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COCYCLES OVER PARTIALLY HYPERBOLIC MAPS
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Artur Avila, Jimmy Santamaria, Marcelo Viana & Amie Wilkinson

1. Partially hyperbolic diffeomorphisms

A diffeomorphism f : M → M on a compact manifold M is partially hyperbolic if
there exists a continuous, nontrivial Df -invariant splitting

TxM = Esx ⊕ Ecx ⊕ Eux , x ∈M

of the tangent bundle such that the derivative is a contraction along Es and an ex-
pansion along Eu, with uniform rates, and the behavior of Df along the center bundle
Ec is in between its behaviors along Es and Eu, again by a uniform factor. Partial hy-
perbolicity is a natural generalization of the notion of uniform hyperbolicity (Anosov
or even Axiom A, see [25]), that includes many interesting additional examples, most
notably: diffeomorphisms derived from Anosov through deformation by isotopy, many
affine maps on homogeneous spaces, certain skew-products over hyperbolic maps, and
time-1 maps of Anosov flows. Partial hyperbolicity is an open condition, so any C1

small perturbation of these examples is partially hyperbolic as well.
The stable and unstable bundles, Es and Eu, are uniquely integrable; that is, there

exist unique f -invariant foliations W s and W u tangent to Es and Eu, respectively,
at all points. The leaves of these foliations are Ck if the diffeomorphism is Ck, for any
1 ≤ k ≤ ∞, but the foliations are usually not transversely smooth. On the other hand,
if f is twice differentiable then each W s and W u is absolutely continuous, meaning
that its holonomy maps preserve the class of zero Lebesgue measure sets. These facts
go back to the pioneering work of Brin, Pesin [6] and Hirsch, Pugh, Shub [15] where
partial hyperbolicity and the closely related notion of normally hyperbolic foliations
were introduced.

In general, the center bundle Ec need not be integrable, and similarly for the center
stable bundle Ecs = Ec ⊕ Es and the center unstable bundle Ecu = Ec ⊕ Eu. We
call the diffeomorphism dynamically coherent if Ecs and Ecu are tangent to foliations
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W cs and W cu respectively. Then intersecting the leaves of W cs and W cu, one obtains
an integral foliation W c for the center bundle as well. As it turns out, dynamical
coherence does hold in many situations of interest.

Brin, Pesin [6] also introduced the notion of accessibility, which has played a central
role in recent developments. A partially hyperbolic diffeomorphism is called accessible
if any two points in the ambient manifold may be joined by an su-path, that is,
a piecewise smooth path such that every smooth subpath is contained in a single
leaf of W s or a single leaf of W u. More generally, the diffeomorphism is essentially
accessible if, given any two sets with positive volume, one can join some point of one
to some point of the other by an su-path.

Interest in partially hyperbolic systems was greatly renewed in the mid-nineties,
with two initial goals in mind. One goal was to characterize robust (or stable) tran-
sitivity, both in discrete time and continuous time. A dynamical system is transitive
if it possesses orbits that are dense in the whole ambient space. The best known
examples are all of the known constructions of Anosov diffeomorphisms (see [25]).
Actually, since Anosov maps form an open subset of all C1 diffeomorphisms, these
are also examples of robust transitivity. On the other hand, early constructions by
Shub [24] and Mañé [17] showed that diffeomorphisms can be robustly transitive
without being Anosov. Many other examples were found by Bonatti, Díaz [2] and
Bonatti, Viana [5]. A subsequent series of works started by Díaz, Pujals, Ures [10]
for diffeomorphisms, and Morales, Pacifico, Pujals [18] for flows, established that in
dimension three robustness implies partial hyperbolicity (where at least two of the
bundles in the partially hyperbolic splitting are non-trivial). In higher dimensions one
has to replace partial hyperbolicity by a related weaker condition called existence of
a dominated splitting. See [3, 5] and also [4, Chapter 7] and references therein.

Another goal, initiated by Grayson, Pugh, Shub [14], was to recover the original
attempt by Brin, Pesin [6] to prove that most partially hyperbolic, volume preserving
diffeomorphisms are actually ergodic. To this end, Pugh, Shub [20] proposed the
following pair of conjectures:

Conjecture 1. — Accessibility holds for an open and dense subset of C2 partially hy-
perbolic diffeomorphisms, volume preserving or not.

Conjecture 2. — A partially hyperbolic C2 volume preserving diffeomorphism with
the essential accessibility property is ergodic.

Concerning Conjecture 1, it was shown by Dolgopyat, Wilkinson [12] that acces-
sibility holds for a C1-open and dense subset of all partially hyperbolic diffeomor-
phisms, volume preserving or not. Moreover, Didier [11] proved that accessibility
is C1-open for systems with 1-dimensional center bundle. More recently, Rodriguez
Hertz, Rodriguez Hertz, Ures [23] verified the complete conjecture for conservative
systems whose center bundle is one-dimensional: accessibility is Cr-dense among Cr

partially hyperbolic diffeomorphisms, for any r ≥ 1. A version of this statement
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for non-conservative diffeomorphisms was obtained in [7]. It remains open whether
Cr-density still holds when dimEc > 1.

Partial versions of Conjecture 2 were obtained by Pugh, Shub [20, 21, 22], as-
suming dynamical coherence and an additional technical condition they called center
bunching. Roughly speaking, their notion of center bunching means that the diffeo-
morphism is close to being an isometry along center leaves. The best result to date on
Conjecture 2 is due to Burns, Wilkinson [8] who proved ergodicity for any accessible,
partially hyperbolic volume preserving diffeomorphism (not necessarily dynamically
coherent) which is not too far from being conformal along center leaves. Although
this property is also called center bunching, it is a lot milder than the one of Pugh,
Shub. In particular, it is automatic when Ec has dimension one. Thus, the previous
result contains as a corollary a complete proof of Conjecture 2 when the center bundle
is one-dimensional. This corollary was also observed in [23].

2. Cocycles

The problems considered in this volume are situated in the following context.
Let f : M →M be a diffeomorphism. We fix a (topological, Lie...) group H with iden-
tity element e and consider the set of all (continuous, Hölder continuous, smooth...)
functions φ : M → H. Such a function is called a cocycle, for reasons that are ex-
plained in the sequel. Cocycles are objects that can be composed along orbits of f ,
and indeed, by the cocycle generated by φ we often mean the sequence φn defined by

φn(x) =


φ(fn−1(x)) · · ·φ(f(x)) · φ(x) if n > 0,
φ−1(f−n(x)) · · ·φ−1(f−2(x)) · φ−1(f−1(x)) if n < 0,
e if n = 0.

An equivalent definition of a cocycle, and one that generalizes to actions of groups
other than Z, is the following. A 1-cocycle is a map α : Z ×M → H satisfying the
cocycle condition:

α(m+ n, x) = α(m, fn(x)) · α(n, x), ∀n,m ∈ Z, x ∈M.(1)

Setting φ(x) = α(1, x), we obtain from the cocycle condition that φn(x) = α(n, x),
thereby establishing the equivalence of the two notions.

There are several contexts in which cocycles arise immediately in smooth dynamics
and related topics, which we now discuss.

Abelian cocycles. — The cocycle φ is called abelian when the group H is abelian.
A fundamental example of an abelian cocycle is the Jacobian map Jac f : M → R∗
that measures the volume distortion of a diffeomorphism f : M →M on a Riemannian
manifold M :

Jac f(x) =
d(vol ◦f)

d vol
(x).
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The 1-cocycle generated by Jac f is α(n, x) = Jac fn(x); in this case the cocycle con-
dition amounts to the composition law for Radon-Nikodym derivatives. Usually this
cocycle is transformed to an additive cocycle by taking a logarithm: log Jac f : M → R.

Abelian cocycles appear more generally as potentials in thermodynamic formalism.
In this setup, one associates to each cocycle φ : M → R over a dynamical system
f : M →M one or more f -invariant probability measures µφ satisfying the variational
equation ∫

M

φdµφ + h(µφ) = sup
ν

Å∫
M

φd ν + h(ν)

ã
,

where the supremum on the right is taken over all f -invariant probability measures
ν, and h(ν) denotes the f -entropy of the measure ν. The functional

P (φ) = sup
ν

Å∫
M

φd ν + h(ν)

ã
,

called the pressure of φ, has the property that if

(2) φ− ψ = Φ ◦ f − Φ,

for some function Φ, then P (φ) = P (ψ). Hence the measure µφ depends only on the
equivalence equivalence class for the equivalence relation φ ∼ ψ if and only if (2)
holds. As we describe below, this equation can be viewed as a coboundary equation
in the appropriate cohomology theory.

Another place in which abelian cocycles appear, this time in the context of R-ac-
tions, is in time changes in flows. Suppose that ϕt is a flow. If γ : M → R, then the
function α : R×M → R defined by

α(t, x) =

∫ t

0

γ(ϕs(x)) ds

satisfies the cocycle condition:

α(s+ t, x) = α(s, ϕt(x)) + α(t, x),(3)

which is the natural analogue of (1) for R-actions. In general, if α : R×M → R is an
arbitrary function, then the map ψα : R×M →M given by

ψα(t, x) = ϕα(t,x)(x)

will define a flow on M if and only if α satisfies (3). Here too, one has a coboundary
equation which corresponds to (2) for flows:

(4) α(t, x)− β(t, x) =

∫ t

0

γ(ϕs(x)) ds.

One can check that if Equation (2) is satisfied for cocycles α and β and some real-
valued function γ, then the flows ϕα and ϕβ are time changes of one another.
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Linear cocycles. — By a linear cocycle we will mean a cocycle with values in a
matrix group. Such non-abelian cocycles also arise naturally, most notably as deriva-
tive cocycles. Suppose that f : M → M is a diffeomorphism of an n-manifold M . To
avoid technical issues, assume that the tangent bundle TM is trivial:

TM = M × Rd.

Then the derivative Df can be represented as a map Df : M → GL(d,R) which, by
the Chain Rule, satisfies the (non-abelian) cocycle condition:

Dxf
n+m = Dfm(x)f

n · Dxf
m.

(We remark that the case where TM is non-trivial can be handled with a slight
generalization of the notion of cocycle, using sections of an appropriate bundle.) The
group GL(d,R) can be replaced by other matrix groups, such as SL(d,R), Sp(d,R),
O(d), U(d), etc. Such group-valued cocycles arise naturally as diffeomorphism cocycles
that are volume preserving, symplectic, isometric, and so on, as well as in the study
of frame flows on Riemannian manifolds.

Somewhat further afield, linear cocycles play a key role in analyzing the spectrum
of the one-dimensional discrete Schrödinger operators. To any abelian cocycle φ over
an ergodic system f : M → M and any p ∈ M one can associate a one-dimensional
discrete Schrödinger operator H : `2(Z)→ `2(Z) defined by

H(x)n = xn + xn−1 − φ(fn(p))xn.

The properties of the SL(2,R)-valued cocycles defined by

AE(p) =

(
E − φ −1

1 0

)
for different choices of the parameter E ∈ R determine the spectral properties of the
operator H. For example, if this cocycle is uniformly hyperbolic for some value of E,
then E lies in the resolvent set of H.

3. The central problems

We briefly outline the main questions that are addressed in the two papers in this
volume.

Cohomological equation. — The cohomological (or coboundary) equation is

φ = Φ−1 · (Φ ◦ f).(5)

For abelian cocycles this is usually written:

φ = Φ ◦ f − Φ.(6)

If such a solution exists, then φ is called a coboundary. Coboundaries are in a natural
sense orthogonal to f -invariant functions: they are the image of the linear operator
φ 7→ φ ◦ f − φ, whereas the f -invariant functions are the kernel. This orthogonality
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statement can be made precise. For example, if f preserves a probability measure µ,
then in L2(µ) the closed subspace

Z = {φ ∈ L2(µ) |φ ◦ f = f}

is the orthogonal complement of the L2-closure of the space of coboundaries:

B = {φ ◦ f − φ |φ ∈ L2(µ)}

This observation, which holds in some form in other function spaces as well, gives a
method for proving ergodic theorems: establish the result for functions in Z and in B
and then extend from the dense set Z ⊕ B using linear algebra, maximal inequalities,
and so on.

An obvious obstruction to finding a continuous solution to (6) is obtained by inte-
grating both sides against an f -invariant probability measure µ:∫

M

φdµ =

∫
M

(Φ ◦ f − Φ) dµ = 0.

The natural question then arises whether this is the only obstruction; that is, if φ has
average 0 with respect to every f -invariant probability measure µ, then does there
exist a continuous solution to (6)? For transitive hyperbolic systems, the answer is
“yes,” as we explain below. For rigid rotations and other uniquely ergodic systems,
the answer usually depends on finer arithmetic data.

For example, suppose that f is rotation on the circle by α ∈ R/Z. A simple Fourier
analysis of (6) shows that if α is Diophantine, then for any C∞ function φ of average
zero there exists a C∞ solution to (6). On the other hand, if α is Liouvillean, then
there exists a C∞ function φ of average zero for which there is no measurable solution.
For perturbations of rigid rotations, solving (6) is a key component of KAM theory,
and the issue of small divisors presents obstructions to both solving the equation and
establishing regularity of its solutions.

This a basic example of cohomological theory as applied to the so-called “elliptic
systems.” Related to these are the parabolic systems, which include flows on surfaces,
polygonal billiard flows, interval exchange transformations, horocyclic flows and flows
on nilmanifolds. In these systems, which are typically uniquely ergodic or possess
finitely many invariant measures, solving the cohomological equation gives informa-
tion about rates of convergence for ergodic averages. The relative paucity of invariant
measures leads one to look at a broader class of functionals – the f -invariant distri-
butions – as obstructions to solving the cohomological equation.

In contrast with the elliptic and parabolic systems, hyperbolic systems have a
plethora of invariant measures, for example the Dirac measures supported on periodic
orbits. The basic existence theory of Livšic shows that the invariant measures present
a complete set of obstructions to finding a continuous solution to (6). What is more,
for transitive hyperbolic systems (for which periodic orbits are dense), the periodic
measures alone constitute a complete set of obstructions. Another feature of Anosov
systems is that continuous solutions are always smooth.
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Livšic theory for hyperbolic systems has several interesting applications. For exam-
ple, applying this theory to the log Jac cocycle, it follows immediately that a transitive
Anosov diffeomorphism f preserves a smooth invariant measure if and only if for every
periodic point p of period n:

Jac fn(p) = 1.

Livšic theory for Anosov flows is also an ingredient in the proof of marked length
spectrum rigidity for negatively curved surfaces, see [19, 9].

In the second paper in this volume, this Livšic theory is extended to accessible
partially hyperbolic diffeomorphisms.

The role of Lyapunov exponents. — If A is a linear cocycle over f : M → M

with values in GL(k), then there is a well-defined notion of the extremal Lyapunov
exponents of A at p ∈M :

λ+(A, p) := lim sup
n→∞

1

n
log ‖An(p)‖ and λ−(A, p) := − lim sup

n→∞

1

n
log ‖An(p)−1‖

Kingman’s ergodic theorem implies that if f preserves a finite measure µ, then for µ-al-
most every p, the limits exist and depend measurably on p; moreover, each limit is
constant if µ is ergodic. More generally, Oseledec’s theorem implies that µ-almost
every p ∈M , the limit

λ(A, p, v) := lim
n→∞

1

n
log ‖An(p)v‖

exists for every v ∈ Rk and assumes finitely many values, called the Lyapunov expo-
nents at p. The extremal Lyapunov exponents λ+(A, p) and λ−(A, p) coincide with
the largest and smallest values of λ(A, p, v) over all v ∈ Rk.

The Lyapunov exponents carry important information about a linear cocycle. In the
case of the derivative cocycleDf , non-vanishing of the Lyapunov exponents on a set of
positive volume implies that f has various chaotic properties. For the Schrödinger co-
cycle, almost everywhere vanishing of the Lyapunov exponent (equivalently, vanishing
of the extremal exponents) for a positive measure set of energies E ∈ R is equivalent
to the existence of absolutely continuous spectrum for the associated operator. In
the first paper in this volume, a criterion is developed to establish the non-vanishing
of the extremal Lyapunov exponents for a linear cocycle over an accessible, volume
preserving, partially hyperbolic diffeomorphism. Actually, as explained below, most
of the theory extends to smooth (non-linear) cocycles.

4. The general theory

To place the preceding discussion into a larger context, we briefly describe the
cohomology theory in which these cocycles fit. The abelian cohomological equations
that arise in dynamical systems belong to a general cohomology theory developed to
study groups. To be precise, the abelian cocycles considered above are 1-cocycles in
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the first cohomology group of Z with coefficients in a Z-module of Hölder continuous
functions on M . Let us explain what we mean by this.

Let G be a group. A G-module is an abelian group A together with an action of G
by endomorphisms of A. In the simplest cases, A is an arbitrary abelian group and
G acts trivially on A. The main example considered in dynamics arises as follows.
We fix a group G acting by homeomorphisms on a space X (for example, the Z-ac-
tion generated by a single homeomorphism f : X → X). We set A to be the space
C(X,R) of continuous, R-valued functions on X, where the abelian group structure
on A is given by pointwise addition. Then there is a natural G-action on A given by
precomposition: (g · φ)(x) = φ(g(x)), which makes A into a G-module. Clearly the
target space R in this construction can be replaced by any abelian topological group.
If we assume higher regularity, such as smoothness, for the G-action, then C(X,R)

can be replaced by other function spaces, such as the space of Hölder functions, or
smooth functions. More generally, if V is a vector bundle over X to which the action
of G extends, then we can take A to be the space of (continuous, smooth...) sections
of V , such as the space of smooth vector fields on X, when X is a smooth manifold.

Now given aG-module A, we construct the cohomology groupsHn(G,A) as follows.
For n ≥ 0, let Cn(G,A) be the set of all functions from Gn to A, which forms an
abelian group. The elements of Cn(G,A) are called (inhomogeneous) n-cochains. The
coboundary homomorphisms dn : Cn(G,A)→ Cn+1(G,A) are defined by

(dnψ)(g1, . . . , gn+1) = g1 · ψ(g2, . . . , gn+1)

+
n∑
i=1

(−1)iψ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1) + (−1)n+1ψ(g1, . . . , gn).

One can check that dn+1◦dn = 0; thus, we have a cochain complex and we can compute
cohomology in the standard way. The group of n-cocycles is defined by Zn(G,A) =

ker(dn), and the group of n-coboundaries is defined by B0(G,A) = 0, and

Bn(G,A) = dn−1(Cn−1(G,A)), n ≥ 1.

Finally, we set Hn(G,A) = Zn(G,A)/Bn(G,A).
Going back to the dynamical setting, suppose that f : X → X is a homeomorphism,

which generates an action of the integers Z. Then the 0-cochains are just elements of
the module C(X,R), and any φ : X → R generates a 1-cochain α : Z → C(X,R) via
the formula:

α(n) = φ ◦ fn.
It is easily checked that every such cochain is a 1-cocycle and, conversely, every 1-cocy-
cle is generated by such a function φ. Indeed, the cocycle condition (1) in this setting
reduces to d1α = 0. Moreover the abelian cohomological Equation (6) translates in
this setting to:

α = d0Φ.

This equation asks if the given cocycle α is trivial on cohomology. Higher order coho-
mology groups have been studied in the dynamical context, most notably for groups
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of diffeomorphisms of the circle. In this context, certain elements of H2 generalize the
notion of rotation number to non-amenable groups. See [13].

The non-abelian cocycles also fit into a similarly defined non-abelian cohomology
theory. In this case, however, the cohomology spaces no longer carry a group structure.

5. Fibered systems

The unifying concept in this volume is that of cocycles over partially hyperbolic
diffeomorphisms. Let us outline our basic approach to such systems. Linear cocycles
can be studied through their induced action on the projective bundle associated to the
underlying vector bundle. Similarly, the classical cohomological equation is associated
to an action by translations on a trivial R-bundle over the original space.

Both these constructions are special cases of a general notion of fibered dynamical
system, acting on some bundle over the original space, possibly with low fiberwise
regularity. Under suitable assumptions, the invariant (stable and unstable) foliations
of the base partially hyperbolic diffeomorphism lift to invariant foliations of the fibered
system. Solutions of the relevant cohomological equations correspond to sections of
the fiber bundle that are saturated by the lifted foliations, a property that we call
holonomy invariance. The rich structure of these foliations allow us to obtain strong
properties for these sections, when they exist.

One main conclusion of the first paper in this volume applies when the diffeo-
morphism satisfies the assumptions of [8]: partial hyperbolicity, volume preserving
and center bunching. According to Theorems D and E in this paper, in that case
any measurable section which is essentially (i.e., almost everywhere) saturated under
the lifted stable foliation and essentially saturated under the lifted unstable foliation
coincides, almost everywhere, with some section that is saturated by both lifted fo-
liations. Moreover, if the base diffeomorphism is accessible then such a bi-saturated
section may be chosen to be continuous.

The goal in this first paper is to detect non-zero Lyapunov exponents for fibered
systems that act smoothly on the fibers (smooth cocycles), including projective actions
of linear cocycles as a special case. For this, it is convenient to consider yet another
fibered system, namely the push-forward action on the space of probability measures
on each fiber.

General methods going back to Ledrappier [16] in the linear case and extended
by Avila, Viana [1] to the present setup, give that if the Lyapunov exponents vanish
almost everywhere then there exist measurable sections that are essentially saturated
by either one of the lifted foliations. In view of the previous observations, it follows
(Theorems B and C in this paper) that if the Lyapunov exponents vanish almost
everywhere then measurable bi-saturated sections do exist, and they may be chosen
to be continuous if the base dynamics is accessible.

As it turns out, bi-saturated sections are very difficult to come by, at least in
the accessible case. Indeed, given any point p in the base space, consider the group
of su-loops, that is, su-paths from p to itself. Each su-loop is associated to a holonomy

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



10 A. AVILA, J. SANTAMARIA, M. VIANA & A. WILKINSON

map on the fiber over p, and a bi-invariant section gives rise to a fixed point common
to all those maps. When the base diffeomorphism is accessible, the loop group is very
big, yielding a large set of obstructions to the existence of such a fixed point.

In this way one gets, in particular, that generic linear cocycles over an accessi-
ble, volume preserving, partially hyperbolic diffeomorphism have some non-vanishing
extremal exponent (Theorem A of this paper).

These tools developed in the first paper to handle extremal Lyapunov exponents
can be applied as well to abelian cocycles. This is the starting point for the second
paper in this volume. Reinterpreting in the abelian context the results of the first
paper, we obtain a reformulation in the partially hyperbolic context of two of the
main conclusions of the Livšic theory: existence and measurable rigidity of solutions to
the coboundary equation (Theorem A parts I and III of [26]). The second paper then
completes the remaining task of establishing regularity of solutions to the coboundary
equation (Theorem A parts II and IV of [26]). This gives a fairly complete extension
of the main conclusions of the Livšic theory from the hyperbolic to the (accessible)
partially hyperbolic context.

The task is simplified conceptually by the fibered system perspective. A solution
to the coboundary equation is a bi-saturated section of the associated R-bundle; the
image of this section is invariant under the lifted stable and unstable holonomy maps.
Accessibility implies that these local holonomy maps act transitively on the section,
meaning that the section is homogeneous under a large groupoid of transformations.
A condition on the diffeomorphism called strong bunching implies that the holonomy
maps, while not smooth, are smooth along center directions in the base manifold.
Under the strong bunching hypothesis, one can then invoke ideas from the study of
transformation groups to show that the section is smooth along center directions.
Smoothness of the leaves of the lifted foliation gives smoothness of the section along
stable and unstable directions; combined with smoothness along center directions, this
gives smoothness of the invariant section. As with the conclusions in this paper, the
regularity results in [26] apply much more generally to saturated sections of smooth
cocycles (Theorem C in [26]).
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HOLONOMY INVARIANCE: ROUGH REGULARITY AND
APPLICATIONS TO LYAPUNOV EXPONENTS

by

Artur Avila, Jimmy Santamaria & Marcelo Viana

Abstract. — Un cocycle lisse est un produit gauche qui agit par des difféomorphismes
dans les fibres. Si les exposants de Lyapounov extremaux du cocycle coincident alors
les fibres possèdent certaines structures qui sont invariantes, à la fois, par la dy-
namique et par un pseudo-groupe canonique de transformations d’holonomie. Nous
démontrons ce principe d’invariance pour les cocycles lisses au dessus des difféomor-
phismes conservatifs partiellement hyperboliques, et nous en donnons des applications
aux cocycles linéaires et aux dynamiques partiellement hyperboliques.

Résumé. — Skew-products that act by diffeomorphisms on the fibers are called smooth
cocycles. If the extremal Lyapunov exponents of a smooth cocycle coincide then the
fibers carry quite a lot of structure that is invariant under the dynamics and under
a canonical pseudo-group of holonomy maps. We state and prove this invariance
principle for cocycles over partially hyperbolic volume preserving diffeomorphisms. It
has several applications, e.g., to linear cocycles and to partially hyperbolic dynamics.

1. Introduction

Lyapunov exponents measure the asymptotic rates of contraction and expansion,
in different directions, of smooth dynamical systems such as diffeomorphisms, co-
cycles, or their continuous-time counterparts. These numbers are well defined on a
full measure subset of phase-space, relative to any finite invariant measure. Systems
whose Lyapunov exponents are distinct/non-vanishing exhibit a wealth of geometric
and dynamical structure (invariant laminations, entropy formula, abundance of peri-
odic orbits, dimension of invariant measures) on which one can build to describe their
evolution. The main theme we are interested in is that systems for which the Lya-
punov exponents are not distinct are also special, in that they satisfy a very strong
invariance principle. Thus, a detailed theory can be achieved also in this case, if only
using very different ingredients.

2010 Mathematics Subject Classification. — 37A20, 37D25, 37D30; 37A50, 37C40.
Key words and phrases. — Partial hyperbolicity, linear cocycle, smooth cocycle, invariance principle,
Lyapunov exponent, holonomy invariance, rigidity.
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14 A. AVILA, J. SANTAMARIA & M. VIANA

In the special case of linear systems, the invariance principle can be traced back
to the classical results on random matrices by Furstenberg [12], Ledrappier [19], and
others. Moreover, it has been refined in more recent works by Bonatti, Gomez-Mont,
Viana [7], Bonatti, Viana [8], Viana [25] and Avila, Viana [1, 2]. An explicit and
much more general formulation, that applies to smooth (possibly non-linear) systems,
is proposed in Avila, Viana [3] and the present paper: while [3] deals with extensions
of hyperbolic transformations, here we handle the case when the base dynamics is just
partially hyperbolic and volume preserving. The two papers are contemporary and
closely related: in particular, Theorem A of [3] relies on a version of the invariance
principle proved in here, more precisely, Theorem B below.

As an illustration of the reach of our methods, let us state the following appli-
cation in the realm of partially hyperbolic dynamics (for details, see Remark 2.9).
Let f : M → M be a C2 partially hyperbolic, dynamically coherent, volume pre-
serving, accessible diffeomorphism satisfying a suitable center bunching condition. If
the center bundle Ec has dimension 2 and the center Lyapunov exponents coincide
almost everywhere then f admits
(a) either an invariant continuous field of directions r ⊂ Ec,
(b) or an invariant continuous field of pairs of directions r1 ∪ r2 ⊂ Ec,
(c) or an invariant continuous conformal structure on Ec.

Sometimes, one can exclude all three alternatives a priori. That is the case, for in-
stance, if f is known to have periodic points p and q that are, respectively, elliptic
and hyperbolic along the center bundle Ec, in the following sense: the center eigenval-
ues of p are neither real nor pure imaginary, and the center eigenvalues of q are real
and distinct. Then it follows that the center Lyapunov exponents are distinct and,
in particular, at least one is non-zero. If f is symplectic then both center Lyapunov
exponents are different from zero; compare Theorem A in [3].

Precise statements of our results, including the definitions of the objects involved,
will appear in the next section. Right now, let us observe that important applications
of the methods developed in here have been obtained by several authors: a Livšic
theory of partially hyperbolic diffeomorphism, by Wilkinson [27]; existence and prop-
erties of physical measures, by Viana, Yang [26]; construction of measures of maximal
entropy, by Hertz, Hertz, Tahzibi, Ures [22].

2. Preliminaries and statements

2.1. Partially hyperbolic diffeomorphisms. — Throughout the paper, unless
stated otherwise, f : M →M is a partially hyperbolic diffeomorphism on a compact
manifoldM and µ is a probability measure in the Lebesgue class ofM . In this section
we define these and other related notions. See [9, 15, 16, 24] for more information.

A diffeomorphism f : M → M of a compact manifold M is partially hyperbolic if
there exists a nontrivial splitting of the tangent bundle

(2.1) TM = Es ⊕ Ec ⊕ Eu
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invariant under the derivative Df , a Riemannian metric ‖ · ‖ on M , and positive
continuous functions ν, ν̂, γ, γ̂ with ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1 such that, for
any unit vector v ∈ TpM ,

‖Df(p)v‖ < ν(p) if v ∈ Es(p),(2.2)

γ(p) <‖Df(p)v‖ < γ̂(p)
−1 if v ∈ Ec(p),(2.3)

ν̂(p)
−1

<‖Df(p)v‖ if v ∈ Eu(p).(2.4)

(Equivalently, one could ask these conditions for some iterate; see Gourmelon [14].)
All three subbundles Es, Ec, Eu are assumed to have positive dimension. However, in
some cases (cf. Remarks 3.12 and 4.2) one may let either dimEs = 0 or dimEu = 0.

We take M to be endowed with the distance dist associated to such a Riemannian
structure. The Lebesgue class is the measure class of the volume induced by this (or
any other) Riemannian metric on M . These notions extend to any submanifold of M ,
just considering the restriction of the Riemannian metric to the submanifold. We say
that f is volume preserving if it preserves some probability measure in the Lebesgue
class of M .

Suppose that f : M →M is partially hyperbolic. The stable and unstable bundles
Es and Eu are uniquely integrable and their integral manifolds form two transverse
continuous foliations W s and W u, whose leaves are immersed submanifolds of the
same class of differentiability as f . These foliations are referred to as the strong-stable
and strong-unstable foliations. They are invariant under f , in the sense that

f( W s
(x)) = W s

(f(x)) and f( W u
(x)) = W u

(f(x)),

where W s
(x) and W s

(x) denote the leaves of W s and W u, respectively, passing
through any x ∈M . These foliations are, usually, not transversely smooth: the holon-
omy maps between any pair of cross-sections are not even Lipschitz continuous, in
general, although they are always γ-Hölder continuous for some γ > 0. Moreover, if
f is C2 then these foliations are absolutely continuous, meaning that the holonomy
maps preserve the class of zero Lebesgue measure sets. Let us explain this key fact
more precisely.

Let d = dimM and F be a continuous foliation of M with k-dimensional smooth
leaves, 0 < k < d. Let F (p) be the leaf through a point p ∈ M and F (p,R) ⊂ F (p)

be the neighborhood of radius R > 0 around p, relative to the distance defined by the
Riemannian metric restricted to F (p). A foliation box for F at p is the image of an
embedding

Φ : F (p,R)× Rd−k →M

such that Φ(·, 0) = id, every Φ(·, y) is a diffeomorphism from F (p,R) to some sub-
set of a leaf of F (we call the image a horizontal slice), and these diffeomorphisms
vary continuously with y ∈ Rd−k. Foliation boxes exist at every p ∈ M , by defini-
tion of continuous foliation with smooth leaves. A cross-section to F is a smooth
codimension-k disk inside a foliation box that intersects each horizontal slice exactly
once, transversely and with angle uniformly bounded from zero.
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16 A. AVILA, J. SANTAMARIA & M. VIANA

Then, for any pair of cross-sections Σ and Σ′, there is a well defined holonomy
map Σ→ Σ′, assigning to each x ∈ Σ the unique point of intersection of Σ′ with the
horizontal slice through x. The foliation is absolutely continuous if all these home-
omorphisms map zero Lebesgue measure sets to zero Lebesgue measure sets. That
holds, in particular, for the strong-stable and strong-unstable foliations of partially
hyperbolic C2 diffeomorphisms and, in fact, the Jacobians of all holonomy maps are
bounded by a uniform constant.

A measurable subset of M is s-saturated (or W s-saturated) if it is a union of
entire strong-stable leaves, u-saturated (or W u-saturated) if it is a union of entire
strong-unstable leaves, and bi-saturated if it is both s-saturated and u-saturated. We
say that f is accessible if ∅ and M are the only bi-saturated sets, and essentially
accessible if every bi-saturated set has either zero or full measure, relative to any
probability measure in the Lebesgue class. A measurable set X ⊂ M is essentially
s-saturated if there exists an s-saturated set Xs ⊂M such that X∆Xs has measure
zero, for any probability measure in the Lebesgue class. Essentially u-saturated sets
are defined analogously. Moreover, X is bi-essentially saturated if it is both essentially
s-saturated and essentially u-saturated.

Pugh, Shub conjectured in [20] that essential accessibility implies ergodicity, for a
C2 partially hyperbolic, volume preserving diffeomorphism. In [21] they showed that
this does hold under a few additional assumptions, called dynamical coherence and
center bunching. To date, the best result in this direction is due to Burns, Wilkin-
son [10], who proved the Pugh-Shub conjecture assuming only the following mild form
of center bunching:

Definition 2.1. — A C2 partially hyperbolic diffeomorphism is center bunched if the
functions ν, ν̂, γ, γ̂ in (2.2)–(2.4) may be chosen to satisfy

(2.5) ν < γγ̂ and ν̂ < γγ̂.

When the diffeomorphism is just C1+α, for some α > 0, the arguments of Burns,
Wilkinson [10] can still be carried out, as long as one assumes what they call strong
center bunching (see [10, Theorem 0.3]). All our results extend to this setting.

2.2. Fiber bundles. — In this paper we deal with a few different types of fiber
bundles over the manifold M . The more general type we consider are continuous fiber
bundles π : E → M modeled on some topological space N . By this we mean that E
is a topological space and there is a family of homeomorphisms (local charts)

(2.6) φU : U ×N → π−1(U),

indexed by the elements U of some finite open cover U of M , such that π ◦ φU is the
canonical projection U ×N → U for every U ∈ U. Then each φU,x : ξ 7→ φU (x, ξ) is
a homeomorphism between N and the fiber Ex = π−1(x).

An important role will be played by the class of fiber bundles with smooth fibers,
that is, continuous fiber bundles whose fibers are manifolds endowed with a contin-
uous Riemannian metric. More precisely, take N to be a Riemannian manifold, not
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necessarily complete, and assume that all coordinate changes φ−1
V ◦φU have the form

(2.7) φ−1
V ◦ φU : (U ∩ V )×N → (U ∩ V )×N, (x, ξ) 7→ (x, gx(ξ))

where:

(i) gx : N → N is a C1 diffeomorphism and the map x 7→ gx is continuous, relative
to the uniform C1 distance on Diff1(N) (the uniform C1 distance is defined
by distC1(gx, gy) = sup{|gx(ξ)− gy(ξ)|, ‖Dgx(ξ)−Dgy(ξ)‖ : ξ ∈ N});

(ii) the derivatives Dgx(ξ) are Dg−1
x (ξ) are uniformly continuous and uniformly

bounded in norm.

Endow each Ex with the manifold structure that makes φU,x a diffeomorphism.
Condition (i) ensures that this does not depend on the choice of U ∈ U containing x.
Moreover, consider on each Ex the Riemannian metric γx =

∑
U∈ U ρU (x)γU,x, where

γU,x is the Riemannian metric transported from N by the diffeomorphism φU,x and
{ρU : U ∈ U} is a partition of unit subordinate to U. It is clear that γx depends
continuously on x. Condition (ii) ensures that different choices of the partition of unit
give rise to Riemannian metrics γx that differ by a bounded factor only.

Restricting even further, we call π : E→ M a continuous vector bundle of dimen-
sion d ≥ 1 if N = Kd, with K = R or K = C, and every gx is a linear isomorphism,
depending continuously on x and such that ‖g±1

x ‖ are uniformly bounded. Then each
fiber Ex is isomorphic to Kd and is equipped with a scalar product (and, hence, a
norm) which is canonical up to a bounded factor.

We also need to consider more regular vector bundles. Given r ∈ {0, 1, . . . , k, . . .}
and α ∈ [0, 1], we say that π : E → M is a Cr,α vector bundle if, for any U , V ∈ U
with non-empty intersection, the map

(2.8) U ∩ V → GL(d,K), x 7→ gx

is of class Cr,α, that is, it is r times differentiable and the derivative of order r is
α-Hölder continuous.

2.3. Linear cocycles. — Let π : V → M be a continuous vector bundle of di-
mension d ≥ 1. A linear cocycle over f : M → M is a continuous transformation
F : V → V satisfying π◦F = f ◦π and acting by linear isomorphisms Fx : V x → V f(x)

on the fibers. By Furstenberg, Kesten [13], the extremal Lyapunov exponents

λ+(F, x) = lim
n→∞

1

n
log ‖Fnx ‖ and λ−(F, x) = lim

n→∞

1

n
log ‖(Fnx )−1‖−1

exist at µ-almost every x ∈ M , relative to any f -invariant probability measure µ.
If (f, µ) is ergodic then they are constant on a full µ-measure set. It is clear that
λ−(F, x) ≤ λ+(F, x) whenever they are defined. We study conditions under which
these two numbers coincide.

Suppose that π : V →M is a Cr,α vector bundle, for some fixed r and α, and f is
also of class Cr,α (this is contained in our standing assumptions if r + α ≤ 2). Then
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18 A. AVILA, J. SANTAMARIA & M. VIANA

we call F : V → V a Cr,α linear cocycle if its expression in local coordinates

(2.9) φ−1
U1
◦ F ◦ φU0

: (U0 ∩ f−1(U1))×Kd → U1 ×Kd, (x, v) 7→ (f(x), A(x)v)

is such that the function x 7→ A(x) is r times differentiable and the derivative of order
r is bounded and α-Hölder continuous. The assumption on the vector bundle ensures
that this condition does not depend on the choice of local charts.

The set Gr,α( V , f) of all Cr,α linear cocycles F : V → V over f : M → M is a
K-vector space and carries a natural Cr,α norm:

(2.10) ‖F‖r,α = sup
U,V ∈ U

Ç
sup

0≤i≤r
sup

x∈U∩f−1(V )

‖DiA(x)‖+ sup
x 6=y

‖DrA(x)−DrA(y)‖
dist(x, y)α

å
(for α = 0 one may omit the last term). We always assume that r + α > 0. Then
every F ∈ Gr,α( V , f) is β-Hölder continuous, with

(2.11) β =

{
α if r = 0

1 if r ≥ 1.

Definition 2.2. — We say that a cocycle F ∈ Gr,α( V , f) is fiber bunched if

(2.12) ‖Fx‖ ‖(Fx)−1‖ ν(x)β < 1 and ‖Fx‖ ‖(Fx)−1‖ ν̂(x)β < 1,

for every x ∈M , where β > 0 is given by (2.11) and ν, ν̂ are functions as in (2.2)–(2.4),
fixed once and for all.

Remark 2.3. — This notion appeared in [7, 8, 25], where it was called domination.
The present terminology seems preferable, on more than one account. To begin with,
there is the analogy with the notion of center bunching in Definition 2.1. Perhaps more
important, the natural notion of domination for smooth cocycles, that we are going to
introduce in Definition 3.9, corresponds to a rather different condition. The relation
between the two is explained in Remark 3.13: if a linear cocycle is fiber bunched then
the associated projective cocycle is dominated. Finally, a notion of fiber bunching can
be defined for smooth cocycles as well (see [3]), similar to (2.12) and stronger than
domination.

Theorem A. — Let f : M → M be a C2 partially hyperbolic, volume preserving,
center bunched, accessible diffeomorphism and let µ be an invariant probability in the
Lebesgue class. Assume that F ∈ Gr,α( V , f) is fiber bunched.

Then F is approximated, in the Cr,α norm, by open sets of cocycles G ∈
Gr,α( V , f) such that λ−(G, x) < λ+(G, x) almost everywhere. Moreover, the set
of F ∈ Gr,α( V , f) for which the extremal Lyapunov exponents do coincide has infinite
codimension in the fiber bunched domain: locally, it is contained in finite unions of
closed submanifolds with arbitrarily high codimension.

Notice that the Lyapunov exponents are constant on a full measure subset of M ,
because (cf. [10]) the hypothesis implies that f is ergodic.
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There is an analogous statement in the space of SL(d,K)-cocycles, that is, such
that the functions x 7→ gx and x 7→ A(x) in (2.8) and (2.9), respectively, take values
in SL(d,K). In fact, our proof of Theorem A deals with the projectivization of the
cocycle, and so it treats both cases, GL(d,K) and SL(d,K), on the same footing. It
would be interesting to investigate the case of G-valued cocycles for more general
subgroups of GL(d,K), for instance the symplectic group.

2.4. Smooth cocycles - invariant holonomies. — Let π : E → M be a fiber
bundle with smooth fibers modeled on some Riemannian manifold N . A smooth cocy-
cle over f : M →M is a continuous transformation F : E→ E such that π ◦F = f ◦π,
every Fx : Ex → Ef(x) is a C1 diffeomorphism depending continuously on x, relative
to the uniform C1 distance in the space of C1 diffeomorphisms on the fibers, and the
norms of the derivative DFx(ξ) and its inverse are uniformly bounded. In particular,
the functions

(x, ξ) 7→ log ‖DFx(ξ)‖ and (x, ξ) 7→ log ‖DFx(ξ)−1‖

are bounded. Then (Kingman [18]), given any F-invariant probability m on E, the
extremal Lyapunov exponents of F

λ+(F, x, ξ) = lim
n→∞

1

n
log ‖DFnx(ξ)‖ and λ−(F, x, ξ) = lim

n→∞

1

n
log ‖DFnx(ξ)−1‖−1.

are well defined atm-almost every (x, ξ) ∈ E. Clearly, λ−(F, x, ξ) ≤ λ+(F, x, ξ). Notice
that if m is F-invariant then its projection µ = π∗m is f -invariant. Most of the times
we will be interested in measures m for which the projection is in the Lebesgue class
of M .

Let R > 0 be fixed. The local strong-stable leaf W s
loc(p) of a point p ∈ M is

the neighborhood of radius R around p inside W s
(p). The local strong-unstable leaf

W u
loc(p) is defined analogously. The choice of R is very much arbitrary, but in Section 5

we will be a bit more specific.

Definition 2.4. — We call invariant stable holonomy for F a family Hs of homeomor-
phisms Hs

x,y : Ex → Ey, defined for all x and y in the same strong-stable leaf of f
and satisfying
(a) Hs

y,z ◦Hs
x,y = Hs

x,z and Hs
x,x = id;

(b) Fy ◦Hs
x,y = Hs

f(x),f(y) ◦ Fx;
(c) (x, y, ξ) 7→ Hs

x,y(ξ) is continuous when (x, y) varies in the set of pairs of points
in the same local strong-stable leaf;

(d) there are C > 0 and γ > 0 such that Hs
x,y is (C, γ)-Hölder continuous for every

x and y in the same local strong-stable leaf.
Invariant unstable holonomy is defined analogously, for pairs of points in the same
strong-unstable leaf.

Condition (c) in Definition 2.4 means that, given any ε > 0 and any (x, y, ξ)

with y ∈ W s
loc(x), there exists δ > 0 such that dist(Hs

x,y(ξ), Hs
x′,y′(ξ

′)) < ε for every

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



20 A. AVILA, J. SANTAMARIA & M. VIANA

(x′, y′, ξ′) with y′ ∈ W s
loc(x

′) and dist(x, x′) < δ and dist(y, y′) < δ and dist(ξ, ξ′) < δ;
for this to make sense, take the fiber bundle to be trivialized in the neighborhoods
of Ex and Ey. Condition (d), together with the invariance property (b), implies that
Hs
x,y is γ-Hölder continuous for every x and y in the same strong-stable leaf (the

multiplicative Hölder constant C may not be uniform over global leaves).

Remark 2.5. — Uniformity of the multiplicative Hölder constant C on local strong-
stable leaves is missing in the related definition in [3, Section 2.4], but is assumed in
[3, Section 4.4] when arguing that the transformation G̃ is a deformation of G.

Example 2.6. — The projective bundle associated to a vector bundle V → M is the
continuous fiber bundle P( V ) → M whose fibers are the projective quotients of the
fibers of V . Clearly, this is a fiber bundle with smooth leaves modeled on N = P(Kd).
The projective cocycle associated to a linear cocycle F : V → V is the smooth cocycle
F : P( V ) → P( V ) whose action Fx : P( V x) → P( V f(x)) on the fibers is given by the
projectivization of Fx : V x → V f(x):

Fx(ξ) =
Fx(ξ)

‖Fx(ξ)‖
for each ξ ∈ P( V x) and x ∈M

(on the right hand side of the equality, think of ξ as a unit vector in Kd). Then
Fnx(ξ) = Fnx (ξ)/‖Fnx (ξ)‖ for every ξ, x and n. It follows that,

DFnx(ξ)ξ̇ =
projFnx (ξ)

(
Fnx (ξ̇)

)
‖Fnx (ξ)‖

,

where projw v = v−w(w · v)/(w ·w) is the projection of a vector v to the orthogonal
complement of w. This implies that

(2.13) ‖DFnx(ξ)‖ ≤ ‖Fnx ‖/‖Fnx (ξ)‖ ≤ ‖Fnx ‖‖(Fnx )−1‖

for every ξ, x and n. Analogously, replacing each F by its inverse,

(2.14) ‖DFnx(ξ)−1‖ ≤ ‖(Fnx )−1‖‖Fnx ‖

for every ξ, x and n. These two inequalities imply

λ+(F, x, ξ) ≤ λ+(F, x)− λ−(F, x) and λ−(F, x, ξ) ≥ λ−(F, x)− λ+(F, x)

whenever these exponents are defined. We will observe in Remark 3.13 that if F is
fiber bunched then both F and F admit invariant stable and unstable holonomies.

Example 2.7. — Suppose that the partially hyperbolic diffeomorphism f : M → M

is dynamically coherent, that is, there exist invariant foliations W cs and W cu with
smooth leaves tangent to Ec ⊕ Es and Ec ⊕ Eu, respectively. Intersecting the leaves
of W cs and W cu one obtains a center foliation W c whose leaves are tangent to the
center subbundle Ec at every point. Let E be the disjoint union of the leaves of W c.
In many cases (see Avila, Viana, Wilkinson [4]), the natural projection π : E → M

given by π | W c
(x) ≡ x is a fiber bundle with smooth fibers. Also, the map f induces

a smooth cocycle F : E→ E, mapping each y ∈ W c
(x) to f(y) ∈ W c

(f(x)). Moreover,
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the cocycle F admits invariant stable and unstable holonomies: for x close to y the
image Hs

x,y(ξ) is the point where the local strong-stable leaf through ξ ∈ W c
(x)

intersects the center leaf W c
(y), and analogously for the unstable holonomy. This

kind of construction, combined with Theorem 6.1 below, is used by Wilkinson [27] in
her recent development of a Livšic theory for partially hyperbolic diffeomorphisms.

2.5. Lyapunov exponents and rigidity. — Theorem A will be deduced, in Sec-
tion 8, from certain perturbation arguments together with an invariance principle for
cocycles whose extremal Lyapunov exponents coincide. Here we state this invariance
principle.

Let F : E→ E be a smooth cocycle that admits invariant stable holonomy. Letm be
a probability measure on E, let µ = π∗m be its projection, and let {mx : x ∈M} be a
disintegration ofm into conditional probabilities along the fibers, that is, a measurable
family of probability measures {mx : x ∈M} such thatmx( Ex) = 1 for µ-almost every
x ∈M and

m(U) =

∫
mx( Ex ∩ U) dµ(x)

for every measurable set U ⊂ E. Such a family exists and is essentially unique, meaning
that any two coincide on a full measure subset. See Rokhlin [23].

Definition 2.8. — A disintegration {mx : x ∈M} is s-invariant if

(2.15) (Hs
x,y)∗mx = my for every x and y in the same strong-stable leaf.

One speaks of essential s-invariance if this holds for x and y in some full µ-measure
subset ofM . The definitions of u-invariance and essential u-invariance are analogous.
The disintegration is bi-invariant if it is both s-invariant and u-invariant and we call it
bi-essentially invariant if it is both essentially s-invariant and essentially u-invariant.

First, we state the invariance principle in the special case of linear cocycles:

Theorem B. — Let f : M → M be a C2 partially hyperbolic, volume preserving,
center bunched diffeomorphism and µ be an invariant probability in the Lebesgue class.
Let F ∈ Gr,α( V , f) be fiber bunched and suppose that λ−(F, x) = λ+(F, x) at µ-almost
every point.

Then every P(F )-invariant probability m on the projective fiber bundle P( V ) with
π∗m = µ admits a disintegration {m̃x : x ∈M} along the fibers such that

(a) the disintegration is bi-invariant over a full measure bi-saturated set MF ⊂M ;
(b) if f is accessible then MF = M and the conditional probabilities m̃x depend

continuously on the base point x ∈M , relative to the weak∗ topology.

Invariant probability measuresm that project down to µ always exist in this setting,
because P(F ) is continuous and the domain P( V ) is compact.
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Remark 2.9. — If f : M → M is a C2 partially hyperbolic diffeomorphism then
(see [9, Corollary 2.1] and [15, Theorem 6.4]) the invariant vector bundles Es, Eu

and Ec are Hölder continuous. Indeed, if α > 0 is close enough to zero that

(2.16) (ν/γ)‖Df−1‖α < 1 and (γ̂/ν̂)‖Df‖α < 1

then the center bundle Ec is α-Hölder continuous. The derivative of f induces a C0,α

linear cocycle F : Ec → Ec given by Fx = Df | Ecx. Clearly, ‖Fx‖ < γ̂(x)−1 and
‖F−1

x ‖ < γ(x)−1 for every x. Hence, F is fiber bunched whenever

(2.17) να < γγ̂ and ν̂α < γγ̂.

Notice that this is compatible with (2.16). Moreover, (2.17) implies that f is center
bunched, that is, ν < γγ̂ and ν̂ < γγ̂. Suppose that f is also dynamically coherent,
volume preserving and accessible.

Now, assume that dimEc = 2 and the two center Lyapunov exponents of f coincide
µ-almost everywhere. Let m be any F-invariant probability that projects down to
Lebesgue measure µ. Then, as observed in Example 2.6, the Lyapunov exponents of F
vanish m-almost everywhere. By Theorem B, it follows that m admits a continuous,
bi-invariant disintegration {mx : x ∈M}. Keep in mind that each mx is a probability
measure on the projective space P(Ecx). Continuity, together with the assumption that
m is invariant, implies that

mf(x) = (Fx)∗mx = Df(x)∗mx for every x ∈M .

Suppose first that mx admits some atom with mass ≥ 1/2, for some x ∈M . Since f is
accessible, bi-invariance implies that the same holds for every x ∈M . Clearly, either
such an atom is unique or there exist exactly two of them. In the first case, we obtain a
continuous map assigning to each point in M a point in P(Ec); moreover, this contin-
uous field of directions is invariant under the derivative. The second case is analogous,
except that one gets a continuous field of pairs of directions. Now, suppose that every
mx admits no atom with mass ≥ 1/2. Then, by Douady, Earle [11, Section 2], the
conditional measure mx has a well defined conformal barycenter ξ(x) ∈ D and, con-
sequently, it defines a conformal structure on Ecx; moreover, this conformal structure
depends continuously on x and is invariant under the derivative. This completes the
proof of the alternative (a)-(c) in the Introduction.

Next, assume that f is known to have periodic points p and q that are, respectively,
elliptic (eigenvalues neither real nor pure imaginary) and hyperbolic (eigenvalues real
and distinct) along the center bundle Ec. On the one hand, the presence of p is
an obstruction to f having an invariant field of directions or of pairs of directions.
On the other hand, the presence of q ensures that there is no continuous invariant
conformal structure. In this way we have excluded all three possibilities (a)-(c). This
contradiction means that the center Lyapunov exponents of f must be distinct. In
particular, at least one of them is non-zero. When f is symplectic, the center Lyapunov
exponents are symmetric (see Bochi, Viana [6]); in this case, the previous conclusion
means that all Lyapunov exponents of f are non-zero.
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The statement of Theorem B extends to smooth cocycles:

Theorem C. — Let f : M → M be a C2 partially hyperbolic, volume preserving,
center bunched diffeomorphism and µ be an invariant probability in the Lebesgue class.
Let F be a smooth cocycle over f admitting invariant stable and unstable holonomies.
Let m be an F-invariant probability measure on E with π∗m = µ, and suppose that
λ−(F, x, ξ) = 0 = λ+(F, x, ξ) at m-almost every point.

Then m admits a disintegration {m̃x : x ∈ M} into conditional probabilities along
the fibers such that

(a) the disintegration is bi-invariant over a full measure bi-saturated set MF ⊂M ;
(b) if f is accessible then MF = M and the conditional probabilities m̃x depend

continuously on the base point x ∈M , relative to the weak∗ topology.

It is clear from the observations in Example 2.6 that Theorem B is contained in
Theorem C. The proof of Theorem C is given in Sections 4 through 7. There are two
main stages.

The first one, that will be stated as Theorem 4.1, is to show that every disinte-
gration of m is essentially s-invariant and essentially u-invariant. This is based on
a non-linear extension of an abstract criterion of Ledrappier [19] for linear cocycles,
proposed in Avila, Viana [3] and quoted here as Theorem 4.4. At this stage we only
need f to be a C1 partially hyperbolic diffeomorphism (volume preserving, center
bunching and accessibility are not needed) and µ can be any invariant probability,
not necessarily in the Lebesgue class.

The second stage, that we state in Theorem D below, is to prove that any disin-
tegration essentially s-invariant and essentially u-invariant is, in fact, fully invariant
under both the stable holonomy and the unstable holonomy; moreover, it is contin-
uous if f is accessible. This is a different kind of argument, that is more suitably
presented in the following framework.

2.6. Sections of continuous fiber bundles. — Let π : X →M be a continuous
fiber bundle with fibers modeled on some topological space P . The next definition
refers to the strong-stable and strong-unstable foliations of the partially hyperbolic
diffeomorphism f : M →M .

Definition 2.10. — A stable holonomy on X is a family hsx,y : Xx → Xy of γ-Hölder
homeomorphisms, with uniform Hölder constant γ > 0, defined for all x, y in the
same strong-stable leaf and satisfying

(α) hsy,z ◦ hsx,y = hsx,z and hsx,x = id

(â) the map (x, y, ξ) 7→ hsx,y(ξ) is continuous when (x, y) varies in the set of pairs
of points in the same local strong-stable leaf.

Unstable holonomy is defined analogously, for pairs of points in the same strong-
unstable leaf.
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The special case we have in mind are the invariant stable and unstable holonomies
of smooth cocycles on fiber bundles with smooth leaves. Clearly, conditions (α) and
(â) in Definition 2.10 correspond to conditions (a) and (c) in Definition 2.4. Notice,
however, that there is no analogue to the invariance condition (b); indeed, cocycles
are not mentioned at all in this section. We also have no analogue to condition (d) in
Definition 2.4.

In what follows µ is a probability measure in the Lebesgue class of M , not neces-
sarily invariant under f : here we do not assume f to be volume preserving. The next
definition is a straightforward extension of Definition 2.8 to the present setting:

Definition 2.11. — Let π : X → P be a continuous fiber bundle admitting stable
holonomy. A measurable section Ψ : M → X is s-invariant if

hsx,y(Ψ(x)) = Ψ(y) for every x, y in the same strong-stable leaf

and essentially s-invariant if this relation holds restricted to some full µ-measure sub-
set. The definitions of u-invariant and essentially u-invariant functions are analogous,
assuming that π : X →M admits unstable holonomy and considering strong-unstable
leaves instead. We call Ψ bi-invariant if it is both s-invariant and u-invariant, and
we call it bi-essentially invariant if it is both essentially s-invariant and essentially
u-invariant.

These notions extend, immediately, to measurable sections of X whose domain is
just a bi-saturated subset ofM . A measurable section Ψ is essentially bi-invariant if it
coincides almost everywhere with a bi-invariant section defined on some full measure
bi-saturated set.

Definition 2.12. — A (Hausdorff) topological space P is refinable if there exists an
increasing sequence of finite or countable partitions Q1 ≺ · · · ≺ Qn ≺ · · · into Borel
subsets such that any sequence (Qn)n with Qn ∈ Qn for every n and ∩nQn 6= ∅
converges to some point η ∈ P , in the sense that every neighborhood of η contains
Qn for all large n. (Then, clearly, η is unique and ∩nQn = {η}.)

Notice that every Hausdorff space with a countable basis {Un : n ∈ N} of open sets
is refinable: just take Qn to be the partition generated by {U1, . . . , Un}.

Theorem D. — Let f : M → M be a C2 partially hyperbolic, center bunched diffeo-
morphism and µ be any probability measure in the Lebesgue class. Let π : X → M

be a continuous fiber bundle with stable and unstable holonomies and assume that the
fiber P is refinable. Then,
(a) every bi-essentially invariant section Ψ : M → X coincides µ-almost everywhere

with a bi-invariant section Ψ̃ defined on a full measure bi-saturated setMΨ ⊂M ;
(b) if f is accessible then MΨ = M and Ψ̃ is continuous.

The proof of part (a) is given in Section 6 (see Theorem 6.1), based on ideas of
Burns, Wilkinson [10] that we recall in Section 5 (see Proposition 5.13). Concerning
part (b), we should point out that the measure µ plays no role in it: if f is accessible
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then any non-empty bi-saturated set coincides withM and then one only has to check
that bi-invariance implies continuity. That is done in Section 7 and uses neither center
bunching nor refinability.

