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GAUSSIAN MEASURES ASSOCIATED
TO THE HIGHER ORDER CONSERVATION LAWS
OF THE BENJAMIN-ONO EQUATION

BY NikoraAy TZVETKOV aAnND Nicora VISCIGLIA

ABSTRACT. — Inspired by the work of Zhidkov on the KdV equation, we perform a construction
of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-
Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We
also prove a property on the support of these measures leading to the conjecture that they are indeed
invariant by the flow of the Benjamin-Ono equation.

RESUME. — Inspirés par le travail de Zhidkov sur I’équation KdV, nous construisons des mesures
gaussiennes a poids associées a une loi de conservation arbitraire de 1’équation de Benjamin-Ono.
Les supports de ces mesures sont constitués de fonctions de régularité de Sobolev croissantes. On
démontre aussi une propriété-clé des mesures qui nous conduit a conjecturer leur invariance par le flot
de I’équation.

1. Introduction and statement of the results

1.1. Measures construction

The main goal of this article is to construct weighted Gaussian measures associated with
an arbitrary conservation law of the Benjamin-Ono equation (BO), and thus to extend the
result of the first author [14] which deals only with the first conservation law. The analysis
contains several significant elaborations with respect to [14]; it requires an understanding of
the interplay between the structure of the conservation laws of the Benjamin-Ono equation
and the probabilistic arguments involved in the renormalization procedure defining the mea-
sures.

Let us recall that just like the KdV equation, the Benjamin-Ono equation is a basic dis-
persive PDE describing the propagation of one directional, long, small amplitude waves. The
difference between the KdV and BO equations is that the KdV equation describes surface
waves while the Benjamin-Ono equation models the propagation of internal waves. These
models have rich mathematical structure from both the algebraic and analytical viewpoints.
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250 N. TZVETKOV AND N. VISCIGLIA

In particular they have an infinite sequence of conservation laws. These aspects will be heavily
exploited in the present work.

Consider now the Benjamin-Ono equation
(1.1) Opu + HO?u + udyu = 0,

with periodic boundary conditions (for simplicity throughout the paper we fix the period to
be equal to 27). In (1.1), H denotes the Hilbert transform acting on periodic distributions.
Thanks to the work of Molinet [11](1.1) is globally well-posed in H*, s > 0 (see [13, 7, 5] for
related results in the case when (1.1) is posed on the real line).

It is well-known that (smooth) solutions to (1.1) satisfy an infinite number of conservation
laws (see e.g., [10, 1]). More precisely for £ > 0 an integer, there is a conservation law of (1.1)
of the form

(1.2) Eyjo(u) = |lul|%,,» + Riy2(u)

where H* denotes the homogeneous Sobolev norm on periodic functions, and all the terms
that appear in Ry, /o are homogeneous of the order larger than or equal to three in u. In
Section 2, we will describe in more details the structure of Ry, /, for large k. Next we explicitly
write the conservation laws Ey, /; for k = 0,1,2,3, 4:

Eo(u) = [|ullZ:;

1
Bupa(w) = Nl + 5 [ wda

3 1
Faw) =l + 5 [wHu)e+ ¢ [ utas
2 3 2 1 2
Byjafu) =l — [ [ou(ua)? + Jub (us)?)de

_ (i3 1o _i/ 5 7.0
/[3u H(uz)+4u H(uu,)]dx 50 u’dz;

)
Es(u) = ||u||§{2 ~1 /[(uz)QHuw + 2uug, Hug)dx

+E [5u?(ug)? + u? H (uz)? + 2uH (0,u) H (wug)]dz

5 4 5 3 1 / 6
+/[32u (ug) + Vi (uug)]dz + uwdz

where [ is understood as the integral on the period (0, 27).

Following the work by Zhidkov [15] (see also [2, §]), one may try to define an invari-
ant measure for (I.1) by re-normalizing the formal measure exp(—Ej/2(u))du. This
re-normalization is a delicate procedure. One possibility would be first to re-normalize
exp(— ||u||§{ «/2)du as a Gaussian measure on an infinite dimensional space and then to show
that the factor exp(— Ry /2(u)) is integrable with respect to this measure.

Since exp(—||u||%{k/2

series, we can define the re-normalization of exp(—||ul|

) factorizes as an infinite product when we express u as a Fourier

i-lk ,»)du as the Gaussian measure
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induced by the random Fourier series

on(w) inz
|n|k/2

(1.3) <Pk/2($aw) =
n#0
(one may ignore the zero Fourier mode since the mean of u is conserved by the flow of (1.1)).
In (1.3), (¢n(w))nso is a sequence of standard complex Gaussian variables defined on a prob-
ability space (92, &, p) such that ,, = ©_, (since the solutions of (1.1) should be real valued)
and (¢n(w))n>o are independent. Let us denote by /5 the measure induced by (1.3). One
may easily check that p /o (H®) = 1 for every s < (k — 1)/2 while py, /o (H*~1/2) = 0.

In view of the previous discussion, one may consider exp(— Ry, /2 (u))dpy /2 as a candidate
of invariant measure for (1.1). There are two obstructions to do that, the first one already
appears in previous works on the NLS equation (see [2, 8]) and the KdV equation (see [15]),
while the second one is specific to the Benjamin-Ono equation. The first obstruction is that
exp(— Ry, 2(u)) is not integrable with respect to dpy,/2(u). This problem may be resolved by
restricting to invariant sets, which means to replace exp(— Ry /2(u)) by

k—1
(1.4) 11 xr(E; 2 (u))e Rerz) |
j=0

where x g is a cut-off function defined as xg(z) = x(z/R) with x : R — R a continuous,
compactly supported function such that x(z) = 1 for every |z| < 1. In the context of KdV or
NLS, the function defined in (1.4) is integrable with respect to the corresponding Gaussian
measure. Moreover if one takes the reunion over R > 0 of the supports of the functions
(1.4), then one obtains a set containing the support of y;,/o. However, in the context of the
Benjamin-Ono equation, the restriction to invariant sets does not work as in (1.4) because
for every R the following occurs: x r(E(—1)/2(u)) = 0 almost surely on the support of i, /5.
One of the main points of this paper is to resolve this difficulty. This will be possible since one
controls the way that E;_1)/2(u) diverges on the support of 1, /2. More precisely, for N > 1
and k > 2, we introduce the function

k—2
(1.5) Fyjo.n,r(u) = ( H XR(Ej/Q(T"NU)))XR(E(k—l)/z(ﬂ'Nu) — ay)e ralmvw)
=0

where ay = Zivzl L and 7y is the Dirichlet projector on Fourier modes n such that

n
|n| < N. Here is our first result.

THEOREM 1.1. — For every k € N with k > 2, there exists a o measurable function
Fyj2,r(u) such that Fy, /5 n r(u) converges to Fy o g(u) in L9 (duy2) for every 1 < q < oco. In
particular Fi, /5 g(u) € LI(dpy o). Moreover, if we set dpy, o r = Fij2,r(u)dp 2, we have

U supp(pr/2,r) = supp(fix)2)-
R>0
The above result for £ = 1 was obtained by the first author in [14]. Many of the proba-
bilistic techniques involved in the proof of Theorem 1.1 are inspired by [3]. We also refer to
[4] where in the context of the 2d NLS the authors use the Wick ordered L2-cutoff, i.e., a
truncation of the L?-norm that depends on the parameter N.
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252 N. TZVETKOV AND N. VISCIGLIA

We conjecture that the measures py /o g, K = 2,3,--- constructed in Theorem 1.1 are
invariant by the flow of the Benjamin-Ono equation established by Molinet [11], at least for
even values of k. In the sequel, for shortness, we denote py /2 g by pr/2.

1.2. A property on the support of the measures

Let us now give our argument in support of the above-stated conjecture. For N > 1, we
introduce the truncated Benjamin-Ono equation:

(1.6) Ou+ Hu + my ((mnvu) 0y (myu)) = 0.

As in [6], one can define a global solution of (1.6) for every initial data u(0) € L2?(S%).
Indeed, one obtains that (1 — 7w )u(t) is given by the free Benjamin-Ono evolution with data
(1 = wn)u(0), while myu(t) evolves under an N-dimensional ODE. This ODE has a well-
defined global dynamics since the L? norm is preserved.

The main problem that appears when one tries to prove the invariance of py /5 is that even
ift Ey /o are invariants for the Benjamin-Ono equation they are not invariant under (1.6).
The invariance, however, holds in a suitable asymptotic sense as we explain below. Let us
introduce the real-valued function Gy, /2, i, measuring the lack of conservation of Ej, /, under
the truncated flow (1.6), via the following relation
(1.7) %Ekﬂ(ﬂ'NU(t)) = G2, n(TNu(t)),
where u(t) solves (1.6).

Denote by @y the flow of (1.6) and set don(u) = Fj2 N r(uw)dpug/2(u) so that by
Theorem 1.1, py converges in a strong sense to py, /2 (the densities converge in any LP (dy/2),
p < 00). By using the Liouville theorem, one shows that for every u;, /o measurable set A,

o (@ (£)(A)) = /A Ji G e O g, (4(0) 4 0().

Hence, a main step towards a proof of the invariance of py, is to show that

(1.8) /0 Grj2,n (Tnu(T))dT

converges to zero, where u(7) is a solution of (1.6), with «(0) on the support of j /2. Such
a property is relatively easy to be established if «(0) has slightly more regularity than the
typical Sobolev regularity on the support of y, /5. At the present moment, we are not able to
prove such a property on the support of p,/o. We shall, however, prove it if we make a first
approximation which consists of replacing u(7) by u(0) in (1.8). Here is the precise statement.

THEOREM 1.2. — For every k > 6 an even integer, we have
Aim 1Gry2,n (TN || La(dpy, ) = 0, Vg € [1,00),
where Gy, /2 is defined by (1.7).

Let us remark that the lack of invariance of conservation laws for the corresponding
truncated flows is a problem that appears also in other contexts. We refer in particular to
the papers [12] and [15], where this difficulty is resolved in the cases of the DNLS and KdV
equations respectively.
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1.3. Comparison with the KdV equation

Next we explain why the measures construction in the context of the Benjamin-Ono
equation is much more involved compared with the case of the KdV equation. The main
difference is that in the KdV equation the dispersion (of the linear part) is of lower order
compared with the Benjamin-Ono equation. This fact makes the perturbative treatment of
the nonlinearity more complicated. Let us recall that a similar observation applies to the
Cauchy problem analysis (see [5, 7, 11, 13]).

Now, we recall the approach of Zhidkov (see [15]) to prove the existence of invariant
measures associated with the periodic KdV equation

(1.9) Opu + 93u + udyu = 0.

This equation has a rich structure from both the algebraic and analytic viewpoint. In partic-
ular the solutions to (1.9) have an infinite sequence of conversation laws. More precisely, for
every m > 0 there exists a polynomial

Pm (v, 0z, ..., 00 V)

such that & [ p,, (u(t,z), d,u(t,z),...,0Mu(t,z))dz = 0, provided that u is a solution of
(1.9), where [ - - - dz denotes the integral on the period. More precisely, the conservation laws
have the following structure

el + [ s 57 00

By using the Sobolev embedding H! C L, it is easy to check that the function
m—1
(T xn(B ) e amtmo e,
§=0

where x g is defined as in (1.4), is not trivial and belongs to the space L (du.,,) (Where g, 18
the Gaussian measure induced by (1.3) for ¥ = 2m), provided that m is large enough. In
particular the measure

m—1
(1.10) (TI xn(Bs(up)e S om0z ming,,,
7=0

is a meaningful non-trivial candidate for an invariant measure.
In order to prove the invariance of the above measure we introduce, following [15], a family
of truncated problems

(1.11) 8tu+8gu+7"N((7rNu)8x(7TNu)) =0,

where 7 is the Dirichlet projector on the n Fourier modes such that |n| < N. Once again,
the main difficulty is because of the fact that the quantity

/pm(u(t, x), 0zu(t, x), ..., 00 u(t, z))dx

is no longer invariant along the flow of the truncated problem (1.11). However if ug € H™~!
then

(1.12) I\}im % /pm(wNu(t,w),(?mﬂNu(t,x), oo Ol Nu(t, z))dx = 0,
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where u(t, z) are solutions to (1.11) with initial data ug. Roughly speaking (1.12) means that
the quantities

[ ottt z),emutt, ), ... 02 v )

are asymptotically in N almost conservation laws for solutions to the truncated flow. In
particular for large N, the classical finite dimensional Liouville invariance theorem turns out
to be almost true for the flow associated with (1.11), and it allows us to conclude the proof
of the invariance of (1.10) along the flow associated with (1.9) via a limit argument.

