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Abstract. — Let X be a compact Kähler manifold such that the universal cover
admits a compactification. We conjecture that the fundamental group is almost abelian
and reduce this problem to a classical conjecture of Iitaka.

Résumé (Variétés kähleriennes compactes à revêtement universel compactifiable)
Nous étudions les variétés kählériennes compactes dont le revêtement universel se

réalise comme un ouvert de Zariski d’une variété compacte. Nous formulons la conjec-
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abélien et nous ramenons ce problème à une conjecture classique d’Iitaka.
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356 B. CLAUDON & A. HÖRING

1. Introduction

The aim of this paper is to study the following problem.

1.1. — Conjecture. Let X be a compact Kähler manifold with infinite funda-
mental group π1(X). Suppose that the universal cover X̃univ is a Zariski open
subset X̃univ ⊂ X of some compact complex manifold X. Then (after finite
étale cover) there exists a locally trivial fibration X → A with simply connected
fibre F onto a complex torus A. In particular we have X̃univ ' F × CdimA.

This conjecture generalises Iitaka’s classical conjecture claiming that a com-
pact Kähler manifold X uniformised by CdimX is an étale quotient of a complex
torus. In a recent paper with J. Kollár we studied this conjecture in the alge-
braic setting, i.e. under the additional hypothesis thatX is projective and X̃univ

is quasi-projective. It turned out that the key issue is to show that the funda-
mental group is almost abelian and we established the following statement.

1.2. — Proposition. [14, Prop.1.3] Let X have the smallest dimension among all
normal, projective varieties that have an infinite, quasi-projective, étale Galois
cover X̃ → X whose Galois group is not almost abelian.

Then X is smooth and its canonical bundle KX is nef but not semiample.
(That is, (KX · C) ≥ 0 for every algebraic curve C ⊂ X but OX(mKX) is not
generated by global sections for any m > 0.)

By the abundance conjecture [31, Sec.2] the canonical bundle should always
be semiample if it is nef. We then proved that in the algebraic case Conjecture
1.1 is implied by the abundance conjecture [14, Thm.1.1].

Since an infinite cover X̃ → X is never an algebraic morphism, it is nat-
ural to look for an analogue of Proposition 1.2 in the analytic category. Note
first that it is natural to impose that X is Kähler: as we know from Hodge
theory the Kähler condition establishes a link between the complex and the
differentiable (i.e. topological) structure of X. Moreover there exist plenty of
non-Kähler compact manifolds covered by compactifiable complex spaces, the
easiest examples being Hopf manifolds [14, 1.6]. Although the existence of a
compactification X̃ ⊂ X should already be quite restrictive we will see that
the appropriate analytic analogue of the quasiprojectiveness is the existence of
a Kähler compactification.

1.3. — Theorem. Let X have the smallest dimension among all normal, com-
pact Kähler spaces that have an infinite, étale Galois cover X̃ → X whose
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Galois group Γ is not almost abelian and such that there exists a Kähler com-
pactification X̃ ⊂ X. Then X is smooth, does not admit any Mori contrac-
tion(1), and X̃ is not covered by positive-dimensional compact subspaces.

In particular X has π1-general type(2), i.e. X̃univ is not covered by positive-
dimensional compact subspaces.

Even in the algebraic case, this statement gives some new information: if X
is projective, the absence of Mori contractions implies that KX is nef. Thus
the “minimal dimensional counterexample” in Proposition 1.2 is of π1-general
type. Note also that for a manifold of π1-general type the Conjecture 1.1 simply
claims that X is an étale quotient of a torus. Thus we are reduced to Iitaka’s
conjecture which has been studied by several authors [30, 29, 11, 20](3).

An important difference between the proof of Theorem 1.3 and the argu-
ments in [14] is that the natural maps attached to compact Kähler manifolds
(algebraic reduction, reduction maps for covering families of algebraic cycles)
are in general not morphisms, as opposed to the classification theory of projec-
tive manifolds where we have Mori contractions and, assuming abundance, the
Iitaka fibration at our disposal. Our key observation will be that for a general
fibre of the Γ-reduction γ (cf. Definition 2.2) the aforementioned meromorphic
maps are holomorphic. We then deduce a strong dichotomy: up to replacing γ
by some factorisation the general fibre G is either projective or does not con-
tain any positive-dimensional compact proper subspaces (cf. Theorem 2.13).
In a similar spirit F. Campana shows in the Appendix (Theorem A.8) from a
more general viewpoint that Iitaka’s conjecture has only to be treated for pro-
jective manifolds and simple compact Kähler manifolds, i.e. those which are
not covered by positive-dimensional compact proper subspaces.

If we try to avoid the Kähler assumption on X we still obtain some infor-
mation of bimeromorphic nature:

1.4. — Proposition. Let X have the smallest dimension among all normal, com-
pact Kähler spaces that have an infinite, étale Galois cover X̃ → X whose Ga-
lois group Γ is not almost abelian and such that there exists a compactification
X̃ ⊂ X. Then X is smooth and special in the sense of Campana [9].

(1) In the analytic setting we define a Mori contraction as a proper holomorphic morphism
with connected fibres µ : X → X′ onto a normal complex space X′ such that −KX is
µ-ample.
(2) We follow the terminology of [7], this corresponds to the property ofX having a generically
large fundamental group in the sense of [24].
(3) Apart from [11] these papers do not really use that X̃univ ' Cdim X .
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358 B. CLAUDON & A. HÖRING

This proposition follows rather quickly from an orbifold version of the
Kobayashi-Ochiai theorem (Theorem 3.1). By results of F. Campana and
the first named author [9, Thm.3.33], [10, Thm.1.1] the fundamental group
of a special manifold of dimension at most three is almost abelian, so our
counterexample (if it exists) would have dimX ≥ 4.