Actually, in Section 7 we prove a stronger fact: bi-continuity implies continuity,
when f is accessible. The notion of bi-continuity is defined as follows:

Definition 2.13. — A measurable section Ψ : M → X of the continuous fiber bundle
π : X →M is s-continuous if the map (x, y,Ψ(x)) 7→ Ψ(y) is continuous on the set of
pairs of points (x, y) in the same local strong-stable leaf. The notion of u-continuity
is analogous, considering strong-unstable leaves instead. Finally, Ψ is bi-continuous if
it is both s-continuous and u-continuous.

More explicitly, a measurable section Ψ is s-continuous if for every ε > 0 and
every (x, y) with y ∈ W s

loc(x) there exists δ > 0 such that dist(Ψ(y),Ψ(y′)) < ε

for every (x′, y′) with y′ ∈ W s
loc(x

′) and dist(x, x′) < δ and dist(y, y′) < δ and
dist(Ψ(x),Ψ(x′)) < δ; it is implicit in this formulation that the fiber bundle has been
trivialized in the neighborhoods of the fibers Xx and Xy.

Remark 2.14. — If a section Ψ : M → X is s-invariant then it is s-continuous:

(x, y,Ψ(x)) 7→ Ψ(y) = hsx,y(Ψ(x))

is continuous on the set of pairs of points in the same local strong-stable leaf. Moreover,
s-continuity ensures that the section Ψ is continuous on every strong-stable leaf: taking
x = x′ = y in the definition, we get that dist(Ψ(y),Ψ(y′)) < ε for every y′ ∈ W s

loc(y)

with dist(y, y′) < δ. Analogously, u-invariance implies u-continuity and that implies
continuity on every strong-unstable leaf.

Thus, part (b) of Theorem D is a direct consequence of the following result:

Theorem E. — Let f : M → M be a C1 partially hyperbolic, accessible diffeomor-
phism. Let π : X →M be a continuous fiber bundle. Then every bi-continuous section
Ψ : M → X is continuous in M .

The proof of this theorem is given in Section 7. Notice that we make no assumptions
on the continuous fiber bundle: at this stage we do not need stable and unstable
holonomies, and the fibers need not be refinable either.

The logical connections between our main results can be summarized as follows:

Prop. 8.2 Thm. C(a) ← Thm. D(a) ← Thm. 6.1
↓ ↙ ↑ ↑

Thm. A ← Thm. B Thm. 4.1 ← Thm. 4.4 Prop. 5.13
↙ ↖ ↓

Rmk. 2.9 Thm. C(b) ← Thm. D(b) ← Thm. E

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



26 A. AVILA, J. SANTAMARIA & M. VIANA

Acknowledgements. — We are most grateful to Amie Wilkinson for explanations
on the use of the methods of [10] in connection with the proof of Theorem D and for
useful comments on earlier versions of this paper. The referee has thoroughly revised
the text and provided several comments that helped improve the presentation. In
particular, Theorem 4.1 has been strengthened with respect to an earlier version.
This work was partly conducted during the period A. A. served as a Clay Research
Fellow. J. S. was supported by a CNPq doctoral scholarship. M. V. was partially
supported by CNPq, FAPERJ, and PRONEX-Dynamical Systems.

3. Cocycles with holonomies

First, we explore the notions of domination and fiber bunching for linear cocycles.
In Section 3.1 we prove that if a linear cocycle is fiber bunched then it admits in-
variant stable and unstable holonomies, and so does its projectivization. Moreover, in
Section 3.2 we check that these invariant holonomies depend smoothly on the cocycle.
Then, in Section 3.3, we discuss corresponding facts for smooth cocycles.

We will often use the following notational convention: given a continuous function
τ : M → R+, we denote

τn(p) = τ(p)τ(f(p)) · · · τ(fn−1(p)) for any n ≥ 1.

3.1. Fiber bunched linear cocycles. — For simplicity of the presentation, we will
focus on the case when the vector bundle π : V →M is trivial, that is, V = M ×Kd

and π : M ×Kd → M is the canonical projection. The general case is treated in the
same way, using local charts (but the notations become rather cumbersome).

In the trivial bundle case, every linear cocycle F : V → V may be written in the
form F (x, v) = (f(x), A(x)v) for some continuous A : M → GL(d,K). Notice that
Fn(x, v) = (fn(x), An(x)v) for each n ∈ Z, with

An(x) = A(fn−1(x)) · · ·A(x) and A−n(x) = A(f−1(x))−1 · · ·A(fn(x))−1

for n 6= 0 and A0(x) = id. Notice also that F ∈ Gr,α( V , f) if, and only, if A be-
longs to the space Gr,α(M,d,K) of Cr,α maps from M to GL(d,K). The Cr,α norm
in Gr,α(M,d,K) is defined by

(3.1) ‖A‖r,α = sup
0≤i≤r

sup
x∈M
‖DiA(x)‖+ sup

x 6=y

‖DrA(x)−DrA(y)‖
dist(x, y)α

.

Recall that we assume that r + α > 0 and take β = α if r = 0 and β = 1 if r ≥ 1.
Then every A ∈ Gr,α(M,dK) is β-Hölder continuous. By the Definition (2.12), the
cocycle F is fiber bunched if

(3.2) ‖A(x)‖ ‖A(x)
−1‖ ν(x)β < 1 and ‖A(x)‖ ‖A(x)

−1‖ ν̂(x)β < 1

for every x in M . In this case we also say that the function A is fiber bunched.
Up to suitable adjustments, all our arguments in the sequel hold under the weaker
assumption that (3.2) holds for some power A`, ` ≥ 1.
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Notice that fiber bunching is an open condition: if A is fiber bunched then so is every
B in a neighborhood, just because M is compact. Even more, still by compactness, if
A is fiber bunched then there exists m < 1 such that

(3.3) ‖B(x)‖ ‖B(x)
−1‖ν(x)βm < 1 and ‖B(x)‖ ‖B(x)

−1‖ν̂(x)βm < 1

for every x ∈ M and every B in a C0 neighborhood of A. It is in this form that the
definition will be used in the proofs.

Lemma 3.1. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there is C > 0

such that
‖An(y)‖ ‖An(z)−1‖ ≤ Cνn(x)−βm

for all y, z ∈ W s
loc(x), x ∈ M , and n ≥ 1. Moreover, the constant C may be taken

uniform on a neighborhood of A.

Proof. — Since A ∈ Gr,α(M,d,K) is β-Hölder continuous, there exists L1 > 0 such
that

‖A(f j(y))‖/‖A(f j(x))‖ ≤ exp(L1 dist(f j(x), f j(y))β)

≤ exp(L1ν
j(x)β dist(x, y)β)

and similarly for ‖A(f j(z))−1‖/‖A(f j(x))−1‖. By sub-multiplicativity of the norm

‖An(y)‖ ‖An(z)−1‖ ≤
n−1∏
j=0

‖A(f j(y))‖ ‖A(f j(z))−1‖.

In view of the previous observations, the right hand side is bounded by

exp
[
L1

n−1∑
j=0

νj(x)β(dist(x, y)β + dist(x, z)β)
] n−1∏
j=0

‖A(f j(x))‖ ‖A(f j(x))−1‖

Since ν(·) is bounded away from 1, the first factor is bounded by some C > 0. By
fiber bunching (3.3), the second factor is bounded by νn(x)−βm. It is clear from the
construction that L1 and C may be chosen uniform on a neighborhood.

Proposition 3.2. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there is
L > 0 such that for every pair of points x, y in the same leaf of the strong-stable
foliation W s,
(a) Hs

x,y = limn→∞An(y)
−1
An(x) exists (a linear isomorphism of Kd)

(b) Hs
fj(x),fj(y) = Aj(y) ◦Hs

x,y ◦Aj(x)−1 for every j ≥ 1

(c) Hs
x,x = id and Hs

x,y = Hs
z,y ◦Hs

x,z

(d) ‖Hs
x,y − id ‖ ≤ Ldist(x, y)β whenever y ∈ W s

loc(x).
(e) Given a > 0 there is Γ(a) > 0 such that ‖Hs

x,y‖ < Γ(a) for any x, y ∈ M with
y ∈ W s

(x) and dist W s(x, y) < a.
Moreover, L and the function Γ(·) may be taken uniform on a neighborhood of A.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



28 A. AVILA, J. SANTAMARIA & M. VIANA

Proof. — In order to prove claim (a), it is sufficient to consider the case y ∈ W s
loc(x)

because An+j(y)−1An+j(x) = Aj(y)−1An(f j(y))−1An(f j(x))Aj(x). Furthermore,
once this is done, claim (2) follows immediately from this same relation. Each
difference ‖An+1(y)−1An+1(x)−An(y)−1An(x)‖ is bounded by

‖An(y)−1‖ ‖A(fn(y))−1A(fn(x))− id ‖ ‖An(x)‖.
Since A is β-Hölder continuous, there is L2 > 0 such that the middle factor in this
expression is bounded by

L2 dist(fn(x), fn(y))β ≤ L2

[
νn(x) dist(x, y)

]β
.

Using Lemma 3.1 to bound the product of the other factors, we obtain

(3.4) ‖An+1(y)−1An+1(x)−An(y)−1An(x)‖ ≤ CL2

[
νn(x)(1−m) dist(x, y)

]β
.

The sequence νn(x)β(1−m) is uniformly summable, since ν(·) is bounded away from 1.
Let K > 0 be an upper bound for the sum. It follows that An(y)−1An(x) is a Cauchy
sequence, and so it does converge. This finishes the proof of claims (a) and (b). Claim
(c) is a direct consequence.

Moreover, adding the last inequality over all n, we get ‖Hs
x,y − id ‖ ≤ Ldist(x, y)β

with L = CL2K. This proves claim (d). As a consequence, we also get that there
exists γ > 0 such that ‖Hs

x,y‖ < γ for any points x, y in the same local strong-stable
leaf. To deduce claim (e), notice that for any x, y in the same (global) strong-stable
leaf there exist points z0, . . . , zn, where n depends only on an upper bound for the
distance between x and y along the leaf, such that z0 = x, zn = y, and each zi belongs
to the local strong-stable leaf of zi−1 for every i = 1, . . . , n. Together with (c), this
implies ‖Hs

x,y‖ < γn. It is clear from the construction that L2 and Γ(·) may be taken
uniform on a neighborhood. The proof of the proposition is complete.

To show that the family of maps Hs
x,y given by this proposition is an invariant

stable holonomy for F (we also say that it is an invariant stable holonomy for A) we
also need to check that these maps vary continuously with the base points. That is a
consequence of the next proposition:

Proposition 3.3. — Suppose that A ∈ Cr,α(M,d,K) is fiber bunched. Then the map

(x, y) 7→ Hs
x,y

is continuous on W s
N = {(x, y) ∈M ×M : fN (y) ∈ W s

loc(fN (x))}, for every N ≥ 0.

Proof. — Notice that dist(x, y) ≤ 2R for all (x, y) ∈ W s
0 , by our definition of local

strong-stable leaves. So, the Cauchy estimate in (3.4)

(3.5)
‖An+1(y)−1An+1(x)−An(y)−1An(x)‖ ≤ CL2

[
νn(x)(1−m) dist(x, y)

]β
.

≤ CL2(2R)βνn(x)β(1−m)

is uniform on W s
0 . This implies that the limit in part (a) of Proposition 3.2 is uniform

on W s
0 . That implies case N = 0 of the present proposition. The general case follows

immediately, using property (b) in Proposition 3.2.
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Remark 3.4. — Since the constants C and L2 are uniform on some neighborhood of A,
the Cauchy estimate (3.5) is also locally uniform on A. Thus, the limit in part (a) of
Proposition 3.2 is locally uniform on A as well. Consequently, the stable holonomy
also depends continuously on the cocycle, in the sense that

(A, x, y) 7→ Hs
A,x,y is continuous on Gr,α(M,d,K)×W s

0 .

Using property (b) in Proposition 3.2 we may even replace W s
0 by any W s

N .

Dually, one finds an invariant unstable holonomy (x, y) 7→ Hu
x,y for A (or the

cocycle F ), given by

Hu
x,y = lim

n→−∞
An(y)−1An(x)

whenever x and y are on the same strong-unstable leaf, and it is continuous on Wu
N =

{(x, y) ∈M ×M : f−N (y) ∈ W s
loc(f−N (x))}, for every N ≥ 0. Even more,

(A, x, y) 7→ Hu
A,x,y is continuous on every Gr,α(M,d,K)×Wu

N .

3.2. Differentiability of holonomies. — Now we study the differentiability of
stable holonomies Hs

A,x,y as functions of A ∈ Gr,α(M,d,K). Notice that Gr,α(M,d,K)

is an open subset of the Banach space of Cr,α maps from M to the space of all d× d
matrices and so the tangent space at each point of Gr,α(M,d,K) is naturally identified
with that Banach space. The next proposition is similar to Lemma 2.9 in [25], but
our proof is neater: the previous argument used a stronger fiber bunching condition.

Proposition 3.5. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there exists
a neighborhood U ⊂ Gr,α(M,d,K) of A such that, for any x ∈ M and any y, z ∈
W s

(x), the map B 7→ Hs
B,y,z is of class C1 on U, with derivative

(3.6) ∂BH
s
B,y,z : Ḃ 7→

∞∑
i=0

Bi(z)−1
[
Hs
B,fi(y),fi(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hs
B,fi(y),fi(z)

]
Bi(y).

Proof. — There are three main steps. Recall that fiber bunching is an open condition
and the constants in Lemma 3.1 and Proposition 3.2 may be taken uniform on some
neighborhood U of A. First, we suppose that y, z are in the local strong-stable leaf
of x, and prove that the expression ∂BHs

B,y,z Ḃ is well defined for every B ∈ U and
every Ḃ in TB Gr,α(M,d,K). Next, still in the local case, we show that this expression
indeed gives the derivative of our map with respect to the cocycle. Finally, we extend
the conclusion to arbitrary points on the global strong-stable leaf of x.

Step 1. For each i ≥ 0, write

(3.7) Hs
B,fi(y),fi(z)B(f i(y))−1Ḃ(f i(y))−B(f i(z))−1Ḃ(f i(z))Hs

B,fi(y),fi(z)
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as the following sum

(Hs
B,fi(y),fi(z) − id)B(f i(y))−1Ḃ(f i(y)) +B(f i(z))−1Ḃ(f i(z))(id−Hs

B,fi(y),fi(z))

+ [B(f i(y))−1Ḃ(f i(y))−B(f i(z))−1Ḃ(f i(z))].

By property (d) in Proposition 3.2, the first term is bounded by

(3.8) L ‖B(f i(y))−1‖ ‖Ḃ(f i(y))‖ dist(f i(y), f i(z))β

≤ L ‖B−1‖0,0 ‖Ḃ‖0,0
[
νi(x) dist(y, z)

]β
and analogously for the second one. The third term may be written as

B(f i(y))−1[Ḃ(f i(y))− Ḃ(f i(z))] + [B(f i(y))−1 −B(f i(z))−1]Ḃ(f i(z)).

Using the triangle inequality, we conclude that this is bounded by

(3.9)
(
‖B(f i(y))−1‖Hβ(Ḃ) +Hβ(B−1) ‖Ḃ(f i(z))‖

)
dist(f i(y), f i(z))β .

≤ ‖B−1‖0,β ‖Ḃ‖0,β
[
νi(x) dist(y, z)

]β
,

where Hβ(φ) means the smallest C ≥ 0 such that ‖φ(z) − φ(w)‖ ≤ C dist(z, w)β for
all z, w ∈M . Notice, from the Definition (3.1), that

(3.10) ‖φ‖0,0 +Hβ(φ) = ‖φ‖0,β ≤ ‖φ‖r,α for any function φ.

Let C1 = sup
{
‖B−1‖0,β : B ∈ U

}
. Replacing (3.8) and (3.9) in the expression pre-

ceding them, we find that the norm of (3.7) is bounded by

(2L+ 1)C1 ν
i(x)β dist(y, z)β‖Ḃ‖0,β

Hence, the norm of the ith term in the expression of ∂BHs
B,y,z Ḃ is bounded by

(3.11) 2(L+ 1)C1 ν
i(x)β‖Bi(z)−1‖ ‖Bi(y)‖ dist(y, z)β‖Ḃ‖0,β

≤ C2 ν
i(x)β(1−m) dist(y, z)β‖Ḃ‖0,β

where C2 = 2C(L+ 1)C1 and C is the constant in Lemma 3.1. In this way we find,

(3.12) ‖∂BHs
B,y,z(Ḃ)‖ ≤ C2

∞∑
i=0

νi(x)β(1−m) dist(y, z)β‖Ḃ‖0,β

for any x ∈ M and y, z ∈ W s
loc(x). This shows that the series defining ∂BHs

B,y,z(Ḃ)

does converge at such points.
Step 2. By part (a) of Proposition 3.2 together with Remark 3.4, the map Hs

B,y,z

is the uniform limit Hn
B,y,z = Bn(z)−1Bn(y) when n→∞. Clearly, every Hn

B,y,z is a
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differentiable function of B, with derivative

∂BH
n
B,y,z(Ḃ) =

n−1∑
i=0

Bi(z)−1
[
Hn−i
B,fi(y),fi(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hn−i
B,fi(y),fi(z)

]
Bi(y).

So, to prove that ∂BHs
B,y,z is indeed the derivative of the holonomy with respect to B,

it suffices to show that ∂Hn
B,y,z converges uniformly to ∂Hs

B,y,z when n→∞.
Write 1−m = 2τ . From (3.4) and the fact that ν(·) is strictly smaller than 1,

‖Hn
B,y,z −Hs

B,y,z‖ ≤ CL2

∞∑
j=n

νj(x)β(1−m) dist(y, z)β

≤ C3ν
n(x)2βτ dist(y, z)β ≤ C3ν

n(x)βτ dist(y, z)β

for some uniform constant C3 (the last inequality is trivial, but it will allow us to
come out with a positive exponent for νi(x) in (3.13) below). More generally, and for
the same reasons,

‖Hn−i
B,fi(y),fi(z) −H

s
B,fi(y),fi(z)‖ ≤ C3ν

n−i(f i(x))βτ dist(f i(y), f i(z))β

≤ C3ν
n−i(f i(x))βτνi(x)β dist(y, z)β

= C3ν
n(x)βτνi(x)β(1−τ) dist(y, z)β

for all 0 ≤ i ≤ n, and all y, z in the same local strong-stable leaf. It follows, using also
Lemma 3.1, that the norm of the difference between the ith terms in the expressions
of ∂BHn

B,y,z and ∂BHs
B,y,z is bounded by

(3.13) C3ν
n(x)βτνi(x)β(1−τ) dist(y, z)β‖Bi(z)−1‖ ‖Bi(y)‖

≤ CC3ν
n(x)βτνi(x)βτ dist(y, z)β .

Combining this with (3.11), we find that ‖∂BHn
B,y,z − ∂BHs

B,y,z‖ is bounded by

CC3

n−1∑
i=0

νi(x)βτνn(x)βτ dist(y, z)β + C2

∞∑
i=n

νi(x)2βτ dist(y, z)β .

Since νi(x) is bounded away from 1, the sum is bounded by C4ν
n(x)βτ dist(y, z)β ,

for some uniform constant C4. This latter expression tends to zero uniformly when
n→∞, and so the argument is complete.

Step 3. From property (b) in Proposition 3.2, we find that if Hs
B,f(y),f(z) is differ-

entiable on B then so is Hs
B,y,z and the derivative is determined by

(3.14) Ḃ(z)Hs
B,y,z +B(z) · ∂BHs

B,y,z(Ḃ) = Hs
B,y,z · Ḃ(y) + ∂BH

s
B,y,z(Ḃ) ·B(y).

Combining this observation with the previous two steps, we conclude that Hs
B,y,z

is differentiable on B for any pair of points y, z in the same (global) strong-stable
leaf: just note that fn(y), fn(z) are in the same local strong-stable leaf for large n.
Moreover, a straightforward calculation shows that the expression in (3.6) satisfies
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the relation (3.14). Therefore, (3.6) is the expression of the derivative for all points y,
z in the same strong-stable leaf. The proof of the proposition is now complete.

Corollary 3.6. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there exists
θ < 1 and a neighborhood U of A and, for each a > 0, there exists C5(a) > 0 such
that

(3.15) ‖
∞∑
i=k

Bi(z)−1
[
Hs
B,fi(y),fi(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hs
B,fi(y),fi(z)

]
Bi(y)‖ ≤ C5(a) θk ‖Ḃ‖0,β

for any B ∈ U, k ≥ 0, x ∈M , and y, z ∈ W s
(x) with dist W s(y, z) < a.

Proof. — Let θ < 1 be an upper bound for ν(·)β(1−m). Begin by supposing that
dist W s(y, z) < R. Then y, z are in the same local strong-stable leaf, and we may use
(3.11) to get that the expression in (3.15) is bounded above by

C2

∞∑
i=k

νi(x)β(1−m) dist(y, z)β‖Ḃ‖0,β ≤ C ′5 θk ‖Ḃ‖0,β

for some uniform constant C ′5. This settles the case a ≤ R, with C5(a) = C ′5.
In general, there is l ≥ 0 such that dist W s(y, z) < a implies dist W s(f l(y), f l(z)) <

R. Suppose first that k ≥ l. Clearly, the expression in (3.15) does not change if we
replace y, z by f l(y), f l(z) and replace k by k− l. Then, by the previous special case,
(3.15) is bounded above by

C ′5 θ
k−l ‖Ḃ‖0,β

and so it suffices to choose C5(a) ≥ C ′5θ
−l. If k < l then begin by splitting (3.15)

into two sums, respectively, over k ≤ i < l and over i ≥ l. The first sum is bounded
by C ′′5 (a)‖Ḃ‖0,β for some constant C ′′5 (a) > 0 that depends only on a (and l, which is
itself a function of a). The second one is bounded by C ′5 ‖Ḃ‖0,β , as we have just seen.
The conclusion follows, assuming we choose C5(a) ≥ C ′5θ−l + C ′′5 (a)θ−l.

For future reference, let us state the analogues of Proposition 3.5 and Corollary 3.6
for invariant unstable holonomies:

Proposition 3.7. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there exists
a neighborhood U ⊂ Gr,α(M,d,K) of A such that, for any x ∈ M and any y, z ∈
W u

(x), the map B 7→ Hu
B,y,z is of class C1 on U with derivative

(3.16) ∂BH
u
B,y,z : Ḃ 7→ −

∞∑
i=1

B−i(z)−1
[
Hu
B,f−i(y),f−i(z)B(f−i(y))−1Ḃ(f−i(y))

−B(f−i(z))−1Ḃ(f−i(z))Hu
B,f−i(y),f−i(z)

]
B−i(y).
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Corollary 3.8. — In the same setting as Proposition 3.7,

(3.17) ‖
∞∑
i=k

B−i(z)−1
[
Hu
B,f−i(y),f−i(z)B(f−i(y))−1Ḃ(f−i(y))

−B(f−i(z))−1Ḃ(f−i(z))Hu
B,f−i(y),f−i(z)

]
B−i(y)‖ ≤ C5(a) θk ‖Ḃ‖0,β .

for any B ∈ U, k ≥ 0, x ∈M , and y, z ∈ W u
(x) with dist Wu(y, z) < a.

3.3. Dominated smooth cocycles. — Now we introduce a concept of domination
for smooth cocycles, related to the notion of fiber bunching in the linear setting.
We observe that dominated smooth cocycles admit invariant stable and unstable
holonomies, and these holonomies vary continuously with the cocycle. These facts are
included to make the analogy to the linear case more apparent but, otherwise, they
are not used in the present paper: whenever dealing with smooth cocycles we just
assume that invariant stable and unstable holonomies do exist. In this section we do
not consider any invariant measure.

Let β > 0 be fixed. A fiber bundle with smooth leaves π : E→M is called β-Hölder
if there exists C > 0 such that the coordinate changes (2.7) satisfy

(3.18) distC1(g±1
x , g±1

y ) ≤ C dist(x, y)β for every x and y.

Then we say that a smooth cocycle F : E → E is β-Hölder if its local expressions
φ−1
U1
◦ F ◦ φU0

: (U0 ∩ f−1(U1))×N → U1 ×N , (x, ξ) 7→ (f(x),FUx (ξ)) satisfy

(3.19) distC1(FUx ,F
U
y ) ≤ CU dist(x, y)β for some CU > 0 and every x and y.

This does not depend on the choice of the local charts. Indeed, any other local ex-
pression has the form FVx = g′f(x) ◦ F

U
x ◦ g−1

x on the intersection of the domains of
definition. Then, a straightforward use of the triangle inequality gives

distC1(FVx ,F
V
y ) ≤ CV dist(x, y)β for every x and y,

where CV depends on β, C, CU and upper bounds for the norms of DFUx , Dg′y, Dg−1
x

and Df .

Definition 3.9. — Denote by Cβ(f, E) the space of cocycles F that are β-Hölder con-
tinuous. A cocycle F ∈ Cβ(f, E) is s-dominated if there is θ < 1 such that

(3.20) ‖DFx(ξ)−1‖ ν(x)β ≤ θ for all (x, ξ) ∈ E

and it is u-dominated if there is θ < 1 such that

(3.21) ‖DFx(ξ)‖ ν̂(x)β ≤ θ for all (x, ξ) ∈ E.

We say that F is dominated if it is both s-dominated and u-dominated.

In geometric terms, (3.20) means that the contractions of F along the fibers are
strictly weaker than the contractions of f along strong-stable leaves and (3.21) ex-
presses a similar property for the expansions of F. These conditions are designed so
that the usual graph transform argument yields a “strong-stable” lamination and a

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



34 A. AVILA, J. SANTAMARIA & M. VIANA

“strong-unstable” lamination for the map F, as we are going to see. Then the holon-
omy maps for these laminations constitute invariant stable and unstable holonomies
for the cocycle.

Observe that both conditions (3.20)–(3.21) become stronger as β decreases to zero;
this may be seen as a sort of compensation for the decreasing regularity (Hölder
continuity) of the cocycle. The observations that follow extend, up to straightforward
adjustments, to the case when these conditions hold for some iterate F`, ` ≥ 1.

Proposition 3.10. — Let F ∈ Cβ(f, E) be s-dominated. Then there exists a unique
partition W s

= {W s
(x, ξ) : (x, ξ) ∈ E} of E and there exists C > 0 such that

(a) every W s
(x, ξ) is a (C, β)-Hölder continuous graph over W s

(x);
(b) the partition is invariant: F( W s

(x, ξ)) ⊂ W s
(F(x, ξ)) for all (x, ξ) ∈ E.

Consider the family of maps Hs
x,y : Ex → Ey defined by (y,Hs

x,y(ξ)) ∈ W s
(x, ξ) for

each y ∈ W s
(x). Then, for every x, y and z in the same strong-stable leaf,

(c) Hs
y,z ◦Hs

x,y = Hs
x,z and Hs

x,x = id

(d) Fy ◦Hs
x,y = Hs

f(x),f(y) ◦ Fx
(e) Hs

x,y : Ex → Ey is the uniform limit of (Fny )−1 ◦ Fnx as n→∞;
(f) Hs

x,y : Ex → Ey is γ-Hölder continuous, where γ > 0 depends only on F, and
Hs
x,y is (C, γ)-Hölder continuous if x and y are in the same strong-stable leaf;

(g) (x, y, ξ) 7→ Hs
x,y(ξ) is continuous when (x, y) varies in the set of pairs of points

in the same local strong-stable leaf.
Moreover, there are dual statements for strong-unstable leaves, assuming that F is
u-dominated.

Outline of the proof. — This follows from the same normal hyperbolicity methods
(Hirsch, Pugh, Shub [16]) that were used in the previous section for linear cocycles.
Existence (a) and invariance (b) of the family W s follow from a standard application
of the graph transform argument (see Chapter 5 of [24]). The pseudo-group property
(c) is a direct consequence of the definition of Hs

x,y. The invariance property (d) is a
restatement of (b). To prove (e), notice that

Hs
x,y = (Fny )−1 ◦Hs

fn(x),fn(y) ◦ F
n
x ,

because the lamination W s is invariant under F. Also, by (a), the uniform C0 distance
from Hs

fn(x),fn(y) to the identity is bounded by

C dist(fn(x), fn(y))β ≤ C
[
νn(x) dist(x, y)

]β
.

Putting these two observations together, we find that

distC0(Hs
x,y, (F

n
y )−1 ◦ Fnx) ≤ Lip

(
(Fny )−1

)
distC0(Hs

fn(x),fn(y), id)

≤ C sup
ξ
‖DFny (ξ)−1‖ νn(x)β dist(x, y)β .
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So, by the domination condition (3.20),

(3.22) distC0(Hs
x,y, (F

n
y )−1 ◦ Fnx) ≤ Cθn dist(x, y)β .

This proves (e). For pairs (x, y) in the same local strong-stable leaf, the right hand
side of (3.22) is uniformly bounded by CRβθn. Since this converges to zero, we also
get that the limit map (x, y, ξ) 7→ Hs

x,y(ξ) is continuous, as stated in (g).
The Hölder continuity property is another by-product of normal hyperbolicity the-

ory. In this instance it can be derived as follows. In view of the invariance property (d),
it suffices to consider the case when x and y are in the same local strong-stable leaf.
Given nearby points ξ, η ∈ Ex, let ξ′, η′ be their images under the holonomy mapHs

x,y.
The domination Hypothesis (3.20) ensures that there exists n ≤ −c1 log dist(ξ′, η′)

(where c1 > 0 is a uniform constant) such that the distance dist(fn(x), fn(y)) be-
tween the fibers is much smaller than the distance dist(Fnx(ξ′),Fx(η′)) along the fiber,
in such a way that,

dist(Fnx(ξ),Fnx(η)) ≥ 1

2
dist(Fny (ξ′),Fny (η′)).

Let c2 > 0 be an upper bound for log ‖DF±1
w ‖ over all w ∈M . Then

dist(ξ′, η′)

dist(ξ, η)
≤ e2c2n

dist(Fny (ξ′),Fny (η′))

dist(Fnx(ξ),Fnx(η))
≤ 2e2c2n ≤ 2d(ξ′, η′)−2c1c2 .

This gives dist(ξ′, η′) ≤ 2γ dist(ξ, η)γ with γ = 1/(1 + 2c1c2).

Next, let Ds,β(f, E) ⊂ Cβ(f, E) be the subset of s-dominated cocycles. It is clear
from the definition that Ds,β(f, E) is an open subset, relative to the uniform C1

distance
distC1(F,G) = sup{distC1(Fx,Gx) : x ∈M}.

We are going to see that invariant stable holonomies vary continuously with the
cocycle inside Ds,β(f, E), relative to this distance. Analogously, invariant unstable
holonomies vary continuously with the cocycle inside the subset Du,β(f, E) ⊂ Cβ(f, E)

of u-dominated cocycles. We also denote by Dβ(f, E) ⊂ Cβ(f, E) the (open) subset
of dominated cocycles.

Let W s
(G) = {W s

(G, x, ξ) : (x, ξ) ∈ E} denote the strong-stable lamination of a
dominated cocycle G, as in Proposition 3.10, and Hs

G = Hs
G,x,y be the corresponding

stable holonomy:

(3.23) (y,Hs
G,x,y(ξ)) ∈ W s

(G, x, ξ).

Recall that W s
(G, x, ξ) is a graph over W s

(x). We also denote by W s
loc(G, x, ξ) the

subset of points (y,Hs
G,x,y(ξ)) with y ∈ W s

loc(x).

Proposition 3.11. — Let (Fk)k be a sequence of cocycles converging to F in the space
Ds,β(f, E). Then, for every x ∈M , y ∈ W s

(x), and ξ ∈ Ex,
(a) W s

(Fk, x, ξ) is a β-Hölder graph; restricted to local strong-stable leaves, the
multiplicative Hölder constant is uniform on (k, x, ξ);
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(b) the sequence (uk)k of functions defined by W s
loc(Fk, x, ξ) = graphuk converges

uniformly to the function u defined by W s
loc(F, x, ξ) = graphu; this convergence

is uniform on (x, ξ);
(c) Hs

Fk,x,y
converges uniformly to Hs

F,x,y; this convergence is uniform on (x, y),
restricted to the set of pairs of points in the same local strong-stable leaf.

Moreover, there are dual statements for invariant unstable holonomies, in the space
of u-dominated cocycles.

Outline of the proof. — This is another standard consequence of the graph transform
argument [16]. Indeed, the assumptions imply that the graph transform of Fk con-
verges to the graph transform of F in an appropriate sense, so that the corresponding
fixed points converge as well. This yields (a) and (b). When y ∈ W s

loc(x), claim (c) is
a direct consequence of (b) and the Definition (3.23). The general statement follows,
using the invariance property in Proposition 3.10:

Hs
Fk,x,y

= (Fnk,y)−1 ◦HFk,fn(x),fn(y) ◦ Fnk,x.

Related facts were proved in [25, Section 4] for linear cocycles, along these lines.

Remark 3.12. — The previous observations do not need the full strength of partial
hyperbolicity. Indeed, the definition of s-dominated cocycle still makes sense if one
allows the subbundle Eu in (2.1) to have dimension zero; moreover, all the statements
about invariant stable holonomies in Propositions 3.10 and 3.11 remain valid in this
case. Analogously, for defining u-domination and for the statements about invariant
unstable holonomies one may allow Es to have dimension zero.

Remark 3.13. — It follows from (2.13)-(2.14) that if a linear cocycle F is fiber bunched
then the associated projective cocycle F = P(F ) is dominated. Thus, we could use
Proposition 3.10 to conclude that F admits invariant stable and unstable holonomies.
On the other hand, it is easy to exhibit these holonomies explicitly: if Hs

x,y and Hu
x,y

are invariant holonomies for F then P(Hs
x,y) and P(Hu

x,y) are invariant holonomies
for F.

4. Invariant measures of smooth cocycles

In this section we prove the following result and we use it to obtain Theorem C:

Theorem 4.1. — Let f be a C1 partially hyperbolic diffeomorphism, F be a smooth
cocycle over f , µ be an f -invariant probability, and m be an F-invariant probability
on E such that π∗m = µ.

(a) If F admits invariant stable holonomies and λ−(F, x, ξ) ≥ 0 at m-almost every
point (x, ξ) ∈ E then, for any disintegration {mx : x ∈M} of m into conditional
probabilities along the fibers, there exists a full µ-measure subset Ms such that
mz = (Hs

y,z)∗my for every y, z ∈Ms in the same strong-stable leaf.
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(b) If F admits invariant unstable holonomies and λ+(F, x, ξ) ≤ 0 at m-almost every
point (x, ξ) ∈ E then, for any disintegration {mx : x ∈M} of m into conditional
probabilities along the fibers, there exists a full µ-measure subset Mu such that
mz = (Hu

y,z)∗my for every y, z ∈Mu in the same strong-unstable leaf.

Remark 4.2. — Theorem 4.1 does not require full partial hyperbolicity. Indeed, the
proof of part (a) that we will present in the sequel remains valid when dimEu = 0.
Analogously, part (b) remains true when dimEs = 0.

Theorem C can be readily deduced from Theorem 4.1 and Theorem D, as follows.
Given any disintegration {mx : x ∈ M} of the probability m, define Ψ(x) = mx at
every point. According to Theorem 4.1, the function Ψ is essentially s-invariant and
essentially u-invariant. By Theorem D, there exists a bi-invariant function Ψ̃ defined
on some bi-saturated full measure set M̃ and coinciding with Ψ almost everywhere.
Then we get a new disintegration {m̃x : x ∈ M} by setting m̃x = Ψ̃(x) when x ∈
M̃ and extending the definition arbitrarily to the complement. The conclusion of
Theorem D means that this new disintegration is both s-invariant and u-invariant
on M̃ . Moreover, it is continuous if f is accessible.

The proof of Theorem 4.1 is given in Sections 4.1 through 4.4. Theorem D will be
proved in Sections 6 and 7.

4.1. Abstract invariance principle. — Let (M∗, M∗, µ∗) be a Lebesgue space,
that is, a complete separable probability space. Every Lebesgue space is isomorphic
mod 0 to the union of an interval, endowed with the Lebesgue measure, and a finite
or countable set of atoms. See Rokhlin [23, § 2]. Let T : M∗ → M∗ be an invertible
measurable transformation. A σ-algebra B ⊂ M∗ is generating if its iterates Tn( B),
n ∈ Z generate the whole M∗ mod 0: for every E ∈ M∗ there exists E′ in the smallest
σ-algebra that contains all the Tn( B) such that µ∗(E∆E′) = 0.

Theorem 4.3 (Ledrappier [19]). — Let B : M∗ → GL(d,K) be a measurable map such
that the functions x 7→ log ‖B(x)±1‖ are µ∗-integrable. Let B ⊂ M∗ be a generating
σ-algebra such that both T and B are B-measurable mod 0.

If λ−(B, x) = λ+(B, x) at µ∗-almost every x ∈ M∗ then, for any P(FB)-invariant
probability m that projects down to µ∗, any disintegration x 7→ mx of m along the
fibers is B-measurable mod 0.

The proof of Theorem 4.1 is based on an extension of this result to smooth co-
cycles that was recently proved by Avila, Viana [3]. For the statement one needs to
introduce the following notion. A deformation of a smooth cocycle F is a measurable
transformation F̃ : E→ E which is conjugated to F,

F̃ = H ◦ F ◦ H −1,

by some invertible measurable map H : E→ E of the form H (x, ξ) = (x, H x(ξ)), such
that all the H −1

x : Ex → Ex are Hölder continuous, with uniform Hölder constants:

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



38 A. AVILA, J. SANTAMARIA & M. VIANA

there exist positive constants γ and Γ such that

dist(ξ, η) ≤ Γ dist( H x(ξ), H x(η))γ for every x ∈M and ξ, η ∈ Ex.

To each F-invariant probability m corresponds an F̃-invariant probability m̃ = H ∗m.

Theorem 4.4 (Avila, Viana [3]). — Let F̃ be a deformation of a smooth cocycle F.
Let B ⊂ M∗ be a generating σ-algebra such that both T and x 7→ F̃x are B-measur-
able mod 0. Let m̃ be an F̃-invariant probability that projects down to µ∗.

If λ−(F, x, ξ) ≥ 0 for m-almost every (x, ξ) ∈ E then any disintegration x 7→ m̃x

of m̃ along the fibers is B-measurable mod 0.

4.2. Global essential invariance. — For proving Theorem 4.1 it suffices to con-
sider the claim (a): then claim (b) is obtained just by reversing time. In this section
we reduce the general case to a local version of the claim (Proposition 4.5 below),
whose proof is postponed until Section 4.4.

For each symbol ∗ ∈ {s, u} and r > 0, denote by W ∗(x, r) the neighborhood of
radius r around x inside the leaf W ∗(x). Recall that we write W ∗loc(x) = W ∗(x,R).

Proposition 4.5. — Consider the setting of Theorem 4.1(a). Let Σ be a cross-section
to the strong-stable foliation W s of f and let δ ∈ (0, R/2). Denote

N (Σ, δ) =
⋃
z∈Σ

W s
(z, δ)

Then there exists a full µ-measure subset N s of N (Σ, δ) such that my = (Hs
x,y)∗mx

for every x, y ∈ N s in the same W s
(z, δ), z ∈ Σ.

Fix any δ ∈ (0, R/2). For each p ∈ M , consider a cross-section Σ(p) such that
N (Σ(p), δ) contains p in its interior and let N s(p) ⊂ N (Σ(p), δ) be a full mea-
sure subset as in Proposition 4.5. By compactness, we may find ε � δ and points
p1, . . . , pN such that the ball of radius ε around every point ofM is contained in some
N (Σ(pj), δ). Since the measure m is invariant under F, there exists an f -invariant set
Mm ⊂M with full µ-measure such that mf(x) = (Fx)∗mx for every x ∈Mm. Take

Ms = {x ∈Mm : fn(x) /∈ N (Σ(pj), δ) \ N s(pj) for all n ≥ 0 and j = 1, . . . , N .}

Given any pair of points x, y ∈Ms in the same strong-stable leaf, take n ≥ 0 large
enough so that the distance from fn(x) to fn(y) along the corresponding strong-
stable leaf is less than ε. Next, fix j such that N (Σ(pj), δ) contains the ball of radius
ε around fn(x). Since x, y ∈Ms, both points fn(x), fn(y) belong to N s(pj). So, by
Proposition 4.5,

(4.1) mfn(y) = (Hs
fn(x),fn(y))∗mfn(x).

Since x, y ∈ Mm, we also have that mfn(x) = (Fnx)∗mx and analogously for y. Then,
using the invariance relation Hs

fn(x),fn(y) ◦ F
n
x = Fny ◦ Hs

x,y, the equality in (4.1)
becomes my = (Hs

x,y)∗mx.
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This proves claim (a) in Theorem 4.1. Claim (b) is analogous, up to time reversion.
Thus, we have reduced the proof of Theorem 4.1 to proving Proposition 4.5.

4.3. A local Markov construction. — The proof of Proposition 4.5 can be out-
lined as follows. The assumption that the cocycle admits stable holonomy allows us
to construct a special deformation F̃ of the smooth cocycle F which is measurable
mod 0 with respect to a certain σ-algebra B. Applying Theorem 4.4 we get that the
disintegration of m̃ is also B-measurable mod 0, where m̃ is the F̃-invariant measure
corresponding to m. When translated back to the original setting, this B-measurabil-
ity property means that the disintegration of m is essentially invariant on the domain
N (Σ, δ), as stated in Proposition 4.5.

In this section we construct F̃ and B. The next proposition is the main tool. It is
essentially taken from Proposition 3.3 in [25], so here we just outline the construction.

Proposition 4.6. — Let Σ be a cross-section to the strong-stable foliation W s and δ ∈
(0, R/2). Then there exists N ≥ 1 and a measurable family of sets {S(z) : z ∈ Σ} such
that
(a) W s

(z, δ) ⊂ S(z) ⊂ W s
loc(z) for all z ∈ Σ;

(b) for all l ≥ 1 and z, ζ ∈ Σ, if f lN (S(ζ)) ∩ S(z) 6= ∅ then f lN (S(ζ)) ⊂ S(z).

Outline of the proof. — Fix N big enough so that νN (x) < 1/4 for all x ∈ M , and
denote g = fN . For each z ∈ Σ define S0 = W s

(z, δ) and

(4.2) Sn+1(z) = S0(z) ∪
⋃

(j,w)∈Zn(z)

gj(Sn(w))

where Zn(z) =
{

(j, w) ∈ N× Σ : gj(Sn(w)) ∩ S0(z) 6= ∅
}
. Clearly, S0(z) ⊂ S1(z) and

Z0(z) ⊂ Z1(z). Notice that if Sn−1(z) ⊂ Sn(z) and Zn−1(z) ⊂ Zn(z) for every z ∈ Σ,
then, ⋃

(j,w)∈Zn−1(z)

gj(Sn−1(w)) ⊂
⋃

(j,w)∈Zn(z)

gj(Sn(w)).

Therefore, by induction, Sn(z) ⊂ Sn+1(z) and Zn(z) ⊂ Zn+1(z) for every n ≥ 0.
Define

S∞(z) =
∞⋃
n=0

Sn(z) and Z∞(z) =
∞⋃
n=0

Zn(z).

Then Z∞(z) is the set of (j, w) ∈ N× Σ such that gj(S∞(w)) intersects S0(z), and

S∞(z) = S0(z) ∪
⋃

(j,w)∈Z∞(z)

gj(S∞(w)).

The choice of N ensures that S∞(z) ⊂ W s
(z, 2δ). Finally, define

S(z) = S∞(z) \
⋃

(k,ξ)∈V (z)

gk(S∞(ξ))

where V (z) =
{

(k, ξ) ∈ N× Σ : gk(S∞(ξ)) 6⊂ S∞(z)
}
. This family of sets satisfies the

conclusion of the proposition.
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Since the conclusion of Proposition 4.5 is not affected when f and F are replaced
by its iterates fN and FN , we may take the integer N in Proposition 4.6 to be equal
to 1. Let M∗ = M and T = f . Let M∗ be the µ-completion of the Borel σ-algebra
of M and µ∗ be the canonical extension of µ to M∗. Then (M∗, M∗, µ∗) is a Lebesgue
space and T is an automorphism in it.

For each z ∈ Σ, let r(z) ≥ 0 be the largest integer (possibly infinite) such that
f j(S(z)) does not intersect any of the S(w), w ∈ Σ for all 0 < j ≤ r(z). Let B be
the σ-algebra of sets E ∈ M∗ such that, for every z and j, either E contains f j(S(z))

or is disjoint from it. Notice that an M-measurable function on M is B-measurable
precisely if it is constant on every f j(S(z)). Define F̃ : E→ E to be F̃ = H ◦F ◦ H −1,
where

H x =

{
Hs
x,fj(z) if x ∈ f j(S(z)) for some z ∈ Σ and 0 ≤ j ≤ r(z)

id otherwise.

Recall that S(z) ⊂ W s
loc(z) for every z, by construction. Reducing δ if necessary,

we may assume that f j(S(z)) ⊂ W s
loc(f j(z)) for every z and every j ≥ 0. Then

condition (d) in Definition 2.10 ensures that the family {H x : x ∈M} is uniformly
Hölder continuous. The definition implies that

(4.3) F̃x = Hs
f(x),fj+1(z) ◦ Fx ◦H

s
fj(z),x = Ffj(z)

if x ∈ f j(S(z)) for some z ∈ Σ and 0 ≤ j < r(z). Moreover,

(4.4) F̃x = Hs
f(x),w ◦ Fx ◦H

s
fr(z)(z),x

if x ∈ fr(z)(S(z)) for some z ∈ Σ, where w ∈ Σ is given by fr(z)+1(S(z)) ⊂ S(w). In
all other cases, F̃x = Fx.

Lemma 4.7. — The following properties hold

(a) T = f and x 7→ F̃x are B-measurable
(b) distC0( H x, id) is uniformly bounded
(c) {Tn( B) : n ∈ N} generates M∗ mod 0.

Proof. — The relations (4.3) and (4.4) show that F̃x is constant on f j(S(z)) for every
z ∈ Σ and 0 ≤ j ≤ r(z). Thus, x 7→ F̃x is B-measurable. B-measurability of f is a
simple consequence of the Markov property in Proposition 4.6. Indeed, let E ∈ B
and let z ∈ Σ and 0 ≤ j ≤ r(z) be such that f−1(E) intersects f j(S(z)). Then E

intersects f j+1(S(z)). We claim that E contains f j+1(S(z)). When j + 1 ≤ r(z) this
follows immediately from E ∈ B. When j = r(z), notice that f j+1(S(z)) ⊂ S(w)

for some w ∈ S(z), and E ∈ B must contain S(w). So the claim holds in all cases.
It follows that f−1(E) contains f j(S(z)). This proves that f−1(E) ∈ B, and so the
proof of part (a) is complete. To prove part (b), observe that

diam f j(S(z)) ≤ diam W s S(z) ≤ R,
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for all z ∈ Σ and j ≥ 0, and so
sup
x∈M

distC0( H x, id) ≤ sup
dist(a,b)≤R

distC0(Hs
a,b, id).

The right hand side is uniformly bounded, since the stable holonomy depends con-
tinuously on the base points, and the space of (a, b) ∈ M ×M with dist(a, b) ≤ R

is compact. This proves part (b). To prove the last claim, observe that fn( B) is the
σ-algebra of sets E ∈ M∗ such that every f j+n(S(z)) either is contained in E or is
disjoint from E. Observe that the diameter of f j+n(S(z)) goes to zero, uniformly,
when n goes to ∞. It follows that every open set can be written as a union of sets
En ∈ fn( B) and, hence, belongs to the σ-algebra generated by {fn( B) : n ∈ N}. This
proves that the latter σ-algebra coincides mod 0 with the completion M∗ of the Borel
σ-algebra, as stated in (c).

4.4. Local essential invariance. — Next, we deduce Proposition 4.5. By assump-
tion, λ−(F, x, ξ) ≥ 0 at m-almost every point. Lemma 4.7 ensures that all the other
assumptions of Theorem 4.4 are fulfilled as well. We conclude from the theorem that
the disintegration {m̃x : x ∈M} of the measure m̃ = H ∗m is measurable mod 0 with
respect to the σ-algebra B. Then, there exists a full µ-measure set Xs ⊂M such that
this restriction of the disintegration to Xs is constant on every f j(S(z)) with z ∈ Σ

and 0 ≤ j ≤ r(z). The disintegrations of m and m̃ are related to one another by

m̃x =
(
H x)∗mx =

{
(Hs

x,fj(z))∗mx if x ∈ f j(S(z)) for z ∈ Σ and 0 ≤ j ≤ r(z)
mx otherwise.

Define N s = Xs ∩ N (Σ, δ). Recall that W (z, δ) ⊂ S(z) for all z ∈ Σ. Then, for every
x, y ∈ N s in the same W (z, δ),

(Hs
x,z)∗mx = m̃x = m̃y = (Hs

y,z)∗my,

and so my = (Hs
y,z)
−1
∗ (Hs

x,z)∗mx = (Hx,y)∗mx. This proves Proposition 4.5. The
proof of Theorem 4.1 is now complete.

5. Density points

In this section we recall some ideas of Burns, Wilkinson [10] that will be important
in Section 6. The conclusions that interest us more directly are collected in Proposi-
tion 5.13.

Let us start with a few preparatory remarks. Recall that we take M to carry a
Riemannian metric adapted to f : M →M , meaning that properties (2.2)-(2.4) hold.
Clearly, these properties are not affected by rescaling. At a few steps in the course of
the arguments that follow we do allow for the Riemannian metric to be multiplied by
some large constant.

Recall that we write W ∗loc(x) = W ∗(x,R) for every x ∈M and ∗ ∈ {s, u}, where is
R a fixed constant. In the sequel we suppose that R > 1. Up to rescaling the metric,
we may assume that the Riemannian ball B(p,R) is contained in foliation boxes for
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both W s and W u, for every p ∈ M . By further rescaling the metric, we may ensure
that, given any p ∈M and x, y ∈ B(p,R),

y ∈ W s
loc(x) implies dist(f(x), f(y)) ≤ ν(p) dist(x, y) and,

y ∈ W u
loc(x) implies dist(f−1(x), f−1(y)) ≤ ν̂(f−1(p)) dist(x, y).

As a consequence, given any p, x, y ∈M ,
(I) f( W s

loc(x)) ⊂ W s
loc(f(x)) and f−1( W u

loc(x)) ⊂ W u
loc(f−1(x)).

(II) If f j(x) ∈ B(f j(p), R) for 0 ≤ j < n, and y ∈ W s
loc(x), then

dist(fn(x), fn(y)) ≤ νn(p) dist(x, y);

(III) If f−j(x) ∈ B(f−j(p), R) for 0 ≤ j < n, and y ∈ W u
loc(x), then

dist(f−n(x), f−n(y)) ≤ ν̂−n(p) dist(x, y).

These properties of the strong-stable and strong-unstable foliations of f are useful
guidelines to the notion of fake foliations, that we are going to recall in Section 5.2.

5.1. Density sequences. — Let λ be the volume associated to the (adapted) Rie-
mannian metric onM . We denote by λS the volume of the Riemannian metric induced
on any immersed submanifold S. Given a continuous foliation F of M with smooth
leaves, we denote by λ F (A) the volume of a measurable subset A of some leaf F ,
relative to the Riemannian metric λF induced on that leaf.

By definition, λ and the invariant volume µ have the same zero measure sets. More
important for our proposes, they have the same Lebesgue density points. Recall that
x ∈M is a Lebesgue density point of a set X ⊂M if

lim
δ→0

λ(X : B(x, δ)) = 1

where λ(A : B) = λ(A ∩B)/λ(B) is defined for general subsets A, B with λ(B) > 0.
The Lebesgue Density Theorem asserts that λ(X ∆ DP(X)) = 0 for any measurable
set X, where DP(X) is the set of Lebesgue density points of X.

Balls may be replaced in the definition by other, but not arbitrary, families of
neighborhoods of the point.

Definition 5.1. — A sequence of measurable sets (Yn)n is a Lebesgue density sequence
at x ∈M if
(a) (Yn)n nests at the point x: Yn ⊃ Yn+1 for every n and ∩nYn = {x}
(b) (Yn)n is regular : there is δ > 0 such that λ(Yn+1) ≥ δλ(Yn) for every n
(c) x is a Lebesgue density point of an arbitrary measurable set X if and only if

limn→∞ λ(X : Yn) = 1.

Some of the sequences we are going to mention satisfy these conditions for special
classes of sets only. In particular, we say that (Yn)n is a Lebesgue density sequence
at x for bi-essentially saturated sets if (c) holds for every bi-essentially saturated set
X (this notion was defined in Section 2.1).
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Burns, Wilkinson [10] propose two main techniques for defining new Lebesgue
density sequences: internested sequences and Cavalieri’s principle. The first one is
quite simple and applies to general measurable sets. Two sequences (Yn)n and (Zn)n
that nest at x are said to be internested if there is k ≥ 1 such that

Yn+k ⊆ Zn and Zn+k ⊆ Yn for all n ≥ 0.

Lemma 5.2 (Lemma 2.1 in [10]). — If (Yn)n and (Zn)n are internested then one se-
quence is regular if and only if the other one is. Moreover,

lim
n→∞

λ(X : Yn) = 1 ⇐⇒ lim
n→∞

λ(X : Zn) = 1,

for any measurable set X ⊂M .

Consequently, if two sequences are internested then one is a Lebesgue density se-
quence (respectively, a Lebesgue density sequence for bi-essentially saturated sets) if
and only if the other is.

The second technique (Cavalieri’s principle) is a lot more subtle and is specific to
subsets essentially saturated by some absolutely continuous foliation F (with bounded
Jacobians). Let U be a foliation box for F and Σ be a cross-section to F in U . The
fiber of a set Y ⊂ U over a point q ∈ Σ is the intersection of Y with the local leaf
of F in U containing q. The base of Y ⊂ U is the set ΣY of points q ∈ Σ whose
fiber Y (q) is a measurable set and has positive λ F -measure. The absolute continuity
of F ensures that the base is a measurable set. We say that Y fibers over some set
Z ⊂ Σ if the basis ΣY equals Z. Given c ≥ 1, a sequence of sets Yn contained in U
has c-uniform fibers if

(5.1) c−1 ≤ λ F (Yn(q1))

λ F (Yn(q2))
≤ c for all q1, q2 ∈ ΣYn and every n ≥ 0.

Proposition 5.3 (Proposition 2.7 in [10]). — Let (Yn)n be a sequence of measurable sets
in U with c-uniform fibers, for some c. Then, for any locally F -saturated measurable
set X ⊂ U ,

lim
n→∞

λ(X : Yn) = 1 ⇐⇒ lim
n→∞

λΣ(ΣX : ΣYn) = 1.

By locally F -saturated we mean that the set is a union of local leaves of F in
the foliation box U . Sets that differ from a locally F -saturated one by zero Lebesgue
measure subsets are called essentially locally F -saturated.

Proposition 5.4 (Proposition 2.5 in [10]). — Let (Yn)n and (Zn)n be two sequences of
measurable subsets of U with c-uniform fibers, for some c, and ΣYn = ΣZn for all n.
Then, for any essentially locally F -saturated set X ⊂ U ,

lim
n→∞

λ(X : Yn) = 1 ⇐⇒ lim
n→∞

λ(X : Zn) = 1.
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5.2. Fake foliations and juliennes. — Juliennes were initially proposed by Pugh,
Shub [20] as density sequences particularly suited for partially hyperbolic dynamical
systems. These are sets constructed by means of invariant foliations that are as-
sumed to exist (dynamical coherence) tangent to the invariant subbundles Es, Eu,
Ecs = Ec ⊕Es, Ecu = Ec ⊕Eu, and Ec, and they have nice properties of invariance
under iteration and under the holonomy maps of the strong-stable and strong-unstable
foliations. As mentioned before, strong-stable and strong-unstable foliations (tangent
to the subbundles Es and Eu, respectively) always exist in the partially hyperbolic set-
ting. However, that is not always true about the center, center-stable, center-unstable
subbundles Ec, Ecs, Ecu.

One main novelty in Burns, Wilkinson [10] was that, for the first time, the authors
avoided the dynamical coherence assumption. A version of the julienne construction
is still important in their approach, but now the definition is in terms of certain
“approximations” to the (possibly nonexistent) invariant foliations, that they call fake
foliations. We will not need to use fake foliations nor fake juliennes directly in this
paper but, for the reader’s convenience, we briefly describe their main features.

5.2.1. Fake foliations. — The central result about fake foliations is Proposition 3.1
in [10]: for any ε > 0 there exist constants 0 < ρ < r < R such that the ball of radius
r around every point admits foliations

Ŵ
u

p , Ŵ
s

p, Ŵ
c

p, Ŵ
cu

p , Ŵ
cs

p .

with the following properties, for any ∗ ∈ {u, s, c, cs, cu}:

(i) For every x ∈ B(p, ρ), the leaf Ŵ
∗
p(x) is C1 and the tangent space Tx Ŵ

∗
p(x) is

contained in the cone of radius ε around E∗x.
(ii) For every x ∈ B(p, ρ),

f( Ŵ
∗
p(x, ρ)) ⊂ Ŵ

∗
f(p)(f(x)) and f−1( Ŵ

∗
p(x, ρ)) ⊂ Ŵ

∗
f−1(p)(f

−1(x)).

(iii) Given x ∈ B(p, ρ) and n ≥ 1 such that f j(x) ∈ B(f j(p), r) for 0 ≤ j < n, if
y ∈ Ŵ

s

p(x, ρ) then fn(y) ∈ Ŵ
s

fn(p)(f
n(x), ρ) and

dist(fn(x), fn(y)) ≤ νn(p) dist(x, y).

