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PSEUDO-ABELIAN VARIETIES

 B TOTARO

A. – Chevalley’s theorem states that every smooth connected algebraic group over a
perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when
the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field k to be a smooth
connected k-group in which every smooth connected affine normal k-subgroup is trivial. This gives a
new point of view on the classification of algebraic groups: every smooth connected group over a field
is an extension of a pseudo-abelian variety by a smooth connected affine group, in a unique way.

We work out much of the structure of pseudo-abelian varieties. These groups are closely related to
unipotent groups in characteristic p and to pseudo-reductive groups as studied by Tits and Conrad-
Gabber-Prasad. Many properties of abelian varieties such as the Mordell-Weil theorem extend to
pseudo-abelian varieties. Finally, we conjecture a description of Ext2(Ga,Gm) over any field by
generators and relations, in the spirit of the Milnor conjecture.

R. – Le théorème de Chevalley affirme que tout groupe algébrique lisse connexe sur un corps
parfait est une extension d’une variété abélienne par un groupe affine lisse connexe. Cela n’est plus
vrai lorsque le corps de base n’est pas parfait. Nous définissons une variété pseudo-abélienne sur un
corps arbitraire k en tant que k-groupe lisse connexe dans lequel tous les k-sous-groupes lisses connexes
affines distingués sont triviaux. Cela donne un nouveau point de vue sur la classification des groupes
algébriques: tout groupe lisse connexe sur un corps est une extension, faite de manière unique, d’une
variété pseudo-abélienne par un groupe lisse connexe affine.

Nous déterminons une grande partie de la structure des variétés pseudo-abéliennes. Ces groupes
sont étroitement liés aux groupes unipotents en caractéristique p et aux groupes pseudo-réductifs
étudiés par Tits et Conrad-Gabber-Prasad. Plusieurs propriétés des variétés abéliennes (comme le
théorème de Mordell-Weil) s’étendent aux variétés pseudo-abéliennes. Enfin, nous conjecturons une
description de Ext2(Ga,Gm) sur n’importe quel corps par générateurs et relations, dans l’esprit de la
conjecture de Milnor.

The theory of algebraic groups is divided into two parts with very different flavors: affine
algebraic groups (which can be viewed as matrix groups) and abelian varieties. Concentrating
on these two types of groups makes sense in view of Chevalley’s theorem: for a perfect field k,
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694 B. TOTARO

every smooth connected k-group G is an extension of an abelian variety A by a smooth
connected affine k-group N [9, 10]:

1→ N → G→ A→ 1.

But Chevalley’s theorem fails over every imperfect field. What can be said about the structure
of a smooth connected algebraic group over an arbitrary field k? (Group schemes which are
neither affine nor proper come up naturally, for example as the automorphism group scheme
or the Picard scheme of a projective variety over k. Groups over an imperfect field such as
the rational function field Fp(t) arise geometrically as the generic fiber of a family of groups
in characteristic p.)

One substitute for Chevalley’s theorem that works over an arbitrary field is that every
connected group scheme (always assumed to be of finite type) over a field k is an extension
of an abelian variety by a connected affine group scheme, not uniquely [26, Lemme IX.2.7].
But when this result is applied to a smooth k-group, the affine subgroup scheme may have
to be non-smooth. And it is desirable to understand the structure of smooth k-groups as far
as possible without bringing in the complexities of arbitrary k-group schemes. To see how
far group schemes can be from being smooth, note that every group scheme G of finite type
over a field k has a unique maximal smooth closed k-subgroup [12, Lemma C.4.1], but (for
k imperfect) that subgroup can be trivial even when G has positive dimension. (A simple
example is the group scheme G = {(x, y) ∈ (Ga)2 : xp = typ} for t ∈ k not a pth
power, where p is the characteristic of k. The dimension of G is 1, but the maximal smooth
k-subgroup of G is the trivial group.)

Brion gave a useful structure theorem for smooth k-groups by putting the smooth affine
group “on top”. Namely, for any field k of positive characteristic, every smooth connected
k-group is a central extension of a smooth connected affine k-group by a semi-abelian variety
(an extension of an abelian variety by a torus) [8, Proposition 2.2]. (Another proof was
given by C. Sancho de Salas and F. Sancho de Salas [29].) One can still ask what substitute
for Chevalley’s theorem works over arbitrary fields, with the smooth affine group “on the
bottom”. We can gain inspiration from Tits’s theory of pseudo-reductive groups [35, 36],
developed by Conrad-Gabber-Prasad [12]. By definition, a pseudo-reductive group over a
field k is a smooth connected affine k-group G such that every smooth connected unipotent
normal k-subgroup of G is trivial. That suggests the definition:

D 0.1. – A pseudo-abelian variety over a field k is a smooth connected k-group
G such that every smooth connected affine normal k-subgroup of G is trivial.

It is immediate that every smooth connected group over a field k is an extension of a
pseudo-abelian variety by a smooth connected affine group over k, in a unique way. Whether
this is useful depends on what can be said about the structure of pseudo-abelian varieties.
Chevalley’s theorem implies that a pseudo-abelian variety over a perfect field is simply an
abelian variety.

Over any imperfect field, Raynaud constructed pseudo-abelian varieties which are not
abelian varieties [14, Exp. XVII, App. III, Prop. 5.1]. Namely, for any finite purely inseparable
extension l/k and any abelian varietyB over l, the Weil restrictionRl/kB is a pseudo-abelian
variety, and it is not an abelian variety if l 6= k and B 6= 0. (Weil restriction produces a
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PSEUDO-ABELIAN VARIETIES 695

k-scheme Rl/kB whose set of k-rational points is equal to the set of l-rational points of B.)
Indeed, over an algebraic closure k of l, Rl/kB becomes an extension of Bk by a smooth
unipotent group of dimension ([l : k] − 1) dim(B), and so Rl/kB is not an abelian variety.
(This example shows that the notion of a pseudo-abelian variety is not geometric, in the
sense that it is not preserved by arbitrary field extensions. It is preserved by separable field
extensions, however.)

One main result of this paper is that every pseudo-abelian variety over a field k is commu-
tative, and every pseudo-abelian variety is an extension of a smooth connected commutative
unipotent k-group by an abelian variety (Theorem 2.1). In this sense, pseudo-abelian vari-
eties are reasonably close to abelian varieties. So it is a meaningful generalization of Cheval-
ley’s theorem to say that every smooth connected group over a field k is an extension of a
pseudo-abelian variety by a smooth connected affine group over k.

One can expect many properties of abelian varieties to extend to pseudo-abelian varieties.
For example, the Mordell-Weil theorem holds for pseudo-abelian varieties (Proposition 4.1).
Like abelian varieties, pseudo-abelian varieties can be characterized among all smooth con-
nected groups G over a field k without using the group structure, in fact using only the bi-
rational equivalence class of G over k: G is a pseudo-abelian variety if and only if G is not
“smoothly uniruled” (Theorem 5.1).

The other main result is that, over an imperfect field of characteristic p, every smooth
connected commutative group of exponent p occurs as the unipotent quotient of some
pseudo-abelian variety (Corollaries 6.5 and 7.3). Over an imperfect field, smooth commu-
tative unipotent groups form a rich family, studied by Serre, Tits, Oesterlé, and others over
the past 50 years [17], [25], [12, Appendix B]. So there are far more pseudo-abelian varieties
(over any imperfect field) than the initial examples, Weil restrictions of abelian varieties.

Lemma 8.1 gives a precise relation between the structure of certain pseudo-abelian vari-
eties and the (largely unknown) structure of commutative pseudo-reductive groups. We prove
some new results about commutative pseudo-reductive groups. First, a smooth connected
unipotent group of dimension 1 over a field k occurs as the unipotent quotient of some com-
mutative pseudo-reductive group if and only if it is not isomorphic to the additive group Ga

over k (Corollary 9.5). But an analogous statement fails in dimension 2 (Example 9.7). The
proofs include some tools for computing the invariants Ext1(U,Gm) and Pic(U) of a unipo-
tent groupU . Finally, Question 7.4 conjectures a calculation of Ext2(Ga,Gm) over any field
by generators and relations, in the spirit of the Milnor conjecture. Question 9.11 attempts to
describe the commutative pseudo-reductive groups over 1-dimensional fields.

Thanks to Lawrence Breen, Michel Brion, Brian Conrad, and Tony Scholl for useful dis-
cussions. The proofs of Theorem 2.1 and Lemma 6.3 were simplified by Brion and Conrad,
respectively. Other improvements are due to the excellent referees, including Example 9.10,
which answers a question in an earlier version of the paper.

1. Notation

A variety over a field k means an integral separated scheme of finite type over k. Let
k be a field with algebraic closure k and separable closure ks. A field extension F of k (not
necessarily algebraic) is separable if the ringF⊗kk contains no nilpotent elements other than
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696 B. TOTARO

zero. For example, the function field of a varietyX over k is separable over k if and only if the
smooth locus of X over k is nonempty [5, Section X.7, Theorem 1, Remark 2, Corollary 2].

We use the convention that a connected topological space is nonempty.

A group scheme over a field k is unipotent if it is isomorphic to a k-subgroup scheme of the
group of strictly upper triangular matrices inGL(n) for some n (see [14, Théorème XVII.3.5]
for several equivalent conditions). Being unipotent is a geometric property, meaning that
it does not change under field extensions of k. Unipotence passes to subgroup schemes,
quotient groups, and group extensions.

We write Ga for the additive group. Over a field k of characteristic p > 0, we write αp for
the k-group scheme {x ∈ Ga : xp = 0}. A group scheme over k is unipotent if and only
if it has a composition series with successive quotients isomorphic to αp, Ga, or k-forms
of (Z/p)r [14, Théorème XVII.3.5].

Tits defined a smooth connected unipotent group over a field k to be k-wound if it does
not contain Ga as a subgroup over k. When k has characteristic p > 0, a smooth connected
commutative k-group of exponent p can be described in a unique way as an extension of a
k-wound group by a subgroup isomorphic to (Ga)n for some n ≥ 0 [12, Theorem B.3.4].
Over a perfect field, a k-wound group is trivial. An example of a nontrivial k-wound group
is the smooth connected subgroup {(x, y) : yp = x − txp} of (Ga)2 for any t ∈ k − kp,
discussed in Example 9.6.