Let us finally note that once we have understood the fundamental group,
the geometric statement in Conjecture 1.1 is not far away.

1.5. — Theorem. Let X be a compact Kähler manifold whose universal cover
X̃univ admits a Kähler compactification X̃univ ⊂ X. If the fundamental group
of X is almost abelian, the Albanese map of X is (up to finite étale cover) a
locally trivial fibration whose fibre F is simply connected.

Since the proof of the corresponding statement in the algebraic setting [14,
Thm.1.4] relies on strong results of Hodge theory for birational morphisms
which are unknown in the Kähler setting, our argument follows the lines of [25].
Indeed if X is of π1-general type, [25, Thm. 16] implies that X is isomorphic
to its Albanese torus (even without any further assumption on X); see [16] and
Remark 3.3 for a discussion around this general case.

Acknowledgements. This paper is a continuation of our work with J. Kollár
whom we thank for many helpful communications and comments. The authors
are supported by the ANR project CLASS ANR-10-JCJC-0111.

2. Notation and basic results

Manifolds and complex spaces will always be supposed to be irreducible.
If X is a normal complex space we denote by C(X) its cycle space [1]. We

will use very often that if X is a compact Kähler space, then the irreducible
components of C(X) are compact (Bishop’s theorem, see [26]).

A fibration is a proper surjective map ϕ : X → Y with connected fibres
between normal complex varieties. A meromorphic map ϕ : X → Y is almost
holomorphic if there exists a Zariski open dense subset X0 ⊂ X such that the
restriction ϕ|X0 is holomorphic and ϕ|X0 : X0 → Y is a proper map.

Recall that a fibration ϕ : X → Y from a manifold X onto a normal complex
space Y is almost smooth if the reduction Fred of every fibre is smooth and
has the expected dimension. In this case the complex space Y has at most
quotient singularities, the local structure around y ∈ Y being given by a finite
representation of the fundamental group of π1(Fred) [28, Prop.3.7]. Thus there
exists locally a finite base change Y ′ → Y such that the normalisation X ′ of
X ×Y Y ′ is smooth over Y ′.
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2.1. — Definition. We say that an almost smooth fibration ϕ : X → Y is almost
locally trivial with fibre F if for every y ∈ Y the fibration X ′ → Y ′ constructed
above is locally trivial with fibre F .

Note that while an almost locally trivial fibration is locally trivial in the
neighbourhood of a generic point y ∈ Y , it is not true that the reduction F0,red

of every fibre F0 is isomorphic to F . For example if F is a K3 surface with a
fixed point free involution i : F → F and ∆ ⊂ C the unit disc, then

X := (F ×∆)/< i× (z 7→ −z) >

has an almost locally trivial fibration X → ∆ with fibre F and F0,red is iso-
morphic to the Enriques surface F/< i >.

2.2. — Definition.[7, 24] Let X be a compact Kähler manifold and Γ a quotient
of the fundamental group π1(X). There exists a unique almost holomorphic
fibration(4)

γ : X 99K Γ(X)

with the following property: let Z be a subspace with normalisation Z ′ → Z

passing through a very general point x ∈ X. Then Z is contained in the fibre
through x if and only if the natural map π1(Z ′)→ π1(X)→ Γ has finite image.
This fibration is called the Γ-reduction of X (Shafarevich map in the terminol-
ogy of [24]).

By definition X is of π1-general type (resp. the fundamental group π1(X)

is generically large) if the π1(X)-reduction is a bimeromorphic isomorphism
[24, Defn.1.7] [7] (it corresponds to the case γd(X) = dim(X) as defined in the
Appendix).

2.A. Compactifiable subsets

2.3. — Definition. Let X̃ be a normal complex space. We say that X̃ admits a
Kähler compactification if there exists an embedding X̃ ↪→ X such that X is a
normal, compact Kähler space and X̃ is Zariski open in X.

Let π : X̃ → X be an infinite étale Galois cover with group Γ such that X̃
admits a compactification X̃ ⊂ X. In [14] we assumed that the compactification
X is a projective variety and used the absence of algebraic Γ-invariant subsets
to deduce important restrictions on the geometry of X. While algebraic subsets
Z ⊂ X̃ are always Zariski open in some projective subset Z ⊂ X, this is no
longer true if we consider analytic subspaces Z ⊂ X̃. We have to restrict our
considerations to a smaller class:

(4) By unique we mean unique up to bimeromorphic equivalence of fibrations.
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360 B. CLAUDON & A. HÖRING

2.4. — Definition. Let X̃ be a normal complex space such that we have a Kähler
compactification X̃ ↪→ X. A compactifiable subspace is a subset Z ⊂ X̃ such
that there exists an analytic subspace Z̄ ( X̄, an inclusion Z ⊂ Z̄ and a subset
Z∗ ⊂ Z such that such that Z∗ ⊂ Z is dense and Zariski open. A compactifiable
subset is a finite union of compactifiable subspaces.

Remark. In general the compactification Z depends on the choice ofX. More-
over the property of being a compactifiable subset Z ⊂ X̃ might depend on the
choice of the compactification since the natural map between two compactifi-
cations X and X

′
might have essential singularities. The subsets Z ⊂ X̃ which

we will consider in this paper are typically defined by universal families over
irreducible components of C(X̃). The following lemma shows that these sets
are always compactifiable if we assume that the compactification is Kähler.

2.5. — Lemma. Let X̃ be a normal complex space such that we have a Kähler
compactification X̃ ↪→ X. Let H̃ be an irreducible component of C(X̃) and Ũ
be the universal family over H̃ . Let q̃ : Ũ → H̃ and p̃ : Ũ → X̃ be the natural
morphisms. Then p̃( Ũ) is a compactifiable subset.