Similarly for Ŵ
u
, with f replaced by its inverse.

(iv) Given x ∈ B(p, ρ) and n ≥ 1 such that f j(x) ∈ B(f j(p), r) for 0 ≤ j < n, if
f j(y) ∈ Ŵ

cs

p (f j(q), ρ) for 0 ≤ j < n then fn(y) ∈ Ŵ
cs

fn(p)(f
n(x)) and

dist(fn(x), fn(y)) ≤ γ̂n(p)−1 dist(x, y).

Similarly for Ŵ
cu
, with f replaced by its inverse.

(v) Ŵ
u

p and Ŵ
c

p sub-foliate Ŵ
cu

p , and Ŵ
s

p and Ŵ
c

p sub-foliate Ŵ
cs

p .

(vi) Ŵ
s

p(p) = W s
(p, r) and Ŵ

u

p(p) = W u
(p, r).

ASTÉRISQUE 358



HOLONOMY INVARIANCE 45

(vii) All the fake foliations Ŵ
∗
, ∗ ∈ {u, s, c, cs, cu} are Hölder continuous, and so are

their tangent distributions.
(viii) Assuming f is center bunched, every leaf of Ŵ

cs

p is C1 foliated by leaves of Ŵ
s

p

and every leaf of Ŵ
cu

p is C1 foliated by leaves of Ŵ
u

p .

Properties (i) and (vi) are what we mean by “approximations”. Concerning the
latter, let us emphasize that the fake strong-stable and strong-unstable foliations need
not coincide with the genuine ones, W s and W u, at points other than p. The local
invariance property (ii) and the exponential bounds (iii) and (iv) should be compared
to the corresponding properties (I), (II), (III) of, stated at the beginning of Section 5.
The regularity properties (vi) and (vii) hold uniformly in p ∈M .

5.2.2. Juliennes. — Another direct use of the center bunching condition, besides the
smoothness property (viii) above, is in the definition of juliennes. In view of the first
center bunching condition, ν < γγ̂ (there is a dual construction starting from ν̂ < γγ̂

instead), we may find continuous functions τ and σ such that

ν < τ < σγ and σ < min{γ̂, 1}.

Let p ∈M be fixed. For any x ∈ W s
(p, 1) and n ≥ 0, define“Bcn(x) = Ŵ

c

p(x, σ
n(p)) and Sn(p) =

⋃
x∈W s(p,1)

“Bcn(x).

The (fake) center-unstable julienne of order n ≥ 0 centered at x ∈ W s
(p, 1) is defined

by

Ĵcun (x) =
⋃

y∈B̂cn(x)

Ĵun (y), where Ĵun (y) = f−n( Ŵ
u

fn(p)(f
n(y), τn(p))).

The latter is the (fake) unstable julienne of order n ≥ 0 centered at y, and is defined
for every y ∈ Sn(p). See Figure 1.

Sn(p)

Ws(p, 1)

xx

y

B̂c

n
(x)B̂c

n
(x)

Ĵu

n
(y)

Ĵcu
n (x)

Figure 1.
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Observe that Ĵcun (x) is contained in the smooth submanifold Ŵ
cu

p (x), by the co-
herence property (v) of fake foliations. Moreover, Ĵcun (x) has positive measure relative
to the Riemannian volume λ“cu defined by the restriction of the Riemannian metric

to Ŵ
cu

p (x). Notice also that fake center-unstable leaves are transverse to the strong-
stable foliation, as a consequence of property (i) of fake foliations. One key feature
of center-unstable juliennes is that, unlike balls for instance, they are approximately
preserved by the holonomy maps of the strong-stable foliation:

Proposition 5.5 (Proposition 5.3 in [10]). — For any x, x′ ∈ W s
(p, 1), the sequences

hs(Ĵcun (x)) and Ĵcun (x′) are internested, where hs : Ŵ
cu

p (x) → Ŵ
cu

p (x′) is the holon-
omy map induced by the strong-stable foliation W s.

5.3. Lebesgue and julienne density points. — Let S be a locally s-saturated
set in a neighborhood of p. For notational simplicity, we write

λ“cu(S : Ĵcun (x)) = λ“cu(S ∩ Ŵ
cu

p (x) : Ĵcun (x)).

Notice that S ∩ Ŵ
cu

p (x) coincides with the base of S over Ŵ
cu

p (x).

Definition 5.6. — We call x ∈ W s
(p, 1) a cu-julienne density point of S if

lim
n→∞

λ“cu(S : Ĵcun (x)) = 1.

Another crucial property of center-unstable juliennes is

Proposition 5.7 (Proposition 5.5 in [10]). — Let X be a measurable set that is both
s-saturated and essentially u-saturated. Then x ∈ W s

(p) is a Lebesgue density point
of X if and only if x is a cu-julienne density point of X.

We can not use this proposition directly, because the saturation hypotheses are not
fully satisfied by the sets we deal with. However, we can rearrange the arguments in
the proof of the proposition to obtain a statement that does suit our purposes. For
this, let us recall the main steps in the proof of Proposition 5.7. They involve several
nesting sequences Bn(x), Cn(x), Dn(x), Gn(x), that we introduce along the way.

By definition, Bn(x) is just the Riemannian ball of radius σn(p) centered at x:

Bn(x) = B(x, σn(p)).

Lemma 5.8. — Let S ⊂M be any measurable set. Then, x is a Lebesgue density point
of S if and only if limn→∞ λ(S : Bn(x)) = 1.

Proof. — This follows from the fact that the ratio σn+1(p)/σn(p) = σ(fn(p)) of
successive radii is less than 1, and is uniformly bounded away from both 0 and 1.

Next, for x ∈ W s
(p, 1), let

Cn(x) =
⋃

q∈Dcsn (x)

W u
(q, σn(p)) and Dn(x) =

⋃
q∈Dcsn (x)

f−n( W u
(fn(q), τn(p))).

ASTÉRISQUE 358



HOLONOMY INVARIANCE 47

Notice that these two nesting sequences fiber over the same sequence of bases

Dcs
n (x) =

⋃
y∈“W s

p(x,σn(p))

“Bcn(y) =
⋃

y∈“W s

p(x,σn(p))

Ŵ
c

p(y, σ
n(p)).

Also, by the coherence property (v) of fake foliations, each set Dcs
n (x) is contained in

the submanifold Ŵ
cs

(x).

Lemma 5.9. — Let S ⊂M be any measurable set. Then,

lim
n→∞

λ(S : Bn(x)) = 1⇐⇒ lim
n→∞

λ(S : Cn(x)) = 1.

Proof. — Continuity and transversality of the fake foliations Ŵ
c

p and Ŵ
s

p imply that

the sequences Dcs
n (x) and Ŵ

cs
(x, σn(p)) are internested. Then, similarly, continuity

and transversality of the foliations W u and Ŵ
cs

p imply that the sequences Cn(x) and
Bn(x) are internested. So, the claim follows from Lemma 5.2.

Lemma 5.10. — Let S ⊂M be locally essentially u-saturated. Then,

lim
n→∞

λ(S : Cn(x)) = 1⇐⇒ lim
n→∞

λ(S : Dn(x)) = 1.

Proof. — By definition, Cn(x) and Dn(x) both fiber over Dcs
n (x), with fibers con-

tained in strong-unstable leaves. The fibers of Cn(x) are uniform, in the sense of
(5.1), because they are all comparable to balls of fixed radius σn(p) inside strong-
unstable leaves. Proposition 5.4 in [10] gives that the fibers of Dn(x) are uniform as
well. Thus, the claim follows from Proposition 5.4 above.

Finally, define
Gn(x) =

⋃
q∈Ĵcun (x)

W s
(q, σn(p)).

Lemma 5.11. — Let S ⊂M any measurable set. Then,

lim
n→∞

λ(S : Dn(x)) = 1⇐⇒ lim
n→∞

λ(S : Gn(x)) = 1.

Proof. — The sequences Dn(x) and Gn(x) are internested, according to Lemma 8.1
and Lemma 8.2 in [10]. So, the claim follows from Lemma 5.2.

Lemma 5.12. — Let S ⊂M be locally s-saturated. Then,

lim
n→∞

λ(S : Gn(x)) = 1⇐⇒ lim
n→∞

λ“cu(S : Ĵcun (x)) = 1.

Proof. — By definition, Gn(x) fibers over Ĵcun (x). The fibers are uniform, in the sense
of (5.1), because they are all comparable to balls of fixed radius σn(p) inside strong-
stable leaves. Then the claim follows from Proposition 5.3 above.

Proposition 5.7 was obtained in [10] by concatenating Lemmas 5.8 through 5.12.
A variation of these arguments yields:
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Proposition 5.13. — Let x ∈ W s
(p, 1) and δ > 0.

(a) Let X ⊂ M be a locally essentially u-saturated set in B(x, δ) and let Y be its
local s-saturation inside B(x, δ). If x is a Lebesgue density point of X then x is
a cu-julienne density point of Y .

(b) Let X ⊂ M be a locally essentially s-saturated set in B(x, δ) and let Y be its
local u-saturation inside B(x, δ). If x is a cu-julienne density point of X then x
is a Lebesgue density point of Y .

(c) Let S ⊂M be any measurable set. If x is a cu-julienne density point of S then
so is every x′ ∈ W s

(p, 1).

Proof. — Applying Lemmas 5.8 through 5.11 to S = X, we get that

lim
n→∞

λ(X : Gn(x)) = 1

(Lemma 5.10 uses the assumption that X is essentially u-saturated). It follows that

lim
n→∞

λ(Y : Gn(x)) = 1,

because Y ⊃ X. Thus, applying Lemma 5.12 to S = Y , we get that x is a cu-julienne
density point of Y , as claimed in part (a) of the proposition.

Next, we prove part (b). Given an essentially s-saturated set X in B(x, δ), we may
use Lemmas 5.12 and 5.11 with S = X to conclude that

lim
n→∞

λ(X : Dn(x)) = 1

(Lemma 5.12 uses the assumption that X is essentially s-saturated). It follows that

lim
n→∞

λ(Y : Dn(x)) = 1,

because Y ⊃ X. Then Lemmas 5.10 through 5.8, with S = Y , to conclude that x is
a Lebesgue density point of Y , as claimed.

Finally, absolute continuity (with bounded Jacobians) of the strong-stable foliation
gives that

lim
n→∞

λ“cu(S : Ĵcun (x)) = 1 ⇒ lim
n→∞

λ“cu(S : hs(Ĵcun (x))) = 1.

By Proposition 5.5, the sequences hs(Ĵcun (x)) and Ĵcun (x′) are internested. Hence, by
Lemma 5.2,

lim
n→∞

λ“cu(S : hs(Ĵcun (x))) = 1 ⇒ lim
n→∞

λ“cu(S : Ĵcun (x′)) = 1.

This proves part (c) of the theorem.
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6. Bi-essential invariance implies essential bi-invariance

We call a continuous fiber bundle X refinable if the fibers Xx, x ∈M are refinable.

Theorem 6.1. — Let f : M → M be a C2 partially hyperbolic center bunched diffeo-
morphism and X be a refinable fiber bundle with stable and unstable holonomies. Then,
given any bi-essentially invariant section Ψ : M → X , there exists a bi-saturated set
MΨ with full measure, and a bi-invariant section Ψ̃ : MΨ → X that coincides with Ψ

at almost every point.

Theorem D(a) is a particular case of this result, as we are going to explain. Indeed,
let P be the space of probability measures on N , endowed with the weak∗ topology,
that is, the smallest topology for which the integration operator

P → R, η 7→
∫
ϕdη

is continuous, for every bounded continuous function ϕ : N → R. It is well known (see
[5, Section 6]) that this topology is separable and metrizable, because N is a separable
metric space (if we were to assume that N is complete then the weak∗ topology would
also be complete). In particular, P admits a countable basis of open sets and so it is
refinable.

Associated to π : E → M , we have a new fiber bundle Π : X → M , whose fiber
over a point x ∈ M is the space of probability measures on the corresponding Ex. It
is easy to see that this is a continuous fiber bundle with leaves modeled on the space
P we have just introduced: if π−1(U)→ U ×N , v 7→ (π(v), ψπ(v)(v)) is a continuous
local chart for E then

Π−1(U)→ U × P, η 7→ (Π(η), (ψΠ(η))∗(η))

is a continuous local chart for X . The cocycle F : E → E induces a cocycle on X , by
push-forward, but this will not be needed here.

More important for our purposes, the stable and unstable holonomies of F induce
homeomorphisms

hsx,y = (Hs
x,y)∗ : Xx → Xy and hux,y = (Hu

x,y)∗ : Xx → Xy

for points x, y in the same strong-stable leaf or the same strong-unstable leaf, respec-
tively. These homeomorphisms form stable and unstable holonomies on X . Indeed,
the group property (α) in Definition 2.10 is an immediate consequence of property (a)
in Definition 2.4, and the continuity property (â) can be verified as follows. Since the
statement is local, we may pretend that the fiber bundle is trivial and the holonomies
Hs
x,y are homeomorphisms of N . Consider any sequence (xk, yk, νk) in X converging

to (x, y, ν) ∈ X , with yk ∈ W s
loc(xk) and y ∈ W s

loc(x). Property (c) in Definition 2.4
implies that Hs

xk,yk
converges to Hs

x,y uniformly on compact subsets. On its turn, this
implies that (Hs

xk,yk
)∗νk converges to (Hs

x,y)∗ν in the weak∗ topology.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



50 A. AVILA, J. SANTAMARIA & M. VIANA

Now it is clear that Theorem D(a) corresponds to the statement of Theorem 6.1
in the special case of the section Ψ(x) = mx of the fiber bundle X we have defined.
In the remainder of this section we prove Theorem 6.1.

6.1. Lebesgue densities. — Let Ψ : M → P be a measurable function with values
in a refinable space.

Definition 6.2. — We say that x ∈M is a point of measurable continuity of Ψ if there
is υ ∈ P such that x is a Lebesgue density point of Ψ−1(V ) for every neighborhood
V ⊂ P of υ. Then υ is called the density value of Ψ at x.

Clearly, the density value at x is unique, when it exists. Let MC(Ψ) denote the
set of measurable continuity points of Ψ. The function Ψ̃ : MC(Ψ)→ P assigning to
each point x of measurable continuity its density value Ψ̃(x) is called Lebesgue density
of Ψ. Recall that DP(X) denotes the set of density points of a set X. The hypothesis
that P is refinable is used in the next lemma:

Lemma 6.3. — For any measurable function Ψ : M → P , the set MC(Ψ) has full
Lebesgue measure and Ψ = Ψ̃ almost everywhere.

Proof. — Let Q1 ≺ · · · ≺ Qn ≺ · · · be a sequence of partitions of the space P as in
Definition 2.12. Let

M̃ =
⋂
n≥1

⋃
Q∈ Qn

Ψ−1(Q) ∩DP(Ψ−1(Q)).

Since Ψ−1(Q) ∩ DP(Ψ−1(Q)) has full measure in Ψ−1(Q), and
{

Ψ−1(Q) : Q ∈ Qn
}

is a partition of M for every n, the set on the right hand side has full measure in M
for every n. This proves that M̃ is a full measure subset of M . Next, we check that
M̃ is contained in the set of points of measurable continuity of Ψ. Indeed, given any
point x ∈ M̃ , let Qn ∈ Qn be the sequence of atoms such that x ∈ Ψ−1(Qn). Then x
is a density point of Ψ−1(Qn) for every n ≥ 1, in view of the definition of M̃ . Notice
that ∩nQn is non-empty, since it contains Ψ(x). Then, according to Definition 2.12,
there exists υ ∈ X such that every neighborhood V contains some Qn. It follows that
x is a density point of Ψ−1(V ) for any neighborhood V ⊂ X of υ, that is, υ is the
density value for Ψ at x. This shows that x ∈ MC(Ψ) with Ψ̃(x) = υ. Moreover, υ
must coincide with Ψ(x), since the intersection of all Qn contains exactly one point.
In other words, Ψ̃(x) = Ψ(x) for every x ∈ M̃ .

More generally, let Ψ : M → X be a measurable section of a refinable fiber bundle
X . Let x ∈M be fixed and U be a small neighborhood. Using a local chart, one may
view Ψ | U as a function with values in Xx. Two such local expressions Ψ1 : U → Xx
and Ψ2 : U → Xx of the section Ψ are related by

Ψ1(z) = hz(Ψ2(z)),

where (z, ξ) 7→ (z, hz(ξ)) is a homeomorphism from U × Xx to itself, with hx = id.
So, a point υ ∈ Xx is the density value of Ψ1 at x if and only if it is the density value
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of Ψ2 at x. More generally, given any point y ∈ U , the corresponding local expression
Ψ3 : U → Xy of the section Ψ is related to Ψ1 : U → Xx by

Ψ1(z) = gz(Ψ3(z)),

where (z, ξ) 7→ (z, gz(ξ)) is a homeomorphism from U × Xy to U × Xx. So, a point
z is a point of measurable continuity for Ψ3 if and only if it is a point of measurable
continuity for Ψ1.

These observations allow us to extend Definition 6.2 to sections of refinable fiber
bundles, as follows. We call υ ∈ Xx a density value of the section Ψ : M → X at the
point x if it is the density value for some (and, hence, any) local expression U 7→ Xx
as before. We call x a point of measurable continuity of the section Ψ if it admits
a density value or, equivalently, if it is a point of measurable continuity for some
(and, hence, any) local expression of Ψ. The subset MC(Ψ) of points of measurable
continuity has full Lebesgue measure inM , since it intersects every domain U of local
chart on a full Lebesgue measure subset. Recall Lemma 6.3. Finally, the Lebesgue
density of Ψ is the section MC(Ψ) → X assigning to each point x of measurable
continuity its density value.

6.2. Proof of bi-invariance. — Now Theorem 6.1 is a direct consequence of the
next proposition: it suffices to takeMΨ = MC(Ψ) and Ψ̃ = the Lebesgue density of Ψ,
and apply the following proposition together with Lemma 6.3.

Proposition 6.4. — Let f : M → M be a C2 partially hyperbolic center bunched dif-
feomorphism and X be a refinable fiber bundle with stable and unstable holonomies.
For any bi-essentially invariant section Ψ : M → X , the set MC(Ψ) is bi-saturated
and the Lebesgue density Ψ̃ : MC(Ψ)→ X is bi-invariant on MC(Ψ).

Proof. — For any x ∈ MC(Ψ) and y ∈ W s
(x, 1), we are going to prove hsx,y(Ψ̃(x)) is

the density value of Ψ at y. It will follow that y ∈ MC(Ψ) and Ψ̃(y) = hsx,y(Ψ̃(x)).
Analogously, one gets that if x ∈ MC(Ψ) and y ∈ W u

(x, 1) then y ∈ MC(Ψ) and
Ψ̃(y) = hux,y(Ψ̃(x)). The proposition is an immediate consequence of these facts.

It is convenient to think of π : X → M as a trivial bundle on neighborhoods Ux
of x and Uy of y, identifying π−1(Ux) ≈ Ux × P and π−1(Uy) ≈ Uy × P via local
coordinates, and we do so in what follows. Let V ⊂ P be a neighborhood of hsx,y(Ψ̃(x)).
We are going to show that y is a density point of Ψ−1(V ).

By the continuity property (β) in Definition 2.10, we can find ε > 0 and a neigh-
borhood W ⊂ V of hsx,y(Ψ̃(x)) such that

(6.1) huw1,w2
(W ) ⊂ V for all w1, w2 ∈ B(y, ε) with w1 ∈ W u

loc(w2).

Similarly, up to reducing ε > 0, there exists a neighborhood U ⊂ P of Ψ̃(x) such that

(6.2) hsz,w(U) ⊂W for every z ∈ B(x, ε) and w ∈ B(y, ε) with z ∈ W s
loc(w).
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The assumption that Ψ is bi-essentially invariant (Definition 2.11) implies that there
exists a full measure set Ssu such that

(6.3)
hsξ,η(Ψ(ξ)) = Ψ(η) for any ξ, η ∈ Ssu in the same strong-stable leaf

huξ,η(Ψ(ξ)) = Ψ(η) for any ξ, η ∈ Ssu in the same strong-unstable leaf.

Lemma 6.5. — Let x ∈ W s
(p, 1) be a point of measurable continuity of Ψ. Then for

any open neighborhood U of the point Ψ̃(x) ∈ P there exist δ > 0 and L ⊂ B(x, δ)

such that
(a) Ψ(L ∩ Ssu) ⊂ U .
(b) L is a union of local strong-stable leaves inside B(x, δ).
(c) Each of these local leaves contains some point of Ssu.
(d) x is a cu-julienne density point of L: limn→∞ λ“cu(L : Ĵcun (x)) = 1.

Proof. — By the continuity property (β) in Definition 2.10, there exists δ2 > 0 and
a neighborhood U2 ⊂ U of Ψ̃(x) such that

(hsz1,z2)(U2) ⊂ U if z1, z2 ∈ B(x, δ2) are in the same local strong-stable leaf.

and there exists δ1 > 0 and a neighborhood U1 ⊂ U2 of Ψ̃(x) such that

(huz1,z2)(U1) ⊂ U2 if z1, z2 ∈ B(x, δ1) are in the same local strong-unstable leaf.

Let δ = min {1, δ1, δ2}. Since x is a point of measurable continuity of Ψ, it is a Lebesgue
density point of Ψ−1(U1). Then, x is also a density point of L1 = Ψ−1(U1) ∩ Ssu,
because Ssu has full Lebesgue measure. Let Lu1 be the local u-saturate of L1 inside
B(x, δ) and let L2 = Lu1 ∩ Ssu. Then x is a Lebesgue density point of Lu1 , because
Lu1 ⊃ L1, and so it is also a density point of L2, because Ssu has full measure. Take
L to be the local s-saturate of L2 inside B(x, δ).

Consider any point z ∈ L∩Ssu. By definition, there exist z1 ∈ Ψ−1(U1)∩Ssu and
z2 ∈ Lu1 ∩ Ssu such that z1 is in the local strong-unstable leaf of z2, and z2 in the
local strong-stable leaf of z. Consequently, in view of our choices of U1 and U2,

Ψ(z2) = huz1,z2(Ψ(z1)) ∈ U2 and then Ψ(z) = hsz2,z(Ψ(z2)) ∈ U.

This proves claim (a) in the lemma. Claims (b) and (c) are clear from the construction:
L is a local s-saturate of a subset of Ssu. Finally, applying Proposition 5.13(a) to X =

L2 we get that x is a cu-julienne density point of Y = L. This gives claim (d), and
completes the proof of the lemma.

Let L and δ be as in Lemma 6.5. Of course, we may suppose δ < ε. We extend
the local leaves in L along W s

loc(x), long enough so as to cross B(y, ε). Let L̃ denote
this extended set. See Figure 2. As we have seen in Proposition 5.13(c), cu-julienne
density points of locally s-saturated sets are preserved by stable holonomy. Hence,
Lemma 6.5(d) ensures that y is a cu-julienne density point of L̃. Then, clearly, y
is also a cu-julienne density point of X = L̃ ∩ Ssu ∩ B(y, ε). Let Y be the local
u-saturation of X inside B(y, ε). Since X is locally essentially s-saturated, we may
use Proposition 5.13(b) to conclude that y is a Lebesgue density point of Y and, hence,
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Figure 2.

also of B = Ssu ∩ Y . Thus, to prove that y is a Lebesgue density point of Ψ−1(V ), as
we claimed, it suffices to show that Ψ(B) ⊂ V .

Consider any point b ∈ Y . By definition, b ∈ Ssu ∩ B(y, ε) and there exists some
w ∈ X such that b and w are in the same local strong-unstable leaf. By part (c)
of Lemma 6.5, there exists z ∈ L ∩ Ssu in the same local strong-stable leaf as w.
By part (a) of Lemma 6.5, we have that Ψ(z) ∈ U . So, (6.3) and (6.2) imply that
Ψ(w) = hsz,w(Ψ(z)) ∈ W . Then (6.3) and (6.1) imply that Ψ(b) = huw,b(Ψ(w)) ∈ V ,
as we wanted to prove. This proves Proposition 6.4.

Now the proof of Theorem 6.1 is complete.

Remark 6.6. — Let us say that a section Ψ : M → X is essentially s-continuous if
the s-continuity property (Definition 2.13) holds on some full measure subset Ms,
uniformly on the neighborhood of every point. In formal terms: given any p, q ∈ M
and η ∈ P , there exists ρ > 0 such that for any ε > 0 there exists δ > 0 such that
(trivialize the fiber bundle near p and q), given any x, x′ ∈ B(p, ρ) ∩ Ms and y,
y′ ∈ B(q, ρ) ∩Ms with Ψ(x), Ψ(x′) ∈ B(η, ρ) and y ∈ W s

loc(x) and y′ ∈ W s
loc(x′),

dist(x, x′) < δ, dist(y, y′) < δ, dist(Ψ(x),Ψ(x′)) < δ ⇒ dist(Ψ(y),Ψ(y′)) < ε.

Essential u-continuity is defined analogously. Moreover, Ψ is bi-essentially continuous
if it is both essentially s-continuous and essentially u-continuous. A variation of the
previous arguments yields the following statement (compare Proposition 6.4): If f :

M → M is a C2 partially hyperbolic center bunched diffeomorphism and X be a
refinable fiber bundle then, for any bi-essentially continuous section Ψ : M → X ,
the set of points of measurable continuity is bi-saturated and the Lebesgue density
Ψ̃ : MC(Ψ)→ X is bi-continuous.

7. Accessibility and continuity

Now we prove Theorem E. The main step is to show that small open sets can
be reached by “nearby” su-paths starting from a fixed point in M . For the precise
statement, to be given in Proposition 7.2, we need the following notion:
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Definition 7.1. — Let z, w ∈ M . An access sequence connecting z to w is a finite
sequence of points [y0, y1, . . . , yn] such that y0 = z and yj ∈ W ∗(yj−1) for 1 ≤ j ≤ n,
where each ∗ ∈ {s, u}, and yn = w.

Proposition 7.2. — Given x0 ∈ M , there is w ∈ M and there is an access sequence
[y0(w), . . . , yN (w)] connecting x0 to w and satisfying the following property: for any
ε > 0 there exist δ > 0 and L > 0 such that for every z ∈ B(w, δ) there exists an
access sequence [y0(z), y1(z), . . . , yN (z)] connecting x0 to z and such that

dist(yj(z), yj(w)) < ε and dist W ∗(yj−1(z), yj(z)) < L for j = 1, . . . , N

where dist W ∗ denotes the distance along the strong (either stable or unstable) leaf
common to the two points.

Let us deduce Theorem E from this proposition. Since the section Ψ is assumed
to be bi-continuous, it suffices to prove it is continuous at some point in order to
conclude that it is continuous everywhere. Fix x0 ∈ M and then let w ∈ M and
[y0(w), y1(w), . . . , yN (w)] be an access sequence connecting x0 to w as in Proposi-
tion 7.2. We are going to prove that Ψ is continuous at w. Take the fiber bundle
π : X → M to be trivialized on the neighborhood of every node yj(w), via local
coordinates. Let V ⊂ P be any neighborhood of Ψ(w) = Ψ(yN (w)). Since Ψ is bi-
continuous, we may find numbers εj > 0 and neighborhoods Vj of Ψ(yj(w)) such that
VN = V and

(7.1)
x ∈ B(yj−1(w), εj), y ∈ B(yj(w), εj), y ∈ W ∗j (x),

and Ψ(x) ∈ Vj−1 ⇒ Ψ(y) ∈ Vj

for every j = 1, . . . , N . Let ε = min {εj : 1 ≤ j ≤ N}.
Using Proposition 7.2 we find δ > 0 and, for each z ∈ B(w, δ), an access sequence

[y0(z), y1(z), . . . , yN (z)] connecting x0 to z, with

(7.2) yj(z) ∈ B(yj(w), ε) ⊂ B(yj(w), εj) for j = 1, . . . , N.

It is no restriction to suppose that δ < ε. Consider any z ∈ B(w, δ). Clearly, Ψ(x) =

Ψ(y0(z)) ∈ V0. Hence, we may use (7.1)-(7.2) inductively to conclude that Ψ(yj(z)) ∈
Vj for every j = 1, . . . , N . The last case, j = N , gives Ψ(z) ∈ V . We have shown that
Ψ(B(w, δ)) ⊂ V . This proves that Ψ is continuous at w, as claimed.

In this way, we reduced the proof of Theorem E to proving Proposition 7.2.

7.1. Non-injective parametrizations. — In this section we prepare the proof of
Proposition 7.2, that will be given in the next section. Roughly speaking, here we
construct a kind of continuous parametrization of the space of su-paths with any
given number of legs.
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7.1.1. Exhaustion of accessibility classes. — Fix any point x0 ∈ M . For each r ∈ N,
we consider the following sequence of sets Kr,n, n ∈ N:

Kr,1 =
{
y ∈ W s

(x0) : dist W s(x0, y) ≤ r
}

and

Kr,n =
⋃

x∈Kr,n−1

{
y ∈ W ∗(x) : dist W ∗(x, y) ≤ r

}
, for n ≥ 2,

where ∗ = s when n is odd, and ∗ = u when n is even. That is, Kr,n is the set of points
that can be reached from x0 using an access sequence with n legs whose lengths do
not exceed r.

Lemma 7.3. — Every Kr,n is closed in M and, hence, compact.

Proof. — It is clear from the definition that Kr,1 is closed. The general case follows
by induction. Suppose Kr,n−1 is closed, and let z belong to the complement of Kr,n.
Then, by definition,

Z =
{
y ∈ W ∗(z) : dist W ∗(x, y) ≤ r

}
does not intersect the closed set Kr,n−1. It follows that U ∩ Kr,n = ∅ for some
neighborhood U of the set Z. By continuity of the strong-stable and strong-unstable
foliations, and their induced Riemannian metrics, for every point w in a neighborhood
of z, {

y ∈ W ∗(z) : dist W ∗(x, y) ≤ r
}
⊂ U

and hence, the set on the left hand side is disjoint from Kr,n−1. This proves that
points w in that neighborhood of z do not belong to Kr,n either. Thus, Kr,n is indeed
closed.

By definition, the union of Kr,n over all (r, n) is the accessibility class of x0. Since
we are assuming that f is accessible, this union is the whole manifold:

M =
⋃
r,n∈N

Kr,n.

SinceM is a Baire space, it follows that Kr,n has non-empty interior for some r and n,
that we consider fixed from now on. Our immediate goal is to define a (non-injective)
continuous “parametrization”

(7.3) Ψn : Kr,n → Kr,n

of the set Kr,n by a convenient compact subspace Kr,n of a Euclidean space, that
we are going to introduce in the sequel. Let ds and du denote the dimensions of
the strong-stable leaves and the strong-unstable leaves, respectively. This Euclidean
space will be the alternating product of Rds and Rdu , with n factors, each of which
parametrizing one leg of the access sequence. The case n = 2 is described in Figure 3.
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Figure 3.

7.1.2. Fiber bundles induced by local strong leaves. — The following lemma will be
useful in the construction of (7.3). The whole point with the statement is that U does
not need to be small. The diffeomorphisms in the statement are as regular as the
partially hyperbolic diffeomorphism f itself.

Lemma 7.4. — For any contractible space A, any continuous function Ψ : A → M ,
and any symbol ∗ ∈ {s, u}, there exists a homeomorphism

Θ : A× Rd∗ →
{

(a, y) : a ∈ A and y ∈ W ∗loc(Ψ(a))
}

mapping each {a}×Rd∗ diffeomorphically to {a}×W ∗loc(Ψ(a)) with Θ(a, 0) = (a,Ψ(a))

for all a ∈ A.

Proof. — We consider the case ∗ = s. Since W s is a continuous foliation with smooth
leaves, for each p ∈M we may find a neighborhood Up and a continuous map

Φp : Up × Rds →M

such that Φp(x, 0) = x and Φp(x, ·) maps Rds diffeomorphically to W s
loc(x), for every

x ∈ Up. Using these maps we may endow the set

Fs =
{

(x, y) : x ∈M and y ∈ W s
loc(x)

}
with the structure of a fiber bundle with smooth fibers, with local charts

Up × Rds →
{

(x, y) : x ∈ Up and y ∈ W s
loc(x)

}
(x, v) 7→ (x,Φp(x, v)).

Then F sΨ =
{

(a, y) : a ∈ A and y ∈ W s
loc(Ψ(a))

}
also has a fiber bundle structure,

with local coordinates

Θp : Ψ−1(Up)× Rds →
{

(a, y) : Ψ(a) ∈ Up and y ∈ W s
loc(Ψ(a))

}
given by Θp(a, v) = (a,Φp(Ψ(a), v)). This fiber bundle admits the space of diffeomor-
phisms of Rds that fix the origin as a structural group: all coordinate changes along
the fibers belong to this group.

The core of the proof is the general fact (see [17, Chapter 4, Theorem 9.9]) that,
for any topological group G, any fiber bundle over a contractible paracompact space
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that has G as a structural group is G-trivial. When applied to F sΨ this result means
that there exists a global chart

Θ : A× Rds →
{

(a, y) : a ∈ A and y ∈ W s
loc(Ψ(a))

}
, Θ(a, v) = (a,Φ(a, v))

such that every Φ(a, ·) maps Rds to the strong-stable leaf through Ψ(a), and every
Φ(a, ·)−1 ◦Φp(Ψ(a), ·) is a diffeomorphism that fixes the origin of Rds . The latter gives
that Φ(a, 0) = Φp(Ψ(a), 0) = Ψ(a) for all a ∈ A.

7.1.3. Construction of non-injective parametrizations. — We are ready to construct
Kr,n and Ψ as in (7.3). Let l ≥ 1 be fixed such that, for any x ∈M ,{

y ∈ W s
(x) : dist W s(x, y) ≤ 2r

}
⊂ f−l

(
W s

loc(f l(x))
){

y ∈ W u
(x) : dist Wu(x, y) ≤ 2r

}
⊂ f l

(
W s

loc(f−l(x))
)
.

(7.4)

Our argument is somewhat more transparent when l = 0, and so the reader should
find it convenient to keep that case in mind throughout the construction.

Define E1 = {y ∈M : f l(y) ∈ W s
loc(f l(x0))} and Φ1 : E1 →M to be the inclusion.

Notice that E1 is contractible and Φ1(E1) contains Kr,1. Since E1 is a smooth disc,
there exists an diffeomorphism Θ1 : Rds → E1 with Θ1(0) = x0. Then

Ψ1 = Φ1 ◦Θ1 : Rds →M

is a continuous function whose image contains Kr,1. Notice that the pre-image Kr,1 =

Ψ−1
1 (Kr,1) is compact: Kr,1 =

{
y ∈ W s

(x0) : dist W s(x0, y) ≤ r
}
and we have a factor

2 in (7.4). Next, define

E2 =
{

(a, y) : a ∈ Rds and f−l(y) ∈ W u
loc(f−l(Ψ1(a)))

}
and Φ2 : E2 →M , Φ2(a, y) = y. Notice that Φ2(E2) contains Kr,2. Using Lemma 7.4
with A = Rds , Ψ = f−l ◦Ψ1, and ∗ = u, we find a homeomorphism

Θ2 : Rds × Rdu → {(a, y) : a ∈ Rds and y ∈ W u
loc(f−l(Ψ1(a)))}

that maps each {a} × Rdu diffeomorphically to {a} × W u
loc(f−l(Ψ1(a))) and satisfies

Θ2(a, 0) = (a, f−l(Ψ1(a))). Clearly, the map

Γ2 : {(a, y) : a ∈ Rds and y ∈ W u
loc(f−l(Ψ1(a)))} → E2, Γ2(a, y) = (a, f l(y))

is a homeomorphism, and Γ2(Θ2(a, 0)) = (a,Ψ1(a)). Then

Ψ2 = Φ2 ◦ Γ2 ◦Θ2 : Rds × Rdu →M

is a continuous map whose image contains Kr,2. Moreover, Ψ2 may be viewed as a
continuous extension of Ψ1, because

Ψ2(a, 0) = Φ2(Γ2(Θ2(a, 0))) = Φ2(a,Ψ1(a)) = Ψ1(a)

for all a ∈ Rds . In general, Ψ−1
2 (Kr,2) needs not be compact. However,

Kr,2 =
{

(a, b) ∈ Rds × Rdu : a ∈ Kr,1 and dist Wu(Ψ2(a, 0),Ψ2(a, b)) ≤ r
}
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is compact and satisfies Ψ2(Kr,2) = Kr,2. Repeating this procedure, we construct
continuous maps

Ψj : Rds × Rdu × · · · × Rd∗ →M

(there are j factors, and so ∗ = u if j is even and ∗ = s if j is odd), contractible
sets Ej , and compact sets Kr,j such that each Ψj is a continuous extension of Ψj−1,
in the previous sense, and Ψj(Kr,j) = Kr,j . We stop this procedure for j = n. The
corresponding map Ψn is the parametrization announced in (7.3).

7.2. Selection of nearby access sequences. — Now we prove Proposition 7.2.
We need the following general fact about regular values of continuous functions.

Definition 7.5. — Let Φ : A → B be a map between topological spaces A and B. A
point x ∈ A is regular for Φ, if for every neighborhood V of x we have Φ(x) ∈ Φ( V )◦.
A point y ∈ B is a regular value of Φ if every point of Φ−1(y) is regular.

Proposition 7.6. — Let A be a compact metrizable space and B a locally compact
Hausdorff space. If Φ : A → B is continuous then the set of regular values of Φ is
residual.

Proof. — We are going to prove that the image of the set of non-regular points is
meager. The assumptions imply that A admits a countable base T of open sets, and
the map Φ is closed. If x is a non-regular point of Φ, then there exists V ∈ T such
that Φ(x) does not belong to the interior of Φ( V ). Therefore, Φ(x) belongs to the
closed set ∂Φ( V ), which has empty interior because Φ( V ) is closed. Then, the image
of non-regular points is a subset of the meager set

⋃¶
∂Φ( V ) : V ∈ T

©
.

We apply this proposition to the continuous map Ψn : Kr,n → Kr,n. Recall that,
by construction, the image Kr,n has non empty interior. Then, in particular, Ψn has
some regular value w ∈ Kr,n. Let (a1, . . . , an) ∈ Kr,n be any point in Kr,n such that
Ψn(a1, . . . , an) = w. Let ε > 0 be as in the statement of the proposition. Since the
functions Ψ1, Ψ2, . . . , Ψn are continuous, there exists ρ > 0 such that if |aj − bj | < ρ,
for j = 1, . . . , n, then

(7.5) dist(Ψj(a1, . . . , aj),Ψj(b1, . . . , bj)) < ε

for all j = 1, . . . , n. Using that the point (a1, . . . , an) is regular (Definition 7.5), we
get that the image Ψn(V ) of the neighborhood

V = Kr,n ∩ {(b1, . . . , bn) : |aj − bj | < ρ, for j = 1, . . . , n}

has w in its interior. In other words, there exists δ > 0 such that B(w, δ) ⊂ Ψn(V ).
Consider any point z ∈ B(w, δ). Then there exists (b1(z), . . . , bn(z)) ∈ V such that
z = Ψn(b1(z), . . . , bn(z)). Define

yj(z) = Ψj(b1(z)), . . . , yj(z))
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for j = 1, . . . , n, and y0(z) = w. Then [y1(z), . . . , yn(z)] is an access sequence con-
necting x0 to z. The inequalities (7.5) mean that

dist(yj(z), yj(w)) < ε for j = 1, . . . , n.

Moreover, since Ψn(b1(z), . . . , bn(z)) ∈ Kr,n, the distance between every yj−1(z) and
yj(z) along their common strong (stable or unstable) leaf does not exceed r. Propo-
sition 7.2 follows taking L = r and N = n.

8. Generic linear cocycles over partially hyperbolic maps

In this section we prove Theorem A. We will take the vector bundle π : V → M

to be trivial, that is, such that V = M × Kd and π : M × Kd → M is the canonical
projection. This simplifies the presentation substantially, but is not really necessary
for our arguments, which are local in nature: for obtaining the conclusion we consider
modifications of the cocycle supported in a neighborhood of certain special points
(the pivots, see Proposition 8.8), where triviality holds anyway, by definition.

Let us begin by giving an outline of the proof. Let Kx = {x}×Kd be the fiber of V
and P(Kx) = {x}× P(K) be the fiber of the projective bundle P( V ) over the point x.
We call loop of f : M →M at x ∈M any access sequence γ = [y0, . . . , yn] connecting
a point x ∈M to itself, that is, such that y0 = yn = x. Then we denote

Hγ = H∗nyn−1,yn ◦ · · · ◦H
∗j
yj−1,yj ◦H

∗1
y0,y1 : P(Kx)→ P(Kx)

where ∗j ∈ {s, u} is the symbol of the strong leaf common to the nodes yj−1 and yj .
Theorem B implies that if λ+(F ) = λ−(F ) then any F -invariant probability measure
m that projects down to µ admits a disintegration {mz : z ∈M} such that

(8.1) (Hγ)∗mx = mx for any loop γ.

We consider loops with slow recurrence, for which some node yr, that we call pivot, is
slowly accumulated by the orbits of all the nodes including its own. Using perturba-
tions of the cocycle supported on a small neighborhood of the pivot, we prove that
the map F 7→ Hγ assigning to each cocycle the corresponding holonomy over the loop
is a submersion. In fact, we are able to consider several independent loops with slow
recurrence, γ1, . . . , γm, and prove that the map

F 7→ (Hγ1 , . . . ,Hγm)

is a submersion. Consequently, for typical cocycles, the matrices Hγi are in general
position, and so they have no common invariant probability in the projective space.
This shows that for typical cocycles the condition (8.1) fails and, hence, the extremal
Lyapunov exponents are distinct.
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8.1. Accessibility with slow recurrence. — An important step is to prove that
loops with slow recurrence do exist. Beforehand, let us give the precise definition.

Definition 8.1. — A family {γ1, . . . , γm} of loops γi = [yi0, . . . , y
i
n(i)] has slow recur-

rence if there exists c > 0 and for each 1 ≤ i ≤ m there exists 0 < r(i) < n(i) such
that, for all i, l = 1, . . . ,m, all 0 ≤ j ≤ n(i), and all k ∈ Z,

dist
(
fk(yij), y

l
r(l)

)
≥ c/(1 + k2)

with the exception of k = 0 when (i, j) = (l, r(l)).

It is convenient to distinguish access sequences [y0, y1, . . . , yn] according to the
nature of the last leg: we speak of accessibility s-sequence if yn−1 and yn belong
to the same strong-stable leaf, and we speak of accessibility u-sequence if yn−1 and
yn belong to the same strong-unstable leaf. Let ds and du be the dimensions of the
strong-stable leaves and strong-unstable leaves, respectively.

Proposition 8.2. — For any m ≥ 1 and any (x1, . . . , xm) ∈Mm, there exists a family
γi of loops with slow recurrence, where each γi is a loop at xi.

The proof of this proposition requires a number of preparatory results.

Lemma 8.3. — Given any finite set {w1, . . . , wn} ⊂ M , any y ∈ M , and any symbol
∗ ∈ {s, u}, there exists a full Lebesgue measure subset of points w ∈ W ∗loc(y) such that

(8.2) dist(fk(wj), w) ≥ c/(1 + k2)

for some c > 0 and for all 1 ≤ j ≤ n and all k ∈ Z.

Proof. — Consider ∗ = s: the case ∗ = u is analogous. Since local strong-stable leaves
are a continuous family of C2 embedded disks, there exists a constant D1 > 0 such
that

λW s
loc(y)

(
W s

loc(y) ∩B(z, c/(1 + k2))
)
≤ D1(c/(1 + k2))ds

for any z ∈M . Thus, the Lebesgue measure of the subset of points w ∈ W s
loc(y) not

satisfying inequality (8.2) for some fixed c > 0 is bounded by
n∑
j=1

∑
k∈Z

D1c
ds(1 + k2)−ds ≤ D2 c

ds with D2 = nD1

∑
k∈Z

(1 + k2)−ds <∞.

Making c → 0, we conclude that the inequality (8.2) is indeed satisfied by Lebesgue
almost every point in W s

loc(y).

Corollary 8.4. — Given any m ≥ 1, any (x1, . . . , xm) ∈ Mm, and any ∗ ∈ {s, u},
then for every (z1, . . . , zm) in a full Lebesgue measure subset of Mm there exist c > 0

and accessibility ∗-sequences [yi0, . . . , y
i
n(i)] connecting xi to zi such that

dist(fk(yij), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m, all 0 ≤ j < n(i), and all k ∈ Z.
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Proof. — Consider ∗ = s: the case ∗ = u is analogous. Since the strong-stable foliation
is absolutely continuous, it suffices to prove that, given any points yi ∈M , 1 ≤ i ≤ m,
the conclusion holds on a full Lebesgue measure subset of points zi ∈ W s

loc(yi),
1 ≤ i ≤ m. Now, by the accessibility assumption, there exist accessibility sequences
[yi0, . . . , y

i
r(i)] connecting xi to yi. Consider each zi in the full Lebesgue measure subset

of W s
(yi) given by Lemma 8.3, applied to the finite set{

yij : 1 ≤ i ≤ m and 0 ≤ j ≤ r(i)
}
.

and the point y = yi. Then the accessibility s-sequences [yi0, . . . , y
i
k(i), zi] satisfy the

conditions in the conclusion. In view of the observation at the beginning, this proves
the corollary.

Lemma 8.5. — For any m ≥ 1 and any (y1, . . . , ym) ∈ Mm, there exists a full
Lebesgue measure subset of (z1, . . . , zm) ∈ W s

loc(y1)× · · · × W s
loc(ym) such that

dist(fk(zi), zl) ≥ c/(1 + k2)

for some c > 0 and for all i, l = 1, . . . ,m and all k ≥ 0, except k = 0 when i = l. The
statement remains true if one replaces W s

loc by W u
loc and k ≥ 0 by k ≤ 0.

Proof. — It is clear that each strong-stable leaf contains at most one periodic point.
As an easy consequence we get that, that given any κ ≥ 1, there exists a full Lebesgue
measure subset of (z1, . . . , zm) ∈ W s

loc(y1)× · · · × W s
loc(ym) such that fk(zi) 6= zl for

all i, l = 1, . . . ,m and all 0 ≤ k < κ, except k = 0 when i = l. Then the condition
in the statement holds, for some c > 0, restricted to iterates 0 ≤ k < κ. Let us focus
on k ≥ κ. For each i, l = 1, . . . ,m, define

Eki,l =
{
zl ∈ W s

loc(yl) : dist(fk(zi), zl) < 1/(1 + k2) for some zi ∈ W s
loc(yi)

}
.

The diameter of fk( W s
loc(yi)) is bounded by C1θ

k, where C1 > 0 is some uniform
constant and θ < 1 is an upper bound for the contraction function ν(x) in (2.2).
Consequently,

diam(Eki,l) ≤ C1θ
k + 2/(1 + k2) ≤ C2/(1 + k2)

for another uniform constant C2 > 0. It follows that

λW s
loc(yl)

( m⋃
i=1

∞⋃
k=κ

Eki,l
)
≤ m

∞∑
k=κ

C2(1 + k2)−ds .

On the one hand, the right hand side of this expression goes to 0 when κ goes to
infinity. On the other hand, in view of our previous observations, for any κ ≥ 1,
Lebesgue almost every (z1, . . . , zm) ∈ W s

loc(y1)× · · · × W s
loc(ym) with

zl /∈
m⋃
i=1

∞⋃
k=κ

Eki,l

satisfies the conclusion of the lemma for some c ∈ (0, 1). This proves that the subset
of (z1, . . . , zm) for which the conclusion of the lemma does not hold has zero Lebesgue
measure, as claimed.
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Corollary 8.6. — For any m ≥ 1, and every (z1, . . . , zm) in a full Lebesgue measure
subset of Mm, there exists c > 0 such that

dist(fk(zi), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m and all k ∈ Z, except k = 0 when i = l.

Proof. — It suffices to prove that the conditions obtained replacing k ∈ Z by either
k ≥ 0 or k ≤ 0 are satisfied on full Lebesgue measure subsets of Mm, and then take
the intersection of these two subsets. We consider the case k ≥ 0, as the other one is
analogous. Suppose there is a positive Lebesgue measure subset of (z1, . . . , zm) ∈Mm

for which the condition is not satisfied: the forward orbit of some zi accumulates
some zl faster than c/(1+k2) for any c > 0. Then, since M is covered by the foliation
boxes of the strong-stable foliation, there exist foliation boxes Ui, 1 ≤ i ≤ m such
that this exceptional subset intersects U = U1 × · · · × Um on a positive Lebesgue
measure subset. The domain U is foliated by the products W s

loc(y1)× · · · × W s
(ym)

of local strong-stable leaves. We denote this foliation as W s,m. Given any holonomy
maps hi : Σ1

i → Σ2
i between cross-sections to the strong-stable foliation W s inside Ui,

the products Σj = Σj1 × · · · ×Σjm are cross-sections to W s,m, and the holonomy map
of W s,m is

h : Σ1 → Σ2, h(z1, . . . , zm) = (h1(z1), . . . , hm(zm)).

Since all the hi are absolutely continuous, so is h: the Jacobians are related
by Jh(z1, . . . , zm) = Jh1(z1) · · · Jhm(zm). This absolute continuity property implies
that every positive Lebesgue measure subset of U intersects W s

loc(y1)× · · · W s
loc(ym)

on a positive Lebesgue measure subset, for a subset of (y1, . . . , ym) with positive
Lebesgue measure. In particular, the exceptional set intersects some leaf of W s,m on a
positive Lebesgue measure subset. This contradicts Lemma 8.5, and this contradiction
proves the corollary.

Corollary 8.7. — For any m ≥ 1, any (x1, . . . , xm) ∈Mm, and any ∗ ∈ {s, u}, and a
full Lebesgue measure set D∗ of (z1, . . . , zm) ∈Mm, there exists c > 0 such that

(8.3) dist(fk(zi), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m and all k ∈ Z, except k = 0 when i = l, and there exist
accessibility ∗-sequences [yi0, . . . , y

i
n(i)] connecting xi to zi, for 1 ≤ i ≤ m such that

(8.4) dist(fk(yij), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m, all 0 ≤ j < n(i), and all k ∈ Z.

Proof. — Just take the intersections of the full Lebesgue measure subsets given in
Corollary 8.4, for ∗ ∈ {s, u}, and in Corollary 8.6.

Proof of Proposition 8.2. — Given m ≥ 1 and (x1, . . . , xm) ∈Mm, let Ds and Du be
the full Lebesgue measure sets given by Corollary 8.7, and then consider

(z1, . . . , zm) ∈ Ds ∩Du .
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The corollary yields, for each 1 ≤ i ≤ m, an accessibility s-sequence [yi0, . . . , y
i
r(i)] and

an accessibility u-sequence [wi0, . . . , w
i
t(i)] connecting xi to zi. Then

γi = [yi0, . . . , y
i
r(i) = wit(i), . . . , w

i
0]

is a loop at xi, and properties (8.3)-(8.4) mean that the family {γ1, . . . , γm} of loops
has slow recurrence.

8.2. Holonomies on loops with slow recurrence. — As we pointed out before,
the tangent space at each point B ∈ Gr,α(M,d,K) is naturally identified with the
Banach space of Cr,α maps from M to the space of linear maps in Kd. This means
that we may view the tangent vectors Ḃ as Cr,α functions assigning to each z ∈M a
linear map Ḃ(z) : Kz → Kf(z).

Let A ∈ Gr,α(M,d,K) be fiber bunched. As we have seen in Section 3.2, there exists
a neighborhood U ⊂ Gr,α(M,d,K) of A such that every B ∈ U is fiber bunched. Then,
for any loop γ = [y0, . . . , yn] at a point x ∈M , and any 0 ≤ k < l ≤ n, we have linear
holonomy maps

HB,γ,k,l = H∗lB,yl−1,yl
◦ · · · ◦H∗k+1

B,yk,yk+1
: Kyk → Kyl .

Furthermore, all the maps B 7→ HB,γ,k,l are C1 on U. In particular, the derivative
of B 7→ HB,γ = HB,γ,0,n is given by

(8.5) ∂BHB,γ : Ḃ 7→
n∑
l=1

HB,γ,l,n

[
∂BHB,γ,l−1,l(Ḃ)

]
HB,γ,0,l−1.

The main result in this section is

Proposition 8.8. — Let A ∈ Gr,α(M,d,K) be fiber bunched and U be a neighborhood
as above. For each x ∈ M and m ≥ 1, let γi = [yi0, y

i
1, . . . , y

i
n(i)], 1 ≤ i ≤ m be a

family of loops at x with slow recurrence. Then

U 3 B 7→ (HB,γ1 , . . . ,HB,γm) ∈ GL(d,Kx)m

is a submersion: the derivative is surjective at every point, even restricted to the
subspace of tangent vectors Ḃ supported on a small neighborhood of the pivots.

In the proof we use (8.5) together with the expressions for the ∂BHB,γ,l−1,l(Ḃ) given
in Propositions 3.5 and 3.7. The idea is quite simple. Perturbations in the neighbor-
hood of the pivots affect the holonomies over all the loop legs, of course. However,
Corollaries 3.6 and 3.8 show that the effect decreases exponentially fast with time,
and slow recurrence means that the first iterates need not be considered. Combining
these two ideas one shows (Corollary 8.12) that the derivative is a small perturbation
of its term of order zero. The latter is easily seen to be surjective (Lemma 8.13), and
then the same is true for any small perturbation.

Remark 8.9. — Essentially the same arguments yield an SL(d,K)-version of this
proposition: the map U ∩ Sr,α(M,d,K) 3 B 7→ (HB,γ1 , . . . ,HB,γm) ∈ SL(d,Kx)m is
a submersion. Clearly, it remains true that the derivative is a small perturbation of
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its term of order zero. Then the main point is to observe that the restriction of the
operator S in Lemma 8.13 maps TB Sr,α(M,d,K) surjectively to THB,γ SL(d,Kx).

Before getting into the details, let us make an easy observation that allows for some
simplification of our notations. If γ = [y0, . . . , yn] is a loop with slow recurrence then
so is γ̄ = [yn, . . . , y0], and HB,γ̄ is the inverse of HB,γ . Hence, the statement of the
proposition is not affected if one reverses the orientation of any γi as described. So, it
is no restriction to suppose that every loop γ has the orientation for which the pivot
yr satisfies

(8.6) yr ∈ W s
(yr−1) ∩ W u

(yr+1),

and we do so in all that follows.

Lemma 8.10. — Let γ = [y0, . . . , yn] be a loop with slow recurrence and yr be the
corresponding pivot. Then, there is τ > 0 such that for any small ε > 0 and any
tangent vector Ḃ supported on B(yr, ε),

‖∂BHB,γ,l−1,l(Ḃ)‖ ≤ θ
√
τ/ε ‖Ḃ‖0,β for any l 6= r, and

‖∂BHB,γ,r−1,r(Ḃ) +B(yr)
−1Ḃ(yr)H

s
B,yr−1,yr‖ ≤ θ

√
τ/ε ‖Ḃ‖0,β .

Proof. — By Definition 8.1, there exists c > 0 such that

dist(fk(yl), yr) ≥ c/(1 + k2) for all (l, k) ∈ {0, . . . , n} × Z, (l, k) 6= (r, 0).

Consider ε < c/2. Then B(yr, ε) contains no other node of the loop. Moreover, for
any 0 ≤ l ≤ n and any k ≥ 1,

fk(yl) ∈ B(yr, ε) =⇒ |k| ≥ t(ε), where t(ε) =
»
c/ε− 1.

Let us denote by ∂BHB,γ,l−1,l,t(ε)(Ḃ) the t-tail of the derivative, that is, the sum over
i ≥ t in Proposition 3.5 (case ∗l = s) or Proposition 3.7 (case ∗l = u). Then, for
any Ḃ ∈ TB Gr,α(M,d,K) supported in B(yr, ε), the expression in Proposition 3.5
becomes

(8.7) ∂BHB,γ,l−1,l(Ḃ) = ∂BHB,γ,l−1,l,t(ε)(Ḃ)

for all l 6= r, and

(8.8) ∂BHB,γ,r−1,r(Ḃ) = −B(yr)
−1Ḃ(yr)H

s
B,yr−1,yr + ∂BHB,γ,l−1,l,t(ε)(Ḃ)

for l = r. This applies to the loop legs with symbol ∗l = s. Observing that the sum
in Proposition 3.7 does not include the term i = 0, we conclude that (8.7) extends to
all loop legs with symbol ∗l = u. Next, by Corollaries 3.6 and 3.8,

(8.9) ‖∂BHB,γ,l−1,l,t(Ḃ)‖ ≤ C5(a) θt ‖Ḃ‖0,β ,

for every 1 ≤ l ≤ n and any t ≥ 0, where a is an upper bound for the distances
between consecutive loop nodes. Choose any τ < c/2. The lemma follows directly
from (8.7), (8.8), (8.9) with t = t(ε), because θ < 1 and the choices of ε and τ ensure
t(ε) >

√
τ/ε.
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Corollary 8.11. — Let γi = [yi0, y
i
1, . . . , y

i
n(i)], 1 ≤ i ≤ m be a family of loops at x with

slow recurrence and yr(i), 1 ≤ i ≤ m be the corresponding pivots. Then there exists
τ > 0 such that, for any small ε > 0, any 1 ≤ j ≤ m, and any tangent vector Ḃ
supported on B(yjr , ε), r = r(j)

‖∂BHB,γi,l−1,l(Ḃ)‖ ≤ θ
√
τ/ε ‖Ḃ‖0,β for all (i, l) 6= (j, r), and

‖∂BHB,γj ,r−1,r(Ḃ) +B(yjr)
−1Ḃ(yjr)H

s
B,yj

r−1
,yjr
‖ ≤ θ

√
τ/ε ‖Ḃ‖0,β .