Hence the main point is to prove (1.12). Following Zhidkov (see Lemma IV.3.5, page 127
in [15]) there is an explicit formula to compute the expression on the L.h.s. in (1.12). More
precisely if u solves (1.11) then

d

(L13) =

/pm(mvu(t, x), Ozmnu(t, ), ..., 00 Tnu(t, x))dx

m
= E /(% dzr
=0 8;’(,6 |82 u=837s n (T w) s (TN w)),0ku=0kn N u for k5

where 7~ y is the projector on the n Fourier modes such that |n| > N (for an explanation
of Formula (1.13) see Section 8). It is easy to see that the most delicate term that appears
in the r.h.s. above is the one coming from the cubic part of the conservation laws, i.e.,
J w(0™u)%dz. More precisely we have to estimate the following term

(1.14) / ()0 () O s v ((mv ) (v )i,

as N — oo. Notice that after developing the (m — 1)-derivative of the product, we get an
integral that involves the product of ™1 (7 yu) and 8™ (7 nu), and hence after a fractional
integration by parts we get a derivative of order m — 1/2. This is the main source of difficulty
since the Gaussian measure du.,, is supported on the Sobolev spaces H™ 1/2=¢ for any
€ > 0. This problem is solved by Zhidkov by using a clever integration by parts. Indeed,
if we develop the (m — 1)-derivative of the product in (1.14), using the Leibnitz rule, we get
the following (bad) term

/(WNu)a;n_l(WNU)W>N((7TNU)a;n(7TNU))d$
- / o ()0 () B (5 v () () )

- /7T>N((7rNu)8;”’1(wNu))w>N((7rN8xu)8;"’l(WNu))dx.

The worst term in the r.h.s. seems to be the first one, since it involves the product of a
derivative of order m and a derivative of order m — 1. However this term is zero since it can
be written as follows:

%/(9z(ﬂ>N(7rNu)8;n_1(7rNu))2dx =0.

By looking at the structure of the conservation laws of the Benjamin-Ono equation, it is
easy to check that the situation is a priori much worse. In fact if F,, is the conservation law
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(for the Benjamin-Ono equation) with leading term ||u||% ., and if we repeat the same con-
struction as in (1.13) (where p,, is replaced by the density of FE,,), then the cubic part pro-
duces a contribution that involves a derivative of order m which is very delicate since the
Gaussian measure dp,, is supported on H™~'/2=¢. Moreover, in E,, the terms homoge-
neous of order four involve a derivative of order m — 1/2 (this difficulty can be compared
with the one we met above to treat the contribution coming from the cubic part of the con-
servation laws of KdV). The second main result of this paper (Theorem 1.2) is essentially
saying that we are able to find a key cancellation which eliminates the terms containing (at
first glance) too many derivatives. We believe that this result is of independent interest and
that it will play a role in the future analysis on the issues considered here.
Next we fix some notations.

NoOTATION 1.3. — We shall denote by H® (and in some cases H) the Sobolev spaces
of 2m-periodic functions,
L? (and in some cases L) is the 2m-periodic Lebesgue space;

L3 is the Lebesgue space with respect to the probability measure (2, @, p), which in turn is
the domain of definition of the random variables o, (w) in (1.3),

if f(z) is a 2m-periodic function then [ f(z)dx = fo% f(z)dz;
the operator H is the usual Hilbert transform acting on 2mw-periodic functions,
for every N € N the constant ay is equal to Z;V:l %

for every k € N the quantities Ey, /o and Ry, /o are related as in (1.2), where Ey 5 is a
conservation law for the Benjamin-Ono equation.

Some other notations will be fixed in Section 2.

The remaining part of the paper is devoted to the proof of Theorems 1.1, 1.2.

2. On the structure of the conservation laws of the Benjamin-Ono equation

In this section, we describe the form of the Benjamin-Ono equation conservation laws
which is suitable for the proof of our results announced in the introduction. Our reference in
this discussion is the book by Matsuno [10].

We now fix some notations. Given any function u(x) € C*°(S?), we set
P1(u) = {05 u, HOS u|ay € N},
Po(u) = {05 ud?u, (HIS w)09%u, (HOY u) (HOS?u)| oy, e € N}

and in general by induction
k .
P (1) = {HH”pjl (w)is, ..., € {0,1},
1=1

k
S ji=nke{2,...,n}andp;(u) € wjl(u)},
=1

where H is again the Hilbert transform.
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256 N. TZVETKOV AND N. VISCIGLIA

EXAMPLE 2.1. — The elements belonging to P3(u) are the following ones:
02 udy?udyP u, 05 udS*u(HOY ), 05  uH (052 udy®u),
0 u(HOY?u)(HOSPu), 05 uH (022 u(H Oy v)), HOY uH (052 udS u),
(HO7 u)(HO;?u)(HO;u), (HO; w) H (97 u(H O w)), 07 uH (H9;*u) (H;  u))
where aq, as, a3 € N,
REMARK 2.2. — Roughly speaking an element in &,, (u) involves the product of n deriva-

tives 021 u, .., 05w in combination with the Hilbert transform H (that can appear essentially
in an arbitrary way in front of the factors and eventually in front of a group of factors).

Notice that for every n the simplest element belonging to #,,(u) has the following struc-
ture:

2.1) [[05u, 0 € N.
=1
In particular we can define the map
Pr(1) 2 pp(u) — Dn(u) € Pp(u)

that associates to every p, (u) € %, (u) the unique element p,,(u) € #,,(u) having the struc-
ture given in (2.1) where 051 u, 092w, . . ., 09 u are the derivatives involved in the expression
of p,, (u) (equivalently 5, (u) is obtained from p,, (u) by erasing all the Hilbert transforms H
that appear in p, (u)).

Next, we associate to every p, (u) € P, (u) two integers as follows:

if n (u) = [ ] 097w then

i=1
(2.2) |pr (w)] := —SFP o
and
2.3) lpa(@)ll = .
i=1

We are ready to describe the structure of the conservation laws satisfied by the Benjamin-Ono
equation. Given any even k € N, i.e., k = 2n, the energy Ej,/, has the following structure:

4 Bip) = .t Y el [pids
p(u)E€P3(u)s.t.
Plu)=ud? tudlu

+ > ) [ pluyda

p(u)€P;(u)s.t.j=3,...,2n+2
llp(u) l|=2n—j+2
Ip(u)|<n—1

where ¢ (p) € R are suitable real numbers.
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Similarly in the case of odd k € N, i.e., k = 2n + 1, the energy E} /5 has the following
structure:

e B =il + 3 aln) [ pus

p(u)EPs(u)s.t.
p(u)=ud;ud;u

fY ab) [rwe

p(u)EPs(u)s.t.
H(u)=0,ud? " tudlu

+ > ck(p) / p(u)dz

p(u)EPy(u)s.t.
pu)=u?0" " tudlu

T 3 () [ plu)da

p(u)EP;(u)s.t.j=3,...,.2n+3
lp(u)|=2n—j5+3
Ip(u)|<n—1

where ¢ (p) € R are suitable real numbers.

REMARK 2.3. — The expressions above should be compared with the explicit structure
of By /o for k =0,1,2,3,4 (see the introduction).

3. Preliminary estimates

Along this section we shall use the notations %;(u), p;(u), p;(u) introduced in Section 2.
We also recall that Ey,/ denotes the conservation law whose structure is described in (2.4)
and (2.5) (respectively depending on the evenness or oddness of k). The main result of this
section is the following proposition that will be very useful to prove Theorem 1.1 for k£ an
even number.

PropOSITION 3.1. — Let k > 0 be a given integer. Then for every R1,Ry > 0 there is
C = C(Ry, R2) > 0 such that

2k
G [({u € HY|E;2(uw)] < R} N {u € H*||Eyyyyo(myu) — an| < R}
Jj=0

C {u € H*|||ul| v < C}N{u € H*||rnul%ir/» — an| < C}, VN €N.

REMARK 3.2. — The proposition above (where we choose &k = m) implies that the
support of the functions F, 1 n g defined in (1.5) is contained in a ball of H™ intersected

with the region {u € Hm|||7r1\]u||fﬁm+1/2 — an| < C} (at least in the case m > 0).

LEmMMA 3.3. — For every integer m > 0 there exists C = C(m) > 0 such that

(3.2) ‘/ua;"va;"ﬂw dz| < C(||u|lpe||v|| gmsrsz ||w|| gmsase

F vl l[wll zmersz[wl gomsase + lJwl[ oo [ull grsasz [Vl zmerz) -
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258 N. TZVETKOV AND N. VISCIGLIA

Proof. — We consider a Littlewood-Paley partition of unity 1 = > 5y A, where N takes
the dyadic values, i.e., N = 27, =0,1,2,---. We denote by Sy the operator YN <N AN,
In order to prove (3.2), one needs to evaluate the expression

(3.3) > An, udT AN, v 0T T Ay, w da .
N1,N3,N3

We consider three cases by distinguishing which is the smallest of Ny, Ny and N3. In the
sequel we shall denote by ¢, C' > 0 constants that can change at each step.
Denote by Ji, the contribution of N7 < min(Ns, N3) to (3.3). Then Ny ~ N3 and

n<c Y ) / Semin(Na.No) U O A, v O Ay w da
Ny~N3

<C Y lulloe Ny AN 0]l N5 Ay, w22
Na~Nj
< Cllullzes vl gomsaszl|wll gronsas2,
where in the last line we used the Cauchy-Schwarz inequality. Next denote by Js the contri-
bution of No < min(Ny, N3) to (3.3). Then

L<c Y ]/ANlua;"Smm(Nl,Ng)ua;““ANawdx
Ni~N3

<C ) ANl 2 (min(Ny, Ns))™ o]l oo N3" I A vl e
Ni~N3

< Clollpee ull grmsasz lwll grmeare

Finally, we denote by J3, the contribution of N3 < min(Ny, N3) to (3.3). Then

L<c Y ‘/ANlua;"ANZUa;"b“scmm(NhNQ)w dz
Ni~No

<C Y |Anull2Ng [ An,ollc2 (min(Ny, No) ™ |w]| o
Ni~Ny
< Cllwl[ oo [lwll gmsara vl grmsae-

This completes the proof of Lemma 3.3. O
As a consequence of Lemma 3.3 we get the following useful result.

LEmMMA 3.4. — Let m > 0 be an integer and p3(u) € P3(u) be such that
3.4) P3(u) = udTudT tu.

Then for every e > 0, 1 < p < oo such that ep > 1, there exists C = C(e,p) > 0 such that:
(3.5) | [ e < Cllulipmo sl

Proof. — Looking at the structure of the elements in $5(u) and since we are assuming
(3.4) we can deduce by Lemma 3.3 the following estimate:

2
| [ patwids] < € (maxlullmssss Hulmess=3 ) maxlulls, | Full o)
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and hence by the Sobolev embedding WP C L* we can continue the estimate as follows
(provided that we change the constant C)

2 < CllullFmsase max{|lullwes, | Hullwer}.
The proof can be completed since the Hilbert transform H is continuous in the spaces LP

forl < p< . [

LEMMA 3.5. — Let k > 2 be an integer. For every p3(u) € P3(u) such that

3 3
p3(u) = 0% uwith) < a; =2k+1and1 < min o; < max a; <k
p3( ) 1_[1 T _Zl % + = 2133 1_121,2,3 i >
= i=

we have:

| [ psturaa] < Cllul.

Proof. — We can assume o1 > ag > ag and also ps(u) = H?zl 0%y (the general case
follows in a similar way).

First case: o = a9 = k.

In this case necessarily g = 1 and hence by the Holder inequality we get
| [ patwdde] <l lowull o < Clul
where we have used the Sobolev embedding H! C L.

Second case: ag < k — 1.

By the Holder inequality we get
| [ patwdde] < gl s 05
and hence by the embedding H! C L

o < Clullpelul o

The proof follows since ag + 1 < ap +1 < k. O

LeEMMA 3.6. — Let k > 1 and j > 3 be integers. For every pj(u) € P;(u) such that

J J
pi(u) = [0 uwith0 <> a; < 2k

i=1 i=1

we have:

(3.6) | [ pitwyda] < Clul
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Proof. — We treat explicitly the case p;(u) = p;(u) (we specify shortly below how to treat
the general case).

It is not restrictive to assume that
(3.7 Q2o 2 2.
By eventually performing integrations by parts we can assume «; < k and by (3.7) also
ag < k. Moreover by the assumption we get
(3.8) a; < k,Vi=3,...,].
Hence by the Holder inequality we get:

J
(39) | [ pswds] < oz ullalogzuls [T 105wl
=3

which due to the embedding H! C L* and (3.8) implies (3.6) (if the Hilbert transform H
is involved in the expression of p;(u) then we are allowed to remove H at the last step since
[Hullzs = |ullz2)- O

LEMMA 3.7. — Letn > 0 be an integer and R > 0, then
2n
(3.100  3C =C(n,R) > 05t (|{u€ H"||E;j2(u)| < R} C {u € H"|||ul| g~ < C}.
=0
Proof. — We use induction on 7.

First step: n = 0.
This is trivial since Eo(u) = |Jul|2..
Second step: n = 1.

By combining the explicit structure of Ey/, (see the introduction) with the following
inequality

1/2 1/2 1/2 1/2
lullgs < [full Y ulls < Cllullya lull i
we get
3/2 3/2
(3.11) Ry o ()| < Cllull 32 ull2F

(see the notation in (1.2)). Hence in the region
{u € H'||Eyj5(u)| < R, |Eo(u)| < R}

we get

ull%,, 2 = [E1/a(u) — Raja(w)| < R+ R¥4|ul2/2,

which in turn implies the existence of C' > 0 such that

(3.12) lull g2 < C, Yu € {u € H1||E1/2(u)| < R,|Eq(u)| < R}.