The idea of the proof is quite simple: H̃ admits a natural compactification
in C(X), the corresponding universal family compactifies p̃( Ũ). Since we use
the statement several times we give the details of the proof.

Proof. — We set D := X \ X̃. We have a natural inclusion C(X̃) ↪→ C(X) and
we choose an irreducible component H that contains the image of H̃ . Denote
by U the universal family over H , endowed with the reduced structure, and
by q̄ : U → H resp. p̄ : U → X the natural morphisms. We summarise the
construction in a commutative diagram:

(2.1) U
p̄ //

q̄

��

X = X̃ tD

~U
/ O

__

p̃ //

q̃
��

X̃
� ?

OO

H H̃? _oo

The complex space X being compact Kähler, the spaces H and U are com-
pact, hence by Remmert’s proper mapping theorem p̄( U) is a finite union of
analytic subspaces of X. Moreover q̄(p̄−1(D)) is a finite union of analytic spaces
and the inclusion q̄(p̄−1(D)) ⊂ H is strict since q̄(p̄−1(D)) is disjoint from
H̃ . Since H̃ is an irreducible component of C(X̃) this actually shows that
H = H̃ t q̄(p̄−1(D)). In particular H is unique and the Zariski closure of
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H̃ ⊂ C(X). Note now that p̄(q̄−1(q̄(p̄−1(D)))) is a finite union of analytic sub-
spaces of p̄( U) which for reasons of dimension does not contain any irreducible
component of p̄( U). Thus

Z∗ := p̄( U) \ p̄(q̄−1(q̄(p̄−1(D))))

is dense and Zariski open in p̄( U), moreover we have an inclusion

Z∗ ⊂ p̄( Ũ) ⊂ p̄( U).

Since p̄( Ũ) = p̃( Ũ) this proves the statement.

For certain irreducible components of C(X̃) we can say more:

2.6. — Corollary. In the situation of the lemma above suppose moreover that
Ũ is irreducible and p̃ is onto and generically finite. Set

B̃ = {x̃ ∈ X̃ | dim p̃−1(x̃) > 0}

Then B̃ is a compactifiable subset.

Proof. — As in the proof of the preceding lemma we consider the compacti-
fication H̃ ⊂ H and the corresponding compactification of universal families
Ũ ⊂ U.

1st case. p̃ is bimeromorphic. The morphism p̄ is onto and bimeromorphic
and we denote by B̄ the image of its exceptional locus, which is of course a finite
union of analytic subspaces. We have an inclusion B̃ ⊂ B̄ and we are done if we
show that B̃ = B̄ ∩ X̃. To see this take x̃ ∈ X̃ such that x̃ 6∈ B̃, then q̄(p̄−1(x̃))

is the union of q̃(p̃−1(x̃)) and the cycles parametrised by q̄(p̄−1(D)) passing
through x̃. Yet q̃(p̃−1(x̃)) is a singleton in H̃ , hence disjoint from q̄(p̄−1(D)).
Moreover q̄(p̄−1(x̃)) is connected by Zariski’s main theorem, so p̄−1(x̃) is a
unique point. This proves the claim.

2nd case. p̃ generically finite. The morphism p̄ is onto and generically finite,
and we denote by p̄St : U → XSt and µ : XSt → X the Stein factorisation.
Note that XSt contains a Zariski open dense subset X̃St := µ−1(X̃) and

µ−1(B) = {x̃ ∈ X̃St | dim p̃−1
St (x̃) > 0}.

The first case shows that the right hand side is compactifiable, hence B is
compactifiable.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



362 B. CLAUDON & A. HÖRING

2.B. The Γ-reduction. — Let Y be a normal Kähler space such that we have
a Kähler compactification Y ↪→ Y , and let U → V be a flat, proper Kähler
fibration. In [14, Section 2] we introduced the moduli spaces FinMor(U/V, Y, d)

of finite morphisms φ : Uv → Y where Uv is a fibre of U → V and d is the
degree of the graph of φ with respect to some fixed Kähler forms on U and Y .
These spaces of morphisms are Zariski open sets in the relative cycle spaces
C(U × Ȳ /V ), so we know by Bishop’s theorem that for bounded degree d
there are only finitely many irreducible components. Moreover we have seen in
Lemma 2.5 that the images of universal families are compactifiable subsets of
Y . We can now argue as in [14, Lemma 2.4] to prove the following:

2.7. — Lemma. Let X be a normal, compact Kähler space and π : X̃ → X an
infinite étale Galois cover with group Γ such that X̃ admits a Kähler compacti-
fication X̃ ⊂ X. Let X0 ⊂ X be a dense, Zariski open subset and g0 : X0 → Z0

a flat, proper fibration with general fiber F such that π induces a finite covering
F̃ → F . Let g̃0 : X̃0 → Z̃0 be the corresponding flat, proper fibration with
general fiber F̃ . Then (at least) one of the following holds:

1.) g̃0 extends to a locally trivial, Γ-equivariant fibration g̃ : X̃ → Z̃ with
fibre F̃ , or

2.) X̃ contains a compactifiable Γ-invariant subspace that is disjoint from a
general fiber of g̃0.

Since g̃ : X̃ → Z̃ is Γ-equivariant, the Γ-action on X̃ descends to a Γ-action
on Z̃. If F̃ has no fixed point free automorphisms, the Γ-action on Z̃ is fixed
point free, but in general it can have finite stabilizers. Thus g0 only extends to
a fibration g : X → Z that is almost locally trivial (cf. Definition 2.1).