Proof. — The case i = j is contained in Lemma 8.10. The cases i 6= j follow from the
same arguments, observing that

dist(fk(yil), y
j
r) ≥ c/(1 + k2) for every k ∈ Z

and so fk(yil) ∈ B(yjr , ε) implies |k| ≥ t(ε), for every 0 ≤ l ≤ n(i).

Corollary 8.12. — Let γi = [yi0, y
i
1, . . . , y

i
n(i)], 1 ≤ i ≤ m be a family of loops at x with

slow recurrence, and yr(i), 1 ≤ i ≤ m be the corresponding pivots. Then, there exists
K1 > 0 such that, for any small ε > 0, any 1 ≤ j ≤ m, and any tangent vector Ḃ
supported on B(yjr , ε), r = r(j)

‖∂BHB,γi(Ḃ)‖ ≤ K1θ
√
τ/ε ‖Ḃ‖0,β for all i 6= j, and

‖∂BHB,γj (Ḃ) +HB,γj ,r,n(j)B(yjr)
−1Ḃ(yjr)HB,γj ,0,r‖ ≤ K1θ

√
τ/ε ‖Ḃ‖0,β

Proof. — This follows from replacing in (8.5) the estimates in Corollary 8.11. By
part (e) of Proposition 3.2, the factors HB,γi,0,l−1 and HB,γi,l,n(i) are bounded by
some uniform constant K2 that depends only on the loops. Then, for every i 6= j,
Corollary 8.11 and the relation (8.5) gives

‖∂BHB,γi(Ḃ)‖ ≤
n(i)∑
l=1

K2
2‖∂BHB,γ,l−1,l(Ḃ)‖ ≤ K1θ

√
τ/ε ‖Ḃ‖0,β ,

as long as we choose K1 ≥ K2
2 maxi n(i). This gives the first part of the corollary. Now

we consider i = j. For the same reasons as before, all but one term in the expression
(8.5) are bounded by K2

2θ
√
τ/ε ‖Ḃ‖0,β . The possible exception is

HB,γj ,r,n(j)

[
∂BHB,γj ,r−1,r(Ḃ)

]
HB,γj ,0,r−1,

corresponding to l = r. By Corollary 8.11, this last expression differs from

−HB,γj ,r,n(j)B(yjr)
−1Ḃ(yjr)H

s
B,yj

r−1
,yjr
HB,γj ,0,r−1 =

−HB,γj ,r,n(j)B(yjr)
−1Ḃ(yjr)HB,γj ,0,r

by a term bounded by K2
2θ
√
τ/ε ‖Ḃ‖0,β . This completes the proof.
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Lemma 8.13. — Let γ = [y0, . . . , yn] be a loop at x ∈M and 0 < r < n be fixed. Then
the linear map

S : TB Gr,α(M,d,K) → THB,γ GL(d,Kx) ' L(Kd
x,Kd

x)

Ḃ 7→ −HB,γ,r,nB(yr)
−1Ḃ(yr)HB,γ,0,r

is surjective, even restricted to the subspace of tangent vectors Ḃ vanishing outside
some neighborhood of yr. More precisely, there exists K3 > 0 such that for 0 < ε < 1

and Θ ∈ L(Kd,Kd) there exists ḂΘ ∈ TB Gr,α(M,d,K) vanishing outside B(yr, ε) and
such that S(ḂΘ) = Θ and ‖ḂΘ‖0,β ≤ K3 ε

−β ‖Θ‖.

Proof. — Let τ : M → [0, 1] be a Cr,α function vanishing outside B(yr, ε) and such
that τ(yr) = 1 and the Hölder constant Hβ(τ) ≤ 2ε−β . For Θ ∈ L(Kd,Kd), define
ḂΘ ∈ TB Gr,α(M,d,K) by

ḂΘ(w) = B(yr)H
−1
B,γ,r,n ΘB(yr)

−1 τ(w)B(w)H−1
B,γ,0,r.

Notice that ḂΘ(yr) = B(yr)H
−1
B,γ,r,n ΘH−1

B,γ,0,r and so S(ḂΘ) = Θ. Moreover,

(8.10) ‖ḂΘ‖0,0 ≤ ‖H−1
B,γ,r,n‖ ‖H

−1
B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)

−1‖ ‖B‖0,0 ‖Θ‖.

For any w1, w2 ∈M the norm of ḂΘ(w1)− ḂΘ(w2) is bounded by

‖H−1
B,γ,r,n‖ ‖H

−1
B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)

−1‖(
‖τ(w1)− τ(w2)‖‖B(w1)‖+ |τ(w2)|‖B(w1)−B(w2)‖

)
‖Θ‖.

Consequently, the Hölder constant Hβ(ḂΘ) of ḂΘ is bounded above by

(8.11) ‖H−1
B,γ,r,n‖ ‖H

−1
B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)

−1‖
(
2ε−β‖B‖0,0 +Hβ(B)

)
‖Θ‖.

Adding the inequalities (8.10) and (8.11), and taking

K3 = ‖H−1
B,γ,r,n‖ ‖H

−1
B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)

−1‖ ‖B‖0,β ,

one obtains ‖ḂΘ‖0,β ≤ K3ε
−β‖Θ‖.

Proof of Proposition 8.8. — For each 1 ≤ j ≤ m, let Sj be the operator associated
to γ = γj as in Lemma 8.13. Let Θj be any element of the unit sphere in L(Kx,Kx).
By Lemma 8.13, for any small ε > 0 there exists a tangent vector Ḃ(j,Θj) supported
in B(yjr(j), ε) such that

Sj
(
Ḃ(j,Θj)

)
= Θj and ‖Ḃ(j,Θj)‖ ≤ K3ε

−β .

By Corollary 8.12, the norm of

(∂BHB,γ1 , . . . , ∂BHB,γj , . . . , ∂BHB,γm)(Ḃ)− (0, . . . , 0, Sj(Ḃ), 0, . . . , 0)

is bounded above by K3θ
√
τ/ε‖Ḃ‖, for any tangent vector supported in B(yjr(j), ε).

For Ḃ = Ḃ(j,Θj) this gives that

‖(∂BHB,γ1 , . . . , ∂BHB,γj , . . . , ∂BHB,γm)(Ḃ(j,Θj))− (0, . . . , 0,Θj , 0, . . . , 0)‖
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is bounded by K1K3θ
√
τ/εε−β . Assume ε > 0 is small enough so that

K1K3θ
√
τ/εε−β < 1/(2m).

Then for any Θ = (Θ1, . . . ,Θm) with Θj in the unit sphere of L(Kx,Kx) we find a
tangent vector Ḃ(Θ) =

∑m
j=1 Ḃ(j,Θj) supported on the ε-neighborhood of the pivots

and such that
‖
(
∂HB,γ1 , . . . , ∂HB,γm

)(
Ḃ(Θ)

)
−Θ‖ < 1/2.

This implies that the image of the derivative (∂HB,γ1 , . . . , ∂HB,γm) is the whole target
space L(Kd

x,Kd
x)m, as claimed.

8.3. Invariant measures of generic matrices. — Finally, we prove Theorem A.
The only missing ingredient is

Proposition 8.14. — Given ` ≥ 1, let G2` be the set of (A1, . . . , A2`) ∈ GL(d,K)2` such
that there exists some probability η in P(C) invariant under the action of Ai for every
1 ≤ i ≤ 2`. Then G2` is closed and nowhere dense, and it is contained in a finite
union of closed submanifolds of codimension ≥ `.

Remark 8.15. — The arguments that we are going to present remain valid if one
replaces GL(d,K) by the subgroup SL(d,K) of matrices with determinant 1: just note
that the curves B(t) defined in (8.13) and (8.17) lie in SL(d,K) if the initial matrix A

does. Thus, the proposition holds for SL(d,K) as well.

Let us assume this proposition for a while, and use it to conclude the proof of the
theorem in the complex case. Let A ∈ Gr,α(M,d,K) be fiber bunched. Fix any ` ≥ 1

and x ∈ M . By Proposition 8.2 there is a family γi, 1 ≤ i ≤ 2`, of loops at x with
slow recurrence. By Proposition 8.8, the map

U 3 B 7→ (HB,γ1 , . . . ,HB,γ2`) ∈ GL(d,Kx)2`

is a submersion, where U is a neighborhood of A independent of `. Let Z be the pre-
image of G2` under this map. Then Z is closed and nowhere dense, and it is contained
in a finite union of closed submanifolds of codimension ≥ `.

We claim that λ−(B,µ) < λ+(B,µ) for all B ∈ U \ Z . Indeed, suppose the equality
holds, and let m be any P(FB)-invariant probability that projects down to µ. By
Theorem B, the measure m admits a disintegration {mz : z ∈ M} which is invariant
under strong-stable holonomies hs = P(Hs) and strong-unstable holonomies hu =

P(Hu), on the whole manifold M . In particular,

(8.12) P(HB,γi)∗mx = mx for every 1 ≤ i ≤ 2`.

This contradicts the definition of G2`, and this contradiction proves our claim. Let Z0

be the set of fiber bunched B ∈ Gr,α(M,d,K) for which λ−(B,µ) = λ+(B,µ). We
have shown that any fiber bunched A ∈ Gr,α(M,d,K) admits a neighborhood U such
that, for any ` ≥ 1, there exists a nowhere dense subset Z of U contained in a finite
union of closed submanifolds of codimension ≥ ` and such that Z0 ∩ U ⊂ Z . Thus,
the closure of Z0 has infinite codimension and, in particular, is nowhere dense.
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The proof of Theorem A has been reduced to proving Proposition 8.14. The proof
of the proposition is presented in the next two sections.

8.3.1. Complex case. — Let S be the subset of matrices A ∈ GL(d,C) whose eigen-
values are all distinct in norm. Then, S is an open and dense subset of GL(d,C) whose
complement is contained in a finite union of closed manifolds of positive codimension.
We use the following fact about variation of eigenvectors inside S:

Lemma 8.16. — Let A ∈ S. Then there exist C∞ functions λi : SA → C and vi : SA →
P(Cd) defined on an open neighborhood SA of A, for each 1 ≤ i ≤ d, such that vi(B) is
the direction of an eigenvector of B associated to the eigenvalue λi(B), for any B ∈ SA.
Furthermore, the map SA → P(Cd)d, B 7→ (v1(B), . . . , vd(B)) is a submersion.

Proof. — Since each eigenvalue λi(A) is a simple root of the polynomial det(A−λ id),
it has a C∞ continuation λi(B) for all nearby matrices, given by the implicit function
theorem. Denote Li(B) = B−λi(B) id. It depends smoothly on B ∈ SA and, since λi(B)

remains a simple eigenvalue of B, it has rank d− 1. Since the entries of adj(Li(B)) are
cofactors of Li(B), the adjoint is a non-zero matrix that also varies in a C∞ fashion
with B. Moreover,

Li(B) · adj(Li(B)) = det(Li(B)) id = 0.

This means that any non-zero column of adj(Li(B)) is an eigenvector for Li(B), de-
pending in a C∞ fashion on the matrix, and so we may use it to define a function
vi(B) as in the statement. To check that the derivative of v at A is onto just consider
any differentiable curve (−ε, ε) 3 t 7→ (β1(t), . . . , βd(t)) such that βi(0) = vi(A) for all
i = 1, . . . , d. Define P (t) = [β1(t), . . . , βd(t)], that is, P (t) is the matrix whose column
vectors are the βi(t). Then define

(8.13) B(t) = P (t) diag[λ1(A), . . . , λd(A)]P (t)−1.

Then, B(0) = A and v(B(t)) = (β1(t), . . . , βd(t)) for all t. In particular, the derivative
Dv(A) maps B′(0) to (β′1(0), . . . , β′d(0)). So, the derivative is indeed surjective.

Let Z1 be the subset of A = (A1, . . . , A2`) such that Ai /∈ S for at least ` values
of i. Then Z1 is closed and it is contained in a finite union of closed submanifolds of
codimension≥ `. For every A /∈ Z1 there are at least `+1 matrices Ai whose eigenvalues
all have distinct norms. Restricting to some open subset V of the complement of Z1,
and renumbering if necessary, we may suppose that these matrices are A1, . . . , A`+1.
By Lemma 8.16, reducing V if necessary, the map

V \ Z1 3 A 7→
(
vj(Ai)

)
1≤j≤d, 1≤i≤`+1

∈ P(Cd)d(`+1)

is a submersion. Consequently, there exists a closed subset Z2 of V \ Z1 contained
in a finite union of closed submanifolds of codimension ≥ ` such that for every A ∈
V \ ( Z1 ∪ Z2) there exists some 1 ≤ i ≤ ` such that

(8.14) va(Ai) 6= vb(A`+1) for every a, b ∈ {1, . . . , d}.
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Now it suffices to prove that G2` ∩ V is contained in Z1 ∪ Z2. Indeed, suppose there
is A ∈ G2` ∩ V \ ( Z1 ∪ Z2). By the definition of G2`, there exists some probability
measure η on P(Cd) such that

(8.15) (Al)∗η = η for every 1 ≤ l ≤ 2`.

Consider l = i, as in (8.14), and also l = ` + 1. Since all the eigenvalues of Ai have
distinct norms, η must be a convex combination of Dirac masses supported on the
eigenspaces of Ai. For the same reason, η must be supported on the set of eigenspaces
of A`+1. However, (8.14) means that these two sets are disjoint, and so we reached a
contradiction. This contradiction proves Proposition 8.14 in the complex case.

8.3.2. Real case. — The proof for real matrices is a bit more complicated due to the
possibility of complex conjugate eigenvalues. In particular, the set of matrices whose
eigenvalues are all distinct in norm is not dense. This difficulty has been met before
by Bonatti, Gomez-Mont, Viana [7], and we use a similar approach in dimensions
d ≥ 3. For d = 2 we use a different argument, based on the conformal barycenter
construction of Douady, Earle [11].

For each r, s ≥ 0 with r+ 2s = d, let S(r, s) be the subset of matrices A ∈ GL(d,R)

having r real eigenvalues, and s pairs of (strictly) complex conjugate eigenvalues, such
that all the eigenvalues that do not belong to the same complex conjugate pair have
distinct norms. Every S(r, s) is open and their union S = ∪r,sS(r, s) is an open and
dense subset of GL(d,R) whose complement is contained in a finite union of closed
submanifolds with positive codimension. Let Grass(k, d) denote the k-dimensional
Grassmannian of Rd, for 1 ≤ k ≤ d. In what follows we often think of elements
of Grass(2, d) as subsets of Grass(1, d) = P(Rd).

Lemma 8.17. — Let F =
{

[(r1, . . . , rd)e
iθ] ∈ P(Cd) : θ ∈ [0, 2π], (r1, . . . , rd) ∈ Rd

}
.

Then F is closed in P(Cd) and the map Ψ : P(Cd)\ F → Grass(2, d) defined
by Ψ(v) = Span {Re(v), Im(v)} is a submersion.

Proof. — First, we recall the usual local charts in Grass(2, d). Let e1, . . . , ed the
canonical base of Rd and 1 ≤ i < j ≤ d be fixed. For any d × 2 matrix A we de-
note by ϕ(A) the 2× 2 matrix formed by the ith and jth rows of A and by ϕ∗(A) the
(d − 2) × 2 matrix formed by the other rows of A. Let Ui,j be the open set of planes
L ∈ Grass(2, d) such that the orthogonal projection of L to Span {ei, ej} is an isomor-
phism. This means that if L ∈ Ui,j with L = Span {v1, v2} then ϕ(AL) is invertible,
where AL = [v1, v2] is the matrix whose columns are the vectors v1, v2. Then the map
φ : Ui,j → R2(d−2) defined by φ(L) = ϕ∗(AL)ϕ(AL)−1, where we identify (d − 2) × 2

matrices with points in R2(d−2), is a local chart in the Grassmannian.
Now, note that v, v ∈ Cd are linearly independent if and only if v ∈ P(Cd)\ F .

Moreover, in that case Re(v), Im(v) are C-linearly independent and, in particular, Ψ(v)

is well defined. It is clear from its expression in local charts that Ψ is differentiable.
Moreover, still in local charts, its derivative is given by

DΨ(v)v̇ = ϕ∗(Ȧ)ϕ(A)−1 − ϕ∗(A)ϕ(A)−1ϕ(Ȧ)ϕ(A)−1,
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where v̇ ∈ TvP(Cd), A = [Re(v), Im(v)] and Ȧ = [Re(v̇), Im(v̇)]. Let Ḃ be in the tangent
space TΨ(v) Grass(2, d). Then Ḃ is a (d− 2)× 2 matrix with real entries. Let ȦḂ be the
d × 2 matrix defined by ϕ∗(ȦḂ) = Ḃϕ(A) and ϕ(ȦḂ) = 0. Since, ȦḂ = [v̇1, v̇2], we have
that DΨ(v)(v̇1 + iv̇2) = Ḃ. This finishes the proof of the lemma.

Lemma 8.18. — Let A ∈ S(r, s). Then there exists an open neighborhood SA of A and
there exist C∞ functions

λj : SA → R, ξj : SA → Grass(1, d), for 1 ≤ j ≤ r, and
µk : SA → C \ R, ηk : SA → Grass(2, d), for 1 ≤ k ≤ s,

such that ξj(B) is the eigenspace of B associated to the eigenvalue λj(B), and ηk(B)

is the characteristic space associated to the conjugate pair of eigenvalues µk(B) and
µ̄k(B). Furthermore, the map

SA → Grass(1, d)r ×Grass(2, d)s, B 7→ (ξj(B)1≤j≤r, ηk(B)1≤k≤s)

is a submersion.

Proof. — Existence and regularity of the eigenvalues λj and µk follow from the
implicit function theorem. Moreover, the arguments in Lemma 8.16 imply that if
vj(B) is an eigenvector associated to the eigenvalue λj(B), for j = 1, . . . , r, and
vr+2k−1(B), vr+2k(B) are eigenvectors associated to µk(B), µ̄k(B), respectively, for k =

1, . . . , s, then the map Φ defined by

(8.16) Φ(B) = (v1(B), . . . , vr(B), vr+1(B), . . . , vr+2s(B)) ∈ P(Rd)r × P(Cd)s

is C∞. We are going to show that this map is a submersion on some open neighborhood
SA of A. For this, it is sufficient to show that the derivative DΦ(A) is onto. Consider
any differentiable curve (−ε, ε) 3 t 7→ (β1(t), . . . , βr+s(t)) such that βj(0) = vj(A)

for j = 1, . . . , r and βr+k(0) = vr+2k−1(A) for k = 1, . . . , s. Define

(8.17)
P (t) = [β1(t), . . . , βr(t), βr+1, β̄r+1, . . . , βr+s, β̄r+s], and

B(t) = P (t) diag[λ1(A), . . . , λr(A), µ1(A), µ̄1(A), . . . , µs(A), µ̄s(A)]P (t)−1.

Observe that t 7→ B(t) is a curve in GL(d,R), with B(0) = A. Observe also that
Φ(B(t)) = (β1(t), . . . , βr+s(t) for all t ∈ (−ε, ε), and so DΦ(A) maps B′(0) to the
vector (β′1(0), . . . , β′r+s(0)). So, the derivative is indeed surjective. Finally, define

ξj(B) = vj(B) for j = 1, . . . , r and

ηk(B) = Span {Re(vr+2k−1), Im(vr+2k−1)} for k = 1, . . . , s.

Clearly these maps are C∞. Moreover, since (8.16) is a submersion, Lemma 8.17
implies that B 7→ (ξj(B)1≤j≤r, ηk(B)1≤k≤s) is a submersion.

Let Z1 be the subset of A = (A1, . . . , A2`) such that Ai /∈ S for at least ` values
of i. Then Z1 is closed and it is contained in a finite union of closed submanifolds
of codimension ≥ `. For every A /∈ Z1 there are at least ` + 1 values of i such that
Ai ∈ S, that is, Ai ∈ S(ri, si) for ri and si. Restricting to some open subset V of the
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complement of Z1, and renumbering if necessary, we may suppose that these matrices
are A1, . . . , A`+1. By Lemma 8.18, reducing V if necessary, the map

(8.18) V \ Z1 3 A 7→
(
ξj(Ai)1≤j≤ri , ηk(Ai)1≤k≤si

)
1≤i≤`+1

is a submersion.
Assume first that d ≥ 4, and so dim P(Rd) ≥ 3. Since the ξj(A) are points and the

ηk(A) are lines in the projective space, it follows that there exists a closed subset Z2

of V \ Z1 contained in a finite union of closed submanifolds of codimension ≥ ` such
that for every A ∈ V \ ( Z1 ∪ Z2) there exists some 1 ≤ i ≤ ` such that

ξa(Ai) 6= ξb(A`+1)(8.19)

ξa(Ai) /∈ ηc(A`+1) and ξb(Ai) /∈ ηd(A`+1)(8.20)

ηc(Ai)∩ηd(A`+1) = ∅(8.21)

for every 1 ≤ a ≤ r(Ai), 1 ≤ b ≤ r(A`+1), 1 ≤ c ≤ s(Ai), and 1 ≤ d ≤ s(A`+1).
Now it suffices to prove that G2` ∩ V is contained in Z1 ∪ Z2. Indeed, suppose there
is A ∈ G2` ∩ V \ ( Z1 ∪ Z2). By the definition of G2`, there exists some probability
measure η on P(Cd) such that

(8.22) (Al)∗η = η for every 1 ≤ l ≤ 2`.

Consider both l = i, as in (8.19)–(8.21), and l = `+ 1. Since all the eigenvalues of Ai
have distinct norms, apart from the complex conjugate pairs, the measure η must be
supported on

Σ(Ai) =
r⋃
j=1

{ξj(Ai)} ∪
s⋃

k=1

ηk(Ai).

Analogously, η must be supported on Σ(A`+1). However, conditions (8.19)–(8.21) mean
that the two sets Σ(Ai) and Σ(A`+1) are disjoint. This contradiction proves the propo-
sition in any dimension d ≥ 4.

For d = 3 the projective space P(R3) is only 2-dimensional, and so one can not
force a pair of 1-dimensional submanifolds ηk(A) to be disjoint, as required in (8.21).
However, the argument can easily be adapted to cover the 3-dimensional case as well.
Firstly, one replaces (8.21) by

(8.23) ηc(Ai) 6= ηd(A`+1)

for every 1 ≤ c ≤ s(Ai) and 1 ≤ d ≤ s(A`+1). (Both (8.21) and (8.23) are void if
either s(Ai) = 0 or s(A`+1) = 0; the only other possibility is s(Ai) = s(A`+1) = 1, with
c = d = 1.) Then the argument proceeds as before, except that we may no longer
have disjointness: when s = 1,

Σ(Ai) ∩ Σ(A`+1) = η1(Ai) ∩ η1(A`+1)

consists of exactly one point in projective space. Then η must be a Dirac measure
supported on this point. However, in view of (8.22), this would have to be a fixed point
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of Ai contained in η1(Ai), which is impossible because the eigenspace ηi(Ai) contains
no invariant line. Thus, we reach a contradiction also in this case.

Now we deal with the case d = 2. Let Z1 be as in the previous cases: for every
A /∈ Z1 there are at least ` + 1 values of i such that Ai ∈ S = S(2, 0) ∪ S(0, 1). As
before, it is no restriction to assume that these matrices are A1, . . . , A`+1. There are
three cases to consider:

First, suppose there exist 1 ≤ i, j ≤ ` + 1 such that Ai ∈ S(2, 0), that is, it has
two real (distinct) eigenvalues, and Aj ∈ S(0, 1), that is, it has a pair of complex
eigenvalues. We claim that in this case A can not belong to G2`. Indeed, on the one
hand, any probability measure η on P(R2) which is invariant under Ai ∈ S(2, 0) must
be a convex combination of Dirac masses at the two eigenspaces. On the other hand,
the action of Aj ∈ S(0, 1) on the projective space is a rotation whose angle is not a
multiple of π, and so it admits no such invariant measure.

Next, suppose all the matrices are hyperbolic: Ai ∈ S(2, 0) for all 1 ≤ i ≤ `. In this
case one can use precisely the same argument as we did before in higher dimensions
(conditions (8.20) and (8.21)-(8.23) become void). One finds a closed subset Z2 con-
tained in a finite union of submanifolds with codimension ≥ ` such that G2` ∩ V is
contained in Z1 ∪ Z2.

Finally, suppose all the matrices are elliptic: Ai ∈ S(0, 1) for all 1 ≤ i ≤ `. Recall
that every matrix A ∈ GL(2,R) with positive determinant induces an automorphism
hA of the Poincaré half plane H:

(8.24) A =

(
a b

c d

)
−→ hA(z) =

az + b

cz + d
.

The action of A on the projective plane may be identified with the action of hA on the
boundary of H, via

∂H→ P(R2), x 7→ [(x, 1)]

(including x = ∞) so that P(A)-invariant measures on the projective plane may be
seen as hA-invariant measures sitting on the real axis. It is also easy to check that hA
has a fixed point in the open disc H if and only if A ∈ S(0, 1). Define φ(A) to be this
(unique) fixed point. It is easy to see that the A 7→ φ(A) is a C∞ submersion: just use
the explicit expression for the fixed point extracted from (8.24). The key feature is
the following consequence of a classical construction of Douady, Earle [11]:

Lemma 8.19. — If A, B ∈ S(0, 1) have some common invariant probability measure µ
on ∂H then φ(A) = φ(B).

Proof. — It is clear that elliptic matrices have no invariant measures with atoms
of mass larger than 1/3: such atoms would correspond to periodic points of A in the
projective plane with period 1 or 2, which would contradict the definition of S(0, 1). In
Proposition 1 of [11] a map µ 7→ B(µ) is constructed that assigns to each probability
measure µ with no atoms of mass ≥ 1/2 (see Remark 2 in [11, page26] ) a point B(µ)
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in the half plane H, in such a way that

B(h∗µ) = h(B(µ)) for every automorphism h : H→ H.

When µ is A-invariant this implies hA(B(µ)) = B((hA)∗µ) = B(µ), and so the con-
formal barycenter B(µ) must coincide with the fixed point φ(A) of the automorphism
hA. Thus, if µ is a common invariant measure then φ(A) = B(µ) = φ(B).

It follows from the previous observations that the map

V \ Z1 3 A 7→
(
φ(Ai)

)
1≤i≤`+1

∈ H`+1.

is a submersion. Hence, there exists a closed subset Z2 of V \ Z1 contained in a
finite union of closed submanifolds of codimension ≥ ` such that for every A ∈ V \
( Z1 ∪ Z2) there exists some 1 ≤ i ≤ ` such that φ(Ai) 6= φ(A`+1). Thus, we may apply
Lemma 8.19 to conclude that if A ∈ V \( Z1∪ Z2). In other words, G2`∩ V is contained
in Z1 ∪ Z2.

The proofs of Proposition 8.14 and Theorem A are now complete.
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THE COHOMOLOGICAL EQUATION FOR PARTIALLY
HYPERBOLIC DIFFEOMORPHISMS

by

Amie Wilkinson

Abstract. — We develop criteria for the existence and regularity of solutions to the
cohomological equation over an accessible, partially hyperbolic diffeomorphism.

Résumé. — Nous développons des critères pour l’existence et la régularité des so-
lutions de l’équation cohomologique au dessus d’un difféomorphisme partiellement
hyperbolique et accessible.

Introduction

Let f : M → M be a dynamical system and let φ : M → R be a function. Consid-
erable energy has been devoted to describing the set of solutions to the cohomological
equation:

φ = Φ ◦ f − Φ,(1)

under varying hypotheses on the dynamics of f and the regularity of φ. When a so-
lution Φ: M → R to this equation exists, then φ is a called coboundary, for in the
appropriate cohomology theory we have φ = dΦ. For historical reasons, a solution Φ

to (1) is called a transfer function. The study of the cohomological equation has seen
application in a variety of problems, among them: smoothness of invariant measures
and conjugacies; mixing properties of suspended flows; rigidity of group actions; and
geometric rigidity questions such as the isospectral problem. This paper studies solu-
tions to the cohomological equation when f is a partially hyperbolic diffeomorphism
and φ is Cr, for some real number r > 0.

A partially hyperbolic diffeomorphism f : M → M of a compact manifold M is
one for which there exists a nontrivial, Tf -invariant splitting of the tangent bundle
TM = Es ⊕ Ec ⊕ Eu and a Riemannian metric on M such that vectors in Es are
uniformly contracted by Tf in this metric, vectors in Eu are uniformly expanded, and

2010 Mathematics Subject Classification. — 37A20, 37D25, 37D30; 37A50, 37C40.
Key words and phrases. — Partial hyperbolicity, abelian cocycle, cohomological equation, Livšic theory,
holonomy invariance, rigidity.
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the expansion and contraction rates of vectors in Ec is dominated by the corresponding
rates in Eu and Es, respectively. An Anosov diffeomorphism is one for which the
bundle Ec is trivial.

In the case where f is an Anosov diffeomorphism, there is a wealth of classical
results on this subject, going back to the seminal work of Livšic, which we summarize
here in Theorem 0.1. Here and in the rest of the paper, the notation Ck,α, for k ∈ Z+,
α ∈ (0, 1], means Ck, with α-Hölder continuous kth derivative (where C0,α, α ∈ (0, 1]

simply means α-Hölder continuous). For α ∈ (0, 1), Cα means α-Hölder continuous.
More generally, if r > 0 is not an integer, then we will also write Cr for Cbrc,r−brc.

Theorem 0.1. — [23, 24, 25, 15, 16, 28, 19, 26] Let f : M → M be an Anosov
diffeomorphism and let φ : M → R be Hölder continuous.

I. Existence of solutions. If f is C1 and transitive, then (1) has a continuous
solution Φ if and only if

∑
x∈ O φ(x) = 0, for every f -periodic orbit O.

II. Hölder regularity of solutions. If f is C1, then every continuous solution
to (1) is Hölder continuous.

III. Measurable rigidity. Let f be C2 and volume-preserving. If there exists a
measurable solution Φ to (1), then there is a continuous solution Ψ, with Ψ = Φ a.e.

More generally, if f is Cr and topologically transitive, for r > 1, and µ is a Gibbs
state for f with Hölder potential, then the same result holds: if there exists a measur-
able function Φ such that (1) holds µ-a.e., then there is a continuous solution Ψ, with
Ψ = Φ, µ-a.e.

IV. Higher regularity of solutions. Suppose that r > 1 is not an integer, and
suppose that f and φ are Cr. Then every continuous solution to (1) is Cr.

If f and φ are C1, then every continuous solution to (1) is C1.
If f and φ are real analytic, then every continuous solution to (1) is real analytic.

There are several serious obstacles to overcome in generalizing these results to
partially hyperbolic systems. For one, while a transitive Anosov diffeomorphism has
a dense set of periodic orbits, a transitive partially hyperbolic diffeomorphism might
have no periodic orbits (for an example, one can take the time-t map of a transitive
Anosov flow, for an appropriate choice of t). Hence the hypothesis appearing in part
I can be empty: the vanishing of

∑
x∈ O φ(x) for every periodic orbit of f cannot be a

complete invariant for solving (1).
This first obstacle was addressed by Katok and Kononenko [20], who defined a

new obstruction to solving equation (1) when f is partially hyperbolic. To define
this obstruction, we first define a relevant collection of paths in M , called su-paths,
determined by a partially hyperbolic structure.

The stable and unstable bundles Es and Eu of a partially hyperbolic diffeomor-
phism are tangent to foliations, which we denote by W s and W u respectively [5].
The leaves of W s and W u are contractible, since they are increasing unions of sub-
manifolds diffeomorphic to Euclidean space. An su-path in M is a concatenation of

ASTÉRISQUE 358



THE COHOMOLOGICAL EQUATION 77

finitely many subpaths, each of which lies entirely in a single leaf of W s or a single
leaf of W u. An su-loop is an su-path beginning and ending at the same point.

We say that a partially hyperbolic diffeomorphism f : M → M is accessible if
any point in M can be reached from any other along an su-path. The accessibility
class of x ∈ M is the set of all y ∈ M that can be reached from x along an su-path.
Accessibility means that there is one accessibility class, which contains all points.
Accessibility is a key hypothesis in most of the results that follow. We remark that
Anosov diffeomorphisms are easily seen to be accessible, by the transversality of Eu

and Es and the connectedness of M .
Any finite tuple of points (x0, x1, . . . , xk) in M with the property that xi and xi+1

lie in the same leaf of either W s or W u, for i = 0, . . . , k−1, determines an su-path from
x0 to xk; if in addition xk = x0, then the sequence determines an su-loop. Following
[1], we call such a tuple (x0, x1, . . . , xk) an accessible sequence and if x0 = xk, an
accessible cycle (the term periodic cycle is used in [20]).

For f a partially hyperbolic diffeomorphism, there is a naturally-defined periodic
cycles functional

PCF : {accessible sequences} × Cα(M)→ R.

which was introduced in [20] as an obstruction to solving (1). For x ∈ M and x′ ∈
W u

(x), we define:

PCF(x,x′)φ =
∞∑
i=1

φ(f−i(x))− φ(f−i(x′)),

and for x′ ∈ W s
(x), we define:

PCF(x,x′)φ =
∞∑
i=0

φ(f i(x′))− φ(f i(x)).

The convergence of these series follows from the Hölder continuity of φ and the expan-
sion/contraction properties of the bundles Eu and Es. This definition then extends
to accessible sequences by setting PCF(x0,...,xk)φ =

∑k−1
i=0 PCF(xi,xi+1)(φ).

Assuming a hypothesis on f called local accessibility(1), [20] proved that the closely
related relative cohomological equation:

φ = Φ ◦ f − Φ + c,(2)

has a solution Φ: M → R and c ∈ R, with Φ continuous, if and only if PCFγ(φ) = 0,
for every accessible cycle γ.

The local accessibility hypothesis in [20] has been verified only for very special
classes of partially hyperbolic systems, and it is not known whether there exist

(1) A partially hyperbolic diffeomorphism f : M →M is locally accessible if for every compact subset
M1 ⊂M there exists k ≥ 1 such that for any ε > 0, there exists δ > 0 that for every x, x′ ∈M with
x ∈M1 and d(x, x′) < δ, there is an accessible sequence (x = x0, . . . , xk = x′) from x to x′ satisfying

d(xi, x) ≤ ε, and dW∗ (xi+1, xi) < 2ε, for i = 0, . . . , k − 1

where dW∗ denotes the distance along the W s or W u leaf common to the two points.
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C1-open sets of locally accessible diffeomorphisms, or more generally, whether acces-
sibility implies local accessibility (although this seems unlikely). Assuming the strong
hypothesis that Eu and Es are C∞ bundles, [20] also showed that a continuous
transfer function for a C∞ coboundary is always C∞.

The starting point of the results here, part I of Theorem A below, is the observation
that the local accessibility hypothesis in [20] can be replaced simply by accessibility.
Accessibility is known to hold for a C1 open and dense subset of all partially hyper-
bolic systems [14], is Cr open and dense among partially hyperbolic systems with
1-dimensional center [36, 7], and is conjectured to hold for a Cr open and dense
subset of all partially hyperbolic diffeomorphisms, for all r ≥ 1 [32]. Thus, part I of
Theorem A gives a robust counterpart of part I of Theorem 0.1 for partially hyperbolic
diffeomorphisms.

Another of the aforementioned major obstacles to generalizing Theorem 0.1 to the
partially hyperbolic setting is that the regularity results in part IV fail to hold for
general partially hyperbolic systems. Veech [37] and Dolgopyat [13] both exhibited
examples of partially hyperbolic diffeomorphisms (volume-preserving and ergodic)
where there is a sharp drop in regularity from φ to a solution Φ. These examples are
not accessible. Here we show in Theorem A, part IV, that assuming accessibility and
a C1-open property called strong r-bunching (which incidentally is satisfied by the
nonaccessible examples in [37, 13]), there is no significant loss of regularity between
φ and Φ.

Part III of Theorem 0.1 is the most resistant to generalization, primarily because a
general notion of Gibbs state for a partially hyperbolic diffeomorphism remains poorly
understood. In the conservative setting, the most general result to date concerning
ergodicity of for partially hyperbolic diffeomorphisms is due to Burns and Wilkinson
[9], who show that every C2, volume-preserving partially hyperbolic diffeomorphism
that is center-bunched and accessible is ergodic. Center bunching is a C1-open prop-
erty that roughly requires that the action of Tf on Ec be close to conformal, relative
to the expansion and contraction rates in Es and Eu (see Section 2). Adopting the
same hypotheses as in [9], we recover here the analogue of Theorem 0.1 part III for
volume-preserving partially hyperbolic diffeomorphisms.

We now state our main result.

Theorem A. — Let f : M →M be partially hyperbolic and accessible, and let φ : M →
R be Hölder continuous.

I. Existence of solutions. If f is C1, then (2) has a continuous solution Φ for
some c ∈ R if and only if PCF C (φ) = 0, for every accessible cycle C .

II. Hölder regularity of solutions. If f is C1, then every continuous solution
to (2) is Hölder continuous.

III. Measurable rigidity. Let f be C2, center bunched, and volume-preserving.
If there exists a measurable solution Φ to (2), then there is a continuous solution Ψ,
with Ψ = Φ a.e.
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IV. Higher regularity of solutions. Let k ≥ 2 be an integer. Suppose that f
and φ are both Ck and that f is strongly r-bunched, for some r < k − 1 or r = 1. If
Φ is a continuous solution to (2), then Φ is Cr.

The center bunching and strong r-bunching hypotheses in parts III and IV are
C1-open conditions and are defined in Section 2. Theorem A part IV generalizes all
known C∞ Livšic regularity results for accessible partially hyperbolic diffeomorph-
isms. In particular, it applies to all time-t maps of Anosov flows and compact group
extensions of Anosov diffeomorphisms. Accessibility is a C1 open and C∞ dense condi-
tion in these classes [8, 6]. In dimension 3, for example, the time-1 map of any mixing
Anosov flow is stably accessible [6], unless the flow is a constant-time suspension of
an Anosov diffeomorphism.

We also recover the results of [13] in the context of compact group extensions of
volume-preserving Anosov diffeomorphisms. Finally, Theorem A also applies to all
accessible, partially hyperbolic affine transformations of homogeneous manifolds. A
direct corollary that encompasses these cases is:

Corollary 0.2. — Let f be C∞, partially hyperbolic and accessible. Assume that Tf |Ec
is isometric in some continuous Riemannian metric. Let φ : M → R be C∞. Suppose
there exists a continuous function Φ: M → R such that

φ = Φ ◦ f − Φ.

Then Φ is C∞. If, in addition, f preserves volume, then any measurable solution Φ

extends to a C∞ solution.
For any such f , and any integer k ≥ 2, there is a C1 open neighborhood U of f

in Diffk(M) such that, for any accessible g ∈ U, and any Ck function φ : M → R, if

φ = Φ ◦ g − Φ,

has a continuous solution Φ, then Φ is C1 and also Cr, for all r < k − 1. If g also
preserves volume, then any measurable solution extends to a Cr solution.

The vanishing of the periodic cycles obstruction in Theorem A, part I turns out to
be a practical method in many contexts for determining whether (2) has a solution.
On the one hand, this method has already been used by Damjanović and Katok to
establish rigidity of certain partially hyperbolic abelian group actions [12]; in this
(locally accessible, algebraic) context, checking that the PCF obstruction vanishes
reduces to questions in classical algebraic K-theory (see also [11, 21]). On the other
hand, for a given accessible partially hyperbolic system, the PCF obstruction provides
an infinite codimension obstruction to solving (2), and so the generic cocycle φ has
no solutions to (2). This latter fact follows from recent work of Avila, Santamaria and
Viana on the related question of vanishing of Lyapunov exponents for linear cocycles
over partially hyperbolic systems (see [1], Section 9).

As part of proof of Theorem A, part II, we also prove that stable and unsta-
ble foliations of any C1 partially hyperbolic diffeomorphism are transversely Hölder
continuous (Corollary 5.3). This extends to the C1 setting the well-known fact that
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the stable and unstable foliations for a C1+θ partially hyperbolic diffeomorphism are
transversely Hölder continuous [33]. As far as we know, no previous regularity results
were known for C1 systems, including Anosov diffeomorphisms.

In a forthcoming work [3] we will use some of the results here to prove rigidity
theorems for partially hyperbolic diffeomorphisms and group actions.

We now summarize in more detail the previous results in this area:

– Veech [37] studied the case when f is a partially hyperbolic toral automorphism
and established existence and regularity results for solutions to (1). In these
examples, there is a definite loss of regularity between coboundary and transfer
function. The examples studied by Veech differ from those treated here in that
they do not have the property of accessibility (although they have the weaker
property of essential accessibility).

– Dolgopyat [13] studied equations (1) and (2) for a special class of partially
hyperbolic diffeomorphisms – the compact group extensions of Anosov diffeo-
morphisms – in the case where the base map preserves a Gibbs state µ with
Hölder potential. Assuming rapid mixing of the group extension with respect
to µ, [13] showed that if the coboundary φ is C∞, then any transfer function
Φ ∈ L2(µ × Haar) is also C∞. Dolgopyat also gave an example of a partially
hyperbolic diffeomorphism with a C∞ coboundary whose transfer map is con-
tinuous, but not C1. This example, like Veech’s, is essentially accessible, but not
accessible. We note that when the Gibbs measure µ is volume, then the rapid
mixing assumption in [13] is equivalent to accessibility.

– De la Llave [27], extended the work of [20] to give some regularity results
for the transfer function under strong (nongeneric) local accessibility/regularity
hypotheses on bundles. De la Llave’s approach focuses on bootstrapping the
regularity of the transfer function from Lp to continuity and higher smooth-
ness classes using the transverse regularity of the stable and unstable foliations
in M . For this reason, he makes strong regularity hypotheses on this transverse
regularity.

While there are superficial similaries between these previous results and Theo-
rem A, the approach here, especially in parts II and IV, is fundamentally new and
does not rely on these results. In particular, to establish regularity of a transfer func-
tion, we take advantage of a form of self-similarity of its graph in the central directions
of M . This self-similarity, known as Cr homogeneity is discussed in more detail in the
following section.

1. Techniques in the proof of Theorem A

The proof of parts I and III of Theorem A use recent work of Avila, Santamaria
and Viana on sections of bundles with various saturation properties. In [1], they apply
these results to show that under suitable conditions, matrix cocycles over partially
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hyperbolic systems have a nonvanishing Lyapunov exponent. Parts I and III of The-
orem A are translations of some of the main results in [1] to the abelian cocycle
setting.

The regularity results in Theorem A – parts II and IV – comprise the bulk of this
paper.

To investigate the regularity of a solution Φ, we examine the graph of Φ inM×R. If
φ is Hölder continuous, then the stable and unstable foliations W s and W u for f lift to
two “stable and unstable” foliations W s

φ and W u
φ of M × R, whose leaves are graphs

of Hölder continuous functions into R. These lifted foliations are invariant under
the skew product (x, t) 7→ (f(x), t + φ(x)). The fact that Φ satisfies the equation
φ = Φ ◦ f − Φ + c, for some c ∈ R, implies that the graph of Φ is saturated by
leaves of the lifted foliations. The leafwise and transverse regularity of these foliations
determine the regularity of Φ. In the most general setting of Theorem A, part II, these
foliations are both leafwise and transversely Hölder continuous, and this implies the
Hölder regularity of Φ when f is accessible.

The proof of higher regularity in part IV has two main components. We first de-
scribe a simplified version of the proof under an additional assumption on f called
dynamical coherence.

Definition 1.1. — A partially hyperbolic diffeomorphism f is dynamically coherent if
the distributions Ec ⊕ Eu, and Ec ⊕ Es are integrable, and everywhere tangent to
foliations W cu and W cs.

If f is dynamically coherent, then there is also a central foliation W c, tangent
to Ec, whose leaves are obtained by intersecting the leaves of W cu and W cs. The
normally hyperbolic theory [18] implies that the leaves of W cu are then bifoliated by
the leaves of W c and W u, and the leaves of W cs are bifoliated by the leaves of W c

and W s.
Suppose that f is dynamically coherent and that f and φ satisfy the hypotheses

of part IV of Theorem A, for some k ≥ 2 and r < k − 1 or r = 1. Under these
assumptions, here are the two components of the proof. The first part of the proof
is to show that Φ is uniformly Cr along individual leaves of W s, W u and W c. The
second part is to employ a result of Journé to show that smoothness of Φ along leaves
of these three foliations implies smoothness of Φ.

To show that Φ is smooth along the leaves of W s and W u, we examine again the
lifted foliations for the associated skew product. The assumption that φ is Ck implies
that the leaves of these lifted foliations are Cr (in fact, they are Ck). This part of the
proof does not require dynamical coherence or accessibility.

To show that Φ is smooth along leaves of the central foliation, one can use ac-
cessibility and strong r-bunching to show that the graph of Φ over any central
leaf W c

(x) of f is Cr homogeneous. More precisely, setting N ′ = W c
(x) × R and

N = {(y,Φ(y)) : y ∈ W c
(x)} ⊂ N ′, we show that the manifold N is Cr homogeneous

in N ′: for any two points p, q ∈ N , there is a Cr local diffeomorphism of N ′ sending
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p to q and preserving N . C1-homogeneous subsets of a manifold have a remarkable
property:

Theorem 1.2. — [35] Any locally compact subset N of a C1 manifold N ′ that is C1

homogeneous in N ′ is a C1 submanifold of N ′

If r = 1, we can apply this result to obtain that the graph of Φ is C1 over any center
manifold. Hence Φ is C1 over center, stable, and unstable leaves, which implies that
Φ is C1. This completes the proof in the case r = 1 (assuming dynamical coherence).

In fact we do not use the results in [35] in the proof of Theorem A but employ
a different technique to establish smoothness, which also works for r > 1 and in the
non-dynamically coherent case. Our methods also show:

Theorem B. — For any integer k ≥ 2, any Ck homogeneous, C1 submanifold of a Ck

manifold is a Ck submanifold.

Theorem B also follows from the results in [35] (thanks to Bruce Kleiner for point-
ing this out). We give a somewhat different proof in Section 7 as it motivates later
results.

Returning to the proof of Theorem A, assuming dynamical coherence and using
Theorem B, one can obtain under the hypotheses of part IV that the graph of the
transfer function Φ over each center manifold is Cbrc. With some more work, one
can obtain that the graph of the transfer function Φ over each center manifold is Cr.
A result of Journé [19] implies that for any r > 1 that is not an integer, and any
two transverse foliations with uniformly Cr leaves, if a function Φ is uniformly Cr

along the leaves of both foliations, then it is uniformly Cr. Since f is assumed to
be dynamically coherent, the W c and W s foliations transversely subfoliate the leaves
of W cs . Applying Journé’s result using W c and W s, we obtain that Φ is Cr along
the leaves of W cs. Applying Journé’s theorem again, this time with W cs and W u, we
obtain that Φ is Cr.

We have just described a proof of part IV under the assumption that f is dynami-
cally coherent. If we drop the assumption of dynamical coherence, the assertion that
Φ is “Cr along center manifolds” no longer makes sense, as f might not have center
manifolds. One can find locally invariant center manifolds that are “nearly” tangent
to the center distribution (as in [9]), but the argument described above does not work
for these manifolds. The analysis becomes considerably more delicate and is described
in more detail in Section 8. As one of the components in our argument, we prove a
strengthened version of Journé’s theorem (Theorem 8.4) that works for plaque fami-
lies as well as foliations, and replaces the assumption of smoothness along leaves with
the existence of an “approximate r-jet” at the basepoint of each plaque.

The main result that lies behind the proof of Theorem A, part IV is a saturated
section theorem for fibered partially hyperbolic systems (Theorem C). A fibered par-
tially hyperbolic diffeomorphism is defined on a fiber bundle and is also a bundle
isomorphism, covering a partially hyperbolic diffeomorphism (see Section 9). In this
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context, Theorem C states that under the additional hypotheses that the bundle dif-
feomorphism is suitably bunched, and the base diffeomorphism is accessible, then any
continuous section of the bundle whose image is an accessibility class for the lifted
map is in fact a smooth section. Using Theorem C it is also possible to extend in part
the conclusions of Theorem A part IV to (suitably bunched) cocycles taking values
in other Lie groups. The details are not carried out here, but the reader is referred
to [31, 8, 2], where some of the relevant technical considerations are addressed (see
also the remark after the statement of Theorem C in Section 9).

Theorem C would follow immediately if the following conjecture is correct.

Conjecture 1.3. — Let f : M → M be Cr, partially hyperbolic and r-bunched. Then
every accessibility class for f is an injectively immersed, Cr submanifold of M .

For locally compact accessibility classes, it should be possible to prove Conjec-
ture 1.3 using the techniques from [35] to show that the accessibility class is a sub-
manifold and the methods developed in this paper to show that the submanifold is
smooth.

2. Partial hyperbolicity and bunching conditions

We now define the bunching hypotheses in Theorem A; to do so, we give a more
precise definition of partial hyperbolicity. Let f : M → M be a diffeomorphism of
a compact manifold M . We say that f is partially hyperbolic if the following holds.
First, there is a nontrivial splitting of the tangent bundle, TM = Es⊕Ec⊕Eu, that
is invariant under the derivative map Tf . Further, there is a Riemannian metric for
which we can choose continuous positive functions ν, ν̂, γ and γ̂ with

ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1(3)

such that, for any unit vector v ∈ TpM ,

‖Tfv‖ < ν(p), if v ∈ Es(p),(4)

γ(p) < ‖Tfv‖ < γ̂(p)−1, if v ∈ Ec(p),(5)

ν̂(p)−1 < ‖Tfv‖, if v ∈ Eu(p).(6)

We say that f is center bunched if the functions ν, ν̂, γ, and γ̂ can be chosen so
that:

max{ν, ν̂} < γγ̂.(7)

Center bunching means that the hyperbolicity of f dominates the nonconformality
of Tf on the center. Inequality (7) always holds when Tf |Ec is conformal. For then we
have ‖Tpfv‖ = ‖Tpf |Ec(p)‖ for any unit vector v ∈ Ec(p), and hence we can choose
γ(p) slightly smaller and γ̂(p)−1 slightly bigger than

‖Tpf |Ec(p)‖.
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By doing this we may make the ratio γ(p)/γ̂(p)−1 = γ(p)γ̂(p) arbitrarily close to
1, and hence larger than both ν(p) and ν̂(p). In particular, center bunching holds
whenever Ec is one-dimensional. The center bunching hypothesis considered here is
natural and appears in other contexts, e.g., [5, 4, 2, 31, 29].

For r > 0, we say that f is r-bunched if the functions ν, ν̂, γ, and γ̂ can be chosen
so that:

ν < γr, ν̂ < γ̂r(8)
ν < γγ̂r, and ν̂ < γ̂γr.(9)

Note that every partially hyperbolic diffeomorphism is r-bunched, for some r > 0.
The condition of 0-bunching is merely a restatement of partial hyperbolicity, and
1-bunching is center bunching. The first pair of inequalities in (8) are r-normal hy-
perbolicity conditions; when f is dynamically coherent, these inequalities ensure that
the leaves of W cu, W cs, and W c are Cr. Combined with the first group of inequali-
ties, the second group of inequalities imply that Eu and Es are “Cr in the direction
of Ec.” More precisely, in the case that f is dynamically coherent, the r-bunching
inequalities imply that the restriction of Eu to W cu leaves is a Cr bundle and the
restriction of Es to W cs leaves is a Cr bundle.

For r > 0, we say that f is strongly r-bunched if the functions ν, ν̂, γ, and γ̂ can be
chosen so that:

max{ν, ν̂} < γr, max{ν, ν̂} < γ̂r(10)
ν < γγ̂r, and ν̂ < γ̂γr.(11)

We remark that if f is partially hyperbolic and there exists a Riemannian metric in
which Tf |Ec is isometric, then f is strongly r-bunched, for every r > 0; given a metric
‖ · ‖ for which f satisfies (4), and another metric ‖ · ‖′ in which Tf |Ec is isometric,
it is a straightforward exercise to construct a Riemannian metric ‖ · ‖′′ for which
inequalities (10) hold, with γ = γ̂ ≡ 1.

The reason strong r-bunching appears as a hypothesis in Theorem A is the follow-
ing. Suppose that f is partially hyperbolic and that φ : M → R is C1. Then the skew
product fφ : M × R/Z→M × R/Z given by

fφ(x, t) = (f(x), t+ φ(x))

is partially hyperbolic, and if f is strongly r-bunched then fφ is r-bunched. This skew
product and the corresponding lifted skew product on M × R appears in a central
way in our analysis, as we explain in the following section.

2.1. Notation. — Let a and b be real-valued functions, with b 6= 0. The notation
a = O(b) means that the ratio |a/b| is bounded above, and a = Ω(b) means |a/b|
is bounded below; a = Θ(b) means that |a/b| is bounded above and below. Finally,
a = o(b) means that |a/b| → 0 as b → 0. Usually a and b will depend on either
an integer j or a real number t and on one or more points in M . The constant C
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bounding the appropriate ratios must be independent of n or t and the choice of the
points.

The notation α < β, where α and β are continuous functions, means that the
inequality holds pointwise. The function min{α, β} takes the value min{α(p), β(p)}
at the point p.

We denote the Euclidean norm by | · |. If X is a metric space and r > 0 and x ∈ X,
the notation BX(x, r) denotes the open ball about x of radius r. If the subscript is
omitted, then the ball is understood to be in M . Throughout the paper, r always
denotes a real number and j, k, `,m, n always denote integers. I denotes the interval
(−1, 1) ⊂ R, and In ⊂ Rn the n-fold product.

If γ1 and γ2 are paths in M , then γ1 · γ2 denotes the concatenated path, and γ1

denotes the reverse path.
Suppose that F is a foliation of an m-manifold M with d-dimensional smooth

leaves. For r > 0, we denote by F (x, r) the connected component of x in the inter-
section of F (x) with the ball B(x, r).

A foliation box for F is the image U of Rm−d × Rd under a homeomorphism that
sends each vertical Rd-slice into a leaf of F . The images of the vertical Rd-slices will
be called local leaves of F in U .

A smooth transversal to F in U is a smooth codimension-d disk in U that intersects
each local leaf in U exactly once and whose tangent bundle is uniformly transverse
to T F . If Σ1 and Σ2 are two smooth transversals to F in U , we have the holonomy
map h F : Σ1 → Σ2, which takes a point in Σ1 to the intersection of its local leaf in U
with Σ2.

Finally, for r > 1 a nonintegral real number,M,N smooth manifolds, the Cr metric
on Cr(M,N) is defined in local charts by:

dCr (f, g) = dCbrc(f, g) + dC0(Dbrcf,Dbrcg).

This metric generates the (weak) Cr topology on Cr(M,N).

3. The partially hyperbolic skew product associated to a cocycle

Let f : M → M be Ck and partially hyperbolic and let φ : M → R be C`,α,
for some integer ` ≥ 0 and α ∈ [0, 1], with 0 < ` + α ≤ k. Define the skew product
fφ : M × R→M × R by

fφ(p, t) = (f(p), t+ φ(p)).

The following proposition is the starting point for our proof of Theorem A.

Proposition 3.1. — There exist foliations W u
φ, W

s
φ of M ×R with the following prop-

erties.

1. The leaves of W u
φ, W

s
φ are C`,α.
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2. The leaves of W u
φ project to leaves of W u, and the leaves of W s

φ project to leaves
of W s. Moreover, (x′, t′) ∈ W s

φ(x, t) if and only if x′ ∈ W s
(x) and

lim inf
n→∞

d(fnφ (x, t), fnφ (x′, t′)) = 0.

3. Define T : M × R → M × R by Tt(z, s) = (z, s + t). Then for all z ∈ M and
s, t ∈ R:

W s
φ(z, s+ t) = TtW

s
φ(z, s).

4. If (x, t) ∈M × R and (x′, t′) ∈ W s
φ(x, t), then

t′ − t =
∞∑
i=0

φ(f i(x′))− φ(f i(x)) = PCF(x,x′)φ,

and if (x′, t′) ∈ W u
φ(x, t), then

t′ − t =
∞∑
i=1

φ(f−i(x))− φ(f−i(x′)) = PCF(x,x′)φ.

Proof. — The map fφ covers the map (x, t) 7→ (f(x), t+ φ(x)) on the compact man-
ifold M × R/Z, which we also denote by fφ

In the case where ` ≥ 1, (1) and (2) follow directly from the fact that fφ is C`,α and
partially hyperbolic. The invariant foliations on M × R/Z lift to invariant foliations
on M × R.

For ` = 0, (1) and (2) are the content of Proposition 5.1, which is proved in
Section 5.

Since Tt ◦ fφ = fφ ◦ Tt for all t ∈ R, (3) follows easily from (2). Finally, (4) is an
easy consequence of (3).

Throughout the rest of the paper, we will mine extensively the properties of the
foliations W s

φ and W u
φ: the regularity of the leaves, their transverse regularity, and

their accessibility properties.
This focus on the lifted foliations W s

φ and W u
φ is not entirely new. Notably, Nitiçă

and Török [31] established the regularity of solutions to equation (2) when f is an
Anosov diffeomorphism by examining these lifted foliations. The key observation in
[31] is that the smoothness of the leaves of W s

φ and W u
φ determines the smoothness of

the transfer function along the leaves of W s and W u. The advantage of the approach
in [31] is that it allowed them to prove a natural generalization of Theorem 0.1
to cocycles taking values in nonabelian lie groups; provided that the induced skew
product for such a cocycle is partially hyperbolic, the smoothness of the lifted invariant
foliations determines the smoothness of transfer functions when f is Anosov. This
focus on the foliations for the skew product associated to the cocycle turns out to be
crucial in our setting.
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4. Saturated sections of admissible bundles

In this section, we define a key property called saturation and present some general
results about saturated sections of bundles. In the next section, we apply these results
in the setting of abelian cocycles to prove parts I and III of Theorem A. Throughout
this section, f : M →M denotes a partially hyperbolic diffeomorphism.