Next, by looking at the explicit structure of F; (see the introduction) we get
[Ra(w)] < Cllullas [ullZ 2 + Cllullys e

(see the notation (1.2)) where we have used the Sobolev embedding H'/2 < L*. Hence by
3.12) we get a suitable constant C' > 0 such that

lullf, = 1B1(u) = Ri(uw)] < R+ C + Cllull
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Vu € {u € H'||E,(v)| < R, |E1/2(uw)| < R,|Eo(u)| < R}.
In turn, this implies the existence of C' > 0 such that

lullr < C, Yu € {u € H'||E1(u)| < R, |Eqj5(u)| < R, |Eo(u)| < R}.

Third step: n = 2.
Following the argument of the previous step we get

(3.13) lullg: < C, Yu € {u € H?||E1(u)| < R, |E1j2(u)| < R, |Eo(u)| < R}

for a suitable C' > 0. By combining the structure of E3 /5 (see the introduction) with (3.13)
and the Sobolev embedding H' C L> we get

|R3/2(u)] < C, Yu € {u € H?||E;(u)| < R, |Ey/2(u)| < R, |Eo(u)| < R}.
As a consequence we deduce
(3.14) lulfs 2 = 1Bsp2(w) — Rapa(u)| < R+ C

Vu € {u € H?||E3/3(u)| < R,|E1(u)| < R,|Eq/5(u)| < R, |Eo(u)| < R}.

By combining (3.14) with Lemma 3.4 and Lemma 3.6 we get

5
‘Rg(u) +3 /(uz)zHuz dx’ <C
Vu € {u € H?||E;)5(u)| < R,|E1(u)| < R, |E1)2(u)| < R,|Eo(u)| < R}

and hence
2 5 2 5 2
ullfy: = Ba(w) + (Ra(w) + ;[ (wa)*Hus do) =2 [ (ua)*Hu, do
<R+ C+|ullfllullzz < R+ C+ Cllullge

for all u in ﬂ?zo{u € H?||E;/>(u)| < R}, where we have used the Holder inequality and
the Sobolev embedding H! C L™ to estimate the integral [(u,)?Hu, dz. The proof can be
easily concluded.

Fourth step: n = n+ 1 forn > 2.
Assume the conclusion is proved for n > 1, then there exists C' > 0 such that

2(n+1) 2n
(3.15) ﬂ {u € H" Y|E;j)5(u)| < R} C ﬁ{u € H"Y|B, )5(u)| < R}
7=0 j=0

C {u e H""||ul|gn < C}.

Next we shall use (following (1.2)) the notation

(316) En+1/2(u) = ||u||§:1n+1/2 + Rn+1/2(u)
and
(3.17) Epi1(w) = [[ul}uss + Rota(u)

(the structure of Ry, /5, described in (2.4) and (2.5), depending on the evenness or the oddness
of k, will be freely exploited in the sequel).
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By combining Lemma 3.6 (where we choose k = n), with (3.15) we deduce
2(n+1)
(3.18) |Rnt12(w)] < C,Vue () {ue H"|E))(u)| < R}
§=0
for a suitable C' > 0, where we have used the fact that R, /2(u) involves terms of the
type [ p;(u)dz with j > 3 and ||p;(u)|| < 2n (for a definition of ||p;(u)| see (2.3)). As a
consequence of (3.16) and (3.18) we get
2(n+1)
(3.19) () {u€ H"|E;jjs(u)| < R} C {u € H"™[|ul|grns1/2 < C}.
§=0
By combining Lemma 3.4 (where we choose m = n, e = 1,p = 2), Lemma 3.5, Lemma 3.6
(with k£ = n) and (3.19) we deduce
2(n+1)
|Rp1(w)] < O+ Cllullgnss, Yue (1) {ue H"|Ej/;5(u)| < R}
§=0
(where we have used the structure of R,,+1 given in (2.4)). By combining this estimate with
(3.17) we get

[ullfnis < 1Bnsa(u)] + C + Cllull g < R+ C + Clluf o

2(n+1)
vue () {ueH"|E))(u) < R}
§=0
which in turn implies (3.10) for n + 1. O
Proof of Proposition 3.1. — By (3.10) (where we choose n = k) there exists C > 0 such
that
2k

(3.20) lull e < C, Vu € ({u € H¥|E;s(u)] < Ri}.
3=0

We also recall the notation (see (1.2))
(3.21) Ek+1/2(u) = ||u||§'{k+1/2 + Rk+1/2(u)-

By combining (2.5) with (3.20) and Lemma 3.6 (recall that we are assuming k£ > 0) we get
that for every R there exists C' = C'(R) such that

|Riy1/2(w)] < C, Vu € {u € H*|||ul| v < R}
which is equivalent to
| Br1/2(u) = [ulfiire] < C, Vu € {u € H*||ul g+ < R}
and hence
| Ey1/2(mnu) — ||7TNU||i'1k+1/2| <C
Vu € {u € H*|||u|gx < R}, N € N.
By (3.20) we get

|Ek+1/2(7TNU) - ||7TNU||§;{1C+1/2| <C
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2k
Vu € ({u & H||E;2(u)| < Ri}, N €N
3=0
that in turn implies (3.1). 0

4. A linear Gaussian bound

We start with the following general measure theory result which shall be frequently used
in the sequel.
ProrosSITION 4.1. — Let F : (Q, &,p) — C be measurable and C, o > 0 be such that
4.1 |1F|lLe < Cq®, Vg € [1,00).
Then .
p{w € QF (w)| > A} < e_%(%)g, YA > 0.

Proof. — By combining the Tchebychev inequality with (4.1) we get:

pl{w € Q||F (w)| > A} < I Hq <C’q( X )q.

1

We conclude by choosing g = (%) Tl O

Next we present, as an application of the previous result, a linear Gaussian bound which
will be used in the next sections.

PROPOSITION 4.2. — For every integer m > 0,0 < € < % and 1 < p < oo there exists
C = C(m,e,p) > 0 such that

2
p{w € Ql||@mi1(W)|wer > A} < Ce™ T, ¥A>0
where @, +1(w) is the random vector in (1.3) for k = 2(m + 1).

Proof. — 1Tt is sufficient to prove that

p{weql Z )

For every fixed = € (0, 27) the random variable

> A} <Ce .
Lz

Pk (w) ikx
k.m+1—e
k>0

2
. . . . . . . . 1 _ 121 _ 1
is Gaussian and its distribution function is —ze™ & dz where K = )", T -
As a consequence we get the following estimate:

(w) q 1 _ =2
H etk = —/ |z|7e” & dz
Ly  wK Jo
oo

km-{-l e
= 2K%/ e~ 59145 <CK? (g> , Yz € (0,2m)
0 2

g
2
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for a suitable C' > 0 (the last inequality can be proved by integration by parts). In particular
we get:

< 0/, Yz € (0,27)

H zka:
L

km+1 e

and hence

Iz ) e

Due to the inequality ||.||,q » < ||.||Lqu for every g > p we get:

<CVa.

LYLY

2km
km+1 e

Lo <Cyq,VYg>p

(since p(Q) = 1 it is easy to deduce that the estimate above is true for every g > 1 eventually
with a new constant C'). Hence we can conclude by using Proposition 4.1. O

5. Multilinear Gaussian bounds

For any p(u) € U2, ?;(u) (see Section 2) and for any N' € N we introduce the functions

fPv) = /p(v)da: and fy(v) = /p(mvv)dx.

We also recall that the Sobolev spaces H™+1/2=¢ are a support for the Gaussian measure
dpmy1 for every e > 0. This fact will be used without any further comment in the sequel.
The main results of this section are the following propositions.

PROPOSITION 5.1. — Let m > 0 and p3(u) € P3(u) be such that p3(u) = udTudu.
Then there exists C > 0 such that

3 3 p
(51) ||f]z\)] (u) - JZ\)/[(U)”LP(dum+1) <C

/min{M, N}’

3/2
VM,N € N,p > 2.

In particular

(5.2) 3C > 0.8 pms1 (A7) < e EOVRRINMD®E fynr N e N A > 0

where

(53) ARy = {u € H™ V27| £ () = f12 (w)] > A}
PROPOSITION 5.2. — Let m > 0 be fixed. There exists C > 0 such that

p
(54) ||hN(u)—hM(u)||Lp(dum+l) <C—m—n—= VM,NEN,pZZ

\/rnin{M,N}7

where hi (u) = ||7r1;(u||?im+1/2 — ak for any K € N. In particular

(5.5) 3C > 0.1, prms1(Byy) < e~ cWWmin{N.MY) yar N e N A > 0
where

(5.6) By n = {u€ H™/>7||hy(u) — has(u)] > A}.
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We need some preliminary lemmas. The first one concerns the orthogonality of the func-
tions {¢;(w)p;(w)pr(w)}i jkez (Where @, (w) are the Gaussian functions that appear in
(1.3)) provided that (i, j, k) € €, where

5.7 a=1{(i7,k) € Z\{0}i+j+k=0}
LEMMA 5.3. — Let (k1, ks, k3), (j1, j2,73) € G be such that

(5.8) {k1, k2, ks} # {j1, j2, Js}-

Then

/ Py Phs Phs Pj1 P Pjsdw = 0.
Q

Proof. — We split the proof in two cases (which in turn are splited in several subcases).

First case: 3i € {1,2,3} s.t. k; & {Jj1,J2, J3}
We can assume

(5.9 ki & {41,752, 43}
Next we consider four subcases:

First subcase:

(5.10) ki & {ka,ks} and — ki & {j1, Jo, Ja}-
Notice that by definition of & necessarily
(5.11) — ki & {ka, ks}.

Hence by combining (5.9), (5.10), (5.11) and the independence assumption on {¢, (w)}n>0
we get:

0:/¢k1/(pk2(pk3<pj1<pj290j3dw:/(Pk1gok290k3(pj1(pj2(pj3dw'

Second subcase:
(5.12) ki € {k2,k3} and — k1 ¢ {Jj1,72,73}
It is not restrictive to assume
(5.13) k1 = ko
and hence by the definition of
(5.14) ks # tki.

Hence by combining (5.9), (5.12), (5.13), (5.14) with the independence assumption on {¢, (w)}n>0
we get

0= / 0, dw / Pk P, Pja Pis dw = / Pky Phy Phes Py P Pz AW
Third subcase:

(5.15) ki & {k2,k3} and — k1 € {j1,J2,73}
By definition of & we also deduce
(5.16) —ky ¢ {ko,ks}.
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By (5.15) we can assume for simplicity either

(5.17) — ki = j1 ¢ {jo, j3}

or

(5.18) — k1 =j1=Ja

In the case when (5.17) occurs, we can also assume by the definition of # that
(5.19) ki = —j1 & {ja, J3}-

By combining (5.9), (5.15), (5.16), (5.17), (5.19) with the independence assumption on
{Qon (w)}n>0 we get

0= / o, dw / Pky Phs Pja Pg dw = / Pky Phy Phs Py Pia Pz dw

(where we have also used (5.9)); in the case when (5.18) occurs, by using the definition of &
we get

(5.20) k1 # Js.
Hence by combining (5.15), (5.16), (5.18), (5.20) we deduce

0= /Wildw/SDkzwknggdw = /@klwkzwka%‘l%z%gdw-

Fourth subcase:

(5.21) ky € {ko,k3} and — k1 € {j1, 72,73}
We can assume

(5.22) k1 = ko

and by the definition of # also

(5.23) ks # Lky.

Moreover, we can assume that either

(5.24) — k1 =j1 ¢ {ja, Ja}

or

(5.25) — k1 =7j1=J2.

In the case when (5.24) occurs we can also assume by the definition of & that
(5.26) k1= —j1 ¢ {j2,Js}-

Hence by combining (5.22), (5.23), (5.24), (5.26) we get

0= / Ok, dw / PhsPjaPis dw = / Py Phs Phs P Pz Pja W5
in the case when (5.25) occurs we can deduce by the definition of # that

(5.27) + k1 # J3.
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Hence by (5.22), (5.23), (5.25), (5.27) we get
0= [ ¢, dw | or,Pjdw = / Phy Phy Phes Py P P -

Second case:
(5.28) ki € {j1,j2,j3} Vi=1,2,3.
Next we consider two subcases:
First subcase:
(5.29) ki # ko, k1 # k3, ko # k3.
By combining (5.28) and (5.29) it is easy to deduce that
{71, J2, Js} = {k1, k2, ks }

which is in contradiction with (5.8).

Second subcase:
(5.30) In,m € {1,2,3} s.t. n # m, ky, = k.
We can assume
(5.31) ki = ks,
then by the definition of ¥ we deduce that
(5.32) k3 = —2k;.

