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ABsTrACT. — The Hopf algebra of word-quasi-symmetric functions (WQSym), a
noncommutative generalization of the Hopf algebra of quasi-symmetric functions, can
be endowed with an internal product that has several compatibility properties with
the other operations on WQSym. This extends constructions familiar and central in
the theory of free Lie algebras, noncommutative symmetric functions and their various
applications fields, and allows to interpret WQSym as a convolution algebra of linear
endomorphisms of quasi-shuffle algebras. We then use this interpretation to study the
fine structure of quasi-shuffle algebras (MZVs, free Rota-Baxter algebras...). In par-
ticular, we compute their Adams operations and prove the existence of generalized
Eulerian idempotents, that is, of a canonical left-inverse to the natural surjection map
to their indecomposables, allowing for the combinatorial construction of free polyno-
mial generators for these algebras.

RESUME (Sur les endomorphismes naturels des algébres de quasi-shuffle)
L’algébre de Hopf des fonctions quasi-symétriques sur les mots (WQSym), une
généralisation non commutative de ’algébre de Hopf des fonctions quasi-symétriques,
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108 J.-C. NOVELLI, F. PATRAS & J.-Y. THIBON

peut étre munie d’un produit interne qui a des propriétés remarquables de compati-
bilité aux autres opérations sur WQSym. Cette construction étend des constructions
familiéres et centrales de la théorie des algébres de Lie libres, des fonctions non com-
mutatives symétriques et de leurs nombreux domaines d’application. Elle permet aussi
d’interpréter WQSym comme algébre de convolution des endomorphismes linéaires
des algébres quasi-shuffle. Nous utilisons cette interprétation pour étudier la structure
fine des algébres quasi-shuffle (MZVs, algébres de Rota-Baxter libres...). En particulier,
nous étudions leurs opérations d’Adams et prouvons l’existence d’un inverse & gauche
canonique a la surjection naturelle vers les indécomposables ; elle donne lieu & une
construction combinatoire de leurs générateurs polynomiaux.

1. Introduction

Quasi-shuffles appeared as early as 1972 in the seminal approach by P.
Cartier to Baxter algebras (now most often called Rota-Baxter algebras) [3].
Their study was revived and intensified during the last 10 years, for a vari-
ety of reasons. The first one was the study of MZVs (multiple zeta values),
for example in the works of Hoffman, Minh, Racinet or Zagier, since quasi-
shuffles encode one representation of their products. Another line of study,
largely motivated by the recent works of Connes and Kreimer on the structures
of quantum field theories, was the revival of the theory of Rota-Baxter alge-
bras initiated by M. Aguiar, K. Ebrahimi-Fard, L. Guo, and others. We refer
to [17, 29, 5, 18, 1, 13, 9, 10], also for further bibliographical and historical ref-
erences on these subjects. Quasi-shuffle algebras are also the free commutative
tridendriform algebras [20]. A systematic presentation of Rota-Baxter algebras
and of the above relations can be found in the forthcoming book [12].

The present work arose from the project to understand the combinatorial
structure of “natural” operations acting on the algebra of MZVs and, more
generally on quasi-shuffle algebras. It soon became clear to us that the Hopf
algebra of word quasi-symmetric functions (WQSym), was the right setting
to perform this analysis and that many properties of the classical Lie calculus
(incorporated in the theory of free Lie algebras and connected topics) could be
translated into this framework.

This article is a first step in that overall direction. It shows that word quasi-
symmetric functions act naturally on quasi-shuffle algebras and that some key
ingredients of the classical Lie calculus such as Solomon’s Eulerian idempotents
can be lifted to remarquable elements in WQSym. In the process, we show that
WQSym is the proper analogue of the Hopf algebra FQSym of free quasi-
symmetric functions (also known as the Malvenuto-Reutenauer Hopf algebra)
in the setting of quasi-shuffle algebras. Namely, we prove a Schur-Weyl duality
theorem for quasi-shuffle algebras extending naturally the classical one (which
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ENDOMORPHISMS OF QUASI-SHUFFLE ALGEBRAS 109

states that the linear span of permutations is the commutant of endomorphims
of the tensor algebra over a vector space V induced by linear endomorphims of
V).
The main ingredient of this theory is that the natural extension of the inter-
nal product on the symmetric group algebras to a product on the linear span
of surjections between finite sets, which induces a new product on WQSym, is
a lift in WQSym of the composition of linear endomorphisms of quasi-shuffle
algebras. This simple observation yields ultimately the correct answer to the
problem of studying the formal algebraic structure of quasi-shuffle algebras
from the Lie calculus point of view.

2. Word quasi-symmetric functions

In this section, we briefly survey the recent theory of noncommutative quasi-
symmetric functions and introduce its fundamental properties and structures.
The reader is referred to [15, 6, 16] for details and further information. Let
us mention that the theory of word quasi-symmetric functions is very closely
related to the ones of Solomon-Tits algebras and twisted descents, the develop-
ment of which was motivated by the geometry of Coxeter groups, the study of
Markov chains on hyperplane arrangements and Joyal’s theory of tensor species.
We will not consider these application fields here and refer to [35, 2, 31, 28].

Let us first recall that the Hopf algebra of noncommutative symmetric func-
tions [11] over an arbitrary field K of characteristic zero, denoted here by Sym,
is defined as the free associative algebra over an infinite sequence (Sy)n>1,
graded by deg S,, = n, and endowed with the coproduct

n
(1) AS, =) St ®S,_ (where So=1).
k=0

It is naturally endowed with an internal product * such that each homoge-
neous component Sym,, gets identified with the (opposite) Solomon descent
algebra of &,,, the symmetric group of order n. Some bigger Hopf algebras
containing Sym in a natural way are also endowed with internal products,
whose restriction to Sym coincides with *. An almost tautological example is
FQSym, which, being based on permutations, with the group law of G,, as
internal product, induces naturally the product of the descent algebra [7, 21].

