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by Claire Chavaudret

Abstract. — This article is about almost reducibility of quasi-periodic cocycles with
a diophantine frequency which are sufficiently close to a constant. Generalizing previous
works by L.H. Eliasson, we show a strong version of almost reducibility for analytic and
Gevrey cocycles, that is to say, almost reducibility where the change of variables is in
an analytic or Gevrey class which is independent of how close to a constant the initial
cocycle is conjugated. This implies a result of density, or quasi-density, of reducible
cocycles near a constant. Some algebraic structure can also be preserved, by doubling
the period if needed.

Résumé (Presque réductibilité forte pour les cocycles quasi-périodiques de classe ana-
lytique et Gevrey)

Cet article traite de la presque-réductibillité des cocycles quasi-périodiques à fré-
quence diophantienne qui sont proches d’un cocycle constant. Nous démontrons un
résultat de presque-réductibilité forte des cocycles analytiques et Gevrey, c’est-à-dire
que le changement de variables obtenu pour conjuguer le cocycle initial à un cocycle
proche d’une constante est dans une classe analytique ou Gevrey qui est indépendante
de la proximité à la constante; ceci généralise certains résultats antérieurs de L.H.
Eliasson. Ce résultat a pour corollaire un théorème de densité ou de quasi-densité des
cocycles réductibles au voisinage d’une constante. Il est possible de préserver certaines
caractéristiques algébriques du cocycle initial en doublant la période.
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48 C. CHAVAUDRET

1. Introduction

We are concerned with quasi-periodic cocycles, that is, solutions of equations
of the form

(1) ∀(θ, t) ∈ 2Td × R,
d

dt
Xt(θ) = A(θ + tω)Xt(θ); X0(θ) = Id

where A ∈ C0(2Td, G) and G is a linear Lie algebra. Here Td = Rd/Zd stands
for the d-torus, d ≥ 1, and 2Td = Rd/(2Zd) stands for the double torus. We
will assume in this article that ω ∈ Rd satisfies some diophantine conditions.
The solution of (1) is called the quasi-periodic cocycle associated to A and is
defined on 2Td × R with values in the connected component of the identity of
a Lie group G whose associated Lie algebra is G. Terminology is explained by
the fact that A is the envelope of a quasi-periodic function, since t 7→ A(θ+ tω)

is a quasi-periodic function for all θ ∈ 2Td. We say X is a constant cocycle if
A is constant. A constant cocycle is always of the form t 7→ etA.

A cocycle is said to be reducible if it is conjugated to a constant cocycle,
in a sense that will be defined later on. The problem of reducibility of cocy-
cles has been thoroughly studied and is of interest because the dynamics of
reducible cocycles is well understood and because this problem has links with
the spectral theory of Schrödinger cocycles and with the problem of lower di-
mensional invariant tori in hamiltonian systems. In the periodic case (d = 1),
Floquet theory tells that every cocycle is reducible modulo a loss of periodicity.
However, the problem is far more difficult if d is greater than 1 and it is not
true that every cocycle is then reducible. The question becomes whether every
cocycle is close, up to a conjugacy, to a reducible one; from this question comes
the notion of almost-reducibility.

For any functional class C , a cocycle is said to be almost-reducible in C if it
can be conjugated to a cocycle which is arbitrarily close in the topology of C
to a reducible one, with the conjugacy also in C . Reductibility implies almost
reducibility, however the reverse is not true: there are non reducible cocycles
even close to a constant cocycle (see [3]). Almost reducibility is an interesting
notion since the dynamics of an almost reducible cocycle are quite well known
on a very long time.

We first focus on cocycles generated by functions which are analytic on a
neighbourhood of the torus, i.e real analytic functions which are periodic in
the direction of the real axis (recall that they are matrix-valued). For such a
function F , we will let

| F |r= sup
|Im θ|≤r

|| F (θ) ||

where || . || stands for the operator norm.
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The aim of this paper is to show that for

G = GL(n,C), GL(n,R), SL(2,C), SL(n,R), Sp(n,R)(1), O(n), U(n)

in the neighbourhood of a constant cocycle, i.e under a smallness condition
on the non-constant part of the cocycle, every cocycle which is analytic on an
r-neighbourhood of the torus and G-valued is almost reducible in Cωr′(2Td, G)

for all 0 < r′ < r ≤ 1
2 , in the sense defined above. The smallness condition only

depends on the dimensions n, d, on the diophantine class of ω, on the constant
cocycle and on the loss of analyticity r − r′.

More precisely, we shall prove the following theorem, for G among the groups
cited above and G the Lie algebra associated to G:

Theorem 1.1. — Let 0 < r′ < r ≤ 1
2 , A ∈ G, F ∈ Cωr (Td, G). There is ε0 < 1

depending only on n, d, ω,A, r − r′ such that if

|F |r ≤ ε0
then for all ε > 0, there exists Āε, F̄ε ∈ Cωr′(2Td, G), Ψε, Zε ∈ Cωr′(2Td, G) and
Aε ∈ G such that for all θ ∈ 2Td,

∂ωZε(θ) = (A+ F (θ))Zε(θ)− Zε(θ)(Āε(θ) + F̄ε(θ))

with

1. ∂ωΨε = ĀεΨε −ΨεAε,
2. |F̄ε|r′ ≤ ε,
3. | Ψε |r′≤ ε−

1
8 ,

4. and |Zε − Id|r′ ≤ 2ε
1
2
0 .

Moreover, if G ⊂ GL(2,C) or if G = GL(n,C) or U(n), Zε, Āε, F̄ε are
in Cωr′(Td).

Property 1 states the reducibility of Āε. Theorem 1.1 immediately entails
the following:

Theorem 1.2. — Let 0 < r′ < r ≤ 1
2 , A ∈ G, F ∈ Cωr (Td, G). There is ε0 < 1

depending only on n, d, ω,A, r − r′ such that if

|F |r ≤ ε0
then for all ε > 0, there exists Fε ∈ Cωr′(2Td, G), Zε ∈ Cωr′(2Td, G) and Aε ∈ G
such that for all θ ∈ 2Td,

∂ωZε(θ) = (A+ F (θ))Zε(θ)− Zε(θ)(Aε + Fε(θ))

with |Fε|r′ ≤ ε.

(1) With n even.
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50 C. CHAVAUDRET

Note that in Theorem 1.2, we do not have any good estimate of Zε. Theo-
rem 1.1 also holds if one chooses F in a class which is bigger than Cωr (Td, G),
i.e the class of functions in Cωr (2Td, G) satisfying some “nice periodicity prop-
erties” with respect to the matrix A.

There is a loss of analyticity in this result, but it is arbitrarily small. A result
close to Theorem 1.1 in the case when G = GL(n,R) had already been proven
in [5] by L.H. Eliasson:

Theorem [Eliasson] . — Let A ∈ gl(n,R) and F ∈ Cωr (Td, gl(n,R)). There
is ε0 < 1 depending only on n, d, κ, τ, ||A||, r such that if |F |r ≤ ε0, then for
all ε > 0, there exists 0 < rε < r, Zε ∈ Cωrε(2Td, GL(n,R)) such that for all
θ ∈ 2Td,

∂ωZε(θ) = (A+ F (θ))Zε(θ)− Zε(θ)(Aε + Fε(θ))

with Aε ∈ gl(n,R), Fε ∈ Cωrε(2Td, gl(n,R)) and |Fε|rε ≤ ε.

Eliasson’s theorem merely states almost reducibility in ∪r′>0C
ω
r′(2Td, GL(n,R)),

since the sequence (rε) might well tend to 0. The achievement of Theorem 1.1
is to state almost reducibility in a more general algebraic framework, but also,
and mostly, to show that almost reducibility holds in a fixed neighbourhood
of a torus even when this torus has dimension greater than 1. This is almost
reducibility in a strong sense.

Note that, as was the case in [5], one cannot avoid to lose periodicity in
Theorem 1.1 if G is a real group with dimension greater than 2. The notion of
“nice periodicity properties” that will be given aims at limiting this loss to a
period doubling. In comparison with the real framework, the symplectic frame-
work does not introduce any new constraints in the elimination of resonances
(Section 2.2); therefore there is no more loss of periodicity here than in the case
when G = GL(n,R). As before in [2], a single period doubling is sufficient in
the case when G is a real symplectic group.

The second part of this paper is dedicated to showing that the same method
gives an analogous result for cocycles which are in a Gevrey class (Theorem 3.1);
denoting by CG,βr the class of Gevrey functions with exponent β and parameter
r (so that CG,1r is the class of analytic functions), and by || . ||β,r their norm,
we have the following:

Theorem 1.3. — Let 0 < r′ < r ≤ 1
2 , A ∈ G, F ∈ CG,βr (Td, G). There is

ε0 < 1 depending only on n, d, κ, τ, A, r − r′ such that if

||F ||β,r ≤ ε0
then for all ε > 0, there exists Āε, F̄ε ∈ CG,βr′ (2Td, G), Ψε, Zε ∈ CG,βr′ (2Td, G)

and Aε ∈ G such that for all θ ∈ 2Td,

∂ωZε(θ) = (A+ F (θ))Zε(θ)− Zε(θ)(Āε(θ) + F̄ε(θ))
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with

– Āε conjugated to Aε by Ψε,
– ||F̄ε||β,r′ ≤ ε,
– || Ψε ||β,r′≤ ε−

1
8 ,

– and ||Zε − Id||β,r′ ≤ 2ε
1
2
0 .

Moreover,

– if G ⊂ GL(2,C) or if G = GL(n,C) or U(n), Zε, Āε, F̄ε are in CG,βr′ (Td);
– If G is o(n) or u(n), then ε0 does not depend on A.

If n = 2 or if G is gl(n,C) or u(n), these results can be rephrased as density
of reducible cocycles in the neighbourhood of constant cocycles:

Theorem 1.4. — Let G = gl(n,C), u(n), gl(2,R), sl(2,R) or o(2). Let 0 <

r′ < r ≤ 1
2 and A ∈ G, F ∈ Cωr (Td, G). There is ε0 depending only on r −

r′, n, d, ω,A such that if
|F |r ≤ ε0

then for all ε > 0 there exists H ∈ Cωr′(Td, G) which is reducible in Cωr′(Td, G)

and such that
|A+ F −H|r′ ≤ ε.

A similar result, for smooth cocycles with values in compact Lie groups,
was obtained by R. Krikorian in [7] (th.5.1.1). For cocycles over a rotation on
the circle, analyticity is far better controlled (see for instance [1]) since it is
then possible to use global methods. In this article, we are considering the case
of a torus of arbitrary dimension. The KAM-type method that is being used
here had already given way to full-measure reducibility results for cocycles with
values in SL(2,R) ([3], [6]).

Sketch of the proof and organization of the paper. — The proof of Theorems 1.1
and 1.4 is a refinement of the method in [5]; it is based on a KAM scheme.
The central idea is to prove an inductive lemma where one conjugates a system
which is close to a reducible one to another system which is even closer to
something reducible. Iterating this lemma arbitrarily many times, one would
then be able to conjugate the initial system to something which is arbitrarily
close to a reducible one. An estimate on the reducing transformation would
then imply almost reducibility. Now consider a system close to a reducible one;
if it is close to a system which can be reduced to a constant part satisfying
some non-resonant conditions, then there exists a conjugation which is close to
the identity in a good topology taking the first system to something closer to a
reducible system. But the constant part might well be too resonant for such a
conjugation to exist. In this case, it is possible to remove the resonances in the
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constant part, but then the conjugation will not stay very close to the identity
except if one accepts to give up a lot of regularity. Now we want to avoid this
loss of regularity in order to obtain a strong version of almost reducibility. So we
will have to improve the step of removing the resonances and use the following
two facts: when resonances have been removed up to some order N , firstly,
the eigenvalues will be so close together that resonances are in fact removed
up to an order RN which is much greater than N ; secondly, the eigenvalues
are removed in a durable way, that is, one will not have to remove resonances
again until a large number of conjugations is made that will take the cocycle to
something much closer to a reducible one. The article is organized as follows:

Section 2 is dedicated to the proof of the theorem in the analytic case. Here
are the main steps of the proof:

– Removing of the resonances by a map Φ called a reduction of the eigen-
values at order R, N̄ (Proposition 2.6) for R,N ∈ N \ {0}.

In dimension 2 (i.e if n = 2), Φ will be such that for all H continuous
on Td, ΦHΦ−1 is continuous on Td.

This step is crucial in the obtention of strong almost reducibility. The
reduction of the eigenvalues is defined in a way similar to [5], however
here it will remove resonances up to an order RN̄ which is much greater
than the value of the parameter N̄ appearing in the estimates. The pa-
rameter R will be used to define a map of reduction of the eigenvalues
at order R, N̄ where N̄ does not depend on the loss of analyticity. This
way, the map of reduction of the eigenvalues will stay under control on a
neighbourhood of the torus which will not have to fade totally.

– Resolution of the homological (also called cohomological) equation
(Proposition 2.8): if Ã has a spectrum fulfilling some non-resonance
conditions and F̃ is a function with nice periodicity properties with
respect to Ã, then there exists a solution X̃ of equation

∂ωX̃ = [Ã, X̃] + F̃RN̄ ; ˆ̃X(0) = 0

having the same periodicity properties as F̃ ; it takes its values in the
same Lie algebra as does F̃ . Moreover, it can be well controlled by losing
some analyticity.

– Inductive lemma (Proposition 2.14): If F̃ ∈ Cωr (2Td, G) has some period-
icity properties (with respect to Ã), if

∂ωΨ = ĀΨ−ΨÃ

and F̄ = ΨF̃Ψ−1, then there exists Z ∈ Cωr′(2Td, G) such that

(2) ∂ωZ = (Ā+ F̄ )Z − Z(Ā′ + F̄ ′)
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with Ā′ reducible, F̄ ′ is much smaller than F̄ , Z is close to the identity
and Ψ′−1F̄ ′Ψ′ has periodicity properties with respect to A′ which are
similar to the properties of F̃ .

The estimate of F̄ ′ depends on F̃ − F̃RN̄ , on the reduction of the
eigenvalues Φ, and on the solution X̃ of the homological equation.

– Iteration of the inductive lemma (Theorem 2.16): We shall iterate
Lemma 2.14 so as to obtain estimates of analytic functions on a se-
quence of neighbourhoods of the torus not shrinking to 0, by means of a
numerical lemma (Lemma 2.15), to reduce the perturbation arbitrarily.

In Section 3, some lemmas are given (3.1) which show that it is possible to
adapt the proof to the Gevrey case; namely, the estimates will be analogous
to those that are obtained in the analytic case and so, by slightly modifying
the parameters, the argument works in the same way: one obtains analogous
reduction of the eigenvalues (3.2), homological equation (3.3) and inductive
lemmas (3.4).

Notations, further definitions and a general assumption. — For a function f ∈
C1(2Td, gl(n,C)), for all θ ∈ 2Td we will denote by

(3) ∂ωf(θ) =
d

dt
f(θ + tω)|t=0

the derivative of f in the direction ω. Denote by 〈·, ·〉 the complex euclidian
scalar product, taking it antilinear in the second variable. For a linear oper-
ator M , we shall call M∗ its adjoint, M∗ = tM̄ , which is identical to the
transpose of M if M is real. Also denote by M N the nilpotent part of M ,
as follows: let M = PAP−1 with A in Jordan normal form, let AD be the
diagonal part of A, then M N = P (A − AD)P−1. To simplify the notation,
if A : 2Td → GL(n,C), we will denote by A−1 the map θ 7→ A(θ)−1. For all
m = (m1, . . . ,md) ∈ 1

2Zd, we shall denote | m |=| m1 | + · · ·+ | md |. The

letter J will stand for the matrix J =

(
0 −Id
Id 0

)
.

Definition 1. — A function f is analytic on an r-neighbourhood of the
torus (resp. double torus) if f is holomorphic on {x = (x1, . . . , xd) ∈
Cd, supj | Imxj | < r} and 1-periodic (resp. 2-periodic) in Rexj for all
1 ≤ j ≤ d.

For all subset E of gl(n,C), denote by Cωr (Td, E) the set of functions which
are analytic on an r-neighbourhood of the torus and whose restriction to Rd
takes its values in E; let Cωr (2Td, E) be the set of functions which are analytic
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on an r-neighbourhood of the double torus and whose restriction to 2Td takes
its values in E. For all f ∈ Cωr (2Td, E), denote

(4) |f |r = sup
|Imx|<r

||f(x)||

where ||.|| stands for the operator norm.

Definition 2. — A function f is Gevrey β with parameter r if it satisfies∑
α∈Nd

rβ|α|

α!β
sup
θ
|| ∂αF (θ) ||< +∞.

Let CG,βr be the class of Gevrey β functions with parameter r. Denote by
|| . ||β,r the norm

|| F ||β,r=
∑
α∈Nd

rβ|α|

α!β
sup
θ
|| ∂αF (θ) || .

To formalize the notion of reducibility, we shall introduce an equivalence
relation on cocycles.

