M)
ai−→ Symi−1( M)⊗ M 1⊗y−−→ Symi−1( M).

We have x1 = x and y1 = y. Set

ri = Symi(y) : Symi( M)→ X ,

so r1 = y.
The following lemma can be checked by a direct computation:

L RM.1. – For every i = 2, . . . , p− 1,
(1) yi ◦ bi−1 − bi−2 ◦ (yi−1 ⊗ id M) = idSymi−1( M) ⊗ y,
(2) ri−1 ◦ yi = i · ri,
(3) y1y2 . . . yi = i! · ri.

C RM.2. – The diagram

Symi−1( M)(b)[2b]
xi−−−−→ Symi( M)

ri−−−−→ X

yi−1(b)[2b]

y yi

y y·i
Symi−2( M)(b)[2b]

xi−1−−−−→ Symi−1( M)
ri−1−−−−→ X

is commutative.

Consider the following objects S = Symp−2( M) and R = Symp−1( M) in DM(F,Z(p)).
By [35, §5–§6], the motive R = Rs is isomorphic to a Chow motive living on a norm variety
of s (this is the only place where we need characteristic 0). Since over any field extension
of F killing the symbol, the element δ is trivial, the element µ is also trivial so that the
motive M is isomorphic to Z(p) ⊕ Z(p)(b) and the motive R is isomorphic to the direct sum
Z(p)⊕Z(p)(b)⊕· · ·⊕Z(p)(d). It follows that R is the Rost motive of the symbol s (as defined
in Section 4).

Consider the morphism s = 1
(p−2)!y2 . . . yp−1 : R → M. Taking the compositions of the

diagrams in Corollary RM.2 and dividing out (p− 2)!, we have:
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L RM.3. – The diagram

S(b)[2b]
xp−1−−−−→ R

rp−1−−−−→ X

rp−2(b)[2b]

y s

y y·(p−1)

X(b)[2b]
x−−−−→ M y−−−−→ X

is commutative.

There are exact triangles [35, (5.5) and (5.6)] in DM(F,Z(p)):

(RM.4) X(d)[2d]
Symp−1(x)−−−−−−−→ R

yp−1−−−→ S → X(d)[2d+ 1],

(RM.5) S(b)[2b]
xp−1−−−→ R

rp−1−−−→ X → S(b)[2b+ 1].

RM-III. Chow groups of Rost motives

For m ∈ Z, let Ks
m(F ) be the factor group of Milnor’s K-group Km(F ) by the subgroup

generated by the images of the norm homomorphismsKm(L)→ Km(F ) over all finite field
extensions L/F such that s vanishes over L.

By [23, Theorem 1.15], a nontrivial element α of the motivic cohomology group

Hi,j( X ,Z) := Hi
(
X ,Z(j)

)
with i > j can be uniquely written in the form

α = xγk(Qε11 ◦Q
ε2
2 ◦ · · · ◦Qεnn )(δ) = xγkQε(δ),

where x ∈ Ks
m(F ) and k, εi are integers such that k ≥ 0 and εi = 0 or 1. We have

j = m+ (c− 1)k +
∑

εk(pk − 1) + n,

(RM.6) w(α) =: 2j − i = m− 2k − |ε|+ (n− 2),

where |ε| =
∑
εk.

Note that if j ≤ d, then k = 0 and εn = 0.

L RM.7. – Let 0 ≤ j ≤ d. Then

H2j+1,j( X ,Z) =

{
(Z/pZ)µ, if j = b;

0, otherwise.

Proof. – Let α = x · Qε(δ) ∈ H2j+1,j( X ,Z), where x ∈ Ks
m(F ). Recall that εn = 0,

hence |ε| ≤ n− 1. By (RM.6),

−1 = w(α) = m− |ε|+ (n− 2)

and therefore,
n− 1 ≥ |ε| = m+ (n− 1).

It follows that m = 0 and Qε(δ) = (Q1 ◦Q2 ◦ · · · ◦Qn−1)(δ) = µ.

For every i = 1, 2, . . . , n− 1 set‹Qi = Q1 ◦ · · · ◦ “Qi ◦ · · · ◦Qn−1.

Note that ‹Qi(δ) ∈ H2(b−pi+1),b−pi+1( X ,Z).
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L RM.8. – Let 0 ≤ j ≤ d. Then

H2j,j( X ,Z) =


Z · 1, if j = 0;

(Z/pZ)‹Qi(δ), if j = b− pi + 1 and 1 ≤ i ≤ n− 1;

Ks
1(F )µ, if j = b+ 1;

0, otherwise.