A less trivial example [22] is WQSym*, the graded dual of WQSym (Word
Quasi-symmetric functions, the invariants of the quasi-symmetrizing action on
words [6]). It can be shown that each homogenous component WQSym, can be
endowed with an internal product (with a very simple combinatorial definition),
for which it is anti-isomorphic with the Solomon-Tits algebra, so that it contains
Sym,, as a x-subalgebra in a non-trivial way. The internal product of WQSym*
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110 J.-C. NOVELLI, F. PATRAS & J.-Y. THIBON

is itself induced by the one of PQSym (parking functions), whose restriction to
the Catalan subalgebra CQSym again contains Sym in a nontrivial way [23].

Let us recall the relevant definitions. We denote by A = {a; < az < ...} an
infinite linearly ordered alphabet and A* the corresponding set of words. The
packed word u = pack(w) associated with a word w € A* is obtained by the
following process. If by < by < --- < b, are the letters occuring in w, u is the
image of w by the homomorphism b; — a;. A word u is said to be packed if
pack(u) = u. We denote by PW the set of packed words. With such a word, we
associate the noncommutative polynomial

(2) M,(4):= Y w.

pack(w)=u
For example, restricting A to the first five integers,
Miz132(A) = 13132 + 14142 + 14143 + 24243

3
®) + 15152 + 15153 + 25253 + 15154 + 25254 4 35354.

As for classical symmetric functions, the nature of the ordered alphabet A
chosen to define word quasi-symmetric functions M, (A) is largely irrelevant
provided it has enough elements. We will therefore often omit the A-dependency
and write simply M,, for M, (A), except when we want to emphasize this de-
pendency (and similarly for the other types of generalized symmetric functions
we will have to deal with).

Under the abelianization x : K(A) — K[A], the M, are mapped to the
monomial quasi-symmetric functions M;, where I = (|u|s)qca is the composi-
tion (that is, the sequence of integers) associated with the so-called evaluation
vector ev(u) of u (ev(u); := |ule, := |{j,u; = a;}|). Recall, for the sake of
completeness, that the My are defined, for I = (i1, ..., ), by:

(4) My = Z aéll...a;’;.
J1<...<Jk

The polynomials M, span a subalgebra WQSym of K(A) [14]. This algebra
can be understood alternatively as the algebra of invariants for the noncom-
mutative version [6] of Hivert’s quasi-symmetrizing action, which is defined in
such a way that two words are in the same &(A)-orbit (where G(A) is the
group of set automorphisms of A) iff they have the same packed word. We refer
to [15] for details on the quasi-symmetrizing action.

As for Sym, WQSym carries naturally a Hopf algebra structure. Its sim-
plest definition is through the use of two ordered countable alphabets, say
A={a1 <..<ap, < ..}and B:={b < .. <b, < ..}. Let us write A+ B
for the ordinal sum of A and B (so that for arbitrary ¢,j, we have a; < b;).
The unique associative algebra map p from K(A + B) to K(A) ® K(B) acting
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ENDOMORPHISMS OF QUASI-SHUFFLE ALGEBRAS 111

as the identity map on A and B induces a map from WQSym(A + B) to
WQSym(A) ® WQSym(B) 2 WQSym(A4A) ® WQSym(A),

(5) AM,(A+B) = Y waous

pack(w)=u
which can be shown to define a Hopf algebra structure on WQSym. Here, for
an arbitrary subset S of A + B, u)g stands for the word obtained from u by
erasing all the letters that do not belong to S.

The explicit formula for the coproduct A generalizes the usual one for the
algebra of Free Quasi-Symmetric functions FQSym, (a polynomial realization
of the Malvenuto-Reutenauer algebra contained in WQSym), and reads, for a
packed word w on the interval [1,n]:

n
(6) A(Mu) = Z MU\[M] ® Mpack(u\[iﬂ,n]))'
i=0
Noncommutative symmetric functions (the elements of Sym), although they
can be defined abstractly in terms of a family of algebraically free generators
Sn (see the begining of this section), also do admit a standard realization in
terms of an ordered alphabet A by

(7) Sn(A) = > w,
wEA™, Des (w)=0

where Des (w) = {i|w; > w;+1} denotes the descent set of w. Thus, there is a
natural embedding of Sym into WQSym:

(8) Sn= > M,
Des (u)=2&

where the summation is implicitely restricted to packed words u of the suitable
length, that is, here, of length n (and similarly in the forthcoming formulas).
This embedding extends multiplicatively:

(9) Sy, oS, = > M,
Des (u)C{n1,...,n1+...4nk_1}

In terms of the realization of noncommutative symmetric functions and word
quasi-symmetric functions over ordered alphabets A, these equalities are indeed
equalities: both sides are formal sum of words with certain shapes.

For later use, let us also mention that the last formula implies (by a standard
Mobius inversion argument that we omit, see [11] for details on the ribbon basis)
that the elements

(10) > M,

Des (u)={n1,...,n1+...+nk—_1}
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112 J.-C. NOVELLI, F. PATRAS & J.-Y. THIBON

belong to Sym. They form a basis, the ribbon basis R; of Sym: for I =
(i1, ooy ik)s

(11) Ry = > M,.
Des (u)={%1,...,i1+...+k—1}
At last, the embedding of Sym in WQSym we just considered is a Hopf
algebra embedding: one can either check directly that the image S of the series
3 Sy in WQSym is grouplike (A(S) = S ® S), or think in terms of ordered

n=0

alphabets and notice that the the coproduct of WQSym given by the ordinal
sum A+ B restricts to a coproduct on Sym that agrees with the one introduced
at the begining of the section.