Definition 3. — Let G be a Lie group and G the Lie algebra associated to G.
Let r, r′ > 0 and A,B ∈ Cωr (2Td, G). We say that A and B are conjugate
in Cωr′(2Td, G) if there exists Z ∈ Cωr′(2Td, G) such that for all θ ∈ 2Td,

∂ωZ(θ) = A(θ)Z(θ)− Z(θ)B(θ)

where ∂ω means the derivative in the direction ω. If B is constant in θ, we
say that A is reducible in Cωr′(2Td, G), or reducible by Z to B.

We will use an analogous definition with CG,β instead of Cω.
Note that if X is the quasi-periodic cocycle associated to A, then the map

A is reducible by Z to B if and only if

(5) ∀(t, θ), Xt(θ) = Z(θ + tω)−1etBZ(θ)

Reducibility is also equivalent to the fact that the map from 2Td × Rn to
itself:

(6)

(
θ

v

)
7→

(
θ + ω

X1(θ)v

)
is conjugate to a map χ such that

(7)
dχ

dθ

(
θ

v

)
≡

(
1̄

0

)
.
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Assumption: The frequency ω is in the diophantine class DC(κ, τ), i.e

(8) ∀ m ∈ Zd \ {0}, |〈m,ω〉| ≥ κ

|m|τ

where κ, τ are fixed throughout the paper and 0 < κ < 1, τ ≥ max(1, d− 1).

2. Strong almost reducibility for analytic quasi-periodic cocycles

2.1. Nice periodicity properties. — A few definitions will first be given. The no-
tion of “triviality with respect to a decomposition” will make the construction
of the map of reduction of the eigenvalues easier; the “nice periodicity prop-
erties” have been introduced in [5] and are used in the real case to make sure
that only one period doubling will be needed in iterating the inductive lemma.

2.1.1. Invariant decompositions
Definitions 1. — – The set L = {L1, . . . , LR} is called a decomposition

of Cn if
Cn =

⊕
j

Lj .

– If L, L ′ are decompositions of Cn, then L is said to be finer than L ′ if
for all L ∈ L, there is L′ ∈ L ′ such that L ⊂ L′;

– L is said strictly finer than L ′ if L is finer than L ′ and L 6= L ′.
Let A ∈ gl(n,C); then L = {L1, . . . , Ls} is an A-decomposition, or else

A-invariant decomposition, if it is a decomposition of Cn and for all i, ALi ⊂
Li. Subsets Li are called subspaces of L.

A Jordan decomposition for A is an A-decomposition which is minimal (i.e
no finer decomposition is an A-decomposition).

Remark:
– A matrix might have many Jordan decompositions. For instance, the

identity has infinitely many Jordan decompositions.
– A decomposition is an A-decomposition if and only if it is less fine than

some Jordan decomposition for A. Therefore, if operators A and A′ have
a common Jordan decomposition, then an A-decomposition which is less
fine than this common Jordan decomposition is an A′-decomposition.

Notation: Let L be an A-decomposition. For all L ∈ L, denote by σ(A|L)

the spectrum of the restriction of A to subspace L.

Definition 4. — Let κ′ ≥ 0. Let LA,κ′ be the unique A-decomposition L such
that for all L 6= L′ ∈ L, α ∈ σ(A|L) and β ∈ σ(A|L′) ⇒ |α− β| > κ′ and such
that no A-decomposition strictly finer than L has this property.

Remark: For κ′ ≥ 0, any Jordan decomposition is finer than LA,κ′ .
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Definition 5. — Let L be a decomposition of Cn. For all u ∈ Cn, there is
a unique decomposition u =

∑
L∈ L uL such that uL ∈ L for all L ∈ L. For

all L ∈ L, the projection on L with respect to L, denoted by P L
L , is the map

defined by P L
L u = uL.

Remark: Let A ∈ gl(n,C) and κ′ > 0. If L is an A-decomposition which is
less fine than LA,κ′ , then one has the following lemma, which can be found in
[5], appendix, Lemma A(2):

Lemma 2.1. — There is a constant C0 ≥ 1 depending only on n such that for
all subspace L ∈ L,

(9) || P L
L ||≤ C0

Å
1+ || A N ||

κ′

ãn(n+1)

.

In what follows, C0 will always stand for this constant fixed in Lemma 2.1.

Definition 6. — An (A, κ′, γ)-decomposition is an A-decomposition L such
that for all L ∈ L, the projection on L with respect to L satisfies

(10) || P L
L ||≤ C0

Å
1+ || A N ||

κ′

ãγ
.

Remark: For A ∈ gl(n,C), one always has A =
∑
L,L′∈ L P

L
LAP

L
L′ . In partic-

ular, if L is an A-decomposition, then A =
∑
L∈ L P

L
LAP

L
L .

Definitions 2. — Let L be a decomposition. We say that
– L is a real decomposition if for all L ∈ L, L̄ ∈ L;
– L is a symplectic decomposition if it is a decomposition of Cn with even
n and for all L ∈ L, there is a unique L′ ∈ L such that 〈L, JL′〉 6= 0;

– L is a unitary decomposition if for all L 6= L′ ∈ L, 〈L,L′〉 = 0.

Remark:
– If A is a real matrix, then for all κ′ ≥ 0, LA,κ′ is a real decomposition.
– For all L, there is at least one L′ such that 〈L, JL′〉 6= 0. This comes from

the fact that the symplectic form 〈., J.〉 is non-degenerate.
– If A ∈ sp(n,R), then any A-decomposition L which is less fine than LA,0

is a real and symplectic decomposition. To see this, let L,L′ ∈ L such
that 〈L, JL′〉 6= 0; let v ∈ L, v′ ∈ L′ be eigenvectors of A such that
〈v, Jv′〉 6= 0 and λ, λ′ their associated eigenvalues. Then

λ〈v, Jv′〉 = 〈Av, Jv′〉 = 〈v,A∗Jv′〉 = −〈v, JAv′〉 = −λ̄′〈v, Jv′〉
and since 〈v, Jv′〉 6= 0, then λ = −λ̄′.

(2) Lemma A from [5] gives in fact an estimate which depends on || A ||, but the proof shows
clearly that the estimate in fact only depends on A N .
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– If A ∈ U(n), then any decomposition which is less fine than LA,0 is
unitary.

– If L is unitary, then for every L ∈ L, P L
L is an orthogonal projection so

|| P L
L ||≤ 1.

2.1.2. Triviality and nice periodicity properties with respect to a decomposition

Definitions 3. — Let L be a decomposition of Cn. We say a map Ψ is trivial
with respect to L if there exist {mL, L ∈ L} ⊂ 1

2Zd such that for all θ ∈ 2Td,

(11) Ψ(θ) =
∑
L∈ L

e2iπ〈mL,θ〉P L
L .

We say that the function Ψ is trivial if there exists a decomposition L such
that Ψ is trivial with respect to L.

Remark:

– If Ψ is trivial with respect to L and L ′ is finer than L, then Ψ is trivial
with respect to L ′.

– If Φ,Ψ : 2Td → GL(n,C) are trivial with respect to L, then the product
ΦΨ is trivial with respect to L.

– If Φ is trivial with respect to an A-decomposition L, then for all θ ∈ 2Td,
[A,Φ(θ)] = 0.

Lemma 2.2. — Let L be a real decomposition of Cn, {mL, L ∈ L} ⊂ 1
2Zd and

Ψ defined by

(12) Ψ(θ) =
∑
L∈ L

e2iπ〈mL,θ〉P L
L .

Then Ψ is real if and only if for all L, mL = −mL̄. Moreover, if Ψ is real,
then Ψ takes its values in SL(n,R).

Proof. — Assume that for all L ∈ L, mL = −mL̄. Let u ∈ Rn. Then

Ψ(θ)u =
∑
L∈ L

e2iπ〈−mL,θ〉P L
L u =

∑
L∈ L

e2iπ〈mL̄,θ〉P L
L̄
u = Ψ(θ)u

so Ψ(θ) is real.
Now suppose that Ψ is real. Then for all θ,∑

L∈ L

e2iπ〈mL,θ〉P L
L =

∑
L∈ L

e2iπ〈−mL,θ〉P L
L =

∑
L∈ L

e2iπ〈−mL,θ〉P L
L̄

so mL = −mL̄.
Suppose Ψ is real; then for all L, mL = −mL̄ so Ψ(θ) is the exponential of

a trace-zero matrix, so it has determinant 1.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



58 C. CHAVAUDRET

Remark: Any map which is trivial with respect to a unitary decomposition
is unitary: let L be a unitary decomposition, let Φ be trivial with respect to L
and let L,L′ ∈ L. Then for all u ∈ L, v ∈ L ′,

〈Φ(θ)u,Φ(θ)v〉 = 〈e2iπ〈mL,θ〉u, e2iπ〈mL′ ,θ〉v〉 = 〈u, v〉.

Lemma 2.3. — Let L be a real and symplectic decomposition and {mL, L ∈ L}
be a family of elements of 1

2Zd. Let Ψ =
∑
L∈ L e

2iπ〈mL,.〉P L
L . Then Ψ takes its

values in Sp(n,R) if and only if
– for all L, mL = −mL̄

– and if 〈L, JL′〉 6= 0, then mL = mL′ .

Proof. — By Lemma 2.2, Ψ is real if and only if for all L, mL = −mL̄. Assume
now Ψ is real.

We show first that if for all L,L′ ∈ L, 〈L, JL′〉 6= 0 ⇒ mL = mL′ , then Ψ

takes its values in Sp(n,R). Let u, v ∈ Rn. Then

〈u,Ψ(θ)∗JΨ(θ)v〉 = 〈Ψ(θ)u, JΨ(θ)v〉 =
∑
L

e2iπ〈mL−mM(L),θ〉〈P L
L u, JP

L
M(L)v〉

whereM(L) stands for the unique subspace such that 〈L, JM(L)〉 6= 0. Assume
that if 〈L, JL′〉 6= 0, then mL = mL′ . This implies that

〈u,Ψ(θ)∗JΨ(θ)v〉 =
∑
L

〈P L
L u, JP

L
M(L)v〉 = 〈u, Jv〉

so Ψ(θ) ∈ Sp(n,R).
Now we will show that if Ψ(θ) ∈ Sp(n,R) and if 〈L, JL′〉 6= 0, then mL =

mL′ . Suppose Ψ(θ) ∈ Sp(n,R). For any two vectors u, v,

〈u, Jv〉 = 〈u,Ψ(θ)∗JΨ(θ)v〉 = 〈Ψ(θ)u, JΨ(θ)v〉.

If u ∈ L and v ∈ m(L) satisfy 〈u, Jv〉 6= 0, then

〈u, Jv〉 = 〈Ψ(θ)u, JΨ(θ)v〉 = e2iπ〈mL−mM(L),θ〉〈u, Jv〉

so mL = mM(L).

We will now define the periodicity properties.
Definition:Let L be a decomposition of Cn. We say that F ∈ C0(2Td, gl(n,R))

has nice periodicity properties with respect to L if there exists a map Φ which
is trivial with respect to L and such that Φ−1FΦ is continuous on Td.

To make the family (mL) explicit, we say that F has nice periodicity prop-
erties with respect to L and (mL).

Remark:

– If F ∈ C0(2Td, gl(n,R)) has nice periodicity properties with respect to
a decomposition L and Φ is trivial with respect to L, then ΦFΦ−1 has
nice periodicity properties with respect to L.
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– If L ′ is a decomposition of Cn which is finer than L and F has nice peri-
odicity properties with respect to L,then F has nice periodicity properties
with respect to L ′.

– Let L be a decomposition of Cn and (mL)L∈ L be a family of elements
of 1

2Zd. If F1, F2 ∈ C0(2Td, gl(n,R)) have nice periodicity properties with
respect to L and (mL), then the product F1F2 has nice periodicity prop-
erties with respect to L and (mL).

2.2. Removing the resonances. — In the following we will have to solve a homo-
logical equation and estimate the solution on a neighbourhood of the torus; in
order to have a sufficient estimate on the solution of the homological equation,
one will assume that the coefficients of the equation satisfy some diophantine
conditions:

Let A ∈ gl(n,R) and 0 < κ′ < 1. Let N ∈ N.

Definition: Let z ∈ C, ν ∈ {1, 2}. We say that z is diophantine modulo ν with
respect to ω, with constant κ′, exponent τ and order N if for every m ∈ 1

νZd
such that 0 < |m| ≤ N ,

(13) |z − 2iπ〈m,ω〉| ≥ κ′

|m|τ
.

This property will be denoted by

(14) z ∈ DCNω,ν(κ′, τ)

Note that

(15) DCNω,2(κ′, τ) ⊂ DCNω,1(κ′, τ)

and that every real number z is in DCNω,2( κ2τ , τ) since for all m ∈ 1
2Zd,

(16) |z − 2iπ〈m,ω〉| =
(
|z|2 + (2π|〈m,ω〉|)2

) 1
2 ≥ πκ

|2m|τ
≥ κ

|2m|τ
.

Remark: In the definition above, the condition is required only for non van-
ishing m, so (13) has a meaning.

Definition: A is said to have DCNω (κ′, τ) spectrum if

(17)

{
∀α, β ∈ σ(A), α− β ∈ DCNω,1(κ′, τ)

∀α, β ∈ σ(A), α 6= β̄ ⇒ α− β ∈ DCNω,2(κ′, τ).

Let N ∈ N. Let A in a Lie algebra G. The aim is to show that there exists
κ′ > 0, Ã ∈ G such that Ã hasDCNω (κ′, τ) spectrum and A and Ã are conjugate
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(in the sense of cocycles, following the definition given in the introduction). To
achieve this, one has to find a family (m1, . . . ,mn) satisfying
(18){

∀ αj , αk ∈ σ(A), αj − αk + 2iπ〈mj −mk, ω〉 ∈ DCNω,1(κ′, τ)

∀ αj , αk ∈ σ(A), αj 6= ᾱk ⇒ αj − αk + 2iπ〈mj −mk, ω〉 ∈ DCNω,2(κ′, τ)

We shall construct the so-called map of reduction of the eigenvalues Φ con-
jugating (in the sense of cocycles) A to the matrix obtained from A by sub-
stituting an eigenvalue αj by αj + 2iπ〈mj , ω〉, then we will prove that Φ is
G-valued.

2.2.1. Diophantine conditions. —

Lemma 2.4. — Let {α1, . . . , αn} ⊂ C. Let Ñ ∈ N and κ′ ≤ κ
n(8Ñ)τ

. There

exists m1, . . . ,mn ∈ 1
2Zd such that supj |mj | ≤ Ñ , and such that letting for all

j, α̃j = αj − 2iπ〈mj , ω〉, then

(19) {α1, . . . , αn} = {α1, . . . , αn} ⇒ ∀j, k, αj = ᾱk ⇒ mj = −mk,

(20) n = 2, α2 = −α1 ⇒ m1 = −m2,

(21) ∀j, k, αj = −ᾱk ⇒ mj = mk,

(22) ∀j, k, |αj − αk| ≤ κ′ ⇒ mj = mk,

(23) ∀j, | Im α̃j | ≤ | Imαj |,

(24) ∀j, k, αj = ᾱk ⇒ α̃j − α̃k ∈ DCÑω,1(κ′, τ)

and

(25) ∀j, k, αj 6= ᾱk ⇒ α̃j − α̃k ∈ DCÑω,2(κ′, τ)

and such that if not all mj vanish, then there exist j, k such that

(26) |αj − αk| ≥ κ′, |α̃j − α̃k| < κ′.

Moreover, there exist m1, . . .mn ∈ Zd, with |mj | ≤ Ñ for all j, fulfilling
conditions (21), (22), (23), such that

(27) ∀j, k, α̃j − α̃k ∈ DCÑω,1(κ′, τ)

and such that if not all mj vanish, then there exist j, k such that (26) holds.
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Proof. — We shall proceed in two steps. The first step consists in removing
resonances which might occur between two eigenvalues whose imaginary parts
are nearly opposite to each other. Once this first lot of resonances is removed,
the second step consists in removing the resonances which might occur between
two eigenvalues whose imaginary parts are far from opposite.
• Let 1 ≤ j ≤ n. Suppose that there is an m ∈ Zd, 0 <| m |≤ Ñ such that

| 2 Imαj − 2π〈m,ω〉 |< κ′

| m |τ

then let α′j = αj−2iπ〈m2 , ω〉. Otherwise, let α′j = αj . Note that if |αj−αk| ≤ κ′
and if there exist mj 6= mk such that

| 2 Imαj − 2π〈mj , ω〉 |<
κ′

| mj |τ
; | 2 Imαk − 2π〈mk, ω〉 |<

κ′

| mk |τ

then

| 2iπ〈mj −mk, ω〉 | ≤
κ

| mj −mk |τ

which is impossible since ω is diophantine. Therefore conditions (19) to (24)
hold with α′j = α̃j and mj such that αj − α′j = 2iπ〈mj , ω〉.
• Let I−r, . . . , Ir be the finest partition of {1, . . . , n} such that

| Im(α′j − α′k) |≤ κ′ ⇒ ∃− r ≤ r′ ≤ r | j, k ∈ Ir′

and choose the indices in such a way that

r′ < r′′ ⇒ ∀j ∈ Ir′ ,∀k ∈ Ir′′ , Imα′j ≤ Imα′k.