Proof. – We may assume that j > 0. Let α = xQε(δ) ∈ H2j,j( X ,Z), where x ∈ Ks
m(F ).

Recall that |ε| ≤ n− 1. By (RM.6),

0 = w(α) = m− |ε|+ (n− 2)

and therefore,
n− 1 ≥ |ε| = m+ (n− 2).

It follows that m ≤ 1. If m = 0, we have |ε| = n− 2, hence Qε = ‹Qi for i = 1, 2, . . . , n− 1

and α ∈ (Z/pZ)‹Qi(δ).
If m = 1, then |ε| = n− 1 and Qε = Q1 ◦Q2 ◦ · · · ◦Qn−1, hence α ∈ Ks

1(F )µ.

L RM.9. – The canonical map

Hi,j( S,Z(p))→ Hi,j( R,Z(p))

is an isomorphism if i < 2d and j < d.

Proof. – Use the triangle (RM.4).

The Chow groups with coefficients in Z(p) of a motive N in DM(F,Z(p)) are defined as

CHi( N ) := H2i,i( N ,Z(p)).

T RM.10. – Let R be the Rost motive of a nontrivial (n + 1)-symbol modulo p.
Then

CHj( R) =


Z(p), if j = 0;

pZ(p), if j = bk, 1 ≤ k ≤ p− 1;

Z/pZ, if j = bk − pi + 1, 1 ≤ k ≤ p− 1, 1 ≤ i ≤ n− 1;

0, otherwise.

Proof. – We induct on j = 0, 1, . . . , d. First suppose that j < b. The triangle (RM.5)
yields an isomorphism

CHj( R) ' CHj( X)

and the statement follows from Lemma RM.8.
Now consider the case j = b. The triangle (RM.5) yields an exact sequence

CHb( X)→ CHb( R)→ CH0( S)→ H2b+1,b( X ,Z(p)).

The first term is trivial by Lemma RM.8 and the last is equal to (Z/pZ)µ by Lemma RM.7.
By Lemma RM.9, CH0( S) = CH0( R) = Z(p). The last map is the multiplication by
(p− 1)µ = −µ by Lemma RM.3, hence CHb( R) = pZ(p).

Now assume that j = b+ 1. The triangle (RM.5) gives an exact sequence

H1,1( S,Z(p))→ CHb+1( X)→ CHb+1( R)→ CH1( S).
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By Lemma RM.9, the last term is trivial and the first term is equal to

H1,1( R,Z(p)) ' H1,1( X ,Z(p)) ' K1(F )⊗ Z(p).

In view of Lemma RM.8, the second term is equal toKs
1(F )µ. The first map is multiplication

by µ, hence is surjective. It follows that CHb+1( R) = 0.

Now suppose that j > b+ 1. The triangle (RM.5) gives an exact sequence

CHj( X)→ CHj( R)→ CHj−b( S)→ H2j+1,j( X ,Z(p)).

It follows from Lemma RM.9 that CHj−b( S) ' CHj−b( R). By Lemmas RM.7 and RM.8,
the first and the last terms are trivial, hence

CHj( R) ' CHj−b( R)

and the result follows by induction.

Appendix SC

Special correspondences

In this appendix, CH is the Chow group with integer coefficients and Ch is the Chow group
with coefficients in Fp. The base field F is of arbitrary characteristic 6= p.

Let X be a smooth complete geometrically irreducible variety of dimension d := pn − 1

for some n ≥ 1. A special correspondence σ on X is an anti-symmetric (σt = −σ) element
of CHb(X ×X), where b = (pn− 1)/(p− 1), such that for the image H ∈ CHb(XF (X)) of σ
under the pull-back along the morphism XF (X) → X ×X, induced by the generic point of
the first factor, one has:

1. σF (X) = 1×H −H × 1 and
2. the degree of the 0-cycle class Hp−1 is not divisible by p.

(The original definition of a special correspondence given in [29] is more restrictive, but we
only need the above properties.)

As shown in [29], any standard norm variety possesses a special correspondence, and this
explains our interest to varieties possessing a special correspondence.