On the other hand by (5.28) ki, —2k; € {j1, j2,j3}. Since by the definition of & we have
$°% . ji = 0 we conclude that necessarily
(5.33) {j1,72,73} = {k1, k1, —2k1 }.
On the other hand by (5.31), (5.32) we get
{k1, ko, k3} = {k1, k1, —2k1}
which in conjunction with (5.33) gives {k1, k2, ks } = {41, 42, J3}. Hence we get a contradic-

tion with the Hypothesis (5.8). O

LEMMA 5.4. — Let m > 0 be an integer and p3(u) € Ps(u) such that p3(u) =
udTud T Lu. Then there exists C > 0 such that

C
I £% (W) = Fag (@l 22 dpp ) < \/W

Proof. — We assume for simplicity p3(u) = ud™ud™ v (the general case can be treated
in a similar way). Next we assume N > M and we shall use the parametrization (1.3) with
k = 2(m + 1) to describe our probability space. Hence we get the following representation

, VN,M € N.

11
BloW) — M) = D, =g m9i(w)e;(w)erw)
o=l
(4,5,k)E iy
where
(5.34) iy = {(i,4, k) € @llil, |3, |k| < N and max{Ji, |4, |k|} > M}
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and @ is defined as in (5.7). By Lemma 5.3 we get:
IFR () = Fiz(e@))IZs
1 1 1 1 1 1 1 1 1\12
< - — + =)+ = -+t )+ -+t =
2 [IZI’"“ (|J| Ikl) |+ (I@I |k|> ||t (IZI IJI)}

(i.5,k)€ Uy

where N
b = {(i, 4, k) € Gyrli < j < kY.
Next notice that the following elementary property holds
G N . . . .
Gy C {(6,4, k) € G|Card{|d], |, |k|} € [M/2,N]} > 2}
and hence we easily get:

2 [|i|i+1 (GT * ﬁ) " |j|i+1 % " W1|> " |k|i+1 ﬁ * ﬁ)r

(i,5,k)€ Uny

1 C

(I,n)ENxNn> 2
In the next lemma the functions hx (u) are the ones defined in Proposition 5.2.

LEMMA 5.5. — Let m > 0 be an integer. Then there exists C' > 0 such that

C
hy(u) — har(u <———— VN,M eN.
e ) = Pt )20y < s
Proof. — Notice that [[o(w)[1%,.11/> = Ynez (o} ﬁ|<pn(w)|2 where ¢(w) is defined as in
(1.3) for m = 2(k 4+ 1). Hence the proof follows as in [14] (see Lemma 4.7). O

Proof of Proposition 5.1. — In Lemma 5.4 we have proved (5.1) for p = 2. The case p > 2
follows by combining the estimate for p = 2 with the Wiener Chaos in the same spirit as
the paper [14] (see the proof of Lemma 4.3 in [14]). The estimate (5.2) follows by (5.1) in
conjunction with Proposition 4.1. O

We refer to [9] for a background on the estimates for the Wiener Chaos.

Proof of Proposition 5.2. — By combining Lemma 5.5 with the Wiener Chaos in the spirit
of [14] we get (5.4) for any p > 2 (see the proof of Lemma 4.8 in [14]). Finally (5.5) follows
by combining (5.4) with Proposition 4.1. O

Arguing as in the proof of Proposition 5.1 and 5.2 we can prove the following result (that
will be useful in the sequel to prove Theorem 1.1 in the special case & = 2).

PROPOSITION 5.6. — There exists C > 0 such that

(5.35) p{u € HY2 || By jo(myu) — an — Byja(maru) + an] > A}
< e~ &EOWmin{M,N}/?

and

(5.36) pi{u € HY?=¢|||nyu — maul22 > A} < e~ & OVmin{M,N})
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VM,N € N,A> 0.

Proof. — The proof of (5.36) follows the same argument as the proof of (5.2) and (5.5)
(i.e., it follows by combining Lemma 5.3, with the Wiener Chaos and Proposition 4.1). By a

similar argument we can prove
pr{u € HY?7||Ry jo(nyu) — Ryjo(maru)| > A} < ¢~ & (\W/min{M ,N})

2/3

By combining this estimate with (5.5) (for m = 0) we get (5.395). O

6. Proof of Theorem 1.1 for k =2(m+1),m >0

Along this section, when it is not better specified, we shall assume that m > 0 is a given
integer. We recall the following notations to describe the energies preserved by the Benjamin-
Ono flow:

Epy1(w) = [[ulFmin + R (w);
Epi172(w) = [[wll%mi1/2 + Ring1y2(u).
We also introduce the following functions
fn  H™HY27¢ 54— Ry (mvu);
gn : Hm™H/2=¢ 54 Epi12(mnu) — an
(recall that H™+1/2=¢ is of full measure for ji,m41). Notice that we can write the identity
gn(u) — hn(u) = Ry y1/2(mNu)
where hy (u) is defined as in Proposition 5.2. For every p;(u) € #;(u) we introduce
(6.1) o ™2 5y /pj(mvu)dx eR.
Next we split the proof of Theorem 1.1 (in the case k = 2(m + 1)) in several propositions.

PROPOSITION 6.1. — Let m > 0 be an integer and v € C.(R) be given. Then there exist
two functions h(u), f(u) measurable with respect to i, 11 such that:

(6.2) [h(u)], | f(w)| < 00, a.e. (Wrt. pmi1) u€ H™ /27
2m

(6.3) TT 4B 2 (rnu))(Eppsr jo () — ey )™ Fmsr ()
§=0

converges in measure to

2m

T ¥ (E; 2 () (h(u) + Ry jo(w))e 7.
§j=0
Moreover
(6.4) |E; o ()|, |Rmg1/2(w)| < 00, a.e. (wrt. ppmy1) u € H™H/27€,

The proof of (6.4) follows by (6.12) and (6.13) in Lemma 6.3. Hence Proposition 6.1
follows by Lemmas 6.3, 6.4 in conjunction with the following proposition.
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PROPOSITION 6.2. — Let m > 0 be an integer and v € C.(R) be given. There exist
f(u), h(u) measurable functions with respect to piy, 11 such that:

(6.5) \h(w)], |f(u)| < oo, a.e. (Wrt. pmy1)u e H™HY27E

(6.6) R,y 1(mNu) converges in measure w.r.t. iy 11 to f(u);

67 Jim [9(on () ~ $h) + Bungrjo(0)lgaan ) = 0, Va € [1,00).

Moreover we have

(6.8) Aim |(Ej)2(mnu)) — Y(Ej2(u) |l Ladpms,) = 0, ¥q € [1,00),5 =0,...,2m.
First we prove the following lemma.

LEMMA 6.3. — Let m > 1 be an integer; then the following limits exist:

(6.9) A}im I (u) = /pj(u)dx ER, ae (Wit pimyr) u € H™H/27¢
provided that
J J
(6.10) 3 >3, pi(u) =[]0 uwitho <> a; < 2m
i=1 i=1
or
3 3

| = D = i j < ; — i ; > 1.
(6.11) j =3, p3(u) 11690 uwith 0 < ;al 2m + 1 and i o > 1
In particular
(6.12) Nlim Ryy1/2(mnu) = Ryyq/2(u) € Rae (wrt. pimy1) u € H™ /2=

Moreover we have
(6.13) |E;2(u)| < 00, Yu € H™H/27¢ j=0,...,2m.

Proof. — We assume for simplicity p;(u) = p;(u) (the general case can be treated by a
similar argument).
The proof of (6.9) (under the Hypothesis (6.10)) follows by Lemma 3.6.
Concerning the proof of (6.9), under the assumption (6.11), we notice that by integration
by parts we can assume
1<a; <as<az<m.

Hence we get
| [ pstuids] < CllulBimlo5 ull e < Clluln lullses

where we have used the Sobolev embedding WP C L provided that ep > 1. On the other
hand by a suitable version of Proposition 4.2 (where we replace ||.||we.rby ||.||pym+e.») We get
u e WmHeP ae (WIt. pme1) u € H™T1/27¢ and hence (6.9) follows.

The proof of (6.12) follows by combining the structure of E,, /5 (see (2.5)) with (6.9)
(under the assumption (6.10)). The proof of (6.13) follows by a similar argument. O

The next result is a suitable version of the previous lemma in the case m = 0.
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LEmMA 6.4. — The following limits exist:

(6.14) Jim Ryjo(nyu) = Ryja(u) €R, Yu € HY?275
(6.15) Nlim (ryu)ide = /u4dx, Vu € HY/27¢,

Proof. — By looking at the explicit structure on E;,, (see the introduction) we get

Rij5(u) = % [u3dz. On the other hand by the Sobolev embedding H/27¢ C L*® we get

u € L3, and hence (6.14) follows. By a similar argument we deduce (6.15). O

Proof of Proposition 6.2. — By Proposition 5.1 and 5.2 there exist two functions
fyh € N3 L9(dgim 1) such that:
(6.16)  lim [ (u) F) | La(dpn.r) = O (provided that p3(u) = udTud ™ u);
©17)  Jim () = B o, ) = 0

Proof of (6.6). — If m = 0 then it follows by (6.15), (6.16) and by looking at the explicit
structure of E4 (see the introduction).

If m > 1 then it follows by combining (6.9) (under both assumptions (6.10) and (6.11)),
(6.16) and the algebraic structure of R,,+1(u) (see (2.4)). O

Proof of (6.7). — Itis sufficient to prove that for every sequence N, there is a subsequence
Ny, such that

(6.18) hli_)H;o ||¢(9Nkh (w)) = Y (h(u) + Rmy1/2(w) || La(dppyr) = 0-

Notice that by combining (6.12) (when m > 1) and (6.14) (when m = 0) with (6.17) we get
a subsequence Ny such that

Jim (thc (u) + Rm+1/2(7TNkU)) = h(u) + Ryy1/2(u) a6 (WLt fippr) u € H™HH27¢,

Since sup,¢ gm+1/2—c | (gn, ()] < sup and dppy,11 (H™T1/27€) = 1 we can apply the
dominated convergence theorem to get (6.18). O

Proof of (6.8). — If m > 1 then we combine (6.9) (under the assumption (6.10)) with
(2.4) and (2.5) in order to get E;/o(nyu) — Ejjo(u), ae (WLt pyi)u € HMH/2=e
for j = 0,..,2m. Hence the proof for m > 1 can be concluded as in (6.7).

The case m = 0 is simpler since we have u1(L?) = 1 and hence

|mnullpe — |lullz2, ae (Wrt. pp)u € L2

The proof follows as above. O

The next proposition allows us to deduce that the limit functions constructed in (6.3)
belong to LY (dpm+1).

PROPOSITION 6.5. — Let m > 0 and ¢ € C.(R) be given. For every q € [1,00) we have

< 0.
La(dpm+1)

2m
(6.19) 5P H 11 (B 2 (rnw)(Emsr jo(mnu) — ay)e™ Fmer ()
=0
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LEMMA 6.6. — Let m >0 be an integer and ps(u) € P3(u) such that
P3(u) = udmud™ 1 u. For every R > 0 there exists C = C(R) > 0 such that

A2

(6.20)  pmyr{u € H™V/2=¢|| P (u)| > A, |y (u)] < R} < Ce °°N YN € N, A > 0.

Proof. — Wefix0 <e< % and 1 < p < oo such that ep > 1. Then by Lemma 3.4 we get
R (@) < Cllanull Fmsa sz llmnvullwes
and hence
|FR2 (u)] < C(an + R)||ryullwes Yu € {u € H™ /27| |hy(u)| < R}.

The proof follows by Proposition 4.2 (in fact notice that the same proof of Proposition 4.2
works in the case when the vector ¢(w) is replaced by 7 ¢ (w) with uniform bounds that do
not depend on N). O

Next we present a modified version of Lemma 6.6 that will be useful to prove Theorem 1.1
for k = 2 (i.e., m = 0 following the notation introduced in this section).

REMARK 6.7. — Indeed the main difference between the case m = 0 and m > 0 is that
Proposition 3.1 is not available for m = 0.

LEMMA 6.8. — Let p3(u) € P3(u) be such that p3(u) = u?0,u. For every R > 0 there
exists C = C(R) > 0 such that

(6.21) ui{u € H1/2_5||f]1<,3 (u)] > A\ |Imyvullz < R, |Eyjo(nnu) — an| < R}
>\2

< Ce °%,VNeN,\>0.

Proof. — First notice that due to (3.11) we have the following estimate:
ImnulF e < [Raja(mvu)| + [ Brya(myu))|
< CR*|lmyul’l} +an + R
Vu € {u € H'* ¢||nyulr2: < R, |E) jo(nyu) — an| < R}.
The estimate above implies

(6.22) ||7rNu||i{% < Clay +1)

Vu € {u € HY/?* ¢|||rnul > < R, |E1/2(mNu) — an| < R}

where C' > 0 is a suitable constant. By combining Lemma 3.4 with (6.22) we get

| [ parvtuas] < Clmwuliysslmvulwes
< Clan + |mnullwer.