Note that I0 might be empty. We will proceed by induction on r′ to prove
the following property P(r′):

. — There are m′1,m′−1, . . . ,m
′
r′ ,m

′
−r′ ∈ Zd with sup|j|≤r′ |m′j | ≤ Ñ such that

properties (19) to (25) hold for all −r′ ≤ r1, r2 ≤ r′, j ∈ Ir1 , k ∈ Ir2 with m′j
instead of mj and α′j instead of αj.

• Case r′ = 0: if I0 is empty, then P(0) trivially holds. Assume I0 is non
empty. Then for all j, k ∈ I0 and all m ∈ 1

2Zd such that 0 <| m |≤ Ñ ,

| α′j − α′k − 2iπ〈m,ω〉 |≥| Im(α′j − α′k)− 2π〈m,ω〉 |≥ κ

| m |τ
− nκ′ ≥ κ′

so α′j − α′k ∈ DCÑω,2(κ′, τ) and P(0) holds true.
• Let r′ ≤ r− 1. Assume P(r′) holds. Consider Ir′+1 and I−r′−1. There are

two possible cases.
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– There exist −r′ ≤ r′′ ≤ r′, j ∈ Ir′′ , k ∈ Ir′+1 and m ∈ Zd such that
| m |≤ Ñ and

| α′j − α′k − 2iπ〈mr′′ +m,ω〉 |< κ′

| m |τ

– The case above does not hold.
In the first case, let m′r′+1 = m = −m′−r′−1. In the second case, let m′r′+1 =

m′−r′−1 = 0.
Now m′r′+1 and m′−r′−1 are independent from j, k. To see this, suppose there

are j1, j2 ∈ Ir1 , k1, k2 ∈ Ir2 ,m1 6= m2 ∈ Zd such that for l = 1, 2,

| α′jl − α
′
kl
− 2iπ〈ml, ω〉 |<

κ′

| ml |τ
.

Then

| 2π〈m1 −m2, ω〉 |≤
κ

| m1 −m2 |τ

which is impossible. Therefore P(r′ + 1) holds true.
• Once m′1, . . . ,m′r,m′−1, . . . ,m

′
−r ∈ Zd are defined, conditions (19) to (25)

hold with, for all j ∈ Ir′ , α̃j = α′j − 2iπ〈m′r′ , ω〉 and mj such that αj − α̃j =

2iπ〈mj , ω〉. Condition (26) is obvious by construction.
• By proceeding only with the second step, one gets m1, . . .mn ∈ Zd, with

|mj | ≤ Ñ for all j, satisfying conditions (21), (22), (23), such that

∀j, k, α̃j − α̃k ∈ DCÑω,1(κ′, τ)

and such that if not all mj vanish, then there are j, k such that (26) holds
true.

Lemma 2.5. — Let {α1, . . . , αn} ⊂ C. For every R,N ∈ N, N ≥ 2, R ≥ 1,
there exists N̄ ∈ [N,R

1
2n(n−1)N ] and m1, . . . ,mn ∈ 1

2Zd with

(28) sup
j
|mj | ≤ 2N̄

such that letting α̃j = αj − 2iπ〈mj , ω〉 and

(29) κ′′ =
κ

n(8R
1
2n(n−1)+1N)τ

conditions (19) to (23) of Lemma 2.4 hold for κ′ = κ′′, and such that

(30) ∀j, k, α̃j − α̃k ∈ DCRN̄ω,1 (κ′′, τ)

and

(31) ∀j, k, αj 6= ᾱk ⇒ α̃j − α̃k ∈ DCRN̄ω,2 (κ′′, τ).

Moreover, there exist m1, . . .mn ∈ Zd with |mj | ≤ N̄ for all j such that
conditions (21), (22), (23) and (30) hold true.
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Proof. — If αj satisfy for all j, k

(32)

{
αj = ᾱk ⇒ αj − αk ∈ DCRNω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk ∈ DCRNω,2 (κ′′, τ)

then we are done with N̄ = N and m1 = · · · = mn = 0.
Suppose (32) does not hold. Then apply Lemma 2.4 with Ñ = RN, κ′ = κ′′

to get m1,1, . . . ,mn,1 such that

(33)


∀j, k, αj = ᾱk ⇒ mj,1 = −mk,1

∀j, k, αj = −ᾱk ⇒ mj,1 = mk,1

∀j, k, |αj − αk| ≤ κ′′ ⇒ mj,1 = mk,1

∀j, | Imαj − 2iπ〈mj,1, ω〉| ≤ | Imαj |

and

(34)

{
αj = ᾱk ⇒ αj − αk − 2iπ〈mj,1 −mk,1, ω〉 ∈ DCRNω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈mj,1 −mk,1, ω〉 ∈ DCRNω,2 (κ′′, τ)

and such that there exist j1, k1 satisfying | Im(αj1 − αk1) − 2iπ〈mj1,1 −
mk1,1, ω〉 |< κ′′.

Assume there are m1,s, . . . ,mn,s such that sup |mj,s| ≤ (R+R2 + · · ·+Rs)N
and that for all j, k,

(35)


∀j, k, αj = ᾱk ⇒ mj,s = −mk,s

∀j, k, αj = −ᾱk ⇒ mj,s = mk,s

∀j, k, |αj − αk| ≤ κ′′ ⇒ mj,s = mk,s

∀j, | Imαj − 2iπ〈mj,s, ω〉| ≤ | Imαj |

and

(36)

{
αj = ᾱk ⇒ αj − αk − 2iπ〈mj,s −mk,s, ω〉 ∈ DCR

sN
ω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈mj,s −mk,s, ω〉 ∈ DCR
sN

ω,2 (κ′′, τ)

and suppose there exist distinct (j1, k1), . . . , (js, ks) such that for all l ≤ s,

(37) | Imαjl − Imαkl − 2iπ〈mjl,s −mkl,s, ω〉 |< κ′′.

If moreover one has for all j, k

(38)

{
αj = ᾱk ⇒ αj − αk − 2iπ〈mj,s −mk,s, ω〉 ∈ DCR

s+1N
ω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈mj,s −mk,s, ω〉 ∈ DCR
s+1N

ω,2 (κ′′, τ)

then the process ends and one may take N̄ = RsN and mj = mj,s since it is
true that

(39) | mj,s |≤ (R+R2 + · · ·+Rs)N ≤ RsN
1− 1

Rs

1− 1
R

≤ 2RsN.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



64 C. CHAVAUDRET

Otherwise, iterate once more Lemma 2.4 with Ñ = Rs+1N and αj −
2iπ〈mj,s, ω〉 in place of αj to get m1,s+1, . . . ,mn,s+1 such that sup |ms+1

j | ≤
(R+R2 + · · ·+Rs+1)N and for all j, k,

(40)


∀j, k, αj = ᾱk ⇒ mj,s+1 = −mk,s+1

∀j, k, αj = −ᾱk ⇒ mj,s+1 = mk,s+1

∀j, k, |αj − αk| ≤ κ′′ ⇒ mj,s+1 = mk,s+1

∀j, | Imαj − 2iπ〈mj,s+1, ω〉| ≤ | Imαj |

and

(41)

{
αj = ᾱk ⇒ αj − αk − 2iπ〈mj,s+1 −mk,s+1, ω〉 ∈ DCR

s+1N
ω,1 (κ′′, τ)

αj 6= ᾱk ⇒ αj − αk − 2iπ〈mj,s+1 −mk,s+1, ω〉 ∈ DCR
s+1N

ω,2 (κ′′, τ)

and that there exist distinct (j1, k1), . . . , (js+1, ks+1) such that for all l ≤
s+ 1,

(42) | Imαjl − Imαkl − 2iπ〈mjl,s+1 −mkl,s+1, ω〉 |< κ′′.

Therefore, for all 1 ≤ l ≤ s+ 1,

(43) |αjl − αkl − 2iπ〈mjl,s+1 −mkl,s+1, ω〉| < κ′′.

This implies that for all m ∈ 1
2Zd such that 0 < |m| ≤ RN̄ and for all

l, 1 ≤ l ≤ s+ 1,

(44) |αjl−αkl−2iπ〈mjl,s+1−mkl,s+1, ω〉−2iπ〈m,ω〉| ≥ κ

2τ+1(RN̄)τ
−κ′′ ≥ κ′′

so for all l ≤ s+ 1,

(45) αjl − αkl − 2iπ〈mjl,s+1 −mkl,s+1, ω〉 ∈ DCRN̄ω,2 (κ′′, τ).

Therefore, after s̄ ≤ n(n−1)
2 steps, one gets conditions (30) and (31) with

mj = mj,s̄ and α̃j = αj − 2iπ〈mj , ω〉 and | Imαj − 2iπ〈mj , ω〉| ≤ | Imαj |. It
is true that | mj,s̄ |≤ 2N̄ and conditions (19) to (23) of Lemma 2.4 are also
satisfied.

Lemma 2.4 implies that if conditions (19) and (31) are not required, then
one can get m1, . . .mn ∈ Zd.

2.2.2. Reduction of the eigenvalue. — Now the preceding lemmas will be used
to define the map of reduction of the eigenvalues Φ which will conjugate A to
a matrix with DCRNω (κ′′, τ) spectrum for some κ′′, with R,N arbitrarily large
and Φ bounded independently of R.

In all that follows, G will be a Lie group among

GL(n,C), GL(n,R), Sp(n,R), SL(2,C), SL(n,R), O(n), U(n)

and G will be the Lie algebra associated to G.
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Proposition 2.6. — Let A ∈ G, R ≥ 1 and N ∈ N. There exists N̄ ∈
[N,R

1
2n(n−1)N ] such that if

(46) κ′′ =
κ

n(8R
1
2n(n−1)+1N)τ

then there exists a map Φ which is trivial with respect to LA,κ′′ and G-valued
and such that

1. for all r′ ≥ 0,
(47)

|Φ|r′ ≤ nC0

Å
1 + ||A N ||

κ′′

ãn(n+1)

e4πN̄r′ , |Φ−1|r′ ≤ nC0

Å
1 + ||A N ||

κ′′

ãn(n+1)

e4πN̄r′ .

2. Let Ã be such that

(48) ∀θ ∈ 2Td, ∂ωΦ(θ) = AΦ(θ)− Φ(θ)Ã

then

(49) ||Ã−A|| ≤ 4πN̄

and Ã has DCRN̄ω (κ′′, τ) spectrum.
3. If G = gl(n,C) or u(n), Φ is defined on Td.
4. If G = o(n) or u(n), then

(50) |Φ|r′ ≤ ne4πN̄r′ , |Φ−1|r′ ≤ ne4πN̄r′ .

5. If G = sl(2,C) or sl(2,R), then either Φ is the identity or || Ã ||≤ κ′′.

Proof. — Let {α1, . . . , αn} = σ(A). Two cases must be considered:

– If G = gl(n,C) or u(n), Lemma 2.5 gives N̄ and mj ∈ Zd for j = 1, . . . , n

such that
N ≤ N̄ ≤ R 1

2n(n−1)N ; sup
j
|mj | ≤ 2N̄

and such that conditions (21) to (23) of Lemma 2.4 hold with κ′ = κ′′,
as well as conditions (30).

– If G = gl(n,R), sp(n,R), sl(n,R), sl(2,C) or o(n), Lemma 2.5 gives N̄
and mj ∈ 1

2Zd for j = 1, . . . , n such that

N ≤ N̄ ≤ R 1
2n(n−1)N ; sup

j
|mj | ≤ 2N̄

and such that conditions (19) to (23) of Lemma 2.4 hold with κ′ = κ′′,
as well as conditions (30) and (31).
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For all j there is a unique L ∈ LA,κ′′ such that αj ∈ σ(A|L). Let mL = mj .
Then mL is independent of j thanks to property (22).

For all θ ∈ 2Td, let

Φ(θ) =
∑

L∈ LA,κ′′

e2iπ〈mL,θ〉P
LA,κ′′
L

By construction of the (mL), Φ is defined on Td if G = gl(n,C) or u(n). Let
us prove that Φ is G-valued.

– if G = gl(n,C), this is trivial;
– if G = sl(2,C) or sl(2,R), this comes from condition (20);
– if G = u(n), Φ has unitary values.
– if G = gl(n,R), this comes from Lemma 2.2, since LA,κ′′ is a real decom-

position and according to Lemma 2.5, for all L ∈ LA,κ′′ , mL = −mL̄.
– if G = o(n), the map Φ has values in real unitary matrices, i.e orthogonal

matrices.
– if G = sp(n,R), LA,κ′′ is a symplectic decomposition. Lemma 2.5 ensures

that for all L ∈ LA,κ′′ , mL = −mL̄ and

∀L,L′ ∈ LA,κ′′ , 〈L, JL′〉 6= 0⇒ mL = mL′ .

Therefore Lemma 2.3 implies that for all θ the matrix Φ(θ) is
in Sp(n,R).

Properties (30) and (31) ensure that Ã has DCRN̄ω (κ′′, τ) spectrum.
Moreover, for all L ∈ L̄, |mL| ≤ 2N̄ . The estimate of each P L̄

L recalled in
Lemma 2.1 implies that Φ satisfies the estimate

|Φ|r′ ≤ nC0

Å
1 + ||A N ||

κ′′

ãn(n+1)

e4πN̄r′

and Φ−1 satisfies the same estimate since

Φ−1 =
∑

L∈ LA,κ′′

e−2iπ〈mL,.〉P
LA,κ′′
L .

Now if G is o(n) or u(n), then every projection P
LA,κ′′
L has norm 1 and

therefore Φ and Φ−1 satisfy (50). By definition of Ã,

∀L ∈ L ′, σ(Ã|L) = σ(A|L)− 2iπ〈mL, ω〉

and by property (23),

∀α ∈ σ(A|L), |α− 2iπ〈mL, ω〉| ≤ |α|.

Let P be such that PAP−1 is in Jordan normal form, let αj be the eigen-
values of A and pj the columns of P , then for all j,

||(Ã−A)pj || = ||2iπ〈mj , ω〉pj || ≤ 4πN̄ ||pj ||.
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So ||Ã−A|| ≤ 4πN̄ , whence property (49). Finally, if G = sl(2,C) or sl(2,R),
then either Ã = A, or A is diagonalizable, and then Ã is also diagonalizable,
so their norms are the modulus of their eigenvalues and by condition (26),
|| Ã ||≤ κ′′.

Definition: A map Φ satisfying the conclusion of Proposition 2.6 will be called
a map of reduction of the eigenvalues of A at order R, N̄ .

In dimension 2, i.e if n = 2, the map of reduction of the eigenvalues Φ satisfies
the following property: for every function H continuous on Td and with values
in gl(2,C), ΦHΦ−1 and Φ−1HΦ are continuous on Td.

Dimension 2 has, indeed, the particularity that every decomposition L of R2

has at most two subpaces L1, L2, in which case mL1 +mL2 ∈ Zd (if the decom-
position is trivial, mL = 0). In any case,

∑
L∈ L mL ∈ Zd.

2.3. Homological equation. — Solving the homological equation is a first step
towards reducing the perturbation.

Notation: For every function F ∈ L2(2Td) and every N ∈ N, we will denote
by FN and call truncation of F at order N the function that one obtains by
truncating the Fourier series of F :

FN (θ) =
∑
|m|≤N

F̂ (m)e2iπ〈m,θ〉

The following lemma will be useful in solving the homological equation.

Lemma 2.7. — Let f, g be trigonometric polynomial with g real on Rd. Let r >
0, r′ ∈]0, r[ and suppose that there exists C such that |f |r′ ≤ C|g|r. Then for
all m ∈ 1

2Zd,

(51) |fe2iπ〈m,.〉|r′ ≤ C|ge2iπ〈m,.〉|r.

Proof. — Since g is real,

(52) ∀m ∈ Zd, ĝ(−m) = ĝ(m)

so for all x and all y ∈ [−r, r]d,

g(x− iy) =
∑
m

ĝ(m)e2iπ〈m,x−iy〉

=
∑
m

ĝ(−m)e2iπ〈−m,−x+iy〉 =
∑
m

ĝ(−m)e2iπ〈−m,x+iy〉

= g(x+ iy)

which implies that for all x, y,

(53) | g(x− iy) |=| g(x+ iy) | .
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Let us show that for every m ∈ Zd,

(54) |g|re2π|m|r = |ge2iπ〈m,.〉|r.

By the maximum principle,

|g|r = sup
x;|yj |≤r,1≤j≤d

|g(x+ iy)| = sup
x;|yj |=r,1≤j≤d

|g(x+ iy)|.