We are going to use the Steenrod operations on Ch, [4] or [2] (or [1]). For any i ∈ Z, we
writeSi for the cohomological Steenrod operation which increases the codimension by i. The
way of indexing differs from that of [4]. In our indexing we have Si = 0 if i is not divisible
by p−1. Note that for existence of the Steenrod operations, we do not need to assume quasi-
projectivity of varieties, [4, §10].
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SC-I. Rationality of Steenrod operations

Here is the main result of this subsection which we prove using the modification due to
R. Fino [9] of the original technique due to A. Vishik [32]. It extends (a weakened version of)
Theorem 4.3: for s = 0 the result below is very close to Theorem 4.3 (for Λ = Fp) weakened
by the presence of an exponent p element in the statement as well as by the requirement that
Y is smooth (which we need for the Steenrod operations to be defined). Note that unlike
Theorem 4.3, the proof of the result below does not rely on Appendix RM.

We recall that two smooth complete irreducible varieties are equivalent if there exist
multiplicity 1 correspondences (with Λ = Fp) between them in both directions.

T SC.1. – LetX be anA-trivial (for Λ = Fp)F -variety equivalent to anA-trivial
F -variety of dimension pn − 1 possessing a special correspondence. Then for any smooth
irreducible F -variety Y , any m, s ∈ Z with s > (m− b)(p− 1), and any y ∈ Chm(YF (X)), the
element Ss(y) ∈ Chm+s(YF (X)) is rational (i.e., comes from F) up to the class modulo p of
an exponent p element of CHm+s(YF (X)).

E SC.2. – LetX be the Severi-Brauer variety of a degree p central simpleF -alge-
bra. The varietyX has dimension p−1, isA-trivial (see Example 2.5), and possesses a special
correspondence (see [15, Remark 7.17]). It follows that for any smooth F -variety Y and any
element y ∈ Ch(YF (X)), its pth power yp is rational up to the class modulo p of an exponent
p element. Indeed, one may assume that Y is irreducible and y is homogeneous of some codi-
mension m ≥ 0. Then yp = Ss(y) with s = m(p− 1) > (m− b)(p− 1) (note that n = 1 and
b = (pn − 1)/(p− 1) = 1 here so that Theorems 4.5 and 4.3, if applicable at all, are vacuous
in this situation).

Proof of Theorem SC.1. – If deg CH0(X) 6⊂ pZ, then 1 ∈ deg Ch0(X) and we are done
by Lemma 2.9. Below we are assuming that deg CH0(X) ⊂ pZ.

If the conclusion of Theorem SC.1 holds for an A-trivial variety X, then it also holds for
any A-trivial variety X ′ equivalent to X. Indeed, by Lemma 2.9, the right and the bottom
maps of the commutative square

Ch(Y ) −−−−→ Ch(YF (X))y y
Ch(YF (X′)) −−−−→ Ch(YF (X×X′))

are isomorphisms. Therefore we may assume that the variety X itself has dimension
d := pn − 1 and possesses a special correspondence σ ∈ CHb(X × X). As in our defi-
nition of special correspondence, let H ∈ CHb(XF (X)) be the image of σ.

L SC.3. – The element pH ∈ CHb(XF (X))⊗ Z(p) is rational.

Proof. – We set ρ := σp−1 (the power is taken using multiplication in the Chow group,
not composition of correspondences). Then

(SC.4) (σ ◦ ρ)F (X)/deg(Hp−1) = 1×H + (p− 1)H × 1,

and the pull-back of the rational element (SC.4) with respect to the diagonal of X produces
pH.
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The following lemma holds with coefficients in Z(p) (cf. [29, Proposition 5.9]), although
we need it now only for coefficients in Fp:

L SC.5. – An abstract Rost motive (with coefficients in Z(p) as well as with coef-
ficients in Fp) lives on X. More precisely, there exists a symmetric (Rost) projector in
CHd(X ×X)⊗ Z(p) such that over F (X) it is equal to

(1×Hp−1 +H ×Hp−2 + · · ·+Hp−1 × 1)/ deg(Hp−1).

Proof. – It suffices to prove the statement for coefficients in Z(p).
The (symmetric for p 6= 2 and anti-symmetric for p = 2) correspondence

ρ := σp−1 ∈ CHd(X ×X)

considered over F (X) is congruent modulo p to the sum

(SC.6) 1×Hp−1 +H ×Hp−2 + · · ·+Hp−2 ×H +Hp−1 × 1.