Over an imperfect field k of characteristic p, there are many smooth connected commuta-
tive groups of exponent p (although they all become isomorphic to (Ga)n over the algebraic
closure of k). One striking phenomenon is that some of these groups are k-rational varieties,
while others contain no k-rational curves [17, Theorem 6.9.2], [25, Theorem VI.3.1]. Explic-
itly, define a p-polynomial to be a polynomial with coefficients in k such that every monomial
in f is a single variable raised to some power of p. Then every smooth connected commutative
k-group of exponent p and dimension n is isomorphic to the subgroup of (Ga)n+1 defined
by some p-polynomial f with nonzero degree-1 part [25, Proposition V.4.1], [12, Proposi-
tion B.1.13].

A smooth connected affine group G over a field k is pseudo-reductive if every smooth
connected unipotent normal k-subgroup of G is trivial. The stronger property that G is
reductive means that every smooth connected unipotent normal subgroup of Gk is trivial.

We write Gm for the multiplicative group over k. For each positive integer n, the k-group
scheme {x ∈ Gm : xn = 1} of nth roots of unity is called µn. A k-group scheme M is of
multiplicative type if it is the dual of some Gal(ks/k)-module L which is finitely generated as
an abelian group, meaning thatM = Spec(ks[L])Gal(ks/k) [14, Proposition X.1.4]. Dualizing
the surjection L → L/Ltors shows that every k-group scheme M of multiplicative type
contains a k-torus T with M/T finite. (Explicitly, T is the identity component of M with
reduced scheme structure.)

2. Structure of pseudo-abelian varieties

T 2.1. – Every pseudo-abelian variety E over a field k is commutative. Moreover,
E is in a unique way an extension of a smooth connected commutative unipotent k-group U by
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PSEUDO-ABELIAN VARIETIES 697

an abelian variety A:
1→ A→ E → U → 1.

Finally, E can be written (not uniquely) as (A×H)/K for some commutative affine k-group
scheme H and some commutative finite k-group scheme K which injects into both A and H,
with H/K ∼= U .

Proof. – Since E is a smooth connected k-group, the commutator subgroup [E,E] is a
smooth connected normal k-subgroup ofE [14, Proposition VIB.7.1]. Since abelian varieties
are commutative, Chevalley’s theorem applied to Ek gives that [E,E]k is affine [9, 10].
Therefore the k-subgroup [E,E] is affine. SinceE is a pseudo-abelian variety over k, it follows
that [E,E] is trivial. That is, E is commutative.

If the field k is perfect, then the pseudo-abelian variety E is an abelian variety by Cheval-
ley’s theorem. So we can assume that k is imperfect; in particular, k has characteristic p > 0.
By Brion’s theorem, E is an extension

1→ A→ E → U → 1

with A a semi-abelian variety and U a smooth connected affine k-group [8, Proposition 2.2].
The maximal k-torus in A is trivial because E is a pseudo-abelian variety. That is, A is an
abelian variety. So the morphism E → U is proper and flat, with geometrically reduced
and connected fibers. It follows that the pullback map O(U) → O(E) on rings of regu-
lar functions is an isomorphism [16, Proposition 7.8.6]. Since U is affine, it follows that
U = SpecO(E) and hence the exact sequence is uniquely determined by E. (The idea of
considering SpecO(E) goes back to Rosenlicht [27, p. 432].)

Like any connected group scheme of finite type over k, E can also be written (not
uniquely) as an extension

1→ H → E → B → 1

withH a connected affine group scheme over k andB an abelian variety [26, Lemme IX.2.7].
LetK be the intersection ofH andA inE. ThenK is both affine and proper over k, and soK
has dimension 0. Also,H/K injects intoU , and the abelian varietyB maps onto the quotient
groupU/(H/K). SinceU/(H/K) is both affine (being a quotient group ofU ) and an abelian
variety, it is trivial. That is, H/K maps isomorphically to U . Since E is commutative, this
means that E is isomorphic to (A×H)/K.

It remains to show that U is unipotent. Since H is a commutative affine k-group scheme,
it is an extension of a unipotent k-group scheme by a k-group scheme M of multiplicative
type [14, Théorème XVII.7.2.1]. Because M ⊂ H ⊂ E where E is a pseudo-abelian variety,
every k-torus in M is trivial. By Section 1, it follows that M is finite. Thus H is an extension
of a unipotent k-group scheme by a finite k-group scheme. So the quotient group U of H is
also an extension of a unipotent k-group scheme by a finite k-group scheme; in particular,
every k-torus in U is trivial. Since U is a smooth connected affine k-group, it follows that U
is unipotent [14, Proposition XVII.4.1.1].

Q 2.2 (Suggested by Michel Brion). – How can Raynaud’s examples of pseudo-
abelian varieties, purely inseparable Weil restrictions of abelian varieties, be described ex-
plicitly as extensions 1→ A→ E → U → 1 or as quotients (A×H)/K, in the terminology
of Theorem 2.1?
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698 B. TOTARO

For a finite purely inseparable extension l/k and an abelian varietyB over l, the maximal
abelian subvariety of the Weil restrictionRl/kB is the Chow l/k-trace ofB [11]. Question 2.2
asks for a description of the unipotent quotient of Rl/kB, too.

L 2.3. – Let G be a smooth connected group over a field k, and let K be a separable
extension field of k. ThenG is a pseudo-abelian variety over k if and only if it becomes a pseudo-
abelian variety over K.

Proof. – If G becomes a pseudo-abelian variety over K, it is clearly a pseudo-abelian
variety over k. For the converse, by considering the separable closure of K, it suffices to
treat the cases where (1) K is the separable closure of k or (2) k is separably closed. To
prove (1): there is a unique maximal smooth connected affine normal ks-subgroup of Gks

.
By uniqueness, it is Gal(ks/k)-invariant, and therefore comes from a subgroup H over k.
Clearly H is a smooth connected affine normal k-subgroup of G. To prove (2), reduce to the
case whereK is finitely generated over k, so thatK is the fraction field of a smooth k-variety
X, shrinkX so that the maximal smooth connected affine normalK-subgroup ofGK comes
from a subgroup scheme of GX , and specialize to a k-point of X (which exists because k is
separably closed). This is essentially the same as the proof that pseudo-reductivity remains
unchanged under separable extensions [12, Proposition 1.1.9(1)].

3. Example

Pseudo-abelian varieties occur in nature, in the following sense.

E 3.1. – For every odd prime p, there is a regular projective curveX over a field k
of characteristic p such that the Jacobian Pic0

X/k is a pseudo-abelian variety which is not an
abelian variety.

We leave it to the reader to seek a curve with these properties in characteristic 2. (The
simpler the example, the better.)

Proof. – Let k be the rational function field Fp(t). LetX be the regular compactification
of the regular affine curve y2 = x(x− 1)(xp− t) over k. Rosenlicht considered this curve for
a closely related purpose [28, pp. 49–50]. (To find the non-regular locus of the given affine
curve, compute the zero locus of all derivatives of the equation with respect to x, y and also t:
this gives that (2x − 1)(xp − t) = 0, 2y = 0, and x(x − 1) = 0, which defines the empty
set in A2

k = A2
Fp(t).) Then X is a geometrically integral projective curve of arithmetic genus

(p+1)/2, and soG := Pic0
X/k = ker(deg : PicX/k → Z) is a smooth connected commutative

k-group of dimension (p+ 1)/2 [4, Theorem 8.2.3 and Proposition 8.4.2]. Over an algebraic
closure k, the curve Xk is not regular: it has a cusp (of the form z2 = wp) at the point
(x, y) = (u, 0), where we define u = t1/p in k. The normalization C of Xk is the regular
compactification of the regular affine curve y2 = x(x−1)(x−u) over k, with normalization
map C → Xk given by (x, y) 7→ (x, y(x − u)(p−1)/2). Since C has genus 1, Pic0

C/k
is an

elliptic curve over k. Pulling back byC → Xk gives a homomorphism fromGk onto Pic0
C/k

,

1→ N → Gk → Pic0
C/k
→ 1,
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PSEUDO-ABELIAN VARIETIES 699

with kernel N isomorphic to (Ga)(p−1)/2 over k [31, Section V.17], [4, Proposition 9.2.9]. It
follows that G is not an abelian variety over k.

To show that G is a pseudo-abelian variety over k, we have to show that every smooth
connected affine k-subgroup S ofG is trivial. For such a subgroup, Sk must map trivially into
the elliptic curve Pic0

C/k
. So it suffices to show that every smooth connected k-subgroup S

ofGwith Sk contained inN is trivial. It will be enough to prove the corresponding statement
at the level of Lie algebras. Namely, we have an exact sequence of k-vector spaces

0→ N → H1(X,O)⊗k k → H1(C,O)→ 0,

and it suffices to show that the codimension-1 k-linear subspaceN has zero intersection with
the k-vector space H1(X,O).

The dual of the surjection H1(X,O) ⊗k k → H1(C,O) is the inclusion H0(C,KC) →
H0(X,KX) ⊗k k given by the trace map associated to the finite birational morphism
C → Xk. Here KX denotes the canonical line bundle of the Gorenstein curve X. It is a
standard calculation for hyperelliptic curves that H0(C,KC) has a k-basis given by dx/y
and H0(X,KX) has a k-basis given by xidx/y for 0 ≤ i ≤ (p− 1)/2 [32, Section 2]. By the
formula for the normalization map C → Xk, this map sends dx/y to (x− u)(p−1)/2dx/y.

To show thatN ⊂ H1(X,O)⊗k k has zero intersection with the k-linear spaceH1(X,O),
it is equivalent to show that the coefficients a0, . . . , a(p−1)/2 ∈ k of (x − u)(p−1)/2dx/y

in terms of our k-basis for H0(X,KX) are k-linearly independent. These coefficients are(
(p−1)/2

i

)
(−u)(p−1)/2−i for 0 ≤ i ≤ (p − 1)/2. Since nonzero factors in k do not matter,

it suffices to show that 1, u, u2, . . . , u(p−1)/2 ∈ k are k-linearly independent. Since t ∈ k is
not a pth power, u = t1/p has degree p over k, and so even 1, u, u2, . . . , up−1 are k-linearly
independent. This completes the proof that G = Pic0

X/k is a pseudo-abelian variety over k.