Let N be a manifold, and let π : B → M be a fiber bundle, with fiber N . We
say that B is admissible if there exist foliations W s

lift, W u
lift of B (not necessarily

with smooth leaves) such that, for every z ∈ B and ∗ ∈ {s, u}, the restriction of π
to W ∗lift(z) is a homeomorphism onto W ∗(π(z)).

A more general definition of admissibility for more general bundles in terms of
holonomy maps is given in [1]; we remark that two definitions are equivalent in this
context. If π : B→M is an admissible bundle, then given any su-path γ : [0, 1]→M

and any point z ∈ π−1(γ(0)), there is a unique path γ̃z : [0, 1]→ B such that:
– πγ̃z = γ,
– γ̃z(0) = z,
– γ̃z is a concatenation of finitely many subpaths, each of which lies entirely in a

single leaf of W s
lift, or W u

lift.
We call γ̃z an su-lift path and say that γ̃z is an su-lift loop if γ̃z(0) = γ̃z(1) = z. For
a fixed su-path γ, the map Hγ : π−1(γ(0)) → π−1(γ(1)) that sends z ∈ π−1(γ(0))

to γ̃z(1) ∈ π−1(γ(1)) is a homeomorphism. It is easy to see that Hγ1·γ2 = Hγ2 ◦Hγ1

and Hγ = H−1
γ .

Recall that any accessible sequence S = (x1, . . . , xk) determines an su-path γ S .
We fix the convention that γ S is a concatenation of leafwise distance-minimizing
arcs, each lying in an alternating sequences of single leaves of W s or W u. Using this
identification, we define the holonomy H S : π−1(x1)→ π−1(xk) by setting H S = Hγ S ;
since the leaves of W u, W s, W u

lift, and W s
lift are all contractible, H S is well-defined.

Definition 4.1. — Let π : B→M be an admissible bundle. A section σ : M → B is:
– u-saturated if for every z ∈ σ(M) we have W u

lift(z) ⊂ σ(M),
– s-saturated if for every z ∈ σ(M) we have W s

lift(z) ⊂ σ(M),
– bisaturated if σ is both u-and s-saturated, and
– bi essentially saturated if there exist sections σu (u-saturated) and σs (s-satu-

rated) such that

σu = σs = σ a.e. (volume on M)

It follows from the preceding discussion that if σ : M → B is a bisaturated section,
then for any x ∈M , for any accessible sequence S, from x to x′, we have H S(σ(x)) =

σ(x′).

Theorem 4.2. — [1] Let f : M →M be C1 and partially hyperbolic, let π : B→M be
an admissible bundle over M , and let σ : M → B be a section.

1. If σ is bisaturated, and f is accessible, then σ is continuous.
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2. If f is C2 and center bunched, and σ is bi essentially saturated, then there exists
a bisaturated section σsu such that σ = σsu a.e. (with respect to volume on M)

Since we will use a proposition from the proof of Theorem 4.2, (1) in our later
arguments, we give a sketch of the proof here, including a statement of the key propo-
sition (Proposition 4.3 below). We remark that the proof of (2) adapts techniques
from [9], where it is shown that if f is C2 and center bunched, then any bi essentially
saturated subset of M is essentially bisaturated; in effect, this is just Theorem 4.2 for
the bundle B = M × {0, 1}, with W ∗lift(x, j) = W ∗(x)× {j}, for j ∈ {0, 1}.

Sketch of proof of Theorem 4.2, (1). — We give a slightly modified version of the
proof in [1], as we will need the results here in later sections. The key proposition in
the proof is:

Proposition 4.3 ([1], Proposition 8.3). — Suppose that f is accessible. Then for every
x0 ∈ M , there exists w ∈ M and an accessible sequence (y0(w), . . . , yk(w)) connect-
ing x0 to w and satisfying the following property: for any ε > 0, there exist δ > 0

and L > 0 such that, for every z ∈ BM (w, δ), there exists an accessible sequence
(y0(z), . . . yK(z)) connecting x0 to z and such that

dM (yj(z), yj(w)) < ε and dW ∗(yj−1(z), yj(z)) < L, for j = 1, . . . ,K,

where dW ∗ denotes the distance along the stable or unstable leaf common to the two
points.

For K ∈ Z+ and L ≥ 0, we say that S is an (K,L)-accessible sequence if S =

(x0, . . . , xK) and
dW ∗(xj−1, xj) ≤ L, for j = 1, . . . ,K,

where dW ∗ denotes the distance along the stable or unstable leaf common to the two
points.

If { Sy = (x0(y), . . . , xK(y))}y∈U is a family of (K,L) accessible sequences in U

and x ∈ U , we say that limy→x Sy = Sx if

lim
y→x

xj(y) = xj(x), for j = 0, . . .K,

and we say that y 7→ Sy is uniformly continuous on U if y 7→ xj(y) is uniformly
continuous, for j = 0, . . . ,K. An accessible cycle (x0, . . . , x2k = x0) is palindromic if
xi = x2k−i, for i = 1, . . . , k. Note that a palindromic accessible cycle determines an
su-path of the form η · η; in particular, if S is a palindromic accessible cycle from x

to x , then H S is the identity map on π−1(x).
The following lemma is stronger than we need for the proof of part (1) of Theo-

rem 4.2, but will be used in later sections.

Lemma 4.4. — Let f be accessible. There exist K ∈ Z+, L ≥ 0 and δ > 0 such that for
every x ∈M there is a family of (K,L)-accessible sequences { Sx,y}y∈BM (x,δ) such that
Sx,y connects x to y, Sx,x is a palindromic accessible cycle and limy→x Sx,y = Sx,x.
The convergence Sx,y → Sx,x is uniform in x.
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Proof of Lemma 4.4. — Fix an arbitrary point x0 ∈M . Proposition 4.3 gives a point
w ∈ M , a neighborhood Uw of w, and a family of (K0, L0) -accessible sequences
{(y0(w′), . . . , yK0

(w′))}w′∈Uw such that (y0(w′), . . . , yK0
(w′)) connects x0 to w′, and

(y0(w′), . . . , yK0(w′))→ (y0(w), . . . , yK0(w)) uniformly in w′ ∈ Uw.

Lemma 4.5 (Accessibility implies uniform accessibility). — Let f be accessible. There
exist constants KM , LM such that any two points x, x′ in M can be connected by an
(KM , LM )-accessible sequence.

Proof of Lemma 4.5. — First note that, since any point in Uw can be connected
to x0 by an (K0, L0)-accessible sequence, we can connect any two points in Uw by a
(2K0, L0)-accessible sequence.

Consider an arbitrary point p ∈ M and let (p = q0, q1, . . . , qKp = w) be
an (Kp, Lp)-accessible sequence connecting p and w. Continuity of W s and W u

implies that there is a neighborhood Vp of p and a family of (Kp, Lp)-acces-
sible sequences {(p′ = q0(p′), q1(p′), . . . , qKp(p′))}p′∈Vp with the property that
p′ 7→ (q0(p′), . . . , qKp(p′)) is uniformly continuous on Vp, and the map p′ 7→ qKp(p′)

sends Vp into Uw and p to w. It easily follows that any two points in Vp can be
connected by an (K0 + 2Ky, L0 + Ly)-accessible sequence. Covering M by neighbor-
hoods Vp, and extracting a finite subcover, we obtain by concatenating accessible
sequences that there exist constants KM , LM such that any two points x, x′ in M

can be connected by an (KM , LM )-accessible sequence.

Returning to the proof of Lemma 4.4, we now fix a point x ∈ M , and let (x =

z0, z1, . . . , zKM = w) be an (KM , LM )-accessible sequence connecting x to w. As
above, there exists a neighborhood Vx of x and a family of (KM , LM )-accessible
sequences {(x′ = z0(x′), z1(x′), . . . , zKM (x′))}x′∈Vx with the property that the map

x′ 7→ (z0(x′), . . . , zKM (x′))

is uniformly continuous on Vx, and the map x′ 7→ zKM (x′) sends Vx into Uw and x
to w.

For x′ ∈ Vx, we define Sx,x′ by concatenating the accessible sequences
(x = z0(x), z1(x), . . . , zKM (x) = w), (w = yK0

(w), . . . , y0(w) = x0), (x0 =

y0(zKM (x′)), . . . , yK0(zKM (x′)) = zKM (x′)) and (zKM (x′), . . . , z0(x′) = x′). Then
{ Sx,x′}x′∈Vx is a family of (K,L)-accessible sequences with the property that Sx,x′
connects x to x′, where K = 2K0 + 2KM and L = L0 + LM .

Since x′ 7→ (z0(x′), . . . , zKM (x′)) is uniformly continuous on Vx, and

lim
w′→w

(y0(w′), . . . , yK0(w′)) = (y0(w), . . . , yK0(w)),

we obtain that limx′→x Sx,x′ = Sx,x. By construction, Sx,x is palindromic.
Finally, observe that all of the steps in this construction are uniform over x, and so

we can choose δ > 0 such that BM (x, δ) ⊂ Vx, for all x, and further, limx′→x Sx,x′ =

Sx,x uniformly in x. This completes the proof of Lemma 4.4.
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Returning to the proof of Theorem 4.2, part (1), fix a point x ∈ M , and
let { Sx,x′}x′∈BM (x,δ) be the family of accessible paths given by Lemma 4.4. Since
limx′→x Sx,x′ = Sx,x and the lifted foliations are continuous, it follows that

lim
x′→x

H Sx,x′ = H Sx,x ,

uniformly on compact sets. Since Sx,x is palindromic, we have H Sx,x = id|π−1(x).
Let σ : M → B be a bisaturated section. Then for any accessible sequence S from

x to x′, we have H S(σ(x)) = σ(x′). But then

lim
x′→x

σ(x′) = lim
x′→x

H Sx,x′ (σ(x)) = H Sx,x(σ(x)) = σ(x),

which shows that σ is continuous at x.

Proposition 4.6 (Criterion for existence of bisaturated section). — Let f be C1, partially
hyperbolic and accessible, and let π : B → M be admissible. Let z ∈ B and let x =

π(z). Then there exists a bisaturated section σ : M → B with σ(x) = z if and only
if for every su-loop γ in M with γ(0) = γ(1) = x, the lift γ̃z is an su-lift loop (with
γ̃z(0) = γ̃z(1) = z).

Proof. — We first prove the “if” part of the proposition. Define σ : M → B as follows.
We first set σ(x) = z. For each x′ ∈ M , fix an su-path γ : [0, 1] → M from x to x′.
Since B is an admissible bundle, γ lifts to a path γ̃z : [0, 1] → B along the leaves
of W s

lift and W u
lift with γ̃z(0) = z. We set σ(x′) = γ̃z(1). Clearly πσ(x′) = x′.

We first check that σ is well-defined. Suppose that γ′ : [0, 1]→M is another su-path
from x to x′. Concatenating γ with γ′, we obtain an su-loop γγ′ from x to x. By the
hypotheses, the lift of γγ′ through z is an su-lift loop in B. But this implies that
γ̃z(1) = γ̃′z(1).

The same argument shows that σ is bisaturated. Fix y ∈M and let y′ ∈ W s
(y). We

claim that σ(y′) ∈ W s
lift(σ(y)). To see this, fix two su-paths inM , one from x to y, and

one from x to y′. Concatenating these paths with a path from y to y′ along W s
(y), we

obtain an su-loop γ through x. By hypothesis, the lift γ̃z is a lifted su-loop. It is easy
to see that this means that σ(y′) ∈ W s

lift(σ(y)). Hence σ is s-saturated. Similarly, σ
is u-saturated, and so σ is bisaturated.

The “only if” part of the proposition is straightforward.

Remark: Upon careful inspection of the proofs in this subsection, one sees that the
existence of foliations W s

lift and W u
lift is not an essential component of the arguments.

For example, instead of assuming the existence of these foliations, one might instead
assume (in the context where B is a smooth fiber bundle) the existence of Eu and
Es connections on B, that is, the existence of subbundles Euφ and Esφ of T B, disjoint
from kerTπ, that project to Eu and Es under Tπ. In this context, at least when Euφ
and Esφ are smooth, there is a natural notion of a bisaturated section. In particular,
for every us-path γ in M and z ∈ π−1(γ(0)), there is a unique lift γ̃z to a path in B,
projecting to γ and everywhere tangent to Euφ or Esφ. Bisaturation of σ in this context
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means that for every su-path γ from x to x′, one has γ̃σ(x)(1) = σ(x′). The same proof
as above shows that a bisaturated section in this sense is also continuous.

For this reason, [1] introduce the notions of bi-continuous and bi-essentially con-
tinuous sections, which extract the essential properties of a bisaturated section used
in the proof of Theorem 4.2. While we have no need for this more general notion here,
it is worth observing that bi-continuity might have applications in closely related
contexts.

4.1. Saturated cocycles: proof of Theorem A, parts I and III. — We now
translate the previous results into the context of abelian cocycles. Let φ : M → R be
such a cocycle, and let B = M × R be the trivial bundle with fiber R. Then B is an
admissible bundle; we define the lifted foliations W ∗lift, ∗ ∈ {s, u} to be the fφ-invariant
foliations W ∗φ given by Proposition 3.1. There is a natural identification between
functions Φ: M → R and sections σΦ : M → B via σΦ(x) = (x,Φ(x)). Definition 4.1
then extends to functions Φ: M → R in the obvious way, where saturation is defined
with respect to the W ∗φ-foliations.

Proposition 4.7. — Suppose that f is partially hyperbolic and φ is Hölder continuous.

1. Assume that f is accessible, and let Φ: M → R be continuous. Then there exists
c ∈ R such that

φ = Φ ◦ f − Φ + c,(12)

if and only if Φ bisaturated.
2. If f is volume-preserving and ergodic, and Φ : M → R is a measurable function

satisfying (12) (m-a.e.), for some c ∈ R, then Φ is bi essentially saturated.

Proof. — (1) Suppose that Φ is a continuous solution to (12). Then (12) implies that
for all x ∈M and all n, we have:

fnφ (x,Φ(x)) = (fn(x),Φ(fn(x)) + cn).

Let x′ ∈ W s
(x). Then

lim inf
n→∞

d(fnφ (x,Φ(x)), fnφ (x′,Φ(x′))) =

lim
n→∞

d((fn(x),Φ(fn(x))), (fn(x′),Φ(fn(x′)))) = 0,

and so (x,Φ(x)), (x′,Φ(x′)) lie on the sameW s
φ leaf. This implies that Φ is s-saturated.

Similarly Φ is u-saturated, and hence bisaturated.
Suppose on the other hand that Φ is continuous and bisaturated. Define a function

c : M → R by c(x) = φ(x) − Φ(f(x)) + Φ(x). We want to show that c is a constant
function. Proposition 3.1, (3) implies that, for all z ∈M and s, t ∈ R:

W s
φ(z, s+ t) = TtW

s
φ(z, s).(13)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



92 A. WILKINSON

Suppose that y ∈ W s
(x). Saturation of Φ and fφ-invariance of W s

φ, W u
φ imply

that:

W s
φ(f(x),Φ(f(x))) = W s

φ(f(y),Φ(f(y))), and(14)

fφ( W s
φ(x,Φ(x))) = fφ( W s

φ(y,Φ(y))).(15)

On the other hand, invariance of the W s
φ-foliation under fφ implies that, for all z ∈M :

fφ( W s
φ(z,Φ(z))) = W s

φ(f(z),Φ(z) + φ(z))

= W s
φ(f(z),Φ(f(z)) + (Φ(z)− Φ(f(z)) + φ(z)))

= TΦ(z)−Φ(f(z))+φ(z)

(
W s
φ(f(z),Φ(f(z)))

)
.

Equations (14) and (13) now imply that

Φ(x)− Φ(f(x)) + φ(x) = Φ(y)− Φ(f(y)) + φ(y);

in other words, c(x) = c(y). Hence the function c is constant along W s-leaves; simi-
larly, c is constant along W u-leaves. Accessibility implies that c is constant. Hence Φ

and c satisfy (2).
(2) Let Φ be a measurable solution to (12). We may assume that (12) holds on an

f -invariant set of full volume; for points in this set, we have

fnφ (x,Φ(x)) = (fn(x),Φ(fn(x)) + cn),

for all n.
Choose a compact set C ⊂M such that vol(C) > .5vol(M), on which Φ is uniformly

continuous. Ergodicity of f and absolute continuity of W s implies that for almost
every x ∈ M , and almost every x′ ∈ W s

(x), the pair of points x and x′ will visit C
simultaneously for a positive density set of times. For such a pair of points x, x′ we
have

lim inf
n→∞

d(fnφ (x,Φ(x)), fnφ (x′,Φ(x′))) =

lim inf
n→∞

d((fn(x),Φ(fn(x))), (fn(x′),Φ(fn(x′)))) = 0,

and so (x,Φ(x)), (x′,Φ(x′)) lie on the same W s
φ leaf. This implies that Φ is essentially

s-saturated: one defines the s-saturate Φs of Φ at (almost every) x to be equal to
the almost everywhere constant value of Φ on W s

(x) (see [29] for a version of this
argument when f is Anosov).

Similarly Φ is essentially u-saturated, and hence bi essentially saturated.

Proof of Theorem A, part I. — Let f be C1 and accessible and let φ : M → R be
Hölder continuous. Part I of Theorem A asserts that there exists a continuous function
Φ: M → R and c ∈ R satisfying (2) if and only if PCF C (φ) = 0, for every accessible
cycle C .

We start with a lemma:

Lemma 4.8. — Let γ be an su-loop corresponding to the accessible cycle C . Then
PCF C (φ) = 0 if and only if every lift of γ to an su-lift path in M × R is an su-lift
loop.
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Proof of Lemma 4.8. — Let x ∈ M Proposition 3.1, part (4) implies that if C =

(x0, . . . , xk = x0) is an accessible cycle, then for any t ∈ R

H C (t)− t =
k−1∑
i=0

PCF(xi,xi+1)(φ) = PCF C (φ)

Let γ be an su-loop corresponding to C . Then for any t ∈ R, Hγ(t)− t = PCF C (φ)

Fix t ∈ R, and let γ̃t = γ̃x0,t : [0, 1] → M × R be the su-lift path projecting
to γ, with γ̃t(0) = (x0, t). Then γ̃t(1) = (x0, Hγ(t)) = (x0, t + PCF C (φ) = 0). Thus
PCF C (φ) = 0 if and only if γ̃t(1) = t if and only if γ̃t is an su-lift loop. Since t was
arbitrary, we obtain that PCF C (φ) = 0 if and only if every lift of γ to an su-lift path
is an su-lift loop.

By Proposition 4.6 and Lemma 4.8, if PCF C (φ) = 0, for every accessible cycle C ,
then there exists a bisaturated function Φ : M → M × R. Theorem 4.2, part (1),
plus accessibility of f implies that Φ is continuous. Proposition 4.7 implies that there
exists a c ∈ R such that (12) holds.

On the other hand, if Φ is continuous and there exists a c ∈ R such that (12)
holds, then Proposition 4.7, (part 1) implies that Φ is bisaturated. Proposition 4.6
and Lemma 4.8 imply that PCF C (φ) = 0, for every accessible cycle C .

Proof of Part III of Theorem B. — Assume that f is C2, volume-preserving, center
bunched and accessible. Let Φ be a measurable solution to (2), for some c ∈ R. We
prove that there exists a continuous function Φ̂ satisfying Φ = Φ̂ almost everywhere.

Since f is center bunched and accessible, it is ergodic, by ([9], Theorem 0.1).
Proposition 4.7, part (2) implies that Φ is bi essentially saturated. Theorem 4.2,
part (2) then implies that Φ is essentially bisaturated, which means there exists a
bisaturated function Φ̂, with Φ̂ = Φ a.e. Since f is accessible, Theorem 4.2, part (1)
then implies that Φ̂ is continuous.

5. Hölder regularity: proof of Theorem A, part II.

Let f : M →M be partially hyperbolic and let φ : M → R be α-Hölder continuous,
for some α > 0. As above, define the skew product fφ : M × R→M × R by

fφ(p, t) = (f(p), t+ φ(p)).

We start with a standard proposition showing that the stable and unstable folia-
tions for f lift to invariant stable and unstable foliations for fφ.

Proposition 5.1. — There exist foliations W u
φ, W

s
φ of M ×R with the following prop-

erties.

1. The leaves of W u
φ, W

s
φ are α-Hölder continuous.
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2. The leaves of W u
φ project to leaves of W u, and the leaves of W s

φ project to leaves
of W s. Moreover, (x′, t′) ∈ W s

φ(x, t) if and only if x′ ∈ W s
(x) and

lim inf
n→∞

d(fnφ (x, t), fnφ (x′, t′)) = 0.

Proof. — This result is by now standard (see [31]), although strictly speaking, the
proof appears in the literature only under a stronger partial hyperbolicity assumption
(in which the functions ν, ν̂, γ, γ̂ are assumed to be constant). We sketch the proof
under the slightly weaker hypotheses stated here.

For x ∈ M , let Gx = {g : W u
(x, δ) → R : g ∈ Cα, g(x) = 0}. The number δ > 0

is chosen so that for all x ∈ M , if y ∈ W u
(x, δ), then d(f(x), f(y)) ≥ ν̂(x)−1d(x, y).

Notice that the function ψ(y) = φ(y)−φ(x) belongs to Gx. The α-norm of an element
g ∈ Gx is defined:

‖g‖α = sup
y∈Wu(x,δ)

|g(y)|
d(x, y)α

.

The bundle G overM with fiber Gx over x ∈M has the structure of a Banach bundle.
The fiber is modelled on the Banach space B = {g : BRu(0, δ) → R : g ∈ Cα, g(0) =

0}, with the norm

‖g‖α = sup
v∈BRu (0,δ)

|g(v)|
|v|α

.

The restriction of f to W u-leaves sends W u
(x, δ) onto W u

(f(x), ν̂(x)−1δ), which
contains W u

(f(x), δ). On W u
(x)×R, the map fφ takes the form fφ(p, t) = (f(p), t+

φ(p)), and the induced graph transform map T x : Gx → Gf(x) takes the form:
T x(g)(y) = g(f−1(y)) + φ(f−1(y))− φ(f−1(x)).

Suppose that ‖g‖α ≤ C. Then

| T x(g)|α = sup
z∈Wu(f(x),δ)

| T x(g)(z)|
d(f(x), z)α

≤ sup
y∈Wu(x,δ)

|g(y) + φ(y)− φ(x)|
d(f(x), f(y))α

= sup
y∈Wu(x,δ)

|g(y)|
d(f(x), f(y))α

+
|φ(x)− φ(y))|
d(f(x), f(y))α

≤ ν̂(x)α
Ç

sup
y∈Wu

δ (x)

|g(y)|
d(x, y)α

+
|φ(x)− φ(y))|
d(x, y)α

å
≤ ν̂(x)α (‖g‖α + |φ− φ(x)|α)

≤ ν̂(x)α(C +K) ≤ C,

provided that C is larger than supxK/(1− ν̂(x)).
Hence the closed sets Gx(C) = {g ∈ Gx : ‖g‖α ≤ C} are preserved by the maps T x.

Next we show that T x is a contraction in the α-norm. To this end, let g, g′ ∈ Gx(C).
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Then

‖ T x(g)− T x(g′)‖α = sup
z∈Wu(f(x),δ)

| T x(g)(z)− T x(g′)(z)|
d(f(x), z)α

≤ sup
y∈Wu(x,δ)

|g(y) + φ(y)− φ(x)− (g′(y) + φ(y)− φ(x))|
d(f(x), f(y))α

= sup
y∈Wu(x,δ)

|g(y)− g′(y)|
d(f(x), f(y))α

≤ ν̂(x)α‖g − g′‖α.

The invariant section theorem ([18], Theorem 3.1) now implies that there is a unique
T -invariant section σ : M → Gx(C). It is easy to check that the set Ŵ

u

φ(p, t) =

{(y, t + σp(y)) : y ∈ W u
(p, δ)} is a local unstable manifold for fφ. The rest of the

proof is standard.

Fix a foliation box U for W s. For any two smooth transversals Σ, Σ′ in U , there
is the W s-holonomy map from Σ to Σ′ that sends x ∈ Σ to the unique point of
intersection x′ between W s

(x) and Σ′. For any such Σ,Σ′ there is also a well-defined
W s
φ-holonomy between Σ×R and Σ′×R, sending (x, t) ∈ Σ×R to the unique point of

intersection (x′, t′) between W s
φ(x, t) and Σ′×R. Since the W s leaves lift to W s

φ-leaves,
the W s

φ holonomy covers the W s holonomy under the natural projection.

Proposition 5.2. — Suppose that f is C1 and φ is α-Hölder continuous, for some
α ∈ (0, 1]. Then the W s

φ and W u
φ holonomy maps are uniformly Hölder continuous.

Any θ ∈ (0, α] satisfying the pointwise inequalities:

ν < (νµ̂)θ/α and νγ−1 < (νµ̂)θ/α(16)

is a Hölder exponent for the W s
φ holonomy, where ν, γ, µ̂ : M → R are any continuous

functions satisfying, for every p ∈M and any unit vector v ∈ TpM :

v ∈ Es(p) ⇒ ‖Tpfv‖ < ν(p), v ∈ Ec(p) ⇒ γ(p) < ‖Tpfv‖,

and
v ∈ Eu(p) ⇒ ‖Tpfv‖ ≤ µ̂(p)−1,

for some Riemannian metric.

By considering the trivial (constant) cocycle, we also obtain:

Corollary 5.3. — The stable holonomy maps for a C1 partially hyperbolic diffeomor-
phism f are uniformly Hölder continuous. Any θ ∈ (0, 1] satisfying

ν < γ(νµ̂)θ

is a Hölder exponent for the stable holonomy, where ν, γ, µ̂ are defined as in Proposi-
tion 5.2.
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Remark: In ([33], Theorem A) it is shown that the holonomy maps for W u and
W s are Hölder continuous if f is at least C2 (or C1+α, for some α > 0). The proof
in [33] uses a graph transform argument and an invariant section theorem to show
that the plaques of W u and W s form a Hölder continuous family. Here in the proof of
Proposition 3.1, as in the first part of the proof in [33], we have exhibited the plaques
of W u

φ as an invariant section of a fiber-contracting bundle map T . It is not possible,
however, to carry over the rest of the proof in [33] to this setting: the low regularity
of T prevents one from using a Hölder section theorem to conclude that the invariant
section is Hölder continuous.

Hence we employ a different approach to prove that the holonomy maps are Hölder
continuous. The proof here has some similarities with the proof that stable foliations
are absolutely continuous. We fix two transversals τ and τ ′ to W s

φ and a pair of points
x, y ∈ τ . We iterate the picture forward until fnφ (τ) and fnφ (τ ′) are very close and
then push fnφ (x) and fnφ (y) across a short distance to points fnφ (x′), fnφ (y′) ∈ fnφ (τ ′).
The points x′, y′ are the images of x, y under W s

φ-holonomy; the iterate n is chosen
carefully so that the distance between x and y can be compared to some power of the
distance between x′ and y′. Unlike the proof of absolute continuity of stable foliations,
in which n is chosen arbitrarily large, the choice of n is delicate and depends on the
distance between x and y. We will employ this type of argument again in later sections.

As a final remark, we note that for every partially hyperbolic diffeomorphism f

and every Hölder continuous cocycle φ, there is a choice of θ > 0 satisfying (16), for
some Riemannian metric.

Proof of Proposition 5.2.. — In this proof, we will use the convention that if q is a
point in M and j is an integer, then qj denotes the point f j(q), with q0 = q. If
α : M → R is a positive function, and j ≥ 1 is an integer, we set

αj(p) = α(p)α(p1) · · ·α(pj−1),

and
α−j(p) = α(p−j)

−1α(p−j+1)−1 · · ·α(p−1)−1.

We set α0(p) = 1. Observe that αj is a multiplicative cocycle; in particular, we have
α−j(p)

−1 = αj(p−j). Note also that (αβ)j = αjβj , and if α is a constant function,
then αn = αn.

Fix θ ∈ (0, α] satisfying (16). Next, fix a continuous positive function ρ : M → R+

satisfying:

– ρ < min{1, γ}, and
– νρ−1 ≤ (νµ̂−1)θ/α.

We say that a smooth transversal Σ to W s is admissible if the angle between TΣ and
Es is at least π/4.

The next lemma follows from an elementary inductive argument and continuity of
the functions ν, µ̂ and ρ (cf. [9], Lemma 1.1).
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Lemma 5.4. — There exists δ0 > 0 such that for any p ∈ M , and for any p′ ∈
W s

(p, δ0):

1. for any i ≥ 0,

d(pi, p
′
i) ≤ νi(p)d(p, p′);

2. for any admissible transversal Σ′ to W s at p′, and any point q′ ∈ Σ′, if d(p′i, q
′
i) <

δ0, for i = 1, . . . , n, then

ρi(p)d(p′, q′) ≤ d(p′i, q
′
i) ≤ µ̂i(p)−1d(p′, q′),

for i = 1, . . . , n.

Let δ0 > 0 be given by this lemma; by rescaling the metric, we may assume that
δ0 = 1. Fix p ∈M and p′ ∈ W s

(p, 1). Let Σ and Σ′ be admissible transversals to W s,
with p ∈ Σ and p′ ∈ Σ′, so that the W s-holonomy hs : Σ → Σ′, with hs(p) = p′ is
well-defined. Let τ = Σ × R, and let τ ′ = Σ′ × R. Fix q ∈ Σ with d(p, q) < 1, and
let q′ = hs(q).

For (z, t) ∈M ×R and n ≥ 0, write (zn, tn) for fnφ (z, t). We introduce the notation
Snφ(z) =

∑n−1
i=0 φ(zi), and note that S1φ(z) = φ(z). With these notations, we have

(zn, tn) = (zn, t+ Snφ(z)). Denote by hsφ : Σ× R→ Σ× R the W s
φ-holonomy, which

covers the map hs. We first establish Hölder continuity of the base holonomy map
hs : Σ→ Σ′.

Since ν < µ̂−1, there exists an n so that d(p, q) = Θ(νn(p)µ̂n(p)); fix such an
n. Lemma 5.4 applied in the transversal Σ implies that d(pi, qi) ≤ µ̂i(p)

−1d(p, q) ≤
O(νn(p)), for i = 1, . . . , n.

On the other hand, since p′ ∈ W s
(p, 1), we have d(pi, p

′
i) ≤ O(νi), for all i; in

particular, d(pn, p
′
n) ≤ O(νn). Similarly, d(qn, q

′
n) ≤ O(νn). By the triangle inequality,

we have that

d(p′n, q
′
n) ≤ d(pn, qn) + d(pn, p

′
n) + d(qn, q

′
n)

= O(νn(p)).

Now applying f−n to the pair of points p′n, q′n we obtain the pair of points p′, q′,
which lie in the admissible transversal Σ′. Lemma 5.4 then implies that d(p′, q′) ≤
ρn(p)−1d(p′n, q

′
n) ≤ O(ρn(p)−1νn(p)). Since ρn(p)−1νn(p) < (νn(p)µ̂n(p))θ/α =

O(d(p, q)θ/α), we obtain that d(p′, q′) ≤ O(d(p, q)θ/α) ≤ O(d(p, q)θ), and so hs is
θ-Hölder continuous.

We next turn to the Hölder continuity of hsφ. Since h
s
φ covers hs, it suffices to

establish Hölder continuity in the R-fiber. Fix a point (p, r) ∈ Σ × R and write
hsφ(p, r) = (p′, r′) and hsφ(q, s) = (q′, s′).
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Hölder continuity of φ with exponent α implies that

|Snφ(p)− Snφ(q)| ≤
n−1∑
i=0

O(d(pi, qi)
α)

≤
n−1∑
i=0

O((νn(p)µ̂n(p)µ̂i(p)
−1)α)

= νn(p)α
n−1∑
i=0

O(µ̂−i(pn)−α)

≤ νn(p)α
n−1∑
i=0

O(µiα) = O(νn(p)α)

where µ < 1 is an upper bound for µ̂. This means that |rn−sn| ≤ |r−s|+O(νn(p)α).
Note that (p′n, r

′
n) ∈ W s

φ(pn, rn). Proposition 3.1 implies that W s
φ(pn, rn) is the

graph of an α-Hölder continuous function from W s
(pn) to R. Hence

|rn − r′n| ≤ O(d(pn, p
′
n)α) = O(νn(p)α),

and similarly, |sn − s′n| = O(νn(p)α). Now, by the triangle inequality,

|r′n − s′n| ≤ |rn − sn|+ |rn − r′n|+ |sn − s′n|(17)
≤ |r − s|+O(νn(p)α);(18)

Since d(p′n−i, q
′
n−i) ≤ O(νn(p)ρ−i(pn)), for i = 1, . . . n, the α-Hölder continuity of φ

implies that |Snφ(p′))− Snφ(q′)| ≤
∑n
i=1O((νn(p)ρ−i(pn))α) = O((νn(p)ρn(p)−1)α),

since ρ < 1. The inequality (νρ−1)α < (νµ̂)θ now implies that

|Snφ(p′))− Snφ(q′)| ≤ O((νn(p)µ̂n(p))θ).(19)

Combining (17) and (19), we obtain:

|r′ − s′| = |(r′n − s′n)− (Snφ(p′))− Snφ(q′))|
≤ |r − s|+O(νn(p)α) +O((νn(p)µ̂n(p))θ)

≤ |r − s|+O((νn(p)µ̂n(p))θ),

since να < (νµ̂)θ.
We would like to compare |r′ − s′| to d((p, r), (q, s))θ; the latter quantity is equal

to (|r − s| + d(p, q))θ = (|r − s| + Θ((νn(p)µ̂n(p))θ); by the preceding calculation,
|r′ − s′| ≤ O(d((p, r), (q, s))θ). Hence hsφ is θ-Hölder continuous.

Having completed this preliminary step, we turn to the proof of the main result in
this section.

Proof of Theorem A, part II. — Suppose that f is accessible and φ : M → R is
Hölder continuous. Let Φ: M → R be a continuous map satisfying φ = Φ ◦ f −Φ + c,
for some c ∈ R. We show that Φ is Hölder continuous. The key ingredient in the
proof is the following lemma.
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Lemma 5.5. — There exist C > 0, r0 > 0 and κ ∈ (0, 1) with the following properties.
For any pair of points p, q ∈ M , there exist functions α : BM (p, r0) → BM (q, 1)

and β : BM (p, r0)→ R with the following properties:
1. α(p) = q

2. for all z, z′ ∈ BM (p, r0),

d(α(z), α(z′)) ≤ Cd(z, z′)κ,

and
|β(z)− β(z′)| ≤ Cd(z, z′)κ,

3. for all z ∈ BM (p, r0), α(z) is the endpoint of an su-path in M originating at z,
4. for all z ∈ BM (p, r0), and t ∈ R, ∆(z, t) is the endpoint of an su-lift path

in M × R originating at (z, t), where ∆: BM (p, r0)× R→ BM (q, 1)× R is the
map ∆(z, t) = (α(z), t+ β(z)).

Assuming this lemma, the proof proceeds as follows. Let C, r0, κ be given by
Lemma 5.5. Fix x0, x1 ∈ M with d(x0, x1) < r0. For i ≥ 1, we construct a se-
quence of points xi and maps αi : BM (x0, r0)→ BM (xi, 1), βi : BM (x0, r0)→ R and
∆i : BM (x0, r0)× R→ BM (xi, 1)× R inductively as follows. The point x1 is already
defined. Assume that xi, for i ≥ 1 has been defined. Let αi and βi be given by the
lemma, setting p = x0 and q = xi (so that h(x0) = xi). Define ∆i, as in Lemma 5.5,
by ∆i(z, t) = (αi(z), t+ βi(z)). We then set xi+1 = αi(x1).

We next argue that, for any i ≥ 1, the map ∆i has the property that, for all
z ∈ BM (x0, r0),

∆i(z,Φ(z)) = (α(z),Φ(z) + βi(z)) = (α(z),Φ(α(z))).

Since Φ is a continuous solution to (2), Proposition 4.7 implies then the graph of Φ

is bisaturated. That is, for any p, q ∈ M , if (q, t) is the endpoint of any su-lift path
originating at (p,Φ(p)), then t = Φ(q). But properties 3 and 4 of the maps ∆i given
by Lemma 5.5 imply that αi(z) is the endpoint of an su-path originating at z, and
∆i(z,Φ(z)) is the endpoint of an su-lift path originating at (z,Φ(z)). Hence we obtain
that ∆i(z,Φ(z)) = (αi(z),Φ(αi(z))), as claimed.

It now follows from the properties of ∆i and the definition of xi that, for i ≥ 1:

Φ(x0) + βi(x0) = Φ(αi(x0)) = Φ(xi),

and
Φ(x1) + βi(x1) = Φ(αi(x1)) = Φ(xi+1).

Thus:

Φ(x1)− Φ(x0) = (Φ(xi+1)− Φ(xi)) + (βi(x0)− βi(x1)) .(20)

Summing equation (20) over i ∈ {1, . . . , n}, we obtain:

n (Φ(x1)− Φ(x0)) = (Φ(xn+1)− Φ(x1)) +
n∑
i=1

(βi(x0)− βi(x1)) ,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



100 A. WILKINSON

and so:

|Φ(x1)− Φ(x0)| ≤ 1

n
|Φ(xn+1)− Φ(x1)|+ 1

n

n∑
i=1

|βi(x0)− βi(x1)|

≤ 2

n
‖Φ‖∞ +

1

n

n∑
i=1

Cd(x0, x1)κ

≤ 2

n
‖Φ‖∞ + Cd(x0, x1)κ.

Sending n → ∞, we obtain that |Φ(x1) − Φ(x0)| ≤ Cd(x0, x1)κ; since x0 and x1

were arbitrary points within distance r0 of each other, this implies that Φ is κ-Hölder
continuous. This completes the proof of Proposition 5.2, assuming Lemma 5.5.

Proof of Lemma 5.5. — Let θ be given by Proposition 5.2, and let NM , LM be given
by Lemma 4.5.

We first describe how to construct the maps α and β in the case where q ∈
W s

(p, LM ). The analogous construction works for q ∈ W u
(p, LM ). Lemma 4.5 im-

plies that any p and q can be connected by an (KM , LM )-accessible sequence. We can
therefore construct α, β for a general pair of points p and q by composing at most
KM maps along stable and unstable segments.

Suppose then that p′ ∈ W s
(p, LM ). We define α = αp,p′ as follows. Fix a foliation

box U of W s containing W s
(p, LM ), and let {Σx}x∈U be a (uniformly chosen) smooth

foliation by admissible transversals to W s in U . For z ∈ U , we define αp,p′(z) to be
the unique point of intersection of W s

(z, LM ) with Σp′ in U . The map αp,p′ : U →
Σp′ sends p to p′ and is θ-Hölder continuous when restricted to any transversal Σx.
Since {Σx}x∈W s(p) is a smooth foliation, it follows that αp,p′ is θ-Hölder continuous,
uniformly in p′ ∈ U .

Similarly, for (z, t) ∈ U × R, we define ∆p,p′(z, t) to be the unique point of inter-
section of W s

φ(z) with Σp′ ×R in U ×R. Proposition 3.1 implies that ∆p,p′ takes the
form

∆p,p′(z, t) = (αp,p′(z), t+ βp,p′(z)),

for some function βp,p′ : U → R. Proposition 5.2 implies that ∆p,p′ , and so βp,p′ , is
θ-Hölder continuous, uniformly in p′ ∈ U .

The same construction defines αp,p′ and βp,p′ for p′ ∈ W u
(p,KM ). Finally, for p, q

in M , we fix an (KM , LM )-accessible sequence (y0, y1, . . . , yKM ) connecting p and q
and define

αp,q = αyKM−1,yKM
◦ αyKM−2,yKM−1

◦ · · · ◦ αy0,y1 .

By construction, αp,q(p) = q. Similarly define βp,q.
Then there exists r0 > 0 such that for every pair p, q, αp,q and βp,q are defined

in the neighborhood BM (p, r0) and αp,q takes values in BM (q, 1). Furthermore, there
exists C > 0 such that (1) and (2) in the statement of the lemma hold, for κ = θKM .
Finally, property (4) holds by construction.
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Remark: The Hölder exponent for Φ obtained in this proof can be considerably
smaller than the exponent for φ. In particular, the largest possible exponent for the
W s
φ or W u

φ holonomy given by Proposition 5.2 is 1
2 . Concatenating these holonomies

along K steps of an accessible sequence reduces this exponent further to 1
2K

. In
contrast, the exponents for Φ and φ in Theorem 0.1 are the same. This is because the
transverse Hölder continuity of W s

φ and W u
φ does not play a role in the proof when f

is Anosov, and so only the Hölder exponent of the leaves, which is the same as for φ,
determines the exponent for Φ.

6. Jets

In this section we review basic facts about jets and jet bundles that will be needed
in subsequent sections. The reader is referred to [17, 22] for a more detailed account.

If N1 and N2 are Ck manifolds and ` ≤ k, we denote by Γ`(N1, N2) the set of
local Ck maps from N1, N2; each element of Γ`(N1, N2) is a triple (p, φ, U), where
φ is a C` map from a neighborhood U of p in N1 to N2. For p ∈ N1, we denote
by Γ`p(N1, N2) the set of elements of Γ`(N1, N2) based at p. We denote by J`(N1, N2)

the bundle of C` jets from N1 into N2: each element of J`(N1, N2) is an equivalence
class of triples (p, φ, U) ∈ Γ`p(N1, N2), where two triples (p, φ, U) and (p′, φ′, U ′) are
equivalent if p = p′, and the partials of φ and φ′ at p up to order ` coincide.

We denote by [p, φ, U ]` the equivalence class containing (p, φ, U), which is called
a `-jet at p. Alternately, we use the notation j`pφ. The point p is called the source
of (p, φ, U) and φ(p) is the target. The source map σ gives J`(N1, N2) the structure
of a Ck−` bundle over N1; we denote by J`p(N1, N2) the `-jets with source p ∈ N1.
We also denote by J`(N1, N2)q the set of jets with target q.

More generally one has the `-jet bundle associated to a fiber bundle. If π : B→M

is a Ck fiber bundle, and ` ≤ k, we denote by Γ`(π : B → M) the set of C` local
sections of B, and by Γ`p(π : B → M) the set of C` local sections whose domain
contains p ∈M . We then define the `-jet bundle J`(π : B→M) to be the set of pairs
(p, φ), where φ ∈ Γrp(π : B → M), and two pairs (p, φ) and (p′, φ′) are equivalent if
p = p′, and the partials of φ and φ′ at p up to order ` coincide. Then J`(π : B→M)

is a Ck−` bundle over M . Observe that J`(N1, N2) = J`(projN1
: N1 × N2 → N1)

under the natural identification of sections of N1 ×N2 with functions φ : N1 → N2.
For `′ ≤ `, there is a natural projection π`,`′ from the `-jet bundle to the `′-jet

bundle that sends j`pφ to j`
′

p φ. Under this projection, J` has the structure of a Ck−`
′

fiber bundle over J`
′
. Moreover, J`−`

′
(J`

′
) = J`.

The bundle J`(Rm,Rn) is a trivial bundle over Rm. The fiber space J`v(Rm,Rn)

is the `+ 1-fold product P `(m,n) = Π`
i=0L

i
sym(Rm,Rn), where Lisym(Rm,Rn) is the

vector space of of symmetric, i-multilinear maps from Rm to Rn. Each `-jet [v, φ, U ]`
in J`v(Rm,Rn) has a canonical representative, which is the `th order Taylor poly-
nomial of φ about v. To denote an element of J`(Rm,Rn), we sometimes use the
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notation (v, ℘) with v ∈ Rm and ℘ a degree ` polynomial (suppressing the neighbor-
hood U , since polynomials are globally defined). These give C∞ global coordinates
on J`(Rm,Rn); in this way we regard J`(Rm,Rn) as a finite dimensional vector space
with a Euclidean structure | · |.

6.1. Prolongations. — If φ : N1 → N2 is a C` function, then φ gives rise to a
section of the bundle J`(N1, N2) over N1 via the map v 7→ j`vφ. This section, denoted
j`φ is called the `-prolongation of φ. In the case ` = 0, the jet bundle J0(N1, N2) is
just the product N1×N2, and the image of N1 under the prolongation j0φ is the just
the graph of φ.

The function φ : M →M is Ck if and only if the `-prolongation of φ is Ck−`. Not
every continuous section of J`(M,N) is the prolongation of a C` function; however,
the set of prolongations of smooth functions is closed:

Proposition 6.1. — If fn ∈ C`(M,N) and j`fn → j`f in the weak topology
on C0(M,J`(M,N)), then f ∈ C`(M,N).

More generally, if σ : M → B is a section (resp. local section) of a Ck bundle
π : B→M , then the `-prolongation j`σ : M → J`(π : B→M) is a Ck−` section (resp.
local section). The analogue of Proposition 6.1 holds for prolongations of sections.

6.2. Isomorphism of jet bundles. — The next lemma is used extensively in
various forms in this paper.

Lemma 6.2. — Let N1, N2, and N3 be Ck manifolds.
1. Let g : N2 → N3 be a Ck map. Then for every ` ≤ k, the map j`xφ 7→ j`x(g ◦ φ)

is a Ck−` map from J`(N1, N2) to J`(N1, N3).
2. Let h : N1 → N2 be a Ck diffeomorphism. Then for every ` ≤ k, the map
j`xφ 7→ j`h(x)(φ ◦ h

−1) is a Ck−` diffeomorphism from J`(N1, N3) to J`(N2, N3).

Remark: There is some subtlety in item 2. If h : N → N is a Ck diffeomorphism other
than the identity, then neither of the following maps is even differentiable on J`(N,N):

j`xφ 7→ j`h(x)φ or j`xφ 7→ j`x(φ ◦ h−1).

It is at first glance a fortuitous fact that the composition of these maps is Ck−`.
What item 2 expresses is the fact that the `-jet bundle is a Ck−` invariant under
Ck-diffeomorphisms. More generally:

Corollary 6.3. — (see, e.g., [22], Chapter 14.4) If π : B → M and π′ : B′ → M ′ are
Ck fiber bundles, and H : B → B′ is a Ck isomorphism of fiber bundles, covering
the Ck diffeomorphism h : M → M ′, then for every ` ≤ k there is a canonical Ck−`

isomorphism of fiber bundles

H` : J`(π : B→M)→ J`(π′ : B′ →M ′)

covering h. For `′ ≤ `, the map H` covers H`′ under the natural projection.
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The map H` is defined by:

H`(j`xσ) = j`h(x)(H ◦ σ ◦ h
−1).

6.3. The graph transform on jets. — In its local form, Corollary 6.3 tells us
that for diffeomorphisms of Rm×Rn of the form H(x, y) = (h(x), g(x, y)), the induced
graph transform on functions Φ: Rm → Rn produces a map that is smooth on the level
of jets. By graph transform, we mean the map T H : {Φ: Rm → Rn} → {Φ: Rm →
Rn} defined by:

T H(Φ)(x) = g(h−1(x),Φ(h−1(x))).

It is easy to see that if H is Ck, then T H(C`(Rm,Rn)) = C`(Rm,Rn), for all ` ≤ k;
nonetheless, the restriction of T H to C`(Rm,Rn) is not smooth at all, even for ` = 0.
What is smooth, however, is the induced map H` : J`(Rm,Rn)→ J`(Rm,Rn):

H`(j`xψ) = j`h(x)( T H(ψ)).

This map on `-jets is Ck−`.
More generally, whenever a graph transform is well-defined, it induces a continuous

map on jets, which we now describe. Suppose that H(x, y) = (h(x, y), g(x, y)) is a Ck

local diffeomorphism of Rm × Rn. Write

DvH =

(
Av Bv

Cv Kv

)
,

where Av : Rm → Rm, Bv : Rn → Rm, Cv : Rm → Rn and Kv : Rn → Rn. Suppose
that there exists ρ0 > 0 such that for all v ∈ BRm+n(0, ρ0), the map Av is invertible.

Then there exists ρ1 > 0 such that, for every ` ≤ k, there exists a Ck−` local
diffeomorphism

H` : J`(Rm,Rn)→ J`(Rm,Rn),

defined in the ρ1-neighborhood of the 0-section of J`BRm (0,ρ0)(R
m,Rn), given by:

H`(j`xψ) = j`h(x,ψ(x))

(
(g ◦ (id, ψ)) ◦ (h ◦ (id, ψ))−1

)
.

The map H` has the defining property that for every ψ ∈ Γ`(Rm,Rn), if j`xψ is in the
domain of H`, and ψ′ ∈ Γ`(Rm,Rn) satisfies:

graph(ψ′) = H(graph(ψ))

in a neighborhood of h(x, ψ(x)), then H`(j`xψ) = j`h(x,ψ(x))ψ
′. This fact motivates the

term “graph transform.”
We explore the properties of these maps in more detail; this will be used in subse-

quent sections. Writing P `(m,n) = Π`
i=0L

i
sym(Rm,Rn), we have coordinates

(x, ℘) 7→ (x, ℘0, . . . , ℘`)

on Rm × P `(m,n), where ℘i = Di
x℘ ∈ Lisym(Rm,Rn). Denote by H`(x, ℘)i the

Lisym(Rm,Rn)-coordinate of H`(x, ℘), so that

H`(x, ℘) = (h(x, ℘0), H`(x, ℘)0, . . . ,H
`(x, ℘)`).
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Clearly H0(x, ℘0)0 = g(x, ℘0). Because jets are natural, for `′ ≤ `, we have

H`(x, ℘0, . . . , ℘`)`′ = H`′(x, ℘0, . . . , ℘`′)`′ .

Furthermore,

H1(x, ℘0, ℘1)1 =
(
C(x,℘0) +K(x,℘0)℘1

) (
A(x,℘0) +B(x,℘0)℘1

)−1
.

Differentiating this expression ` times (implicitly), we get, for ` ≥ 1:

H`(x, ℘0, . . . , ℘`)` = (K(x,℘0)℘` −H1(v, ℘0, ℘1)1B(x,℘0)℘`

+S`(x, ℘0, . . . , ℘`−1)) ◦ (A(x,℘0) +B(x,℘0)℘1)−1,

where S` is a polynomial in (x, ℘0, . . . , ℘`−1) and in the partial derivatives of H
at (x, ℘0) up to order `.

Notice that if B(x,℘0) = 0, then these expressions reduce to:

H`(x, ℘0, . . . , ℘`)` = (K(x,℘0)℘` + S`(x, ℘0, . . . , ℘`−1)) ◦A−1
(x,℘0).

In particular, if B(x,℘0) = 0, then there exists ρ2 > 0 such that for all (x′, ℘′) lying in
the ρ2-neighborhood of (x, ℘) in J`(Rm,Rn), we have:

|H`(x, ℘)` −H`(x′, ℘′)`|(21)
≤ Q`(x,℘0)(℘` − ℘

′
`) +O

(
|(x, ℘0, . . . , ℘`−1)− (x′, ℘′0, . . . , ℘

′
`−1)|

)
,(22)

where Q`(x,℘0) : L`sym(Rm,Rn)→ L`sym(Rm,Rn) is the linear map:

Q`(x,℘0)(℘`) = K(x,℘0) ◦ ℘` ◦A−1
(x,℘0).

Observe that, because ℘` is a symmetric map of order `, we have ‖Q`(x,℘0)‖ ≤
‖K(x,℘0)‖/m(A(x,℘0))

`, where m(X) = ‖X−1‖−1 denotes the conorm of an invert-
ible matrix X.

For ` ≥ 1, we may regard J`(Rm,Rn) as a vector bundle over J0(Rm,Rn) (=
Rm × Rn) under the natural projection π`,0; the fiber is Π`

i=1L
i
sym(Rm,Rn). In a

variety of contexts (see Section 10.1 ff.) we will consider the case where the map H` is
a fiberwise contraction on a neighborhood of the 0-section of this bundle. We assume
that ‖K(x,℘0)‖ < m(A(x,℘0)) and ‖K(x,℘0)‖ < m(A(x,℘0))

` (which together imply that
‖K(x,℘0)‖ < m(A(x,℘0))

i, for 1 ≤ i ≤ `).
Continuing to assume that B(x,℘0) = 0, we next construct in the standard way a

norm | · |′ on Π`
i=1L

i
sym(Rm,Rn) such that:

|H`(x, ℘)−H`(x, ℘′)|′(23)

≤ max

®
‖A(x,℘0)‖
m(K(x,℘0))

,
‖K(x,℘0)‖
m(A(x,℘0))`

´
· |(x, ℘)` − (x, ℘′)`|′,(24)

for (x, ℘), (x, ℘′) lying in the set {(x, ℘0, ℘1, . . . , ℘`) : |(℘1, . . . , ℘`)|′ ≤ 1}. To do this,
fix L > 0 and for (℘1, . . . , ℘`) ∈ Π`

i=1L
i
sym(Rm,Rn), define:

|(℘1, . . . , ℘`)|L = L`|℘1|+ · · ·+ L|℘`|.
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It is not difficult to verify using (21) that if L > 0 is sufficiently large, then (23) holds
for |·|′ = |·|L and all (x, ℘), (x, ℘′) lying in the set {(x, ℘0, ℘1, . . . , ℘`) : |(℘1, . . . , ℘`)|′ ≤
1}.

The same holds true if ‖B(x,℘0)‖ is sufficiently small. Summarizing this discussion,
we have:

Lemma 6.4. — Fix ` ≥ 1. For every R > 0 and κ ∈ (0, 1) there exist ε > 0 and L > 0

with the following properties.
Let H : BRm+n(0, 1)→ Rm+n be a C` local diffeomorphism such that:

– dC`(H, Id) ≤ R, and

– writing DvH =

(
Av Bv

Cv Kv

)
, we have:

inf
v∈BRm+n (0,1)

m(Av) > 0,

κ > sup
v∈BRm+n (0,1)

max

ß ‖Kv‖
m(Av)

,
‖Kv‖
m(Av)`

™
,

and

sup
v∈BRm+n (0,1)

‖Bv‖ < ε.

Then for all v = (vm, vn) ∈ Rm+n and all j`vmψ, j`vmψ′ ∈ π−1
`,0 (v), with

|j`vmψ|, |j`vmψ′| ≤ 1, we have:

|H`(j`vmψ)−H`(j`vmψ
′)|L ≤ κ|j`vmψ − j`vmψ′|L.

7. Proof of Theorem B

Before proving our main higher regularity result (part IV of Theorem A), we give
a proof of Theorem B, as the proof conveys some of the basic techniques we will use
later, but in a simpler setting.

Suppose that N is an embedded C1 submanifold of Rm+n such that, for every
x, y in N , there exist neighborhoods U of x and V of y and a Ck diffeomorphism
H : U → V such that H(U) = V and H(U ∩N) = V ∩N , where k ≥ 2.

We prove that N is a C` submanifold of Rm+n, for all ` ≤ k, by induction on `. By
assumption, N is a C1 submanifold. Suppose that N is a C` submanifold, for some
` ≤ k − 1. We prove that N is C`+1 submanifold. As the problem is local, we may
restrict attention to a small neighborhood in N .

Fix a point x0 ∈ N and a neighborhood V of x0 in N . By a local Ck change of
coordinates in N ′ sending x0 to 0 ∈ Rn × Rm, we may assume that N is the graph
of a C` function Φ : BRn(0, 1) → Rm satisfying jk0 Φ = 0. The first main step in the
proof of Theorem B is the following lemma.
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Lemma 7.1. — For every u ∈ BRn(0, 1) there exists ρ = ρ(u) > 0, and for every
i ∈ {0, . . . , `}, a Ck−i local diffeomorphism

Hi
u : BJi(Rn,Rm)(0, ρ)→ J i(Rn,Rm)

with the following properties:
1. Hi

u covers Hi−1
u under the projection J i(Rn,Rm)→ J i−1(Rn,Rm), and

2. writing H0
u(v, w) = (hu(v, w), gu(v, w)), we have hu(0,Φ(0)) = u, and:

H`
u(j`vΦ) = j`hu(v,Φ(v))Φ,

for every v such that j`vΦ ∈ BJ`(Rn,Rm)(0, ρ).

Proof. — For i = 0, this follows immediately from Ck homogeneity. Given u ∈
BRn(0, 1), select a Ck local diffeomorphism

Hu = (hu, gu) : BRn×Rm(0, ρ0)→ Rn × Rm

sending (0, 0) = (0,Φ(0)) to (u,Φ(u)) and preserving the graph of Φ. Under the
natural identification of J0(Rn,Rm) with Rn × Rm, this defines the map H0

u:

H0
u(v, w) = (hu(v, w), gu(v, w)).

Suppose i ≥ 1, and fix a point v′ ∈ Rn near 0, and a function ψ ∈ Γiv′(Rn,Rm).
Consider the local map hu ◦ (id, ψ) ∈ Γiv′(Rn,Rn) given by:

Hu ◦ (id, ψ)(v) = hu(v, ψ(v)).

Its derivative at v′ is

Dv′ (hu ◦ (id, ψ)) =
∂hu
∂v

(v′, ψ(v′)) +
∂hu
∂w

(v′, ψ(v′))Dv′ψ.(25)

Since DH0
u preserves the tangent space to the graph of Φ, it follows that the map

∂Hu/∂v(0, 0) is a diffeomorphism onto a neighborhood of u. On the other hand,
plugging in v′ = 0,Dv′ψ = 0 into equation (25) we obtain that for any ψ ∈ Γi0(Rn,Rm)

with j1
0ψ = 0, D0 (hu ◦ (id, ψ)) = ∂hu

∂v (0, 0).
Since H0 is C1, from this it follows that for |jiv′ψ| and |v′| sufficiently small, the

derivative Dv′ (hu ◦ (id, ψ)) is invertible. The inverse function theorem then implies
that hu ◦ (id, ψ) is a Ci local diffeomorphism in a neighborhood of v ∈ Rn, provided
|jivψ| is sufficiently small; in particular, (hu ◦ (id, ψ))−1 is defined.