Let c ∈ Z(p) be the inverse of the integer deg(Hp−1). The difference of the symmetric
correspondence

ρ′ := (cρ) ◦ (cρ) ∈ CHd(X ×X)⊗ Z(p),

considered over F (X), and the projector

π := c(1×Hp−1 +H ×Hp−2 + · · ·+Hp−1 × 1) ∈ CHd(X ×X)F (X) ⊗ Z(p)

is a linear combination of Hi ×Hp−i−1, i = 0, 1, . . . , p − 1 with divisible by p coefficients.
The motive defined by π is

(XF (X), π) ' Z(p) ⊕ Z(p)(b)⊕ · · · ⊕ Z(p)(d).

Replacing ρ′ by (ρ′)◦p
r

with sufficiently big r, we keep the symmetry of ρ′ and get that
the difference of ρ′ and π is a linear combination of Hi × Hp−i−1 with coefficients divis-
ible by pp−1. It follows by Lemma SC.3 that there exists a symmetric correspondence
ρ′′ ∈ CHd(X ×X)⊗ Z(p) with ρ′′F (X) = π.

Let A (respectively, B) be the (commutative) subring of the ring EndM(X) (respectively,
EndM(XF (X))) generated by ρ′′ (respectively, π). The kernel of the ring epimorphism
A →→ B consists of nilpotent elements. Indeed, any element of the kernel vanishes over
F (X) and, by specialization, over the residue field of any point ofX. Therefore it is nilpotent
by [7, Theorem 67.1]. It follows by an argument like in [7, Corollary 92.5] that there exists a
projector in A ⊂ CHd(X × X) ⊗ Z(p) whose image in B is π. This projector is symmetric
because A consists of symmetric elements only. The motive given by this projector is an
abstract Rost motive.

Recall that deg CH0(X) ⊂ pZ is assumed.

C SC.7. – For any i > 0 and any α ∈ CHi(X), β ∈ CHi(XF (X)), the degree
of the 0-cycle class αF (X) · β is divisible by p.

Proof. – Combine Lemma SC.5 with Corollary 3.11.

C SC.8. – For any i, j > 0, k, l ≥ 0, α ∈ CHi(X) and β ∈ CHj(X), the degree
of the element (α× β)F (X) · (Hk ×H l) ∈ CHi+j+b(k+l)(X ×X)F (X) is divisible by p2.
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Proof. – The degree is equal to the product of the degrees deg(αF (X) · Hk) and
deg(βF (X) ·H l) each of which is divisible by p by Corollary SC.7.

C SC.9. – For any i, j > 0, r ≥ 0, α ∈ CHi(X) and β ∈ CHj(X), the degree
of the element (α× β) · σr ∈ CHi+j+br(X ×X) is divisible by p2.

Proof. – The element σrF (X) is a linear combination of Hk ×H l (with k + l = r).

L SC.10. – For any i > 0, the element Si(H) ∈ Chb+i(XF (X)) is rational.

Proof. – We prove first that deg(HjSi(H)) ≡ 0 (mod p) for any j ≥ 0. Assume the
contrary. Then i is divisible by b, say, i = bk for some k > 0, and j = p − 2 − k.
Computing the composition Si(σ) ◦ σp−1−k ∈ Ch(X × X) over F (X) we get a multiple
with a nonzero coefficient ∈ Fp of H × 1 ∈ Chb(X ×X). Taking the pull-back with respect
to the diagonal shows that the class ofH modulo p is rational and therefore 1 ∈ deg Ch0(X),
a contradiction.

Now the composition Si(σ) ◦ σp−1 ∈ Ch(X ×X) computed over F (X) gives a multiple
with a nonzero coefficient of 1×Si(H), and we finish the proof pulling back with respect to
the diagonal of X.

We set ρ := σp−1 ∈ CHd(X ×X). Since ρF (X) is congruent modulo p to the alternating
sum (SC.6), any element x ∈ Ch(X × Y ) of the form x = x′ ◦ ρ for some x′ ∈ Ch(X × Y )

decomposes over F (X) as

(SC.11) xF (X) = 1× x0 +H × x1 + · · ·+Hp−1 × xp−1

with some x0, x1, . . . , xp−1 ∈ Ch(YF (X)). Note that x0 coincides with the image of x
in Ch(YF (X)). The key statement in the proof of Theorem SC.1 is the following proposition
(where the A-triviality assumption is not needed):

P SC.12. – Let X be a smooth complete irreducible variety of dimension
d = pn−1 possessing a special correspondenceσ ∈ CHb(X×X). LetY be a smooth irreducible
variety and x ∈ Chm(X×Y ) an element of the form x = x′◦ρ. Then for any s > (m−b)(p−1)

the element Ss(x0) ∈ Chm+s(YF (X)) is rational up to the class modulo p of an exponent p
element.