3. Extra structures on WQSym

A natural question arises from our previous account of the theory: does there
exist an internal product on WQSym extending the one of Sym? The question
will appear later to be closely connected to the problem of using WQSym in
order to investigate Hopf algebraic properties, very much as Sym (and the
dual notion of descent algebras) is classically used to investigate the properties
of tensor spaces and connected graded commutative or cocommutative Hopf
algebras.

It turns out that if we want, for example, an interpretation of WQSym
analogous to that of FQSym as a convolution algebra of endomorphisms of
tensor spaces [30, 21, 7], we have to relax the requirement that the internal
product extend the one of Sym. The two internal products will coincide only
on a certain remarquable subalgebra of infinite series (see Section 7). Moreover,
the construction does not work with the standard embedding (8), and therefore
we will also have to relax the condition that the embedding of Sym in WQSym
is compatible with realizations in terms of ordered alphabets. This results into
a new picture of the relations between Sym and WQSym, where one has to
map the complete symmetric functions as follows

Requiring the map to be multiplicative defines a new morphism of algebras -for

an element 7' € Sym, we will write T its image in WQSym.

PRrROPOSITION 3.1. — This map is still a Hopf algebra embedding. Its action
on the monomial basis generated by the S, and on the ribbon basis is given
respectively by: For I = (i1, ...,1) with i1 + ... + i = n,
(13) SJ = gllglk = Z Mg,

Des (u)2[n]—{ig,ix+ix—1,-sip+...+i1}
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(14) Ry = > My,

Des (u)z[n]_{ikyik+ik—17---77:k+--~+i1}
where w = aj, ---a;, — W = a;, ---aj, is the anti-automorphism of the free
associative algebra reversing the words.

1

The first assertion follows from the observation that two series ), S, and
> nMia. ., are grouplike and generate two free associative algebras (respec-
tively Sym and a subalgebra of WQSym isomorphic to Sym).

Let us compute the action on the monomial basis (the action on

the ribbon basis follows by Mdobius inversion since $7 = > R 7). From
JCI
Sp= > a..a;,, we get:
11 <. <0y

(15) So= >, M.

Des (u)=[n—1]

The same principle applies in general (if a word of length n is strictly increasing
in position ¢, then the reverse word has a descent in position n — i) and we get:

al
S = E a:j%...ajk

ik
(16) 3}<~~~<gi11,...,gf<~~-<gfk
= > Ma,
Des (u)2[n]—{ix,ix+ig—1,-sip+...+i1}
(17)
from which the Proposition follows.
Moving beyond the relation to Sym, recall that, in general,
(18) MM, = > M,, .
w=u'v’,pack(u’)=u, pack(v’)=v

An interesting feature of WQSym is the quasi-shuffle nature of this product
law. This feature explains many of its universal properties with respect to
quasi-shuflle algebras.

To understand it, first notice that packed words w over the integers (recall
that the alphabet can be chosen arbitrarily provided it is “big enough”) can be
interpreted as surjective maps

(19) u: [n] — [k], (k=max(u)) u(i):=u,

or, equivalently, as ordered partitions (set compositions) of [n]: let us write w
for (u=1(1),...,u"t(k)). We will use freely these two interpretations of packed
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words from now on to handle computations in WQSym as computations in-
volving surjective morphisms or ordered partitions.

Now, let us define recursively a combinatorial operation which is actually a
special case of the general notion of quasi-shuffle product introduced in Section
5. For two finite sequences of sets U = (Uy,...,U;) and V = (V4,...,V)) we
define U W V' (which is a formal sum of sequences of sets) by:

(20) UwV:= U, U wV)+ (WVUWV)+ (U, UV, U yV'),

where U’ := (U, ..., Uy) and V' := (Va, ..., V}). Then, if u (resp. v) encodes the
set composition U (resp. V), in WQSym:

(21) M,M, = M;,

where the set of packed words ¢t encodes T = U W Vn], n is the length of
u, and for an arbitrary sequence S of subsets of the integers, S[p] := (S +
Dy ..., Sk + p). We will write abusively & for the operation on the linear span
of packed words induced by the “shifted shuffle product” wWv[n] so that, with
our previous conventions, t = u W v and (with a self-explanatory notation for
MuLJrJv) Mqu - Mu&)v-

To conclude this section, let us point out that a candidate for the inter-
nal product we were looking for is easily described using the interpretation of
packed words as surjections:

DEFINITION 3.2. — The internal product of WQSym is defined in the M-
basis by

(22) M, *M, =M,o, wheneverl(v)=max(u) and 0 otherwise.

The following sections show that this product has the expected properties
with respect to the other structures of WQSym and with respect to arbitrary
quasi-shuffle algebras.

4. A relation between internal and external products

In Sym, there is a fundamental compatibility relation between the internal
product, the usual product and the coproduct. It is called the splitting formula
[11], and is essentially a Hopf-algebraic interpretation of the noncommutative
Mackey formula discovered by Solomon [33]. It can be extended to FQSym,
with certain restrictions [6]. The key ingredient for doing this is an expression of
the product of FQSym in terms of shifted concatenation and internal product
with an element of Sym. This can again be done here.

