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QUADRATIC DIFFERENTIALS IN LOW GENUS:
EXCEPTIONAL AND NON-VARYING STRATA

 D CHEN  M MÖLLER

A. – We give an algebraic way of distinguishing the components of the exceptional strata
of quadratic differentials in genus three and four. The complete list of these strata is (9,−1), (6, 3,−1),
(3, 3, 3,−1) in genus three and (12), (9, 3), (6, 6), (6, 3, 3) and (3, 3, 3, 3) in genus four. The upshot of
our method is a detailed study regarding the geometry of canonical curves.

This result is part of a more general investigation about the sum of Lyapunov exponents of Teich-
müller curves, building on [9], [6] and [7]. Using disjointness of Teichmüller curves with divisors of Brill-
Noether type on the moduli space of curves, we show that for many strata of quadratic differentials in
low genus the sum of Lyapunov exponents for the Teichmüller geodesic flow is the same for all Teich-
müller curves in that stratum.

R. – Nous présentons une façon algébrique de distinguer les composantes exceptionnelles
des strates de l’espace de modules des différentielles quadratiques en genres trois et quatre. La liste
complète de ces strates est (9,−1), (6, 3,−1) et (3, 3, 3,−1) en genre trois, (12), (9, 3), (6, 6), (6, 3, 3)

et (3, 3, 3, 3) en genre quatre, respectivement. La distinction est basée sur des propriétés géométriques
du modèle canonique de ces courbes.

Ce résultat fait partie de la détermination de la somme des exposants de Lyapunov des courbes de
Teichmüller, dans la continuité de [9], [6] et [7]. Pour beaucoup de strates en petit genre les courbes
de Teichmüller sont disjointes des diviseurs de type Brill-Noether. On en déduit que la somme des
exposants de Lyapunov de toute courbe de Teichmüller dans ces strates est égale à la somme des
exposants pour la mesure à support sur toute la strate.

1. Introduction

The moduli space Ω Mg of Abelian differentials, also called the Hodge bundle, parame-
terizes Abelian differentials ω on genus g Riemann surfaces. Let m1, . . . ,mk be positive in-
tegers such that

∑k
i=1mi = 2g − 2. Then Ω Mg decomposes into strata Ω Mg(m1, . . . ,mk)

according to the number and multiplicity of the zeros of ω. Since the Teichmüller geodesic
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310 D. CHEN AND M. MÖLLER

flow preserves these strata, many problems in Teichmüller theory can be dealt with stratum
by stratum.

Similarly, let d1, . . . , dn be non-zero integers such that
∑n
j=1 dj = 4g − 4 and dj ≥ −1

for all j. The moduli space of quadratic differentials parameterizing pairs (X, q) of a genus g
Riemann surface X and a quadratic differential q with at most simple poles is stratified in
the same way into Q(d1, . . . , dn), namely, q has a zero of multiplicity di at some point pi
for di > 0 and has a simple pole at pj for dj = −1.

Not much is known on the topology of the strata. Kontsevich and Zorich determined
in [14] the connected components of Ω Mg(m1, . . . ,mk). Some strata have hyperelliptic com-
ponents parameterizing Abelian differentials on hyperelliptic curves that have a single zero or
a pair of zeros interchangeable under the hyperelliptic involution, some strata have compo-
nents distinguished by the spin parity dimH0(X,div(ω)/2) mod 2, and the others are con-
nected. The connected components for strata of quadratic differentials were determined by
Lanneau in [16]. Some have hyperelliptic components and besides a short list of exceptional
cases, all the other strata are connected.

To find an algebraic invariant distinguishing the exceptional cases remained an open
problem. Our first main result provides a solution to this problem. Let (X, q) be a quadratic
differential in Q(d1, . . . , dn). Suppose q has a zero or pole of order di at pi for 1 ≤ i ≤ n.
Write div(q) =

∑n
i=1 dipi as the total divisor of q and div(q)0 =

∑
di>0 dipi as the zero

divisor of q.

T 1.1. – Each of the strata (9,−1), (6, 3,−1) and (3, 3, 3,−1) in genus three has
precisely two connected components, distinguished by

dimH0(X,div(q)0/3) = 1 resp. dimH0(X,div(q)0/3) = 2.

We also construct the connected components using techniques from algebraic geometry.
This provides a proof of the connectedness (and irreducibility) of the two components that
does not rely on any geometry of flat surfaces.