Let y0 such that
| g |r= sup

x
| g(x+ iy0) |

then, for m having only one non-zero component mj , either

|g|re2π|m|r = sup
x
| g(x+ iy0) | | e2iπ〈m,x+iy0〉 |= |ge2iπ〈m,.〉|r

if mj and (y0)j have opposite signs, or

|g|re2π|m|r = sup
x
| g(x− iy0) | | e2iπ〈m,x−iy0〉 |= |ge2iπ〈m,.〉|r

if mj and (y0)j have the same sign, whence (54) if m has only one non-zero
component. For 1 ≤ l ≤ d, let m̄l = (m1, . . . ,ml, 0, . . . , 0). Assume that

| g |r e2π|m|r =| ge2iπ〈m̄j−1,.〉 |r e2π(|mj |+···+|md|)r

and that | ge2iπ〈m̄j−1,.〉 |r is reached at ȳ. Let δj ∈ {−1, 1} be such that mj and
δj ȳj have opposite signs. Then

| g |r e2π|m|r =| ge2iπ〈m̄j−1,.〉 |r e2π(|mj |+···+|md|)r

= sup
x,yk,k 6=j

| g(x+ i(y1, . . . , ȳj , . . . , yd))e
2iπ〈m̄j−1,x+i(y1,...,ȳj ,...,yd)〉 | e2π(|mj |+···+|md|)r

= sup
x,yk,k 6=j

| g(x+ i(y1, . . . , δj ȳj , . . . , yd))e
2iπ〈m̄j−1,x+i(y1,...,δj ȳj ,...,yd)〉e2iπmj(xj+iδj ȳj) |

.e2π(|mj+1|+···+|md|)r

= sup
x,yk,k 6=j

| g(x+ i(y1, . . . , δj ȳj , . . . , yd))e
2iπ〈m̄j ,x+i(y1,...,δj ȳj ,...,yd)〉 | e2π(|mj+1|+···+|md|)r

=| ge2iπ〈m̄j ,.〉 |r e2π(|mj+1|+···+|md|)r.

and (54) is obtained through a simple iteration. Thus

|fe2iπ〈m,.〉|r′ ≤ |f |r′e2π|m|r′ ≤ C|g|re2π|m|r = C|ge2iπ〈m,.〉|r

Remark: If f, g are matrix-valued trigonometric polynomials, f = (fj,k), g =

(gj,k), and g has real coefficients on Rd, a similar statement holds. For if

|f |r′ = sup
x,|yj |≤r′

|| f(x+ iy) ||≤ C|g|r = C sup
x,|yj |≤r

|| g(x+ iy) ||
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as the norm of the greatest coefficient is equivalent to the operator norm, one
has

sup
j,k
|fj,k|r′ ≤ CC ′ sup

j,k
|gj,k|r

for some C ′ only depending on the dimension of the matrices. So from
Lemma 2.7, since there exist j0, k0 such that

∀j, k, | fj,k |r′≤ CC ′ | gj0,k0
|r

then
sup
j,k
|fj,ke2iπ〈m,.〉|r′ ≤ CC ′ sup

j,k
|gj,ke2iπ〈m,.〉|r

and as the norms are equivalent, the statement also holds in operator norm:

|fe2iπ〈m,.〉|r′ ≤ CC ′′|ge2iπ〈m,.〉|r
for some C ′′ depending only on the dimension of the matrices.

Proposition 2.8. — Let
– N ∈ N,
– κ′ ∈]0, κ],
– γ ≥ n(n+ 1),
– 0 < r′ < r.

Let Ã ∈ G have DCNω (κ′, τ) spectrum. Let F̃ ∈ Cωr (2Td, G) with nice periodicity
properties with respect to an (Ã, κ′, γ)-decomposition L. Then the equation

(55) ∀θ ∈ 2Td, ∂ωX̃(θ) = [Ã, X̃(θ)] + F̃N (θ)− ˆ̃F (0); ˆ̃X(0) = 0

has a solution X̃ ∈ Cωr′(2Td, G) such that
– if F̃ has nice periodicity properties with respect to L and (mL), then X̃

has nice periodicity properties with respect to L and (mL); in particular,
if F̃ is defined on Td, then so is X̃,

– if Φ is trivial with respect to L, then there exist C ′, D depending only
on n, d, τ such that

(56) |Φ−1X̃Φ|r′ ≤ C ′
Ç

1 + ||Ã N ||
(r − r′)κ′

å2n2γ+D

|Φ−1F̃Φ|r.

Moreover, the truncation of X̃ at order N is unique.

Proof. — • Let C ∈ GL(n,C) be such that C−1ÃC is in Jordan normal
form. Conjugating equation (55) by C−1, decomposing into coefficients xj,k
of C−1X̃C and developing into Fourier series, one gets for all m ∈ 1

νZd, with
ν = 1 or 2 according to the periodicity of (C−1(F̃N − ˆ̃F (0))C)j,k,

(57) i〈m,ω〉x̂j,k(m) = (α̃j − α̃k)x̂j,k(m) + δ1x̂j,k+1(m) + δ2x̂j−1,k(m) + f̂(m)
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where δ1, δ2 are 0 or 1 and f̂(m) stands for the m-th Fourier coefficient of the
function (C−1(F̃N − ˆ̃F (0))C)j,k.

The diophantine conditions given by Proposition 2.6 allow the existence of
an analytic solution to the set of equations (57), therefore (55) has a solution
X̃.
• Now we shall see that X̃N is unique. Suppose that X̃ and Ỹ are both

solutions of (55). Then

(58) ∂ω(X̃ − Ỹ ) = [Ã, X̃ − Ỹ ]; ˆ̃X(0)− ˆ̃Y (0) = 0.

The diophantine conditions on Ã imply that the truncation at order N of
any solution of (58) is constant, and condition ˆ̃X(0)− ˆ̃Y (0) = 0 implies that it
vanishes, so X̃N = Ỹ N .
• To check that X̃ is G-valued, it is enough to show it for X̃N , since one can

assume that X̃ = X̃N .

– if G = gl(n,C), this is trivial.
– if G = gl(n,R), this comes from the uniqueness of the solution up to order
N , since X̃ and its complex conjugate are solutions of the same equation.

– if G = sp(n,C), then ∀θ ∈ 2Td,

∂ωJ(X̃(θ)∗J + JX̃(θ)) = −J(X̃(θ)∗J + JX̃(θ))Ã− JÃ∗(X̃(θ)∗J + JX̃(θ))

= [Ã, J(X̃(θ)∗J + JX̃(θ))].

Diophantine conditions on Ã imply that X̃∗J + JX̃ is constant. Con-
dition ˆ̃X(0) = 0 implies that for every θ ∈ 2Td, X̃(θ)∗J + JX̃(θ) = 0, so
X̃ takes its values in sp(n,C).

– if G = u(n), proceed as in the sp(n,C) case, showing this time that
X̃∗ + X̃ is constant and thus is zero.

– if G = sp(n,R) or o(n), use the previous cases and the fact that sp(n,R) =

sp(n,C) ∩ gl(n,R) and o(n) = u(n) ∩ gl(n,R).
– if G = sl(n,R) or sl(2,C), note that the trace of X̃ is solution of

∀θ ∈ 2Td, ∂ω(TrX̃(θ)) = Tr[Ã, X̃(θ)] = Tr(ÃX̃(θ))− Tr(X̃(θ)Ã) = 0

so it is a constant, and as Tr ˆ̃X(0) = 0, it is identical to zero.

• As for periodicity properties, Equation (55) decomposes into blocks ac-
cording to L, then into Fourier coefficients: for 0 < |m| ≤ N ,
(59)
2iπ〈m,ω〉(P L

L
ˆ̃X(m)P L

L′) = P L
L ÃP

L
L

ˆ̃X(m)P L
L′ − P

L
L

ˆ̃X(m)P L
L′ÃP

L
L′ + P L

L
ˆ̃F (m)P L

L′ .

Let (mL) be a family such that F̃ has nice periodicity properties with respect
to L and (mL). If m is not in Zd +mL−mL′ , then P L

L
ˆ̃F (m)P L

L′ = 0 and since
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X̃N is unique, P L
L

ˆ̃X(m)P L
L′ = 0. For |m| > N one can assume ˆ̃X(m) = 0.

Therefore X̃ also has nice periodicity properties with respect to L et (mL).
• Finally let us prove the estimate (56). Let m ∈ 1

2Zd, |m| ≤ N . First we
shall prove that for all L,L′ ∈ L,
(60)

||P L
L

ˆ̃X(m)P L
L′ || ≤ C

′ (1 + ||Ã N ||)n
2−1|m|(n2−1)τ

κ′(n2−1)
||P L

L
ˆ̃F (m)P L

L′ ||(||P
L
L || ||P

L
L′ ||)

n2−1

where C ′ only depends on n. The proof will be inspired by [5], Lemma 2.
Let AL,L′ be the linear operator from gl(n,C) into itself such that for all
M ∈ gl(n,C),

AL,L′M = ÃP L
LM −MP L

L′Ã.

Decomposing (55) into blocks, then into Fourier series, one obtains for all
L,L′ ∈ L and all m ∈ 1

2Zd such that 0 <| m |≤ N ,

(61) (P L
L

ˆ̃X(m)P L
L′) = (2iπ〈m,ω〉 − AL,L′)−1P L

L
ˆ̃F (m)P L

L′ .

Write AL,L′ as an n2-dimensional matrix. Let AD ∈ gl(n2,C) be a diagonal
matrix and AN ∈ gl(n2,C) a nilpotent matrix such that

(2iπ〈m,ω〉 − AL,L′) = AD −AN .

Then AN coincides with the operator

AN : B 7→ (ÃP L
L ) N B −B(P L

L′Ã) N .

Moreover,

(2iπ〈m,ω〉 − AL,L′)−1 = A−1
D (I +ANA

−1
D + · · ·+ (ANA

−1
D )n

2−1).

We will estimate (2iπ〈m,ω〉 − AL,L′)−1, for m ∈ Zd if L = L̄′ and m ∈
1
2Zd if L 6= L̄′. Each coefficient of A−1

D (ANA
−1
D )j−1 has the form p

q with
| p |≤|| AN ||j−1 and q = β1 . . . βj where βi are eigenvalues of 2iπ〈m,ω〉− AL,L′ .
Now

σ( AL,L′) = {α− α′ | α ∈ σ(Ã|L), α′ ∈ σ(Ã|L′)}

and for all α ∈ σ(Ã|L), α′ ∈ σ(Ã|L′),

| α− α′ − 2iπ〈m,ω〉 |≥ κ′

| m |τ

for all m ∈ Zd if L = L̄′ and all m ∈ 1
2Zd if L 6= L̄′. Thus

|| (2iπ〈m,ω〉 − AL,L′)−1 ||

≤ n22n
2

(1+ || Ã N || (|| P L
L || + || P L

L′ ||))
n2−1

Å | m |τ
κ′

ãn2−1

and (61) implies (60).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



72 C. CHAVAUDRET

• The estimate (60) implies that

|P L
L X̃P

L
L′ |r′

(62)

≤ C ′ (1 + ||Ã N ||)n
2−1

κ′(n2−1)

∑
m

|m|(n
2−1)τ |P L

L F̃P
L
L′ |re

−2π|m|re2π|m|r′(||P L
L || ||P

L
L′ ||)

n2−1

where C ′ only depends on n. Now∑
m

|m|(n
2−1)τe−2π|m|(r−r′) ≤ Cd

∑
M≥1

M (n2−1)τ+de−2πM(r−r′)

≤ Cd
∫ ∞

0

t(n
2−1)τ+de−2πt(r−r′)dt

≤ Cd
(2π(r − r′))(n2−1)τ+d+1

where Cd only depends on d, so
(63)

|P L
L X̃P

L
L′ |r′ ≤

C ′′

(r − r′)(n2−1)τ+d+1

(1 + ||Ã N ||)n
2−1

κ′(n2−1)
|P L
L F̃P

L
L′ |r(||P

L
L || ||P

L
L′ ||)

n2−1

where C ′′ only depends on n, d, τ .

Let (m′L)L∈ L a family of elements of 1
2Zd and Φ defined by

Φ =
∑
L∈ L

P L
L e

2iπ〈m′L,.〉

then

|Φ−1X̃Φ|r′ = |
∑

L,L′∈ L

P L
L X̃e

2iπ〈m′L−m
′
L′ ,.〉P L

L′ |r′

and since L is an (Ã, κ′, γ)-decomposition, then Lemma 2.7 applied to (63)
gives

|Φ−1X̃Φ|r′ ≤
C3

(r − r′)(n2−1)τ+d+1

Ç
1 + ||Ã N ||

κ′

ån2(2γ+1) ∑
L,L′

|P L
L Φ−1F̃ΦP L

L′ |r

where C3 only depends on n, d, τ , whence (56).

Remark: The loss of analyticity r − r′ is needed in order to have good esti-
mates on the solution. Note that when G = o(n) or u(n), then Ã N is zero, thus
the estimate does not depend on Ã.
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2.4. Inductive lemma without reduction of the eigenvalues

2.4.1. Auxiliary lemmas. — The first lemma will be used to iterate the in-
ductive lemma without having to perform reduction of the eigenvalues at each
step, which will greatly improve the final estimates.

Lemma 2.9. — Let
– κ′ ∈]0, 1[, C > 0,
– F̃ ∈ G,
– ε̃ = ||F̃ ||,
– Ñ ∈ N,
– Ã ∈ G with DCÑω (κ′, τ) spectrum.
There exists a constant c only depending on nτ such that if ε̃ satisfies

(64) ε̃ ≤ c
Ç

Cτκ′

1 + ||Ã||

å2n

and

(65) Ñ ≤ | log ε̃|
C

then Ã+ F̃ has DCÑω ( 3κ′

4 , τ) spectrum.

Proof. — If α̃ ∈ σ(Ã + F̃ ), by Lemma 4.1 given as an appendix, there exists
α ∈ σ(Ã) such that |α− α̃| ≤ 2n(||Ã||+ 1)ε̃

1
n .

By assumption Ã has DCÑω (κ′, τ) spectrum. Thus for all α, β ∈ σ(Ã + F̃ )

and all m ∈ Zd, 0 < |m| ≤ Ñ ,

(66) |α− β − 2iπ〈m,ω〉| ≥ κ′

|m|τ
− 4n(||Ã||+ 1)ε̃

1
n

and if α 6= β̄, (66) holds for every m ∈ 1
2Zd, 0 < |m| ≤ Ñ . Therefore it is

enough to show that

4nÑτ (||Ã||+ 1)ε̃
1
n ≤ κ′

4
.

Now there is a constant c ≤ 1 which only depends on nτ such that if ε̃ ≤ c,
then

ε̃ (| log ε̃|)nτ ≤ ε̃ 1
2

so if

ε̃ ≤ c
Ç

Cτκ′

16n(||Ã||+ 1)

å2n

by asumption (65), then

4n(||Ã||+ 1)ε̃
1
n Ñτ ≤ 4n(||Ã||+ 1)ε̃

1
2nC−τ ≤ κ′

4
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which proves the Lemma.

If G is compact, then by Lemma 4.2, there exists α ∈ σ(Ã) such that |α −
α̃| ≤ ε̃, so the same conclusion is true replacing (64) by the weaker smallness
condition

(67) ε̃ ≤ c(Cτκ′)2.

Lemma 2.10. — Let

– κ′ ∈]0, 1[, C > 0,
– F̃ ∈ G,
– ε̃ = ||F̃ ||,
– Ñ ∈ N,
– Ã ∈ G with DCÑω (κ′, τ) spectrum.

There exists a constant c only depending on τ such that if ε̃ satisfies

(68) ε̃ ≤ c(Cτκ′)2

and

(69) Ñ ≤ | log ε̃|
C

then Ã+ F̃ has DCÑω ( 3κ′

4 , τ) spectrum.

Proof. — If α̃ ∈ σ(Ã + F̃ ), by Lemma 4.2, there exists α ∈ σ(Ã) such that
|α − α̃| ≤ ε̃. Since Ã has DCÑω (κ′, τ) spectrum, then for all α, β ∈ σ(Ã + F̃ )

and all m ∈ Zd, 0 < |m| ≤ Ñ ,

(70) |α− β − 2iπ〈m,ω〉| ≥ κ′

|m|τ
− 2ε̃

and if α 6= β̄, (70) holds for every m ∈ 1
2Zd, 0 < |m| ≤ Ñ . There is a constant

c ≤ 1 which only depends on τ such that if ε̃ ≤ c, then

ε̃ (| log ε̃|)τ ≤ ε̃ 1
2

so it is enough that

ε̃ ≤ c
Å
Cτκ′

8

ã2

.

The following lemma will be used to avoid doubling the period more than
once.
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Lemma 2.11. — Let A,A′ ∈ gl(n,R) and H : 2Td → gl(n,R). Assume that
H has nice periodicity properties with respect to an A-decomposition L and
assume

(71) ∀L,L′ ∈ L, P L
L (A′ −A)P L

L′ 6= 0⇒ P L
LHP

L
L′ ∈ C

0(Td, gl(n,R)).

Then H has nice periodicity properties with respect to an A′-decomposition
which is less fine than L.

Proof. — Define a decomposition L ′ of Cn as follows: for all L,L′ ∈ L,

(∃L0 ∈ L ′ | L ⊂ L0, L
′ ⊂ L0)⇔ P L

LHP
L
L′ ∈ C

0(Td, gl(n,R)).