The natural notion of shifted concatenation in WQSym is not the same as
in FQSym: indeed, if u and v are packed words, one would like that v e v be
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a packed word. The correct way to do this is to shift the letters of v by the
maximum of u:

(23) uev =u-v[k], where k= max(u).
For example, 11 21 = 1132. We consistently set
(24) M, e M, = M,.,.
LEMMA 4.1. — We have the distributivity property:
(25) (M, @ My) * (M, e My,) = (M, * M,) o (M; x My),
whenever l(v) = max(u), {(w) = max(t).
We also have the following crucial lemma (compare with [6, Eq. (2)]):

LEMMA 4.2. — Let uy,...,u, be packed words, and define a composition I =
(i1, ...,1,) by i = max(ug). Then, if Sym is embedded in WQSym by means
of (12), and the internal product is defined by (22),

(26) M, M,, --M,, = (M,, eM,,e---eM, )*S..
For example,

(27) M1 Ma2;1 = Miis2 + Mi121 + Magzi + Magor + Mason

is obtained from

(28) M;i; e My = M3z

by internal product on the right by
(29) S'? = 5185 = M1Mi2 = Mias + Mi12 + Mais + Maia + Maia.

Proof. — The Lemma is most easily proven by switching to the langage of
surjections. Let us notice first that, by construction of the shifted quasi-shuffle
product of set compositions, u; W uy is the formal sum of all surjections from
[[(u1) + l(ug)] to [i1 + 42 — p] , where p runs from 0 to inf(i1,42), that can
be obtained by composition of u e v with a surjective map ¢ from [i; + i3] to
[i1 + 72 — p] such that ¢ is (strictly) increasing on [i1] and {i; + 1,...,4; +i2}.

Let us write ~y;, 4, for the formal sum of these surjections with domain [i; +%5]
and codomain [i; +i2 —p], p=0,...,inf(i1,42). We get, as a particular case:
1;, W1;, =i, iy, where 1, stands for the identity in &,,, the symmetric group
of rank n. In general, we have therefore:

(30) MulMuz = (Mu1 b Muz) * (Ml...il M1,__i2) = (1\/_[u1 o Muz) * Sil’h,
with the notation
(31) S“Z’C =0y e Slk = Ml...il e Ml...ik-

The same reasoning applies to an arbitrary number of factors. O]
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5. Operations on quasi-shuffle algebras

Let us recall first the definition of the quasi-shuffle algebra QS(A) on a
commutative algebra A (without a unit and over K). The underlying vector
space is the tensor algebra over A: QS(4) = @,, A®", where A®? := K. The
product is defined recursively by:

(32)
(a1 ®...Q an) (] (bl ®...Q bm) =a1 ® ((ag ®...Q (ln) (] (bl ®...Q bm))

+a101 ®@ (a2 ® ... Q@ an) W (b2 ® ... Q by,)).

LEMMA 5.1. — The quasi-shuffle algebra is a right module over WQSym
equipped with the internal product. The action is defined by:

(33) (01 ® .. ®an)My = 0pb1 ® ... @ br, b= [] aj,

u(f)=i
where we used the surjection interpretation of packed words, u is a surjective
map from [m] to [k], and 07, is the Kronecker symbol (67, = 1 if m = n and
=0 else).

This right-module structure allows to rewrite the definition of the quasi-
shuffle product as (see, e.g., [3], also for a proof that QS(A) is actually a
commutative algebra):

34 (1 ®..Qa )W ®...0by)=(1®...0a, b1 ® ... ® by, )S™™.

Interpreting S™™ as an element of FQSym instead of WQSym and using the
standard right action of permutations on tensors, we would get the ordinary
shuffle product.

LEMMA 5.2. — The quasi-shuffie algebra is endowed with a Hopf algebra struc-
ture by the deconcatenation coproduct

n

(35) Al ® ... Q ayp) := Z(al ®..Q00a0)Q (A4i11 ® ... ®ay) :
i=0

(36) A((61®...©a,)W(01®...Q0b)) = A(a1®...Qan) (HOW)A(D1 ®...Qby,).

This Lemma, due to Hoffman [17], amounts to checking that both sides of
this last identity are equal to:

(37) Z ((a1®.-.®ai)ﬁd(b1®-..®bj))®((ai+1®...®an)w(bj+1®...®bm)),

i<n,j<m

which follows immediately from the definition of A and .
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ENDOMORPHISMS OF QUASI-SHUFFLE ALGEBRAS 117

PROPOSITION 5.3. — The right module structure of QS(A) over WQSym is
compatible with the outer product (i.e., the usual graded product of WQSym,
induced by concatenation of words), in the sense that this product coincides with
the convolution product * in End(QS(A)) induced by the Hopf algebra structure

of QS(A).

Indeed, by definition of the convolution product of Hopf algebras linear en-
domorphisms, we have, for v and v surjections from [n] (resp. [m]) to [p] (resp.

[q]):
(a1 ® ... ® apgm) (M, * M,)
= (a1 ® ... ®an)My) W (Gn41 ® ... ® ptm) M,
(38) = (((a1 ® ... ® an)My) @ ((An+1 @ ... ® Angm)My)) S
= (a1 ® ... ® apym ) (M, ® M,)SP1
=(a1® ... ® Gpem) MM, .
by Lemma 4.2, or, since the identity does not depend on aj, ..., @nym:

(39) Mu * Mv = Mqu.

Let us formalize, for further use, our last observation on the dependency on
@1, ..., Aptm into a general recognition principle that will prove useful to deduce
properties in WQSym from its action on quasi-shuffle algebras.

LEMMA 5.4. — Let f and g be two elements in WQSym and let us assume
that, for an arbitrary commutative algebra A and arbitrary aq,...,an, ... in A,
(a1 ®...Qan)f =(a1 ® - Qap)g for alln. Then, f =g.