We remark that for any odd prime p, the genus (p + 1)/2 in this example is the smallest
possible for a geometrically integral projective curve X over a field k of characteristic p
whose Jacobian G is a pseudo-abelian variety over k but not an abelian variety. Indeed,
such a curve X must be regular; otherwise the kernel K of the homomorphism from G

to the Jacobian of the normalization of X would be a nontrivial smooth connected affine
k-subgroup of G. (It suffices to check that Kk is a nontrivial smooth connected affine group
over k. To do that, let f : D → X be the normalization; this is not an isomorphism
if X is not regular. Then f : Dk → Xk is a birational morphism of (possibly singular)
integral projective curves. The kernel Kk of the surjection Gk = Pic0

X/k
→ Pic0

D/k
has

K(k) = H0(Xk, (RD/XGm,D)/Gm,X), which is nontrivial if f is not an isomorphism. More
precisely, Kk is a quotient of the product of the groups (OD,y/m

N )∗ viewed as k-groups for
a nonempty finite set of points y ∈ D(k) and some positive integersN , and soKk is smooth,
connected, and affine over k.)

Next, X is not smooth over k; otherwise its Jacobian G would be an abelian variety. So
the geometric genus of Xk (the genus of the normalization of Xk) is less than the arithmetic
genus ofXk (or equivalently ofX), by considering the exact sequence of sheaves 0→ OXk

→
g∗OC → L → 0 associated to the normalization g : C → Xk. Finally, the geometric genus
of Xk is not zero (otherwise G would be affine; the Jacobian Pic0

X/k
is an extension of the
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700 B. TOTARO

Jacobian of the normalization by a smooth connected affine group). Tate showed that the
geometric and arithmetic genera differ by a multiple of (p−1)/2 for a geometrically integral
regular projective curve X over a field of characteristic p [33]; see Schröer [30] for a proof in
the language of schemes. SoX must have arithmetic genus at least 1+(p−1)/2 = (p+1)/2,
as claimed.

4. Mordell-Weil theorem for pseudo-abelian varieties

One can expect many properties of abelian varieties to extend to pseudo-abelian varieties.
We show here that the Mordell-Weil theorem holds for pseudo-abelian varieties.

P 4.1. – Let E be a pseudo-abelian variety over a field k which is finitely
generated over the prime field. Then the abelian group E(k) is finitely generated.

Proof. – If k has characteristic zero, then E is an abelian variety and this is the usual
Mordell-Weil theorem [23, Chapter 6]. So let k be a finitely generated field over Fp. As with
any connected group scheme over k, we can write E as an extension

1→ H → E → B → 1

with H a connected affine k-group scheme and B an abelian variety [26, Lemme IX.2.7].
Since E is a pseudo-abelian variety, E is commutative and the maximal smooth connected
k-subgroup of H is trivial. Note that we can define the maximal smooth k-subgroup of any
k-group scheme H as the Zariski closure of the group H(ks) [12, Lemma C.4.1]. So H(ks)

is finite, and so H(k) is finite. By the exact sequence H(k) → E(k) → B(k), where B(k) is
finitely generated by Mordell-Weil, E(k) is finitely generated.

5. Birational characterization of pseudo-abelian varieties

In this section we show that pseudo-abelian varieties can be characterized among all
smooth algebraic groups without using the group structure. In fact, the birational equiva-
lence class of a smooth connected group G over a field k is enough to determine whether
G is a pseudo-abelian variety. This makes pseudo-abelian varieties a very natural class of
algebraic groups. Theorem 5.1 says that a smooth connected k-group is pseudo-abelian if
and only if it is not “smoothly uniruled”, a notion which we will define.

As usual, a varietyX over a field k is uniruled if there is a variety Y over k and a dominant
rational map Y ×P1 99K X over k which does not factor through Y [21, Proposition IV.1.3].
We say that a variety X is rationally connected if a compactification of X is rationally
connected in the usual sense [21, Definition IV.3.2.2]. Equivalently,X is rationally connected
if and only if there is a variety Y over k and a rational map u : Y × P1 99K X over k such
that the associated map u(2) : Y ×P1×P1 99K X ×k X is dominant. Next, a variety X over
a field k is generically smooth if the smooth locus of X over k is nonempty. Over a perfect
field, every variety is generically smooth.
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PSEUDO-ABELIAN VARIETIES 701

We now make a new definition. A generically smooth variety X over a field k is smoothly
uniruled if there are generically smooth k-varieties B and E with dominant rational maps

E //

��

X

B

such that the generic fiber of E 99K B is a generically smooth and rationally connected
variety over k(B), and E 99K X does not factor through B. Smooth uniruledness depends
only on the birational equivalence class of X over k.

It is clear that a smoothly uniruled variety is uniruled. The converse holds for k perfect,
but not in general, as Theorem 5.1 will show. (Being “smoothly uniruled” does not imply
being “separably uniruled”, which is stronger than uniruledness even over an algebraically
closed field of positive characteristic [21, Definition IV.1.1].) Note that uniruledness is a
geometric notion; that is, a k-variety X (which need not be generically smooth) is uniruled
if and only if Xk has uniruled irreducible components [21, Proposition IV.1.3]. That is not
true for smooth uniruledness (over an imperfect field k), as Theorem 5.1 will imply. At
least smooth uniruledness does not change under separable algebraic extensions of k. Since
smooth uniruledness turns out to be an interesting property of algebraic groups, it should be
worthwhile to study smooth uniruledness for other classes of varieties over imperfect fields.

T 5.1. – Let G be a smooth connected group over a field k. Then G is an abelian
variety if and only if G is not uniruled. And G is a pseudo-abelian variety if and only if G is
not smoothly uniruled. In particular, whether G is a pseudo-abelian variety depends only on the
birational equivalence class of G over k.

Proof. – If G is not an abelian variety, then Gk has a nontrivial smooth connected
affine normal subgroup N over k, by Chevalley’s theorem. Such a group N is rational [3,
Remark 14.14] and has positive dimension. Using the product mapGk×N → Gk, it follows
that Gk is uniruled. Equivalently, G is uniruled. Conversely, if G is an abelian variety, then
Gk contains no rational curves, and so G is not uniruled.

If G is not a pseudo-abelian variety, then G has a nontrivial smooth connected affine
normal k-subgroup N . Then Nk is rational and so N is rationally connected, as that is a
geometric property [21, Ex. IV.3.2.5]. The diagram

G×N
gn //

g

��

G

G

has the properties needed to show that G is smoothly uniruled: the base variety G is generi-
cally smooth, the generic fiberNk(G) of the vertical map is generically smooth and rationally
connected, and the horizontal map G × N → G is dominant and does not factor through
the vertical map.
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Conversely, let G be a pseudo-abelian variety over a field k. Suppose that G is smoothly
uniruled. Let

E //

��

G

B

be a diagram as in the definition of smooth uniruledness. Thus the generic fiber of E 99K B
is a generically smooth and rationally connected variety over k(B), and E 99K G does not
factor throughB. It follows that these properties hold over a dense open subset ofB. Because
B is a generically smooth k-variety, B(ks) is Zariski dense in B. So there is a point in B(ks)

whose inverse image Y inE is a generically smooth, rationally connected variety over ks with
a nonconstant rational map f : Y 99K Gks

. In particular, Y has positive dimension. Here
Y (ks) is Zariski dense in Y because Y is generically smooth.

By Theorem 2.1, we can write the pseudo-abelian variety G as (A × H)/K for some
abelian variety A, commutative affine k-group scheme H, and commutative finite k-group
scheme K. The image of the rationally connected ks-variety Y in the abelian variety A/K
must be a ks-rational point. So f maps Y into the inverse image of this point in Gks

, which
is a principal Hks

-bundle over Spec(ks). Since Y (ks) is Zariski dense in Y , this principal
bundle has a ks-rational point and hence is trivial. Thus we get a nonconstant rational map
from the generically smooth variety Y to Hks

. It follows that H(ks) is infinite, and so the
maximal smooth k-subgroup of H has positive dimension. Such a subgroup is affine and
contained in G, contradicting that G is a pseudo-abelian variety.

6. Construction of pseudo-abelian varieties: supersingular case

The unipotent quotient of a pseudo-abelian variety over a field k is a smooth connected
commutative unipotent group over k. In this section, we show that when k is imperfect of
characteristic p, every smooth connected commutative group of exponent p over k occurs as
the unipotent quotient of some pseudo-abelian variety E, even in the special case where the
abelian subvariety ofE is a supersingular elliptic curve (Corollary 6.5). Thus there are many
more pseudo-abelian varieties over an imperfect field than Raynaud’s original examples,
Weil restrictions of abelian varieties. (Weil restrictions occur only in certain dimensions. For
example, if a Weil restriction Rl/kB for a purely inseparable extension l/k has its maximal
abelian subvariety of dimension 1, then the abelian variety B has dimension 1, and so the
unipotent quotient of Rl/kB has dimension pr − 1 for some r.)

D 6.1. – Let U be a smooth connected commutative unipotent group over a
field k. LetK be a finite commutative k-group scheme. We say that a commutative extension

1→ K → H → U → 1

is highly nontrivial if the maximal smooth connected k-subgroup of H (which is necessarily
unipotent) is trivial.

For us, the point of the notion of highly nontrivial extensions is:
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L 6.2. – (1) Let 1→ K → H → U → 1 be a highly nontrivial extension of a smooth
connected commutative unipotent groupU over a field k. LetA be an abelian variety over k that
contains K as a subgroup scheme. Then E := (A×H)/K is a pseudo-abelian variety which is
an extension

1→ A→ E → U → 1.

(2) Conversely, letE be any pseudo-abelian variety over a field k of characteristic p. WriteE
as an extension 1 → A → E → U → 1 with A an abelian variety and U a smooth
connected commutative unipotent group. Let pr be the exponent of U . Then E can be written
as (A×H)/A[pr] for some highly nontrivial extension 1→ A[pr]→ H → U → 1.

Proof. – Let us prove (1). Clearly E is an extension 1 → A → E → U → 1. It follows
that E is a smooth connected k-group. Clearly E is commutative.

LetN be a smooth connected affine k-subgroup ofE. ThenN must map trivially into the
abelian variety E/H = A/K. Therefore N is contained in the subgroup scheme H of E.
Since H is a highly nontrivial extension, N is trivial. Thus E is a pseudo-abelian variety,
proving (1).

We turn to (2). Since U has exponent pr, the abelian group Ext1(U,A) is killed by pr.
Consider the exact sequence

Ext1(U,A[pr])→ Ext1(U,A)
pr

−→ Ext1(U,A).

(Such exact sequences hold for Ext in any abelian category, in this case the category of
commutative k-group schemes of finite type [14, Théorème VIA.5.4.2].) The exact sequence
shows that the extensionE comes from a commutative extension 1→ A[pr]→ H → U → 1,
with H ⊂ E. Clearly H is affine. Since E is a pseudo-abelian variety, the maximal smooth
connected k-subgroup of H is trivial, and so H is a highly nontrivial extension.