Proof. – For any x ∈ Ch(X × Y ), we have the relation

pr2∗
∑

0≤i≤d+s

bi · Sd+s−i(x) = Sd+s
(
pr2∗(x)

)
,

where bi := bi(−TX) ∈ Chi(X) (this is rather bi(TX) in notation of [29]), where bi(·) are the
components of the multiplicative Chern class as defined in [2, §6.1]. Note that the product
in the expression bi · Sd+s−i(x) is the product of the Ch(X)-module Ch(X × Y ) so that the
expression actually means (bi × Y ) · Sd−i(x) (now in the sense of the product in the ring
Ch(X × Y )).

4 e SÉRIE – TOME 46 – 2013 – No 1



ON STANDARD NORM VARIETIES 207

Now we assume that x ∈ Chm(X × Y ) with m such that s > (m− b)(p− 1). In this case
pr2∗(x) ∈ Chm−d(Y ) and Sd+s

(
pr2∗(x)

)
= 0 because d + s > s > (m − b)(p − 1) ≥

(m− d)(p− 1). Besides, Sd+s(x) = 0 because d+ s = b(p− 1) + s > m(p− 1). Therefore
we have

(SC.13) pr2∗
∑

0<i≤d+s

bi · Sd+s−i(x) = 0.

Putting x ◦ ρ in place of x in relation (SC.13) and using the equality

S•(x ◦ ρ) =
(
b• · S•(x)

)
◦ S•(ρ),

(together with the projection formula) we rewrite the left part of relation (SC.13) as

pr2∗
∑

i+j+k+l=d+s
i>0, j, k, l≥0

bi ·
((
bjS

k(x)
)
◦ Sl(ρ)

)

= pr2∗
∑

pr13∗

(((
bi · Sl(ρ)

)
× [Y ]

)
·
(

[X]×
(
bj · Sk(x)

)))
= pr2∗

∑
pr23∗

(((
bi · Sl(ρ)

)
× [Y ]

)
·
(

[X]×
(
bj · Sk(x)

)))
= pr2∗

∑(
bj · Sk(x)

)
·
((

pr2∗
(
bi · Sl(ρ)

))
× [Y ]

)
= pr2∗

∑
bj ·
(

pr2∗
(
bi · Sl(ρ)

))
· Sk(x).

Therefore

(SC.14) pr2∗
∑

i+j+k+l=d+s
i>0, j, k, l≥0

bj ·
(

pr2∗
(
bi · Sl(ρ)

))
· Sk(x) = 0

for any x ∈ Chm(X × Y ).
We recall that ρ = σp−1. Therefore

Sl(ρ) = Sl(σp−1) =
∑

l1+···+lp−1=l

Sl1(σ) · · · · · Slp−1(σ).

Relation (SC.14) rewrites as

pr2∗
∑

i+j+k+l1+···+lp−1=d+s
i>0; j, k, l1,...,lp−1≥0

bj ·
(

pr2∗
(
bi · Sl1(σ) · · · · · Slp−1(σ)

))
· Sk(x) = 0.

Therefore, fixing for each integer k ≥ 0 an integral representative Skx ∈ CHm+k(X × Y )

of Sk(x) ∈ Chm+k(X × Y ) as well as an integral representative Skσ ∈ CHb+k(X × X)

of Sk(σ) ∈ Chb+k(X ×X) (where we choose σ for S0
σ), we get that the sum

(SC.15)
∑

i+j+k+l1+···+lp−1=d+s
i>0; j, k, l1,...,lp−1≥0

pr2∗

(
bj ·
(

pr2∗
(
bi · Sl1σ · · · · · Slp−1

σ

))
· Skx

)

is divisible by p in CH(Y ). Taking for x an element of the form x = x′ ◦ ρ with some
x′ ∈ Chm(X × Y ) and passing over F (X), we are going to show that the sum of (SC.15) is
equal modulo I := p2 CH(YF (X))+p Im

(
CH(Y )→ CH(YF (X))

)
to the class of deg(bd)S

s
x0

,
where Ssx0

∈ CHm+s(YF (X)) is an integral representative of Ss(x0). More precisely, we show
that the summand for i = d and k = s modulo I is deg(bd)S

s
x0

(up to multiplication by a
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prime to p integer) while each other summand modulo I is 0. Since the integer deg bd is not
divisible by p2 (see [29, Theorem 9.9]),we will get that Ss(x0) is rational up to the classes
modulo p of an element of exponent p.