The Lemma follows, e.g., by letting a, ..., a,, ... run over an infinite ordered
alphabet and letting A be the free commutative algebra over this alphabet.

6. Nonlinear Schur-Weyl duality

The same kind of argument can actually be used to characterize WQSym as
a universal endomorphism algebra in the same way as FQSym is a universal
endomorphism algebra according to the classical Schur-Weyl duality. Recall

the latter: for an arbitrary vector space V, let us write T'(V) := @ T, (V) :=
neN

@ V®". Linear morphisms between vector spaces f : V —— W induce maps
neN

T(f) : T(V) — T(W) compatible with the graduation (T},(f) maps T, (V)
to T,,(W): T, (f)(v1 ® ... @ vy,) := f(v1) ® ... ® f(vy,)). In categorical langage,
Schur-Weyl duality characterizes natural transformations of the functor 7' (or,
equivalently, of the subfunctors T3,) from vector spaces to graded vector spaces
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and reads: the only family of maps py : T,(V) — T,,(V) (where V runs over
vector spaces over K) such that, for any map f as above,

(40) To(f) o pv = pw o Tu(f),
are linear combination of permutations: py € K[S,] (the converse statement
is obvious: permutations and linear combinations of them acting on tensors
always satisfy this equation).

We consider here the corresponding nonlinear problem and characterize nat-
ural transformations of the functor
(41) T(A):=PT.(A) =P 4%"

neN neN

viewed now as a functor from commutative algebras without a unit to vector
spaces. Concretely, we look for families of linear maps p4 from T;,(A4) to T,,,(A),
where A runs over commutative algebras without a unit and m and n are
arbitrary integers such that, for any map f of algebras from A to B,

(42) Tin(f) o pa = pp o Ta(f).
Let us say that such a family p4 satisfies nonlinear Schur-Weyl duality (with
parameters n, m). The purpose of the section is to prove:

PROPOSITION 6.1. — Let Nat be the vector space spanned by families of linear
maps that satisfy the nonlinear Schur-Weyl duality. Then Nat is canonically
isomorphic to WQSym.

Equivalently, the vector space Nat,, , of families of linear maps that satisfy
non linear Schur-Weyl duality with parameters n,m is canonically isomorphic
to the linear span of surjections from [n] to [m].

The results in the previous section imply that WQSym is canonically em-
bedded in Nat. Let us show now that the converse property holds. We write
Q[z1,...,,]" for the vector space of polynomials in the variables 1, ..., %,
without constant term and notice that, for an arbitrary family a4, ..., a,, of ele-
ments of a commutative algebra A, the map f(x;) := a; extends uniquely to an
algebra map from Q|z1, ..., x,]" to A. In particular, if u4 is a family of linear
maps that satisfy the nonlinear Schur-Weyl duality, we have:

(43)
14018 .. ®an) = pa o T(F) (01 ® o ©30) = T(F) Q. 1 (21 8 e ),

so that the knowledge of uqe,,....s,)+ (71 ® ... ® ) determines entirely the
other maps p 4.

Let pa € Nat, . Then, puqa, .. 2.+ (1 ® ... ® 2,) € (Qz1, ..., zp] )™,
The latter vector space has a basis % whose elements are the tensors p =
P1 ® ... ® P, Wwhere the p;s run over all the nontrivial monomials in the z;s
(for example 7223 ® 22 ® 7175 is a basis element for n = 5 and m = 3):
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BQlzy,....zn]t (1 ® ... ® T,) can therefore be written uniquely as a linear combi-
nation of these basis elements.

Now, the commutation property (42) implies that
(44) Y = /J’Q[:EL...,mn]Jr(ml ®...Q ZL‘n) S (Q[:Cl, ...,(L’n]+)®m

must be linear in each variable x; (take f such that z; — ax; and x; — z; for
J#19).

This implies in particular that Nat,, ,, = 0 when m > n. For m = n, Y must
be a linear combination of permutations z,(1) ® -+ ® T, (), and for m < n,

(45) Y = Z ApP

PE B,deg(p)=n

with py...pp = 21 ...2,, which implies that

(46) pQpy e+ (@ @ @aa) = Y MN(][] w0 [[ =)
feSurj(n,m)  f(i)=1 f(@)=m

Thus, g4 can necessarily be written as a linear combination of (maps induced
by) surjections from n to m.

7. The Characteristic subalgebra of WQSym

The existence of two algebra maps from WQSym (equipped with the
product of word quasi-symmetric functions and the internal product) to
End(QS(A)) (equipped with the convolution product and the composition
product) extends a classical result. There are indeed two analogous maps from
FQSym to the endomorphism algebra of the tensor algebra over an alphabet
X [21]: this corresponds roughly to the case where one considers QS(A) with
A the linear span of X equipped with the null product and can be understood
as a particular case of the constructions we are interested in here.

In the “classical” situation, it is however well-known that, from the Hopf
algebraic point of view, most relevant informations are contained in a very small
convolution subalgebra of FQSym, namely the one generated by the identity
of the algebra [25, 26]. In the present section, we investigate the structure of the
corresponding subalgebra of WQSym and deduce from this study that many
essential objects in Lie theory (Solomon’s idempotents...) have a quasi-shuffle
analogue in WQSym. Most results in this section are direct applications of
[25, Chap. 1] (published in [26]), to which we refer for proofs and details.

We make implicit use of the recognition principle (Lemma 5.4) to deduce
these results from the existence of an action of WQSym of QS(A). To deal
with formal power series in WQSym, we consider the usual topology (the
one associated to the graduation induced by word length, that is, the one for
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which words with large lengths are close to 0), and write WQSym for the
corresponding completion.