For g = 4 we discovered that the list of exceptional strata was incomplete in [16].

T 1.2. – Each of the strata (12), (9, 3), (6, 6), (6, 3, 3) and (3, 3, 3, 3) in genus four
has precisely two non-hyperelliptic connected components, distinguished by

dimH0(X,div(q)/3) = 1 resp. dimH0(X,div(q)/3) = 2.

Let us describe the upshots in proving Theorems 1.1 and 1.2, see Sections 6 and 7
for details. Consider the stratum (9,−1) as an example. The canonical model of a non-
hyperelliptic, genus three curve X is a plane quartic. If X admits a quadratic differential q
with div(q) = 9p1 − p2, then there exists a unique plane cubic E such that E and X in-
tersect at p1 with multiplicity 9. Furthermore, we have OE(9p1) ∼ OE(3), where O(1) is
the universal line bundle of P2. Two possibilities can occur, either OE(3p1) ∼ OE(1) or
OE(3p1) 6∼ OE(1), which distinguishes the claimed two components. In order to construct
these two components, we first fix E and p1, then consider plane quartics intersecting E
at p1 with multiplicity 9, and finally quotient out the parameter space by the automorphism
group of P2. The same idea applies to the exceptional strata in genus four, using the fact that
a canonical curve of genus four is contained in a unique quadric surface in P3.
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In order to use the parity curve E, we need to control its singularities, which boils down
to a tedious local analysis. To avoid confusing the reader by technical details, we postpone
the argument to Appendix B.

We remark that the criteria related to div0(q)/3 and div(q)/3 are analogous to that
of div(ω)/2 in distinguishing the odd and even spin components of certain strata of Abelian
differentials, see [14] and Sections 6, 7 for more details. It is well-known that the spin parity
associated to div(ω)/2 is a deformation invariant, but the parity associated to div0(q)/3

and div(q)/3 seems only an isolated example in low genus. Indeed, one can compute
dimH0(X,div(ω)/2) mod 2 by using the Arf invariant, see [14, Section 3]. But an inter-
pretation of dimH0(X,div0(q)/3) and dimH0(X,div(q)/3) in terms of flat geometry is
not known. We thus leave an interesting open question: compute the parity of div0(q)/3

resp. div(q)/3 using flat geometry only, as for the Arf invariant.
The above results were obtained in parallel with our investigation of sums of Lyapunov ex-

ponents for Teichmüller curves. In this sense, the present paper is a continuation to quadratic
differentials of our paper [7]. A connected component of a stratum was called non-varying,
if for all Teichmüller curves in this stratum the sum of Lyapunov exponents is the same, and
varying otherwise. We proved that many strata (components) of Abelian differentials in low
genus are non-varying.

Let us recall the basic idea in [7]. The Siegel-Veech area constant c, the sum of Lyapunov
exponents L and the slope s determine each other for a Teichmüller curve generated by an
Abelian differential in Ω Mg(m1, . . . ,mk):

s =
12c

L
= 12− 12κ

L
,

where κ = 1
12

∑k
i=1

mi(mi+2)
m1+1 , see [9] and [6]. Let C denote the closure of a Teichmüller

curve C in the compactified moduli space of curves Mg. We want to construct a divisor D
in Mg such that D is disjoint with C for all Teichmüller curves C in a given stratum. In the
case of Abelian differentials,C does not intersect higher boundary divisors δi in Mg for i > 0.
Then we can compute the slope as well as the sum of Lyapunov exponents directly from the
equality C ·D = 0.

For quadratic differentials, the hyperelliptic strata were proved to be non-varying by [9],
see Corollary 2.1 for more details. Here as our second main result, we prove that many non-
hyperelliptic strata of quadratic differentials in low genus are non-varying.

T 1.3. – Consider the strata of quadratic differentials in low genus.
(1) In genus one, the strata Q(n,−1n) and Q(n − 1, 1,−1n) are non-varying for n ≥ 2

(Theorem 8.1).
(2) In genus two, there are 12 non-varying strata among all strata of dimension up to seven

(Theorem 9.1).
(3) In genus three, there are 19 non-varying strata among all non-exceptional strata of

dimension up to eight (Theorem 10.1) and 6 non-varying strata among all exceptional strata
(Theorem 6.2).