For i = d and k = s we have j = l1 = · · · = lp−1 = 0, and the corresponding summand
of (SC.15) is equal to

(SC.16) pr2∗ (pr2∗(bd · ρ) · Ssx)F (X) .

Since deg(bd) is divisible by p and ρF (X) is congruent modulo p to (SC.6), the factor
pr2∗(bd · ρ) is congruent modulo I to deg(bd) · Hp−1. Taking into account the decompo-
sition (SC.11) of xF (X), it follows that (SC.16) is congruent modulo I to deg(bd)S

s
x0

up to
multiplication by the prime to p integer deg(Hp−1). Below we are assuming that i 6= d.

For l = 0 (where l := l1 + · · ·+ lp−1), that is to say, for l1 = · · · = lp−1 = 0, an arbitrary
summand we get is of the form

pr2∗
(
bj · pr2∗

(
bi · ρ

)
· Skx

)
F (X)

(with i+ j + k = d+ s). Note that pr2∗
(
bi · ρ

)
F (X)

= 0 if i is not divisible by b. Otherwise,

since i > 0 and ρF (X) is congruent modulo p to (SC.6), pr2∗
(
bi ·ρ

)
F (X)

is by Corollary SC.7

congruent modulo I to a multiple of pHi/b so that we only need to show that the element

(SC.17) pr2∗

Ä
bj ·Hi/b · Sk(x)

ä
F (X)

∈ Ch(YF (X))

is rational.
If j > 0, then computing Sk(x)F (X) = Sk(xF (X)) via the decomposition (SC.11)

of xF (X) and using Corollary SC.7, we see that the element (SC.17) is 0. Let us assume that
j = 0 and show that (SC.17) is 0 as well. It suffices to show this with x replaced by an
arbitrary summand of the decomposition (SC.11). Putting 1× x0 (the first summand of the
decomposition) in place of x, we get

pr2∗
(
Hi/b · Sk(1× x0)

)
= pr2∗

(
Hi/b × Sk(x0)

)
which is 0 because i 6= d. Putting any other summandHr×xr (r ≥ 1) of the decomposition,
we get a multiple of Ss+rb(xr) which is 0 because xr ∈ Chm−rb(YF (X)) and s + rb > s >

(m− b)(p− 1) ≥ (m− rb)(p− 1).
It remains to consider the case of l > 0. We have

Sl(σ)F (X) = 1× Sl(H)− Sl(H)× 1

and Sl(H) is rational by Lemma SC.10. Therefore

(SC.18) (Slσ)F (X) = pθl + 1× SlH − SlH × 1

for some θl ∈ CHb+l(X ×X)F (X) and a rational integral representative SlH of Sl(H).
Let us decompose as in (SC.18) every factor with positive superscript of the product

(Sl1σ · · · · · Slp−1
σ )F (X)

(appearing in (SC.15)F (X)), expand the product and consider an arbitrary summand P of
the expansion. We are going to show that the element

(SC.19) pr2∗

(
bj · pr2∗(bi · P ) · (Skx)F (X)

)
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modulo I is 0.

If P contains the factor pθ? (at least) two times, then the result is divisible by p2 so that
(SC.19) is indeed 0 modulo I.

Assume that the factor pθ? is present precisely one time in P . So, we already have divisi-
bility by p and it suffices to show that the element

(SC.20) pr2∗
(
t · Sk(xF (X))

)
∈ Chm+s(YF (X))

is 0 for an element t ∈ Chi+j+l(XF (X)) such that p · t = bj · pr2∗(bi ·P ). Replacing xF (X) in
(SC.20) by an arbitrary summand of the decomposition (SC.11), we get 0 always (and for an
arbitrary t ∈ Chi+j+l(XF (X))) with only one possible exception: for the summand 1 × x0,
namely.