2.8. — Corollary. Let X be a compact Kähler manifold and π : X̃ → X an in-
finite étale Galois cover with group Γ such that X̃ admits a Kähler compactifi-
cation X̃ ⊂ X. Suppose that X̃ does not contain any Γ-invariant compactifiable
subsets.

Then the Γ-reduction is an almost locally trivial holomorphic fibration
γ : X → Γ(X) and the corresponding fibration γ̃ : X̃ → ˜Γ(X) is Γ-equivariant
and locally trivial.

Let F be a general γ-fibre. If there exists an almost holomorphic map
ϕF : F 99K W with general fibre G, this map extends to an almost locally triv-
ial holomorphic map ϕ : X → Y and the corresponding fibration ϕ̃ : X̃ → Ỹ is
Γ-equivariant and locally trivial. We call ϕ a factorisation of the Γ-reduction
with fibre G.
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2.9. — Remark. Let G be a general ϕ-fibre. By definition of the Γ-reduction
the natural map π1(G)→ π1(X)→ Γ has finite image GΓ, so π induces a finite
étale cover G̃→ G where G̃ is a general ϕ̃-fibre. Up to replacing X by the finite
étale cover X ′ → X with Galois group GΓ and Γ by

Γ′ := im(π1(X ′)→ π1(X)→ Γ)

we can suppose that GΓ is trivial, hence G̃ ' G. Since Γ′ ⊂ Γ has finite index,
Γ is almost abelian if and only if this holds for Γ′.

2.10. — Corollary. In the situation of Corollary 2.8, let ϕ : X → Y be a
factorisation of the Γ-reduction with fibre G. Then G does not contain any
rigid subspaces, i.e. there is no subspace Z ⊂ G such that for all m ∈ N the
Chow space has pure dimension 0 in the point [mZ].

Proof. — We argue by contradiction and suppose that such a subspace Z ex-
ists. For y ∈ Y general, the fibration ϕ is locally trivial near y, i.e. there exists
an analytic neighbourhood y ∈ U ⊂ Y such that ϕ−1(U) ' U×G. In particular
the relative Chow space C(ϕ−1(U)/U) is isomorphic to a product U× C(G), so
there exists a unique irreducible component of C(X) parametrising deforma-
tions of Z in X that dominates Y . The reduction of this irreducible component
is isomorphic to Y .

Note now that Z̃ := π−1(Z) is a finite union of subspaces in G̃ := π−1(G)

which are rigid: otherwise their deformations would induce a deformation of
some multiple of the cycle [Z]. Thus the deformations of Z̃ in X̃ correspond
to an irreducible component of C(X̃) whose reduction is isomorphic to Ỹ . By
Lemma 2.5 the deformations of Z̃ cover a compactifiable subset of X̃. Moreover
it is Γ-invariant since it is the π-preimage of the locus covered by deformations
of Z. Thus we have constructed a Γ-invariant compactifiable subset, a contra-
diction.

2.11. — Remark. If µ : G → G′ is a bimeromorphic morphism onto a Kähler
space, an irreducible component Z ⊂ G of the µ-exceptional locus is rigid.
Indeed if Z has dimension d, then Z · µ∗ωd = µ(Z) · ωd = 0 where ω is a
Kähler form on G′. Thus if Z ′ is a small deformation of the cycle [mZ], then
0 = Z ′ · µ∗ωd = µ(Z ′) · ωd, so µ(Z ′) has dimension strictly smaller than d.
Thus Z ′ is contained in the µ-exceptional locus. The complex space Z being
an irreducible component of this locus, we have Supp(Z) = Supp(Z ′).

2.12. — Corollary. In the situation of Corollary 2.8, let ϕ : X → Y be a
factorisation of the Γ-reduction with fibre G. Then the algebraic reduction G 99K
A(G) is holomorphic.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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Proof. — By a theorem of Campana [6, Cor.10.1], the general fibres of the
algebraic reduction(5) define an irreducible component of C(G), i.e. there exists
an irreducible component H G of C(G) such that the general point corresponds
to a general fibre of the algebraic reduction. In particular if UG is the universal
family over H G, the natural morphism UG → G is onto and bimeromorphic.
Using the local triviality of ϕ as in the proof of Corollary 2.10 above, we obtain
an irreducible component H of C(X) such that the natural map p : U → X

is onto and bimeromorphic. If the image B of the p-exceptional locus is empty
we are obviously done.

Suppose now that this is not the case. Then we have an irreducible compo-
nent H̃ of C(X̃) such that the natural map p̃ : Ũ → X̃ is onto and bimeromor-
phic, moreover the set

B̃ := π−1(B) = {x̃ ∈ X̃ | dim p̃−1(x̃) > 0}
is Γ-invariant and compactifiable by Corollary 2.6. Again a contradiction to
our assumption.

Remark. Note that our proof heavily relies on the property that the general
fibres of the algebraic reduction define an irreducible component of the Chow
space. This holds for any almost holomorphic fibration, but fails in general:
if g : Pn 99K Pn−1 is the projection from a point x, the fibres correspond to
lines through x, so they define a proper subset of the irreducible component of
C(Pn) parametrising lines.

We can now prove the main statement of this section:

2.13. — Theorem. Let X be a compact Kähler manifold and π : X̃ → X an
infinite étale Galois cover with group Γ such that X̃ admits a Kähler compact-
ification X̃ ⊂ X. Suppose that X̃ does not contain any Γ-invariant compacti-
fiable subsets. Let ϕ : X → Y be a factorisation of the Γ-reduction such that
the fibre G has minimal, but positive dimension. Then (up to replacing X by a
finite étale cover) the manifold G is either projective or does not contain any
positive-dimensional compact proper subspaces.