The proof can be concluded as in Lemma 6.3. O

In the sequel the sets Af\,’,)"N and B;}/[,  are the ones introduced in (5.3) and (5.6).
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LEMMA 6.9. — Let m >0 be an integer and ps(u) € P3(u) such that
P3(u) = udmud™ 1 u. Then

(6.23)  pmi1{u € H™ 27| R0 (w)] > A, |hw (w)| < R} < dpnt1(Bi n)
A A
+ pm {u € B2 fR2 (u)] > 3o b ()] < B+ 8} + dppn 41 (A37R),
Y M,N,\,R,S.
Proof. — We have the following elementary estimates:
pma{u € H™ V27| fR2(u)] > A, |h (u)| < R}
m+1/2—e€|| £P3 A P33
< pmir{u € H 13z (@) > 5, lhn ()] < B} + i1 (Ap )
m —€ A
< pmr {u € H™ P22\ B w1 £77 (w)] > ool (@] < B} + pm 1 (Bi )

Pa,%
+ pmi1 (Apr R)-
On the other hand
{u e Hmt1/2=e \ Bi7N||hN(u)| <R}Cc{ue Hm+1/2_5||hM(u)| <R+ S}

and hence we get (6.23). O

Next we propose a modified version of Lemma 6.9 that will be useful to prove Theorem 1.1
for k = 2 (i.e., m = 0 following the notation introduced in this section). See Remark 6.7 to
understand the difference between the case m = 0 and m > 0.

LEMMA 6.10. — Let p3(u) € P3(u) such that p3(u) = u?0,u. Then
pi{u € H27Y|fR ()] > A, |mnull e < R, |Eyjo(myvu) — an| < R}
< pi{u € HY?7||By jo(mnu) — an — By jo(mau) + an| > S}
+ p{u e H%*€||f§j(u)| > %, ITarullL: < R+ S, |Eyjo(myu) — an| < R+ S}
+ ua(AZ8) + i {u € HY24|||magu — mnul| g2 > S}, ¥M, N, A, R, S.
Proof. — Tt is similar to the proof of Lemma 6.9. O

Proof of Proposition 6.5. — We have to prove (6.19).
CLAIM. — It is sufficient to prove (6.19) with fy replaced by f3° where
(6.24) Bs(u) = ud; ud;u.

To prove the claim first notice that due to the factor H?:O Y(Ej/2(mnu)) in (6.19) and due
to (3.10), we deduce that the LI(dpm+1) norm in (6.19) can be computed on a sub-region
Qn C H™+1/2=¢ gych that

(6.25) Qn ={ue H™'>~||lnyu)gm} < C}

with C that does not depend on N. Next we prove the claim.
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First case: m > 2.

By combining Lemma 3.5 and Lemma 3.6, and by looking at the structure of F,,; in
(2.4) we deduce that

SUPHRm+1(7TNU) - Z 02(m+1)(p)/p3(7TN“)dxH
N pa(u)€Ps(u)s.t.
B3 (u)=ud " ud T u

L (Qn)

This implies the claim for m > 2.

Second case: m = 0.

In the case m = 0 we have
3 1
fN(U,) = Z /(WNu)2H(7rN81u)dx + g /(WNu)4d£U
and hence we get the claim due to the positivity of the last term.

Third case: m = 1.

By looking at the structure of E5 and by using Lemma 3.6 we deduce that the claim follows
provided that we prove

(6.26) sup||eq‘fp(’TN“)|||L1(QN7dM) < 00
N

where Q is defined in (6.25) and p(u) € P5(u) is such that p(u) = (8,u)>. For simplicity
we treat the case p(u) = (0,u)3 (the general case can be treated in a similar way). We have
the following estimate
[fP(ryu)| < Cllanulfpllosmvull e < Cllanullwieen
provided that u € Qy and ep > 1. Hence we get
{u € Qn|lf?(myu)| > A} € {u € Qulllmn (w)llwrser > ACT}

which in turn implies
)\2

wo{u € QN || fP(myu)| > A} < Ce™ @

where we have used an adapted version of Proposition 4.2 (i.e., we choose ¢(w) as in (1.3)
with k = 4 and the norm WP is replaced by W't€P). As a consequence we get

/ e mxwl gy, < / ePdug{u € Qn||fP (mxu)| > A}dA < co.
Qn 0

Next we shall prove (6.19) where fy is replaced by fX? with p3(u) that satisfy (6.24), and
it will complete the proof.

We split the proof in two subcases.

First case: m > 0.

Since 1) is compactly supported there exists R > 0 such that

0< ’(/1(Ej/2(7TN’U,)) < X{uEHm‘H/Q_‘*|\Ej/2(7rNu)\<R} a.c. (WI't /.Lm+1) u, v_] =0,...,2m
and also
0 < ’l/)(gN('U/)) < X{UEHW+1/2_€\|QN(U)\<R}7 a.c. (Wrt ,U,m_;,_l) u
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where y 4 denotes in general the characteristic function of A. In particular

0 < JTw(B;/2(w)d(gn(w) < X2 (ue Hm+ /2| | B, o (mv )| < RYN{ue Hm+1/2 =< [gn (u)| <R}
=0

which due to Proposition 3.1 implies

0< H Y(Ej2(mnu))Y(gn (1) < XqueHm+1/2—<||hy (u)| <R}

for a suitable R > 0 that can be different from the previous one. Hence it is sufficient to prove

sup/ eqlfll\)fa(“)ldpmﬂ < oo, VN eN
N J{ueH™+1/2=¢||hN(u)|<R}

where ps(u) satisfies (6.24). The estimate above is equivalent to:

sup/ 1 {u € H™FY27€¢| | 23 (u)| > A, |y (u)] < R}e?d\ < oo.
N Jo

In turn it follows by the following ones:

(6.27) sup/ fimg1{u € H™H/27€| | 125 (u)| > A, |hn (u)| < R}e*d\ < oo
N JVN
and
JN
629 sw [ mia{u e B> A (@) < RYA < oo,
N Jo

By (6.20) we get:

Sup/ pm1{u € H™ P22 R (u)] > A, |h (u)] < R}etdA
N JUN

Cq2a? 0 N )2
<sup/ Ce C"Ne‘p‘d)\ Csupe 4N/ e (Vean #VCaw) dA
VN

2 2
= Csupe 2 / 6_’\2\/504Nd)\
N YN__4./Cay

which due to the bound e~ < e~" for every r > 1 can be estimated by

c 2(12 a
< C%sup(aNe 2 Mo r°“N+ Ve N)
N
which implies (6.27).
In order to prove (6.28) we use (6.23) where we fix M = [\]? (here [)] is the integer part

of A) and S > 0 will be chosen later in a suitable way. By recalling also (5.2), (5.5) and (6.20)
we get:

VN
/ o {w € H™ 27 £ ()] > A, by (u)] < R}e™dA
0

N +qX
S/ Ce 0y a (e [A]S—Q—q)\_i_e EEY [])%Jrq)\)d)\
0
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where C' > 0 are uniform constant that can change at each step. Notice that if we choose S
large enough compared with ¢ then

C
sup/ Ce 2
+aA [A]S

/ Ce "o by Cle~ o+ ye o3 [’\])3+q’\)d)\ < 00

+qX 2
+Cle B tax 4 —EGIA DE+ary gy

which implies (6.28).

Second case: m = 0.

The main difference with the case m > 0 is that we cannot apply Proposition 3.1. Due to
the cut—off function ¢ it is sufficient to prove

sup/ eqlffpv3(“)|du1 < oo, VN eN
N J{ueH/2=¢||lnnull ;2 <R,|E1/2(rNnu)—an|<R}

where p3(u) satisfies p3(u) = u?d,u and R > 0 is a suitable constant. The estimate above is
equivalent to:

sup/ ul(i%\,]v)eq’\d)\ < 00
N Jo
where
Gyn={ue H1/2_6||f§,3(u)| > A\ [|[7nullp2 < R,|Eqj2(myvu) — an| < R}

and in turn it follows by the following ones:

(6.29) sup/ p1(Gan)e?d\ < oo
N Jns
and
Nﬁ
(6.30) sup/ u1(€A7N)qudA < 00
N Jo

where 5 > 0 will be fixed later. By Lemma 6.8 we get:

oo 00 >\2 c?ad [ (-2 _1\/Cay)?
sup/ ,ul(i?A,N)eq’\d)\ < sup Ce N ePd) = Csup e 1 / e VCan ? MdN
N JnB N JNB NB

Cq 2 2 o0
= Csupe™ ¢ N/ _)‘2vCo¢Nd)\
N AP __4\Can
O‘N

which due to the bound e~ < e~" for every r > 1 can be estimated by

3 ca®al _ +2VCay
-<Czsup(aye” 7 e r"“N
N

)

which implies (6.29) for every 8 > 0.
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In order to prove (6.30) we use Lemma 6.10 where we fix M = [\]'/# (here [\] is the integer
part of A) and S = 1. By recalling also (5.2), (5.35), (5.36) and (6.21) we get

2

g NE L Gt
SUP/ pr (G n)edA < SUP/ [Ce /e
N Jo N Jo

+O(em GO ax | e—éuu]”@mnqx)] X

where C' > 0 denotes uniform constants which can change at each step. Notice that if we
choose B < 1 then we can continue the estimate as follows:

o0

iy l+e

-~-§sup/ e~ CN TN < o0
N Jo

for suitable C, eq > 0. Hence we get (6.30). O

PROPOSITION 6.11. — Let f(u), h(u) be as in Proposition 6.1 and x g as in Theorem 1.1.
Then

U supp(J ] x&(Ej2()xr(A(w)) + Rpi1jo(w))e™ ™) = supp(tm1)-
R>0 j=0

Proof. — Due to (6.2) and (6.4) we get
(6.31)
s {u € H™ V27| [h(w)| = 00} = i1 {u € H™ /27| Ry 11 o (u)] = o0} = 0

and

(6.32) fima1{u € HMT1/2=¢|e=F(w) = 0} = 0.

Moreover by (6.4) we also get

(6.33) fimi1{u € H™ V2| E; j(u)] = 00} = 0, Vj =0,...,2m.
Asaconsequence of (6.31) and (6.33), and by noticing that xz(t) — 1 as R — oo, we deduce:

2m

A T Xr(E)j2(w)xR(R(w) + Ryniajo(w) = 1ae (Wrt. 1) u € H™ 3¢
j=0

and hence by the Egoroff Theorem we get
V8 > 0305 c H™TY/2=¢ R > 0st.

2m

Pm+1(82s) > 1 — 6 and H Xr(Ej2(uw)Xr(h(u) + Ripy1/2(u) > 16

j=0
a.e. (W.It. fimi1) u € Qs and VR > R.
By combining this fact with (6.32) we deduce

2m )
Mm+1{ U supp(H xXr(Ej/2(u)xr(h(v) + Rm+1/2(u))€_f(u))} —1 0
R>0 j=0

Proof of Theorem 1.1 for k = 2(m + 1). — It follows by combining Propositions 6.1, 6.5,
6.11. O
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7. Proof of Theorem 1.1 for k =2m + 1,m >0

In this section we briefly describe how to adapt the proof of Theorem 1.1 given for
k = 2(m + 1) to the case k = 2m + 1. We do not give the details of the proofs, however
we underline the points where they have to be modified compared to the case k = 2(m + 1).
The following is an adapted version of Proposition 3.1.

PrOPOSITION 7.1. — Let k > 2 be a fixed integer. Then for every Ry, Rs > 0 there is
C = C(R1, R2) > 0 such that

2k—1
(11 () {u e B[ jo(u)] < R} 0 {u € B2 By(mu) — an| < Ra}
j=0

c{uce H’“_%|||u||Hk71/z <Cin{ue Hk_1/2|||7rNu||i~I,c —an| < C}, VN e N.

Proof. — It is similar to the proof of Proposition 3.1, hence we skip it. O

By looking at (2.5), in analogy with our argument used to treat the conservation laws
E; 41, the most delicate terms to be treated in E,, /9 are of the type [ p3(u)dz where
(7.2) p3(u) € P3(u) and ps(u) = wdJ ud) u.
Next we present an adapted version of Propositions 5.1 and 5.2 in the case when ps(u)
satisfies (7.2). We recall that the Sobolev spaces H™ ™ are a support for the measure fi,, 12
for every e > 0. This fact will be used in the sequel without any further comment.

PROPOSITION 7.2. — Let m > 1 be a given integer and ps(u) € P3(u) be such that

P3(u) = ud  udy u.