For i ≥ 1, we then set

Hi
u(jivψ) = jihu(v,ψ(v))

(
(gu ◦ (id, ψ)) ◦ (hu ◦ (id, ψ))−1

)
.

Lemma 6.2 implies that Hi
u is a Ck−i local diffeomorphism. By construction, the maps

Hi
u satisfy properties (1) and (2).

Remark: Notice that Lemma 7.1 implies that the image of BRn(0, 1) under j`Φ is
a C1 homogeneous submanifold of J`(Rn,Rm). At this point, it is possible to appeal
to Theorem 1.2 to finish the proof.

Returning to the proof of Theorem B, our next step is to show:
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If Φ is C` and j`Φ is a C1-homogeneous function (in the sense of
Lemma 7.1), then j`Φ is C1, and so Φ is C`+1.

To this end, let A : J`(Rn,Rm) → J`(Rn,Rm) be an invertible linear transforma-
tion, and let ρ > 0. We next define a subset G(A, ρ) ⊂ BRn(0, 1) consisting of the set
of all u ∈ BRn(0, 1) with the following properties:

– For each i ∈ {0, . . . `}, there exists a bilipschitz embedding

H̃i
u : BJi(Rn,Rm)(0, ρ)→ J i(Rn,Rm)

such that:
– H̃i

u covers H̃i−1
u under the projection J i(Rn,Rm)→ J i−1(Rn,Rm),

– writing H̃0
u(v, w) = (h̃u(v, w), g̃u(v, w)), we have h̃u(0,Φ(0)) = u, and:

H̃`
u(j`vΦ) = jh̃u(v,Φ(v))Φ,

for every v such that j`vΦ ∈ BJ`(Rn,Rm)(0, ρ), and
– Lip(A − H̃`

u) ≤ m(A)
5 on BJ`(Rn,Rm)(0, ρ), where m(A) = ‖A−1‖−1 denotes the

conorm of A.
Fix a countable dense subset {Aj}j∈Z+

⊂ GL(J`(Rn,Rm)) of invertible linear
transformations.

Lemma 7.2. — For each A ∈ GL(J`(Rm,Rn)), and ρ > 0, the set G(A, ρ) is compact
in BRn(0, 1). Moreover:

BRn(0, 1) =
⋃

j1,j2∈Z+

G(Aj1 , j
−1
2 ).

Proof. — Suppose that G(A, ρ) is nonempty. Let uj be a sequence in G(A, ρ), and for
each i ∈ {0, . . . , `}, let H̃i

uj be the associated sequence of bilipschitz embeddings. Since
the space of bilipschitz embeddings is locally compact in the uniform topology, there
exists a convergent subsequence uj` → u ∈ BRn(0, 1) with H̃i

uj`
→ H̃i

u uniformly for
all i. The maps H̃i

u are bilipschitz embeddings, with H̃i
u covering H̃i−1

u , and Lip(Hi
u−

A) ≤ m(A)
5 . Since the `-jet j`Φ is a closed subset of J`(Rn,Rm), the limiting map H̃`

u

preserves j`Φ. Hence u ∈ G(A, ρ), and so G(A, ρ) is compact.
Lemma 7.1 implies that for each u, and each i there exists a Cr−i diffeo-

morphism Hi
u satisfying the first two properties. Let ε = m(D0H

`
u)/11. Fix

Aj1 ∈ GL(J`(Rn,Rm)) such that ‖D0H
`
u − Aj1‖ < ε. A simple estimate shows

that ‖D0H
`
u − Aj1‖ <

m(Aj1 )

10 . Next, fix j2 such that Lip(D0H
`
u − H`

u) <
m(Aj1 )

10

on BJ`(Rm,Rn)(0, j
−1
2 ). Then Lip(Aj1 − H`

u) <
m(Aj1 )

5 on Bj`(Rn,Rm)(0, j
−1
2 ), which

implies that u ∈ G(Aj1 , j
−1
2 ). Hence:

BRn(0, 1) =
⋃

j1,j2∈Z+

G(Aj1 , j
−1
2 ),

completing the proof of the lemma.
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Since BRn(0, 1) is a Baire space, there exist integers j1, j2 such that G(Aj1 , j2
−1)

has nonempty interior. Let U be an open ball contained in G(Aj1 , j
−1
2 ). For each pair

u, u′ ∈ U and i ∈ {0, . . . , `}, we set Hi
(u,u′) = H̃i

u′ ◦ H̃i
u

−1
, which is defined on a

neighborhood of jiuΦ in J i(Rn,Rm). We thus obtain:

Lemma 7.3. — There exists ρ > 0 such that, for every pair z = (u, u′) ∈ U × U , the
following hold:

– for each i ∈ {0, . . . `}, Hi
z is a bilipschitz homeomorphism, defined on a ρ-neigh-

borhood of jiuΦ,
– Hi

z covers Hi−1
z under the projection J i(Rn,Rm)→ J i−1(Rn,Rm),

– writing H0
z (v, w) = (hz(v, w), gz(v, w)), we have hz(u,Φ(u)) = u′, and:

H`
z(j

`
vΦ) = jhz(v,Φ(v))Φ,

for every v such that j`vΦ ∈ BJ`(Rn,Rm)(juΦ, ρ), and
– Lip(I −H`

z) ≤ 1
2 on BJ`(Rn,Rm)(j

`
uΦ, ρ).

Let K = 3/2, which is a bound, over all z = (u, u′) ∈ U × U , for the Lipschitz
norm of H`

z on BJ`(Rn,Rm)(j
`
uΦ, ρ). Since Φ is assumed to be at least C1, there exists

a constant C > 0 such that, for all u, u′ ∈ U ,

|j0
uΦ− j0

u′Φ| ≤ C|u− u′|.

Fix a point u0 ∈ U , and let α = d(u0,Rn \ U) (which depends uniformly on u0).
Since j`Φ is continuous, if u is sufficiently close to u0 (uniformly in u0), we will have
j`uΦ ∈ BJ`(Rm,Rn)(j

`
u0

Φ, ρ).
Let u1 ∈ U be such a point. Fix N ∈ Z+ such that:

α

CK(N + 1)
≤ |u1 − u0| <

α

CKN
.

We construct a sequence of points u0, u1, u2, . . . , uN in U inductively as follows.
The points u0 and u1 have already been defined. For i ∈ {1, . . . , n − 1}, we set
zi = (u0, ui) ∈ U × U and ui+1 = hzi(u1,Φ(u1)). We need to check that if ui is
contained in U , then ui+1 is also contained in U .

To see this, note that, for i ≤ N , we have:

|ui − ui−1| = |hzi(u1,Φ(u1))− hzi(u0,Φ(u0))|
≤ K|j0

u1
Φ− j0

u0
Φ|

≤ KC|u1 − u0|

Hence, for i ≤ N , this implies that |ui − u0| ≤ KCi|u1 − u0| < α, so that ui ∈ U , for
all i ∈ {1, . . . , N}.

Then, for each i:

j`uiΦ− j
`
ui−1

Φ = H`
zi(j

`
u1

Φ)−H`
zi(j

`
u0

Φ)

= j`u1
Φ− j`u0

Φ + (H`
zi − Id)(j`u1

Φ)− (H`
zi − Id)(j`u2

Φ)
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Summing these equations from i = 1, . . . , N , and taking the norm, we obtain:

|j`uNΦ− j`u0
Φ| ≥ N |j`u1

Φ− j`u0
Φ|

−
N∑
i=1

∣∣∣(H`
zi − Id)(j`u1

Φ)− (H`
zi − Id)(j`u0

Φ)
∣∣∣

≥ N

2
|j`u1

Φ− j`u0
Φ|,

since Lip(H`
zi − Id) < 1

2 , for i = 1, . . . , N .
Since j`Φ is continuous, by assumption, there exists a constant M > 0 such that

|j`vΦ| ≤M , for all v ∈ U . Then:

|j`u1
Φ− j`u0

Φ| ≤ 2

N
|j`uNΦ− j`u0

Φ|

≤ 4M

N

=
4MCK(N + 1)

nα

α

CK(N + 1)

≤ 12MC

α
|u1 − u0|.

From this it follows that u 7→ j`uΦ is Lipschitz at u0; since u0 was arbitrary, the map
is locally Lipschitz on U . Hence j`Φ is differentiable almost everywhere on U ⊂ V .
C`+1-homogeneity of V now implies that j`Φ is differentiable everywhere on V . Taking
a point of continuity for the derivative of j`Φ, and applying C`+1-homogeneity one
more time, we obtain that j`Φ is C1, and so V is a C`+1 submanifold of Rn × Rm.
This completes the inductive step of our proof, and so completes the proof that N is
a Ck submanifold of Rm+n.

8. Journé’s theorem, re(re)visited.

Journé’s theorem [19] is widely used in rigidity theory to show that a continuous
function is smooth. The theorem states that any function that is uniformly smooth
along leaves of two transverse foliations with uniformly smooth leaves is smooth. This
theorem is typically applied in the Anosov setting as follows: according to Proposi-
tion 4.7, the graph of a continuous transfer function Φ for a smooth coboundary φ
is bisaturated, i.e., saturated by leaves of the unstable and stable foliation for the
skew product fφ. Since fφ is smooth, the leaves of these foliations are smooth graphs
over the corresponding foliations for f . This implies that the function Φ is smooth
along leaves of the stable and unstable foliations W s and W u for f . In the Anosov
setting, these foliations are transverse, so applying Journé’s theorem, we obtain that
Φ is smooth (see [31]).

Here in the partially hyperbolic setting, we reproduce this argument in part. Indeed,
by the same argument, any continuous transfer function Φ of a smooth coboundary
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φ is smooth along leaves of W s and W u. Since the stable and unstable foliations are
not necessarily transverse, we cannot apply Journé’s theorem at this point. The idea
is to use accessibility and center bunching to show that the restriction of Φ to leaves
of a center foliation is also smooth. One then applies Journé’s theorem twice, first to
the pair of foliations W c and W u, and then to the pair W cu and W s, to conclude
that Φ is smooth.

If one assumes that f is dynamically coherent, then it is possible to turn this idea
into a rigorous argument, as we outlined above in Section 1. Here are a few more
details on how one can show that Φ is smooth along leaves of W c in the dynamically
coherent setting. Bisaturation of Φ implies that the graph of Φ when restricted to
the W c-manifolds is invariant under the W s

φ and W u
φ-holonomy maps between lifted

W c
φ-manifolds. The strong bunching hypothesis on f implies that these holonomy

maps are smooth when restricted to center manifolds of fφ. Each center manifold
W c
φ(p, t) of fφ is the product W c

(p) × R of a center manifold for f with R, and the
W s
φ and W u

φ-holonomies between W c
φ-manifolds covers the corresponding W s and

W u-holonomies between W c-manifolds. Since f is accessible and Φ is bisaturated, any
two points on the graph of Φ can be connected by an su-lift path. Corresponding to any
such su-lift path is a composition of W s

φ and W u
φ-holonomy diffeomorphisms between

W c
φ-manifolds that preserves the graph of Φ. Putting all of this together, we get that

the graph of Φ over any given center manifold W c
(p) is a smoothly homogeneous

submanifold of W c
(p)×R and so by Theorem B is a smooth submanifold. Hence the

restriction of Φ to W c leaves is also uniformly smooth.
If we do not assume dynamical coherence, then this argument fails. One can at-

tempt to use in place of a center foliation a local “fake” center foliation Ŵ
c

x, as is done
in [9] to prove ergodicity. However, the fake center foliation Ŵ

c

x available to us is
not sufficiently canonical to allow a dynamical proof that the graph of Φ is smoothly
homogeneous over Ŵ

c

x leaves. Another difficulty is that the fake center foliation and
the unstable foliation W u are not jointly integrable, and so we cannot apply Journé’s
theorem in the two steps outlined above. Fortunately, both problems can be overcome,
and it is possible to employ the fake foliations of [9] to prove Theorem A. The key
observations that allow is to do this are:

1. the fake center foliation Ŵ
c

x and the fake unstable foliation Ŵ
u

x are jointly
integrable,

2. one can show that Φ has continuous “approximate jets” along leaves of Ŵ
u

x and
Ŵ
c

x, and
3. Journé’s theorem has a stronger formulation in terms of “approximate jets”.

We detail the argument in the next section. In this section, we describe the stronger
formulation of Journé’s theorem and what we mean by “approximate jets.”

Definition 8.1. — Let D be a domain in Rm, C ≥ 1, α > 0 and ` ∈ Z+. A function
ψ : D → Rn has an (`, α, C)-expansion at z if there exists a polynomial ℘z of degree
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≤ ` such that:
|ψ(z′)− ℘z(z′)| ≤ C|z − z′|`+α,

for all z′ ∈ D.

The following theorem was proved by Campanato (in a more general context):

Theorem 8.2. — [10] For ` ∈ Z+ and α ∈ (0, 1], a function ψ : Rm → Rn is C`,α if
and only if, for every compact set D ∈ Rm, there exists C > 0 such that ψ has an
(`, α, C)-expansion at every z ∈ D.

Furthermore, ψ is a polynomial of degree ≤ ` if and only if there exists α > 1

such that, for every compact set D ∈ Rm, there exists a C > 0 such that ψ has an
(`, α, C)-expansion at every z ∈ D.

Definition 8.3. — A parametrized C`,α transverse pair of plaque families is a pair of
maps (ωH , ωV ), with

ωH : Im+n × Im → Rm+n, and ωV : Im+n × In → Rm+n,

of the form:

ωHz (x) = z + (x, βHz (x)), and ωVz (y) = z + (βVz (y), y),

for z ∈ Im+n, where βHz ∈ C`,α(Im,Rn) and βVz ∈ C`,α(In,Rm) have the following
additional properties:

1. βHz (0) = 0 and βVz (0) = 0, for all z ∈ Im+n,
2. βH(0,0)(x) = 0 for every x ∈ Im, and βV(0,0)(y) = 0, for every y ∈ In,
3. The maps z 7→ βHz ∈ C`,α(Im,Rn) and z 7→ ωVz ∈ C`,α(In,Rm) are continuous.

If (ωH , ωV ) is a parametrized C`,α transverse pair of plaque families, we define the
norm ‖(ωH , ωV )‖`,α as follows:

‖(ωH , ωV )‖`,α := sup
z∈Im+n

‖βHz ‖C`,α(Im,Rn) + ‖βVz ‖C`,α(In,Rm).

Remark: A pair of transverse foliations with uniformly C`,α leaves, after a C`,α

local change of coordinates, becomes a parametrized transverse pair of plaque families.
Similarly, a pair of continuous plaque families (where the plaques depend continuously
on the their center point in the C`,α topology) transverse at every point gives a
transverse pair of plaque families.

Theorem 8.4. — Fix ` ∈ Z+ and α ∈ (0, 1). Let (ωH , ωV ) be a parametrized C`,α

transverse pair of plaque families in In+m ⊂ Rn × Rm. For every C > 0 there exist
C ′ = C ′(C, ‖(ωH , ωV )‖`,α) and ρ = ρ(C, ‖(ωH , ωV )‖`,α) such that the following holds.

Suppose that ψ : In+m → R has the properties:
(1) for every z ∈ Im+n, there exists a polynomial ℘Hz : Im → R of degree ≤ ` such

that, for all x ∈ Im:

|ψ(ωHz (x))− ℘Hz (x)| ≤ C(|x|`+α + |z|`+α),
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(2) for every z ∈ Im+n, there exists a polynomial ℘Vz : In → R of degree ≤ ` such
that, for all y ∈ In:

|ψ(ωVz (y))− ℘Vz (y)| ≤ C(|y|`+α + |z|`+α),

Then ψ has an (`, α, C ′)-expansion at (0, 0) in BRm+n(0, ρ).

Remark: Note that the hypotheses of Theorem 8.4 are weaker than requiring that
ψ ◦ ωHz and ψ ◦ ωHz be C`,α for every z ∈ Im+n. They are also weaker than requiring
that ψ ◦ ωHz and ψ ◦ ωHz have (`, α, C)-expansions about 0 for every z. This latter
condition corresponds to the stronger conditions:

|ψ(ωHz (x))− ℘Hz (x)| ≤ C|x|`+α, and |ψ(ωVz (y))− ℘Vz (y)| ≤ C|y|`+α,

for every (x, y). Note also that the conclusion of Theorem 8.4 is in some aspects very
weak: it does not even imply that ψ is continuous (except at the origin).

One can recover Journé’s original result from Theorems 8.4 and 8.2 as follows.
Suppose that ψ is uniformly C`,α along the leaves of two transverse foliations with
uniformly C`,α leaves. Fix an arbitrary point x; in local coordinates sending x to 0,
the transverse foliations give a parametrized C`,α transverse pair of plaque families.
In the coordinates given by this parametrization, ψ has a Taylor expansion at every
point with uniform remainder term on the order `+α. This implies that conditions (1)
and (2) in Theorem 8.4 hold, for some C that is uniform in the point x. Theorem 8.4
implies that ψ has an (`, α, C ′) expansion (in these coordinates) at x, where C ′ is
uniform in x. Since x was arbitrary, Theorem 8.2 then implies that ψ is C`,α.

We also remark that whereas Theorem 8.2 holds for α = 1, Theorem 8.4 is false
for α = 1, if ` > 1 (see [33] for an example with α = 1, ` = 1).

Proof of Theorem 8.4. — The proof amounts to a careful inspection of the main re-
sult in [19]. We follow the format in [30], where the structure of the original treatment
in [19] has been clarified. We retain as much as possible the notation from [19, 30],
though there are some small changes. The two differences in the way the result is
stated here and the way it is stated in [19] are the following:

1. In [19], the transverse plaque family arises from a transverse pair of local folia-
tions F s and F u; this is not assumed here. An extra lemma (Lemma 8.9) deals
with this.

2. In [19], it is assumed that ψ is C`,α along leaves of the foliations F s and F u.
This is replaced by (1) and (2). A slight adaptation of the proof of Lemma 8.11,
part 1, deals with this.

As in [19] and [30], we give the proof for m = n = 1; the proof for general m,n is
completely analogous. We first reduce Theorem 8.4 to the following lemma.

Lemma 8.5 (cf. [30], Lemma 4.4). — Under the hypotheses of Theorem 8.4, there is
a polynomial ℘ = ℘(ψ) of degree ≤ ` with the following property. Given κ > 0
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and the cone Kκ = {(u, v) ∈ R2 : |v| ≤ κ|u|}, there exist positive constants C1 =

C1(κ,C, ‖(ωH , ωV )‖`,α) and ρ1 = ρ1(κ,C, ‖(ωH , ωV )‖`,α) such that:

|ψ(z)− ℘(z)| ≤ C1|z|`+α, for z ∈ K ∩B(0, ρ1).(26)

We first prove Theorem 8.4 using Lemma 8.5. Fix κ > 2. Applying Lemma 8.5 to
the cones K = {(u, v) ∈ R2 : |v| ≤ κ|u|} and K ′ = {(u, v) ∈ R2 : |u| ≤ κ|v|} (with
the roles of u and v switched), we obtain polynomials ℘ and ℘′ of degree ≤ ` and
constants C ′, ρ such that

|ψ(z)− ℘(z)| ≤ C ′|z|`+α, for z ∈ K ∩B(0, ρ),

and
|ψ(z)− ℘′(z)| ≤ C ′|z|`+α, for z ∈ K ′ ∩B(0, ρ).

Note that V = B(0, ρ) ∩ K ∩ K ′ has nonempty interior. But then ℘ and ℘′ must
agree because they have contact higher than ` on V . Hence ψ has an (`, α, C ′) jet
on BR2(0, ρ). This completes the proof of Theorem 8.4, assuming Lemma 8.5.

Proof of Lemma 8.5. — Replacing ψ by ψ(x, y)−ψ(x, 0)−ψ(0, x) +ψ(0, 0), we may
assume that ψ vanishes along the x-and y-axes. For z ∈ Im+n, let F H(z) = ωHz (Im)

and let F V (z) = ωVz (In).
The structure of the proof is as follows. We construct a sequence of degree (`+ 1)2

polynomials ℘m on I2 that interpolate the values of ψ on a carefully chosen collection
Sm of (` + 1)2 points in R2. The terms of degree ≤ ` in ℘m converge to a degree `
polynomial ℘ that satisfies (26) on a cone Kκ.

S2k S2k+1 S2k+2

Figure 1. The geometry of the sets Sm, when ` = 3.

We say more about the selection of sets Sm. Each set Sm is the union of four
subsets Sm = {(0, 0)}∪(Hm×{0})∪({0}×Vm)∪Jm, where Hm and Vm each contain
` distinct real positive numbers. The sets Sm are chosen with several properties:

– the minimum and maximum distance between any two points in Sm are com-
parable by a fixed factor B ≥ 1 and are both O(rm/2), for some fixed r ∈ (0, 1),
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– Jm is approximately the cartesian product Hm × Vm, with error o(rm/2),
– any “vertical” collection of `+ 1 points in Sm lies on a vertical F V -plaque, and

any “horizontal” collection of `+ 1 points in Sm lies on a horizontal F H -plaque,
– Sm and Sm+1 agree on ` (horizontal or vertical, depending on the parity of m)

collections of `+ 1 points.

These properties, combined with properties (1) and (2) of ψ ensure both that the
degree ≤ ` terms in the polynomials ℘m converge and that the limiting polynomial is
a good approximation to ψ on any cone Kκ. We will say more about the construction
of Sm shortly; we note that it will be necessary to construct more than one such
sequence, in order to prove that ℘ is a good approximation at all points in K , and
not just those points on which ψ was interpolated.

The starting point in Journé’s argument is to prove a higher dimensional version
of the following interpolation lemma.

Lemma 8.6 (Basic interpolation lemma. [19]). — Fix ` ≥ 1. For each B ≥ 1, there
exists C0 = C0(B) > 0 with the following property. If the collection of points
{z0, z1, . . . , z`} ⊂ R satisfies R/η < B, where

R = sup
j
|zj | and η = inf

j 6=j′
|zj − zj′ |,

Then for any values {b0, . . . , b`} ⊂ R, there exists a unique polynomial

℘(x) =
∑̀
p=0

cpx
p

such that ℘(zj) = bj, for 0 ≤ j ≤ `. Moreover,∑
p

|cp|Rp ≤ C sup
j
|bj |.

Journé’s generalization of Lemma 8.6 allows one to interpolate values of a function
on a collection of (` + 1)2 points in R2 that lie in a rectangle-like configuration –
like the sets Sm described above – by a degree (` + 1)2 polynomial whose C0 size is
controlled on the scale of the grid:

Lemma 8.7 (Rectangle interpolation lemma. [19], Lemma 1; cf. [30], Lemma 4.5)
Fix ` ≥ 1. For each B ≥ 1, there exist θ0 = θ0(B) > 0 and C0 = C0(B) > 0 with

the following property. If the collections of points {zj,k : 0 ≤ j ≤ `, 0 ≤ k ≤ `} ⊂ R2,
{xj : 0 ≤ j ≤ `} ⊂ R and {yk : 0 ≤ k ≤ `} ⊂ R satisfy:

R/η < B, and |zj,k − (xj , yk)| ≤ θ0η,

where

R = sup
j,k
|zj,k| and η = inf

(j,k) 6=(j′,k′)
|zj,k − zj′,k′ |,
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Then for any values {bj,k : 0 ≤ j ≤ `, 0 ≤ k ≤ `} ⊂ R, there exists a unique
polynomial

℘(x, y) =
∑

0≤p,q≤`

cpqx
pyq

such that ℘(zj,k) = bj,k, for 0 ≤ j, k ≤ `. Moreover,∑
p,q

|cp,q|Rp+q ≤ C0 sup
j,k
|bj,k|.

As mentioned above, to create the sets Sm, we will intersect plaques of our trans-
verse plaque families. The next lemma gives control over the location of the intersec-
tion of two transverse plaques.

K
(x, y)

(0, y′)

(x, y′)

[(x, y), (0, y′)]

Figure 2. Lemma 8.8

Lemma 8.8 (Local product structure). — For every K, θ > 0, there exist ρ0 = ρ0(K) >

0 and ρ1 = ρ1(K, θ) > 0 with ρ1 < ρ0 such that, for any parametrized C`,α trans-
verse pair of plaque families (ωH , ωV ) with ‖(ωH , ωV )‖1 ≤ K, and any z1, z2 ∈
BRm+n(0, ρ0), the manifolds ωVz1(Im) and ωHz2(In) intersect transversely in a single
point [z1, z2] ∈ Im+n. Moreover, if |(x, y)| < ρ1, and |(x′, y′)| < ρ1 then

|[(x, y), (0, y′)]− (x, y′)| < θ(|(x, y)|+ |y′|),
and

|[(x′, 0), (x, y)]− (x′, y)| < θ(|(x, y) + |x′|).

Proof. — This is a simple consequence of the fact that the transverse plaque families
are continuous in the C1 topology.
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Fix K > 0 and κ ≥ 1 and let ρ0 = ρ0(K). Fix (ωH , ωV ) such that ‖(ωH , ωV )‖`,α ≤
K . We now define the base grid:

G0 = G0(ωH , ωV ) = ({ F Vj }j∈Z+∪{∞}, { F
H
k }k∈Z+∪{∞})

of horizontal and vertical plaques from which we will eventually construct the sets
Sm. We fix r ∈ (0, 1), and let F H∞ = F H(0, 0) and F V∞ = F V (0, 0), and for j, k ≥ 1

set F Vj = F V (rj , 0) and F Vk = F V (0, rk).
For each (nonzero) w ∈ BRm+n(0, ρ0), we also define a new grid Gw as follows. We

choose j = j(w) ∈ Z+ such that the quantity

|[w, (0, 0)]− rj |

is minimized. The grid Gw is then the same as G0, except that the vertical leaf F Vj
in G0 is redefined: F Vj = F V (w). This is illustrated in Figure 3.

ww

Figure 3. Grid substitution

Each grid G = ({ F Vj }, { F
H
k }) defines sequences of points {zj,k}j,k∈Z+ ⊂ R2, and

{xj}, {yk} ⊂ R via: {zj,k} = F Vj ∩ F Hk , {(xj , 0)} = F Vj ∩ F H∞, and {(0, yk)} =

F V∞ ∩ F Hk . For each pair (j, k) with |j − k| ≤ 1, we then define

Hj,k = Hj,k( G) = {xj′ : j ≤ j′ ≤ j + `}, Vj,k = Vj,k( G) = {yk′ : k ≤ k′ ≤ k + `}

and
Jj,k = Jj,k( G) = {zj′,k′ : j ≤ j′ ≤ j + `, k ≤ k′ ≤ k + `}.

Lemma 8.9 (Grids are good). — For every K > 0 and κ > 1, there exists ρ2 =

ρ2(K,κ) > 0 such that if ‖(ωH , ωV )‖1 ≤ K, then for every θ > 0, there exists an
integer k0 = k0(K,κ, θ) > 0 such that: for all k ≥ k0, for all j with |j − k| ≤ 1, and
for all w ∈ BRm+n(0, ρ2) ∩ Kκ, the grid Gw has the following properties.

Rj,k/ηj,k ≤ 6r`−2, and sup
zj′,k′∈Jj,k

|zj′,k′ − (xj′ , yk′)| ≤ θηj,k,
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where
Rj,k = sup

z∈Jj,k
|z| and ηj,k = inf

z,z′∈Jj,k, z 6=z′
|z − z′|.

Moreover, Rj,k ≤ 3rk−1.

Proof of Lemma 8.9. — Let K > 0 and κ > 1 be given, and suppose that
‖(ωH , ωV )‖1 ≤ K.

We choose ρ2 such that for all w ∈ BR2(0, ρ2) ∩ Kκ, and for j sufficiently large
(greater than some j0), if j minimizes the quantity |[w, (0, 0)]− rj |, then |w| ≤ 2(1 +

κ)rj . This is possible, by Lemma 8.8.
Let θ > 0 be given; we will describe below how to choose a constant θ1 = θ1(K,κ, θ).

Assuming this choice has been made, let ρ1 = ρ1(K, θ1) be given by Lemma 8.8. We
choose k0 > j0 such that max{2(1 +κ)rk−1, Rj,k} < ρ1, for all |j−k| ≤ 1 and k ≥ k0.

Let w ∈ BRm+n(0, ρ2) ∩ Kκ, and consider the grid Gw. For j, k ∈ Z+ satisfying
|j − k| ≤ 1, and k ≥ k0, fix a point z ∈ Jj,k, which by definition is the point of
intersection of F Vj′ and F Hk′ , for some k − 1 ≤ j′, k′ ≤ k + ` + 1. Write z = (x, y)

and w = (x′, y′). There are two possibilities. Either F Vj′ is in the base grid G0, or
F Vj′ = F V (w).

In the first case, since z ∈ F Vj′ ∩ F Hk′ , we have |z| < ρ1. Lemma 8.8 implies that

|[(0, 0), (x, y)]− (0, y)| = |yk′ − y| = |rk
′
− y| < θ1|(x, y)|

and
|[(x, y), (0, 0)]− (x, 0)| = |xj′ − x| = |rj

′
− x| < θ1|(x, y)|.

and so |z − (xj′ , yk′)| ≤ |xj′ − x| + |yk′ − y| ≤ 2θ1|z|. Since |(xj′ , yk′)| ≤ 2rk−1, we
therefore have, for θ1 sufficiently small:

|z| ≤ 3rk−1,(27)

and

|z − (xj′ , yk′)| ≤ 6θ1r
k−1.(28)

Suppose, on the other hand, that F Vj′ = F V (w). Then the point (xj′ , 0) = [w, (0, 0)]

has the property that

|xj′ − rj
′
| ≤ 1

2
|rj
′
− rj

′+1| = (1− r)
2

rj
′
<
rj
′

2
.

Since w ∈ BR2(0, ρ2)∩ Kκ, and j′ ≥ k0, we have that |w| < 2(1+κ)rj
′−1 < ρ1. Hence

Lemma 8.8 implies that |xj′ − x′| = |[w, (0, 0)]− (x′, 0)| ≤ θ1(|w|+ |x′|); This implies
that |xj′ − x′| =≤ θ1(|w|+ |x′|) ≤ 2θ1|w| ≤ 4θ1(1 + κ)rj

′−1.
Now z = [w, (0, rk

′
)] and |[w, (0, rk′)]− (x′, rk

′
)| ≤ θ1(|w|+ rk

′
) ≤ θ1(3 + 2κ)rk−1.

Using the triangle inequality, we conclude that, for θ1 sufficiently small, we have

|z| ≤ 3rk−1(29)
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and

|z − (xj′ , yk′)| ≤ |z − (x′, rk
′
)|+ |xj′ − x′| ≤ θ1(7 + 6κ)rk−1.(30)

Hence, in either case, we conclude that

Rj,k ≤ 3rk−1(31)

and

sup
zj′,k′∈Jj,k

|zj′,k′ − (xj′ , yk′)| ≤ θ1(7 + 6κ)rk−1.(32)

On the other hand,

ηj,k ≥ inf
j′ 6=j′′

|yj′ − yj′′ | − sup
zj′,k′∈Jj,k

|zj′,k′ − (xj′ , yk′)|(33)

> r`+k+1 − θ1(7 + 6κ)rk−1,(34)

and for θ1 sufficiently small, we get ηj,k ≥ r`+k+1/2. Combining this with (31), we
have Rj,k/ηj,k ≤ 6r`−2. Combining (33) with (32) we also get:

sup
zj′,k′∈Jj,k

|zj′,k′ − (xj′ , yk′)| ≤ ηj,k
θ1(7 + 6κ)rk−1

r`+k+1 − θ1(7 + 6κ)rk−1
.

Choosing θ1 = θ1(K,κ, θ) small enough, we obtain that

sup
zj′,k′∈Jj,k

|zj′,k′ − (xj′ , yk′)| ≤ θηj,k,

which finishes the proof.

Let B = 6r`−2 and let ρ2 = ρ2(K,κ) > 0 be given by Lemma 8.9. Let θ0 = θ0(B) >

0 and C0 = C0(B) > 0 be given by Lemma 8.7. Now let k0 = k0(K,κ, θ0) > 0 be
given by Lemma 8.9.

Fix w ∈ BRm+n(0, ρ2). We now define the sequence Sm of rectangles associated to
the grid Gw. For |j − k| ≤ 1, we set:

Sj,k = {0, 0} ∪ (Hj,k × {0}) ∪ ({0} × Vj,k) ∪ Jj,k.

Now, let S2k = Sk,k and let S2k+1 = Sk,k+1. Define the sets Hm, Vm, and Jm anal-
ogously, for m ∈ Z+. Let Rm = supz∈Jm |z| and let ηm = infz,z′∈Jm, z 6=z′ |z − z′|.
Lemma 8.9 implies that for m ≥ 2k0, we have |Rm| ≤ 3r(m−1)/2, and Rm/ηm ≤ B.

By Lemma 8.7, there exists a constant C0 = C0(B) > 0 such that for each m ≥
2k0, and any function ψ, there exists a unique (degree (` + 1)2) polynomial ℘m =

℘m((ωH , ωV ), w, ψ):
℘m(x, y) =

∑
0≤p,q≤`

cmp,qx
pyq

that interpolates ψ on the rectangle Sm. Furthermore:∑
p,q

|cmp,q|Rp+qm ≤ C0 sup{ψ(z) : z ∈ Sm},(35)

where Rm is defined above.
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Lemma 8.10. — For every K,C > 0, there exist constants C1 = C1(K,C) > 0 and
ρ = ρ(K,C) > 0, such that for all (ωH , ωV ) with ‖(ωH , ωV )‖`,α ≤ K, for all w ∈
BR2(0, ρ2)∩ K and for all ψ satisfying hypotheses (1) and (2) of Theorem 8.4 for this
value of C, the sequence cmp,q = cmp,q( Gw, ψ) has the following property.

Let ℘m(x, y) =
∑
p+q≤` c

m
p,qx

pyq. Then there exists a polynomial ℘ such that ℘ =

limm→∞ ℘m (uniformly on compact sets). Furthermore:

|℘(z)− ψ(z)| ≤ C1|z|`+α for z ∈ K ∩
⋃
k≥k0

F Vk ∩BRm+n(0, ρ).

We first finish the proof of Lemma 8.5, assuming Lemma 8.10. Let C > 0 and ψ be
given satisfying hypotheses (1) and (2) for this value of C. Let C1 = C1(K,C) > 0 and
ρ = ρ(K,C) > 0 be given by Lemma 8.10. Given w ∈ BR2(0, ρ)∩ K , let ℘ = ℘( Gw, ψ)

be given by Lemma 8.10. By construction of the grid Gw, we have that w ∈
⋃
k≥k0 F Vk .

This implies in particular that

|℘(w)− ψ(w)| ≤ C1|w|`+α.

Let w′ ∈ BR2(0, ρ) ∩ K be another point, and let ℘′ = ℘( Gw′ , ψ). By the same
reasoning,

|℘′(w′)− ψ(w′)| ≤ C1|w′|`+α.
Note that the sequences cmp,q( Gw, ψ) and cmp,q( Gw′ , ψ) differ in only finitely many
places. This implies that ℘′ = ℘. The polynomial ℘ = ℘ satisfies the conclusions
of Lemma 8.5. This completes the proof of Lemma 8.5.

Proof of Lemma 8.10. — The proof follows the proof of Lemma 4.4 in [30] very
closely; the only slight change occurs in the proof of Lemma 8.11, part (1) below,
which corresponds to Lemma 4.8 in [30]. We outline the proof and refer the reader
to [30] or [19] for the details.

Fix k and let ℘ = ℘2k and ℘′ = ℘′2k+1 be the interpolating polynomials on S2k =

Sk,k and S2k+1 = Sk,k+1, respectively. Denote their coefficients by cp,q and c′p,q re-
spectively. Let Tk = 3rk−1. We will show that

|cp,q − c′p,q| = O(T `+α−p−qk ).

By Lemma 8.7, it is enough to consider the polynomial ℘ − ℘′ and find an upper
bound for |℘ − ℘′| on Sk,k+1. Note that ℘ and ℘′ agree on Sk,k+1, except at the `
points zj,k+`, k ≤ j ≤ k + `. On these points we have ℘′(zj,k+`) = ψ(zj,k+`). Hence
we need only estimate |ψ(zj,k+`) − ℘(zj,k+`)|, for k ≤ j ≤ k + `. For such a j, write
F Vj as a graph of a function of the second coordinate: F Vj = {(xj(y), y) : y ∈ I},
and let zj(y) = (xj(y), y). Notice that, in the case where j = j(w), we have zj(y) =

ωVw (y − yw), where w = (xw, yw); otherwise, zj(y) = ωV(xj ,0)(y). Note that in either

case, xj(0) = xj , and the function xj(y) would be constant if the curve F Vj,k were
truly vertical. The following estimates would be trivial if xj were a constant function.
The hypothesis that (ωH , ωV ) is uniformly C`,α will be used as in [19, 30] to estimate
the C`,α size of xj(y).
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Choose a constant C2 > 0 so that {zj(y) : y ∈ Ik} contains all the points
in ωV(xj ,0)(I) ∩ Sk,k ∩ K , for all k ≥ k0 and k ≤ j ≤ k + `, where Ik is the in-
terval Ik := [−C2Tk, C2Tk]. We next show that |ψ(zj(y)) − ℘(zj(y))| = O(T `+αk ),
for k ≤ j ≤ k+` and any y ∈ Ik. Fix such a j. For h : I2 → R, write h̃(y) for h(zj(y)).
We will restrict attention to the domain Ik.

Lemma 8.11. — There exists C3 > 0 such that if k ≥ k0, k ≤ j ≤ j + `, and y ∈ Ik,
then:

1.

|(ψ̃ − ℘̃)(y)| ≤ C3

∥∥∥∥ d`dy` (℘̃)

∥∥∥∥
α

T `+αk + C3T
`+α
k ,

2. if p, q ≤ ` and p+ q > `, then∥∥∥∥ d`dy`xpj (y)yq
∥∥∥∥
α

≤ C3T
p+q−`−α
k ‖xj‖C`,α(Ik),

3. if p+ q ≤ `, then ∥∥∥∥ d`dy`xpj (y)yq
∥∥∥∥
α

≤ C3,

4. and therefore∥∥∥∥ d`dy` ℘̃
∥∥∥∥
α

≤ C3‖xj‖C`,α(Ik)

∑
p+q>`

|cp,q|T p+q−`−αk + C3

∑
p+q≤`

|cp,q|.

Proof. — To prove (1), recall that zj(y) = ωVw (y − yw), if j = j(w), and zj(y) =

ωV(xj ,0)(y) otherwise. The hypotheses of Theorem 8.4 imply that

ψ̃(zj(y)) = ψ(ωVz0(y − y0)) = ℘Vz (y − y0) + rVj (y − y0),

where z0 ∈ {w, (xj , 0)} and y0 ∈ {0, yw}, and |rVj (y − y0)| ≤ C(|z|`+α + |y − y0|`+α).
Now |z0| = O(Tk) and |y0| = O(Tk) (since w ∈ K ), which implies that |rVj (y)| =

O(T `+αk ), for y ∈ Ik.
Writing the Taylor expansion of of the C`,α function ℘̃ about 0, we have

℘̃(y) = Q(y) +Rj(y),

where Q is a degree ` polynomial and |Rj(y)| = O(|y|`+α
∥∥∥ d`

dy`
℘̃
∥∥∥
α

) = O(T `+αk

∥∥∥ d`

dy`
℘̃
∥∥∥
α

),
for y ∈ Ik. Recall that, since k ≤ j ≤ k + `, the polynomial ℘ interpolates ψ
on the ` + 1 points in Sk,k+1 ∩ F V (xj , 0). Therefore the degree ` polynomial
Q(y) = Q(y)− ℘Vz0(y − y0) on Ik takes the value rVj (ti) +Rj(ti) at the `+ 1 points

{0 = t0, t1, . . . , t`} = (ωV(xj ,0))
−1

Ä
Sk,k+1 ∩ F V (xj , 0)

ä
.

Lemma 8.8 implies the points {0, t1, . . . , t`} in Ik are spaced Θ(Tk) apart. Since
|Q(ti)| ≤ |rVj (ti) +Rj(ti)| = O(T `+αk + T `+αk

∥∥∥ d`

dy`
℘̃
∥∥∥
α

), for i ∈ {0, . . . , `}, Lemma 8.6
then gives the desired inequality in (1).

The last three parts are proved in [30] (part (4) follows from (2) and (3)).
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Given δ > 0, we may assume that k0 > 0 was chosen sufficiently large so that
‖xj‖C`,α(Ik) < δ. Then we have

|(ψ − ℘)(zj(y))| ≤ C3T
`+α
k + C3δ

∑
p+q>`

|cp,q|T p+qk + C3

∑
p+q≤`

|cp,q|T `+αk ,

for all y ∈ Ik. Plugging y = zj,k+` into this equation (and recalling that ℘′(zj,k+`) =

ψ(zj,k+`)), and using (35) for ℘− ℘′ on Sk,k+1, we get:

∑
p,q

|c′p,q − cp,q|T
p+q
k ≤ C4

Ñ
T `+αk + δ

∑
p+q>`

|cp,q|T p+qk

∑
p+q≤`

|cp,q|T `+αk

é
.

(cf. equation (4.11) in [30]).
Now the proof proceeds exactly as in [30], and we obtain a polynomial ℘ satisfying

the conclusions of Lemma 8.10.

9. Saturated sections of partially hyperbolic extensions

We recast Theorem A, part IV as a more general statement about saturated sections
of partially hyperbolic extensions.

Definition 9.1. — Let f : M → M be Ck and partially hyperbolic. A Ck partially
hyperbolic extension of f is a tuple (N, B, π, F ), where N is a C∞ manifold, π : B→
M is a C∞ fiber bundle over M with fiber N , and F : B → B is a Ck, partially
hyperbolic diffeomorphism satisfying:

1. π ◦ F = f ◦ π, and
2. EcF = Tπ−1(Ecf ).

We say that (N, B, π, F ) is an r-bunched extension if there exists a Riemannian
metric < ·, · > on B and functions ν, ν̂, γ, and γ̂ on B satisfying (4)–(6) such that,
for every x ∈M :

sup
z∈π−1(x)

ν(z) < inf
z∈π−1(x)

{γ(z), γr(z)}, sup
z∈π−1(x)

ν̂(z) < inf
z∈π−1(x)

{γ̂(z), γ̂r(z)},

supz∈π−1(x) ν(z)

infz∈π−1(x) γ(z)
< inf
z∈π−1(x)

γ̂r(z), and
supz∈π−1(x) ν̂(z)

infz∈π−1(x) γ̂(z)
< inf
z∈π−1(x)

γr(z).

If (N, B, π, F ) is an r-bunched extension of f , then f is r-bunched. To see this, we
construct a Riemannian metric on M in which the inequalities in (8) and (9) hold.
This is achieved by fixing a horizontal distribution Hor ⊂ T B, transverse to kerTπ

and containing EuF ⊕ EsF , and defining, for v ∈ TxM , the metric < ·, · >′ by <

v1, v2 >
′
x= sup < w1, w2 >z, where the supremum is taken over all wi ∈ Tπ−1(vi) ∩

Hor(z), with z ∈ π−1(x). In this metric, the r-bunching inequalities hold for f , with
ν(x) = supz∈π−1(x) ν(z), ν̂(x) = supz∈π−1(x) ν̂(z), γ(x) = infz∈π−1(x) γ(z), and γ̂(x) =

infz∈π−1(x) γ̂(z).
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If (N, B, π, F ) is a partially hyperbolic extension of f , it follows that B → M

is an admissible bundle with W s
lift = W s

F and W u
lift = W u

F . We say that a section
σ : M → B is bisaturated if it is bisaturated with respect to these lifted foliations (see
Definition 4.1). We have the following theorem.

Theorem C. — Let f : M → M be Ck, partially hyperbolic and accessible, for some
integer k ≥ 2. Let (N, B, π, F ) be a Ck partially hyperbolic extension of f that is
r-bunched, for some r < k − 1 or r = 1.

Let σ : M → B be a bisaturated section. Then σ is Cr.

Remark: One might ask whether the same conclusion holds if σ is instead assumed
to be a continuous F -invariant section. The answer is no. De la Llave has constructed
examples of an r-bunched extension of a linear Anosov diffeomorphism with a contin-
uous F -invariant section that fails to be C1. What is more, this section is C(1/r)−ε,
for all ε > 0, but fails to be C1/r (see [31], Theorem 4.1).

What is true is the following. Suppose that (N, B, π, F ) is an r-bunched partially
hyperbolic extension of f . Then there exists a critical Hölder exponent α0 ≥ 0 such
that, if σ is an F -invariant section of N that is Hölder continuous with exponent
α0, then σ is bisaturated, and hence Cr. The exponent α0 is determined by ν, ν̂ and
the norm and conorm of the action of TF on fibers of N . When F is an isometric
extension of f (as with abelian cocycles, or cocycles taking values in a compact Lie
group), then α0 = 0, and any continuous invariant section is bisaturated. In general,
if F is an r-bunched extension, then α0 ≤ 1/r, but it can be smaller, as is the case
with isometric extensions. The proof of these assertions is similar to the proof of
Proposition 4.7; see also ([31], Theorem 2.2).

9.1. Proof of Theorem A, Part IV from Theorem C. — Suppose that f is
Ck, accessible and strongly r-bunched and that φ is Ck, for some k ≥ 2 and r < k−1

or r = 1. Then the skew product fφ : M × R/Z→ R/Z is a Ck, r-bunched, partially
hyperbolic extension of f . If Φ is a continuous solution to (2), then Proposition 4.7
implies that Φ is bisaturated. Then the map x 7→ (x,Φ(x) (mod1)) is a bisaturated
section of M × R/Z. Theorem C implies that this section is Cr. This implies that Φ

is Cr.

10. Tools for the proof of Theorem C

We finally delve into the details of the proof of Theorem C, which is the heart of
this paper.

10.1. Fake invariant foliations. — Recall that to prove Theorem A, part IV,
when f is dynamically coherent, one can make use of the stable and unstable holonomy
maps for f and F between center manifolds; more generally this strategy can be used
to prove Theorem C when f is dynamically coherent. Since we do not assume that

ASTÉRISQUE 358



THE COHOMOLOGICAL EQUATION 123

f is dynamically coherent, we use in place of the center foliation a locally-invariant
family of center plaques (see [18], Theorem 5.5). The stable holonomy between center-
manifolds is replaced by holonomy along locally-invariant, “fake” stable foliations, first
introduced as a tool in [9]. These foliations are defined in the next proposition.

Proposition 10.1 (cf. [9], Proposition 3.1). — Let f : M → M be a Cr partially hyper-
bolic diffeomorphism. For any ε > 0, there exist constants ρ and ρ1 with ρ > ρ1 > 0

such that, for every p ∈ M , the neighborhood BM (p, ρ) is foliated by foliations Ŵ
u

p ,

Ŵ
s

p, Ŵ
c

p, Ŵ
cu

p and Ŵ
cs

p with the following properties:
1. Almost tangency to invariant distributions: For each q ∈ BM (p, ρ) and

for each ∗ ∈ {u, s, c, cu, cs}, the leaf Ŵ
∗
p(q) is C1 and the tangent space Tq Ŵ

∗
p(q)

lies in a cone of radius ε about E∗(q).
2. Local invariance: for each q ∈ BM (p, ρ1) and ∗ ∈ {u, s, c, cu, cs},

f( Ŵ
∗
p(q, ρ1)) ⊂ Ŵ

∗
f(p)(f(q)), and f−1( Ŵ

∗
p(q, ρ1)) ⊂ Ŵ

∗
f−1(p)(f

−1(q)).

3. Exponential growth bounds at local scales: The following hold for all
n ≥ 0.

(a) Suppose that qj ∈ BM (pj , ρ1) for 0 ≤ j ≤ n− 1.
If q′ ∈ Ŵ

s

p(q, ρ1), then q′n ∈ Ŵ
s

p(qn, ρ1), and

d(qn, q
′
n) ≤ νn(p)d(q, q′).

If q′j ∈ Ŵ
cs

p (qj , ρ1) for 0 ≤ j ≤ n− 1, then q′n ∈ Ŵ
cs

p (qn), and

d(qn, q
′
n) ≤ γ̂n(p)−1d(q, q′).

(b) Suppose that q−j ∈ BM (p−j , ρ1) for 0 ≤ j ≤ n− 1.
If q′ ∈ Ŵ

u

p(q, ρ1), then q′−n ∈ Ŵ
u

p(q−n, ρ1), and

d(q−n, q
′
−n) ≤ ν̂−n(p)−1d(q, q′).

If q′−j ∈ Ŵ
cu

p (q−j , ρ1) for 0 ≤ j ≤ n− 1, then q′−n ∈ Ŵ
cu

p (q−n), and

d(q−n, q
′
−n) ≤ γ−n(p)d(q, q′).

4. Coherence: Ŵ
s

p and Ŵ
c

p subfoliate Ŵ
cs

p ; Ŵ
u

p and Ŵ
c

p subfoliate Ŵ
cu

p .

5. Uniqueness: Ŵ
s

p(p) = W s
(p, ρ), and Ŵ

u

p(p) = W u
(p, ρ).

6. Leafwise regularity: The following regularity statements hold:
(a) The leaves of Ŵ

u

p and Ŵ
s

p are uniformly Cr, and for ∗ ∈ {u, s}, the

leaf Ŵ
∗
p(x) depends continuously in the Cr topology on the pair (p, x) ∈

M ×BM (p, ρ1).
(b) If f is r-bunched, then the leaves of Ŵ

cu

p , Ŵ
cs

p and Ŵ
c

p are uniformly

Cr, and for ∗ ∈ {cu, cs, c}, the leaf Ŵ
∗
p(x) depends continuously in the

Cr topology on (p, x) ∈M ×BM (p, ρ1).
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7. Regularity of the strong foliation inside weak leaves: If f is Ck and
r-bunched, for some r < k − 1 or r = 1, and k ≥ 2, then each leaf of Ŵ

cs

p is

Cr foliated by leaves of the foliation Ŵ
s

p, and each leaf of Ŵ
cu

p is Cr foliated by

leaves of the foliation Ŵ
u

p .

Furthermore, the distribution “Esp(x) = Tx Ŵ
s

p is Cr in x ∈ Ŵ
cs

p (p), and the

map x 7→ “Esp(x) on Ŵ
cs

p (p) depends continuously on p ∈M in the Cr topology.

The distribution “Eup (x) = Tx Ŵ
u

p is Cr in x ∈ Ŵ
cu

p (p), and the map x 7→ “Eup (x)

on Ŵ
cu

p (p) depends continuously on p ∈M in the Cr topology.

Proof. — The proof of parts (1)–(5) is contained in [9]. We review the proof there,
as we will use the same method to prove parts (6) and (7). Some of the discussion
below is taken from [9].

Suppose that f is Cr, for some r ≥ 1. After possibly reducing ε, we can assume
that inequalities (3)–(6) hold for unit vectors in the ε-cones around the spaces in the
partially hyperbolic splitting.

The construction is performed in two steps. The first step is to construct foliations
of each tangent space TpM . In the second step, we use the exponential map expp to
project these foliations from a neighborhood of the origin in TpM to a neighborhood
of p.

Step 1. In the first step of the proof, we choose ρ0 > 0 such that exp−1
p is defined

on BM (p, 2ρ0). For ρ ∈ (0, ρ0], we define, in the standard way, a continuous map
fρ : TM → TM covering f , which is uniformly Cr on fibers, satisfying:

1. fρ(p, v) = exp−1
f(p) ◦f ◦ expp(v), for ‖v‖ ≤ ρ;

2. fρ(p, v) = Tpf(v), for ‖v‖ ≥ 2ρ;
3. ‖fρ(p, ·)− Tpf(·)‖C1 → 0 as ρ→ 0, uniformly in p;
4. p 7→ fρ(p, ·) is continuous in the Cr topology.

Endowing M with the discrete topology, we regard TM as the disjoint union of
its fibers. if ρ is small enough, then fρ is partially hyperbolic, and each bundle in
the partially hyperbolic splitting for fρ at v ∈ TpM lies within the ε/2-cone about
the corresponding subspace of TpM in the partially hyperbolic splitting for f at p
(we are making the usual identification of TvTpM with TpM). If ρ is small enough,
the equivalents of inequalities (3) will hold with Tf replaced by T fρ. Further, if f is
r-bunched, then fρ will also be r-bunched, for ρ sufficiently small.

If ρ is sufficiently small, standard graph transform arguments give stable, unstable,
center-stable, and center-unstable foliations for fρ inside each TpM . These foliations
are uniquely determined by the extension fρ. and the requirement that their leaves be
graphs of functions with bounded derivative. We obtain a center foliation by intersect-
ing the leaves of the center-unstable and center-stable foliations. Since the restriction
of fρ to TpM depends continuously in the Cr topology on p, the foliations of TpM
depend continuously on p.
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The uniqueness of the stable and unstable foliations implies, via a standard ar-
gument (see, e.g., [18], Theorem 6.1 (e)), that the stable foliation subfoliates the
center-stable, and the unstable subfoliates the center-unstable.

We now discuss the regularity properties of these foliations of TM . Recall the
standard method for determining the regularity of invariant bundles and foliations.

Theorem 10.2 (cf. Cr Section Theorem ([18], Theorem 3.2)). — Let X be a Cr mani-
fold, let π : E → X be a Cr Finslered Banach bundle, and let g : E → E be a Cr

bundle map covering the Cr diffeomorphism h : X → X. Assume that the image of
the 0-section under g is bounded.

Assume that for every x ∈ X there exists a constant κx such that

sup
x∈X
|κx| < 1,

and for every y, y′ ∈ π−1(x), ‖g(y)−g(y′)‖π−1(h(x)) ≤ κx‖y−y′‖π−1(x). Then there is
a unique bounded section σ : X →M such that g(σ(X)) = σ(X), and σ is continuous.

Moreover, if
sup
x∈X

κx
λrx

< 1, where λx = m(Txh)

then σ is Cr.

This theorem is used to prove the Cr regularity of the stable and unstable foliations
for a Cr partially hyperbolic diffeomorphism f , once the C1 regularity has been
established (via Lipschitz jets, or some similar method). We review this argument, as
it is prototypical.

Assume that the leaves of W u are C1. Note that since the leaves of W u are tangent
to the continuous distribution Eu, this automatically implies that the map x 7→ W u

(x)

is continuous in the C1 topology.
To prove that the leaves of W u are uniformly Cr for r > 1, one fixes a C∞ ap-

proximation TM = ‹Es ⊕ ‹Ec ⊕ ‹Eu to the partially hyperbolic splitting. One then
takes the C1 manifold X to be the disjoint union of the leaves of the unstable fo-
liation and the fiber of the bundle E over x to be the space Lx(‹Eu, ‹Ecs) of linear
maps from ‹Eu(x) to ‹Ecs(x). The linear graph transform on the bundle E covers the
original partially hyperbolic diffeomorphism f |X , contracts the fiber over x by κx =

‖Txf |Ecs‖/m(Txf |Eu) < 1, and expands X at x by at least λx = m(Txf |Eu) > 1.
Since the ratio

κx
λx

=
‖Txf |Ecs‖/m(Txf |Eu)

m(Txf |Eu)

is bounded away from 1, Theorem 10.2 implies that the unique invariant bounded sec-
tion of σ : X → E is C1. But at the point x ∈ X, the graph of the map σ(x) : ‹Eu(x)→‹Ecs(x) is precisely the bundle Eu(x). Since Eu is C1 along X, the manifold X is C2.

Repeating the argument, using 2-jets of maps from ‹Eu to ‹Ecs instead of 1-jets,
shows that X is C3. An inductive argument using the `− 1 jet bundle shows that X
is C`, for every integer ` ≤ r To obtain that X is Cr, one applies Theorem 10.2 in its
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Hölder formulation to show that the brc jet bundle is Cr−brc. The leaves of W u vary
continuously in the Cr topology because the jets of Eu along W u

(x) are found as the
fixed point of a fiberwise contraction that depends continuously on x. This fiberwise
contraction preserves sections that depend continuously on x, and so the invariant
section depends continuously on x as well.

Returning to the map fρ, we see that the stable and unstable foliations for this
map have uniformly Cr leaves, and for each p ∈ M the leaves vary continuously
inside of TpM in the Cr topology. Moreover, since p 7→ fρ(p, ·) is continuous in the
Cr topology the leaves of unstable foliation for fρ also depend continuously on p in
the Cr topology.

When f is r-bunched, a similar argument shows that the center-stable, center-
unstable and center leaves for fρ are uniformly Cr. The condition ν̂ < γ̂r is an r-normal
hyperbolicity condition for the center-unstable foliation, which implies that the leaves
of this foliation are uniformly Cr (see Corollary 6.6 in [18]). In this application of
Theorem 10.2, the base manifold X is the disjoint union of center-unstable manifolds,
and the bundle E consists of jets of maps between the approximate center-unstable
and approximate stable bundles. The fiber contraction on `−1-jets is κ = ν̂/γ̂`−1 and
the base conorm of the bundle map on X is λ = γ̂. The condition κ/λ = ν̂/γ̂` < 1

implies that the invariant section on ` − 1 jets is C1, and so the center unstable
leaves are C`, for all ` < r. As above, one obtains that the center-unstable leaves are
uniformly Cr.