Putting 1 × x0 in place of xF (X) in (SC.20), we may get a nonzero result only if k = s,
that is, i+ j+ l = d. In this case t is a 0-cycle class and the element (SC.20) is divisible by its

degree. It suffices therefore to show that the degree deg
(
bj · pr2∗(bi · P )

)
is divisible by p2.

If j > 0, then the degree is divisible by p2 by Corollary SC.7 (recall that P is divisible by p).
Therefore we may assume that j = 0, that is i + l = d. In this case bi · P is a 0-cycle class
(onX×X) and the corresponding summand of (SC.15) is divisible by its degree. But degree
of bi · P coincides with degree of bi · pr1∗(P ) which is divisible by p2 by Corollary SC.7 (we
recall that i > 0 and that P is already divisible by p).

At last, let us assume that P contains no θ? as a factor. Then P must contain at least one
factor of the type 1×S?

H (we call it a second type factor because it corresponds to the second
summand of the decomposition (SC.18)) or of the type S?

H×1 (a third type factor). Moreover,
any factor of P is either σ or 1× S?

H (a second type factor) or S?
H × 1 (a third type factor).

It follows by Corollary SC.7 that pr2∗(bi ·P ) is divisible by p. Therefore we may assume that
k = s. The element (SC.19) is then divisible by degree of the 0-cycle class (bi × bj) · P . This
degree is divisible by p2 if j > 0 or ifP contains a factor of the second type by Corollary SC.9.

In the remaining case we have j = 0, i+ l = d, any factor of P equals σ or has the third
type with at least one factor of the third type. Therefore P = (α×1) ·σr with some r < p−1

and some α ∈ CH(XF (X)) (which is in fact rational but we do not care about this anymore).
It follows that the element pr2∗(bi · P ) is a 0-cycle class and the element (SC.19) is divisible
by its degree which is

deg
(
pr2∗(bi · P )

)
= deg

(
pr1∗(bi · P )

)
= deg

(
bi · pr1∗(P )

)
,

but already the element

pr1∗(P ) = α · pr1∗(σ
r)

is trivial because pr1∗(σ
r) = 0 for r < p− 1.

We finish now the proof of Theorem SC.1. Let x be an element of Chm(X × Y ) mapped
to y ∈ Chm(YF (X)). Since X is A-trivial, the element (cx) ◦ ρ, where c ∈ Fp is the inverse to
the class modulo p of the integer deg(Hp−1), is also mapped to y (see Lemma 2.6). Replacing
x by (cx) ◦ ρ, we apply Proposition SC.12 to the new x getting the desired result.
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SC-II. Generators of Chow groups of Rost motives

In this appendix, we provide an elementary construction of homogeneous generators of
the Chow group of a Rost motive in the spirit of [14]. Here we have Λ = Z(p) so that CH

stands for the Chow group with coefficients in Z(p).

Let X be a standard norm variety of dimension d := pn − 1 (p a prime, n ≥ 1).
Let σ ∈ CHb(X ×X), b := d/(p− 1), be a special correspondence on X, H ∈ CHb(XF (X))

the image of σ. Let ρ ∈ CHd(X ×X) be a symmetric (Rost) projector on X such that

ρF (X) = (1×Hp−1 +H ×Hp−2 + · · ·+Hp−1 × 1)/deg(Hp−1)

(see Lemma SC.5).

Let m be an integer satisfying 1 ≤ m ≤ n− 1. Assume that there exists a norm variety Y
of dimension pm − 1 with a morphism f : Y → X. (This assumption is satisfied if the base
field F is p-special and has characteristic 0 by [30, Corollary 1.22].)

P SC.21. – For any r with 1 ≤ r ≤ p− 1, the element

α := ρ∗(σ
r)∗f∗[Y ] ∈ CHpm−1+(p−1−r)b(X)

is of order p.

R SC.22. – Since ρ is symmetric, we have ρ∗ = ρ∗ and therefore

α ∈ ρ∗CHpm−1+(p−1−r)b(X) = CHpm−1+(p−1−r)b(X, ρ).

Since the Chow group is of order p by Theorem RM.10, α is its generator. By Theo-
rem RM.10 once again, varying m and r, we get generators for the whole torsion part of the
Chow group CH∗(X, ρ) of the Rost motive.