LEMMA 7.1. — The k-th characteristic endormorphism (or Adams operation)

of QS(A) is the following element of mn, identified with the k-th convo-
lution power of the identity map:

(47) UF =1k T:=61:=) Mi,_n
n>0

The characteristic endomorphisms satisfy:

— Uk 4s an algebra endomorphism of QS(A),
_ \I/k\Ill — \I,k-l—l
— U0l = kL

See [26, Prop. 1.4, Prop. 1.3]. To deduce the identity ¥*¥! = W*+! we use
the fact that the product in WQSym maps to the convolution product in an
arbitrary QS(A).

Many important structure results that hold for graded Hopf algebras [27]
do not hold for quasi-shuffle bialgebras -that are not graded but only filtered:

the product in QS(A) maps A®" @ A®™ to @ A®P, whereas the coproduct
p<n+m

respects the graduation and maps A®? to @ A®" ® A®™. However, some
n+m=p

properties of graded Hopf algebras hold for the quasi-shuffle algebras:

— Let f,g two linear endomorphisms of QS(A) that vanish on @ A®?,

p<n
resp. @ A®P, then, since the coproduct preserves the graduation, f * g
p<m
vanisheson @  A®P (wesay that f, g, f*g are respectively n,m,n+
p<n+m-+1
m + 1-connected).
— The element I is invertible in WQSym -this follows from
(48) I = Mo+ Y M)t =) (DO M)k,
n>0 k>0 n>0
since Y. M. , is O-connected.
n>0
DEFINITION 7.2. — We call characteristic subalgebra of WQSym and write

Car for the convolution subalgebra of WQSym generated by I.

LEMMA 7.3. — The representation of Car on QS (A) := @ A®P is unipo-
p<n

tent of rank n + 1. That is, for any 0-connected element f in Car, "1 acts
on QS™(A) as the null operation.
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This follows from the previously established properties.

PROPOSITION 7.4. — The action of ¥* on QS™(A) is polynomial in k:

n
(49) vk =Y ke,
i=0
where the “quasi-Eulerian idempotents” are given by

log(I)*
i

(50) €; =

This follows from the convolution identity ¥* = I* = exp(log(I*)) =
exp(klog(I)) since log(I) = Y (—1)""‘1% is 0-connected. One can make

n>1
explicit the formula for the €S using the Stirling coeflicients of the first kind
(Fla 1.4.5 in [25]). The e; are orthogonal idempotents (this follows as in the
usual case from WFW! = WF+: the proof of [25, Prop.1,4,8] [26, Prop.3.4] ap-
plies). When A is the linear span of an alphabet equipped with the null product,
we recover Solomon’s Eulerian idempotents.

Using the fact that
(51) Tk =5k
(1

and computing in Sym, we obtain from (14) the following expression.

PrOPOSITION 7.5. — We have:
( l)l(I) 1
(52)  e=) o Z » > M,
n>1 IEn l(I) 1/ Des (u)=[n]—{ii(1y,-- iy (ry+-+ir}
where I = n means that I = (iy,...,%)) is a composition of n (i1 + ... + iy =

For example, up to degree 3,

€1 :M1
1
+ §(M12 —Mi; — My)
(53)
+ 6(2M123 — Mizs — My + 2My11 — Maz; — M3
+ 2Mago1 — Mio1 — Maig — Maio + 2Mo11 + 2Mso; — Mygg) + -+
1
e =§(M12 +M;i; + My,)
(54)

1
+ §(M123 — M1 — Mag1 — Moy — Msop) +
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1
(55) 63:62Mu+~-~

lul=3

8. The case of quasi-symmetric functions

The fundamental example of a quasi-shuffle algebra is QSym, the Hopf alge-
bra of quasi-symmetric functions (it is the quasi-shuffle algebra over the algebra
of polynomials in one variable, or in additive notation, over the nonnegative
integers [34]). Thus, it is of some interest to have a closer look at the right ac-
tion of WQSym on QSym as defined in the foregoing section. Because of the
duality between QSym and Sym, this will also result into a refined understand-
ing of the links between word quasi-symmetric functions and noncommutative
symmetric functions from a Lie theoretic point of view.

The basis which realizes QSym as a quasi-shuffle algebra is the quasi-
monomial basis M; whose definition was recalled in Section 2:

(56) MMy = Mpyy =Y (K|I&J)Mg,
K

where, for two compositions K and L, (K|L) := 6%. Let us denote by a * the
right action of WQSym: for I = (i1, ...,i;) and u a packed word of length k,

(57) Mps«My=M;, jo= > i
u(s)=r

For example,
(58) Mo1320 * Mi2121 = May342142 = Mrs.

Hence, we have:

LEMMA 8.1. — The compatibility formula (Prop. 5.3) can be rewitten as
(59) M+ (M, M,) = u[AM; *9 (M, ® M,)]

where p is the multiplication map. This mirrors the splitting formula for the
internal product of FQSym
(60) (FoF.) x S" = u[(F, @ F,) %2 AS']

which can be extended to any number of factors on the left, and ST be replaced
by an arbitrary noncommutative symmetric function. Similarly,
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LEMMA 8.2. — For any F € QSym and G4,...,G, € WQSym,
(61) F*(GlGQGT):uT[ATF *p (G1®G2®®GT)],

where W, *. and A" stand for r-fold iterations of the corresponding product
and coproduct maps.

One may ask whether the formula remains valid for bigger quotients of
WQSym (recall that QSym is its commutative image). It appears that one
must have M, = M, for ev(u) = ev(v) except when u and v are formed of
an equal number of 1s and 2s, in which case other choices are allowed. Thus,
QSym is essentially the only interesting quotient.