Similarly the condition ν < γr implies that the leaves of the center-stable foliation
are uniformly Cr; intersecting center-unstable with center-stable leaves, one obtains
that the leaves of the center foliation for fρ are uniformly Cr. The leaves of the center,
center-stable and center-unstable foliations for fρ along TpM also depend continuously
on p ∈M in the Cr topology.

When k ≥ 2, and f is r-bunched, for r < k − 1 or r = 1, another argument using
Theorem 10.2 proves the Cr regularity of the unstable bundle along the leaves of
the center-unstable foliation. The manifold X is the disjoint union of the leaves of
the center-unstable foliation for fρ, and the bundle E consists of linear maps from
the approximate unstable into the approximate center-stable bundles. Note that X
is uniformly Cr by the previous arguments, and the first brc derivatives of fρ vary
(r− brc)-Hölder continuously from leaf to leaf. Since X and E are Cr, we may apply
the Cr section theorem directly (without inductive arguments).

In this case, the graph transform bundle map has fiber constant κ = ν̂/γ̂ and
the base conorm λ of fρ restricted to center-unstable leaves is bounded by γ. The
r-bunching hypothesis ν̂ < γ̂γr implies that κ/λr < 1, and so the unstable bundle
for fρ is Cr when restricted to X. Moreover the jets of the unstable bundle along the
center-unstable leaf vary (r−brc)-Hölder continuously. Notice that we need k−1 ≥ r
to carry out this argument, because the bundle map we consider is only Ck−1 (in the
fiber it is a linear graph transform determined by the derivative of fρ, and we lose a
derivative in this argument).
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Similarly, this argument shows that the bunching hypothesis ν < γγ̂r implies that
the stable bundle for fρ is a Cr bundle over the leaves of the center-stable foliation,
and we have (Hölder) continuous dependence of the appropriate jets on the basepoint.
The details are described in [33, 34] in the case r = 1 and k = 2. The argument for
general r, k is completely analogous.

Step 2. We now have foliations of TpM , for each p ∈ M . We obtain the foliations
Ŵ
u

p , Ŵ
c

p, Ŵ
s

p, Ŵ
cu

p , and Ŵ
cs

p by applying the exponential map expp to the correspond-
ing foliations of TpM inside the ball around the origin of radius ρ.

If ρ is sufficiently small, then the distribution E∗(q) lies within the angular ε/2-cone
about the parallel translate of E∗(p), for every ∗ ∈ {u, s, c, cu, cs} and all p, q with
d(p, q) ≤ ρ. Combining this fact with the preceding discussion, we obtain that property
1. holds if ρ is sufficiently small.

Property 2. — local invariance — follows from invariance under fρ of the foliations
of TM and the fact that expf(p)(fρ(p, v)) = f(expp(p, v)) provided ‖v‖ ≤ ρ.

Having chosen ρ, we now choose ρ1 small enough so that f(BM (p, 2ρ1)) ⊂
BM (f(p), ρ) and f−1(BM (p, 2ρ1)) ⊂ BM (f−1(p), ρ), and so that, for all q ∈
BM (p, ρ1),

q′ ∈ Ŵ
s

p(q, ρ1) =⇒ d(f(q), f(q′)) ≤ ν(p) d(q, q′),

q′ ∈ Ŵ
u

p(q, ρ1) =⇒ d(f−1(q), f−1(q′)) ≤ ν̂(f−1(p)) d(q, q′),

q′ ∈ Ŵ
cs

p (q, ρ1) =⇒ d(f(q), f(q′)) ≤ γ̂(p)−1 d(q, q′), and

q′ ∈ Ŵ
cu

p (q, ρ1) =⇒ d(f−1(q), f−1(q′)) ≤ γ(f−1(p))−1 d(q, q′).

Property 3. — exponential growth bounds at local scales — is now proved by an
inductive argument.

Properties 4.– 7. — coherence, uniqueness, leafwise regularity and regularity of
the strong foliation inside weak leaves — follow immediately from the corresponding
properties of the foliations of TM discussed above.

Since there is no ambiguity in doing so, we write Ŵ
cs

(x), Ŵ
cu

(x), and Ŵ
c
(x) for

the corresponding manifolds Ŵ
cs

x (x), Ŵ
cu

x (x), and Ŵ
c

x(x). If f is Ck and r-bunched,
for k ≥ 2 and r < k − 1 or r = 1, then the collection of all Ŵ

∗
(x)-manifolds forms a

uniformly continuous Cr plaque family in M , but not in general a foliation.
Henceforth we shall assume that B is the trivial bundle B = M × N . All of the

definitions and arguments that follow can be made for a general bundle B by fixing a
connection on B, at the expense of more cumbersome notation and the need to localize
some of the objects, such as the fake foliations for F in the following lemma. Since
Theorem C concerns the local property of smoothness, this simplifying assumption is
benign.
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Lemma 10.3. — Let k ≥ 2 and r = 1 or r < k− 1. If F is a Ck, r-bunched extension
of f , then we can construct the fake foliations Ŵ

s

F,z, Ŵ
u

F,z, Ŵ
cs

F,z, Ŵ
cu

F,z and Ŵ
c

F,z

for F and Ŵ
s

p, Ŵ
u

p , Ŵ
cs

p , Ŵ
cu

p and Ŵ
c

p for f so that:

– for each p ∈M and z ∈ π−1(p), the fake foliations Ŵ
∗
F,z for F are defined in the

entire neighborhood π−1(BM (p, ρ)) of π−1(p) and are independent of z ∈ π−1(p);
– for ∗ ∈ {cs, cu, c}, we have:

Ŵ
∗
F,z(w) = π−1

(
Ŵ
∗
p(π(w))

)
,

for all p ∈M , all z ∈ π−1(p), and all w ∈ π−1(BM (p, ρ));
– for ∗ ∈ {s, u}, we have:

π
(

Ŵ
∗
F,z(w)

)
= Ŵ

∗
p(π(w)),

for all p ∈M , all z ∈ π−1(p), and all w ∈ π−1(BM (p, ρ)); and
– the conclusions of Proposition 10.1 hold for the fake foliations of F and f .

Proof. — Let N be the fiber of B. Fix ρ0 > 0 such that the exponential map
expp is a diffeomorphism from BTpM (0, ρ0) to BM (p, ρ0), for every p ∈ M . Note
that π−1(BM (p, ρ0)) is a trivial bundle over BM (p, ρ0), for each p ∈ M . Denote
by BTM (0, ρ0) the ρ0-neighborhood of the 0-section of TM . The bundle B pulls back
via the exponential map exp: BTM (0, ρ0)→M to a Cr bundle π̃0 : ‹B0 → BTM (0, ρ0)

with fiber N . The bundle ‹B0 is trivial over each fiber BTpM (0, ρ0) of BTM (0, ρ0) and
pulls back to the original bundle B under the inclusion M ↪→ BTM (0, ρ0) of M into
the 0-section of TM . Elements of ‹B0 are of the form (p, v, z) ⊂ BTM (0, ρ0)× B such
that π(z) = expp(v), and the projection π̃0 sends (p, v, z) to (p, v). Extend ‹B0 to a

Cr bundle π̃ : ‹B → TM over TM in such a way that ‹B is also a Cr bundle over M
(with fiber Rm × N), and the restriction of ‹B to TpM is a trivial bundle, for every
p ∈M .

In the proof of Proposition 10.1, we define Fr slightly differently, using the bundle‹B, rather than T B. Fix ρ1 < ρ0 such that f(BM (p, ρ1)) ⊂ BM (f(p), ρ0), for all
p ∈M . Let f : BTM (0, ρ1)→ BTM (0, ρ0) be the map:

f(p, v) = exp−1
f(p) ◦f ◦ expp(v).

The map F : B→ B induces a map F : π̃−1(BTM (0, ρ1))→ π̃−1(BTM (0, ρ0)), cover-
ing f , defined by:

F(p, v, z) = (f(p, v), F (z)).

Since ‹B|TM is a trivial bundle, we can write elements of π̃−1(TpM) as triples
(p, v, y), where v ∈ TpM and y ∈ π−1(p) ∼= N ; we can choose this trivialization to de-
pend smoothly on p. We also metrically trivialize the fibers ‹B|TpM of this bundle, using
the product of the sup metric < ·, · >′p on TpM defined at the beginning of this section
with the induced metric < ·, · > on the fiber π−1(p). If F is an r-bunched extension
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of f , then the r-bunching inequalities hold for this family of metrics on ‹B|BTM (0,ρ),
if ρ is sufficiently small.

Then for each ρ > 0 there exists a Cr bundle isomorphism

Fρ : ‹B→ ‹B,
covering the map fρ : TM → TM constructed in the proof of Proposition 10.1, with
the following properties:

– Fρ(p, v, y) = F(p, v, y) if ‖v‖ ≤ ρ; in particular, we have Fρ(p, 0, y) =

(f(p), 0, F (y)),
– Fρ(p, v, y) = (f(p), Tpf(v),F(p, ρv/‖v‖, y)) if ‖v‖ ≥ 2ρ,
– supv∈TpM dCr (Fρ(p, v, ·),F(p, 0, ·))→ 0 as ρ→ 0,
– the Cr diffeomorphism Fρ(p, ·, ·) depends continuously on p in the Cr topology.
The construction of Fρ is straightforward, once one has proven the following lemma,

and we omit the details.

Lemma 10.4. — Let N be a compact manifold and let {Fv : N → N}v∈BRn (0,2) be a
family of diffeomorphisms of N such that (v, y) 7→ Fv(y) is Cr.

Then for every ρ ∈ (0, 1), there exists a family {Fρ,v : N → N}v∈BRm (0,ρ) of diff-
eomorphisms with the following properties:

– (v, y) 7→ Fρ,v(y) is Cr;
– Fρ,v = Fv, if ‖v‖ ≤ ρ;
– Fρ,v = Fρv/‖v‖, if ‖v‖ ≥ 2ρ; and
– supv∈Rn dCr (Fρ,v, F0)→ 0 as ρ→ 0.

Proof of Lemma 10.4. — We construct Fρ,v as follows. Consider the family of vector
fields {Xv}v∈BRm (0,2) on N defined by

Xv(y) =
d

dt
|t=0Fv+tv(y),

and let ϕv,t be the flow generated by Xv. For v ∈ Rn, let vρ = ρv/‖v‖.
For ρ ∈ (0, 1), let βρ : Rm → [0, 1] be a smooth radial bump function vanishing

outside of BRm(0, 2ρ) and identically 1 on BR(0, ρ) with derivative |Dβρ| bounded
by 3ρ. We then define:

Fρ,v =

{
Fv if ‖v‖ ≤ ρ
ϕvρ,β(v)(‖v‖−ρ) ◦ Fvρ if ‖v‖ > ρ.

Then the family {Fρ,v}v∈Rm has the desired properties.

Having constructed Fρ, the proof then proceeds exactly as in Proposition 10.1, ex-
cept to construct the fake foliations for F , we consider the bundle ‹B over M (rather
than TM over M) and take the disjoint union of its fibers. For ρ sufficiently small,
Fρ is partially hyperbolic and r-bunched, if F is an r-bunched extension of f . The
fake foliations for F are constructed by first finding invariant foliations for Fρ on ‹B.
One verifies as in Proposition 10.1 that these foliations have the required regularity
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properties. To construct the fake foliations for F , we first restrict these foliations
to the bundle π̃−1(BTM (0, ρ)) ⊂ ‹B. Fix p ∈ M . On π̃−1(BTpM (0, ρ)), the projec-
tion (p, v, z) 7→ z is a diffeomorphism onto π−1(BM (p, ρ)); the image of the invari-
ant foliations for Fρ under this projection gives the fake invariant foliations for F
on π−1(BM (p, ρ)).

To construct the fake invariant foliations for f , we take instead the image of the
invariant foliations for Fρ in π̃−1(BTpM (0, ρ)) under the map (p, v, z) 7→ expp(v). This
construction ensures that the desired properties hold.

Fix ε > 0 small and let the fake foliations for f and F be defined by the preceding
lemmas.

Since it does not depend on z ∈ π−1(p) we write Ŵ
∗
F,p(w) for Ŵ

∗
F,z(w), for ∗ ∈

{s, u, cs, cu, c}. As with the fake foliations for f , for ∗ ∈ {cs, cu, c} and p ∈M , we will
denote by Ŵ

∗
F (p) the plaque Ŵ

∗
F (p) = π−1( Ŵ

∗
(p)) in B; it is the Ŵ

∗
F -leaf through

any z ∈ π−1(p).
By rescaling the Riemannian metric on M , we may assume that ρ1 � 1, so that

all of the objects used in the sequel are well-defined on any ball of radius 1 in M .

10.2. Further consequences of r-bunching. — Here we explore in greater depth
the properties of an r-bunched partially hyperbolic diffeomorphism. The goal is to
bound the deviation between the fake foliations Ŵ

∗
p and Ŵ

∗
q for q ∈ Ŵ

∗
(p). In the

dynamically coherent case, Ŵ
∗
p(q) and Ŵ

∗
q(q) coincide for q ∈ Ŵ

∗
(p). In a sense, the

results in this section tell us that r-bunched systems are dynamically coherent “on
the level of r-jets.”

Throughout this and the following subsections, we continue to assume that F is a
Ck, r-bunched extension of f , where k ≥ 2 and r < k− 1 or r = 1. In the statements
of some of the lemmas, we will remind the reader of these hypotheses. We fix as
above a choice of fake foliations and fake lifted foliations (we will not specify here the
choice of ε > 0, but will indicate where it is relevant). Let m = dim(M), s = dimEs,
u = dimEu, and c = dimEc, so that m = s+ u+ c.

Fix a point p ∈M . We introduce Cr local Ru × Rs × Rc - coordinates (xu, xs, xc)

in the ρ-neighborhood of p, sending p to 0, Ŵ
cs

(p) into the subspace xu = 0, Ŵ
cu

(p)

into xs = 0, W s
(p) to xu = xc = 0, W s

(p) to xu = xc = 0, and W u
(p) to xs = xc = 0.

This is possible because all of the submanifolds in question are Cr. Since Ŵ
u

p is a Cr

subfoliation of Ŵ
cu

(p), and Ŵ
s

p is a Cr subfoliation of Ŵ
cs

(p), we may also choose

these coordinates so that each leaf Ŵ
u

p(q), for q ∈ Ŵ
cu

(p) is sent into an affine space

xs = 0, xc ≡ xc0 and each leaf Ŵ
s

p(q
′), for q′ ∈ Ŵ

cs
(p) is sent into an affine space

xu = 0, xc ≡ xc0′.
We can choose these coordinates to depend uniformly on p. We call these coordi-

nates adapted coordinates at p. Whenever we refer to adapted coordinates at a point
p, we implicitly assume that they are chosen with a uniform bound on their Cr size.
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Ŵu
p

Ŵs
p

Ŵc(p)

Wu(p)

Ws(p)

xs

xc

xu

Figure 4. Coordinates adapted to the fake foliations at p.

According to Proposition 10.1 the leaves of the fake center, center-stable and center-
unstable manifolds at each point z can be expressed using parametrized Cr plaque
families:

ω̂cs : Im × Ic+s → Rm, ω̂cu : Im × Ic+u → Rm,
and

ω̂c : Im × Ic → Rm,

where Ŵ
cu

(z) = ω̂cuz (Ic+u), Ŵ
cs

(z) = ω̂csz (Ic+s) and Ŵ
c
(z) = ω̂cz(I

c). The map ω̂c

is obtained from ω̂cs and ω̂cu using the implicit function theorem. We may assume
these maps take the form:

ω̂csz (xc, xs) = z + (β̂csz (xc, xs), xs, xc) ω̂cuz (xc, xu) = z + (β̂cuz (xu, xc), xu, xc),

and
ω̂cz(x

c) = z + (β̂c(xc), xc),

where β̂cuz ∈ Cr(Ic+u,Rs), β̂csz ∈ Cr(Ic+s,Ru), and β̂cz ∈ Cr(Ic,Rs+u), and z 7→ β̂∗z
is continuous in the Cr topology. Moreover, we have β̂∗z (0) = 0 and ω̂∗0 ≡ 0 for ∗ ∈
{cs, cu, c}.

We now derive further consequences of the r-bunching hypothesis on f . The first
concerns the behavior of the plaque families Ŵ

∗
(y) for y ∈ Ŵ

∗
(x), for ∗ ∈ {cs, cu, c}.

Lemma 10.5. — For each v = (0, vs, vc) ∈ Ŵ
cs

(0), w = (wu, 0, wc) ∈ Ŵ
cu

(0), and
z = (0, 0, zc) ∈ Ŵ

c
(0), and for every positive integer ` ≤ r, we have:

|j`0β̂csv | = o(|vc|r−`), |j`0β̂cuw | = o(|wc|r−`), and |j`0β̂cz| = o(|zc|r−`).
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All of these statements hold uniformly in the coordinate system based at p.

Proof. — We prove the assertion for β̂cu; the argument for β̂cs is the same but with
f replaced by f−1. The assertion for β̂c follows from the first two.

As in the proof of Proposition 5.2, we will use the convention that if q ∈ M

and j ∈ Z, then qj denotes the point f j(q), with q0 = q. For a positive function
α : M → R+ we also use the cocycle notation described there.

Endow the disjoint union M̂p =
⊔
n≥0B(p−n, ρ) with the Cr adapted coordinate

system based at p−n in the ball B(p−n, ρ). We thereby identify M̂p with the disjoint
union

⊔
n≥0(Im)−n. This coordinate system is not invariant under f , but certain

aspects of it are; in particular, the planes xu = 0 and xs = 0 are invariant, as
are the families xu = 0, xc ≡ xc0 and xs = 0, xc ≡ xc0. Moreover, we may assume
(having chosen ε > 0 small enough in the application of Proposition 10.1) that for
any point of the form (0, xs, xc) ∈ B(pi, ρ), writing f(0, xs, xc) = (0, xs1, x

c
1), we have

that |xs1| ≤ ν(pi)|xs| and γ(pi)|xc| ≤ |xc1| ≤ γ̂(pi)
−1|xc|. Similarly for any point of

the form (xu, 0, xc) ∈ B(pi+1, ρ), writing f−1(xu, 0, xc) = (xu−1, 0, x
c
−1), we have that

|xu−1| ≤ ν̂(pi)|xu| and γ̂(pi)|xc| ≤ |xc−1| ≤ γ(pi)
−1|xc|.

Let M̂p(1) =
⊔
n≥1B(p−n, 1), and note that f(M̂p(1)) ⊂ M̂p. Let ϕ be the change

of coordinate ϕ(xu, xs, xc) = (xc, xu, xs), and let f̃ = ϕ ◦ f ◦ ϕ−1. Now write, for x ∈
M̂p(1):

Df̃(x) =

(
Ax Bx

Cx Kx

)
,

where Ax : Rc+u → Rc+u, Bx : Rs → Rc+u, Cx : Rc+u → Rs and Kx : Rs → Rs. We
may assume that ε > 0 was chosen small enough in the application of Proposition 10.1
that for every x ∈ f−1(B(p−n+1, 1)) ∩B(p−n, 1), we have that m(Ax) ≥ γ(p−n) and
‖Kx‖ ≤ ν(p−n) , and ‖Bx‖ and ‖Cx‖ are very small. The partial hyperbolicity and
r-bunching hypotheses ν < γ and ν < γr then imply that, for all ` ≤ r:

sup
x∈M̂p

max

ß ‖Ax‖
m(Kx)

,
‖Kx‖
m(Ax)`

™
< 1.

Fix 0 ≤ ` ≤ r, and let κ = max{νγ−`, νγ−1}. Also fix a continuous function δ <

min{1, γ} such that κ < δr−`; this is possible since f is r-bunched.
Consider the Ck−` induced map

T `f : M̂p(1)× J`0(Rc+u,Rs)0 → M̂p × J`0(Rc+u,Rs)0

defined by:
T `f (x, j`0ψ) = (f(x), j`0ψ

′),

where ψ′ ∈ Γ`0(Rc+u,Rs)0 satisfies:

f̃(x+ graph(ψ)) = f̃(x) + graph(ψ′)

Lemma 6.4 implies that there is a metric | · |L on J`0(Rc+u,Rs)0 such that for
all n ≥ 0, all x ∈ B(p−n−1, 1) ⊂ M̂p(1) and all j0ψ, j0ψ′ ∈ J`0(Ic+u,Rs)0, with
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|j0ψ|L, |j0ψ′|L ≤ 1, we have:

| T `f (x, j0ψ)− T `f (x, j0ψ)|L ≤ κ(p−n)|j0ψ − j0ψ′|L.(36)

Given a point w = (wu, 0, wc) ∈ Ŵ
cu

(p), we choose n ∈ Z+ such that |wc| =

Θ(δ−n(p)−1). This is possible, since δ < 1 is a continuous function (remember that
δ−n is the product of reciprocal values of δ, and so δ−n(p)−1 is less than 1). The planes
xs = 0, xc ≡ xc0 lie in an ε-cone about the center-stable distribution for f . Hence
under iteration by f−1, the part of xs = 0, xc ≡ xc0 that remains inside of M̂p(1)

for n iterates is a smooth plane that remains in the ε-cone about the center-stable
distribution. Write w−n = f−n(w) = (wu−n, 0, w

c
−n). Since |wc| = Θ(δ−n(p)−1) and

|wu| = O(1), and ν̂ < δγ < 1, Proposition 10.1, parts (1)-(3) imply that |wu−n| =

O(ν̂−n(p)−1) = o(1) and |wc−n| = O(δ−n(p)−1γ−n(p)) = o(1); in particular, we have
that w−i ∈ B(p−i, 1), for i = 1, . . . , n.

Now consider the orbit of (w−n, j
`
0β̂

cu
w−n) ∈ M̂p(1)×J`0(Rc+u,Rs)0 under T `f . Local

invariance of the Ŵ
cu

p plaque family implies thatÄ
T `f

än
(w−n, j

`
0β̂

cu
w−n) = (w, j`0β̂

cu
w ).

On the other hand, since f leaves invariant the planes xs = 0, we have thatÄ
T `f

än
(w−n, 0) = (w, 0) . But now (36) implies that

|j`0β̂cuw |L ≤ κ−n(p)−1|j`0β̂cuw−n |L
= O(κ−n(p)−1)

On the other hand, κ < δr−`, and |wc| = Θ(δ−n(p)−1). This implies that |j`0β̂cuw | =

o(|wc|r−`), completing the proof of Lemma 10.5.

The next consequence of r-bunching we derive concerns the discrepancy between
the leaves of the real and fake stable (or unstable) foliation originating at a given
point. To state these results, we introduce a parametrization of the fake stable and
unstable foliations as follows. We are interested in the restriction of the fake stable
foliation Ŵ

s

x to the center-stable leaf Ŵ
cs

(x).
As above, fix an adapted coordinate system at p. Proposition 10.1 implies
that Ŵ

s

p is a Cr subfoliation when restricted to Ŵ
cs

(p). We are going to give a

different parametrization of Ŵ
cs

(p) to reflect this fact. Recall our definition above:
ω̂csz (xc, xs) = z+(β̂csz (xc, xs), xs, xc), and ω̂cuz (xc, xu) = z+(xu, β̂cuz (xc, xu), xc). Using
the implicit function theorem, we can write instead:

ω̂csz (xc, xs) = z + (β̂s,uz (xc, xs), xs, β̂s,cz (xc, xs)),

and
ω̂cuz (xu, xc) = z + (xuβ̂u,sz (xc, xu), β̂u,cz (xc, xu)),

with the property that for fixed xc ∈ Ic:

ω̂csz (xc, Is) = Ŵ
s

z(ω̂
cs(xc, 0)), and ω̂cuz (xc, Iu) = Ŵ

u

z (ω̂cuz (xc, 0)),
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and such that z 7→ β̂sz = (β̂s,uz , β̂s,cz ) ∈ Cr(Ic × Is,Ru+c) and z 7→ β̂uz = (β̂u,sz , β̂u,cz ) ∈
Cr(Ic×Iu,Rs+c) are all continuous in the Cr topologies. We may further assume that
β̂s,cz (xc, 0) = xc = β̂u,cz (xc, 0). Our choice of coordinates also implies that β̂s0 ≡ 0 and
β̂u0 ≡ 0. Finally, note that ω̂csz (0, Is) = Ŵ

s

z(z) = W s
(z, ρ) and ω̂cuz (0, Iu) = Ŵ

u

z (z) =

W u
(z, ρ).

xs

xc

xu

z = (0, 0, zc)

Ŵcu(z) ∩ {xu = 0}

Ŵc(z)

{xu = xu0}

Ŵcu(z) ∩ {xu = xu0}

(xu0 , β̂
u
z (0, x

u
0 ))

(0, β̂u,s(xc, 0), zc + xc)
(xu0 , β̂

u
z (x

c, xu0 ))

Ŵcu(z)

Figure 5. Parametrizing the fake unstable foliations at (0, 0, zc).

Fix zc ∈ Ic. We are interested in the deviation between the true stable leaf
ω̂cs(0,0,zc)({0} × I

s) and the fake stable leaf ω̂cs0 ({zc} × Is); this is measured by the
distance between the functions β̂s(0,0,zc)(0, ·) and β̂s0(zc, ·) at a point xs ∈ Is. We are
interested not only in the C0-distance between these functions, but in the distance
between their transverse jets. By our choice of coordinate system, we have that β̂s0
is identically 0; hence we will estimate just the jets of β̂s(0,0,zc) in the xc direction
at xc = 0 and a fixed value of xs.

Lemma 10.6. — For zc ∈ Ic, xs ∈ Is and xu ∈ Iu we have:∣∣∣j`0 Äxc 7→ β̂s(0,0,zc)(x
c, xs)

ä∣∣∣ = |xs| · o(|zc|r−`),
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and ∣∣∣j`0 Äxc 7→ β̂u(0,0,zc)(x
c, xu)

ä∣∣∣ = |xu| · o(|zc|r−`),

for every ` ≤ r.

Remark: Consider the transversals xu = 0 and xu = xu0 to the foliations Ŵ
u

0 and
Ŵ
u

(0,0,zc). If we restrict to the space xu = xs = 0 inside the first transversal (which

corresponds to the center manifold Ŵ
c
(p)), then the holonomy map for Ŵ

u

p |“W cu
(p)

to
the second transversal is trivial in these coordinates, sending (0, 0, xc) to (xu0 , 0, x

c). If
we consider instead the holonomy map for Ŵ

u

(0,0,zc)|“W cu
(0,0,zc)

between these transver-

sals, then the point (0, β̂u,s(xc, 0), zc +xc) is sent to (xu0 , β̂
u
(0,0,zc)(x

c, xu0 )) The `-jet of
this holonomy at (0, 0, zc) (measured in the xc coordinate) is precisely the quantity
j`0

Ä
xc 7→ β̂u(0,0,zc)(x

c, xu0 )
ä
estimated by Lemma 10.6.

Proof of Lemma 10.6. — We continue to adopt the conventions and notations in the
proof of Lemma 10.5, we define M̂p and M̂p(1) as in that proof, and use the same
coordinate system defined there. We prove the assertion for β̂u; the proof for β̂s is
the same, but with f replaced by f−1.

Denote by f0 the restriction of f to
⊔
n≥1 Ŵ

c
(p−n) ⊂ M̂p(1), which we regard

locally as a map from Ic to Ic. We now focus attention on a single neighborhood
B(p−n, 1), for some fixed n ≥ 1, and regard xc ∈ Ic as coordinatizing xu = 0, xs = 0

and (xu, xs+c) ⊂ Iu × Is+c = Im as coordinatizing points in this neighborhood.
In local coordinates respecting the decomposition Im = Iu × Is+c, write:

f(xu, xs+c) = (fu(xu, xs+c), fsc(x
u, xs+c)).

In a neighborhood of each point, this map acts on graphs of C1 functions from
Iu to Rs+c by the usual graph transform, which is a contraction on the fibers
of π1,0 : J1(Iu,Rs+c) → J0(Iu,Rs+c) = Iu × Rs+c. Unstable manifolds for f are
sent to unstable manifolds under this graph transform, and, locally, fake unstable
manifolds are sent to fake unstable manifolds. For each point (0, 0, zc) ∈ Im, we
will consider a C` family of such 1-jets, expressed as a function of the coordinate
xc transverse to the fake unstable foliation in Ŵ

cu
(p−n) = {xs = 0}; we study the

variation of such graphs through points (0, 0, zc + xc) near xc = 0.
The space of all such `-jets of 1-jets at the point xc = 0 is the bundle

J`0(J1
Iu(Iu,Rs+c)). Elements of this “mixed jet bundle” are of the form j`0(j1

xuβ),
where β(xc, xu) : Ic × Iu → Rs+c is defined in a neighborhood of {0} × Iu, the map
β(xc, ·) is C1, and the map xc 7→ j1

xuβ(xc, ·) is C`. In particular, if β is C`+1, then
this property is satisfied. We denote this space Γ`0(Ic,Γ1

Iu(Iu,Rs+c)) of such local
functions by Γ`,1{0}×Iu(Ic × Iu,Rs+c). We also denote j`0(j1

xuβ) by j`,10,xuβ and the

bundle J`0(J1
Iu(Iu,Rs+c)) by J`,1{0}×Iu(Ic × Iu,Rs+c).
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Note that in our parametrization β̂u : Im × Ic × Iu → Is+c of the fake unstable
subfoliations, the set β̂uz (xc, Iu) is the leaf of Ŵ

u

z through the point ωcuz (xc, 0) =

z + (0, β̂cuz (xc)); if z = (0, 0, zc), then the unique point of Ŵ
u

z intersecting xu = 0

is of the form (0, xs, zc + xc). Because the sets {xu = 0, xs = const} are invariant
under f in our coordinate system, the image of the point (0, xs, zc + xc) is of the
form (0, xs′, f0(zc + xc)). This is the unique point on the leaf of Ŵ

u

f(z) intersecting
xu = 0, which in turn lies in the set β̂uf(z)({f0(zc + xc) − f0(zc)} × Iu). We will
thus define the natural action of f on Ic × Γ`,1{0}×Iu(Ic × Iu, Is+c) so that it sends

(z0, β̂
u
(0,0,z0)({x

c} × Iu)) to (f0(z0), βf(0,0,zc)({f0(zc + xc)− f0(zc)} × Iu)).
For (zc, β) ∈ Ic×Γ`,1{0}×Iu(Ic×Iu,Rs+c), we would like to define the map T (zc, β) ∈

Γ`,1{0}×Iu(Ic × Iu,Rs+c) implicitly by the equation

T (zc, β) (f0(zc + xc)− f0(zc), fu(xu, β(xc, xu) + (0, zc)))(37)
= fsc(β(xc, xu) + (0, zc))− (0, f0(zc));(38)

if such a map exists, then we will have:

T (zc, β̂u(0,0,zc)(x
c, Iu)) = β̂u(0,0,f0(zc))(f0(xc + zc)− f0(xc), Iu).

To check local invertibility, we must check that the map

gzc(x
c, xu) = (f0(zc + xc)− f0(zc), fu(xu, β(xc, xu) + (0, zc)))

on Ic × Iu is invertible in a neighborhood of (0, xu). The derivative of this map
at (0, xu) is

Dgzc(0, x
u) =

(
Df0(zc) 0

C K

)
,

where

K =
∂fu
∂xu

(β(0, xu) + (0, zc)) +
∂fu
∂xs+c

(xu, β(0, xu) + (0, zc)) ◦ ∂β

∂xu
(0, xu)

and

C =
∂fu
∂xs+c

(xu, β(0, xu) + (0, zc)) ◦ ∂β
∂xc

(0, xu).

This map is invertible if ∂β
∂xu (0, xu) is sufficiently small. Let T (zc, β) be defined by

(37) on this subset.
Next, for 0 ≤ ` ≤ k − 1, consider the map

T `,1f : Ic × J`,1{0}×Iu(Ic × Iu,Rs+c)→ Rc × J`,1{0}×Iu(Ic × Iu,Rs+c),

defined (in a neighborhood of the 0-section) by

T `,1f
(
zc, j`0

(
j1
xuβ

))
=

Ä
f0(zc), j`0

Ä
j1
gzc (xc,xu) T (zc, β)

ää
.
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Recall that we have been working in a single coordinate neighborhood B(p−n, 1).
We combine these definitions of T `,1f−1 over all neighborhoods to define a global map

T `,1f :
⊔
n≥1

Ä
Ic × J`,1{0}×Iu(Ic × Iu,Rs+c)

ä
−n

−→
⊔
n≥0

Ä
Ic × J`,1{0}×Iu(Ic × Iu,Rs+c)

ä
−n

(where the −n subscript denotes the neighborhood B(p−n, ρ) in the disjoint union).
This map is fiberwise Ck−`−1 (in particular, it is C1 if ` < k−1) and has the property
that T `,1f (z, j`,1(0,xu)β̂

u
z ) = (f(z), j`,1gzc (0,xu)β̂

u
f(z)).

A calculation very similar to the one in the proof of Lemma 6.4 shows that there
is a norm | · |L on J`,1{0}×Iu(Ic × Iu,Rs+c) such that, for all n ≥ 0, zc ∈ Ic−n−1,

xs ∈ Is−n−1, and all j`,1(0,xu)β, j
`,1
(0,xu)β

′ ∈ J`,1{0}×Iu(Ic × Iu,Rs+c)−n−1 sufficiently close
to the 0-section, we have:∣∣∣ T `,1f (zc, j`,1(0,xu)β)− T `,1f (zc, j`,1(0,xu)β

′)
∣∣∣
L

(39)

≤ κ(p−n)
∣∣∣j`,1(0,xu)β − j

`,1
(0,xu)β

′
∣∣∣
L
,(40)

where κ = max{ν/(γγ̂`), ν/(γγ̂)}. The r-bunching hypothesis implies that κ < 1.
Having made these preliminary estimates, we finish the proof of Lemma 10.6. Fix

0 ≤ ` ≤ r and a continuous function δ < min{1, γ} such that:

κ < δr−` and ν̂γ̂−1 < δr;

this is possible since f is partially hyperbolic and r-bunched. Fix a point zc ∈ Ic and
an integer n ≥ 0 such that |zc| = Θ(δ−n(p)−1). Let z = (0, 0, zc) ∈ Im0 . By our choice
of n, we have that for 0 ≤ i ≤ n, |f−i0 (zc)| ≤ γ−i(p)|zc| ≤ γ−i(p)Θ(δ−n(p)−1) � 1,
if |zc| sufficiently small (uniformly in p). Thus we may assume that z−i = f−i(z) ∈
M̂p(1), for 0 ≤ i ≤ n.

Next, fix a point xu0 ∈ Iu, and consider the point w = ω̂cuz (0, xu0 ) = (xu0 , β̂
u,s
z (0, xu0 ),

zc + β̂u,cz (0, xu0 )), which is the point of intersection of the unstable manifold W u
(z)

with xu = xu0 . For 0 ≤ i ≤ n, write w−i = (ws−i, w
u
−i, w

c
−i). Since w lies on the

unstable manifold of z, which is uniformly contracted by f−1, and since z−i ∈ M̂p(1)

for 0 ≤ i ≤ n, we have that w−i ∈ Im−i for 0 ≤ i ≤ n.
We also will use a sequence of “twin points” in our calculations. The twin w′ is

defined w′ = (xu0 , 0, z
c); notice that w′ ∈ Ŵ

u

p(z). We then set w′−i = f−i(w′), and

write w′−i = (wu−i
′, 0, wc−i

′), for 0 ≤ i ≤ n− 1. Since w ∈ W u
(z), and w′ ∈ Ŵ

u

p(z), it
follows that

|w−n − w′−n| ≤ |w−n − f−n(z)|+ |w′−n − f−n(z)| ≤ 2ν̂−n(p)−1|xu0 |.

The vector w − w′ lies in a cone about the center-stable distribution for f at w′.
Since this cone is mapped into itself by Tf−1, acting as a strict contraction,
it follows that w−i − w′−i lies in this cone as well, for 0 ≤ i ≤ n. Recall
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that vectors in this cone are contracted/expanded under f by at most γ̂−1.
Since |w−n − w′−n| = O(ν̂−n(p)−1), it follows from a simple inductive argument
that |w−i − w′−i| = O(ν̂−n(p)−1γ̂i(pn)−1|xu0 |), for i = 0, . . . , n. In particular,
|w − w′| = O(ν̂−n(p)−1γ̂n(pn)−1|xu0 |) = O(ν̂−n(p)−1γ̂−n(p)|xu|0). Since ν̂γ̂−1 < δr,
and |zc| = Θ(δ−n(p)−1), we obtain that |w − w′| ≤ |xu0 |o(|zc|r). But w − w′ =

(β̂u,sz (0, xu), 0, β̂u,cz (0, xu)), and so we have shown that |β̂uz (0, x0)| ≤ |xu0 |o(|zc|r),
proving the lemma for the case ` = 0.

We next turn to the case ` > 1. Consider the points (zc−n, j
`,1
(0,wu−n)β̂

u
z−n) and

(zc−nj
`,1
(0,wu−n

′)0) in (Ic × J`,1{0}×Iu(Ic × Iu,Rs+c))−n.

To simply notation, we write “ T ” for T `,1f and j`,1−i β̂
u for j`,1(0,wu−i)

β̂uz−i . The nota-

tion | · |L is the fiberwise norm on Ic × J`,1{0}×Iu(Ic × Iu,Rs+c) defined above (hence
|(x, j`,1y β)|L = |j`,1y β|L). Having fixed this notation, we next estimate, for 0 ≤ i ≤ n:

|j`,1−i+1(β̂u)|L = | T (zc−i, j
`,1
−i β̂

u)|L
≤ | T (zc−i, j

`,1
−i β̂

u)− T (zc−i, j
`,1
(0,wu−i)

0)|L

+| T (zc−i, j
`,1
(0,wu−i)

0)|L.

We estimate the first term in this latter sum using (39):

|(zc−i, j
`,1
−i β̂

u)− T (zc−i, j
`,1
(0,wu−i)

0)|L ≤ κ(p−i)|j`,1−i β̂
u|L.

The second term is estimated using two facts. First, we have that the map T is
fiberwise C1 (since ` ≤ r < k − 1), and so

| T (zc−i, j
`,1
(0,wu−i)

0)− T (zc−i, j
`,1
(0,wu−i

′)0)|L = O(|w−i − w′−i|) = O(ν̂−n(p)−1γ̂i(p−n)−1).

Second, we note that T
(
zc−i, j

`,1
(0,wu−i

′))0
)

= (zc−i+1, j
`,1
(0,wu−i+1

′)0). Hence:

| T (zc−i, j
`,1
(0,wu−i)

0)|L ≤ | T (zc−i, j
`,1
(0,wu−i)

0)− T (zc−i, j
`,1
(0,wu−i

′))0)|L

= O(ν̂−n(p)−1γ̂i(p−n)−1),

for i = 0, . . . , n. Combining these calculations, we have, for 0 ≤ i ≤ n:

| j`,1−i+1(β̂u) |L = O(κ(p−i)) | j`,1−i β̂
u |L +O(ν̂−n(p)−1γ̂i(p−n)−1).
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By an inductive argument, we obtain:

| j`,10 (β̂u) | = O(
n∑
i=0

κi−n(p)−1ν̂−n(p)−1γ̂i(p−n)−1)

= o(
n∑
i=0

δi−n(p)`−rν̂i−n(p)−1ν̂i(p−n)γ̂i(p−n)−1)

= o(
n∑
i=0

δi−n(p)`−rν̂i−n(p)−1δi(p−n)r)

= o(δ−n(p)`−r),

where we have used the facts that κ < δr−`, and ν̂/γ̂ < δr. Since |zc| = Θ(δ−n(p)−1),
and recalling our notation for j`,10,xu0

β̂sz , we obtain that

| j`,10 (β̂u) | = | j`,10,xu0
β̂uz | = o(|zc|r−`),(41)

for all xu0 ∈ Iu.
We are not quite done yet, as (41) is not exactly what is claimed in the statement

of Lemma 10.6. To finish the proof, we note that if β is C`+1, then by the equality of
mixed partials, we have that j1

xu=xu0
(j`xc=0β) = j`0(j1

xu0
β) = j`,10,xu0

β. The quantity we
want to estimate is ∣∣∣j`0 Äxc 7→ β̂u(0,0,zc)(x

c, xu)
ä∣∣∣

Consider the function ζ : Iu → J`0(Rc,Rc+s) given by

ζ(xu) = j`0(xc 7→ β̂u(0,0,zc)(x
c, xu)).

The value ζ(xu0 ) can be obtained by integrating its derivative along a smooth curve
γ(xu), tangent to W u

z (z), from 0 to xu0 . But note that, since β̂uz is a C`+1 function,
we must have j1

xuζ = j`,10,xuβ; (41) implies that ζ(xu0 ) ≤ |xu0 | ·o(|zc|r−`), for all xu0 ∈ Iu.
This completes the proof of Lemma 10.6.

We remark that the same estimates hold for the lifted fake foliations Ŵ
∗
F if F is

Ck and r-bunched, for k ≥ 2 and r = 1 or r < k − 1.

10.3. Fake holonomy. — In the discussion that follows, we define holonomy maps
for various fake foliations between fake center manifolds. Because we are interested
in local properties, we will be deliberately careless in referring to the sizes of the
domains of definition. For example, if x and x′ lie within distance 1 on the same
stable manifold, and τ and τ ′ are any smooth transversals to Ŵ

s

x inside Ŵ
cs

(x), then
there is a well-defined Ŵ

s

x holonomy map between a ρ′-ball Bτ (x, ρ′) in τ and τ ′, if
ρ′ is sufficiently small. We will suppress this restriction of domain and just speak of
the Ŵ

cs

x -holonomy map between τ and τ ′. This abuse of notation is justified because
all of the holonomy maps we consider will be taken over paths of bounded length,
and all foliations and fake foliations are continuous. Hence the restriction of domain
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can always be performed uniformly over the manifold. This will simplify greatly the
notation in the sections that follow.

Let x ∈M and x′ ∈ W s
(x, 1). We define a Cr diffeomorphism

ĥ(x,x′) : Ŵ
c
(x)→ Ŵ

c
(x′)

as the composition of two holonomy maps: first, Ŵ
s

x holonomy between the Cr

manifolds Ŵ
c
(x) and Ŵ

cs
(x) ∩ Ŵ

cu
(x′), and second, the Ŵ

u

x′ holonomy between
Ŵ
cs

(x) ∩ Ŵ
cu

(x′) and Ŵ
c
(x′).

We also define for x′ ∈ W s
(x, 1) the lifted fake holonomy map“H(x,x′) : Ŵ

c

F (x)→ Ŵ
c

F (x′)

by composing Ŵ
s

F,x holonomy between Ŵ
c

F (x) = π−1( Ŵ
c
(x)) and Ŵ

cs

F (x) ∩
Ŵ
cu

F (x′) = π−1( Ŵ
cs

(x)∩ Ŵ
cu

(x′)), and Ŵ
u

F,x′ holonomy between Ŵ
cs

F (x)∩ Ŵ
cu

F (x′)

and Ŵ
c

F (x′) = π−1( Ŵ
c
(x′)). Lemma 10.3 implies that π ◦ “H(x,x′) = ĥ(x,x′) ◦ π.

We similarly define, for x ∈M and x′ ∈ W u
(x, 1) a map

ĥ(x,x′) : Ŵ
c
(x)→ Ŵ

c
(x′)

as the composition of Ŵ
u

x holonomy between Ŵ
c
(x) and Ŵ

cu
(x)∩ Ŵ

cs
(x′), and Ŵ

s

x′

holonomy between Ŵ
cu

(x) ∩ Ŵ
cs

(x′) and Ŵ
c
(x′). Finally, we define, for x ∈M and

x′ ∈ W y
(x, 1), “H(x,x′) : Ŵ

c

F (x)→ Ŵ
c

F (x′)

to be the natural lift of ĥx,x′), as above.
Proposition 10.1, parts (6) and (7) and Lemma 10.3 immediately imply:

Lemma 10.7. — Suppose f is Ck and r-bunched, for some k ≥ 2 and r < k − 1 or
r = 1. Then for every x ∈ M and x′ ∈ W ∗(x, 1), for ∗ ∈ {s, u}, the map ĥ(x,x′) is a
Cr diffeomorphism and depends continuously in the Cr topology on (x, x′) .

If F is a Ck, r-bunched extension of f , then “H(x,x′) is a Cr diffeomorphism for
every x ∈ M , x′ ∈ W ∗(x, 1), and ∗ ∈ {s, u}and depends continuously in the Cr

topology on (x, x′). Moreover, “H(x,x′) projects to ĥ(x,x′) under π.

The definitions of ĥ and “H readily extend to (k, 1)-accessible sequences by compo-
sition (cf. Section 4 for the definition of accessible sequence). Note that any su-path
corresponds to an (k, 1)-accessible sequence if one uses sufficiently many successive
points lying in the same stable or unstable leaf. Lemma 4.5 implies that if f is accessi-
ble, then there exists a K1 ∈ Z+ such that any two points inM can be connected by a
(K1, 1)-accessible sequence. For S = (y0, . . . , yk) a (k, 1)-accessible sequence, we define
ĥ S : Ŵ

c
(y0)→ Ŵ

c
(yk) by ĥ S = ĥ(yk−1,yk) ◦ · · · ◦ ĥ(y0,y1) and “H S : Ŵ

c

F (y0)→ Ŵ
c

F (yk)

by “H S = “H(yk−1,yk) ◦ · · · ◦ ĥ(y0,y1).
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Lemma 10.8. — If F and f are Ck and r-bunched for k ≥ 2 and r = 1 or r < k − 1,
then ĥ S and “H S are Cr diffeomorphisms that depend continuously in the Cr topology
on S.

We next define the notion of a shadowing accessible sequence. This concept will
be crucial for proving that the Cr diffeomorphisms “H S can be well-approximated by
homeomorphisms that preserve the image of any saturated section σ.

x x′

y

y′

y′′

w′′

Ŵc(x) Ŵc(x′)

Wu(x)

Wu(y)

Ŵu
x (y)

Ws(y′′)

Ŵs
x′(y′)

(x, x′)y

Figure 6. The shadowing accessible sequence (x, x′)y. The distance be-
tween y′ = ĥ(x,x′)(y) and y′′ = h(x,x′)(y) is O(d(x, y)r); the distance be-
tween x′ and y′ is O(d(x, y)) (see Lemma 10.9).

Let x be an arbitrary point in M , let x′ ∈ W u
(x, 1), and let y ∈ Ŵ

c
(x). The

shadowing accessible sequence (x, x′)y is defined as follows. Let w′′ be the unique point
of intersection of W u

(y) with
⋃
z∈“W c

(x′)
W s

loc(z), and let y′′ be the unique point of

intersection of W s
loc(w′′) and Ŵ

c
(x′). We set (x, x′)y = (y, w′′, y′′); it is an accessible

sequence from y to a point y′′ ∈ Ŵ
c
(x′). See Figure 6.

We have defined (x, x′)y for x′ ∈ W u
(x, 1) and y ∈ Ŵ

c
(x). Similarly, for x′ ∈

W s
(x, 1), and y ∈ Ŵ

c
(x), define the shadowing accessible sequence (x, x′)y =

(x,w′′, y′′), where w′′ is the unique point of intersection of W s
(y) with⋃

z∈“W c
(x′)

W u
loc(z), and y′′ is the unique point of intersection of W u

loc(w′′) and

Ŵ
c
(x′). It is an accessible sequence from y to a point y′′ ∈ Ŵ

c
(x′). Notice that

(x, x′)y is a (2, 1) accessible sequence, whereas (x, x′) is a (1, 1)-accessible sequence.
We may regard (x, x′) as a (2, 1) accessible sequence by expressing it as (x, x′, x′).
Then it is natural to say that (x, x′)y → (x, x′) as y → x.
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We extend the definition of shadowing accessible sequences to all (k, 1)-accessible
sequences by concatenation. This defines, for each (k, 1)-accessible sequence S con-
necting x and x′, and for each y ∈ Ŵ

c
(x), a (2k, 1)-accessible sequence Sy connecting

y to a point y′ ∈ Sc(x′). The (k, 1) accessible sequence may be regarded as a (2k, 1)

accessible sequence by repeating the appropriate terms in the sequence. With this
convention, we have that Sy → S as y → x. Let K = 2K1; henceforth we will restrict
our attention to (K, 1)-accessible sequences.

Now, for x′ ∈ W u
(x, 1) or x′ ∈ W s

(x, 1), we define the map:

h(x,x′) : Ŵ
c
(x)→ Ŵ

c
(x′)

by h(x,x′)(y) = ĥ(x,x′)y (y); in other words, h(x,x′) sends y to the endpoint of (x, x′)y.
Notice that h(x,x)′ is a local homeomorphism, but not a diffeomorphism. However,
we will show that h(x,x′) has “an r-jet at x” (Lemma 10.9); we will make this notion
precise in the following subsections.

Similarly define H x,x′ : Ŵ
c

F (x) → Ŵ
c

F (x′) for x′ ∈ W u
(x, 1) or x′ ∈ W s

(x, 1)

by H (x,x′)(z) = “H (x,x′)π(z)
(z). The definitions of h and H extend naturally

to (K, 1)-accessible sequences by composition; for S a (K, 1)-accessible sequence
from x to x′, we denote by h S : Ŵ

c
(x) → Ŵ

c
(x′) and H S : Ŵ

c

F (x) → Ŵ
c

F (x′) the
corresponding maps.

Note the simple observation that if S is a (K, 1)-accessible sequence from x to x′,
then ĥ S(x) = x′ = h S(x), and for every z ∈ π−1(x), “H S(z) = H S(z).

The next lemma is an important consequence of Lemmas 10.5 and 10.6. It tells
us that the endpoint of the accessible sequence (x, x′)y is a very good approximation
to ĥ(x,x′)(y), and this is true even on an infinitesimal level.

Lemma 10.9. — If f is Ck and r-bunched, for k ≥ 2 and r = 1 or r < k − 1, then
for every (K, 1) accessible sequence connecting x to x′, every y ∈ Ŵ

c
(x), and every

integer 0 ≤ ` ≤ r:
‖j`yĥ S − j`yĥ Sy‖ = o(d(x, y)r−`).

Moreover, if F is also Ck and r-bunched, then for any z ∈ π−1(x) and any w ∈
BB(z, 1) ∩ π−1(y):

‖j`w“H S − j`w“H Sy‖ = o(d(z, w)r−`),

where the distance is measured in a uniform coordinate system containing the su-path
γ S.

Proof. — This is almost a direct consequence of Lemmas 10.5 and 10.6 in the previous
subsection. We prove it for accessible sequences of the form S = (x, x′) with x′ ∈
W u

(x, 1); the general case follows easily.
Fix x, x′ ∈ W u

(x, 1) and y ∈ Ŵ
c
(x). Write (x, x′)y = (y, w′′, y′′), as in the defini-

tion. Let v′ be the unique point of intersection of Ŵ
u

x(y) and Ŵ
cs

(x′), and let v′′ be
the unique point of intersection of W u

(y) and Ŵ
cs

(x′). See Figure 7.
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x x′

y

y′

y′′
v′

v′′ w′′

Wu(x)

Wu(y)

Ŵu
x (y)

Ŵcs(x′)

Ws(x′)

Figure 7. Points in the proof of Lemma 10.9

Fix a coordinate system adapted at x as in Subsection 10.2, sending x to the origin
in Im, Ŵ

cu
(x) to {xs = 0}, Ŵ

cs
(x) to {xu = 0}, Ŵ

c
(x) to {xs = 0}, {xu = 0}, and

sending the fake foliations Ŵ
s

x|“W cs
(x)

and Ŵ
u

x|“W cu
(x)

to the affine foliations {xu =

0, xs = const} and {xs = 0, xu = const}, respectively. Suppose that y corresponds to
the point z = (0, 0, zc) and y′′ corresponds to the point z′′ in the adapted coordinates
at x.

In the coordinate system at x, we parametrize Ŵ
c
(x) by xc 7→ ω̂c0(xc) = (0, 0, xc)

and Ŵ
c
(y) by xc 7→ ω̂z(x

c). Similarly we parametrize Ŵ
c
(x′) by xc 7→ (0, 0, xc) and

Ŵ
c
(y′′) by xc 7→ ω̂z′′(x

c). We want to compare the `-jets of xc 7→ ĥ(x,x′)(0, 0, x
c) with

xc 7→ ĥ(x,x′)y ◦ ω̂z(xc) at the point xc = zc. We first observe that, by Lemma 10.5,
we have that j`zc ω̂z(xc) = o(|zc|r−`) = o(d(x, y)r−`); hence we are left to compare the
`-jets of the holonomies ĥ(x,x′) and ĥ(x,x′)y in the coordinates adapted at x, at the
point z.

We write the maps ĥ(x,x′) and ĥ(x,x′)y as compositions of several holonomy maps,
and we compare the distance between the `-jets of the corresponding terms in the
compositions. First, we write

ĥ(x,x′) = hsx′ ◦ hux,

where hux : Ŵ
c
(x) → Ŵ

cu
(x) ∩ Ŵ

cs
(x′) is the Ŵ

u

x-holonomy and hsx′ is the Ŵ
s

x′

holonomy between Ŵ
cu

(x) ∩ Ŵ
cs

(x′) and Ŵ
c
(x′). Next, we write:

ĥ(x,x′)y = hsy′′ ◦ huy,[ ◦ h
u
y ◦ huy,]
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where huy,] : Ŵ
c
(y) → Ŵ

cs
(x) ∩ Ŵ

cu
(y), huy : Ŵ

cs
(x) ∩ Ŵ

cu
(y) → Ŵ

cu
(y) ∩ Ŵ

cs
(x′)

and huy,[ : Ŵ
cu

(y) ∩ Ŵ
cs

(x′) → Ŵ
cu

(y) ∩ Ŵ
cs

(y′′) are Ŵ
u

y holonomies, and

hsy′′ : Ŵ
cu

(y) ∩ Ŵ
cs

(y′′)→ Ŵ
c
(y′′) is Ŵ

s

y′′ -holonomy.
The term huy,] in the second composition is expressed in the charts at x by the

map (ω̂cz(x
c), xc) 7→ (xs, 0, xc), where (xc, xs) are defined implicitly by the equation

β̂c,sz (xc, xs) = 0. Lemma 10.5 implies that |jzc ω̂cuz − jzc ω̂cu0 | and |jzc ω̂cz − jzc ω̂c0| are
both o(|zc|)r−`, and so in these charts, |j`zhuy,] − j`zid| = o(|zc|)r−`.

We may choose the coordinate system adapted at x so that x′ is sent to the point
(xu0 , 0, 0) and Ŵ

cs
(x′) is sent to xu = xu0 , and we may do this in a way that the Cr size

of the chart is bounded independently of x, x′; this uses the fact that p 7→ Ŵ
cs

(p) is
continuous in the Cr topology. Consider the Ŵ

u

x and Ŵ
u

y holonomies between xu = 0

and xc = xu0 , corresponding to the holonomies

hux : Ŵ
cs

(x)→ Ŵ
cs

(x′), and huy : Ŵ
cs

(x)→ Ŵ
cs

(x′)

In the coordinates at x, these maps are expressed by the functions

(0, xu, xc) 7→ ωcs0 (xc, xu), and (0, xu, xc) 7→ ωcsz (xc, xu)

Lemma 10.6 implies that |jzc ω̂csz (·, xu)− jzc ω̂cs0 (·, xu) = o(|zc|)r−`; in the charts at x
we therefore have:

|jz(hux)− jz(huy )| = o(|zc|)r−` = o(d(x, r)r−`).

Consider the image points v′ = hux(y) and v′′ = huy (y) of these two holonomy maps
in M . Since the distances d(v′, v′′) and d(v′, y′) are both o(|zc|r) = o(d(x, y)r), the
transversality of the bundles in the partially hyperbolic splitting implies that d(v′′, w′′)

and d(w′′, y′′) are also o(d(x, y)r) (see Figure 7). Hence the distance from y′′ to x is
O(d(x′, y′)+d(y′, y′′)) = O(d(x, y)+d(x, y)r) = O(d(x, y)), and similarly d(x, v′′) and
d(x,w′′) are O(d(x, y)).

We are left to deal with the final terms in the compositions above: hsy′′ ◦ huy,[
and hsx′ . All of these are Cr holonomy maps over very short distances, on the order
of o(d(x, y)r). It follows that their `-jets are close to the identity – within o(d(x, y)r−`)

– once we have shown that the transversals on which they are defined have `-jets within
o(d(x, y)r−`) of the vertical foliation {(xs, xu) = const}.

Lemma 10.6 implies that the `-jets of Ŵ
cu

(x′) and Ŵ
cu

(x) coincide along W u
(x).

In particular, in these coordinates, Ŵ
c
(x′) and the plane {xs = 0, xu = xu0} are

tangent to order ` at x′. Furthermore, since d(x′, v′′), d(x′, w′′), d(x′, v′′), d(x′, y′) and
d(x′, y′′) are all O(d(x, y)), Lemma 10.6 implies that the manifolds Ŵ

cu
(y)∩ Ŵ

cs
(x′)

, Ŵ
cu

(x) ∩ Ŵ
cs

(x′), Ŵ
cu

(y) ∩ Ŵ
cs

(y′′), Ŵ
c
(y′) and Ŵ

c
(y′′) can all be expressed in

the coordinates adapted at x as graphs of functions from {xu = xu0 , x
s = 0} to Is+u

whose `-jets at v′′, v′, w′′, y′ and y′′ respectively, are o(d(x, y)r−`). Hence all of the
the transversals for huy,[, h

s
x′ , and hsy′′ have `-jets within o(d(x, y)`) of the vertical

foliation {(xs, xu) = const} at their basepoints in the compositions. It follows that
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|j`v′′(hsy′′ ◦ huy,[) − j
`
v′′id| = o(d(x, y))r−` and |j`v′hsx′ − j`v′id| = o(d(x, y))r−`, and so

|j`yĥ(x,x′) − j`yĥ(x,x′)y | = o(d(x, y))r−`, as desired.
The proof for the maps “H (x,x′) and “H (x,x′)y are completely analogous.