Proof. — Suppose that G is not projective, i.e. a(G) < dimG.
1st step. Suppose that a(G) > 0. Then by Corollary 2.12 the algebraic reduc-

tion G 99K A(G) is holomorphic. By Corollary 2.8 this induces a factorisation
of the Γ-reduction whose fibres have strictly smaller dimension, a contradiction.

2nd step. Suppose that G is covered by positive-dimensional compact proper
subspaces. Note first that a compact complex manifold G with a(G) = 0 con-
tains only finitely many divisors [17]. Thus by Corollary 2.10 the manifold G

(5) Let G′ ⊂ G × A(G) be the graph of G 99K A(G), and denote by p1 : G′ → G and
p2 : G′ → A(G) the projections. Then the fibre over a ∈ A(G) is defined as p1(p−1

2 (a)).
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contains no divisors since these would be rigid. Let now H G ⊂ C(G) be an
irreducible component of the cycle space parametrising a covering family of
positive-dimensional compact proper subspaces of maximal dimension. Then
by Lemma 2.14 below the map from the universal family pG : UG → G is
generically finite. Arguing as in the proof of Corollary 2.12 we construct irre-
ducible components H ⊂ C(X) and H̃ ⊂ C(X̃) such that the restriction to G
is H G.

Thus the maps from the universal families p : U → X and p̃ : Ũ → X̃ are
onto and generically finite, hence the set

B̃ = {x̃ ∈ X̃ | dim p̃−1(x̃) > 0}

is Γ-invariant and compactifiable by Corollary 2.6. By our hypothesis B̃ is
empty, so the map pG is finite. Since G is smooth and does not contain any
divisors, we see by purity of the branch locus that (up to replacing UG by its
normalisation) the map pG is étale. Hence p and p̃ are étale and Ũ can be
compactified by the universal family over the compactification H̃ ⊂ H . Thus
up to replacing X by the finite étale cover U → X we can suppose that pG
is an isomorphism. Yet then G ' UG admits a natural fibration qG : UG →
H G, so we get again a fibration with fibres of strictly smaller dimension, a
contradiction.

3rd step. G has no positive-dimensional compact proper subspaces. Let Z ⊂ G
be a positive-dimensional compact proper subspace of maximal dimension and
take m ∈ N arbitrary. Then the Chow scheme has dimension zero in the point
[mZ]: indeed if H G is an irreducible component passing through [mZ], the map
from the universal family UG → G is not onto by the 2nd step. By maximality
of the dimension the image has dimension equal to dimZ, so H G has dimension
zero. Thus Z is rigid, which is excluded by Corollary 2.10.

2.14. — Lemma. Let G be a compact Kähler manifold such that a(G) = 0. Let
H G ⊂ C(G) be an irreducible component of the cycle space parametrising a
covering family of positive-dimensional compact proper subspaces which have
maximal dimension m, i.e. there is no covering family of proper subspaces with
dimension strictly larger than m. Let UG be the universal family over H G, and
denote by pG : UG → G and qG : UG → H G the natural morphisms. Then pG
is generically finite.

Proof. — Since G contains only finitely many divisors [17], we have m <

dimG − 1. We argue by contradiction, and suppose that the general pG-fibre
is positive-dimensional. Then for g ∈ G general, the analytic set qG(p−1

G (g))

is positive-dimensional and Moishezon by [3, Cor.1]. In particular qG(p−1
G (g))

is covered by compact curves. Choose an irreducible curve Cg ⊂ qG(p−1
G (g)),

then pG(q−1
G (Cg)) has dimension m+ 1 < dimG. Since g ∈ G is general we can
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construct in this way a covering family of strictly higher dimension, a contra-
diction.

2.C. Fibre bundles. — Let us recall the following facts about the automor-
phism group of a compact Kähler manifold G [18, 26]. The identity component
Aut0(G) of the complex Lie group Aut(G) has a description in terms of the
Albanese torus of G. Consider the natural map

Aut0(G) −→ Aut0(Alb(G)) ' Alb(G)

induced by the Albanese mapping. The kernel of this morphism is a linear
algebraic group and the image is a subtorus of Alb(G); in particular, if G is
not covered by rational curves, Aut0(G) is a compact group, isogeneous to a
subtorus of Alb(G). If Aut0(G) is a point, fibre bundles with fibre G can be
easily described.

2.15. — Lemma. [18, Cor.4.10] Let ϕ : X → Y be a proper fibre bundle with
fibre a manifold G. Suppose that the automorphism group Aut(G) is discrete
and that the fibration ϕ is Kähler, i.e. there exists a two-form ω on X such
that the restriction ω|G is a Kähler form. Then there exists a finite étale base
change Y ′ → Y such that X ×Y Y ′ ' Y ′ ×G.

Sketch of proof.. — The Kähler assumption on the morphism implies that the
structure group of the fibre bundle can be reduced to Aut(F, [ω|F ]), the group
of automorphisms of F which preserves the cohomology class of ω|F . By Fujiki-
Lieberman this group contains Aut0(G) = {1} as a finite index subgroup and
is thus finite. Thus the image of the monodromy presentation is finite, hence
trivial after finite étale base change.

3. Proofs of the main results

Proof of Theorem 1.3. — We claim that X̃ has no nontrivial, compactifiable
subset W̃ invariant under a finite index subgroup Γ′ ⊂ Γ. Note first that if
such a W̃ exists, we can suppose it to be analytic: otherwise replace it by
X̃ ∩W where W ⊂ X is a compactification. If we denote by W̃i the irreducible
components of W̃ , each of them is invariant under a finite index subgroup
Γi ⊂ Γ. Taking the normalization W̃n

i , we would get a smaller dimensional
example Wn

i := W̃n
i /Γi as in Theorem 1.3; a contradiction.