Then for every a € (0, 3) there exists C = C(a) > 0 such that

p3/2

(A3 W) = ) o o) < C gty oy YN €N 2 2

where fP3(v) = [ ps(v)dz. In particular

(74 3C > 081 nyaja(ARIN) < e”EOMMNMIDT ypr N e N> 0

where

(7.5) AII)\Z?\V = {u € H™¢||fP*(mnu) — P2 (mpru)| > A}
PROPOSITION 7.3. — Let m > 1 be a given integer. There exists C > 0 such that

(7.6) ,VYM,N eN,p>2

p
lhn (mNu) — hM(WMu)||LP(dum+1/2) < CW

where hi (v) = ||v||%,, — ax for any K € N. In particular

(7.7) 3C > 051, iy 11/2(Biyy) < e”€OVRBINMY lyar N e N,A > 0
where
(7.8) Bl)\‘/l,N ={ue H™ ¢||hn(rnu) — hpr(myu)| > A}
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Sketch of the proof. — The proof of Proposition 7.3 is identical to the proof of Proposi-
tion 5.2. Concerning the proof of Proposition 7.2 notice that (following the proof of Propo-
sition 5.1) it is sufficient to prove (7.3) for p = 2. By using the parametrization (1.3) (for
k = 2m + 1) we have to estimate
2

Lz

| S e @n@n)

(3,4,k)€ @y

where ﬁ% is the set defined in (5.34). By using Lemma 5.3 and arguing as in Lemma 5.4 we
can estimate the quantity above by

> S S O
7 ’i-i— S12m—+1 5 — Mo
(4,)€Z\{0},i+357#0,]i|> 4 illi + 3] ]

for every a € (0, 1). The last estimate can be deduced by looking at the argument in [14] (see
end of page 500). O

Next we present a lemma allowing us to treat all the terms that appear in the expression
of E,, 1,2 except the ones with the structure (7.2) (see (2.5)).

LEMMA 7.4. — Let m > 1 be an integer and p3(u) € P3(u) such that

3 3
7.9 p3(u) = 0% with a; =2mandl1 < min o; < max a; < m.
( ) p3( ) 1_[1 T Zl % = 2123 7> =153 7>

1= 1=

Then for every € > 0, p € [1,00) such that ep > 1 there exists C = C(e,p) > 0 such that:
| [ pswde] < Ol alllesocr

Sketch of the proof. — We treat for simplicity the case ps(u) = p3(u) (the general case can
be treated by a similar argument). Next we also assume a; > as > a3. Notice that by an
integration by parts argument we can always reduce to the following two cases.

First case: ay = m,ao =m—1,az3 = 1.

In this case combine Lemma 3.3 with the Sobolev embedding WP C L.

Second case: a; < m — 1.

In this case we combine the Cauchy-Schwartz inequality with the Sobolev embedding
WeP C L and we get

| [ patwdds] < ullgnoslloz =l 0

LEMMA 7.5. — Let m > 1 be an integer and py(u) € P4(u) such that
(7.10) pa(u) = w2 ud™ tu.

Then for every € > 0, p € [1,00) such that ep > 1 there exists C = C(e,p) > 0 such that:

| [ pawddo] < Clullgnsss sl el 15+ all s ).
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Proof. — We treat for simplicity the case ps(u) = w20 ud™ 1u. Indeed in this specific
case we could get the estimate as a direct application Lemma 3.3. However we propose a
different and more robust proof that can be generalized for any p4(u) as in the assumptions.
We start by the following inequality:

(7.11) | / (001 )vada| < oo el o

By using the above estimate, where we choose v; = 0™ 'u and v, = u?9™ lu, in
conjunction with the following one:

(7.12) [wrws | gz < Cllwr]| gz llwellpee + [[wil[zee lwell za/2)

we get

| [ patwe] < o ullgsl?0r s
< Clhul oo (07~ ol e + 07~ ull g ).

By using again (7.12) in conjunction with the Sobolev embedding WP C L*° we get the
result. O

LEMMA 7.6. — Let m > 3 be an integer and p;(u) € P;(u) such that

J J
(7.13) Pj(u) = H@;‘lu with Zai <2m—1land max a; <m—1.

1,.
i=1 i=1 el

Then there exists C > 0 such that:

| [ pswrds] < Cul

Sketch of the proof. — We suppose p;(u) = le 05w with a1 > -+ > oy (the general
case works with a similar argument). By integration by parts we can reduce to two cases.

First case: oy =m — 1,a9 = m — 1.
In this case by assumption we get o; < 1 for every ¢ = 3,...,7. Hence by using the
Cauchy-Schwartz inequality and the Sobolev embedding H' C L™ we get

J
| [ pstwrda] < 1ozl TT Il
=3

Second case: a; <m —2Vi=1,...,7.
By using the Sobolev embedding H' C L> we get

J
| [ pswas] < TT 105wl
i=1

and hence we conclude. O

Next we give an adapted version of Lemma 6.6. Recall that the functions hy(u) and
fP3(u) are the ones introduced in Propositions 7.2 and 7.3.
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LEMMA 7.7. — Let m > 1 be an integer and p3(u) € P3(u) be such that
P3(u) = udy udy u.
For every R > 0 there exists C = C(R) > 0 such that

A2

(T14) pni1j2{u € H™ || fP2(myu)| > A, |hn (myu)| < R} < Ce °*% YN € N, A > 0.

Sketch of the proof. — We have the following inequality
| [ pruyaa] < Cllmyulweslmyulin < Clay + Blmsulwes

provided that u belongs to the region on Lh.s. of (7.14). The proof can be concluded by using
the following estimate

2
fims12{u € H™ [[ullwes > A} < Ce™ T, YA >0

whose proof'is similar to the proof of Proposition 4.2 (the unique difference is to use along the
proof the random vector p(w) = >, 0 \n|Z(+w1)/2 ei"® instead of p(w) = 3,40 liynﬁﬁl elne),

The following version of Proposition 6.1 can be easily proved. Hence we skip its proof.

PROPOSITION 7.8. — Let m > 1 and i € C.(R) be given. Then there exist two functions
h(u), f(u) measurable with respect 10 [y, 11,2 such that:
[h(w)l, | f(uw)] < o0, a.e.u € H™™%

2m—1

I (B 2(mnu) (B (ryu) — ay)e™Fmr/zlm
=0
converges in measure to
2m—1

H W(E; /2(w))(h(u) + Ry (w))e™ ™),

Moreover
|Ej/2(w)], |Rm(u)] < 00, a.e. (Wt fiymy1/2) u € H" V5 =0,...,2m — 1.
The proof of Proposition 6.11 can be easily adapted to give the following result.

PROPOSITION 7.9. — Let f(u), h(u) be as in Proposition 7.8 and x g as in Theorem 1.1.

Then
2m—1

|J supp( H Xr(Ej2(w)Xr(R(w)) + R (u))e™ @) = supp(pm1/2)-
R>0

The last step we need in order to prove Theorem 1.1 in the case kK = 2m+1 is the following

version of Proposition 6.5.

PRrOPOSITION 7.10. — Let m > 1 and ¢ € C.(R) be given. For every q € [1,00) we have
2m—1

(7.15) Sl]tp H H Y(E; ja(mnu))h(Em(Tyu) — aN)e—Rm+1/2(7rNu)
7=0

La(dpm1/2)
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Sketch of the proof. — First case: m > 2.

Arguing as in the proof of Proposition 6.5 (as in the case m > 0) and by using Lemma 7.7,
Proposition 7.2 and 7.3 we can prove (7.15) provided that R,/ is replaced by f7* with
p3(u) that satisfy (7.2).

Second case: m = 1.

Arguing as in the proof of Proposition 6.5 (as in the case m = 0) and by using an adapted
version of Lemma 7.7 (in the same spirit as Lemma 6.10) we can prove (7.15) provided that
Ry, 2 is replaced by fP¢ with p3(u) that satisfy (7.2) with m = 1.

Hence the proof of (7.15) follows provided that we prove the following claim (see the
analogous claim stated along the proof of Proposition 6.5).

Cram. — It is sufficient to prove (7.15) with Ry, 11 /2(mnu) replaced by fP3(mnu) where
(7.16) P3(u) = w0 ud; u.

Due to Proposition 7.1 and due to the cut-off function ¢ we deduce that the L? norms
(that appear in (7.15)) are actually computed in the region Q  given by the condition

(717) Qn = {u S Hm_€|||7rNu||Hm71/2 < C}

where C' > 0 is independent on N.
Next we prove the claim.

First case: m > 3.
By looking at (2.5) it is sufficient to prove that

(7.18) sup el Nl Ly o ) < o0

dl"m+1/2

where p;(u) satisfy (7.9), (7.10) and (7.13). Notice that if p;(u) satisfies (7.13) then in
the region Qn (see (7.17)) we get supy || fP7 (Tnu)||L~(@y) < oo (Where we have used
Lemma 7.6) and hence we deduce (7.18). Next we treat the case when ps(u) satisfies (7.9).
In this case by Lemma 7.4 we get | fP3 (myu)| < C||wyu|lym-1+<», provided that u € Q.
In particular

{u € Qn||fP2 (ryu)| > A} C {u € Qn|||7Nullym-14er > AC™}

and hence (by using a suitable version of Proposition 4.2)
A2

fimt1/2{u € QN || fP* (myu)| > A}) < Ce™ @

for a suitable C' > 0. As a consequence we get

SUP/ eqlfps(ww)ld#mﬂ/z
N Jay

= sup/ e A1 /2{u € Q|| 7% (mnu)| > A}dA < oo.
N Jo

With a similar argument we can prove sup y [|e?" "Vl 11
in (7.10).

dpim 11 2) < 00 With p(u) as

Second case: m = 1.
Looking at the structure of FEj3/, (see the introduction) we have to show that
) < oo where p(u) = u3HOyu, p(u) = u?H (ud,u), p(u) = u’.

sup ”eq\f”(ﬂ'Nu)| ||L1 (QN7dM3/2
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Notice that by the Sobolev embedding H'/? c L° we get

’/(ﬂ'Nu)Sda:‘ < Cllmnul3)e < C, Yu € Qy

(see (7.17) for m = 1) and hence we get the desired bound when p(u) = u5.

Next we treat the term p(u) = u® HO,u (the term p(u) = u?H (ud,u) can be treated in a
similar way). By using (7.11) (used along the proof of Lemma 7.5) in conjunction with the
estimate

0102l /2 < C(vrllazllvzllze + llvallgosellvr]ze)

we get
‘/(ﬂNu)?’(H@wau)dx < C||7TNU||3-{1/2||7TN’LL”%OQ S C”ﬂ'Nu”%oo, Yu € QN

and hence by Sobolev embedding H i C L™ we get

-+ < Cllwnulyas < Cllanull gz |lwnull gsse, Yu € Q.
Then we deduce

{u € Qn||f?(myu)| > A} C {u € Qullmnulgss > ACT'}

and hence (by using a suitable version of Proposition 4.2)

A2

ps/2{u € Qn|[fP(ryu)| > A} < Ce™ @

In particular

oo
_az
sup |/ NN 1y g ) < sup/ e T dA < oo.
N N Jo

Third case: m = 2.

The bound sup, ||ed/” (Tv )l 21 (@n dpus ) < 00 follows by Lemma 7.4 in conjunction
with a suitable version of Proposition 4.2 (used in the same spirit as above), in the case
p(u) € P3(u) (but p(u) does not satisfy (7.16)). If p(u) € P4(u) satisfies (7.10) then we
can conclude by using Lemma 7.5 in conjunction with a suitable version of Proposition 4.2.

Next we treat the case
pa(u) € Py(u) such that ps(u) = u(du)®.
By combining the Holder inequality with the Sobolev embedding WP C L (provided that
ep > 1) we get
| [ patruyaa] < Cllmyulis eyl e lmyul o

< Cllmnvull3||0emnullwer < Cllmnullwiter, Yu € Q.
Hence we can conclude as in the previous cases by using a suitable version of Proposition 4.2.
Finally notice that by using the Sobolev embedding H* C L for any p € [1,00) we get
supy e?/7 ("N (Wl < o0 in the cases p(u) € Ps(u) and p(u) = (pu)?u®, p(u) € Pe(u) and
p(u) = udpu, p(u) = u’.
The proof of the claim is concluded. O

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



284 N. TZVETKOV AND N. VISCIGLIA

8. Computation of L E,, 1 (ryu(t,z))

In this section we shall use the notations introduced in Section 2. Our aim is to construct
for every N € N and for every fixed m € N a function

GniiN:IN—R

where
(8.1) In = { > cele = C—j}
|71€(0,N]

and such that

d
%Em-f—l(WNu(t, r)) = Gmy1,N(TNu(t, z))

where u(t, x) are solutions to the truncated Benjamin-Ono Equation (1.6).

First we introduce some preliminary notations.

Top(u) € UX , P, (u) we associate a new object dependent on N € N that will be denoted
by px (u).

Let p(u) be such that

p(u) = H oy'u
i=1

for suitable 0 < a1 < --- < a, and o; € N. First we define p;f"  (u) as the function obtained
by p(u) replacing 8% (u) by 0% (7= n (udzu)), i.e.,

(8.2) Pi,n (0) = P(W) 025 um02s (s (o)) V6= 150570
where
71'>N(cheij"“') = Z cjel”.
l5|>N

We now define p}, (u) as follows:
pr(w) = pin(w).
=1

EXAMPLE 8.1. — In order to clarify the definition of p’ (u) we give an example.

Assume
p(u) = 05 uH (8]u(HOJu))
then
piv(u) = 05 (ms N (udpu)) H(95 u(HOu))
+ 0%uH (02 (s n (udpu)) (HIYw)) 4+ 0%uH (8°u(HOY (7> N (ud,u)))).

REMARK 8.2. — Noticethatifp(u) € &, (u) (i.e., p(u) is homogeneous of order n w.r.t. u)
then p% (u) is a function homogeneous of order n + 1 for every N € N.