L 6.3. – LetU be a smooth connected commutative group of exponent p over a field k
of characteristic p. If k is imperfect, then there is a highly nontrivial extension of U by αp.

Proof. – It suffices to show that there are highly nontrivial extensions of (Ga)s by αp

over k for some arbitrarily large numbers s. Indeed, having a highly nontrivial extension
is a property which passes from one smooth connected commutative unipotent k-group to
any smooth connected k-subgroup. And every smooth connected commutative k-group of
exponent p and dimension n is isomorphic to the subgroup of (Ga)n+1 defined by some
p-polynomial over k.

Since k is imperfect, we can choose an element t in k∗ which is not a pth power. We will
exhibit a highly nontrivial extension 1 → αp → H → (Ga)(p−1)pr−1 → 1 over k, for
any r ≥ 1. For clarity, first take r = 1. That is, we want to construct a highly nontrivial
extension 1 → αp → H → (Ga)p−1 → 1. Let l = k(u) where u = t1/p; thus l is a field of
degree p over k. We will takeH to be the Weil restrictionRl/kαp. A general reference on Weil
restriction is [12, Appendix A.5]. Note that Weil restriction need not multiply dimensions
by p = [l : k] for non-smooth schemes such as the 0-dimensional scheme αp. In fact, Rl/kαp

has dimension p− 1; explicitly, it is the k-subgroup scheme

{(a0, a1, . . . , ap−1) ∈ (Ga)p : ap
0 + tap

1 + · · ·+ tp−1ap
p−1 = 0},
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as we find by writing out the equation (a0 + a1u + · · · + ap−1u
p−1)p = 0. We check

immediately that the kernel of the natural homomorphism Rl/kαp → (Rl/kGa)/Ga is αp.
The resulting injection

(Rl/kαp)/αp → (Rl/kGa)/Ga

is an isomorphism, because the two k-group schemes have the same dimension and
(Rl/kGa)/Ga is smooth and connected. The quotient group (Rl/kGa)/Ga is isomor-
phic to (Ga)p/Ga

∼= (Ga)p−1. Thus H is an extension of (Ga)p−1 by αp, as we want. By
construction, H is commutative of exponent p.

It remains to show that the maximal smooth connected k-subgroup ofH is trivial. We have
H(ks) = (Rl/kαp)(ks) = αp(ls) = 0, since ls is a field of characteristic p. Therefore every
smooth k-subgroup of H, connected or not, is trivial. So H is a highly nontrivial extension
as we want, in the case r = 1.

We now generalize the construction to exhibit a highly nontrivial extension 1 → αp →
H → (Ga)(p−1)pr−1 → 1 over k for any r ≥ 1. Again, let t be an element of k∗ which is not
a pth power.

Let u = t1/p, v = t1/pr−1

, and w = t1/pr

. First define

U := (Rk(w)/kGa)/(Rk(v)/kGa)

= Rk(v)/k((Rk(w)/k(v)Ga)/Ga)

∼= (Ga)(p−1)pr−1

.

We define an extension group 1→ αp → H → U → 1 as the fiber product

H := [Rk(v)/k((Rk(w)/k(v)Ga)/Ga)]×(Rk(u)/kGa)/Ga
Rk(u)/kαp

= U ×(Ga)p−1 Rk(u)/kαp.

Here the homomorphism Rk(v)/k((Rk(w)/k(v)Ga)/Ga) → (Rk(u)/kGa)/Ga on the left
corresponds on k-rational points to taking the pr−1st power, and the homomorphism on the
right is Rk(u)/kαp → (Rk(u)/kαp)/αp = (Rk(u)/kGa)/Ga. Since the latter homomorphism
is a surjection with kernel αp, it is clear that H is an extension 1→ αp → H → U → 1. The
definition shows that H is commutative of exponent p.

It remains to show that H is a highly nontrivial extension. We will prove the stronger
statement that the maximal smooth k-subgroup of H is trivial. That holds if H(ks) = 1.
By definition of H, H(ks) is the fiber product

H(ks) = [ks(w)/ks(v)]×ks(u)/ks
αp(ks(u)),

where the left homomorphism is the pr−1st power. Since ks(u) is a field of characteristic p,
αp(ks(u)) = 0. So H(ks) = {y ∈ ks(w)/ks(v) : ypr−1 ∈ ks}. This group is zero by the
following lemma, applied to the field F = ks.

L 6.4. – Let F be a field of characteristic p > 0 with an element t ∈ F that is not a
pth power in F . Let r be a positive integer. Let u = t1/p, v = t1/pr−1

, and w = t1/pr

. Then

F (w) ∩ F 1/pr−1

= F (v).
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Proof. – The intersection F (w) ∩ F 1/pr−1

is a subfield of F (w) that contains F (v). It is
equal to F (v) because [F (w) : F (v)] = p is prime and w is not in F 1/pr−1

(because wpr

= t

and t is not a pth power in F ).

Thus H(ks) = 0. We have shown that the extension 1 → K → H → (Ga)pr−1(p−1) → 1

is highly nontrivial, proving Lemma 6.3.

C 6.5. – For any smooth connected commutative group U of exponent p over an
imperfect field k and any supersingular elliptic curveA over k, there is a pseudo-abelian variety
over k which is an extension of U by A.

The assumption that k is imperfect is essential, by Chevalley’s theorem: every pseudo-
abelian variety over a perfect field is an abelian variety. In particular, there is a pseudo-abelian
variety 1 → A → E → Ga → 1 over k with A a supersingular elliptic curve whenever k is
imperfect, but not when k is perfect.

Proof. – Let A be a supersingular elliptic curve over k. Then the kernel of the Frobenius
homomorphism onA is isomorphic to αp over k. Since k is imperfect, Lemma 6.3 shows that
there is a highly nontrivial extension H of U by αp. By Lemma 6.2(1), E = (A×H)/αp is a
pseudo-abelian variety. It is an extension of U by A.

7. Construction of pseudo-abelian varieties: ordinary case

This section shows again that there are many pseudo-abelian varieties over an imperfect
field k. Namely, for any ordinary elliptic curve A over k which cannot be defined over the
subfield kp, every smooth connected commutative group of exponent p over k occurs as the
unipotent quotient of a pseudo-abelian variety with abelian subvariety A, possibly after a
finite separable extension of k (Corollary 7.3). This is somewhat harder than the analogous
result for supersingular elliptic curves, Corollary 6.5. The analysis leads to a conjectural
computation of Ext2k(Ga,Gm) by generators and relations (Question 7.4).

The situation is different for pseudo-abelian varietiesE over k whose abelian subvariety is
an ordinary elliptic curve which can be defined over kp. In that case, the unipotent quotient
of E is very restricted, by Lemma 8.1 and Example 9.7.

L 7.1. – Let k be a field of characteristic p > 0. Let K be a commutative k-group
scheme which is a nontrivial extension of Z/p by µp. LetU be a smooth connected commutative
k-group of exponent p. Then there is a highly nontrivial extension of U by K over k.

Proof. – As in the proof of Lemma 6.3, it suffices to show that there are highly nontrivial
extensions of (Ga)s by K over k for some arbitrarily large numbers s.

We will exhibit a highly nontrivial extension 1→ K → H → (Ga)(p−1)pr−1 → 1 over k,
for any r ≥ 1. We are assuming that the class of K in Ext1(Z/p, µp) = Ext1(Z/p,Gm) =

k∗/(k∗)p [13, Corollaire III.6.4.4] is nontrivial. (Here Ext is taken in the abelian category of
commutative k-group schemes of finite type.) Let t ∈ k∗ represent this extension; then t is
not a pth power in k.

For clarity, first take r = 1. That is, we want to construct a highly nontrivial extension
1 → K → H → (Ga)p−1 → 1. Let l = k(u) where u = t1/p; thus l is a field of degree p
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over k. We will take H to be the Weil restriction Rl/kµp. Like the Weil restriction Rl/kαp in
the proof of Lemma 6.3, Rl/kµp has dimension p− 1; explicitly, it is the hypersurface

{(a0, a1, . . . , ap−1) ∈ Ap
k : ap

0 + tap
1 + · · ·+ tp−1ap

p−1 = 1},

as we find by writing out the equation (a0+a1u+ · · ·+ap−1u
p−1)p = 1. It is straightforward

to check that the natural homomorphism

(Rl/kµp)/µp → (Rl/kGm)/Gm

is an isomorphism. The quotient group (Rl/kGm)/Gm is a smooth connected commutative
group of exponent p, described explicitly as the subgroup

U := {(x0, . . . , xp−1) ∈ (Ga)p : xp
0 + txp

1 + · · ·+ tp−1xp
p−1 = xp−1}

[25, Proposition VI.5.3]. Under Oesterlé’s isomorphism (Rl/kGm)/Gm → U , the point
u = t1/p in (Rl/kGm)(k) = l∗ maps to (0, . . . , 0, 1/t) in U(k).

The homomorphism f : U → (Ga)p−1 given by (x0, . . . , xp−1) 7→ (x0, . . . xp−2) has
kernel isomorphic to Z/p, generated by the point (0, . . . , 0, 1/t). By counting dimensions,
it follows that f is surjective and gives an isomorphism U/(Z/p) ∼= (Ga)p−1. Therefore

H = Rl/kµp is a three-step extension


(Ga)p−1

Z/p

µp

. (The notation means that H maps onto

the top group (Ga)p−1, the kernel maps onto the middle group Z/p, and so on.) Write K1

for the subgroup

(
Z/p

µp

)
in H.

We want to show that K1 is the nontrivial extension classified by t ∈ Ext1(Z/p, µp) =

(k∗)/(k∗)p. We can use that Ext1(Z/p, µp) maps isomorphically to Ext1(Z/p,Gm), by the
exact sequence

Hom(Z/p,Gm)→ Ext1(Z/p, µp)→ Ext1(Z/p,Gm)
p−→ Ext1(Z/p,Gm).

(Here Hom(Z/p,Gm) = µp(k) = 1, and multiplication by p is zero on Ext1(Z/p,Gm)

because the group Z/p is killed by p.) The corresponding extension W of Z/p by Gm is the
inverse image of Z/p ⊂ U under the surjection Rl/kGm → U . The extension 1 → Gm →
W → Z/p→ 1 is classified by the element of k∗/(k∗)p which is the pth power of any element
of W (k) that maps to 1 ∈ Z/p. As we have said, the element u ∈ (Rl/kGm)(k) = l∗

maps to 1 ∈ Z/p, and its pth power is t. So K1 is the nontrivial extension K classified
by t ∈ k∗/(k∗)p, as we want.