Let (mL) be a family such thatH has nice periodicity properties with respect
to L and (mL). For all L′ ∈ L ′, let L be a subspace of L contained in L′ and
let m̄L′ = mL; the class of m̄L′ in the equivalence relation

m ∼ m′ ⇔ m−m′ ∈ Zd

does not depend on a particular choice of L. Then for all L′ ∈ L ′,

e2iπ〈m̄L′ ,.〉P L′
L′ =

∑
L∈ L,L⊂L′

e2iπ〈m̄L′ ,.〉P L
L

so for all L1, L2 ∈ L ′,

P L′
L1
HP L′

L2
e2iπ〈m̄L1

−m̄L2
,.〉

=
∑

L′1⊂L1,L′2⊂L2

P L
L′1
HP L

L′2
e

2iπ〈mL′
1
−mL′

2
,.〉
e

2iπ〈m̄L1
−mL′

1
−(m̄L2

−mL′
2
),.〉

which is continuous on Td. Moreover, let L0 ∈ L ′, then

P L′
L0
HP L′

L̄0
=

∑
L,L′∈ L,L⊂L0,L′⊂L̄0

P L
LHP

L
L′

which is continuous on Td. Thus H has nice periodicity properties with respect
to L ′.

By definition, L ′ is A-invariant. Moreover, assumption (71) implies

A′ −A =
∑
L′∈ L′

P L′
L′ (A

′ −A)P L′
L′

so it also implies that L ′ is A′−A-invariant. Thus, L ′ is A′-invariant and so it
is an A′-decomposition.

Here is a standard lemma on the estimate of the rest of the Fourier series
for an analytic function.
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Lemma 2.12. — Let H ∈ Cωr (2Td, gl(n,C)). Let N ∈ N and HN the trunca-
tion of H at order N . Then for all r′ < r,

(72) |H −HN |r′ ≤
CNd

(r − r′)d+1
|H|re−2πN(r−r′)

where C only depends on d.

Proof. — It is a simple computation. Since

H −HN =
∑
|m|>N

Ĥ(m)e2iπ〈m,.〉

then

|H −HN |r′ ≤
∑
|m|>N

||Ĥ(m)||e2π|m|r′ ≤ |H|r
∑
|m|>N

e−2π|m|(r−r′)

≤ C|H|r
∑
M>N

Mde−2πM(r−r′) ≤ C|H|r
Nd

(r − r′)d+1
e−2πN(r−r′).

2.4.2. Inductive lemma
Proposition 2.13. — Let

– ε̃ > 0, r̃ ≤ 1, r̃′ ∈ [ r̃2 , r̃[, κ
′ > 0, Ñ ∈ N, γ ≥ n(n+ 1), C > 0;

– F̃ ∈ Cωr̃ (2Td, G), Ã ∈ G,
– L an (Ã, κ′, γ)-decomposition.

There exists a constant C ′′ > 0 depending only on τ, n such that if
1. Ã has DCÑω (κ′, τ) spectrum;
2.

(73) || ˆ̃F (0)|| ≤ ε̃ ≤ C ′′
Ç

Cτκ′

1 + ||Ã||

å2n

and

(74) Ñ ≤ | log ε̃|
C

3. F̃ has nice periodicity properties with respect to L
then there exist
– C ′ ∈ R depending only on n, d, κ, τ ,
– D ∈ N depending only on n, d, τ ,
– X ∈ Cωr̃′(2Td, G),
– A′ ∈ G
– an (A′, 3κ′

4 , γ)-decomposition L ′

satisfying the following properties:
1. A′ has DCÑω ( 3κ′

4 , τ) spectrum,

tome 141 – 2013 – no 1



STRONG ALMOST REDUCIBILITY 77

2. ||A′ − Ã|| ≤ ε̃;
3. the map F ′ ∈ Cωr̃′(2Td, G) defined by

(75) ∀θ ∈ 2Td, ∂ωeX(θ) = (Ã+ F̃ (θ))eX(θ) − eX(θ)(A′ + F ′(θ))

has nice periodicity properties with respect to L ′

4. If Φ is trivial with respect to L, then

(76) |Φ−1XΦ|r̃′ ≤ C ′
Ç

1 + ||Ã N ||
κ′(r̃ − r̃′)

åDγ

|Φ−1F̃Φ|r̃

5. and if Φ is trivial with respect to L,

|Φ−1F ′Φ|r̃′ ≤ C ′
Ç

1 + ||Ã N ||
κ′(r̃ − r̃′)

åDγ

e|Φ
−1XΦ|r̃′ |Φ−1F̃Φ|r̃

(|Φ|2r̃|Φ−1|2r̃Ñde−2πÑ(r̃−r̃′) + |Φ−1F̃Φ|r̃′(1 + e|Φ
−1XΦ|r̃′ )).

(77)

Moreover, if F̃ is continuous on Td, then so are X and F ′. If G = o(n) or
u(n), then the same holds replacing condition (73) by

(78) || ˆ̃F (0)|| ≤ ε̃ ≤ C ′′(Cτκ′)2.

Proof. — By assumption, F̃ has nice periodicity properties with respect to L
and some family (mL) and Ã has DCÑω (κ′, τ) spectrum, so one can apply
Proposition 2.8. Let X ∈ Cωr′(2Td, G) be a solution of

∀θ ∈ 2Td, ∂ωX(θ) = [Ã,X(θ)] + F̃ Ñ (θ)− ˆ̃F (0)

satisfying the conclusion of Proposition 2.8.
Let A′ = Ã + ˆ̃F (0). Then A′ ∈ G and ||Ã − A′|| = || ˆ̃F (0)||, so Property 2

holds.
Moreover, let c be the constant given by Lemma 2.9, and assume C ′′ ≤ c.

Assumptions (73) and (74) make it possible to apply Lemma 2.9 and infer that
A′ has DCÑω ( 3κ′

4 , τ) spectrum, thus Property 1 holds. If G = o(n) or u(n), one
can apply Lemma 2.10 instead of Lemma 2.9 to get the same result with the
weaker smallness condition (78).

Let F ′ ∈ Cωr′(2Td, G) the map defined in (75). Then

F ′ = e−X(F̃ − F̃ Ñ ) + e−X F̃ (eX − Id)(79)

+ (e−X − Id) ˆ̃F (0)− e−X
∑
k≥2

1

k!

k−1∑
l=0

X l(F̃ Ñ − ˆ̃F (0))Xk−1−l.

We shall apply Lemma 2.11 with A = Ã andG = F ′, in order to get Property
3. The map F ′ has nice periodicity properties with respect to L and some family
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(mL) since X and F̃ have them. Moreover, as F̃ has nice periodicity properties
with respect to L,

P L
L

ˆ̃F (0)P L
L′ 6= 0⇒ P L

L F̃P
L
L′ ∈ C

0(Td)

and since

P L
L F̃P

L
L′ ∈ C

0(Td)⇒ mL −mL′ ∈ Zd ⇒ P L
L F
′P L
L′ ∈ C

0(Td)

then assumption (71) of Lemma 2.11 is fulfilled. By Lemma 2.11, F ′ has there-
fore nice periodicity properties with respect to an A′-decomposition L ′ which
is less fine than L, so L ′ is an (Ã, κ′, γ)-decomposition. As it is an (Ã, κ′, γ)-de-
composition, and by Property 2, each subspace L ∈ L ′ satisfies

|| P L′
L ||≤ C0

Å
1+ || A′N || +2ε̃

κ′

ãγ
≤ C0

Ç
1+ || A′N ||

3κ′

4

åγ

and so L ′ is an (A′, 3κ′

4 , γ)-decomposition, thus Property 3 is satisfied.
Property 4 is given by Proposition 2.8.
• By Lemma 2.12,

|F̃ − F̃ Ñ |r̃′ ≤ C1Ñ
d|F̃ |r̃

e−2πÑ(r̃−r̃′)

(r̃ − r̃′)d+1
(80)

where C1 only depends on d. By (79), (56) and Lemma 2.12, it is true that

|Φ−1F ′Φ|r̃′ ≤ C ′
Ç

1 + ||Ã N ||
κ′(r̃ − r̃′)

åDγ

e|Φ
−1XΦ|r̃′ |Φ−1F̃Φ|r̃(|Φ|2r̃|Φ−1|2r̃Ñde−2πÑ(r̃−r̃′)

+ |Φ−1F̃Φ|r̃′(1 + e|Φ
−1XΦ|r̃′ ))

where C ′ only depends on n, d, κ, τ and D only depends on n, d, τ , whence
Property 5.

2.5. Inductive step. — Now we are able to state the whole inductive step. In
the following we will denote

(81)


N(r, ε) = 1

2πr | log ε|
R(r, r′) = 1

(r−r′)8 804( 1
2n(n− 1) + 1)2

κ′′(r, r′, ε) = κ

n(8R(r,r′)
1
2
n(n−1)+1N(r,ε))τ

Proposition 2.14. — Let

– A ∈ G,
– r ≤ 1

2 , r
′′ ∈ [ 95

96r, r[,γ ≥ n(n+ 1),
– Ā, F̄ ∈ Cωr (2Td, G) and Ψ ∈ Cωr (2Td, G),
– ε = |F̄ |r.
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There exists C̃ ′ > 0 depending only on n, d, κ, τ, γ and there exists D3 ∈ N
depending only on n, d, τ such that if

1. Ā is conjugated to A by Ψ,
2. Ψ−1F̄Ψ has nice periodicity properties with respect to an

(A, κ′′(r, r′′, ε), γ)-decomposition L,
3.

(82) ε ≤ C̃ ′

(||A||+ 1)D3γ
(r − r′′)D3γ ,

4. |Ψ|r ≤ ( 1
ε )

1
2 (r−r′′) and |Ψ−1|r ≤ ( 1

ε )
1
2 (r−r′′),

then there exist

– ε′ ∈ [εR(r,r′′)n
2

, ε100],
– Z ′ ∈ Cωr′′(2Td, G),
– Ā′, F̄ ′ ∈ Cωr′′(2Td, G),
– Ψ′ ∈ Cωr (2Td, G),
– A′ ∈ G

satisfying the following properties:
1. Ā′ is conjugated by Ψ′ to A′,
2. the map Ψ′−1F̄ ′Ψ′ has nice periodicity properties with respect to an

(A′, κ′′(r′′, r′′ − r−r′′
2 , ε′), 2γ))-decomposition L ′,

3. |F̄ ′|r′′ ≤ ε′,
4. |Ψ′|r′′ ≤ ( 1

ε′ )
1
4 (r−r′′) and |Ψ′−1|r′′ ≤ ( 1

ε′ )
1
4 (r−r′′),

5. ||A′|| ≤ ||A||+ | log ε |
Ä

1
r−r′

äD3

;
6.

(83) ∂ωZ
′ = (Ā+ F̄ )Z ′ − Z ′(Ā′ + F̄ ′)

7.

(84) |Z ′ − Id|r′′ ≤
1

C̃ ′

Å
(1 + ||A||)| log ε|

r − r′′

ãD3γ

ε1−4(r−r′′)

and (Z ′)−1 − Id satisfies the same inequality.
Moreover,
– if n = 2, if Ā, F̄ are continuous on Td, and if assumption 2 is replaced by

2’. Ψ is such that for all function H continuous on Td, ΨHΨ−1 is
continuous on Td,

then Z ′, Ā′, F̄ ′ are continuous on Td and Property 2 is replaced by
2’. Ψ′ is such that for every function H continuous on Td, Ψ′HΨ′−1

is continuous on Td.
– If G = gl(n,C) or u(n) and if Ā, F̄ ,Ψ are continuous on Td, then
Z ′, Ā′, F̄ ′,Ψ′ are continuous on Td.
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– if G = o(n) or u(n), the same holds with the weaker condition

(85) ε ≤ C̃ ′(r − r′′)D3γ

instead of (82);
– if G = sl(2,C) or sl(2,R), then either Ψ′−1Ψ is the identity or || A′ ||≤
κ′′(r, r′′, ε) + ε

1
2 .

Proof. — The proof will be made in two steps: the first step is to reduce the
perturbation when there are resonances. The second step is to iterate Propo-
sition 2.13 as many times as possible using the fact that resonances, once re-
moved, do not reappear immediately.

2.5.0.1. First step: removing the resonances. — Let r′ = r+r′′

2 . Let R =

R(r, r′);N = N(r, ε);κ′′ = κ′′(r, r′, ε). Let N̄ be given by Proposition 2.6 and
Φ a map of reduction of the eigenvalues of A at order R, N̄ . Let Ψ′ = ΨΦ and
F̃ = (Ψ′)−1F̄Ψ′.

We shall apply Proposition 2.13 with

ε̃ = ε1−2(r−r′)− 1
48 , r̃ = r, r̃′ = r′, κ′ =

κ′′

C0
, Ñ = RN̄,C =

2πr

R
1
2n(n−1)+1

and Ã ∈ G such that

∀θ ∈ 2Td, ∂ωΦ(θ) = AΦ(θ)− Φ(θ)Ã.

Let C ′′ be given by Proposition 2.13 (depending only on n and τ).
The matrix Ã has DCRN̄ω (κ′′, τ) spectrum. By assumption, Ψ−1F̄Ψ has nice

periodicity properties with respect to an (A, κ′′, γ)-decomposition L and some
family (mL). Moreover Φ is trivial with respect to LA,κ′′ . Since L is an A-de-
composition, there is a Jordan decomposition which is finer than L; and since
LA,κ′′ is less fine than any Jordan decomposition, one can define an A-decom-
position L̄ in the following way:

L ∈ L̄ ⇔ ∃L1 ∈ L, L2 ∈ LA,κ′′ | L = L1 ∩ L2.

L̄ is an (A, κ
′′

C0
, 2γ)-decomposition since L and LA,κ′′ are (A, κ′′, γ)-decom-

positions and F̃ has nice periodicity properties with respect to L̄. Since L̄ is an
(A, κ

′′

C0
, 2γ)-decomposition, it is also an (Ã, κ

′′

C0
, 2γ)-decomposition (because the

nilpotent parts of A and Ã coincide, and because any Jordan decomposition
for A is a Jordan decomposition for Ã).

Moreover,
|| ˆ̃F (0)|| ≤ |F̃ |0 ≤ |Φ|0|Φ−1|0|Ψ|0|Ψ−1|0|F̄ |0.

Now by (47), for all s′ ≥ 0,

(86) | Φ |s′≤ C0

Å
1 + ||A N ||

κ′′

ãn(n+1)

e4πN̄s′
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and so does Φ−1. Thus

|| ˆ̃F (0)|| ≤ ε1−2(r−r′)C2
0

Å
1 + ||A N ||

κ′′

ã2n(n+1)

therefore, if C̃ ′ ≤ C96
0 and D3γ ≥ 96n(n+ 1), then

|| ˆ̃F (0)|| ≤ ε1−2(r−r′)− 1
48 .

Assumption (82), which implies (73) with

C̃ ′ ≤ C ′′4
Å

C

(r − r′)4n(n−1)+9

ã8nτ

, D3γ ≥ 64n(n(n− 1) + 2)τ

(note that C
(r−r′)4n(n−1)+9 has a lower bound which is independent of r − r′),

together with the choice of Ñ which implies (74), make it possible to apply
Proposition 2.13 to obtain C ′ > 0 depending only on n, d, κ, τ ,D ∈ N depending
only on n, d, τ and functions X ∈ Cωr′(2Td, G), F1 ∈ Cωr′(2Td, G), and a matrix
A1 ∈ G such that

– A1 has DCRN̄ω ( 3
4

Ä
κ′′

C0

ä
, τ) spectrum;

– ||A1 − Ã|| ≤ ε
23
24 , which implies

(87) || A1 −A ||≤ ||A1 − Ã||+ ||A− Ã|| ≤ ε
23
24 + 4πN̄ ;

If G = sl(2,C) or sl(2,R), then

||A1|| ≤|| Ã || +ε
23
24 ≤ κ′′ + ε

23
24 ;

– ∂ωe
X = (Ã+ F̃ )eX − eX(A1 + F1),

– F1 has nice periodicity properties with respect to an (A1,
3κ′′

4C0
, 2γ)-decom-

position L ′,
– and since Φ is trivial with respect to L̄,

(76) |ΦXΦ−1|r′ ≤ C ′
Å
C0(1 + ||A N ||)
κ′′(r − r′)

ãDγ
|ΦF̃Φ−1|r

and

|ΦF1Φ−1|r′ ≤ C ′
Å
C0(1 + ||A N ||)
κ′′(r − r′)

ãDγ
e|ΦXΦ−1|r′

· |ΦF̃Φ−1|r(|Φ|2r|Φ−1|2r(RN̄)de−2πRN̄(r−r′)

+ |ΦF̃Φ−1|r′(1 + e|ΦXΦ−1|r′ )).

(88)

Now
|ΦF̃Φ−1|r ≤ |Ψ|r|Ψ−1|r|F̄ |r ≤ ε1−2(r−r′)

so, by (82), if D3 is large enough as a function of n, γ,D, then

|ΦF1Φ−1|r′ ≤ ε−
1
96 ε1−2(r−r′)((RN̄)dε100 + ε1−2(r−r′)).
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There exists a constant cd which only depends on D, γ, τ such that if ε ≤ cd,
then

ε
1
2 | log ε |Dγτ≤ 1

thus if C̃ ′ is small enough and D3 big enough (as a function of n, d, γ, τ),

|ΦF1Φ−1|r′ ≤ ε2−4(r−r′)− 1
96 .

The estimate (86), the assumption (82) and the fact that || A N ||≤|| A ||,
imply that

|ΨΦ|r ≤ |Ψ|r|Φ|r ≤ ε−(r−r′)− 1
96 e4πrN̄ .