10.4. Central jets. — Let (N, B, π, F ) be a Ck, r-bunched partially hyperbolic
extension of f , for some k ≥ 2, where B = M × N . We fix Riemannian metrics
on M and N . Let exp: TM → M be the exponential map for this metric (which
we may assume to be C∞), and fix ρ0 > 0 such that expp is a diffeomorphism from
BTpM (0, ρ0) to BM (p, ρ0), for every p ∈M . As in the proof of Lemma 10.3, the bundle
B pulls back via exp: BTM (0, ρ0) → M to a Cr bundle π̃0 : ‹B0 → BTM (0, ρ0) with
fiber N , where BTM (0, ρ0) denotes the ρ0-neighborhood of the 0-section of TM . As
in the proof of Lemma 10.3, we fix, for each p ∈ M a trivialization of ‹B0|BTpM (0,ρ0),
depending smoothly on p ∈ M . Any section σ : M → B of B pulls back to a section
σ̃ : BTM (0, ρ0)→ ‹B0 via σ̃(v) = (v, σ(exp(v))).

Let TM = ‹Eu⊕‹Ec⊕‹Es be a C∞ approximation to the partially hyperbolic splitting
for f . Observe that TM is a C∞ bundle over ‹Ec under the map πc : TM → ‹Ec that
sends vu + vc + vs ∈ ‹Eu(p)⊕ ‹Ec(p)⊕ ‹Es(p) to vc ∈ ‹Ec(p). This splitting will give us
a global way to parametrize the fake center manifolds Ŵ

c
(p).

If f is r-bunched, for r = 1 or r < k−1, and the approximation TM = ‹Eu⊕‹Ec⊕‹Es
to the hyperbolic splitting is sufficiently good, then Proposition 10.1 implies there
exists a map gc : ‹B

Ẽc
(0, ρ)→ BTM (0, ρ0) with the following properties:

1. gc is a section of πc : BTpM (0, ρ)→ ‹B
Ẽc

(0, ρ),
2. the restriction of gc to B

Ẽc(p)
(0, ρ) is a Cr embedding into TpM , depending

continuously in the Cr topology on p ∈M ;
3. for p ∈M , the image gc(B

Ẽc(p)
(0, ρ)) coincides with exp−1

p ( Ŵ
c
(p)).

Let π̃c = πc ◦ π̃ : ‹B0 → B
Ẽc

(0, ρ). The bundles and the relevant maps are summa-
rized in the following commutative diagram.‹B0

π̃

��
π̃c

��

proj B // B

π

��
BTpM (0, ρ)

σ̃

TT

πc

��

exp // M

σ

TT

B
Ẽc

(0, ρ)

gc

SS
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Note that π̃c : ‹B0 → B
Ẽc

(0, ρ) is a Ck bundle. A different choice of exponential map
or approximation to the partially hyperbolic splitting gives an isomorphic bundle and
a different section gc′ related to the first by a uniform graph transform on fibers.

Consider the restriction ‹B0,p of ‹B0 to any fiber B
Ẽc(p)

(0, ρ) of B
Ẽc

(0, ρ) over

p ∈M . For every positive integer ` ≤ r, we define a Ck−` jet bundle J ` →M whose
fiber over p ∈M is the space J`0(π̃c : ‹B0,p → B

Ẽc(p)
(0, ρ)).

Suppose now that σ : M → B is a section of B, and that ` ≤ r. We say that σ
has a central `-jet at p if there exists a C` local section s = sσ,p ∈ Γ`0p(π̃c : ‹B0,p →
B
Ẽc(p)

(0, ρ)) such that, for all v ∈ B
Ẽc(p)

(0, ρ)):

dN (projN ◦ σ̃ ◦ gc(v), projN ◦ s(v)) = o(|v|`).(42)

It is not hard to see that σ : M → B has a central `-jet at p if and only if the restriction
of σ to Ŵ

c
(p) is tangent to order ` at p to a C` local section σ′ : Ŵ

c
(p)→ B. If σ has a

central `-jet at p, for every p ∈M then σ induces a well-defined section j`σc : M → J `

that sends p to j`0sσ,p. We call j`σc the central `-jet of σ, and we write j`pσc for the
image of p under j`σc. It is easy to see that the existence of a central `-jet for σ
is independent of the choice of smooth approximation to the partially hyperbolic
splitting and independent of choice of exponential map. In general there is no reason
to expect the central `-jet j`σc to be a smooth section, even when σ itself is smooth,
because gc is not smooth.

Remark: If σ has a central `-jet at p, then (in a fixed coordinate system about p),
σ has an (` − l, 1, C) expansion on Ŵ

c
(p) at p. If j`σc is continuous, and the error

term in (42) is uniform in p, then C can be chosen uniformly in a neighborhood of p.

In the proof of Theorem C, we will focus attention on the pullbacks J `|“W c
(x)

of J ` to various fake center manifolds over M . The central observation we will
make use of is that, for each x ∈ M , there is an isomorphism Ix between the
bundles J `|“W c

(x)
and J`(π : B“W c

(x)
→ Ŵ

c
(x)). To compress notation, we will

write J`( Ŵ
c
(x), N) for J`(π : B“W c

(x)
→ Ŵ

c
(x)). For x ∈ M , the isomorphism

Ix : J `|“W c
(x)
→ J`( Ŵ

c
(x), N) is defined:

Ix(y, j`0ψ) = j`y(id“W c
(x)
, projN ◦ ψ ◦ πc ◦ exp−1

y ).

10.5. Coordinates on the central jet bundle. — Fix ` ≤ r. We describe here a
natural system of Cr−` coordinate charts on J ` based on adapted coordinates on M .

Let ‹Es ⊕ ‹Ec ⊕ ‹Eu be a C∞ approximation to the hyperbolic splitting to M . Fix
a point p ∈ M and let (xu, xs, xc) be a Cr adapted coordinate system on BM (p, ρ)

based at p. Next fix Cr local trivializing coordinates (xm, vc) ∈ Rm × Rc for Ẽc over
BM (p, ρ), covering the adapted charts at p and sending B

Ẽc
(0, ρ1)|BM (p,ρ) to Im×Ic.
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Let (x, v) ∈ Im × Im be the corresponding charts on BTM (0, ρ1)|BM (p,ρ). In these
charts, the projection πc sends (xm, vu, vs, vc) to (xm, vc).

We choose these charts such that the exponential map on BTM (0, ρ1) over BM (p, ρ)

in these coordinates sends (xm, v) to xm + v ∈ Im (these charts are not isometric,
nor do they preserve the structure of TM as the tangent bundle to M , but they can
be chosen to be uniformly Cr). Also fix Cr coordinates (xm, q) ∈ Rm ×N for B over
BM (p, ρ) sending π−1(BM (p, ρ)) to Im ×N , with π(xm, q) = xm.

The induced coordinates on ‹B0 over B
Ẽc

(0, ρ0)|BM (p,ρ) take the form (xu, xs, xc +

vc, vc, q) ∈ Im × N . We may further choose these coordinates so that, π̃ and π̃c are
the projections onto the Im× Ic and Im coordinates, respectively. These coordinates
give a natural identification of J `|B(p,ρ) with Im × J`0(Ic, N).

Finally, for each point q ∈ N , we fix Cr coordinates zn ∈ Rn, sending q to 0

and BN (q, ρ) to In. In this way, we define, for each z ∈ ‹B0, an adapted system of
coordinates (xu, xs, xc + vc, vc, zn) ∈ Rm × Rc × Rn sending z to 0 and B

B̃0
(z, ρ)

to Im × Ic × In.
In local coordinates, each element of J ` can thus be uniquely represented as a tuple

(xm, ℘), where xm ∈ Im and ℘ ∈ P `(c, n). If σ has an `-jet at p for every p, we can
thus represent locally the section j`σc as a function from Im to P `(c, n), using the
adapted charts in a neighborhood of σ(p).

Consider the set Ic×J`0(Ic, N). We may regard this as a natural object associated
to p ∈ M in either of two ways. First, Ic × J`0(Ic, N) embeds as the subset {xu =

0, xs = 0} × J0(Ic, N) in an adapted coordinate system for J `|B(p,ρ), which gives an
identification of Ic×J`0(Ic, N) with J `|“W c

(p)
. Second, in the same adapted coordinate

system, we have the identification of Ic × J`0(Ic, N) with J`( Ŵ
c
(p), N). We will use

both identifications in what follows. We can further put local coordinates on Ic ×
J`0(Ic, N), as follows. Given a point z ∈ π−1(x), we fix an adapted coordinate system
(xc, zn) ∈ Ic × In for Ŵ

c

F (z), sending z to 0. This gives local coordinates (xc, ℘) ∈
Ic × P `(c, n) on Ic × J`0(Ic, N) sending z (regarded as an element of J0

0 (Ic, N) ↪→
J`0(Ic, N)) to (0, 0).

Let us give a name to these adapted coordinates and define them more precisely.
For z ∈ B, fix an adapted chart ϕ̂z : Im × Ic → BB(z, ρ) at z, sending (0, 0) to z,
sending {xu = 0, xs = 0} to Ŵ

c

F (z), and so on. We may further assume that the
projection Im × Ic → Im is conjugate to π under ϕ̂. The maps ϕ̂z induce adapted
coordinates ϕz = π ◦ ϕ̂z ◦ ι : Im → BM (π(z), ρ) at π(z), where ι is the inclusion
xm → (xm, 0). We will denote by ω̂c the parametrization of Ŵ

c
manifolds in the ϕz

coordinates. Let θz : Ic → B
Ẽc(π(z))

(0, ρ) be defined by:

θz(x
c) = πc ◦ exp−1

π(z)(ϕz(0, 0, x
c)).
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We now define the parametrizations ηz and νz of the bundles J `|“W c
(π(z))

and

J`( Ŵ
c
(π(z)), N) discussed above. Let ηz : Ic × P `(c, n)→ J `“W c

(π(z))
be defined by

ηz(x
c, ℘) = (ϕz(0, 0, x

c), j`0 (id
Ẽc(ϕz(0,0,xc))

, ϕ̂z(0, 0, θ
−1
z , ℘(θ−1

z − xc)),

(recall here that elements of ‹B0,p are of the form (v, z) ∈ B
Ẽc(p)

(0, ρ) × B with

expp(v) = π(z)). Finally, let νz : Ic × P `(c, n)→ J`( Ŵ
c
(π(z)), N) be the map:

νz(x
c, ℘) = j`ϕz(0,0,xc)(ϕ̂z ◦ (ϕz

−1, ℘
(
projIc ◦ ϕ−1

z − xc)
)
).

We make all of these choices uniformly in z. Strictly speaking, all of these
parametrizations are defined only on a neighborhood of the zero-section in P `(c, n),
but as with the holonomy maps, we will ignore restriction of domain issues to simplify
notation.

Recall the isomorphism Ix : J `|“W c
(x)
→ J`( Ŵ

c
(x), N) constructed in the previous

subsection. For w ∈ Ŵ
c

F (z, ρ), consider the map Iz,w : Ic × P `(c, n) → Ic × P `(c, n)

given by Iz,w = ν−1
w ◦ Iπ(z) ◦ ηz. We have constructed these coordinates so that

Iz,z = idIc×P `(c,n). The following lemma is a direct consequence of Lemmas 10.5 and
10.5.

Lemma 10.10. — For every z ∈ B and w ∈ Ŵ
c

F (z, ρ), and ` ≤ r, we have:

|j`0Iz,w − j`0idIc×P `(c,n)| = o(d(z, w)r−`).

10.6. Holonomy on central jets. — Let S be a (K, 1)-accessible sequence from x

to x′. In this subsection, we will define, for each 0 ≤ ` ≤ r, and each (K, 1) accessible
sequence from x to x′, two bundle maps“H `

S : J`( Ŵ
c
(x), N)→ J`( Ŵ

c
(x′), N)

and
H `

S : J `|“W c
(x)
→ J `|“W c

(x′)
;

we will make use of the identification Ix between J`( Ŵ
c
(x), N) and J `|“W c

(x)
to com-

pare these maps. (Recall that “J`( Ŵ
c
(x), N)” is shorthand notation for the jet bundle

J`(π : B“W c
(x)
→ Ŵ

c
(x))).

The map “H `

S is just the action on `-jets induced by the diffeomorphism “H S , defined
by: “H `

S(j`yψ) = j`
ĥ S(y)

“H S ◦ ψ ◦ ĥ−1
S ;

Then “H `

S is a Cr−` bundle map, covering ĥ S (see Section 6.3). Lemma 10.8 implies:
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Lemma 10.11. — If F and f are Ck and r-bunched for k ≥ 2 and r = 1 or r < k− 1,
then “H`

S is a Cr−` diffeomorphism that depends continuously in the Cr−` topology on
the (K, 1)-accessible sequence S.

Fix a point z ∈ π−1(x) and let z′ = H S(z). In coordinates on J`( Ŵ
c
(x), N) and

J`( Ŵ
c
(x′), N) induced by the adapted coordinates at z and z′, we have a map“H `

S,z = ν−1
z′ ◦ “H `

S ◦ νz : Ic × P `(c, n)→ Ic × P `(c, n).

Similarly, if S connects x and x′, we set ĥ S,x(xc) = ϕ−1
x′ ĥ S ◦ ϕx : Ic → Ic.

Writing P `(c, n) = Π`
i=0L

i
sym(Rc,Rn), we have coordinates

(xc, ℘) 7→ (xc, ℘0, . . . , ℘`)

on Ic ×P `(c, n), where ℘i = Di
xc℘. Denote by “H `

S,z(x
c, ℘)i the Lisym(Rc,Rn)-coordi-

nate of “H `

S,z(x
c, ℘), so that“H `

S,z(x
c, ℘) = (ĥ S,z(x

c), “H `

S,z(x
c, ℘)0, . . . , “H `

S,z(x
c, ℘)`),

where “H `

S,z(x
c, ℘)0 = “H S,z(x

c, ℘0).
The following is an immediate consequence of the discussion in Section 6.3.

Lemma 10.12. — For every ` ≤ r, there exists a Cr−` map

R` : Rc × P `−1(c, n)→ L`sym(Rc,Rn)

such that, for every (xc, ℘) ∈ Rc × P `(c, n), we have:“H `

S,z(x
c, ℘)` = R`(xc, ℘0, . . . , ℘`−1) +

∂ H S,z

∂℘0
(xc, ℘0) · ℘` ◦ (Dxc ĥ S,z)

−1.

We have now defined, for each (K, 1)-accessible sequence S connecting x and x′,
a natural lift of the Cr diffeomorphism “H S : Ŵ

c

F (x) → Ŵ
c

F (x′) to a Cr−` diffeo-

morphism “H `

S : J`( Ŵ
c
(x), N) → J`( Ŵ

c
(x′), N) on the corresponding central `-jet

bundles. We have also derived in Lemma 10.12 the important fact that “H `

S has an
upper triangular form with respect to the natural local adapted coordinate systems
on J`( Ŵ

c
(x), N) and J`( Ŵ

c
(x′), N).

Our next task is to define, for each (K, 1)-accessible sequence S from x to x′, a lift
of the homeomorphism H S : Ŵ

c

F (x)→ Ŵ
c

F (x′) to a map H `
S : J `|“W c

(x)
→ J `|“W c

(x′)

with two essential properties:

– H `
S and “H `

S are tangent to order r − ` at x, under the natural identification

of J`( Ŵ
c
(x), N) and J `|“W c

(x)
;

– H `
S preserves central `-jets of bisaturated sections of B.
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Recall that for x′ ∈ W s
(x, 1) or x′ ∈ W u

(x, 1), we defined h(x,x′)(y) = ĥ(x,x′)y (y)

and H (x,x′)(z) = “H (x,x′)π(z)
(z); we then extended this definition to (K, 1)-accessible

sequences via composition. We further extend this definition to central `-jets. If S is
a (K, 1)-accessible sequence from x to x′, we set:

H `
S(y, j`0ψ) = I−1

h S(y) ◦ “H `

Sy
(Ix ◦ (y, j`0ψ)),

where Ix : J `|“W c
(x)
→ J`( Ŵ

c
(x), N) is the previously constructed isomorphism.

Clearly we have that H `
S : J `|“W c

(x)
→ J `|“W c

(x′)
is a map covering H S , under the

projection J `|“W c
(x)
→ π−1( Ŵ

c
(x)) = Ŵ

c

F (x).

We now address the first important property of H `
S : order r − ` tangency to “H `

S .
For S connecting x and x′, we set h S,x(xc) = ϕ−1

x′ ◦ h S ◦ ϕx : Ic → Ic, and for z ∈
π−1(x), we define

H `
S,z = η−1

z′ ◦ H `
S ◦ ηz : Ic × P `(c, n)→ Ic × P `(c, n),

where z′ = “H S(z) = H S(z). Chasing down the definitions, we see that in Ic ×
P `(c, n)-coordinates, the map H `

S,z takes the form

H `
S,z(x

c, ℘) = I−1
H S(z(xc,℘0)),z′ ◦ “H `

Sy(xc,℘0)
◦ Iz(xc,℘0),z(x

c, ℘)

where y(xc) = ϕz(0, 0, x
c), z(xc, ℘0) = ϕ̂z(0, 0, x

c, ℘0), and the maps Iz,w are defined
in the previous subsection.

Hence, by the definition of “H `
, the difference |“H `

S,z(x
c, ℘) − H `

S,z(x
c, ℘)| can by

estimated by bounding:

– |j`z“H S − j`y(xc,℘0)
“H Sz(xc,℘0)

| and |j`zĥ−1
S − j`y(xc,℘0)ĥ

−1
Sy(xc,℘0)

| which are both

o(|(xc, ℘0)|r−`), by Lemmas 10.5 and 10.9; and
– |j`0I−1

H S(z(xc,℘0)),z′ − j`0idIc×P `(c,n)| and |j`0(Iz(xc,℘0),z(x
c, ℘)) − j`0idIc×P `(c,n)|,

which are both o|(xc, ℘0)|, by Lemma 10.10.

We thereby obtain:

Lemma 10.13. — Let S be a (K, 1)-accessible sequence from x to x′, and let z ∈
π−1(x).

For each xc ∈ Ic, ℘ ∈ P `(c, n) with |℘| bounded, and for every 0 ≤ ` ≤ r we have:

|“H `

S,z(x
c, ℘)− H `

S,z(x
c, ℘)| = o(|(xc, ℘0)|r−`).

In this sense, the maps H `
S and “H `

S are tangent to order r − ` at x.
As mentioned above, another important property of H ` is that it preserves central

`-jets of saturated sections.
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Lemma 10.14. — Let σ : M → B be a bisaturated section. Then for every (K, 1)-ac-
cessible sequence from x to x′, and any y ∈ Ŵ

c
(x), we have H S(σ(y)) = σ(h S(y)).

If, in addition σ : M → B is Lipschitz and has a central `-jet j`yσc at y for some
1 ≤ ` < r, then σ has a central `-jet j`h S(y)σ

c at h S(y), and:

j`h S(y)σ
c = H `

S(j`yσ
c).

Proof. — Fix x ∈ M and S connecting x to x′. Let σ : M → B be a bisaturated
section. It suffices to prove the lemma in the case where x′ ∈ W u

(x, 1) and S = (x, x′).
Let y ∈ Ŵ

c
(x). By definition of “H S , the value “H S(σ(y)) is the endpoint of an su-lift

path for the foliations W s
F and W u

F , covering the path (x, x′)y. The endpoint of (x, x′)y
is h S(y). It follows immediately from saturation of σ that H S(σ(y)) = σ(h S(y)).

Next assume that σ is Lipschitz and has a central `-jet j`yσc at y, for some 1 ≤ ` < r.

This means that the restriction of σ to Ŵ
c
(y) is tangent to order ` at y to a C`

local section σ′ : Ŵ
c
(y) → B. Let y′ = ĥ(x,x′)y (y) = h(x,x′)(y). Consider the images

of σ and σ′ under “H (x,x′)y . Since “H (x,x′)y is a C` diffeomorphism and covers the C`

diffeomorphism ĥ(x,x′)y , the local sections “H (x,x′)y◦σ◦ĥ
−1
(x,x′)y

and “H (x,x′)y◦σ′◦ĥ
−1
(x,x′)y

over Ŵ
c
(y′) are tangent to order ` at y′.

Since H `
(x,y) is defined by the induced action of H `

(x,y)y on Ŵ
c
(y), it suffices to

show that the local sections “H (x,x′)y ◦ σ ◦ ĥ
−1
(x,x′)y

and σ|“W c
(y′)

are tangent to order `

at y′. If this is the case, then σ|“W c
(h(x,x′)(y))

and “H (x,x′)y ◦σ′ ◦ ĥ
−1
(x,x′)y

are also tangent

to order ` at y′; since the latter section is C`, this implies that σ has a central `-jet
at y′, and moreover that j`y′σ

c = H `
(x,x′)(j

`
yσ

c).

Lemma 10.9 implies that for all z ∈ Ŵ
c
(x),

dB( H (x,x′)(σ(z)), “H (x,x′)y (σ(z))) = o(d(σ(y), σ(z))r);

since σ is Lipschitz, we obtain that

dB( H (x,x′)(σ(z)), “H (x,x′)y (σ(z))) = o(d(y, z)r).

We have already shown that for all z ∈ Ŵ
c
(x), H (x,x′)(σ(z)) = σ(h(x,x′)(z)). Hence

dB(σ(h(x,x′)(z)), “H (x,x′)y (σ(z))) = o(d(y, z)r), and so “H (x,x′)y◦σ◦ĥ
−1
(x,x′)y

and σ|“W c
(y′)

are tangent to order r at y′. Since ` < r, this completes the proof.

10.7. Ec curves. — The final tool that we will need in our proof of Theorem C is
the concept of an Ec-curve. As in the proof of Theorem B, we will use an inductive
argument to prove that a bisaturated section has central `-jets. In the inductive step
of the proof of Theorem B, we prove that the `-jets are Lipschitz continuous, and using
Rademacher’s theorem, we obtain ` + 1 jets. The analogue of that argument in this
context would be to show that j`σc is Lipschitz and then apply Rademacher’s theorem.
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As mentioned before, this is not possible, since the function gc is not Lipschitz, even
along Ŵ

c
-manifolds. What we have shown in Lemma 10.5 is that gc and its jets are

Lipschitz along Ŵ
c
(x) at x, and what we will show in our inductive step here is that

j`σc is Lipschitz along Ŵ
c
(x) at x, for every x ∈M . This leaves the question of how

to apply Rademacher’s theorem to obtain anything at all, let alone `+ 1 central jets.
The answer is Ec curves.

An Ec curve is simply a curve in M that is everywhere tangent to Ec. Such C1

curves always exist by Peano’s existence theorem, but we ask a little more: that they
be Cr. Rather gratifyingly, there is a simple way to construct such curves, and when f
is r-bunched, Campanato’s theorem (Theorem 8.2) implies that they Cr. If a function
s is Lipschitz along Ŵ

c
(x) at x, for every x ∈ M , then for any Ec curve ζ, it is not

hard to see that s must be Lipschitz along ζ, and so differentiable almost everywhere.
What is more, if a section σ has a central `-jet j`σc, then restricting j`σc to an Ec

curve ζ gives the actual `-jet for σ restricted to ζ if σ|ζ is C`. We will use both of
these properties of Ec curves in our proof of Theorem C.

Lemma 10.15. — Let f be Ck and r-bunched, where k ≥ 2 and r = 1 or r < k − 1.
Let V be a coordinate neighborhood of p, and let psup : V → Ŵ

c
(p) be a Cr submersion.

For any Cr curve ζ̂ : (−1, 1) → Ŵ
c
(p) with ζ̂(0) = p, there exists a Cr (or Cr−1,1 if

r > 1 is an integer) curve ζ : (−1, 1)→M such that, for all t ∈ (−1, 1):

1. ζ̂(t) = psu(ζ(t)),
2. ζ ′(0) = ζ̂ ′(0),
3. ζ ′(t) ∈ Ec(ζ(t)),
4. d(ζ(t), ζ̂(t)) ≤ O(|t|r), and
5. |ζ(`)(t) − ζ̂(`)(t))| ≤ o(|t|r−`), for all 1 ≤ ` ≤ r; what is more, the distance be-

tween the `-jets of Ŵ
c
(ζ̂(t)) at ζ̂(t) and the `-jets of Ŵ

c
(ζ(t)) at ζ(t) is o(|t|r−`),

for all 1 ≤ ` ≤ r.

Moreover, for each y ∈ V there is a Cr submersion psuy : V → Ŵ
c
(y) with the

following property. For each s, t ∈ (−1, 1), there exists a point xs ∈ Ŵ
c
(ζ(t)) such

that xs is connected to psuζ(t)(ζ(t+ s)) by an su-path whose length is o(|s|r), and such
that:

(6) properties (1)-(5) hold for the curves ζt(s) = ζ(t+s) and ζ̂t(s) = psuζ(t)(ζ(t+s)),
and

(7) d(xs, ζt(s)) = o(|s|r).
All of these statements hold uniformly in x ∈M .

Proof. — Let ζ̂ be given and assume without loss of generality that ζ̂ is unit speed. We
may also assume that we are working in Cr local coordinates and that psup is projection
along an affine plane field Esu transverse to Ec. This planefield then defines for each
y ∈M a smooth projection psuy : V → Ŵ

c
(y).
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The curve ζ̂ induces a vector field on (psu)−1(ζ̂) by intersecting Ec with
(Dpsu)−1 (̇̂ζ), (note that the two distributions meet transversely in a linefield).
Integrating this vector field, we get the Ec-curve ζ. Clearly ζ satisfies properties
(1)-(3).

To prove (4), we show first that for every s and t, the distance between ζ(t + s)

and the psuζ(t)-projection of ζ(t + s) onto Ŵ
c
(ζ(t)) is o(|s|r). The proof of this fact is

very similar to the proof of Lemma 10.5.

x
x′

y
y′

z

w

z′

ζ ζ̂

Θ(|s|)Θ(|s|)

Figure 8. An Ec-curve ζ and its shadow ζ̂

Let w = ζ(t), let x = ζ(s + t), and let x′ = psuw (x). Let y be the unique point
of intersection of W u

(x) with
⋃
z∈“W c

(x)
W s

loc(z), and let y′ ∈ Ŵ
c
(x) be the unique

point of intersection of W u
loc(y) and Ŵ

c
(x) Similarly, let z be the unique point of

intersection of W s
(x) with

⋃
z∈“W c

(x)
W u

loc(z), and let z′ ∈ Ŵ
c
(x) be the unique point

of intersection of W s
loc(z) and Ŵ

c
(x) (note that y′ and z′ do not necessarily lie on ζ̂,

but this is not important). Note that, because psuw is smooth, the distance between
x′ and x is O(|s|). Continuity of the partially hyperbolic splitting and transversality
of Esu to Ec then imply that d(y′, w) and d(z′, w) are also O(|s|). We are going to
show that d(x, y) and d(x, z) are both o(|s|r); continuity of the partially hyperbolic
splitting and transversality of Esu to Ec then imply that d(x, x′) = o(|s|r+ε).

Assume that we have fixed a continuous function δ < {γ̂, 1} satisfying δν̂γ̂−1 < γr;
this is possible because f is r-bunched. Choose n ≥ 1 such that |s| = Θ(δn(w)). Apply
f i to the picture, for i = 1, . . . , n. Since x is connected to x0 by a curve everywhere
tangent to Ec, the distance between xi and wi is O(δn(w)γ̂i(w)−1). Since y′ lies
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on Ŵ
c
(w), the distance between xi and y′i is also O(δn(w)γ̂i(w)−1); these numbers

are less than 1 for all i = 1, . . . , n. So the distance between xn and y′n is less than
d(xn, w) + d(y′n, w) = O(δn(w)γ̂n(w)−1).

Since y ∈ W s
(y′), the distance between yn and y′n is O(νn(w)). But 1-bunching

implies that νn(w) = o(δn(w)γ̂n(w)−1), and so the distance between yn and xn is
O(δn(w)γ̂n(w)−1). Now apply f−n to this picture. Since xn and yn lie on the same
unstable manifold, the distance between their inverse iterates is contracted by ν̂ at
each step. Thus d(x, y) = O(ν̂n(w)δn(w)γ̂n(w)−1). But we chose δ so that δν̂γ̂−1 < γr.
Hence d(x, y) = o(γ̂n(w)−r) = o(|s|r). A similar argument replacing f by f−1 shows
that d(x, z) = o(|s|r). Setting t = 0 we obtain conclusion (4).

To show that ζ is Cr we use Theorem 8.2. Note that for each t ∈ (−1, 1), the
projection psuζ(t)ζ onto Ŵ

c
(ζ(t)) is the same as psuζ(t)ζ̂; in particular, psuζ(t)ζ is uniformly

Cr, since ζ̂ and psu are Cr, and Ŵ
c
(ζ(t)) is uniformly Cr, by r-bunching of f . But

the previous calculation now implies that there exists a constant C > 0, and for every
t ∈ (−1, 1), a Cr function psuζ(t)ζ : (−1, 1)→M such that:

d(psuζ(t)ζ(t+ s), ζ(t+ s)) ≤ C|s|r,

for every s ∈ (−1, 1). Theorem 8.2 implies that ζ is Cr (or Cr−1,1, if r > 1 and r is
an integer).

The proof of item (5) is very similar to the proof of Lemma 10.5 and is left as an
exercise.

Conclusion (6) of the lemma is immediate from the previous calculations. The
proof of conclusion (7) is very similar to the calculation above, and is also left to the
reader.

Remark: In fact Ecs, Ecu and Ec are all Cr along Ec-curves. The proof uses
Campanato’s theorem again. This time the smooth approximating functions are
parametrizations of the manifolds Ŵ

cs
and Ŵ

cu
.

11. Proof of Theorem C

Suppose F is a Ck and r-bunched extension of f where k ≥ 2 and r = 1 or r < k−1,
and let σ : M → B be a bisaturated section. The first step of the proof is to show:

Lemma 11.1. — σ has a central brc-jet at every point in M , and jbrcσc is continuous.

Proof. — We prove the following inductive statements, for ` ∈ [0, brc]:
I`. σ has a central `-jet at every point.
II`. The central `− 1-jets of σ along Ŵ

c
(x) are Lipschitz at x, uniformly in x ∈M ,

for ` ≥ 1.
III`. The restriction of σ to Ec curves is uniformly C`.
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We first verify I0--III0. Statement II0 is empty. Since σ is bisaturated, Theorem 4.2
implies that σ is continuous. This implies I0--III0. Now assume that statements I`--III`
hold, for some ` ∈ {0, . . . , brc − 1}.

The central `-jets are continuous. We note that J ` is an admissible bundle; the
holonomy map for the accessible sequence S for x to x′ is just the restriction of
the map H `

S to the fibers J `|{x} and J `|{x′}. Lemma 10.14 implies that if σ has a
central `-jet j`σc, then j`σc is a bisaturated section of J `. Continuity follows from
Theorem 4.2.

The central `-jets of σ along Ŵ
c
(x) are Lipschitz at x. We first show that

for every x, the restriction of j`σc to Ŵ
c
(x) is Lipschitz at x (where the Lipschitz

constant is uniform in x).
By Lemma 4.4 each point x ∈ M has a uniformly large neighborhood Ux and a

family of (K, 1)-accessible sequences { Sx,y}y∈Ux such that Sx,y connects x to y, Sx,x
is a palindromic accessible cycle and limy→x Sx,y = Sx,x, uniformly in x. We may

assume that Ŵ
c
(x) is contained in the neighborhood Ux.

We fix x = x0 and x1 ∈ Ŵ
c
(x0) and choose a sequence of points xi ∈ Ux0

as follows.
Let Ux0 and { Sx,y}y∈Ux0 be given by Lemma 4.4. For each i ≥ 1, given xi ∈ Ux0 ,

the accessible sequence Si = Sx0,xi
determines a map hi := h Si : Ŵ

c
(x0)→ Ŵ

c
(xi),

satisfying xi = hi(x0). We set xi+1 = hi(x1) ∈ Ŵ
c
(xi).

We now write things in adapted coordinates. Let ℘`σ : Ux0 → P `(c, n) be the func-
tion satisfying j`yσc = νσ(y)(℘

`
σ(y)). Then ℘`σ assigns in adapted coordinates the ap-

propriate central `-jet of σ to each point in Ux0
. We are going to show that the

restriction ℘`σ : Ŵ
c
(x)→ P `(c, n) is Lipschitz at x.

Let H `
Si

: J `“W c

x0

→ J `“W c

xi

be the lifted “true holonomy on jets,” which covers h Si and

let “H `

Si
: J`( Ŵ

c
(x0), N)→ J`( Ŵ

c
(xi), N) be the lifted “fake holonomy on jets,” which

covers ĥ Si . This defines maps H `
i = H `

Si,σ(x0) and “H `

i = “H `

Si,σ(x0) on Ic × P `(c, n).

Write H `
i(v, ℘) = (hi(v), H`

i (v, ℘)) and “H `

i(v, ℘) = (ĥi(v), “H`
i (v, ℘)). Observe that

ϕσ(xi)(0, 0, 0) = 0 for all i ≥ 0; let vi+1 ∈ Ic be the point satisfying ϕσ(xi)(0, 0, vi+1) =

xi+1. Note that |v1| = O(|x1− x0|), |vi+1| = O(|xi+1− xi|), and vi+1 = ĥi(v1), for all
i ≥ 0.

Then, since j`σc is bisaturated and continuous (and hence bounded) Lemma 10.14
implies:

H `
i(0, ℘

`
σ(x0)) = (0, ℘`σ(xi)), and H `

i(v1, ℘
`
σ(x1)) = (vi+1, ℘

`
σ(xi+1)).
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By definition of H `
i and H `

i , we have “H `

i(0, ℘
`
σ(x0)) = H `

i(0, ℘
`
σ(x0)); furthermore,

Lemma 10.13 implies

|H `
i(v1, ℘

`
σ(x1))− “H `

i(v1, ℘
`
σ(x1))|(43)

≤ o(|x1 − x0|r−` + |℘`−1
σ (x1)− ℘`−1

σ (x0)|r−`).(44)

Now Lemma 10.11 implies that “H `

i is Cr−`, and uniformly close to the identity map,
since Sx0,x0

is palindromic and Sx0,y
→ Sx0,x0

as y → x0, uniformly in x0.
Lemma 10.12 then implies that for every i with |xi − x0| = O(1), there exist

linear maps , Ai = Dĥi(0) : Rc → Rc, Bi = Dv
“H`
i (0, ℘

`
σ(x0)) : Rc → P `(c, n) and

Ci = D℘`
“H`
i (0, ℘

`
σ(x0)) : P `(c, n)→ P `(c, n), such that

vi+1 = ĥi(v1) = Ai(v1) + o(|v1|),(45)

and “Hi(v1, ℘
`
σ(x1))− “Hi(0, ℘

`
σ(x0)) = Bi(v1) + Ci(℘

`
σ(x1)− ℘`σ(x0))

+o(|v1|+ |℘`−1
σ (x1)− ℘`−1

σ (x0)|)

Moreover, we may assume that, for all i with |xi − x0| = O(1):

‖Ai − IdRc‖ <
1

4
, ‖Ci − IdP `(c,n)‖ <

1

4
, and ‖Bi‖ <

1

4
.(46)

By the inductive hypothesis II`, the central (`−1)-jets of σ along Ŵ
c
(x) are Lipschitz

at x. Hence |℘`−1
σ (x1)−℘`−1

σ (x0)| = O(|x1−x0|), and so combining (43) and (45) we
obtain “Hi(v1, ℘

`
σ(x1))− “Hi(0, ℘

`
σ(x0))(47)

= Bi(v1) + Ci(℘
`
σ(x1)− ℘`σ(x0)) + o(|x1 − x0|).(48)

(Notice that when ` = 0 the |℘`−1
σ (x1) − ℘`−1

σ (x0)| terms do not appear in these
expressions, and so Lipschitz regularity of σ is not an issue. This is due to upper
triangularity of “H .)

The proof now proceeds as the proof of Theorem B. Notice here that we do not

need to assume a priori that σ is C1; the reason is that the derivatives of “H `

i are
upper triangular, (unlike the maps H`

u in the Proof of Theorem B) which allows for
more precise estimates. We choose N = Θ(|x1 − x0|−1). By (45) and (46), this choice
of N ensures that |xN − x0| = O(1). Summing (47) from i = 0 to N − 1, we obtain:

N−1∑
i=0

“Hi(v1, ℘
`
σ(x1))− “Hi(0, ℘

`
σ(x0)) = (

N−1∑
i=0

Bi)(v1)

+(
N∑
i=1

Ci)(℘
`
σ(x1)− ℘`σ(x0))

+No(|x1 − x0|).
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Equation (43) implies that
∑N−1
i=0

“Hi(v1, ℘
`
σ(x1))− “Hi(0, ℘

`
σ(x0)) =

=
N−1∑
i=0

(
Hi(v1, ℘

`
σ(x1))−Hi(0, ℘

`
σ(x0))

)
+No(|x1 − x0|r−`)

=
N−1∑
i=0

℘`σ(xi+1)− ℘`σ(xi) +No(|x1 − x0|r−`)

= ℘`σ(xN )− ℘`σ(x1) +No(|x1 − x0|r−`).
Hence, since r − ` ≥ 1:

1

N
(℘`σ(xN )− ℘`σ(x1)) =

(
1

N

N−1∑
i=0

Bi

)
(v1)

+

(
1

N

N∑
i=1

Ci

)
(℘`σ(x1)− ℘`σ(x0)) + o(|x1 − x0|).

Rearranging terms and taking norms, we get

| 1

N
(
N∑
i=1

Ci)(℘
`
σ(x1)− ℘`σ(x0))| ≤ | 1

N
(℘`σ(xN )− ℘`σ(x1))|

+| 1

N
(
N−1∑
i=0

Bi)(v1)|+ o(|x1 − x0|)

≤ O(
1

N
) +

1

4
|(x1 − x0)|+ o(|x1 − x0|),

using (46) and the fact that ℘`σ is continuous, and hence bounded. Again using (46)
we have that∣∣∣∣∣

(
1

N

N∑
i=1

Ci

)
(℘`σ(x1)− ℘`σ(x0))

∣∣∣∣∣ ≥ 3

4
|℘`σ(x1)− ℘`σ(x0)|.

Combining the previous two estimates, we get:

|℘`σ(x1)− ℘`σ(x0)| ≤ 4

3

Å
O(

1

N
) +

1

4
|(x1 − x0)|+ o(|x1 − x0|)

ã
.

Finally, since 1
N = Θ(|x1 − x0|), we obtain that

|℘`σ(x1)− ℘`σ(x0)| = O(|x1 − x0|),
which is the desired estimate. This verifies II`+1.

σ is Lipschitz. If ` = 0, we know that σ is Lipschitz at x along Ŵ
c
(x) leaves, for

every x, and differentiable along W u leaves, and W s leaves, with the partial derivatives
continuous. This readily implies that σ is Lipschitz.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



158 A. WILKINSON

σ has a central (` + 1)-jet at every point. We fix a uniform system of Cr sub-
mersions psux : Vx → Ŵ

c
(x) defined in coordinate neighborhoods in M . We define Ec

curves using these submersions.

Lemma 11.2. — j`σc is uniformly Lipschitz along Ec curves.

Proof. — This is a straightforward consequence of Lemma 10.15 and the fact that
j`σc is Lipschitz along Ŵ

c
(x) at x, for every x ∈M .

Fix an Ec curve ζ1 inside of a coordinate neighborhood V . Since j`σc is Lipschitz
along ζ1, it is differentiable almost everywhere. Fix a point x1 = ζ1(t) of differentia-
bility. Then j`σc has a partial derivative along ζ1 at x1. Let {psuy : V → Ŵ

c
(y)}y∈V

be the system of submersions in the neighborhood V given by Lemma 10.15. Con-
sider the Cr curve ζ̂1

x1
(s) := psux1

◦ ζ1(t+ s) in Ŵ
c
(x1). Lemma 10.15 implies that for

each s, there is a point xs ∈ Ŵ
c
(ζ(t+ s)) that is connected to ζ̂1

x1
(s) by a su-path S

whose length is o(|s|r). Since j`σc is bisaturated, we have that j`xsσ
c = H `

S(j`
ζ̂1x1 (s)

σc).

Lemma 10.6 implies that

d(j`xsσ
c, j`

ζ̂1x1
(s)
σc) = O(length( S)) +O(d(j`xs Ŵ

c
(xs), j

`
ζ̂1x1

(s)
Ŵ
c
(ζ̂1
x1

(s)))).

Lemmas 10.15 (5), implies that d(j`xs Ŵ
c
(xs), j

`
ζ̂1x1

(s)
Ŵ
c
(ζ̂1
x1

(s))) = o(|s|r−`). Hence:

d(j`
ζ̂1x1

(s)
σc, j`xsσ

c) = o(|s|r) + o(|s|r−`) = o(|s|r−`).

Since j`σc is Lipschitz along Ŵ
c
(ζ(t + s)) at ζ(t + s), we also obtain that

d(j`xsσ
c, j`ζ(t+s)σ

c) = O(d(xs, ζ(t + s))) = o(|s|r). Thus, in local coordinates, we
have:

j`
ζ̂1x1

(s)
σc − j`x1

σc = j`ζ(t+s)σ
c − j`x1

σc + o(|s|r−`);

since ` ≤ r − 1 and j`σc ◦ ζ is differentiable at x1 = ζ(t), this implies that j`σc is
differentiable at x1 along the Cr curve ζ̂1

x1
in Ŵ

c
(x1).

Let Ux1
and { S1

y}y∈Ux1 be the family of accessible sequences given by Lemma 4.4.
Since j`σc is bisaturated, Lemmas 10.13 and 10.14 imply that the image of ζ̂1

x1
under“H S1

y
is a Cr path ζ̂1

y in Ŵ
c
(y) along which j`σc is differentiable at y. Furthermore,

y 7→ ζ̂1
y is continuous at x1 in the Cr topology, and and the derivative of j`σc along

ζ1
y at y is continuous at x1.
Now choose another Ec curve ζ2 through x1, quasi-transverse to ζ1 (that is, such

that the tangent spaces to ζ1 and ζ2 at x1 are linearly independent). Again j`σc is
Lipschitz along ζ2, and we choose a point of differentiability x2. Since x1 is a point of
continuity of the curves {ζ̂1

y}y∈Ux1 , we may assume (by choosing x2 close to x1) that
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ζ2 and ζ̂1
x2

are quasi-transverse at x2; hence ζ̂1
x2

and ζ̂2
x2

= psux2
ζ2 are quasi-transverse

curves in Ŵ
c
(x2) along which j`σc has partial derivatives at x2.

Let Ux2
and { S2

y}y∈Ux2 be given by Lemma 4.4 for the point x2. Applying the
fake holonomy “H γ2

y
to the transverse pair of curves ζ̂1

x2
and ζ̂2

x2
, and reusing the label

ζ̂1
y now to denote the curve “H γ2

y
◦ ζ̂1

x2
, we obtain a family of pairs {(ζ̂1

y , ζ̂
2
y )}y∈Ux2

of quasi-transverse curves along which j`σc is differentiable at their intersection and
such that y 7→ (ζ̂1

y , ζ̂
2
y ) is continuous at x2 in the Cr topology.

Repeating this procedure c = dim(Ec) times, we obtain a point xc, a neighborhood
Uxc of xc, and a family of c-tuples of curves {(ζ̂1

y , . . . , ζ̂
c
y)}y∈Uxc such that, for each

y ∈ Uxc :

1. the curves (ζ̂1
y , . . . , ζ̂

c
y) contain y and lie in Ŵ

c
(y);

2. the tangent lines to (ζ̂1
y , . . . , ζ̂

c
y) at y span Ecy;

3. j`σc is differentiable at y along ζ̂cy,
4. the map z 7→ (ζ̂1

z , . . . , ζ̂
c
z) is continuous at xc in the Cr topology; and

5. for each i, the partial derivative of j`σc along ζiz at z is continuous at z = xc.

We claim that this implies that j`σc is differentiable along Ŵ
c
(xc) at xc.

Lemma 11.3. — Let xc be given as above. Then for every z ∈ Ŵ
c
(xc), there exists

a path η from xc to a point w in M with the following properties. The path η is
a concatenation of ζ̂i paths η = ζ̂1

1 ζ̂
2
2 · · · ζ̂cc , with d(w, psuxc (w)) = o(d(z, xc)

r) and
d(psuxc (w), z) = o(d(z, xc)).

Proof. — Denote by ζiy the ζi curve anchored at y (so that ζiy(0) = y). Start-
ing with xc, we take the union P1 :=

⋃
q∈ζ̂1xc

ζ̂2
q . Similarly, for i ≥ 1, we define

Pi+1 :=
⋃
q∈ Pi ζ̂

i+1
q . The quasi transversality of the curves ζ1, . . . , ζc at every point

and continuity of ζiy at y = xc implies that there exists a point w′ ∈ psuxc ( Pc) with
d(w′, z) = o(d(xc, z)). Fix a point w ∈ (psuxc )

−1(w′) ∩ Pc. Tracing the ζ̂i-curves in Pc
back from w to xc produces the desired path η from xc to w. An inductive argument
using Lemma 10.15 shows that d(w′, w) = o(d(xc, z)

r).

Let us see how this implies that j`σc is differentiable along Ŵ
c
(xc) at xc. This is

essentially the same as the proof that a function with continuous partial derivatives
is C1. We will use:

Lemma 11.4. — For every y ∈ V and every pair of points z1, z2 ∈ Ŵ
c
(y):

d(j`z1σ
c, j`z2σ

c) = O(d(z1, z2) + d(z1, y)r−` + d(z2, y)r−`).

Proof. — This follows from the facts that j`σc is saturated and Lipschitz along Ec

curves, and that psuy has the properties given in Lemma 10.15.
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Working in local charts on Ŵ
c
(xc) sending xc to 0, we may assume that the curves

ζ̂ixc are unit speed and correspond to the axes ∩i 6=j{xj = 0}. Define constants ai =

ai(xc) ∈ P `0 (c, n), for i = 1 . . . , c by

ai = lim
y→xc

(j`σc ◦ ζ̂iy)′(0).

We now define a linear map A : Rc → P `0 (c, n) by

A(t1, . . . , tc) =
c∑
i=1

aiti.

We claim that this map is the derivative of j`σc along Ŵ
c
(xc) at xc. Let z ∈ Ŵ

c
(xc)

be given, and consider the path η from xc to w given by Lemma 11.3. Let v1 = 0,
and write η = ζ̂1

v1 · ζ̂
2
v2 · · · ζ̂

c
vc ; for i = 1, . . . c−1, let ti satisfy ζ̂ivi(ti) = vi+1 = ζ̂i+1

vi+1
(0),

and let tc satisfy ζ̂cvc(tc) = w. The length of the curve η is Θ(
∑c
i=1 |ti|) = Θ(d(xc, z)).

Lemma 10.5 readily implies that the distance between the `-jets of Ŵ
c
(w) at w and

Ŵ
c
(psuxc (w)) at psuxc (w) is o(length(η)r−`) = o(d(xc, z)

r−`). Since j`σc is bisaturated
and Lipschitz, we obtain from Lemma 10.6 that

d(j`wσ
c, j`psuxc (w)σ

c) = O(d(w, psuxc (w))) + o(d(xc, z))
r−`)

= O(d(xc, z)
r) + o(d(xc, z))

r−`)

= o(d(xc, z)),

where we have used the facts that d(w, psuxc (w)) = o(d(z, xc)
r) and ` ≤ r − 1. Also,

since d(z, psu(w)) = o(d(z, xc)), Lemma 11.4 implies that

d(j`zσ
c, j`psuxc (w)σ

c) = o(d(z, xc)),

and so
d(j`zσ

c, j`wσ
c) = o(d(z, xc)).

Using the fact that j`σc has a directional derivative along each ζ̂i subpath of η at
its anchor point vi = ζ̂ivi(0), and writing things in local coordinates sending xc to 0,
we obtain that:

j`zσ
c − j`0σc =

c∑
i=1

(j`
ζ̂i
i
(ti)
σc − j`

ζ̂i
i
(0)
σc) + (j`zσ

c − j`wσc)

=
c∑
i=1

(j`σc ◦ ζ̂ii )′(0) · ti + o(|z|)

= A(z) + o(|z|).

Hence j`σc is differentiable along Ŵ
c
(xc) at xc, with derivative A.

Now we have that j`σc is differentiable at xc along Ŵ
c
(xc), we can spread this

derivative around using “H `
, and we get that the derivative of j`σc along Ŵ

c
(x) at x
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exists for every x and is a continuous function on M . We still need to show that σ
has central `+ 1 jets, with uniform error term.

The derivative of j`σc at x gives a candidate j`+1
x σc for a central `+ 1 jet at x; the

`+ 1st coordinate in j`+1
x σc is just the derivative at x along Ŵ

c

x of the `th coordinate
of j`σc. To show that σ has a central ` + 1-jet at x, we must show that for every
v ∈ B

Ẽc(x)
(0, ρ):

dN (projN ◦ σ̃ ◦ gc(v),projN ◦ j`+1
x σc(v)) = o(|v|`+1).(49)

We first note that j`σc is differentiable along Ec curves. To see this, let ζ be an
Ec curve in M . For each t ∈ I, Lemma 10.15 implies there exists a Cr curve ζ̂t
in Ŵ

c
(ζ(t)) with ζ̂t(0) = ζ(t) and such that ζ̂t and ζ(s + t) are tangent to order

r at 0. Furthermore, the previous arguments using saturation of j`σ show that the
distance between j`ζ(s+t)σ

c and j`
ζ̂t(s)

σc is o(|s|r−`). Since j`σc is differentiable along

ζ̂t at s = 0, this implies that j`σc is differentiable along ζ(s+ t) at s = 0. Since t was
arbitrary, we see that j`σc is differentiable, and in fact C1, along ζ.

Our induction hypothesis implies that σ is C` along Ec curves. We next observe
that, for any Ec curve ζ, the `-jet of σ ◦ ζ at t ∈ I satisfies:

projN ◦ j`t (σ ◦ ζ) = projN ◦ j`ζ(t)σ
c ◦ j`ζ(t)(π

c ◦ exp−1
ζ(t)) ◦ j

`
t ζ.(50)

To see this, let ζ̂t be given by Lemma 10.15. Since ζ(t + s) and ζ̂t(s) have the same
brc jets at s = 0, and σ is Lipschitz, the functions σ ◦ ζt(s) and σ ◦ ζ(s+ t) have the
same `-jets at s = 0. But the definition of central `-jets implies that:

dN (projN ◦ σ ◦ ζ̂t(s), projN ◦ j`ζ̂t(0)
σc ◦ πc ◦ exp−1

ζ̂t(0)
◦ ζ̂t(s)) = o(|s|`);

from the naturality of jets under composition, (50) follows immediately.
Now, since both j`σc and j`(πc ◦ exp−1) are differentiable along Ec curves, it

follows that σ is C`+1 along every Ec curve ζ, and by Taylor’s theorem, the `+ 1 jets
of σ ◦ ζ are given by the formula

j`+1
t (σ ◦ ζ) = j`+1

ζ(t)σ
c ◦ j`+1

ζ(t) (πc ◦ exp−1
ζ(t)) ◦ j

`+1
t ζ.(51)

Finally, let v ∈ B
Ẽc(x)

(0, ρ) be given, and let y = expx g
c(v) ∈ Ŵ

c
(x). Fix a

geodesic arc ζ̂ in Ŵ
c
(x) from x to y, with ζ̂(0) = x and ζ̂(1) = y. Let ζ be the Ec

curve given by Lemma 10.15, tangent to order r to ζ̂ at ζ̂(0) = x. Equation (51) now
implies that

dN (projN ◦ σ ◦ ζ̂(t), projN ◦ j`+1
x σc(tv)) = o(|tv|`+1).

Since d(ζ̂(t), ζ(t)) = o(|tv|r), and σ is Lipschitz, we obtain (49). Hence σ has a central
`+ 1 jet at x, and it is given by j`+1

x σc. We have verified both I`+1 and III`+1.

Proposition 11.5. — σ is Cr.
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Proof. — If r = 1, then we have already shown that the 0-jet of σ is differentiable
along W c

(x) at x, for every x, and this derivative varies continuously at M . Since σ
is C1 along the leaves of W s and W u, this readily implies that σ is C1.

Assume, then that 1 < r < k − 1. Let ` = brc, and let α = r − `. We first show:

j`σc is Cα at x along Ŵ
c
(x), for every x ∈ M . The proof is a slight adaptation

of the proof that j`σc is Lipschitz at x along Ŵ
c
(x), for every x ∈ M , for ` < r; the

central observation that allows one to modify this proof is that H`
S(x, ℘) still covers

the diffeomorphism H S(x, ℘), and for i ≥ 1, H`
S(x, ℘)i is α-Hölder continuous in the

(x, ℘0)-variable, and C∞ in the (℘1, · · · , ℘`)-variables. (See the proof of part II of
Theorem A as well). We omit the details.

σ has an (`, α, C) expansion at x along Ŵ
c
(x), uniformly in x ∈ M . This is

essentially the same as the proof that σ has a central `-jet at every point for ` < r,
except one sharpens the estimates on the remainder of the Taylor expansions along
Ec curves, using the α-Hölder continuity of the central `-jets.

The section σ is Cr. Since r-bunching is an open condition, as is the condition
r < k − 1, by increasing r slightly, we may assume that r is not an integer.

We have shown that σ has central `-jets, and that j`σc is α-Hölder continuous. Fix
a point p ∈ M . The fake center-stable manifolds Ŵ

cs
(x), for x in a neighborhood U

of p, form a continuous family of Cr = C`,α embedded disks.
Fix x in this neighborhood U , and consider the foliation { Ŵ

s

x(y)}
y∈“W cs

(x)
of the

plaque Ŵ
cs

(x) by fake stable manifolds. Since σ is W s saturated, it is Ck along
W s

(y), for any y ∈M . In particular, it has a (`, α, C)-expansion along W s
(y), for any

y. For y ∈ Ŵ
c
(x) corresponding to (0, 0, xc) in adapted coordinates at x, Lemma 10.5

implies that the distance between ω̂cs(0,0,xc)(0, x
s) and ω̂cs0 (xc, xs) is o(d(x, y)r). Since σ

is Lipschitz, and σ has a (`, α, C)-expansion along ω̂cs(0,0,xc)(0, x
s) (which corresponds

to W s
(y)), this implies that σ has a (`, α, C)-expansion along Ŵ

s
(y) (corresponding

to ω̂cs0 (xc, xs)) with an error term that is on the order of d(x, y)r.
Next consider the family of plaques { W̃

c
(y)}

y∈“W cs
(x)

defined by W̃
c
(y) = Ŵ

cs
(x)∩

Ŵ
cu

(y). This forms a continuous family of Cr-embedded disks. Paired with the the
Ŵ
s

x foliation, the family of W̃
c
plaques gives a Cr transverse pair of plaque families

in Ŵ
cs

(x). Lemma 10.5 implies that for each y ∈ Ŵ
cs

(x), the distance between the
`-jets of Ŵ

cs
(x) at x and Ŵ

cs
(y) at y is o(d(x, y)α). Since Ŵ

c
(y) = Ŵ

cs
(y)∩ Ŵ

cu
(y),

it follows that the the distance between the `-jets at y of W̃
c
(y) and Ŵ

c
(y) is also

o(d(x, y)α). But σ is Lipschitz, and σ has an (`, α, C) expansion at y along Ŵ
c
(y), for

every y. This implies that in an adapted coordinate system at x , we can write the
plaques W̃ c(y) as a parametrized family along which σ has an (`, α, C) expansion at y
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along W̃ c(y), for every y ∈ Ŵ
cs

(x), with an error term that is on the order of d(x, y)r.
Hence we can apply Theorem 8.4 to conclude that σ has an (`, α, C)-expansion along
Ŵ
cs

(x) at x, for every x in U , where C is uniform in x.
Now the family { Ŵ

cs
(x)}x∈U is a uniformly continuous family of Cr plaques in U .

Paired with the local W u foliation, it gives a transverse C`,α pair of plaque fami-
lies in U . Since σ is u-saturated, it is Ck along W u-leaves and in particular has an
(`, α, C)-expansion along W u

(x) at every x ∈ U . Applying Journé’s theorem again,
we obtain that σ has a (`, α, C ′)-expansion expansion at every x ∈ U , where C ′ is
uniform in x ∈ U . Theorem 8.2 implies that σ is Cr in U . As p was arbitrary, we
obtain that σ is Cr.

This completes the proof of Theorem C.

12. Final remarks and further questions

The proofs here could admit several improvements and generalizations. Some are
not difficult: for example, the compactness of the manifold M was not essential.
The definition of partial hyperbolicity in the noncompact cases merely needs to be
modified to ensure that the functions ν, ν̂, ν/γ, ν̂/γ̂ are uniformly bounded away from
1, and the definition of r-bunching must be similarly adjusted. Other improvements on
Theorem A are more challenging. For example, there is no counterpart in Theorem A
to the analyticity conclusions in Theorem 0.1, part IV. Another question is whether
the Hölder exponent in Theorem A, part II can be improved. Finally, we ask whether
the loss of one derivative in Theorem A part IV (and Theorem C) is really necessary:
is it true that if φ is Cr, f is Cr, accessible and r-bunched, where r ≥ 1, then any
continuous solution to (2) is Cr (or perhaps Cr−ε, for all ε > 0)?
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