It remains to show that H is a highly nontrivial extension of (Ga)p−1 by K. We have
H(ks) = µp(ks(t

1/p)) = 1, because ks(t
1/p) is a field of characteristic p. So the maximal

smooth connected k-subgroup of H is trivial, as we want.

We now generalize the construction. Given a nontrivial extension K of Z/p by µp, we
will exhibit a highly nontrivial extension 1→ K → H → (Ga)(p−1)pr−1 → 1 over k for any
r ≥ 1. Again, let t ∈ k∗ represent the class of K in Ext1(Z/p, µp) ∼= (k∗)/(k∗)p.

4 e SÉRIE – TOME 46 – 2013 – No 5



PSEUDO-ABELIAN VARIETIES 707

Let u = t1/p, v = t1/pr−1

, and w = t1/pr

. Our extension Ur =

(
(Ga)(p−1)pr−1

Z/p

)
will be

Ur := (Rk(w)/kGm)/(Rk(v)/kGm)

= Rk(v)/k((Rk(w)/k(v)Gm)/Gm).

The second description shows that Ur is a smooth connected commutative k-group of expo-
nent p and dimension (p−1)pr−1. (Indeed, (Rk(w)/k(v)Gm)/Gm is essentially the (p−1)-di-
mensional unipotent group considered above, but over k(v) instead of k.) This description
gives equations for Ur:

Ur
∼= {(x0, . . . , xp−1) ∈ (Rk(v)/kGa)p : xp

0 + vxp
1 + · · ·+ vp−1xp

p−1 = xp−1}.

Define a homomorphism f : Ur → (Ga)(p−1)pr−1

over k by (x0, . . . , xp−1) 7→ (x0, . . . , xp−2).
(Here each xi is in Rk(v)/kGa

∼= (Ga)pr−1

.) The kernel of f is the k-subgroup Z/p
of Ur generated by (x0, . . . , xp−1) = (0, . . . , 0, 1/v). We noted in the case r = 1 that
the isomorphism (Rl/kGm)/Gm → U sends the point u = t1/p in (Rl/kGm)(k) = l∗

to (0, . . . , 0, 1/t) in U(k). As a result, the point (0, . . . , 0, 1/v) in Ur(k) is the image of the
point w in (Rk(w)/kGm)(k) = k(w)∗ under the identification Ur = (Rk(w)/kGm)/(Rk(v)/kGm).

By counting dimensions, f is surjective, and so U is an extension

(
(Ga)(p−1)pr−1

Z/p

)
.

The extension of Ur by Gm we consider is the fiber product

E := [(Rk(w)/kGm)/(Rk(v)/kGm)]×(Rk(u)/kGm)/Gm
Rk(u)/kGm

= Ur ×(Rk(u)/kGm)/Gm
Rk(u)/kGm,

where the homomorphism (Rk(w)/kGm)/(Rk(v)/kGm) → (Rk(u)/kGm)/Gm corresponds
on k-rational points to taking the pr−1st power. This extension comes from an extension H
of Ur by µp,

H := Ur ×(Rk(u)/kGm)/Gm
Rk(u)/kµp,

since (Rk(u)/kµp)/µp is isomorphic to (Rk(u)/kGm)/Gm. Thus H is a three-step extension
(Ga)(p−1)pr−1

Z/p

µp

.

LetK1 be the subgroup

(
Z/p

µp

)
inH. We want to show thatK1 is the nontrivial extension

of Z/p by µp corresponding to t ∈ k∗/(k∗)p = Ext1(Z/p, µp). It is equivalent to show
that the inverse image L1 of Z/p ⊂ Ur in E is the extension of Z/p by Gm corresponding
to t ∈ k∗/(k∗)p = Ext1(Z/p,Gm). As we have computed,L1 contains the k-rational pointw
in (Rk(w)/kGm)/(Rk(v)/kGm). The image of w under the “pr−1st power homomorphism”
to (Rk(u)/kGm)/Gm is clearly the image of u in (Rk(u)/kGm)(k) = k(u)∗. The pth power
of u in L1 is the point t ∈ Gm(k) = k∗, which shows that the class of the extension L1 is
t ∈ k∗/(k∗)p. So K1 is isomorphic to the extension K of Z/p by µp classified by t, as we
want.
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It remains to show that the extension 1 → K → H → (Ga)pr−1(p−1) → 1 is highly
nontrivial. We will prove the stronger statement thatH(ks) = 1. By definition ofH,H(ks) is
the fiber product

H(ks) = [ks(w)∗/ks(v)
∗]×ks(u)∗/(ks)∗ µp(ks(u)),

where the left homomorphism is the pr−1st power. Since ks(u) is a field of characteristic p,
µp(ks(u)) = 1. So H(ks) = {y ∈ ks(w)∗/ks(v)

∗ : ypr−1 ∈ (ks)
∗}. We have H(ks) = 1

because ks(w) ∩ (ks)
1/pr−1

= ks(v) (Lemma 6.4). Thus the extension 1 → K → H →
(Ga)pr−1(p−1) → 1 is highly nontrivial.

The following lemma is a variant of [19, Proposition 12.2.7].

L 7.2. – Let A be an ordinary elliptic curve over a field k of characteristic p > 0.
Then the p-torsion subgroup scheme A[p] is an extension of a k-form of Z/p by a k-form of µp.
The elliptic curve A can be defined over the subfield kp if and only if this extension is split.

Proof. – The first statement is clear from the fact that Ak[p] is isomorphic to µp × Z/p.
Write G(p) for the group scheme over kp which is associated to a k-group scheme G via

the isomorphism k
∼=−→ kp, x 7→ xp. Then the relative Frobenius for A is a homomorphism

F : A → (A(p))k. Define the Verschiebung V : (A(p))k → A to be the dual isogeny. Since
V F = p, where ker(F ) ⊂ A is a k-form of µp, ker(V ) ⊂ (A(p))k must be a k-form of Z/p.

If an ordinary elliptic curve A over k can be defined over kp, then it can be written as
(B(p))k for some elliptic curve B over k. Then ker(V ) ⊂ (B(p))k = A is a k-form of Z/p.
That subgroup gives a splitting of the extension 1 → ker(F ) → A[p] → A[p]/ ker(F ) → 1,
as we want.

Conversely, let A be an ordinary elliptic curve over k such that that the extension 1 →
ker(F )→ A[p]→ C → 1 is split, where ker(F ) is a k-form of µp and C is a k-form of Z/p.
A splitting gives an etale k-subgroup C ⊂ A of order p. This gives an étale k-subgroup
(C(p))k ⊂ (A(p))k of order p. But the kernel of the Verschiebung V : (A(p))k → A is also
an étale k-subgroup of order p. By our knowledge of the p-torsion of an ordinary elliptic
curve, it follows that ker(V ) = (C(p))k ⊂ (A(p))k. Therefore V gives an isomorphism

(A(p)/C(p))k

∼=−→ A. So A comes from the elliptic curve A(p)/C(p) over kp.

C 7.3. – Let A be an ordinary elliptic curve over a field k of characteristic p
which cannot be defined over the subfield kp. Suppose that the connected component of the
identity in the p-torsion subgroup scheme A[p] is isomorphic to µp over k. (That always holds
after replacing k by some extension field of degree dividing p − 1.) Then, for every smooth
connected commutative group U of exponent p over k, there is a pseudo-abelian variety which
is an extension of U by A.

Proof. – Since A cannot be defined over kp, the p-torsion subgroup scheme of A is a
nontrivial extension 1→ ker(F )→ A[p]→ C → 1 over k, by Lemma 7.2. Since we assume
that ker(F ) is isomorphic to µp over k, the quotient groupC is isomorphic to Z/p over k, by
the Weil pairing [19, Section 2.8.2]. By Lemma 7.1, there is a highly nontrivial extension H
of U byA[p] over k. By Lemma 6.2(1),E = (A×H)/A[p] is a pseudo-abelian variety over k.
It is an extension of U by A.
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The proof of Lemma 7.1 suggests the following question about Ext groups in the abelian
category of fppf sheaves over a field k of characteristic p, as studied by Breen [6, 7]. There
are natural isomorphisms Ext1k(Ga,Z/p) ∼= kperf = k1/p∞ [13, Proposition III.6.5.4] and
Ext1k(Z/p,Gm) ∼= (k∗)/(k∗)p [13, Corollaire III.6.4.4]. So we have a product map

[·, ·) : kperf ⊗Z k
∗ → Ext2k(Ga,Gm).

The product of an element of Ext1k(Ga,Z/p) with an element of Ext1k(Z/p,Gm) is zero

in Ext2k(Ga,Gm) if and only if there is a three-step extension


Ga

Z/p

Gm

 such that the ex-

tensions

(
Ga

Z/p

)
and

(
Z/p

Gm

)
are the given ones. This follows from the neat description of

three-step extensions in any abelian category by Grothendieck [2, Proposition IX.9.3.8]. The
three-step extensions constructed in the proof of Lemma 7.1 imply the relation [t1/pr

, t) = 0

in Ext2k(Ga,Gm) for all t in k∗ and all r ≥ 1. We can also check that [s+t, s+t) = [s, s)+[t, t)

in Ext2k(Ga,Gm) for all s, t in k with s, t, s+ t 6= 0, for example using the relation to Brauer
groups discussed below. So we have a homomorphism

ϕ : kperf ⊗Z k
∗/
(
[t1/pr

, t) = 0 for all t ∈ k∗ and all r ≥ 1, [s+ t, s+ t) = [s, s) + [t, t)
)

→ Ext2k(Ga,Gm).

Q 7.4. – Is ϕ an isomorphism, for every field k of characteristic p?

R 7.5. – If Question 7.4 has a positive answer (about Ext2k(Ga,Gm) in the
abelian category of fppf sheaves), then the same formula holds for Yoneda Ext in the abelian
category of commutative affine k-group schemes of finite type. The point is that we have
natural maps Exti

k-group(G,H) → Exti
k(G,H) for commutative affine k-group schemes G

and H. These maps are isomorphisms for i ≤ 1 [13, Proposition III.4.1.9] and therefore
injective for i = 2. (They are not always surjective for i = 2, by Breen [6].) The product map
above lands in Ext2k-group(Ga,Gm). So if the map ϕ to Ext2k(Ga,Gm) is an isomorphism,
then the product map to Ext2k-group(Ga,Gm) is also an isomorphism.