We shall estimate |ΨΦeX(ΨΦ)−1 − Id|r′ . The estimate (76) implies

|ΦeXΦ−1 − Id|r′ ≤ C ′′
Ç

(1 + ||A N ||)R
1
2 (n(n−1)+1)τNτ

r − r′

åDγ

|ΦF̃Φ−1|r

for some C ′′ only depending on n, d, κ, τ , so

|ΨΦeX(ΨΦ)−1 − Id|r′ ≤ C3

Å
(1 + ||A N ||)| log ε|

r − r′

ãD′1γ
|F̄ |r(

1

ε
)4(r−r′)

for some C3 depending only on n, d, κ, τ and D′1 depending only on n, d, τ . The
same estimate holds for |ΨΦe−X(ΨΦ)−1 − Id|r′ .

Let F̄1 = ΨΦF1(ΨΦ)−1 and let Ā1 ∈ Cωr (2Td, G) such that

∂ωΨΦ = Ā1ΨΦ−ΨΦA1.

Thus we have obtained

– N̄ ∈ [N,R
1
2n(n−1)N ],

– Z1,Ψ
′ ∈ Cωr′(2Td, G),

– A1 ∈ G
– Ā1 ∈ Cωr′(2Td, G)

– and F1 = (Ψ′)−1F̄1Ψ′

such that

1. Ā1 is conjugated to A1 by Ψ′,
2. F1 has nice periodicity properties with respect to an (A1,

3κ′′

4C0
, 2γ)-decom-

position L1,
3. | Ψ′ |r′≤ ε−(r−r′)− 1

96 e4πrN̄ and | Ψ′−1 |r′≤ ε−(r−r′)− 1
96 e4πrN̄ ,

4. A1 has DCRN̄ω ( 3
4κ
′′, τ) spectrum,

5. ∂ωZ1 = (Ā+ F̄ )Z1 − Z1(Ā1 + F̄1),
6. ||A1|| ≤ ||A|| + ε

23
24 + 4πN̄ , and, if G = sl(2,C) or sl(2,R) and Ψ′−1Ψ is

not the identity, ||A1|| ≤ κ′′(r, r′′, ε) + ε
23
24 ;
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7.

(89) |Z1 − Id|r′ ≤
1

C̃ ′

Å
(1 + ||A N ||)| log ε|

r − r′

ãD1γ

ε1−4(r−r′)

and |Z−1
1 − Id|r′ satisfies the same inequality;

8.

(90) |Ψ−1F̄1Ψ|r′ ≤ ε
3
2 ,

9. Ψ′−1Ψ is trivial with respect to LA,κ′′ ,
10. and for every s′ ≥ 0,

(91) | Ψ′−1Ψ |s′≤ Cn
Å

1+ || A N ||
κ′′

ãn(n+1)

e4πN̄s′

and | Ψ−1Ψ′ |s′ satisfies the same estimate, where Cn only depends on n.

2.5.0.2. Second step: iteration far from resonances. — Let l such that

ε(
4
3 )l+1

≤ e−2π(r−r′′) 4√
RN̄ ≤ ε( 4

3 )l .

Let ε′ = e−2π(r−r′′) 4√
RN̄ . Define the sequence εj = ε(

3
2 )j− 1

48 . We shall iterate
l − 1 times Proposition 2.13, starting with j = 2, with

– ε̃ = εj−1,

– C =
(

r−r′′
160( 1

2n(n−1)+1)

)8( 1
2n(n−1)+1)

– r̃ = rj−2 = r+r′′

2 − (j − 2) r−r
′′

2l ,
– r̃′ = rj−1 = r+r′′

2 − (j − 1) r−r
′′

2l ,
– κ′ = ( 3

4 )j−1 κ′′

C0
,

– Ñ = RN̄ ,
– F̃ = Fj−1,
– Ã = Aj−1,
– Φ = Ψ−1Ψ′,
– L = L1,

Note that for every j,

εj ≤ C ′′
(

Cτ ( 3
4 )j κ

′′

C0

1 + ||A1||+
∑j−1
l=1 εl

)2n

.

Estimates (90) and (91) imply

||F̂1(0)|| ≤| F1 |0≤| Ψ′−1Ψ |0 | Ψ−1Ψ′ |0 |Ψ−1F̄1Ψ|0

≤ C2
n

Å
1 + ||A N ||

κ′′

ã2n(n+1)

ε
3
2 ≤ ε 3

2−
1
48 .
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Moreover, A1 has DCRN̄ω ( 3
4κ
′′, τ) spectrum and F1 has nice periodicity prop-

erties with respect to L. Let C ′′ be the constant given by Proposition 2.13. By
assumption on ε, with C ′ depending only on n, d, κ, τ and D3 depending only
on n, τ , one has

ε̃ ≤ C ′′

(1 + ||A1||)2n

Å
3κ′′

4C0

ã2n

C2nτ .

Moreover,

RN̄ ≤ Rn0+1N ≤ 1

C
| log ε|

so the assumptions (73) and (74) of Proposition 2.13 hold with F̃ = F1, κ
′ =

κ′′, Ñ = RN̄ .
Fix j and assume Aj−1 has DCÑω (κ′, τ) spectrum, Fj−1 has nice periodicity

properties with respect to an (Aj−1, (
3
4 )j−1 κ′′

C0
, 2γ)-decomposition,

|| F̂j−1(0) ||≤ εj−1

and
CRN̄ ≤| log εj−1 | .

One obtains functions Fj , Xj and a matrix Aj such that

1. Aj has DCRN̄ (( 3
4 )j κ

′′

C0
, τ) spectrum,

2. ||Aj || ≤ ||Aj−1||+ εj−1,
3.

∂ωe
Xj = (Aj−1 + Fj−1)eXj − eXj (Aj + Fj)

and Fj has nice periodicity properties with respect to an
(Aj , (

3
4 )j κ

′′

C0
, 2γ)-decomposition,

4.

(92) | Ψ−1Ψ′XjΨ
′−1Ψ |rj−1

≤ C ′
Å

1 + ||(Aj−1) N ||
κ′′(rj−2 − rj−1)

ãDγ
|Ψ−1Ψ′FjΨ

′−1Ψ|rj−1

for some C ′ depending only on n, d, κ, τ and some D depending only
on n, d, τ ,

5. and

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ C ′
Å

1 + ||(Aj−1) N ||
κ′′(rj−2 − rj−1)

ãDγ
e|Ψ
−1Ψ′Xj−1Ψ′−1Ψ|rj−2

|Ψ−1Ψ′Fj−1Ψ′−1Ψ|rj−2

(| Ψ′−1Ψ |4rj−2
(RN̄)de−2πRN̄(rj−2−rj−1)

+ (1 + 2e|Ψ
−1Ψ′Xj−1Ψ′−1Ψ|rj−2 )|Ψ−1Ψ′Fj−1Ψ′−1Ψ|rj−2

).

(93)
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We shall bound || F̂j(0) || to iterate Proposition 2.13. Estimates (90) and
(82) imply

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ 3C ′
Å

1 + ||(Aj−1) N ||
κ′′(rj−2 − rj−1)

ãDγ
|Ψ−1Ψ′Fj−1Ψ′−1Ψ|rj−2

(| Ψ′−1Ψ |4rj−2
(RN̄)de−2πRN̄(rj−2−rj−1)

+ |Ψ−1Ψ′Fj−1Ψ′−1Ψ|rj−2
)

(94)

and since rj−2 − rj−1 = r−r′′
2l ,

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ |Ψ−1Ψ′Fj−1Ψ′−1Ψ|
3
4
rj−2(| Ψ′−1Ψ |4rj−2

(RN̄)de−2π
RN̄(r−r′′)

2l + |Ψ−1Ψ′Fj−1Ψ′−1Ψ|rj−2
)

≤ |Ψ−1Ψ′Fj−1Ψ′−1Ψ|
3
4
rj−2(| Ψ′−1Ψ |4rj−2

(RN̄)dε′
R

3
4

2l + |Ψ−1Ψ′Fj−1Ψ′−1Ψ|rj−2).

(95)

Now l is bounded by

l ≤ 8(
1

2
n(n− 1) + 1)

4
√
R.(96)

Moreover

| Ψ′−1Ψ |rj−2
≤ Cn

Å
1+ || A ||

κ′′

ãn(n+1)

e4πN̄rj−2 ≤ Cn
Å

1+ || A ||
κ′′

ãn(n+1)

ε
′−

2rj−2

(r−r′′) 4√
R

and so

|Ψ−1Ψ′FjΨ
′−1Ψ|rj−1 ≤ |Ψ−1Ψ′Fj−1Ψ′−1Ψ|

3
4
rj−2(ε′ + |Ψ−1Ψ′Fj−1Ψ′−1Ψ|rj−2)

≤ |Ψ−1Ψ′Fj−1Ψ′−1Ψ|
3
2
rj−2 .

(97)

By a simple induction, for every j,

(98) |Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

≤ |Ψ−1Ψ′F1Ψ′−1Ψ|(
3
2 )j−1

r0 ≤ ε( 3
2 )j .

Finally

|| F̂j(0) ||≤ |Ψ−1Ψ′FjΨ
′−1Ψ|rj−1

|| Ψ−1Ψ′ ||0 || Ψ′−1Ψ ||0≤ εj

so it is possible to iterate Proposition 2.13.
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2.5.0.3. Conclusion. — After l − 1 steps,

|Ψ−1Ψ′Fl+1Ψ′−1Ψ|rl ≤ ε′
17
16 .

Let Z = eX2 . . . eXl+1 ∈ Cωr′(2Td, G)), A′ = Al+1, F
′ = Fl+1. Then

∂ωZ = (A1 + F1)Z − Z(A′ + F ′)

and

||A′|| ≤ ||A1||+
l∑

j=1

||F̂j(0)||+ 4πN̄ ≤ ||A||+ | log ε |
Å

1

r − r′

ãD4

for D4 large enough depending only on n, whence Property 5. If G = sl(2,C)

or sl(2,R) and Ψ′−1Ψ is not the identity, then

||A′|| ≤ ||A1||+
l∑

j=1

||F̂j(0)|| ≤ κ′′(r, r′′, ε) + ε
1
2 .

To prove that Ll+1 is indeed an (Al+1, κ
′′(r′′, r − r−r′′

2 , ε′), 2γ)-decomposi-
tion, it is enough to show that

κ′′(r′′, r′′ − r − r′′

2
, ε′) ≤ (

3

4
)l+1 κ

′′

C0

which comes from the definition of the function κ′′.
Let us prove Property 4. It is true that

(99) |Ψ′|r′′ ≤ ε−
1
2 (r−r′′)ε−

1
96 e4πrN̄ ≤ ε− 1

2 (r−r′′)ε−
1
96 ε′−

r−r′′
200

and Property 4 comes from it, since

ε = ε
′ | log ε|
2π

4√
RN̄(r−r′′) .

Moreover,

|Ψ′F ′Ψ′−1|r′′ ≤ |Ψ|r|Ψ−1|r|Ψ−1Ψ′F ′Ψ′−1Ψ|r′′ ≤ ε′

whence 3. Let Z ′ = Z1Ψ′ZΨ′−1, F̄ ′ = Ψ′F ′Ψ−1 (which satisfies Property 2)
and Ā such that

∂ωΨ′ = Ā′Ψ′ −Ψ′A′.

Then 6 and 1 hold, and by (89),

|Z ′ − Id|r′′ ≤ |Z1 − Id|r1 + |Ψ|r|Ψ−1|r
∑
j

|Ψ−1Ψ′XjΨ
′−1Ψ|rj

≤ 1

C̃ ′

Å
l(1 + ||A N ||)| log ε|

r − r′′

ãD1γ

(
1

ε
)4(r−r′′)(ε+

∑
j

|Ψ−1Ψ′FjΨ
′−1Ψ|rj )
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and by (90) and (98),

|Z ′ − Id|r′′ ≤
2

C̃ ′

Å
l(1 + ||A N ||)| log ε|

r − r′′

ãD1γ

(
1

ε
)4(r−r′′)ε

whence Property 7 with D3γ ≥ 2D1γ if C ′ ≤ C̃′

2(l(r−r′′))D1γ
, since l(r − r′′) has

a bound which is independent of r − r′′.

This proposition is the inductive step which can be iterated as a whole. It
is necessary to obtain an ε′ which is much smaller than ε so as to control |Ψ′|r′
as a function of ε′ and make sure that the output be similar to the input.

2.6. Main theorem. — First let us give a lemma which will enable us to iterate
Proposition 2.14.

Lemma 2.15. — Let C ′ ≤ 1, b0 > 0, r ≤ 1
2 and r′ ∈ [ 95

96r, r[. Let D5, γ0 ∈
N.There exists C depending only on C ′, D5, γ0 such that for all ε ≤
C
Ä
r−r′
b0+1

ä2γ0D5

, choosing a sequence (εk) such that for all k,

εk ≤ ε100
k−1 < 1

and letting for all k 
γk = 2kγ0

rk = r′ + r−r′
2k

bk = bk−1+ | log εk−1 |
Ä

2k

r−r′
äD5

then for every k ∈ N,

(100) | log εk |2D5γk≤ ε−
1
4

k

and

(101)
Å

bk + 1

rk − rk+1

ãD5γk

εk ≤ C ′.

Proof. — Let us first prove (100). It is equivalent to

2k+3D5γ0 ≤
| log εk |

log | log εk |
.

The function t 7→ |log t|
log|log t| is decreasing for t ∈]0, e−

1
e ] so it is enough to show

that

2k+3D5γ0 ≤
100k | log ε |

k log 100 + log | log ε |
which is true if we choose C as a function of D5, γ0.
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• Let ak =
Ä

bk+1
rk−rk+1

äD5γk
εk. For all k,

ak+1 =

Ç
(bk+1 + 1)2k+2

r − r′

åD5γk+1

εk+1

≤
Ç

(b0 + (k + 1) | log εk |)2k+2

r − r′

å2D5γk+1
εk+1

εk
ak

so by (100),

ak+1 ≤
Å

(b0 + 1)

r − r′

ãγ016k+1D5

ε100k·98ak

thus, if ε is also smaller than ( r−r
′

b0+1 )16γ0D5 , then ak+1 ≤ ak. If ε is also small
enough to satisfy

a0 =

Å
b0 + 1

r − r′

ãD5γ0

ε ≤ C ′

for instance Å
b0 + 1

r − r′

ãD5γ0

ε
3
4 ≤ C ′

then (101) is true for all k.

Lemma 2.15 implies that assumption (82) of Proposition 2.14 holds for all
k with ε ≤ εk, ||A|| = bk, r = rk and r′′ = rk+1.

As a consequence, one gets the main result, of which we will give various
formulations.

Theorem 2.16. — Let r ≤ 1
2 , A ∈ G and F ∈ Cωr (2Td, G) with nice periodic-

ity properties with respect to LA. Let

r′ ∈ [
95

96
r, r[.

There exists D7 depending only on n, d, τ, κ,A such that if

(102) |F |r ≤ ε′0(r, r′) =

Å
r − r′

|| A || +1

ãD7

,

then for any ε ≤ ε′0, there exists

– Zε,Ψε ∈ Cωr′(2Td, G),
– Aε ∈ G,
– Āε, F̄ε ∈ Cωr′(2Td, G),

such that

1. Āε is conjugated to Aε by Ψε,
2. |F̄ε|r′ ≤ ε
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3. for every θ ∈ 2Td,

∂ωZε(θ) = (A+ F (θ))Zε(θ)− Zε(θ)(Āε(θ) + F̄ε(θ)),

4.
|Zε − Id|r′ ≤ 2D7ε

1
4−4(r−r′)
0

and Z−1
ε − Id satisfies the same inequality,

5. Zε, ∂ωZε are bounded in Cωr′(2Td, gl(n,C)) uniformly in ε,
6.

| Ψε |r′≤ ε−( 1
2 )c
′√log|log ε|

where c′ only depends on n, d, κ, τ, A.
Moreover,
i) if n = 2 or if G = gl(n,C) or u(n), if F is in Cωr (Td), then Āε, F̄ε and Zε

are in Cωr′(Td).
ii) If G is o(n) or u(n), then D7 does not depend on A and the same holds

replacing (102) by | F |r≤ (r − r′)D7 .
iii) if G = sl(2,C) or sl(2,R) and A + F is not reducible, then there exists

a sequence εk → 0 such that || Aεk || | log εk |τ is bounded.

Proof. — The proof will be made by induction as follows. Let r′′ = r+r′

2 .
Let R(r, r′′), N(r, ε), κ′′(r, r′′, ε) be as in (81). There exists γ0 ∈ N depending
only on n, d, τ, κ,A, such that LA is an (A, κ, γ0)-decomposition (one can as-
sume γ0 ≥ n(n + 1)). Let C ′, D3 be as in Proposition 2.14. Let D5 = 2D3.
Let C be as in Lemma 2.15 and D7 such thatÅ

r − r′′

||A||+ 1

ãD7

≤ C
Å
r − r′′

||A||+ 1

ã4γ0D5

.

Let

(103) ε′0 =

Å
r − r′′

||A||+ 1

ãD7

.