(4) In genus four, there are 8 non-varying strata among all non-exceptional strata of dimen-
sion up to nine (Theorem 11.1) and 7 non-varying strata among all exceptional strata (Theo-
rem 7.2).
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312 D. CHEN AND M. MÖLLER

Let us explain the upshot in proving Theorem 1.3 as well as the difference from the
case of Abelian differentials. For Teichmüller curves generated by quadratic differentials
in Q(d1, . . . , dn), we have a similar relation between the Siegel-Veech area constant c, the
sum of (involution-invariant) Lyapunov exponents L+ and the slope s:

s =
12c

L+
= 12− 12κ

L+
,

where κ = 1
24

∑n
j=1

dj(dj+4)
dj+2 , see Propositions 4.1 and 4.2. By using a divisor disjoint from

a Teichmüller curve C, one would naturally expect to read off the value of L+(C) from the
divisor class. However, in the case of quadratic differentials, Teichmüller curves may intersect
higher boundary divisors, because a core curve of a cylinder may disconnect the associated
flat surface for quadratic differentials, whereas this is impossible for Abelian differentials, see
Remark 4.7. Thus, for a divisor D in Mg with class

D = aλ+ bδ0 +
∑

ciδi,

even if C ·D = 0, we cannot directly deduce the slope s = (C · δ)/(C · λ), where δ =
∑
δi is

the total boundary. Therefore, for a claimed non-varying stratum of quadratic differentials,
it requires a considerable amount of work using both algebraic geometry and flat geometry
to study the intersection of C with higher boundary divisors δi occurring in the divisor class
of D.

Moreover, for a number of non-varying strata we are only able to construct a disjoint divi-
sor in the moduli space of pointed curves Mg,n, hence we lift a Teichmüller curve C to Mg,n

by marking n zeros or poles of its generating differential. Besides λ and the boundary classes,
a divisor class in Mg,n may also contain the first Chern class ωi of the relative dualizing line
bundle associated to the ith marked point. Consequently we have to understand the inter-
section C · ωi. This calculation is carried out in Proposition 4.2.

Among the non-varying strata in Theorem 1.3, there are three of them for which our
standard method does not work. In other words, we are not able to find divisors disjoint with
all Teichmüller curves in these three strata. Instead, we adapt the idea of [25] by using certain
filtration of the Hodge bundle, which is treated in Appendix A.

Finally in genus five, we show that even the stratum with a unique zero is varying (Ap-
pendix C). Therefore, it seems quite plausible that our list of non-varying strata (including
the known hyperelliptic strata by [9]) is complete. Nevertheless, for a varying stratum it would
still be interesting to figure out the value distribution for the sums of Lyapunov exponents
for all Teichmüller curves contained in the stratum.

This paper is organized as follows. In Section 2 we provide the background on strata of
Abelian and quadratic differentials. A result of independent interest shows that near certain
boundary strata of the moduli space the period and plumbing parameters are coordinates of
strata of quadratic differentials.

In Section 3 we recall the Picard group of moduli spaces and various divisor classes.
Section 4 discusses properties of Teichmüller curves generated by quadratic differentials near
the boundary of the moduli space.

In order to prove disjointness of Teichmüller curves with various divisors in genus three
and four along the hyperelliptic locus and the Gieseker-Petri locus, the use of the canonical
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model of a curve is not sufficient. Instead, we need to use the bicanonical model. The neces-
sary background is provided in Section 5. Finally, Sections 6 to 11 contain the discussion of
irreducible components and non-varying strata summarized in our main results.

Acknowledgments. – We thank Vincent Delecroix and Anton Zorich for supplying us with
an ample amount of computer data on which our investigation of non-varying strata and a
proof for varying strata in the appendix were based. We also want to thank İzzet Coşkun and
Joe Harris for helpful suggestions on the geometry of low genus curves. Moreover, we thank
Fei Yu for the conversation that led to the results in Appendix A. Finally we want to thank
the anonymous referees for many useful suggestions which helped improve the exposition of
the paper.

Part of the work was done during the Oberwolfach Meeting ‘Billiards, Flat Surfaces
and Dynamics on Moduli Spaces’, May 2011 and the Park City Summer Program ‘Moduli
Spaces of Riemann Surfaces’, July 2011. We would like to thank the organizers for their
invitation and hospitality.