Question 7.4 would be a very natural calculation. By the discussion of three-step exten-
sions, the group Ext2k(Ga,Gm) comes up in trying to classify the commutative group
schemes over k. (One also encounters the group Ext2k(Ga, µp), which is isomorphic
to Ext2k(Ga,Gm), since Ext1k(Ga,Gm) = 0 [14, Théorème XVII.6.1.1].) Question 7.4
somewhat resembles the Milnor conjecture, or more specifically Kato’s description of the
p-torsion in the Brauer group of a field k of characteristic p:

Br(k)[p] ∼= k ⊗Z k
∗/([t, t) = 0 for all t ∈ k∗, [sp, t) = [s, t) for all s ∈ k, t ∈ k∗)

[18, Lemma 16, p. 674]. (There is a similar presentation of Br(k)[p] by Witt [37].) The analogy
is explained by Breen’s spectral sequence [6] (see the proof of Lemma 9.2 below), which gives
an isomorphism

Ext2k(Ga,Gm) ∼= ker(α : Br(A1
k)[p]→ Br(A2

k)[p]).
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Here α = m∗ − π∗1 − π∗2 , where m,π1, π2 are the morphisms A2
k → A1

k which send (x, y)

to x + y, x, y, respectively. (This isomorphism sends a symbol [a1/pr

, b) in Ext2k(Ga,Gm)

to [axpr

, b) in Br(A1
k)[p] ⊂ Br(k(x))[p], for a ∈ k, r ≥ 0, and b ∈ k∗.)

8. Pseudo-abelian varieties and commutative pseudo-reductive groups

In this section, we consider the problem of classifying pseudo-abelian varieties E over a
field k whose abelian subvariety is an ordinary elliptic curve which can be defined over kp,
the case not considered in Corollary 7.3. This case is very different: the possible unipotent
quotient groups of E are highly restricted. Lemma 8.1 shows that the possible unipotent
quotient groups in this case are essentially the same as the possible unipotent quotient groups
of commutative pseudo-reductive groups. Section 9 gives positive and negative results about
the possible unipotent quotient groups of commutative pseudo-reductive groups.

L 8.1. – LetA be an ordinary elliptic curve over a field k of characteristic p. Suppose
that A can be defined over the subfield kp. Suppose that the subgroup scheme ker(F ) ⊂ A is
isomorphic toµp over k, as can always be arranged after replacing k by a field extension of degree
dividing p−1. For a smooth connected commutative k-groupU of exponent p, the following are
equivalent.

(1) There is a pseudo-abelian varietyE which is an extension 1→ A→ E → U → 1 over k.
(2) There is a highly nontrivial extension 1→ µp → H → U → 1 over k.
(3) There is a commutative pseudo-reductive group G which is an extension 1 → Gm →

G→ U → 1.

These three equivalent properties fail for some smooth connected commutative groups U
of exponent p. See Section 9 for positive and negative results. Note that there exist ordinary
elliptic curves over any field k of characteristic p with ker(F ) isomorphic to µp; it suffices to
apply Honda-Tate theory to produce an elliptic curve over Fp whose Frobenius eigenvalues
are the Weil p-numbers (−1±

√
1− 4p)/2 [34].

Proof. – Assume (2). The obvious inclusions µp → A and µp → Gm give commutative
extensions ofU byA, and ofU by Gm. The extension ofU byA is a pseudo-abelian variety by
Lemma 6.2(1), giving (1). The proof of Lemma 6.2(1) also works to show that the extensionE
of U by Gm is pseudo-reductive. (Given the extension 1 → µp → H → U → 1, we have
E = (Gm×H)/µp. Any smooth connected unipotent k-subgroupN ofE maps trivially into
Gm/µp

∼= Gm, and hence is contained in H ⊂ E. Since H is a highly nontrivial extension,
N is trivial.) That proves (3).

Conversely, if (1) holds, then Lemma 6.2(2) shows that the extension 1 → A → E →
U → 1 comes from a highly nontrivial extension 1 → A[p] → L → U → 1 over k. We
are assuming that ker(F ) ⊂ A[p] is isomorphic to µp over k. By the Weil pairing, it follows
thatA[p]/ ker(F ) is isomorphic to Z/p over k [19, Section 2.8.2]. SinceA can be defined over
the subfield kp, Lemma 7.2 shows that A[p] is isomorphic to µp × Z/p over k. So L/(Z/p)
is an extension 1 → µp → L/(Z/p) → U → 1. Any smooth connected k-subgroup
of L/(Z/p) must be trivial; otherwise its inverse image in L would be a smooth k-group of
positive dimension, contradicting that L is a highly nontrivial extension. So L/(Z/p) is a
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highly nontrivial extension of U by µp, and (2) is proved. Finally, if (3) holds, then the same
proof as for Lemma 6.2(2) shows thatG comes from a highly nontrivial extension ofU by µp.
That is, (2) holds.

9. Commutative pseudo-reductive groups

Conrad-Gabber-Prasad have largely reduced the classification of pseudo-reductive groups
over a field k to the case of commutative pseudo-reductive groups, which seems intractable
[12, Introduction]. This section gives a rough classification of the commutative pseudo-
reductive groups of dimension 2 (Corollary 9.5) as well as examples showing the greater
complexity of the problem in higher dimensions.

A commutative pseudo-reductive group over k is an extension of a smooth connected
commutative unipotent group by a torus. So the main question is which unipotent quotient
groups can occur. This is closely related to the question of which unipotent quotient groups
can occur for certain pseudo-abelian varieties over k, for example those whose abelian sub-
variety is an ordinary elliptic curve which can be defined over kp, by Lemma 8.1.

For any field k, Ext1(Ga,Gm) = 0 in the abelian category of commutative k-group
schemes. It follows that the unipotent quotient U of a commutative pseudo-reductive group
must be k-wound; that is, U does not contain the additive group Ga as a k-subgroup. One
main result of this section is that every k-wound group of dimension 1 is the unipotent
quotient of some commutative pseudo-reductive group E over k (Corollary 9.5). For k
separably closed, we can take E to have dimension 2. (For a smooth connected unipotent
group of dimension 1 over k, “k-wound” just means “not isomorphic to Ga over k”.) There
are many smooth connected unipotent groups of dimension 1 over an imperfect field, and so
this result makes precise the idea that the class of commutative pseudo-reductive groups is
big. Corollary 9.5 also gives that for every ordinary elliptic curve A over a separably closed
field k, every k-wound group of dimension 1 occurs as the unipotent quotient of a pseudo-
abelian variety with abelian subvariety A.

On the other hand, we give some counterexamples. First, for k not separably closed,
a k-wound group of dimension 1 need not have any pseudo-reductive extension by Gm

over k (Example 9.6). Conrad-Gabber-Prasad gave such an example in characteristic 3 [12,
Equation 11.3.1], and we check the required property in any characteristic at least 3.

Next, we exhibit a commutative k-wound group of dimension 2 over a separably closed
field k which is not the unipotent quotient of any commutative pseudo-reductive group
(Example 9.7). Finally, we exhibit a commutative k-wound group over a separably closed
field k with [k : kp] = p which has no pseudo-reductive extension by Gm over k, although
it does have a pseudo-reductive extension by (Gm)2 (Example 9.10). Question 9.11 asks
whether, for a field k with [k : kp] = p, every commutative k-wound group is the unipotent
quotient of some pseudo-reductive group over k.

We now begin the proofs of these results. First we have a reduction of the problem to the
case of a separably closed field.

L 9.1. – Let U be a smooth connected commutative unipotent group over a field k.
ThenU is the unipotent quotient of some commutative pseudo-reductive group over k if and only
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if Uks
is the unipotent quotient of some commutative pseudo-reductive group over the separable

closure ks.

Proof. – In one direction, let 1 → T → E → U → 1 be a commutative pseudo-
reductive extension of U by a torus T over k. Then Eks is an extension 1 → Tks → Eks →
Uks → 1, andEks is pseudo-reductive, because the maximal smooth connected affine normal
ks-subgroup of Eks is Galois-invariant and hence defined over k [12, Proposition 1.1.9].

Conversely, suppose that Uks is the unipotent quotient of some commutative pseudo-
reductive group over ks. Then there is a finite separable extension F of k and an extension
1 → T → E → UF → 1 of UF by a torus T over F such that E is pseudo-reductive. The
Weil restriction RF/kE is an extension

1→ RF/kT → RF/kE → RF/k(UF )→ 1.

Here RF/kE is pseudo-reductive, by the universal property of Weil restriction [12, Proposi-
tion 1.1.10]. Also, RF/kT is a torus because F is separable over k. Finally, U is a subgroup
ofRF/k(UF ) by the universal property of Weil restriction. The inverse image of U inRF/kE

is a pseudo-reductive extension of U by RF/kT .

We now begin to analyze extensions of unipotent groups by the multiplicative group. The
group Ext1(A,Gm) of commutative extensions of an abelian variety A by the multiplica-
tive group can be identified with the group Pic0(A) of isomorphism classes of numerically
trivial line bundles on A [31, Theorem VII.6]. For smooth connected commutative unipo-
tent groups U , it was known that Ext1(U,Gm) is a subgroup of Pic(U) [17, Lemma 6.13.1],
but the following lemma gives an explicit description of that subgroup, analogous to what
happens for abelian varieties.

L 9.2. – Let U be a smooth connected commutative unipotent group over a field k.
Then Ext1(U,Gm) is the subgroup of elements L ∈ Pic(U) such that the translation TaL is
isomorphic to L for all separable extension fields F of k (not necessarily algebraic) and all
a ∈ U(F ). In short: Ext1(U,Gm) = Pic(U)U .

The group Ext1(U,Gm) can also be described as the subgroup of primitive elements
in Pic(U), meaning that

Ext1(U,Gm) = {y ∈ Pic(U) : m∗(y) = π∗1(y) + π∗2(y) ∈ Pic(U × U)},

where m : U ×U → U is the group operation and π1, π2 : U ×U → U are the two projections.

Proof. – Denote the group operation on U by addition. We will use Breen’s spectral
sequence for computing Ext groups in the abelian category of fppf sheaves over k [6]. One can
also give a more elementary but less efficient proof by imitating Serre’s proof of the analogous
statement for abelian varieties [31, Theorem VII.5].

For any commutative k-group schemes B and C, Breen’s spectral sequence has the form

Ei,j
1 = Hj

fppf(Xi(B), C)⇒ Exti+j(B,C),

where the k-schemes Xi(B) are explicit disjoint unions of powers of B, starting with
X0(B) = B, X1(B) = B2 = B ×k B, and X2(B) = B3

∐
B2. The differential d1 is

an explicit alternating sum of pullback maps. In particular, d1 on the 0th column is the
homomorphism α : Hj(B,C)→ Hj(B2, C) given by α = m∗ − π∗1 − π∗2 .
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We apply the spectral sequence to compute Ext1(U,Gm) for U a smooth connected
commutative unipotent group U over a field k, with the following E1 term. Since Gm is
smooth over k, the fppf cohomology groups shown can also be viewed as etale cohomology
groups [24, Theorem III.3.9].