Proof of Proposition SC.21. – We first check that pα = 0. Since X has a closed point of
degree p, it suffices to check that αF (X) = 0. Over F (X) we have

αF (X) = (β)∗f∗[Y ],

where β is a linear combination of Hi × Hr−i for i = 0, 1, . . . , r. This is 0 because
dimY 6= codimHi = bi for any i. Indeed,

0 < dimY < pn−1 ≤ 1 + p+ · · ·+ pn−1 = b.

Now we show that α 6= 0 as follows:

α 6= 0 ⇐ α mod p 6= 0 ⇐ Sp
m−1(α) 6= 0 ⇐ p2 6 |deg

(
(Sp

m−1
α )F (X) ·Hp−1−r

)
,

where Sp
m−1
α ∈ CH(p−1−r)b(X) is a representative of the modulo p cycle class

Sp
m−1(α) ∈ Ch(p−1−r)b(X). The implication on the very right comes from Corollary SC.7.

(The degree modulo p2 does not depend on the choice of the integral representative by
Corollary SC.7 once again.)
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In order to compute deg
(

(Sp
m−1
α )F (X) ·Hp−1−r

)
we use the formula

S•
(
(ρ ◦ σr)∗f∗[Y ]

)
=
(
S•(ρ ◦ σr)

)
∗S•f∗[Y ],

where S• is the total homological Steenrod operation.(1) Since S•f∗[Y ] = f∗(S•[Y ]) = bY• ,
where bY• := f∗

(
b•(−TY )

)
, the degree in question is congruent modulo p2 to

deg
∑

i+j=pm−1
i, j≥0

Hp−1−r · (Sjρ◦σr )∗(bYi )F (X)

=
∑

deg
(
Hp−1−r · pr2∗(b

Y
i · S

j
ρ◦σr )F (X)

)
=
∑

deg
((

(bYi )F (X) ×Hp−1−r) · (Sjρ◦σr )F (X)

)
=
∑

deg
(

(bYi )F (X) · pr1∗
(
(Sjρ◦σr )F (X) · (1×Hp−1−r)

))
,

where Sjρ◦σr are representatives of Sj(ρ ◦ σr). Let us choose representatives Sjσr of Sj(σr).
Since (ρ ◦ σr)F (X) = σrF (X), the classes modulo p of (Sjρ◦σr )F (X) and (Sjσr )F (X) coincide.
It follows by Corollary SC.7 that we may remove ρ from the formula (the resulting degree
modulo p2 is not changed).

Taking j = 0, we get the product deg bYdimY · deg(Hp−1) which is not divisible by p2. It
remains to show that for any j > 0 the degree

deg
(

(bYi ×Hp−1−r) · Sjσr
)

= deg
(
bYi · pr1∗

(
Sjσr · (1×Hp−1−r)

))
(everything is overF (X) although we omit the subscriptionF (X)) is divisible by p2. We have

S(σr) =
∑

j1+···+jr=j

Sj1(σ) · · · · · Sjr (σ).

As in the end of Subsection SC-I, for any j > 0, we have

(SC.23) Sjσ = pθj + 1× SjH − S
j
H × 1

for some θj ∈ CHb+j(X ×X)F (X) and a rational integral representative SjH of Sj(H).
Let us decompose as in (SC.23) every factor with positive superscript of the product

Sj1σ · · · · · Sjrσ ,

expand the product and consider an arbitrary summand P of the expansion. We want to
show that the degree

(SC.24) deg
(

(bYi ×Hp−1−r) · P
)

= deg
(
bYi · pr1∗

(
P · (1×Hp−1−r)

))
is divisible by p2.

If P contains a factor of the type pθ? (at least) one time, then the result is divisible by p2

by Corollary SC.7 applied to the right-hand side presentation of the degree in (SC.24).
Let us assume thatP contains no θ? as a factor. ThenP must contain at least one factor of

the second or of the third type. Moreover, any factor of P is either σ or 1×S?
H (a second type

factor) or S?
H × 1 (a third type factor). If a factor of the second type is present, the degree is

divisible by p2 by Corollary SC.8 applied to the left-hand side presentation of the degree in

(1) This formula is proved in [8, Proposition 2.1] for p = 2; the proof can be easily adapted for arbitrary p.
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(SC.24). If there is no factor of the second type, then already pr1∗

(
P · (1×Hp−1−r)

)
= 0

showing that the degree (in its right-hand side presentation) is 0.
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