The commutative image map can be expressed by means of the action .
Recall that Mi» = e, is the n-th elementary symmetric function. For a packed
word u of length n,

(62) Min M, = Mev(u)
so that for any G € WQSym, its commutative image G is

(63) G:)\l*G )\1 = ZMln

n>0
The Adams operations ¥* of QSym defined above are
(64) U*(F) = pp o AF(F) =: F(kX)

where the A-ring theoretical notation F(kX) is motivated by the observation

that the coproduct of QSym can be defined by means of ordinal sums of al-
phabets (AF(X) = F(X +Y)).
By the previous theory, we have

PROPOSITION 8.3. — The Adams operations of QSym can be expressed as
k
(65) F(kX)=Fx6f =Fx| > M.,
n>0

For example, with k = 2, we can easily compute the first terms by hand
62 =14 2M; + M;M; + 2M;,
+ MMz + MoM; + 2Mj23 + ...
=1+ 2M;
+ 3Mi2 + My + My,
+4Mi23 + Mi12 + Maiz + M312 + Mgy
+ M2z + Mgz + Mas; + ...

(66)
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so that ¥%(M,,) = 2M,,, and V?(M;;) = 3M;; + Mj; + M, , etc., which agrees
indeed with the direct computation ¥*(M;) = M;(kX), as M;;(X +Y) =
M;;(X) + M;(X)M;(Y) + M;;(Y) which for Y = X does yield 3M;; + M;; +
Mi+j‘

Note that we can have sligthly more general operators by introducing extra
parameters, e.g.,

(67) My % 6¢ = t*D M.
Then, we would have deformations of the Adams operations, like
(68) Mij * (&xé'y) = (IEZ + Ty + yz)Mij + .CCy(Mji + M7;+j) .

Let us take now advantage of the duality between Sym and QSym [11].
Take care that the following duality results are specific to @Sym and Sym and
would not hold for arbitrary quasi-shuffle algebras -in particular, there is no
such direct link in general between the quasi-Eulerian idempotents acting on
QS(A) and the usual Eulerian idempotents as the one described below.

We write ¢* for the adjoint of ¥* acting on Sym. Since the product and
coproduct on Sym are dual to the ones on QSym, we have again, on Sym,
* := pp o A*, where now py, is the iterated product of order £ on Sym and
Ay its iterated coproduct. These are again the classical Adams operations on
Sym, but they are not algebra morphisms, due to the noncommutativity of
Sym: with Sweedler’s notation for the coproduct (A(F) = F1) ® Fa)),

VHFG) =uo A(FG) = ), FuyGaFe)Ge
(F)XG)
# Y. FuFoGmGp) = *(F)$*(G).
(F)(G)

Similarly to what happens on QSym:

(69)

LEMMA 8.4. — The ¥ are given by left internal product with the reproducing
kernel o1(kA):

(70) PF(F(A)) = o1(kA) * F(A).
Proof. — By the splitting formula,

(71) m
o1(kA)* F(A) = o} * F = pplo1 ® - ® 01 xx APF] = py o AFF = 4*(F).

One must pay attention to the fact that there is another family of such
operations, corresponding to the right internal product with o1 (kA):

(72) YF(F(A)) = 01(kA) x F(A) # F(A) x 01(kA) = F(kA).
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The right internal product with oq(kA) is an algebra morphism (this follows
from the splitting formula (60)); in terms of alphabets, this operation corre-
sponds to the transformation F(A) — F(kA) -we refer to [19] for a detailed
study of transformations of alphabets in the framework of noncommutative
symmetric functions. Since they are associated with the same kernels o1 (kA),
the spectral projectors of both families are encoded by the same noncommuta-
tive symmetric functions, the only difference being that one has to take internal
product on different sides.
Thus,

PROPOSITION 8.5. — The adjoint of the quasi-Eulerian idempotent e; acting
on QSym is F — Ej x F where E; = ®(1) = logo; is the usual Eulerian
idempotent.

Recall from [11] that its action on a product of primitive elements F - - - F,.
is given by

(73) Eyx(Fy---F,) = (F1Fy---)- By,

where, on the right hand-side, E; is the Eulerian idempotent viewed as an
element of the group algebra of the symmetric group of order r acting by
permutation of the indices, e.g., Fy x (F1Fy) = (1/2)(F1 Fy, — FoFY).

Let us now choose a basis @, of the primitive Lie algebra ¥ of Sym. For
the sake of definiteness, we may choose the Lyndon basis on the sequence of
generators ®,, (see [11]) and we may assume that L runs over Lyndon composi-
tions. We can then extend it to a Poincaré-Birkhoff-Witt basis of its universal
enveloping algebra U(¥) = Sym, so that the Eulerian idempotent will act by
E1 xQr = 0 if I is not Lyndon, and = @ otherwise [32]. Let now P; be the
dual basis of @ in QSym. Then, e; acts by e;(Pr) = 0 if I is not Lyndon, and
= P; otherwise. Then, QSym is free as a polynomial algebra over the P;, by
Radford’s theorem [30].

Hence, we have proved:

PROPOSITION 8.6. — The quasi-Eulerian idempotent ey maps any basis of
QSym to a generating set. Moreover, with our particular choice of the basis,
ST is triangular on the Q so that Py is triangular on the My, thus e;(Mp) for
L Lyndon form a free generating set.