· · ·

H1(U,Gm) //

,,

H1(U2,Gm) // · · ·

H0(U,Gm) // H0(U2,Gm) // H0(U3,Gm)⊕H0(U2,Gm) //

Since U becomes isomorphic to affine space as a scheme over the algebraic closure k [14,
Corollaire XVII.4.1.3], we have O(Ur)∗ = k∗ for every r ≥ 0. It follows that the d1

differential on the zeroth row of the spectral sequence is exact, by comparing with the spectral
sequence computing Ext∗(0,Gm) = 0. In particular, the d2 differential shown as a dotted
arrow maps into the zero group. Therefore, the spectral sequence gives an isomorphism

Ext1(U,Gm) = ker(α : Pic(U)→ Pic(U × U)),

as we want. The right side is called the group of primitive line bundles on U .
We now prove the other description of Ext1(U,Gm). For a primitive line bundle L on U ,

fix a trivialization of L at the origin in U . Then there is an isomorphism m∗L ∼= π∗1L⊗ π∗2L,
which is uniquely determined if we require it to be compatible with the trivialization of L
at (0, 0) in U × U . (That isomorphism gives a canonical isomorphism La+b

∼= La ⊗ Lb for
all a, b ∈ U(F ) and all extension fields F of k.) Restricting that isomorphism to U times
an F -rational point of U gives an isomorphism TaL ∼= L on UF for all a ∈ U(F ), and
all extension fields F of k. Conversely, suppose that TaL ∼= L for all a ∈ U(F ) and all
separable extension fields F of k. We apply this to the function field F = k(U) and a ∈ U(F )

the generic point. Here F is separable over k since U is smooth over k. We can rewrite the
isomorphism TaL ∼= L on UF as TaL ∼= La ⊗ L, since La is just a 1-dimensional F -vector
space. This means that the line bundle M := m∗(L)⊗ π∗1(L∗)⊗ π∗2(L∗) on U × U is trivial
on U × (U − S) for some codimension-1 closed subset S of U . Therefore M is linearly
equivalent on U × U to π∗2D for some divisor D ⊂ U supported on S. Restricting to 0× U ,
where M is trivial, shows that D is linearly equivalent to 0 on U . So M is trivial on U × U .
That is, L is primitive.

L 9.3. – Let U be a k-wound group of dimension 1 over a field k. Then Pic(U) 6= 0.

Lemma 9.3 was proved by Kambayashi-Miyanishi-Takeuchi [17, Theorem 6.5(i)]. We give
a proof here for clarity.

Proof. – LetC be the unique regular compactification ofU over k. ThenC−U is a single
closed point, because U becomes isomorphic to A1 over the algebraic closure k. The group
Pic(U) is the quotient of Pic(C) by the class of the closed pointC−U . I claim that the closed
point C−U has degree a multiple of p over k (in fact, a power of p greater than 1). It suffices
to prove this after passing to the separable closure ks; then Uks remains k-wound and Cks
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remains regular [5, Prop. X.6.5]. All finite field extensions of ks have degree a power of p, so it
suffices to show that (C−U)(ks) = ∅. So suppose that there is a ks-rational pointw inC−U .
Since C is regular, it is smooth over ks near w. This gives a point of U(ks((t))) that does not
extend to U(ks[[t]]), contradicting a property of k-wound groups [25, Proposition V.8].

Therefore, the degree homomorphism deg : Pic(C) → Z passes to a well-defined homo-
morphism Pic(U) → Z/p. The homomorphism Pic(U) → Z/p is surjective, since the line
bundle O(0) on U has degree 1, where 0 ∈ U(k) is the identity element.

L 9.4. – Let U be a k-wound group of dimension 1 over a separably closed field k.
Then Ext1(U,Gm) 6= 0.

This can fail for k not separably closed, by Example 9.6.

Proof. – Let C be the regular compactification of U over k. Let PicC/k be the Picard
scheme [20, Theorem 9.4.8]. Then PicC/k is a k-group scheme, locally of finite type, with
Pic(CF ) ∼= PicC/k(F ) for every field extension F of k (using that H0(C,O) = k and C
has a k-rational point). Since C is a geometrically irreducible projective curve, the kernel
Pic0

C/k of the degree homomorphism PicC/k → Z is smooth, connected, and of finite type
over k [4, Theorem 8.2.3 and Proposition 8.4.2]. The curve C becomes rational over the
algebraic closure k, and so Pic0

C/k is affine (as the abelian variety quotient of (Pic0
C/k)k is the

Jacobian of the normalization ofCk [31, Section V.17], [4, Proposition 9.2.10]). BecauseUk is
isomorphic to A1

k
, the point Ck −Uk corresponds to a single point on the normalization P1

k

of Ck, and so (Pic0
C/k)k is unipotent [31, Section V.17], [4, Proposition 9.2.9]. It follows that

Pic0
C/k is unipotent.

The action of U on itself by translation extends to an action of U onC, by the uniqueness
of the regular compactification C and the smoothness of U . By the proof of Lemma 9.3,
Pic(U) is an extension of a finite cyclic group by the group Pic0

C/k(k). The action of U(k) by
translations on Pic(U) clearly restricts to the action of U(k) on Pic0

C/k(k) by translations.

If Pic0
C/k is zero, then PicC/k is isomorphic to Z by the degree. Then the action of U

on PicC/k is trivial, since U is connected. In this case, Pic(UF ) is a finite cyclic group for
all separable extension fields F of k, and U(F ) acts trivially on Pic(UF ) since Pic(CF ) →
Pic(UF ) is surjective. So Ext1(U,Gm) = Pic(U) in this case (using Lemma 9.2) and this is a
nonzero cyclic group by Lemma 9.3. (For this case, we did not need k to be separably closed.)

Otherwise, Pic0
C/k is not zero. In this case, we will show that the subgroup Pic0(C)U

of Ext1(U,Gm) is not zero, using the notation of Lemma 9.2. Since P := Pic0
C/k is a smooth

connected commutative unipotent k-group, the semidirect product U n P is unipotent, and
therefore is a nilpotent group by the results listed in Section 1. That implies that the action
of U on P must be nilpotent. In more detail, write (u−1)q to mean uq− q for any extension
fieldF of k, u ∈ U(F ), and q ∈ P (F ), where the group operation onP is written additively. If
we define Pm for each natural numberm as the closed subgroup of P generated by elements
(u1 − 1) · · · (um − 1)q for ui ∈ U(ks) and q ∈ P (ks), then the subgroups P = P 0 ⊃ P 1 ⊃
P 2 ⊃ · · · are closed and connected, eventually equal to zero because the group U n P is
nilpotent. Also, the group U acts trivially on each Pm/Pm+1.
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In particular, the last Pm not equal to zero is a nontrivial smooth connected subgroup
of Pic0

C/k such that U acts trivially on Pm. Thus Pm(k) ⊂ Ext1(U,Gm) by Lemma 9.2.
Since k is separably closed, Pm(k) 6= 0.

C 9.5. – Let U be a k-wound group of dimension 1 over a field k. Then U is the
unipotent quotient of some commutative pseudo-reductive group E over k.

Suppose in addition that k is separably closed. Then we can take E to be an extension of U
by Gm. Also, for any ordinary elliptic curve A over k, there is an extension of U by A which is
a pseudo-abelian variety.

Recall that Corollaries 6.5 and 7.3 give a larger class of pseudo-abelian varieties when the
abelian subvariety is a supersingular elliptic curve, or an ordinary elliptic curve which cannot
be defined over the subfield kp.

Proof. – By Lemma 9.1, we can assume that k is separably closed. By Lemma 9.4, there
is a nontrivial extension

1→ Gm → E → U → 1

of commutative k-groups. IfN is a nontrivial smooth connected unipotent k-subgroup ofE,
then N ∩Gm = 1 as a group scheme, and so N projects isomorphically to a subgroup of U .
Since U has dimension 1, N projects isomorphically to U , contradicting that the extension
is nontrivial. So E must be pseudo-reductive.

An ordinary elliptic curve A over k has ker(F ) isomorphic to µp, since k is separably
closed. The existence of the pseudo-reductive extension E implies that there is a pseudo-
abelian extension of U by A, by Corollary 7.3 and Lemma 8.1.

E 9.6. – Let k0 be a field of characteristic p ≥ 3 and let k be the rational function
field k0(t). Let U be the subgroup {(x, y) : yp = x − txp} of (Ga)2 over k. Then U is a
k-wound group of dimension 1 with Ext1(U,Gm) = 0. Therefore,U has no extension by Gm

over k which is pseudo-reductive.

Conrad-Gabber-Prasad observed that Ext1(U,Gm) = 0 in this example when p = 3

[12, Equation 11.3.1]. Note that U does have a pseudo-reductive extension by some torus
over k, by Corollary 9.5.

Proof. – Over k, U becomes isomorphic to Ga by a simple change of variables. So U

is connected and smooth over k. If U were isomorphic to Ga, then the projective closure
X = {[x, y, z] ∈ P2 : yp = xzp−1 − txp} of U would have normalization isomorphic to P1

over k, and the image of∞ ∈ P1 would be a k-rational point in X −U . But there is no such
point, and so U is k-wound.

By Kambayashi-Miyanishi-Takeuchi [17, 6.13.3],

Ext1(U,Gm) ∼=
{

(c0, . . . , cp−2) ∈ kp−1 : cp−2 =
∑

0≤j≤p−2

cpj t
j

}
.

We will show that this equation has no nonzero solutions in k = k0(t). We can assume that
k0 is algebraically closed.
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Suppose that (c0, . . . , cp−2) is a nonzero element of Ext1(U,Gm). If cp−2 = 0, then the
equation gives that 1, t, . . . , tp−3 are linearly dependent over the field kp, which is false. So
cp−2 6= 0.

Viewing c0, . . . , cp−2 as rational functions over k0, we can differentiate the equation
p− 2 times to get c(p−2)

p−2 = (p−2)! cpp−2. By considering the pole order of cp−2 at each point
a ∈ k0, we deduce from this equation that cp−2 is regular at each point a ∈ k0. Since k0 is
algebraically closed, that means that cp−2 is a polynomial over k0. Let d be its degree. Then
cpp−2 is nonzero of degree pd while c(p−2)

p−2 has lower degree, a contradiction. We have shown
that Ext1(U,Gm) = 0 over k = k0(t).