Since X̃Sing ⊂ X̃ is compactifiable and Γ-invariant, we conclude that X is
smooth. We claim thatX is not uniruled, i.e. it is not covered by rational curves:
otherwise we can consider the MRC-fibration ϕ : X 99K Z. Since the general
ϕ-fibre G is rationally connected, hence projective and simply connected [7] [15,
Cor.4.18], the MRC-fibration is a factorisation of the Γ-reduction. By Corollary

tome 141 – 2013 – no 2



COMPACT KÄHLER MANIFOLDS WITH COMPACTIFIABLE UNIVERSAL COVER 367

2.8 it extends to an almost locally trivial holomorphic map ϕ : X → Z and
the corresponding fibration ϕ̃ : X̃ → Z̃ is Γ-equivariant and locally trivial with
fibre G. Note that G does not admit fixed point free actions by any finite group:
the étale quotient would also be rationally connected, so simply connected.
Therefore the stabilizer stabΓ(Fz) is trivial for every ϕ̃-fiber Fz. Hence the Γ-
action descends to a free Γ-action on Z̃; a contradiction to the minimality of
the dimension of X.

Arguing by contradiction we will now prove that the Γ-reduction γ is an
isomorphism. If this is not the case we know by Theorem 2.13 that there exists
a factorisation ϕ : X → Y of the Γ-reduction such that the fibre G is either
projective or without positive-dimensional compact proper subspaces. Let us
consider the corresponding locally trivial fibration ϕ̃ : X̃ → Ỹ with fibre G (cf.
Remark 2.9).

1st case. Aut0(G) is a point. The structure group of the fiber bundle ϕ̃ :

X̃ → Ỹ is discrete, so by Lemma 2.15 we can suppose (after finite étale cover)
that X̃ ' Ỹ × G. The Γ-action on X̃ commutes with the projection on Ỹ

and the group Aut(G) is discrete, so Γ acts diagonally on the product Ỹ ×G.
Consider now the ϕ̃-section Ỹ × g for some g ∈ G: its orbit ∪f∈Γf(Ỹ × g)

is a finite union of sections of the form Ỹ × g′. The complex space Ỹ has a
natural compactification in C(X), since it parametrises the ϕ̃-fibres. Thus we
have constructed a Γ-invariant compactifiable subset of X̃, a contradiction to
the minimality of X.

2nd case. Aut0(G) has positive dimension. Since G is not uniruled we know
by Section 2.C that the group Aut0(G) is isogeneous to a subtorus of the
Albanese torus of G, in particular we have q(G) > 0 . We claim that in this
case G is a torus. Assuming this for the time being, let us see how to conclude.
Since ϕ is almost locally trivial we can apply [12, §6], [19, Prop.4.5]: after a
finite étale cover X ′ → X we can suppose that q(X) = q(Y ) + dimG. Since
every ϕ-fibre is irreducible, the Albanese map αX : X → Alb(X) maps each
ϕ-fibre isomorphically onto a fibre of the locally trivial fibration ϕ∗ : Alb(X)→
Alb(Y ). By the universal property of the fibre product we have a commutative
diagram

Alb(X)×Alb(Y ) Y

ψ
&&

Xoo αX //

ϕ

��

Alb(X)

ϕ∗

��
Y

αY // Alb(Y )

The map ψ is the pull-back of ϕ∗ by the fibre product, so it is a locally trivial
fibration. The base Y is normal, so the total space Alb(X)×Alb(Y )Y is normal.
By what precedes the morphism X → Alb(X)×Alb(Y ) Y is bimeromorphic and
finite, hence an isomorphism by Zariski’s main theorem. In particular ϕ = ψ is
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smooth and locally trivial. Hence the Γ-action on X̃ descends to a free action
on Ỹ , i.e. X is not a minimal counterexample.

Proof of the claim. This is clear if G has no positive-dimensional compact
proper subspaces, so we can suppose that G is projective. Since q(G) 6= 0 the
Albanese map is non-trivial. By minimality of the factorisation we see that the
Albanese map G → A(G) is generically finite onto its image. Since G admits
no bimeromorphic map by Remark 2.11, it is actually finite onto its image.
Moreover G is not of general type since Aut0(G) has positive dimension. If
we have dimG > κ(G) > 0 we know by [22] that G admits a fibration by
positive-dimensional abelian varieties, a contradiction to the minimality of the
factorisation. Thus we have κ(G) = 0 and G is an abelian variety. This proves
the claim.

Let us finally show that X does not admit any Mori contraction, i.e. does
not admit any morphism with connected fibres µ : X → X ′ onto a nor-
mal complex space X ′ such that −KX is µ-ample. Since X is not uniruled,
µ would necessarily be bimeromorphic. Moreover µ is a projective morphism
since it is polarised by −KX . In particular the Ionescu-Wiśniewski inequality
[21, Thm.0.4], [32, Thm.1.1] applies and shows that if E is an irreducible com-
ponent of the exceptional locus and F a general fibre of E → µ(E), then one
has dimE + dimF ≥ dimX. Arguing as in the [14, Lemma 2.5] we can now
prove that π−1(E) is a Γ-invariant compactifiable subset of X̃, contradicting
the minimality of X.

The proof of Proposition 1.4 relies on the following generalisation of the
Kobayashi-Ochiai theorem to fibrations of general type.

3.1. — Theorem. [23, Thm.2][9, Thm.8.2] Let X be a compact Kähler manifold,
X be a complex manifold, and let B ⊂ X be a proper closed analytic subset.
Let π : X \ B 99K X be a nondegenerate meromorphic map, i.e. such that the
tangent map TX\B → TX is surjective at least at one point v ∈ X \ B. Let
us finally consider g : X 99K Y a general type fibration(6) defined on X. Then
f = g ◦ π extends to a meromorphic map X 99K Y .