Before carrying on with the proof, note that if G is o(n) or u(n), then LA is
a unitary decomposition, therefore it is an (A, κ, 0)-decomposition, so one can
take γ0 = n(n + 1) and then γ0, D3, D5 and D7 do not depend on A. For all
k ∈ N, let 

rk = r′′ + r−r′′
2k

,

b0 = ||A||,
bk+1 = ||A||+

∑
j≤k

|log εj |
(rj−1−rj)D5

where (εj) will be defined by induction in the following. Suppose that |F |r ≤
ε′0. Let F̄1 = F, Ā1 = A1 = A and Ψ0 = Id. Iterate Proposition 2.14 using
Lemma 2.15 to find, for all k ≥ 1,

– Zk+1 ∈ Cωrk+1
(2Td, G),
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– Ak+1 ∈ G,
– Āk+1 ∈ Cωr (2Td, G),
– Ψk ∈ Cωr (2Td, G),
– F̄k+1 ∈ Cωrk+1

(2Td, G)

– εk+1 ∈ [ε
R(rk,rk+1)n

2

k , ε100
k ]

such that
1. Āk+1 is conjugated to Ak+1 by Ψk,
2. Ψ−1

k F̄k+1Ψk has nice periodicity properties with respect to an
(Ak+1, κ

′′(rk+1, rk+2, εk+1), 2k+1γ0)-decomposition,
3. |F̄k+1|rk+1

≤ εk+1,

4. |Ψk|r ≤ ε
− 1

2 (rk+1−rk+2)

k+1 and |Ψ−1
k |r ≤ ε

− 1
2 (rk+1−rk+2)

k+1 ,
5. ||Ak+1|| ≤ bk+1, and, if G = sl(2,C) or sl(2,R) and Ψ−1

k Ψk−1 is not the
identity,

(104) ||Ak+1|| ≤ κ′′(rk, rk+1, εk) + ε
1
2

k ;

6.
∂ωZk+1 = (Āk + F̄k)Zk+1 − Zk+1(Āk+1 + F̄k+1),

7.

|Zk+1 − Id|rk+1
≤ 1

C ′

Å
(1 + ||Ak||)| log εk|

rk − rk+1

ã2kD3γ0

ε
1−4(rk−rk+1)
k ,

which implies, using Lemma 2.15, that

|Zk+1 − Id|rk+1
≤ 1

C ′
ε

1
4−4(rk−rk+1)

k

and Z−1
k+1 − Id satisfies the same inequality.

• Let ε ≤ ε′0 and kε ∈ N such that εkε+1 ≤ ε ≤ εkε . Let
Zε = Z1 . . . Zkε

Āε = Ākε

F̄ε = F̄kε

then properties 1 and 2 hold. Thus for all θ ∈ 2Td,

(105) ∂ωZε(θ) = (A+ F (θ))Zε(θ)− Zε(θ)(Āε(θ) + F̄ε(θ))

whence Property 3. Moreover, let ak := |Z1 . . . Zk − Id|r′′ , then
– we have

a1 = |Z1 − Id|r′′ ≤
1

C ′
ε

1
4−4(r0−r1)
0

so
|Z1|r′′ ≤ 1 +

1

C ′
ε

1
4−4(r0−r1)
0 ;
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– let k ≥ 2 and assume that for all j ≤ k − 1,

|Z1 . . . Zj |r′′ ≤ 1 +
3

C ′
ε

1
4−4(r0−r1)
0

then
ak ≤ |Zk − Id|r′′ |Z1 . . . Zk−1|r′′ + ak−1

≤ a1 +
1

C ′

k−1∑
j=1

|Z1 . . . Zj |r′′ε
1
4−4(rj−rj+1)
j ≤ 3

C ′
ε

1
4−4(r0−r1)
0

and

|Z1 . . . Zk|r′′ ≤ 1 +
3

C ′
ε

1
4−4(r0−r1)
0

whence Property 4. This also implies that

|Zε|r′′ ≤ 2 +
3

C ′
ε

1
4−4(r0−r1)
0 .

Moreover, by a Cauchy estimate,

|∂ωZε|r′ ≤
1

r′′ − r′
|Zε|r′′

so 5 is true. Also note that

| Ψε |r′′=| Ψkε−1 |r′′≤ ε
− 1

2 (rkε−rkε+1)

kε
≤ ε−

1

2kε+2 .

Since

kε(kε + 1) ≥ c log

Å | log ε |
| log(| F |r) |

ã
where c only depends on n, d, κ, τ, A, then

| Ψε |r′′≤ ε−( 1
2 )c
′√log|log ε|

where c′ only depends on n, d, κ, τ, A; therefore Property 6 holds.
If G is either gl(n,C) or u(n) or if n = 2, if F is continuous on Td, each

step will give functions Zk+1, Ak+1, Āk+1, F̄k+1 continuous on Td so, at the end
of the process, the functions Zε, Āε and F̄ε are continuous on Td. Property iii)
comes from (104).

This proves Theorem 1.1.
In general, almost reducibility does not imply reducibility. Reducibility hap-

pens if there are a finite number of steps at which one has to reduce the eigen-
values, or if the sequence (Ψk) given by Theorem 2.16 converges in Cωr′(2Td, G).
In general, this sequence is not even bounded in C0(2Td, G). However, if the
method above has been used to conjugate the system A+F to a system Āε+F̄ε
where Āε is conjugated by Ψε to a constant Aε, and where F̄ε is bounded by ε,
one can also bound Ψ−1

ε F̄εΨε.
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Corollary 2.17. — Let r ≤ 1
2 , A ∈ G and F ∈ Cωr (2Td, G) with nice period-

icity properties with respect to LA. Let r′ ∈ [ 95
96r, r[. There exists D8 depending

only on n, d, κ, τ, A such that if

|F |r ≤ (r − r′)D8

then there exists

– Z ∈ Cωr′(2Td, G),
– a family (Al) of reducible functions in Cωr′(2Td, G)

– and A∞ ∈ Cωr′(2Td, G)

such that

(106) ∂ωZ(θ) = (A+ F (θ))Z(θ)− Z(θ)A∞(θ)

and
lim
l→∞

|Al −A∞|r′ = 0.

Moreover, if n = 2 or if G = gl(n,C) or u(n), if F is continuous on Td,
then Z, Al and A∞ are continuous on Td. Finally, if G = o(n) or u(n), then
D8 does not depend on A.

Proof. — Let D7 be as in Theorem 2.16 and D8 such that

(107) (r − r′)D8 ≤
Å

r − r′

1+ || A ||

ãD7

.

Let Zε ∈ Cωr′(2Td, G), Aε ∈ Cωr′(2Td, G) be as in Theorem 2.16. Then Zε
and ∂ωZε remain bounded in Cωr′(2Td, G) when ε → 0. Let Z be the limit
in Cωr′(2Td, G) of a subsequence (Z 1

kl

) of (Z 1
k

)k∈N\{0} and

A∞(θ) := Z(θ)−1(A+ F (θ))Z(θ)− Z(θ)−1∂ωZ(θ),

then
A∞ ∈ Cωr′(2Td, G), lim

l→∞
|A 1

kl

−A∞|r′ = 0

and so Equation (106) holds.
If n = 2 or if G = gl(n,C) or u(n), if F is continuous on Td, all functions

that one has to consider are continuous on Td.

Remark: In Corollary 2.17, the function A∞ is not reducible in general, it is
only a limit of reducible functions.

Corollary 2.18. — Let 0 < r′ < r ≤ 1
2 , A ∈ G and F ∈ Cωr (Td, G). There

exists ε′0 depending only on n, d, τ, κ,A, r − r′ such that if |F − A|r ≤ ε′0, then
for all ε > 0 there exists H ∈ Cωr′(2Td, G) such that |F − H|r′ ≤ ε and H is
reducible.
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Proof. — Let D7 be as in Theorem 2.16. Assume that

|F −A|r ≤ (r − r′)D7 =: ε′0.

Let ε > 0. By Theorem 2.16, there exist Zε ∈ Cωr′(2Td, G), Āε, F̄ε ∈
Cωr′(2Td, G) and Aε ∈ G such that

– Āε is conjugated to Aε,
– ∂ωZε = FZε − Zε(Āε + F̄ε),
– |Zε|r′ ≤ 2, |Z−1

ε |r′ ≤ 2,
– |F̄ε|r′ ≤ ε

4 .

Therefore
∂ωZε = HZε − ZεĀε

where H = F − ZεF̄εZ−1
ε is conjugated to Aε and satisfies

|H − F |r′ ≤ 4|F̄ε|r′ ≤ ε.

Corollary 2.19. — Let 0 < r′ < r ≤ 1
2 , A ∈ sl(2,R) and F ∈ Cωr (Td, sl(2,R)).

There exists ε′0 depending only on n, d, τ, κ,A, r− r′ such that if |F −A|r ≤ ε′0,
then for any ε > 0 there exist H ∈ Cωr′(Td, sl(2,R)) such that |F − H|r′ ≤ ε

and H is reducible.

Proof. — Do the same construction as in Corollary 2.18. Theorem 2.16 gives
functions Āε, F̄ε, Zε which are, in fact, continuous on Td. Thus H is continuous
on Td.

Corollary 2.19 also holds with gl(n,C) or u(n) instead of sl(2,R). This proves
Theorem 1.4. Again, note that if G is a compact group, then the smallness
condition does not depend on A.

3. Strong almost reducibility for quasi-periodic cocycles in a Gevrey class

Let β > 1 and r > 0. Let CG,βr (2Td, gl(n,C)) be the functions of class Gevrey
β with parameter r, i.e the functions F ∈ C∞(2Td, gl(n,C)) satisfying∑

α∈Nd

rβ|α|

α!β
sup
θ
|| ∂αF (θ) ||< +∞.

Denote by || . ||β,r the norm

|| F ||β,r=
∑
α∈Nd

rβ|α|

α!β
sup
θ
|| ∂αF (θ) || .

The main theorem in this part is formulated analogously to Theorem 1.1.
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Theorem 3.1. — Let 0 < r′ < r ≤ 1
2 , A ∈ G, F ∈ CG,βr (Td, G). There is

ε0 < 1 depending only on n, d, κ, τ, A, r − r′ such that if

||F ||β,r ≤ ε0

then for all ε > 0, there exists Āε, F̄ε ∈ CG,βr′ (2Td, G), Ψε, Zε ∈ CG,βr′ (2Td, G)

and Aε ∈ G such that for all θ ∈ 2Td,

∂ωZε(θ) = (A+ F (θ))Zε(θ)− Zε(θ)(Āε(θ) + F̄ε(θ))

with

– Āε conjugated to Aε by Ψε,
– ||F̄ε||β,r′ ≤ ε,
– || Ψε ||β,r′≤ ε−

1
8 ,

– and ||Zε − Id||β,r′ ≤ 2ε
1
2
0 .

Moreover,

– if n = 2 or if G = GL(n,C) or U(n), Zε, Āε, F̄ε are continuous on Td;
– If G is o(n) or u(n), then ε0 does not depend on A;
– if G = sl(2,C) or sl(2,R) and A+ F is not reducible, then there exists a
sequence εk → 0 such that || Aεk || | log εk |τ is bounded.

3.1. Preliminaries on Gevrey class functions. — Remark:

– For all 0 < r′ < r, one has the inclusion CG,βr (2Td, G) ⊂ CG,βr′ (2Td, G)

and
|| f ||β,r′≤|| f ||β,r .

– For f, g ∈ CG,βr (2Td, G), one has ||fg||β,r ≤ ||f ||β,r||g||β,r (see [8], ap-
pendix).

Lemma 3.2. — For all m ∈ Zd and all r′ > 0, the map θ 7→ e2iπ〈m,θ〉 satisfies

|| e2iπ〈m,.〉 ||β,r′≤ eβπr
′d|m|

1
β
.

Proof. — For all α ∈ Nd and all θ ∈ Td,

r′β|α|

(α!)β
| ∂α(e2iπ〈m,θ〉) | ≤ r′β|α|

(α!)β

∏
j

| 2πmj |αj

≤
∏
j

(r′β | 2πmj |)αj
(αj !)β

≤
∏
j

Ç
(r′ | 2πmj |

1
β )αj

αj !

åβ
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thus ∑
α

r′β|α|

(α!)β
| ∂α(e2iπ〈m,θ〉) | ≤

∏
j

∑
αj

Ç
(r′ | 2πmj |

1
β )αj

αj !

åβ

≤
∏
j

Ñ∑
αj

(r′ | 2πmj |
1
β )αj

αj !

éβ

≤
∏
j

eβr
′|2πmj |

1
β ≤ eβπr

′d|m|
1
β
.

Remark: This implies that the functions which are analytic on an r-neigh-
bourhood of the torus or the double torus are Gevrey β with parameter r for
all β > 1;

Sublemma 3.3. — Let f ∈ CG,βr (2Td, gl(n,C)). Then for all m ∈ 1
2Zd,

|| f̂(m) ||≤|| f ||β,r (1− 1

2
β
β−1

)1−βe
−
∑

j
(2π|mj |)

1
β r
.

Proof. — By definition of || f ||β,r,∑
α∈Nd

||‘∂αf(m) || r
β|α|

α!β
≤
∑
α∈Nd

sup
θ
|| ∂αf(θ) || r

β|α|

α!β
=|| f ||β,r .

Now

∂αf(θ) ∼
∑
m

f̂(m)∂α(e2iπ〈m,θ〉) ∼
∑
m

f̂(m)
∏
j

(2iπmj)
αj .(e2iπ〈m,θ〉)

thus ‘∂αf(m) =
∏
j

(2iπmj)
αj f̂(m)

and therefore

(108) || f̂(m) ||
∑
α∈Nd

∏
j

(2π | mj |)αj
rβαj

αj !β
≤|| f ||β,r

that is to say,

(109) || f̂(m) ||
∏
j

∑
αj∈N

(2π | mj |)αj
rβ|αj |

αj !β
≤|| f ||β,r .

Now, by Lemma 4.3,∑
αj∈N

(2π | mj | rβ)αj
1

αj !β
≥ (1− 1

2
β
β−1

)β−1e(2π|mj |)
1
β r
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therefore

|| f̂(m) ||≤|| f ||β,r (1− 1

2
β
β−1

)1−βe
−
∑

j
(2π|mj |)

1
β r
.

Lemma 3.4. — Let 0 < r ≤ 1, f ∈ CG,βr (2Td, gl(n,C)), N ∈ N and fN the
truncation of f at order N . Then for all r′ < r,

||f − fN ||β,r′ ≤ Cd,β || f ||β,r Nd+1 1

(r − r′)2(d+1)
e−2(r−r′)N

1
β

where Cd,β only depends on d, β.

Proof. — By definition,

||f − fN ||β,r′ =
∑
α

sup
θ

r′β|α|

α!β
| ∂α(f − fN )(θ) | .

Now

| ∂α(f − fN )(θ) |≤
∑
|m|>N

|| f̂(m) ||
d∏
j=1

| mj |αj

so by SubLemma 3.3,

| ∂α(f − fN )(θ) |≤ (1− 1

2
β
β−1

)1−β || f ||β,r
∑
|m|>N

e−
∑

l
(2π|ml|)

1
β r

d∏
j=1

| mj |αj

whence

||f − fN ||β,r′

≤ (1− 1

2
β
β−1

)1−β || f ||β,r
∑
α

r′β|α|

α!β

∑
|m|>N

e−
∑

l
(2π|ml|)

1
β r

d∏
j=1

| mj |αj

≤ (1− 1

2
β
β−1

)1−β || f ||β,r
∑
|m|>N

e−
∑

l
(2π|ml|)

1
β r

d∏
j=1

∑
αj

r′βαj

αj !β
| mj |αj

thus, using Lemma 4.3,

||f − fN ||β,r′ ≤ (1− 1

2
β
β−1

)1−β || f ||β,r
∑
|m|>N

e
−2(r−r′)

∑
j
|mj |

1
β

≤ (1− 1

2
β
β−1

)1−β || f ||β,r
∑
|m|>N

e−2(r−r′)|m|
1
β
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and finally

||f − fN ||β,r′ ≤ Cd,β || f ||β,r
∑
M>N

Mde−2(r−r′)M
1
β

≤ C ′d,β || f ||β,r
Nd+1

(r − r′)2(d+1)
e−2(r−r′)N

1
β

where Cd,β , C ′d,β only depend on d, β.

3.2. Reduction of the eigenvalues. — The reduction of the eigenvalues of a ma-
trix A at order R, N̄ satisfies a good estimate in the Gevrey norm, as shows
the following proposition:

Lemma 3.5. — Let R,N ∈ N \ {0}, A ∈ gl(n,C) and Φ a map of reduction of
the eigenvalues of A at order R, N̄ . Then Φ satisfies for all r′ the Gevrey norm
estimate

(110) ||Φ||β,r′ ≤ nC.C0

Å
1 + ||A N ||

κ′′

ãn(n+1)

e2βπr′dN̄
1
β

where C only depends on d, and Φ−1 satisfies the same inequality. Moreover,
if G = o(n) or u(n), then

(111) ||Φ||β,r′ ≤ nCe2βπr′dN̄
1
β

and Φ−1 satisfies the same estimate.