We shall see in the next section that it is true in general that e; projects
the quasi-shuffle algebra onto a generating subspace, although, as we already
mentioned, one can not use any more in the general situation duality together
with the properties of the Eulerian idempotents acting on envelopping algebras.
However, the case of @ Sym is essentially generic for a wide class of quasi-shuffle
algebras.
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A possible line of argumentation (to be developed in a subsequent paper)
would be as follows. It has been observed in [4] that noncommutative symmetric
functions provided a good framework for understanding Ecalle’s formalism of
moulds in a special case. To deal with the general case, one can introduce the
following straightforward generalization of noncommutative symmetric func-
tions, which will also provide us with a better understanding of quasi-shuffle
algebras in general.

Let Q be an additive monoid, such that any element w has only a finite
number of decompositions’) w = a + 8. Let Sym® be the free associative
algebra over indeterminates S, (w € Q, Sy = 1), graded by deg(S, = w),
endowed with the coproduct

(74) AS,= > S.®85s

a+pB=w
and define QSym* as its graded dual. Let M, be the dual basis of S¥ Its
multiplication rule is obviously given by the quasi-shuffle (over the algebra
K[Q]). Let ® = log>, Sw = 3, ®,. From this, we can build a basis %, a
basis of products of primitive elements, which multiplies by the ordinary shuffle
product over the alphabet €.

This provides in particular a simple proof that the quasi-shuffle algebra is
isomophic to the shuffle algebra [17] (here it is one and the same algebra, seen in
two different bases. The isomorphism of [17] corresponds to a particular choice
of generators of the primitive Lie algebra).

Now, the previous argumentation could be copied verbatim here, replacing
compositions by words over 2 — {0}. One may expect that Sme admits an
internal product, allowing to reproduce Ecalle’s mould composition. This is the
case for example when = N" [24], the algebra Sym® being in this case the
natural noncommutative version of McMahon’s multisymmetric functions.

9. The generalized Eulerian idempotent as a canonical projection

The purpose of this last section is to show that the results in the previous
section can be, to a large extent, generalized to arbitrary quasi-shuffle algebras.

It is well-known that quasi-shuffle algebras QS(A) are free commutative
algebras over a vector space L(A) (for example the linear span of Lyndon
words). This follows from the observation that the highest degree component
of the quasi-shuffle product map QS(A4), ® QS(A)m — QS(A)n+m C QS(A)
is simply the usual shuffle product, so that the freeness of QS(A) follows from

(1) This restriction is not strictly necessary, but relaxing it would require a generalization of
the notion of Hopf algebra.
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the freeness of the tensor algebra over A equipped with the shuffle product by
a standard triangularity argument.

For classical graded commutative connected Hopf algebras H (such as the
tensor algebra over A equipped with the shuffle product), the Leray theorem
asserts that H is a free commutative algebra and one can compute by purely
combinatorial means a family of generators of H as a polynomial algebra [25,
26]. The same result actually holds for quasi-shuffle algebras. The section is
devoted to its proof.

Recall that the characteristic subalgebra Car of WQSym is the free associa-
tive subalgebra generated by I (the identity map, when elements of WQSym
are viewed as operations on quasi-shuffle algebras). This element I is grouplike
in WQSym and the generalized Eulerian idempotent e; = log([) is therefore a
primitive element. The following proposition shows that the Hopf algebra struc-
ture inherited by Car from WQSym is actually compatible with its action on
quasi-shuffle algebras. We use the Sweedler notation: A(s) = ¢ @ o(?).

PROPOSITION 9.1. — Let o € Car, then, we have, for an arbitrary commuta-
tive algebra A:

(75) ((a1®- - -®a,)W(b1®- - @by ))-0 = (a1®- - .®an).g(1)w(b1®. . .®bm)).g(2).

The Proposition is obviously true when ¢ = I. From [8, Lemma 3.1], it is
also true in the convolution algebra generated by I, from which the Proposition
follows.

Notice that this property is not true for WQSym -the coproduct in
WQSym is not compatible with the action on quasi-shuffle algebras. This
property is actually already true for FQSym: the coproduct of FQSym is not
compatible, in general, with the Hopf algebra structure of shuffle or tensors
algebras (this corresponds, in terms of quasi-shuffle algebras, to the particular
case of commutative algebras with a null product).

THEOREM 9.2. — The generalized Eulerian idempotent e1 is a projection onto
a vector space generating QS(A) as a free commutative algebra (that is, equiva-
lently, the image of e is naturally isomorphic to the indecomposables of QS(A):
the quotient of the augmentation ideal by its square, which is spanned by non
trivial products).

We already know that e; is a spectral idempotent (it maps QS(A) to the
eigenspace of the Adams operations associated with their lowest nontrivial
eigenvalue). From the previous proposition, we have, since e; is primitive, for
a,b elements of QS(A),, QS(A)y, n,m # 0:

(76) (awb)-e1=(a-e1)W(b-e)+(a-e)W(b-eq),
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where € is the augmentation of QS(A), so that b-e =a-e =0, and finally:
(77) (aWb)-e1 =0

from which it follows that the kernel of e; contains the square of the aug-
mentation ideal QS(A)T. In particular, e; induces a well-defined map on the
indecomposables Ind := QS(A4)*/(QS(A)T)2.

Let us show finally that this map is the identity, from which the Theorem
will follow. Let us compute first ¥2(a) for an arbitrary a € QS(A);. We have:

(78) T?(a) = 2e;1(a) + ... + 2" (a),

where the e; are higher convolution powers of e; = log(I) and map therefore
into (QS(A)™")?, so that on the indecomposables, ¥2? = 2¢;. On the other hand
(using the Sweedler notation),

(79) ¥2(a) = I'*(a) = 2a + aWMa®,
so that, on Ind, ¥2? = 2. I and the Theorem follows.
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