Proof of Proposition 1.4. — As in the proof of Theorem 1.3 the minimality
condition implies that X̃ does not contain any Γ-invariant compactifiable sub-
set. Since the singular locus X̃Sing is Γ-invariant and naturally compactified by
XSing, we see that X is smooth.

Let us now argue by contradiction and suppose that X is not special. Then
the core fibration cX : X 99K C(X) [9, section 3] is not trivial, i.e. the base has
dimension at least one. Moreover it is a general type fibration, so by Theorem

(6) We refer to [9] for the basic definitions of the orbifold theory.
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3.1 above the composed map cX ◦ π : X̃ 99K C(X) extends to a meromorphic
map c̄X : X 99K C(X). Up to replacing X by a suitable bimeromorphic model,
we can assume that c̄X is holomorphic. Since X is proper, a general c̄X -fibre
F̄ := c̄−1

X (y) has finitely many irreducible components, each of them of dimen-
sion dimX−dimC(X) and not contained in X \ X̃. Thus if F := c−1

X (y) is the
corresponding cX -fibre, then π−1(F ) = F̄ ∩ X̃. Thus π−1(F ) is a Γ-invariant
compactifiable subset of X̃, a contradiction.

As mentioned in the introduction, the proof given in [14] of the local triviality
of the Albanese map does not apply verbatim in this non algebraic setting. We
need the following purely topological result.

3.2. — Theorem. [25, Thm. 14] Let f : Z → A be a map between compact
analytic spaces, the universal cover Ãuniv being contractible. Let us denote by
Z̃ the induced cover of Z. If Z̃ has the homotopy type of a compact metric
space, then f is surjective.

With this in mind, we can prove Theorem 1.5 in the spirit of [25].

Proof of Theorem 1.5. — To begin with, let us recall that classical arguments
(see [14]) show that the Albanese map is always a fibration (i.e. a surjective
map with connected fibres) when X̃univ is a Zariski open subset of a compact
complex manifold. Since π1(X) is supposed to be almost abelian, we can also
assume that

αX : X → A := Alb(X)

is a fibration which induces an isomorphism at the level of fundamental groups.
Let us consider now F a smooth fibre of αX and denote by f its homology class.
Let us introduce ZF (X) the unique irreducible component of C(F ×X) which
contains the graph of the embeddings j : F ↪→ X whose homology class is fixed:
j∗[F ] = f in H∗(X,Z). The homology class being fixed, there is a natural map:

α∗ : ZF (X)→ A

(the complex space ZF (X) should be thought as the set of fibres of αX which
are isomorphic to F ). Our aim is to apply Theorem 3.2 to show that α∗ is
surjective; we have to prove some topological finiteness of the fibre product:·�ZF (X) −→ Ãuniv.

Since αX induces an isomorphism on the π1, the induced map X̃univ → Ãuniv

between the universal covers is proper. We can then choose F̃ any lifting of F
(it is a compact submanifold of X̃univ ⊂ X) and perform the same construction
onX: we denote by Z F̃ (X) the complex space of embeddings of F̃ intoX whose
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homology class is given by [F̃ ] ∈ H∗(X,Z). It is easily checked that there is a
natural inclusion: ·�ZF (X) ↪→ Z F̃ (X)

which realises ·�ZF (X) as a Zariski open subset of Z F̃ (X). The compactification
X being Kähler, the irreducible components of its cycle space are compact,
furthermore there are only finitely many components since the homology class
is fixed. Since ·�ZF (X) is a Zariski open set in a compact complex space, it
has the homotopy type of a finite CW complex. Thus α∗ : ZF (X) → A is
surjective by Theorem 3.2. If the Albanese map αX is equidimensional, this
already shows that αX is locally trivial: every ϕ-fibre contains the image of an
embedding F ↪→ X, since the cohomology class is fixed the manifold F is the
whole fibre.

We will now prove by contradiction that αX is equidimensional, and denote
by ∅ 6= ∆ ⊂ A the locus where this is not the case. Set Z := α−1

X (∆) and
consider the map f := αX |Z : Z → A. The map f is not surjective since αX is
generically smooth. We claim that the induced cover Z̃ := Z×A Ãuniv is Zariski
open in a compact complex space, which as before leads to a contradiction to
Theorem 3.2.

Proof of the claim. Let U be the universal family over the unique component
H of C(X) such that the general point corresponds to a general fibre of the
fibration X̃univ → Ãuniv. There is a natural bimeromorphic map p : Γ → X

and Z̃ ⊂ X̃univ corresponds to the points x ∈ X̃ such that p−1(x) has positive
dimension. By Lemma 2.5 this set is compactifiable.

3.3. — Remark. The arguments above are inspired by the proof of [25, Thm.20]
and they rely heavily on the Kähler assumption on the compactification X: in
general the irreducible components of C(X) are not compact if X is merely a
compact complex manifold.

However, Theorem 3.2 and [25, Thm.16] are valid in the category of com-
pact analytic spaces. This leads us to raise the following question: is there an
equivalent statement of [25, Thm.20] in the compact complex category? More
precisely let us consider X → A a morphism between compact complex spaces
and let us assume that Ãuniv is contractible. If the induced cover X̃ is a Zariski
open set in a compact complex manifold X, is X → A a fibre bundle ? We do
not know any example where this is not the case.
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Appendix A
Abelianity, Iitaka and S conjectures

by Frédéric Campana

Abstract. — In this appendix, we observe that Iitaka’s conjecture fits in the more
general context of special manifolds, in which the relevant statements follow from the
particular cases of projective and simple manifolds.