2. Background on moduli spaces

2.1. Strata and hyperelliptic loci

For di ≥ −1, di 6= 0 and
∑n
i=1 di = 4g − 4, let Q(d1, . . . , dn) denote the moduli space

of quadratic differentials. It parameterizes pairs (X, q) of a genus g Riemann surface X and
a quadratic differential q on X that have n distinct zeros or poles of order d1, . . . , dn. Here
we focus on the case that q is not a global square of an Abelian differential. Otherwise it
reduces to the study of strata of Abelian differentials as in [7]. The condition di ≥ −1 ensures
that the quadratic differentials in Q(d1, . . . , dn) have at most simple poles and that their
total flat volume is thus finite. The pairs (X, q) are called half-translation surfaces. We denote
by P Q(d1, . . . , dn) = Q(d1, . . . , dn)/C∗ the associated projectivized space.

Let Ω Mg denote the Hodge bundle of holomorphic one-forms over the moduli space Mg

of genus g curves and letPΩ Mg denote the associated projective bundle. The spaces Ω Mg and
PΩ Mg are stratified according to the multiplicities of the zeros of one-forms. Formi ≥ 1 and∑k
i=1mi = 2g−2, let Ω Mg(m1, . . . ,mk) denote the stratum parameterizing one-forms that

have k distinct zeros of order m1, . . . ,mk.

Denote by Mg the Deligne-Mumford compactification of Mg. The Hodge bundle extends
to the boundary of Mg, parameterizing stable one-forms or equivalently sections of the
dualizing sheaf. We denote the total space of this extension by Ω Mg.

Points in Ω Mg, called flat surfaces, are usually written as (X,ω) for a one-form ω on X.
For a stable curve X, denote the dualizing sheaf by ωX . We will stick to the notation that
points in Ω Mg are given by a pair (X,ω) with ω ∈ H0(X,ωX).

If the quadratic differential is not a global square of a one-form, there is a canonical double
covering π : Y → X such that π∗q = ω2. This covering is ramified precisely at the zeros of
odd order of q and at the poles. It gives a map

φ : Q(d1, . . . , dn)→ Ω Mg(m1, . . . ,mk),

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



314 D. CHEN AND M. MÖLLER

where the signature (m1, . . . ,mk) is determined by the ramification type (see [14] for more
details).

If the domain and the range of the map φ have the same dimension for some signature,
we call the image a component of hyperelliptic flat surfaces of the corresponding stratum
of Abelian differentials. This can only happen if the domain of φ parameterizes genus zero
curves. More generally, if the domain of φ parameterizes genus zero curves, we call the image
a locus of hyperelliptic flat surfaces in the corresponding stratum. These loci are often called
hyperelliptic loci, e.g., in [14] and [9]. We prefer to reserve hyperelliptic locus for the subset
of Mg (or its closure in Mg) parameterizing hyperelliptic curves and thus specify with ‘flat
surfaces’ if we speak of subsets of Ω Mg.

Instead of taking the canonical double covering one can start with (X, q) in a stratum
of quadratic differentials, prescribe the topology of a double covering with branch points
contained in the set of zeros and poles of q and consider the locus of branched coverings
(Y, qY ) obtained in that way.

The main result of [15] states that only if g(X) = 0 and only for the following three types of
non-canonical double coverings the dimensions of the strata containing (X, q) resp. (Y, qY )

coincide.

(1) Q(2(g − k)− 3, 2k + 1,−12g+2)→ Q(2(g − k)− 3, 2(g − k)− 3, 2k + 1, 2k + 1)hyp.
(2) Q(2(g − k)− 3, 2k,−12g+1)→ Q(2(g − k)− 3, 2(g − k)− 3, 4k + 2)hyp.
(3) Q(2(g − k)− 4, 2k,−12g)→ Q(4(g − k)− 6, 4k + 2)hyp.

Consequently the images of these maps are connected components of the correspond-
ing strata of quadratic differentials. They will be called components of hyperelliptic half-
translation surfaces.

2.2. Sum of Lyapunov exponents and Siegel-Veech constant

Lyapunov exponents measure the Hodge norm growth of cohomology classes under par-
allel transport along the Teichmüller geodesic flow. Here we consider the flow acting on a
Teichmüller curve and the corresponding Lyapunov exponents. The individual exponents are
hard to calculate, but their sum is a rational number that can be evaluated, one Teichmüller
curve at a time. The same holds for the partial sum over all Lyapunov exponents that belong
to a local subsystem, in case the local system with fiberH1(X,R) over the Teichmüller curve
splits into several subsystems. See [21] for a survey on these results and related references.