E 9.7. – Let k0 be a field of characteristic p > 0, and let k be the rational
function field k0(a, b). Let U be the subgroup

{(x, y, z) : x+ axp + byp + zp = 0}

of (Ga)3. ThenU is a commutative k-wound group of dimension 2 with Ext1(Uks
,Gm) = 0.

It follows that, even over the separable closure ks, U is not the unipotent quotient of any
commutative pseudo-reductive group.

Proof. – Let X be the projective closure of U ,

X = {[x, y, z, w] ∈ P3
k : xwp−1 + axp + byp + zp = 0}.

ThenX has no k-points at infinity (meaning points withw = 0). It follows thatU is k-wound.

Since Ext1(Uks
,Gm) is a subgroup of Pic(Uks

) (Lemma 9.2), it suffices to show that
Pic(Uks

) = 0. We start by finding the non-regular locus of the surface X. To do so, we
compute the zero locus of all derivatives of the equation with respect tox, y, z, w and also a, b:
this gives that wp−1 = 0, xp = 0, yp = 0, and hence zp = 0, which defines the empty set
in P3

k. So X is regular, and it follows that Xks
is regular [5, Prop. X.6.5]. Also, X − U is the

plane curve D = {[x, y, z] ∈ P2
k : axp + byp + zp = 0}, which is regular over ks and hence

irreducible over ks. It follows that

Pic(Uks
) ∼= Pic(Xks

)/Z · [Dks
] = Pic(Xks

)/Z ·O(1).

So it suffices to show that Pic(Xks
) = Z ·O(1).

L 9.8. – Let Y be a scheme of finite type over a field F such that H0(Y,O) = F .
Then the homomorphism Pic(Y )→ Pic(YE) is injective for any extension field E of F .

Proof. – We have H0(YE , O) = H0(Y,O)⊗F E = E. Let L be a line bundle on Y which
becomes trivial over E. Then L and the dual line bundle L∗ have 1-dimensional spaces of
sections over Y , since that is true over YE . Let s ∈ H0(Y,L) and t ∈ H0(Y, L∗) be nonzero
sections. Then the product st ∈ H0(Y,O) = F is not zero since that is true over E. This

means that the compositions OY
s−→ L

t−→ OY and L t−→ OY
s−→ L are isomorphisms.

So L is trivial.
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A referee pointed out that one can prove Lemma 9.8 under the weaker assumption that
the ring O(Y ) has trivial Picard group. Consider the morphism f : Y → S := SpecO(Y ).
Then the Leray spectral sequence for fppf cohomology gives (since f∗Gm = Gm) that
Pic(Y )/Pic(S) injects into H0

fppf(S,R
1f∗Gm), which gives the result.

Since X is a surface in P3, we have H0(Xks , O) = ks by the exact sequence of sheaves
0→ OP3(−X)→ OP3 → OX → 0. By Lemma 9.8, we have Pic(Xks) = Z ·O(1) as we want
if we can show that Pic(Xk) = Z ·O(1). We have

Xk
∼= {[x, y, z, w] ∈ P3 : xwp−1 + xp + yp + zp = 0}
∼= {[x, y, z, w] ∈ P3 : xwp−1 + yp = 0}.

Thus Xk is the projective cone over the plane curve xwp−1 + yp = 0.
Let Y be a projective scheme over a field k such that H0(Y,OY ) = k, and let OY (1) be

an ample line bundle on Y . Let R be the homogeneous coordinate ring ⊕j≥0H
0(Y,OY (j))

as a graded ring, and define the projective cone over Y to be X = ProjR[x], where x has
degree 1. For a closed subscheme Y ⊂ Pn over k, there is a finite morphism from X to
the classical projective cone over Y in Pn+1, which is an isomorphism away from the vertex
[22, Section 2.56]. This morphism is an isomorphism if the k-algebra ⊕j≥0H

0(Y,OY (j))

is generated by H0(Pn, O(1)), but in general the projective cone as defined here has better
properties.

L 9.9. – Let Y be a projective scheme over a field k such that H0(Y,OY ) = k,
and let OY (1) be an ample line bundle on Y . Let X be the projective cone over Y . Then
Pic(X) = Z ·OX(1).

Proof. – Let Z be the P1-bundle P (OY ⊕ OY (1)) over Y . By the calculation of the
K-theory of projective bundles [1, Theorem VI.1.1], Pic(Z) ∼= Pic(Y )⊕Z for any connected
scheme Y . (Here the summand Z is generated by the natural line bundle OZ(1) on the
projective bundle Z. The statement means that every line bundle on Z is, in a unique way,
a pullback from Y tensored with OZ(j) for some integer j.) Since H0(Y,OY ) = k, Y is
connected and so Pic(Z) = Pic(Y ) ⊕ Z. Since Y is projective over k with H0(Y,OY ) = k,
there is a surjection f : Z → X which contracts a copy of Y (the section corresponding to
the first projectionOY ⊕OY (1)� OY over Y ) to a point [15, Proposition 8.6.2]. For any line
bundle L on X, the pullback f∗L is trivial on Y , and so the image of f∗ : Pic(X)→ Pic(Z)

is contained in Z · OZ(1). (By restricting to a fiber of the P1-bundle Z → Y , we see that
f∗OX(1) ∼= OZ(1).) It remains to show that f∗ : Pic(X)→ Pic(Z) is injective.

The natural map OX → f∗OZ is an isomorphism [15, Proposition 8.8.6]. So, for any line
bundle L on X, the natural map L → f∗f

∗(L) is an isomorphism. If L is a line bundle
on X whose pullback to Z is trivial, then H0(X,L) = H0(X, f∗f

∗L) ∼= H0(Z, f∗(L)) ∼=
H0(Z,OZ) = k. Likewise, H0(X,L∗) ∼= k. It follows that L is trivial, as in the proof of
Lemma 9.8.

We now return to Example 9.7. The surface Xk is the classical projective cone over the
plane curve Y = {xwp−1+yp = 0} over k. For a curve Y of any degree d in P2, the k-algebra⊕

j≥0H
0(Y,OY (j)) is generated in degree 1, by considering the exact sequence of sheaves

on P2, 0→ OP2(j − d)→ OP2(j)→ OY (j)→ 0. So Xk is the projective cone over Y in the
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sense defined above. By Lemma 9.9, Pic(Xk) = Z · OX(1). As we have said, it follows that
Pic(Uks

) = 0. Example 9.7 is proved.

The following example, supplied by a referee, answers a question in the original version
of this paper. Note that k can be separably closed in the following example.

E 9.10. – Let k be a field of characteristic p > 0 with [k : kp] = p. Let k1 = k1/p,
which is an extension of degree p of k. LetU be the smooth connected commutative unipotent
k-group (Rk1/kGm)/Gm of dimension p − 1. Then U × U is k-wound, but U × U has no
extension by Gm over kwhich is pseudo-reductive. It does have an extension by (Gm)2 which
is pseudo-reductive.

Proof. – We first consider a more general situation. Let k be any field of characteristic
p > 0. For any smooth connected commutative affine k-groupGwith maximal torus T , letK
be the field of definition over k of the geometric unipotent radical ofG. ThusGK is the prod-
uct of TK with a smooth connected unipotentK-group; in particular, we have a unique split-
tingGK → TK of the inclusion. By the universal property of Weil restriction, this gives a ho-
momorphism f : G → RK/k(TK) which restricts to the obvious inclusion T → RK/k(TK).
Moreover, f does not factorize through RL/k(TL) for any proper subextension L of K/k.
Let k1 denote the extension field k1/p. Suppose that p killsG/T ; then the image in T (K) of a
point inG(k) has pth power in T (k), and so that image lies in T (k1). It follows that f factors
through RL/k(TL) for L = K ∩ k1, and so K is contained in k1.

We now return to the notation of this Example, so that k is a field with [k : kp] = p.
Then k1 is equal to k(t1/p) for any element t ∈ k∗ which is not a pth power. We know that
U is k-wound, because Rk1/kGm is pseudo-reductive. (Use the universal property of Weil
restriction: a homomorphism Ga → Rk1/kGm over k is equivalent to a homomorphism
Ga → Gm over k1, which must be trivial.) The product (Rk1/kGm)2 is an extension ofU×U
by (Gm)2 which is pseudo-reductive.

By Oesterlé, as we used in the proof of Lemma 7.1, U is isomorphic to

{(x0, . . . , xp−1) ∈ (Ga)p : xp
0 + txp

1 + · · ·+ tp−1xp
p−1 = xp−1}

[25, Proposition VI.5.3]. The Lie algebra of U is a restricted Lie algebra with pth power
operation equal to zero (since that is true for (Ga)p, for example). So every nonzero el-
ement of the Lie algebra of U gives an αp subgroup of U . The intersections of U with
one-dimensional k-linear subspaces of (Ga)p give exactly the k-subgroup schemes of or-
der p in U . Therefore the quotient of U by any k-subgroup scheme of order p (in particular,
any αp subgroup) is isomorphic to (Ga)p−1 over k. So any homomorphism U → U over k
is either zero or induces an isomorphism on Lie algebras, using that U is k-wound.

Now let G be a commutative extension of U × U by Gm over k. Since U × U is killed
by p, we showed above that the geometric unipotent radical ofG is defined over k1. As above,
this gives a homomorphism G → Rk1/kGm which is the identity on the subgroup Gm. On
the quotients by Gm, this gives a homomorphism h : U × U → U , and the extension G

of U × U by Gm is pulled back via h. By the previous paragraph, either h is zero or
h induces a surjection on Lie algebras. In both cases, ker(h) is a smooth k-subgroup of
positive dimension. Since the extensionG ofU×U by Gm splits over ker(h),G is not pseudo-
reductive.
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The following question is suggested by Corollary 9.5, Example 9.7, and Example 9.10.

Q 9.11. – If k is a field with [k : kp] = p, is every k-wound commutative unipo-
tent group the unipotent quotient of some commutative pseudo-reductive group over k?

In view of Example 9.10, the maximal torus of the pseudo-reductive group will in general
have dimension greater than 1. By Lemma 9.1, it suffices to answer Question 9.11 for k
separably closed.

We know that the unipotent quotient of a commutative pseudo-reductive group is
k-wound. So Question 9.11 would describe exactly which groups occur as the unipotent
quotients of commutative pseudo-reductive groups over a field k with [k : kp] = p. (For
example, that would apply to the function field of a curve over a finite field.)
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