We are now able to describe the function Gp,41,5 (see (1.7)).
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PROPOSITION 8.3. — For every fixed integer m > 0 and for every N € N we have:

d
(8.3) %E’m-ﬁ-l(ﬂ-NU(t)) = Z c2(m+1)(p)/p}‘v(7rNu(t))d:r
p(u)EPs(u)s.t.

Plu)=udTud" Tty

+ Z Ca(m+1)(P) /pfv(?TNu(t))dx

p(u)€P;(u)s.t.j=3,....2m+4
[lp(u)||=2m—j+4
[p(u)|<m

where u(t,x) solves (1.6) and cym1)(p) are the same constants that appear in (2.4)
fork=2(m+1).

Sketch of the proof. — We follow [15] (Lemma IV.3.5 page 127).
Let p(u) € P (u)) be such that p(u) = [J/, d%u. Then by elementary calculus

h

d

= p(u(t,z))dz = Z/p(u)lasiuzagiatudx
i=1

where u(¢, z) is any regular time-dependent function. Motivated by the identity above we
introduce

h
pe(u) = Zp(u)|8:iu:6;¥iatu'
i=1
By looking at the structure of E,,,11 (see (2.4)) we get

d
%Emﬂu(t,x) = 2/8;"+1u8;"+16tudx+ Z c2(m+1)(p)/pt(u)da:
p(u)EPs(u)s.t.

Hlu)=ud™ " udMu

+ Z Ca(m+1)(P) /pt(u)dac

p(u)EP;(u)s.t.j=3,....2m+4
lp(w)||=2m—j+4
Ip(u)|<m

8.4)

where u(t, ) is any given time dependent function.
Next notice that if u(t,x) solves (1.6) then (due to the properties 7% = mn and
Ny + 7>y =1d)

(8.5) dmnu+ Hoiryu + ((ryw)dz(mau)) = msn ((ryu)dz(Tau))

and hence if we choose in (8.4) u(t,z) = wnu(t,z) then we can replace the derivative
O nu(t, ), that appears on the r.h.s. of (8.4), by the expression

—Holryu — ((myu)(0;mnu)) + s (Tyw) (Osmnu)).

Notice that if we replace 8;(mnu) by the term —HO2ryu — ((myu)(0;mnu)) then we get
zero on the r.h.s. of (8.4) (in fact in this way we are dealing with 7nu(¢, z) as with an exact
solution of the Benjamin-Ono equation). However the contribution that we get when we
replace Oy (myu) by the term 7 v ((myw)d; (mnu)) is not trivial (in fact looking at (8.5)
this term reflects how far is 7y u(t,z) from being a precise solution of the Benjamin-Ono
equation).
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Hence we deduce (8.3) once we notice that in the construction above there is no contri-
bution coming from the quadratic part of E,,,1. In fact this contribution is given by the
following quantity

/ Ot (mnuw)or T s v (mvw) 0y (myw) ) d

which is zero by orthogonality (wywu is localized on the n modes with |n| < N and
msn ((mnvu)0, (mruw)) is localized in the complementary modes). O

9. Some algebraic identities

The results of this section will be useful along the proof of Theorem 1.2. We recall the
notation 7~y = Id — 7. Moreover given a function u(z) we define

ut =miuandu” =7_u
where 7 (resp. m_) is the projector on the positive (resp. the negative) frequencies. We recall
also that
A Y ) =i Y e 1Y e
jez\{o} Jj>0 Jj<0

and 7 y is defined by (8.1).
LEMMA 9.1. — Let u € I y be such that [ udz = 0. Then the following identities occur:
9.1

/u(H@fw>N(u8wu))8;”+1udx = Zaj[/ TN (O2ut O Iy ) s n (w0 )

j=1

— TN (Bu™ ™I Ty s v (uT O )]
for suitable coefficient a; € C;
9.2)

/u(H@?u)8?+17r>N(u8wu)dx = Z bj[/ TN (QIuT O~y Ty rs (w0 ™)

j=1
— o (OLu O I s (O )
for suitable coefficient b; € C.

REMARK 9.2. — Notice that the L.h.s. of (9.1) and (9.2) involve at first insight (after devel-
oping the m-derivative of the product) a term that contains the product of two derivatives of
order m + 1, which is quite dangerous (see the end of Section 1.3). The main point of the
lemma above is that on the r.h.s. of (9.1) and (9.2) this bad term is disappeared.

Proof. — We prove (9.1). Due to the following identity
©03) [@oxpods= [(manf)mnoyis

we get:

/u(HG;"W>N(u3wu))6;”+1uda: = /(H@;”ﬂ'>N(u@mu))w>N(u8;”+1u)dx.
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On the other hand if v(z), w(x) are trigonometric polynomials of degree N we have
asn(@Tw™) =0

and in particular

9.4) s N (vw) = mon (v wh) + sy (07w ).

As a consequence we continue the identity above as follows
9.5) cee=—1 / Ol n(utOput)ms Ny (u™ 0y )de
+ i/8;”7r>N(u‘@mu_)w>N(u+8;”+1u+)dx
where we have used the definition of the Hilbert transform H,
o= = i/7T>N(u+8;”+1u+)7r>N(u_8;"+1u_) —I—i/7r>N(u_8;”+1u_)7T>N(u+8;"+1u+)d:v
- i/71'>N(8ZL(u+3mu+) —utom ) o N (w0 T ) d
+ i/7r>N(8;n(u_8mu_) —u” "My ) s y (uT O T T d.

We can conclude by the Leibniz rule since the first two terms above cancel. Concerning (9.2)
notice that by using (9.3) and (9.4) we get:

/u(HagLu)f);”+17r>N(u3zu)dx: i/3;”+17T>N(u+8wu+)7r>N(u73;”u7)dx
—i/3;”+17r>N(u_azu_)ﬂ>N(u+3;”u+)dac
and by integration by parts
cee= —i/8;”W>N(u+amu+)7r>N6x(u_8;"u_) +i/8;"7T>N(u_azu_)w>N8m(u+8;"u+)dx
which in turn gives
ce= —i/8;”7r>N(u+8xu+)7r>N(3xu78;nu7) -|-i/8;’17r>N(u’81u’)7r>N(81u+8;nu+)da:
—i/8;'1751\[(u+8xu+)7r>N(u_8;”+lu_)—I—i/8;”7T>N(u_amu_)w>N(u+8;”+1u+)dx.
Notice that the last two integrals above
—i/B;"W>N(u+8zu+)7r>N(u_8gT+1u_)—|—i/B;"W>N(u_awu_)w>N(u+8;"+1u+)da:

can be treated as in (9.5). Hence we have to deal with the remaining terms in the identity
above:

—i/8;n7r>N(u+8zu+)7r>N(3zu_8;"u_)—|—i/8;"7T>N(u_8xu_)7r>N(8mu+8;”u+)d:c.

Those integrals can be easily handled by using the Leibniz rule. O
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In the same spirit as in Lemma 9.1 one can prove that if u € & y is such that [ udz = 0,
then the following identities occur:
9.6)
m . .
/ w(0M s (udp)) 8T (Hu)dz = Y ¢ / mon (@It oIy )y (w9 )

Jj=1
— TN (OIu ™Iy Yoy (ut O )]
for suitable ¢; € C;

.7

/uagnu(agb+lH7T>N(u8xu))dx = Z d; [/ s N (2utor Iy ) s (w0 )

j=1
— oy (B3 sy (O )]
for suitable d; € C;

9.9)

[ (O o Hw0,0) @ Huds = 3 e [ 1o @20 (a0 )

j=1
— oy (B3O sy (O )]
for suitable e; € C;

(9.9)

/Hu((‘?;”Hu)(3;”+17T>NH(u81u))dx = ij[/ TN (0uT O I T sy (™ 0 )

j=1
- 7T>N(aiu_8;n_j+lu_)77>N(u+3;n+1u+)]
for suitable f; € C;

(9.10)

/ Hu(0' 7 5 (udp)) (07 w)da = 3 g5 / o (B O )y (= O )

j=1
- 7T>N(3%U_8;n_j+lu_)7T>N(U+a;n+lu+)]
for suitable g; € C;
9.11)
/Hu((?;”u)((?;”+17r>N(u8$u))dm = zm: h; [/ TN (Q2ut oI M) e p (w0 T )

Jj=1

— 7T>N(8£u_8;"_j+lu_)7T>N(u+8;”+1u+)]

for suitable h; € C.
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LEMMA 9.3. — Letu € I y be such that [ udz = 0. Then the following identities occur:

9.12) /u(Ha;"W>N(u@xu))(a;"HHu)dsc+/u(HG;"u)(6;"+17T>NH(u8xu))dsc

= —/8;"(7r>N(u+8zu+))7r>N(azu_(?;"u_)dz - /8;"(7r>N(u_85u_))W>N(8zu+8;"u+)dw.
REMARK 9.4. — To understand the interest of Lemma 9.3, see Remark 9.2.

Proof. — By combining (9.3) with (9.4) we get:

(9.13)
/u(H@ZﬁBN(uazu))(8;”+1Hu)da;—|— /u(H(?;”u)(G;”HH@BN(uazu)))d:c

= /(7r>N8;”(u+8zu+))7r>N(u_(?;n“u_)dx + /(7T>N(9;”(u_8zu_))W>N(u+8;”+1u+)d:c
—I—/8;”“(7T>N(u+8mu+))7r>N(u_8;"u_)dm—|—/(7T>N821+1(u‘@zu_))ﬂ>N(u+8;"u+)dx.
On the other hand by integration by parts in the second term we get:
[ oot ety + [ 08 a0 om0 )
= /(7r>N8;”(u*@xu+))7r>N(u*8;"“u’) - /6;"(7r>N(u+6mu+))7r>Nax(ufa;”u’).

By developing the derivative 0, (u=0Mu~) = d,u~ 7 u~ + u~ 0" 1u~ and by replacing it
in the last integral, we get

9.14) cee= —/3;”(71'>N(u+8xu+))ﬂ'>N(6mu73;”u7).

By using integration by parts in the second integral we get

(9.15)
/(7T>NB;”(ufaxuf))ﬂ'>N(u+8;n+1u+) +/7T>N(8;”+1(ufaxuf))w>N(u+3;”u+)

= —/7T>N(B;"(u_3mu_))7r>N(azu+8;”u+).

The proof follows by combining (9.13), (9.14), (9.15). O

By a similar argument it is possible to prove that if u(z) is as in Lemma 9.3 then the
following identities occur:
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(9.16) / Hu(3™ 15y (udy)) 9 Hud + / Hu(8™0)0™* (1o x H(udyu) )
=~ [ o (mn (o (Ou 0"
—/8;"(7T>N(u_3$u_))7r>N(8$u+8;”u+)dx.
9.17) / Hu (0T 7> ny H (udyu)) 0™ T udz + / Hu(0™ Hu)o™ ! (15 n (ubpu))dx
=~ [ O o Yoy (Ba O
— [ 0 (a0 o O O
(9.18) / w(@ sy (uBor)) O ud + / w(@M0) 8T sy (uBpu)da
=~ [ O o B o @os” )

- /8;"(7r>N(u_azu_))W>N(81u+8;"u+).

10. Some calculus inequalities

Next we present some useful results related to the convergence of suitable numerical series.

LemMA 10.1. — The following estimate occurs :

11 In N
|n+m|>N
0<|nl,|m|<N

Proof. — We have the identity

1 1 11

§ =2 E — =

n2 |m)| n?m
|n+m|>N n+m>N
0<|n|,|m|<N 0<n,m<N

where we have used
{(n,m) € Zx Z|0 <|n|,|m| < N,|n +m[> N}
={(n,m) €eZxZ|0<n,m<N,ln+m|>N}
U{(n,m)€eZxZ|—N<nm<O0,n+m|>N}.
Next we continue the identity above

Y (Y M2 Y i er ¥ Gy

0<n<N N—-n<m<N 0<n<N 0<n<N

=O(In N). O

1
n

The proof follows since » o, <n
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LemMma 10.2. — The following estimate occurs :

(10.2) 3 _ O(M) as N — oo.

n2m?2|l| N
[n+m+1|>N
0<|nl,|m|,[l|<N

Proof. — We split the sum as follows:

1 1 1
> ———— < > —— + > ——— = Iy +1Iy.
n?m?2|l| ~ n2m?2|l| n2m?2|l|
[nt+m+1|>N ln+1]>%5 lm|> %
0<|nl,lm|,]lI<N 0<|nl,|ml|,l[<N 0<|nl,|ml|, <N

By using Lemma 10.1 we get

Concerning Iy we have

me(( Y (Y DS Ryt o

Y <|m|<N 0<[I|<N 0<|n|<N

11. Proof of Theorem 1.2

Along this section we shall write o (W) = T (p(w)), ¥% (W) = T2 (TN p(w)) (Where 74
are the projectors on the positive and negative frequencies) and

ow)= 3 L,

n€eZ\{0}

Moreover for any given p(u) € US> ; P, (u) and N € N, p% (u) is defined in Section &.
Notice that due to the Holder inequality the standard Gaussian variables {py (w)}5 sat-
isfy:

Vg € [1700)7k ENHC:C(kaQ) > 0s.t. sup ”90]'1 "“ij”Lg <C.
J1see0k €Z\{0}

This fact will be freely used in the sequel.