For a Teichmüller curveC generated by (X, q) in Q(d1, . . . , dn), let (Y, η) be the canonical
double covering. The curve Y comes with an involution τ . Its cohomology splits into the
τ -invariant and τ -anti-invariant part. Adapting the notation of [9] we let g = g(X) and
geff = g(Y )− g. Let λ+

i be the Lyapunov exponents of the τ -invariant part of H1(Y,R) and
let λ−i be the Lyapunov exponents of the τ -anti-invariant part. The τ -invariant part descends
to X and hence the λ+

i are the Lyapunov exponents of (X, q) we are primarily interested in.
Define

(1)
L+ = λ+

1 + · · ·+ λ+
g ,

L− = λ−1 + · · ·+ λ−geff .

The role of L+ is analogous to the ordinary sum of Lyapunov exponents in the case of
Abelian differentials.
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The main result of [9] expresses the sum of Lyapunov exponents as

(2) L+ = c+ κ, where κ =
1

24

( n∑
j=1

dj(dj + 4)

dj + 2

)
and where c is the (area) Siegel-Veech constant of (X, q). We will not give the definition of
Siegel-Veech constants here but rather note that a similar formula holds for Y and the Siegel-
Veech constants of X and Y are closely related. As a result, [9] obtain the key formula

(3) L− − L+ =
1

4

∑
odd dj

1

dj + 2
.

Applying this formula to the various double coverings associated to hyperelliptic half-
translation surfaces shows that the following components are non-varying.

C 2.1 ([9]). – Let C be a Teichmüller curve in one of the components of hyper-
elliptic half-translation surfaces. Then:

For type (1), we have

L+ =
g + 1

2
− g + 1

2(2g − 2k − 1)(2k + 3)
.

For type (2), we have

L+ =
2g + 1

4
− 1

4(2g − 2k − 1)
.

For type (3), we have

L+ =
g

2
.

2.3. Compactification of Q(d1, . . . , dn)

We now describe the moduli spaces of quadratic differentials algebraically over a com-
pactification of the moduli space of curves. This construction has the main feature that the
boundary objects are the stable curves that appear as limit objects of Teichmüller curves as
we will see in Section 4.2. Since we allow simple poles, i.e., di = −1 for some i, the spaces
Q(d1, . . . , dn) are not strata of a single vector bundle, but of several, according to the num-
ber of poles.

Given a signature (d1, . . . , dn), let k denote the number of poles, i.e., the number of in-
dices i with di = −1. We can assume dj ≥ 0 for 1 ≤ j ≤ n− k and dj = −1 for n− k < j ≤ n.
From now on we work over the moduli space Mg,k, the Deligne-Mumford compactification
of the moduli space of genus g curves with k marked points. Over Mg,k there is a vector
bundle Qk → Mg,k, whose fiber over a stable pointed curve (X, p1, . . . , pk) parameterizes
the sections

q ∈ H0(X,ω⊗2
X (p1 + · · ·+ pk)).

Let Q(d1, . . . , dn) be the closure of the subspace of Qk where the associated divisor of q
has zeros (different from the pi) of order d1, . . . , dn−k. Thus, a point (X, q) in the interior
of Q(d1, . . . , dn) corresponds to a quadratic differential of type (d1, . . . , dn) with simple
poles at p1, . . . , pk, which are smooth points of X.
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2.4. Period coordinates and plumbing coordinates

Both Ω Mg(m1, . . . ,mk) and Q(d1, . . . , dn) are known to be smooth and they possess
a convenient coordinate system given by period coordinates ([18], [23]). To obtain local
coordinates on a neighborhoodU of (X,ω) in the first case Ω Mg(m1, . . . ,mk), we fix a basis
ofH1(Y,Z(ω),Z), where Z(ω) denotes the locus of zeros of ω. For (X ′, ω′) ∈ U , integration
of ω′ along this basis provides a coordinate system. In the second case Q(d1, . . . , dn), near
(X, q) we start with the canonical double cover π : Y → X so that π∗q = ω2 for some one-
formω onY . Let τ be the involution ofY with quotientX and fix a basis ofH1(Y,Z(ω),Z)−,
the τ -anti-invariant part of the relative homology of Y with respect to Z(ω). For (X ′, q′)