Recall from [9] (for which we refer to the notions involved in the following):

A.1. — Conjecture.(Abelianity Conjecture, [9, Conj.7.11]) Let X be a special
manifold. Then π1(X) is almost abelian.

A.2. — Remark. 1. This conjecture is, at least, true for the linear representa-
tions of the fundamental group, which have almost abelian image [9, th.7.8].
2. The conjecture is also true up to dimension three [10].

Recall from [7] that for any compact Kähler manifold there exists a unique
connected surjective almost holomorphic map: γX : X 99K Γ(X) such that its
fibreXa through the general point a ∈ X is the largest subspace Y ofX through
a such that the image of π1(Ŷ ) in π1(X) is finite, Ŷ being the normalisation of
Y . Then γd(X) := dim(Γ(X)) is called the γ-dimension of X. Thus γd(X) = 0

if and only if π1(X) is finite. When γd(X) = dim(X), we say (as in [13]) that
X is of π1-general type.

A.3. — Conjecture.(Conjecture S) Let X be a special manifold with γd(X) =

dim(X). Then some finite étale cover of X is bimeromorphic to a complex
torus.

A.4. — Remarks. 1. Conversely, if some finite étale cover of X is bimeromor-
phic to a complex torus, X is special with γd(X) = dim(X).

2. This conjecture S implies the conjecture of Iitaka which claims the same
conclusion as in S assuming that the universal cover of X is Cn. The latter
hypothesis is indeed weaker (by the orbifold version of the theorem of Kobayashi-
Ochiai [9, th.7.11 and 8.11]).

3. The Abelianity conjecture implies the conjecture S (and so the conjecture
of Iitaka). Indeed, if X is special of maximal γ-dimension, its fundamental
group is torsionfree and abelian (by going to a suitable finite étale cover), if
one assumes the Abelianity conjecture. Its Albanese map is then surjective with
connected fibres (by [9, th.5.3]) and induces an isomorphism on the first homol-
ogy groups. It has thus to be bimeromorphic, by the maximality of γd(X).

A.5. — Definition. We shall say that X is primitively special if it is special but
not covered by special submanifolds of intermediate dimension 0 < d < dim(X).
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A.6. — Lemma. X is primitively special if and only if either:

1.) X is a rational or elliptic curve, or
2.) X is projective with KX pseudo-effective and with κ(X) either 0, or −∞

(according to the abundance conjecture, this last case does not exist), or
3.) X is simple ( i.e. not a curve and not covered by compact subspaces of

intermediate dimensions).

Proof. — We assume that X is primitively special with n ≥ 2. We distinguish
3 cases.

Let us first assume X to be projective. Then κ(X) < n, since X is special.
If 0 ≤ κ(X) < n, X is covered by submanifolds having κ = 0 and intermediate
dimension n−κ(X) if κ(X) > 0, which is impossible if X is primitively special.
Thus κ(X) = 0 and KX is pseudo-effective. If KX is not pseudo-effective, then
X is uniruled, by [2] and [27]. The only remaining case is thus when KX is
pseudo-effective and κ(X) = −∞ (which Abundance conjecture claims not to
exist). The projective case is thus established.

Assume now that 0 < a(X) < n. Because the fibres of the algebraic reduction
are special, by [9, th.2.39], X is not primitively special.

Assume finally that a(X) = 0, and that X is not simple, but primitively
special. Let Zt be a covering family of X by an analytic family of subspaces
which are generically irreducible and of intermediate dimension 0 < d < n,
chosen to be minimal. The generic member of this family is thus either of general
type, or special and primitively special. The second possibility is excluded, since
X is primitively special. Thus Zt is of general type. Let then ϕ : X 99K Y be
the quotient by the equivalence relation generated by the Z ′ts [4]. Its fibres
are projective, by [4]. Since a(X) = 0, we have: a(Y ) = 0, and dim(Y ) > 0.
From [5], we get that the fibres of ϕ are almost-homogeneous, hence special.
Contradiction since X was assumed to be primitively special. Thus X is simple.

A.7. — Remark. The above argument is partially inspired by [20].

A.8. — Theorem. The conjecture S (and so the conjecture of Iitaka) is true if
S is true whenever X is primitively special. In particular, the conjecture S is
true if it is true in the projective and simple cases.

Proof. — Assume thus that X is special, with γd(X) = n. If X is primitively
special, we assume that S is true. So assume that X is not primitively special
and let Zt be a covering family of subspaces which are special of intermediate
dimension 0 < d < n. We may assume that the generic member Zt is smooth,
after suitable blow-ups of X. We may thus assume that the conjecture holds
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true for the generic Zt, by working inductively on n. Thus the fundamental
group of the generic Zt is, in particular, almost abelian.

Let again ϕ : X 99K Y be the quotient by the equivalence relation generated
by the Z ′ts. Its fibres are special [9, th.3.3] (since they are connected by chains
of special subspaces) and have maximal γ-dimension, since this is the case for
X.

There are 2 cases, according to m := dim(Y ).

(i) m = 0. In this case, the fundamental group of X is almost abelian, by
[8], since X is generated by connected chains of Z ′ts, which have almost
abelian fundamental groups. Since X has maximal γ-dimension, the con-
jecture S holds for X, by remark A.4 above.

(ii) n > m > 0. In this case the generic fibres of φ have an étale cover
bimeromorphic to a torus. From [30], we conclude that X has an étale
cover bimeromorphic to some X ′ having a submersion ψ : X ′ → V on a
manifold V of maximal γ-dimension, with fibres complex tori. Because V
is special, since so is X ′ [9, th.5.12], the conjecture S is true for V , so that
its fundamental group is almost abelian. From [8] again, we deduce that
the fundamental group of X is almost abelian and that the conjecture S
holds true for X, as claimed.
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