LeEMMA 11.1. — Letm > 2 be an integer and p(u) € P3(u) such that p(u) = udmudu.
Then for every q € [1,00) we have the following

=0.
La(dpm+1)

im, | [ 7t
m py(Tyu)dx

Proof. — By using elementary properties of the Hilbert transform (i.e, H> = -Id,
J(Hv)wdz = [v(Hw)dz) it is easy to check that if p(u) is like in the assumptions then
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the quantities [ p(u)dz can be always reduced to the following ones:
+ /u@fu@?“udm, + /(Hu)(angu)(a;"HHu)d:v,
+ /u(@ZLHu)(O?HHu)dm, + /(Hu)@?uﬁg‘*luda:,
+ /uﬁ;nu(a;”'HHu)dx, + /(Hu)(ﬁg‘Hu)a;"Hudm,

:I:/u(@fc”Hu)(é);”Jrlu)dz,:I:/(Hu)(@fu)(@?JrlHu)dx.

First case: p(u) = u0™ud™ 1 u.

In this case we can write explicitly
i (v) = s N (U0 u) T ud™ T u 4 ud™ (15 N (U0 1) ) Oy + ud™udT (15 N (ud,u))).
Hence we get
[ e@)ds = In) + Iy ()
where

(1L1) Iv@) = [ 1o lon(@)0.(on (@) on ()07 iy (@)

and

(11.2) IIn(w) = /sazv(w)(3;"7T>N(<PN(w)(axwzv(W)))aﬂ”le(W))
+ on (W) (07 on (W) 07 (75 N (o (W) Dr (o (W) ) da.
In order to estimate I notice that
In(@) = [ nion (@) @) ox ()7 o ()

— Z i1 (w) Pja (w) Pjs (w) (w)

lja™* g™ |gs]

J4

0<|j1l51921,13], 54| <N
jita2I>N
J1+Jj2+is+7ja=0

and hence by the Minkowski inequality

1
T TP YT 3 N S—
w +1 m
0<tis e eltgal<n 1™ 20 sl
|[j1+72|>N

Ji+j2+is+7a=0

2
so( 2 @l 2 mem) - oCF)
<ty

where we have used Lemma 10.1.
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Next we estimate 11 (w) (see (11.2)). Due to the identity (9.18) we are reduced to estimate
the following quantities:

Iy (w) = —/32"(7T>N(%(W)@wﬁ(w)))%zv(@xw&(W)B?W&(W))dw

Iy (w) = —/5‘;”(7T>N(<P7v(w)am%(W)))%N(asz(w)ainwfv(w))diﬂ-

Next we estimate 11 (w) (a similar argument works for 115 (w)). By the Leibnitz formula it
is sufficient to prove that:
/ TN (020N (W) I R (W) N (9o oy (W) O oy (W))dz|| = o(1)

(11.3) ’
Ly

asN - ooVj=0,1,..,m.
Indeed the most delicate cases are j = 0, m. All the other cases can be treated in the same
way. In the case j = 0 we are reduced to prove

[ o @ @) ey @ oy @)ds| =0,

L

lim
N—o0

For that purpose, we write

. ®j, (W) Pjs (W) @), (W) ‘
lim su - o (W) == -
P 2 e

N—oo . . . . L
0<jl,lg2], 173,172l <N “

J1,52>0,73,j4<0

lj1+j2|>N
J1+j2+ijz+73a=0
< li C 1
im sup E _—
= PP NP
N . - . 1 3 4
T o<ljilldsl lial <N 1] 731" |al

|[ja+ja|>N

. 1 1 In N
sCimew( 3 prw) X = 00w )
0<|j1|EN 0<|j3l,|7a|<N
|[ja+ja|>N

where we have used Lemma 10.1 at the last step.
To prove (11.3) for j = m we have to show

i | (7 (00 ()01 () Ga )0 )

N—oo

=0.
L

Indeed arguing as above (i.e., we replace the random vector ¢ (w) by its random Fourier series
and we apply the Minkowski inequality) we are reduced to prove that
1
lim ) —
i TR TR
o< i Tl e < 11121 781 al

J1,§2>0,53,j4<0
[d1+72|>N
J1+j2+73+754=0

This estimate follows by combining the inequality
1 1 1
m m - m m
o<ijs1 s gslgaf<nv L2l sl = S s R 4 < Ll
J1,§2>0,53,j4<0 l71+j2|>N

~ diti2I>N
Jit+j2+is+ja=0
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with Lemma 10.1.

Second case: p(u) = u0™ Hud™ ! Hu, Hud™ud™ ! Hu, Hud™ Hud"u.

All those cases can be treated as the previous one provided that we use (9.12), (9.16), (9.17)
instead of (9.18) in the argument above.

Third case: p(u) = u0Mu(0m T Hu).
By definition we get:

[ o an@)de = In() + () + 1TTn()
where
Iv@) = [ (o won(@)0upn @) O o (@) @2 Ho (w))ds,
Tv@) = [ en ()0 (rox (ox ()o@ Hion (@)

(@) = [ on@) @0+ Hims w(on(w)dion (@) ds.

The term Iy (w) can be estimated in the same way as (11.1) in the first case.

Concerning I1y(w) we use (9.6) and we get

m

Tx(@) = 3 e [ 7m0k @) (0))mos (o ()02 3 ()

— TN (O (W) T ox ()T v () (@) ok ()]

Hence it is sufficient to show that

114y timsup | [ 7w (@lek @O ed @)msw(en @O en )],

N—o0

Vi=1,...,m.

Indeed the most delicate cases are j = 1,m (that in turn can be treated in a similar way).
First we focus on (11.4) for 5 = m. More precisely we have to prove

=0.

11msupH/7T>N (07 ok (W) Ouip iy (W) 7> N (o (W) O oy (w ))dx‘Lg

N—o0

By replacing the random vector ¢(w) by its Fourier randomized series we get:

[ o @ @ ) (o ()0 ) o

_ Z Pi1 (w) Sajz(w) @js(w) ) (UJ)
AT U
0<|j1l,121,1d3], 54| <N
J1,52>0,53,74<0
[71+7g2|>N
J1+Jj2+is+7ja=0
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Hence by the Minkowski inequality we get:

i sup | [ 7 (0 ()22 () ms (oi (@)07 iy ()]

N—oo L,

. 1 1 In N
sommsw( 3 prw)( X pEE) =00y
0<|j3|<N 0<|j1l,172],1331 <N
[j1+372|>N

where we have used Lemma 10.1.
Concerning the estimate (11.4) for j = 1 we can argue as above and we are reduced to

prove that
1
lim > S
N— o m | g, s lm+1
% 0<ljrl gz sl lial <N 71521173

J1,J2>0,73,54 <0
[j1+j2|>N

that follows by Lemma 10.1. The estimate for IIIy(w) is similar to the one of IIy(w)
provided that (9.7) is used instead of (9.6).

Fourth case: p(u) = w(0" Hu) (0™ u), Hud? Hud™ ™ Hudx, HudT ud! 1y
They can be treated as in the third case provided that (9.1), (9.2) (resp. (9.8), (9.9) and
(9.10),(9.11)) are used instead of (9.6) and (9.7). O

LEMMA 11.2. — Let m > 2 be an integer and p(u) € P3(u) such that p(u) = 02udPud)u
with
a+fB+y=2m+1,0<a<f<vyand max{a,[,7} < m.
Then we have

=0, Vq € [1,00).
La(dpm+1) [ )

| st

Proof. — We treat for simplicity the case p = 02ud2ud)u (the general case can be studied
with a similar argument). Hence we get

py(en(W)) = In(w) + IIn(w) + ITIN(w)

where

Iv(@) = [ 02(manv (o (0)2usp (@) O2pn ()0 o)
Tx(@) = [ 05w (@) (roy (on ()uipn ()0 i ()i

IIy(w) = /3§¢N(W)3f<pzv(W)al(W>N(¢N(w)3xs&1v(w)))dx-
We shall prove that
Jim 2@ 1 =0

(and in a similar way we can treat Iy (w) and ITIy(w)). By the Leibnitz formula it is
sufficient to prove

fim H/7T>N(33;<PN(w)aﬁ_ﬁl%f(w))awa(w)32<PN(w)dx‘

N—oo

=0
L4q

w

Vi=0,...,a.
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We shall treat the case j = 0 and all the other cases can be treated in a similar way. More
precisely we shall prove that

i | [ 7o (o )02 o0 o)t o )i,

N—oo w

=0.

Notice that we have

/ 7o (o ()0 o ()0 o () oy (w)

_ 3 i (W) i (W) wi(w) e (W)

B g1+ || M |3 |mH1=B |y [ty

[7115152151731,]541€(0,NT,
[j1+372|>N
J1+J2+i3+75a=0

and hence by using the triangular inequality we get

| [mmton@ozton@noten@atoy @),

w

1
SO D e A
[711,1521:1731,172]€(0,N],
l71+72|>N
J1+g2+73+54=0

Next we consider three possible cases:

First subcase: =1, 3 =~ =m.
In this case we get

H /(7T>N<PN(W)B;)‘JFlSON(w))aggaN(w)a;wN(w)dw‘

1
<C )
— s m+1|45.m—1|4
gl ooy, A2l
|j1+d2|>N

1 1 In? N
<( X 5l ) =0y )
Z |74 Z l71|m* | gam L N
0<|js|<N 0<|j1l,142| <N,
|[j1+g2|>N

L§

where we have used Lemma 10.1.

Second subcase: a < 3=y < m.
In this case we get

H /(7r>N<pN(w)ag+1<pN(w))ang(w)agw(w)dx‘

L
1
¢ ) P a7l
[711,1421,1731,]741€(0,N],
lj1+i2|>N
1 1 InN
<o ¥ mpll ¥ )=o)
0<|ja|<N 0<|j1l,172|<N,

[ji472|>N

where we have used Lemma 10.1.
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Third subcase: a < f < v < m.

In this case we get
| [ s wen@tion@oton@aren s,

<cC > R

m—+1]|4 |12
[7115132151431,1541€(0,NT, |J1| |-72||.73|
[ji+72|>N

and we can conclude as in the previous case. O

LeEMMA 11.3. — Let p(u) € P4(u) be such that p(u) = 01 ud22udI3udS*u with
o1 <oy <ag<ag <mandoq + oy + as+ ag = 2m.

Then we have

li : d =0, Vg € [1,00).
dim | [orea], =0 v o)

Proof. — We shall treat the case p = 09'udo?ududa*u. The general case follows in
a similar way (indeed our argument will be essentially based on the Minkowski inequality
and it is not affected in the case when H appears in the expression of p(u))). Arguing as in
Lemma 11.2 it is sufficient to prove that

Am [ Ivllpg =0, lim [[IIx[lpg =0, lim [[IIIn|Lg =0, lim [[IVy|Ls =0
where
Iy = [ 02 man(on (@)0ep ()05 o(w)05 o ()05 o ()
T = [ 0 on ()05 n (o () 0uipn ()05 o ()08 o ()
My = [ 021 o(w)05 o(w)05 7o v (o ) uion ()05 oy ()i

I = [ 02 ()02 on ()05 on ()05 7o (o (0)Duspr () o

We shall treat for simplicity only the term IV (the other terms can be treated in a similar
way). Hence we shall prove that limy . [[/ V|| s = 0. By the Leibniz rule it follows by the
following estimates:

Jim | [ 02 o @)057 ox(w)05 o (w)ms w @ion ()02 (@)da]| |, =0

Lq

Vj:O,...,a4

We shall prove the estimate above for j = 0 (all the other cases can be treated in a simpler
way). Hence we have to show

Jim || [ 02w @) on (@05 on (@mn (ox ()05 o () da]

=0.
Le

w
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Notice that

[ oo (@) on @05 on @msn oy ()0 o (w))da

_ ) i (W) whpW)  w W) e (W) (W)
B |ji|mtima g mtl=as [jamtl=as | m+l |j5|m—aa

l711,1521,1331:154],1551€(0,N],
~ ldatdsI>N
Ji+j2+js+ja+3is=0

and hence by the Minkowski inequality and Lemma 10.2 we get

| [ oz onozonomsonmantonozonyis]

1 In® N
<C T =0 ——
2 911215212175 lJal < N )

l71],15921,1531,154l, 1551 € (0, NT,
[J1+i2+i3|>N
where we have used the fact that by assumption necessarily a1, as < m. O

LEMMA 11.4. — Let p;(u) € P;j(u) with j > 5 be such that p;(u) = [[L_, 0%*u where

J
a1S---§ajSmandZak§2m—1.

k=1
Then
lim H/*ﬂud:v‘ =0, Vg € [1,00).
Jim || P () S q € [1,00)
Proof. — It follows as Lemma 11.3. O
Proof of Theorem 1.2. — 1t follows by combining Lemma 11.1, 11.2, 11.3, 11.4 with
Proposition 8.3. O
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