Proof. — For all m ∈ Zd and all r′ > 0, by Lemma 3.2,

||e2iπ〈m,.〉||β,r′ ≤ Ceβπr
′d|m|

1
β

where C only depends on d. Therefore

||Φ||β,r′ ≤
∑

L∈ LA,κ′′

|| P LA,κ′′
L || || e2iπ〈mL,.〉 ||r′

≤ C
∑

L∈ LA,κ′′

|| P LA,κ′′
L || eβπr

′d|mL|
1
β

≤ C
∑

L∈ LA,κ′′

|| P LA,κ′′
L || e2βπr′dN̄

1
β
.

Now by Lemma 2.1,

|| P LA,κ′′
L ||≤ C0

Å
1+ || A N ||

κ′′

ãn(n+1)

so (110) holds. If G is either o(n) or u(n), then LA,κ′′ is a unitary decomposition
and thus P LA,κ′′

L has norm 1, thus (111) holds.
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3.3. Homological equation

Lemma 3.6. — Let 0 < r′ < r ≤ 1, f ∈ CG,βr (2Td, G) and g ∈ CG,βr′ (2Td, G).
Let C > 0, D ≥ 0. Assume that for all m ∈ 1

2Zd,

||ĝ(m)|| ≤ C|m|D||f̂(m)||.

Then

||g||β,r′ ≤ C ′C||f ||β,r
Å

1

r − r′

ã2β(D+2)d

where C ′ only depends on d,D, β.

Proof. — For all θ ∈ NTd and all α ∈ Nd,

||∂αg(θ)|| ≤
∑

m∈ 1
2 Zd
|| ĝ(m) || | ∂αe2iπ〈m,θ〉 |

≤
∑

m∈ 1
2 Zd
|| ĝ(m) ||

∏
j

| 2πmj |αj .

Therefore, by assumption,

||∂αg(θ)|| ≤ C
∑

m∈ 1
2 Zd
|m|D||f̂(m)||

∏
j

| 2πmj |αj

≤ C ′C
∑
m 6=0

1

| 2πm |2d
∏
j

| 2πmj |αj+D+2 ||f̂(m)||

so, letting 1̄ = (1, . . . , 1),

||∂αg(θ)|| ≤ C ′C
∑
m 6=0

1

| 2πm |2d
||
¤�
∂α+(D+2)¯

f1(m)||

≤ C ′C sup
θ
||∂α+(D+2)1̄f(θ)||

where C ′ only depends on d,D, thus

||g||β,r′ =
∑
α∈Nd

(r′)β|α|
1

(α!)β
sup
θ
||∂αg(θ)||

≤ C ′C
∑
α

(r′)β|α|
1

(α!)β
sup
θ
||∂α+(D+2)1̄f(θ)||
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≤ C ′C
∑
α

rβ|α+(D+2)1̄|

((α+ (D + 2)1̄)!)β
sup
θ
||∂α+(D+2)1̄f(θ)||

r′β|α|

rβ|α+(D+2)1̄|

Å
(α+ (D + 2)1̄)!

α!

ãβ
≤ C ′C || f ||β,r

∑
α

r′β|α|

rβ(|α|+(D+2)d)

∏
j

Å
(αj +D + 2)!

αj !

ãβ
≤ C ′C || f ||β,r

∑
α

r′β|α|

rβ(|α|+(D+2)d)

Å
(| α | +D + 2)!

| α |!

ãβd
≤ C ′C || f ||β,r

∑
α

r′β|α|

rβ(|α|+(D+2)d)
(| α | +D + 2)

β(D+2)d
.

Now the function

φ : [0,+∞[→ [0,+∞[, t 7→
Å
r′

r

ãt
tβ(D+2)d

has its maximum at t = β(D+2)d
ln r
r′

where it takes the value

e−β(D+2)d
(
β(D+2)d

ln r
r′

)β(D+2)d

. Therefore

||g||β,r′ ≤ C ′C||f ||β,re−β(D+2)d

Ç
β(D + 2)d

r′ ln r
r′

åβ(D+2)d

≤ C ′C||f ||β,re−β(D+2)d (β(D + 2)d)β(D+2)d

(r − r′)2β(D+2)d
.

Proposition 3.7. — Let

– N ∈ N,
– κ′ ∈]0, κ],
– γ ≥ n(n+ 1),
– 0 < r′ < r.

Let Ã ∈ G with a DCNω (κ′, τ) spectrum. Let F̃ ∈ CG,βr (2Td, G) with nice pe-
riodicity properties with respect to an (Ã, κ′, γ)-decomposition L. Then there
exists a solution X̃ ∈ CG,βr′ (2Td, G) of equation

(112) ∀θ ∈ 2Td, ∂ωX̃(θ) = [Ã, X̃(θ)] + F̃N (θ)− ˆ̃F (0); ˆ̃X(0) = 0

such that

– if F̃ has nice periodicity properties with respect to L and (mL), then so
does X̃; in particular, if F̃ is defined on Td, then so is X̃.
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– Let Φ be trivial with respect to L and a family (mL) such that for all L,
| mL |≤ N ′. There exists C ′, D′ depending only on n, d, τ, β such that

(113) || ΦX̃Φ−1 ||β,r′≤ C ′
Ç

(1 + ||Ã N ||)N ′

(r − r′)κ′

åD′γ

|| ΦF̃Φ−1 ||β,r .

Moreover, the truncation of X̃ at order N is unique.

Proof. — The existence of X̃, its uniqueness up to order N , the fact that it
takes its values in G and its nice periodicity properties with respect to L are
proved as in part 2, Proposition 2.8.

To get the estimate (113), one first shows that for all m ∈ 1
2Zd and all

L,L′ ∈ L ′,
(114)

||P L
L

ˆ̃X(m)P L
L′ || ≤ C

′ (1 + ||Ã N ||)n
2−1|m|(n2−1)τ

κ′(n2−1)
||P L

L
ˆ̃F (m)P L

L′ ||(||P
L
L || ||P

L
L′ ||)

n2−1.

It is done exactly as in Proposition 2.8 to get (60). The estimate (114) and
Lemma 3.6 imply

||P L′
L X̃e2iπ〈mL−mL′ 〉P L′

L′ ||β,r′ ≤ C
′′
Ç

(1 + ||Ã N ||)N ′

(r − r′)κ′

åDγ

||P L′
L F̃ e2iπ〈mL−mL′ 〉P L′

L′ ||β,r

where C ′′, D only depend on n, d, τ, β. Thus

||ΦX̃Φ−1||β,r′ ≤
∑
L,L′

||P L′
L X̃e2iπ〈mL−mL′ 〉P L′

L′ ||β,r

≤ C ′′
Ç

(1 + ||Ã N ||)N ′

(r − r′)κ′

åDγ ∑
L,L′

||P L′
L F̃ e2iπ〈mL−mL′ 〉P L′

L′ ||β,r

and therefore

||ΦX̃Φ−1||β,r′ ≤ C3

Ç
(1 + ||Ã||)N ′

(r − r′)κ′

åD′γ

||ΦF̃Φ−1||β,r

where D′, C3 only depend on n, d, τ, β.

3.4. Inductive lemmas. — In Gevrey regularity, we will need a Lemma which
is almost identical to Lemma 2.9, apart from the presence of the parameter β,
which is fixed and does not modify the proof:

Lemma 3.8. — Let
– κ′ ∈]0, 1[, C > 0, β > 1;
– F̃ ∈ G,
– ε̃ = ||F̃ ||,
– Ñ ∈ N,
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– Ã ∈ G with DCÑω (κ′, τ) spectrum.

There exists a constant c only depending on nτ, β such that if ε̃ satisfies

(115) ε̃ ≤ c
Ç

Cτκ′

1 + ||Ã||

å2n

and

(116) Ñ ≤ | log ε̃|β

C

then Ã+ F̃ has DCÑω ( 3κ′

4 , τ) spectrum.

We had to introduce the parameter β, which tightens the condition on c and
releases the one on Ñ , because in the Gevrey case we will have to determine
the parameter Ñ , i.e to determine the parameters R and N , in a different way;
namely, as shown in (124).

Exactly as in the analytic case (Proposition 2.13), one obtains the following
inductive lemma, where only the estimates slightly differ from their analytic
analogues; since β is fixed, the proof goes on in quite the same way:

Proposition 3.9. — Let

– ε̃ > 0, r̃ ≤ 1, r̃′ ∈ [ r̃2 , r̃[, κ
′ > 0, Ñ ∈ N, γ ≥ n(n+ 1), C > 0;

– F̃ ∈ CG,βr̃ (2Td, G), Ã ∈ G,
– L an (Ã, κ′, γ)-decomposition.

There exists a constant C ′′ > 0 depending only on τ, n, β such that if

1. Ã has DCÑω (κ′, τ) spectrum;
2.

(117) || ˆ̃F (0)|| ≤ ε̃ ≤ C ′′
Ç

Cτκ′

1 + ||Ã||

å2n

and

(118) Ñ ≤ | log ε̃|β

C

3. F̃ has nice periodicity properties with respect to L

then there exist

– C ′ ∈ R depending only on n, d, κ, τ, β,
– D ∈ N depending only on n, d, τ, β,
– X ∈ CG,βr̃′ (2Td, G),
– A′ ∈ G
– an (A′, 3κ′

4 , γ)-decomposition L ′

satisfying the following properties:
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1. A′ has DCÑω ( 3κ′

4 , τ) spectrum,
2. ||A′ − Ã|| ≤ ε̃;
3. the map F ′ ∈ CG,βr̃′ (2Td, G) defined by

(119) ∀θ ∈ 2Td, ∂ωeX(θ) = (Ã+ F̃ (θ))eX(θ) − eX(θ)(A′ + F ′(θ))

has nice periodicity properties with respect to L ′

4. If Φ is trivial with respect to L and a family (mL) satisfying, for all L,
| mL |≤ N ′, then

(120) ||Φ−1XΦ||β,r̃′ ≤ C ′
Ç

(1 + ||Ã N ||)N ′

κ′(r̃ − r̃′)

åDγ

||Φ−1F̃Φ||β,r̃,

5. and if Φ is trivial with respect to L and a family (mL) satisfying, for all
L, | mL |≤ N ′, then

||Φ−1F ′Φ||β,r̃′ ≤ C ′
Ç

(1 + ||Ã N ||)N ′

κ′(r̃ − r̃′)

åDγ

e||Φ
−1XΦ||β,r̃′ ||Φ−1F̃Φ||β,r̃

(||Φ||2β,r̃||Φ−1||2β,r̃Ñde−2πÑ
1
β (r̃−r̃′) + ||Φ−1F̃Φ||β,r̃′(1 + e||Φ

−1XΦ||β,r̃′ )).

(121)

Moreover, if F̃ is continuous on Td, then so are X and F ′. If G = o(n) or
u(n), then the same holds replacing condition (117) by

(122) || ˆ̃F (0)|| ≤ ε̃ ≤ C ′′(Cτκ′)2

Proof. — In Proposition 3.9, the only difference with Proposition 2.13 is the in-
troduction of the parameters β and N ′. The “algebraic” aspects are unchanged.
The estimate (80) in the proof of Proposition 2.13 is replaced by the one given
by Lemma 3.4:

|F̃ − F̃ Ñ |r̃′ ≤ Cd,βÑd+1|F̃ |r̃
e−2πÑ

1
β (r̃−r̃′)

(r̃ − r̃′)2(d+1)
(123)

which results in Property 5 instead of (77). The parameter N ′ in (120) and in
(121) comes from (113).

The inductive step would be formulated exactly as Proposition 2.14 (up to
notations), with the only difference that the parameters N,R will be chosen as

(124)

{
N(r, ε) = ( 1

2πr | log ε|)β

R(r, r′) = [ 1
(r−r′)8 804( 1

2n(n− 1) + 1)2]β

and not as in (81). This choice is natural since Φ now satisfies the estimate
(110) instead of (47) and F ′ now satisfies (121) instead of (77), so that N and
R now appear in the estimates with the exponent 1

β . Therefore, this choice
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will eventually lead to the same resolution: for instance, in the proof of Propo-
sition 2.14, replacing the estimate (86) by (110) will not change the bound
on || ˆ̃F (0) ||. The parameter N ′ in (121) does not modify essentially the proof
either, once it is instantiated by N̄ . For instance, if (76) and (88) are replaced
by

(76) |ΦXΦ−1|r′ ≤ C ′
Å
C0(1 + ||A N ||)N̄

κ′′(r − r′)

ãDγ
|ΦF̃Φ−1|r

and

|ΦF1Φ−1|r′ ≤ C ′
Å
C0(1 + ||A N ||)N̄

κ′′(r − r′)

ãDγ
· e|ΦXΦ−1|r′ |ΦF̃Φ−1|r(|Φ|2r|Φ−1|2r(RN̄)de−2πRN̄(r−r′)

+ |ΦF̃Φ−1|r′(1 + e|ΦXΦ−1|r′ ))

(125)

then a slight modification on the assumption (82) will allow to finally obtain
the same bound on ΦF1Φ−1.

The proof of Theorem 3.1 is identical (up to notations) to the proof of Theo-
rem 2.16. It consists of an iteration of the inductive step, just as Theorem 2.16
is proved by iterating Proposition 2.14.

4. Appendix

4.1. Spectrum of a one-parameter family of matrices

Lemma 4.1. — Let G be a Lie algebra and A,F ∈ G with ||F || ≤ 1.
Let α1(λ), . . . , αn(λ) be a continuous choice of the eigenvalues of A+ λF as λ
varies from 0 to 1. Then for all 1 ≤ j ≤ n, there exists 1 ≤ j′ ≤ n such that

| αj′(λ)− αj(0) |≤ 2nλ
1
n (|| A || +1).

Proof. — Fix j ≤ n. For every λ, let

A(λ) = A+ λF

and
f(λ) = det(αj(0)I −A(λ)).

Then f(0) = 0 and for every λ,

f(λ) = det(αj(0)I −A(λ)) =
∏
j′

(αj(0)− αj′(λ))

so
|
∏
j′

(αj(0)− αj′(λ)) |=| f(0)− f(λ) |≤ sup
λ′′
| f ′(λ′′) | | λ |
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and since

| f ′(λ′′) | =|
∑
σ

d

dλ′′

∏
k

(αj(0)I −A− λ′′F )k,σ(k) |

≤ nn![|| A || + || A(λ′′) ||]n−1

≤ 2n−1nn![|| A || +1]n−1

then there exists j′ such that

| αj(0)− αj′(λ) |≤ 2n | λ | 1n [|| A || +1].

In case G is compact, we have the following lemma (see [4], Lemma A.5):

Lemma 4.2. — Let G = o(n) or u(n) and A,F ∈ G with ||F || ≤ 1.
Let α1(λ), . . . , αn(λ) be an analytic choice of the eigenvalues of A + λF as λ
varies from 0 to 1. Then for all 1 ≤ j ≤ n,

(126) | αj(λ)− αj(0) |≤ λ.

Proof. — For each λ, let p1(λ), . . . , pn(λ) be an orthonormal basis of eigenvec-
tors of A + λF (take them analytic in λ). Then for each 1 ≤ j ≤ n, one can
assume

(A+ λF )pj(λ) = αj(λ)pj(λ)

and derivating this along λ, one gets

(A+ λF − αj(λ))p′j(λ) + (F − α′j(λ))pj(λ) = 0.

Now let β1, . . . , βn be such that

p′j(λ) =
n∑
l=1

βlpl(λ).

Then ∑
l 6=j

βl(A+ λF − αj(λ))pl(λ) + (F − α′j(λ))pj(λ) = 0

and taking the scalar product with pj(λ),

〈(Fpj(λ), pj(λ)〉 = α′j(λ).

Therefore
| αj(0)− αj(λ) |≤| λ | sup

λ′
| α′j(λ′) |≤ λ.
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4.2. A lemma on integer series with non-negative terms. — The following lemma
was proven by D. Sauzin and is used in Section 3.

Lemma 4.3. — Let a > 0. For all r ≥ 0, consider Ea(r) =
∑
k≥0

rk

k!a . Then

(127)

K1e
λar

1
α ≤ Ea(r) ≤ ear

1
a if a > 1, 0 < λ < 1

ear
1
a ≤ Ea(r) ≤ K1e

λar
1
a if 0 < a < 1, λ > 1

where
K1 = (1− λ

a
a−1 )a−1 < 1.

Proof. — One uses the following inequalities: if α > 1 and (Xk)k∈N, (Yk)k∈N
are families of non-negative numbers,

(128)
∑

Xα
k ≤ (

∑
Xk)α

and

(129)
∑

Xα
k ≥

(
∑
XkYk)α

(
∑
Y βk )

α
β

for β = α
α−1 , if

∑
XkYk <∞. Note that (128) is equivalent to

(130)
∑

x
1
α

k ≥ (
∑

xk)
1
α

with Xk = x
1
α

k . Also (129) is equivalent to

(131)
∑

x
1
α

k ≤ (
∑

y
α
α−1

k )1− 1
α (
∑ xk

yk
)

1
α

with Xk = (xkyk )
1
α and yk = Y αk .

1. In the first case, apply (128) and (129) with α = a,Xk = r
k
α

k! and Yk = λk.

2. In the second case, apply (130) and (131) with α = 1
a , xk = r

k
a

k! and
yk = λ−k.
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