in a neighborhood of (X, q) there exist π′ : Y ′ → X ′ and τ ′ with the corresponding
properties, since the canonical double cover can be constructed in families. Consequently, we
can parallel transport the chosen basis ofH1(Y,Z(ω),Z)− toH1(Y ′, Z(ω′),Z)−. Integration
of a square root of q′ along this fixed basis provides maps from a neighborhood of (X, q)

to CdimH1(Y,Z(ω),Z)− , and this is the desired coordinate system.
For stable curves we need one more type of coordinates to deform them into smooth

curves, coming from the construction of plumbing in a cylinder (see e.g., [24] or [4] and
the proof below). These functions will not be a coordinate system for all stable curves,
since ω might be identically zero on one component of a reducible stable curve or a flat
surface may have a separating node where ω is holomorphic and thus the location of the
node cannot be detected by periods. However, for certain classes of translation and half-
translation structures on stable curves the combination of the above functions, that we call
period plumbing coordinates still forms a coordinate system.

We call a stable curve together with a stable one-form (X,ω) of polar type if there does
not exist an irreducible component of X on which ω vanishes identically and if ω has a pole
at each of the nodes of X. Similarly, we call a pair (X, q) of polar type if there does not
exist an irreducible component of X on which q vanishes identically and if q has a double
pole at each of the nodes of X. Let Ω M̃g(m1, . . . ,mk) be the partial compactification
of Ω Mg(m1, . . . ,mk) by adding stable flat surfaces of polar type and let Q̃(d1, . . . , dn) be
the partial compactification of Q(d1, . . . , dn) by adding stable half-translation surfaces of
polar type.

Note that in a stratum of the moduli space of stable one-forms, the stable curves of
polar type cannot possess a separating node, by the residue theorem. On the other hand, for
quadratic differentials, a stable half-translation surface of polar type may have separating
nodes. In the case of one-forms the argument of the following proposition is due to [3].

P 2.2. – The partial compactifications of the strata Ω M̃g(m1, . . . ,mk) and
Q̃(d1, . . . , dn) are smooth. Local coordinates are given by period plumbing coordinates.

Proof. – We start with the case of stable one-forms. If (X,ω) is of polar type, then the
normalization of X is a possibly disconnected smooth curve and the pullback of ω is a one-
form, non-zero on each of the components, with at most simple poles at the pre-images of
the nodes, say r of them. Let Σg,r be the topological type of this punctured disconnected
surface, where g is the tuple of genera of the irreducible components of Σ. Period coordinates
are local coordinates on the boundary stratum of (X,ω), or equivalently, coordinates on
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the Teichmüller space Ω T g,r(m1, . . . ,mk) by an easy generalization of the argument of [18]
or [23].

We denote the loops around the r punctures of Σg,r by α1, . . . , αr. For (X,ω) as
above, let the Dehn space Ω Dg,r(m1, . . . ,mk) for Σg,r be the union of the quotient of
the Ω T g(m1, . . . ,mk) by the group Zr generated by the Dehn twists around α1, . . . , αr and
the boundary Teichmüller space Ω T g,r(m1, . . . ,mk). This space is given the topology and

complex structures such that the quotient map to Ω Mg is a holomorphic covering map onto
its image.

We first define an umplumbing map

Ψ = ψ × (z1, . . . , zr) : Ω D′g,r(m1, . . . ,mk)→ Ω T g,r(m1, . . . ,mk)× C r

as follows, where the prime denotes the restriction to a sufficiently small neighborhood of the
locus of stable curves of polar type in Ω T g,r(m1, . . . ,mk). Since each of the αj corresponds
to a loop around a pole, in such a neighborhood each of the curves αj for j = 1, . . . , r is
homotopic to the core curve of a maximal flat cylinder Cj . For each of them we fix a curve
in H1(X,Z(ω),Z) crossing Cj once but not crossing the other cylinders. We define ψ as
unplumbing on Ω Dg,r(m1, . . . ,mk), i.e., replacing each of the Cj by a pair of half-infinite
cylinders with residue equal to

∫
αj
ω. On the boundary ψ is the identity and we define

zj = exp(2πi(
∫
βj
ω/
∫
αj
ω)), which is obviously well-defined up to the Dehn twists.

We claim that Ψ is biholomorphic onto its image. The converse is given by plumbing,
i.e., for any surface of polar type in Ω T g,r(m1, . . . ,mk) we replace the pair of half-infinite
cylinders with residue equal to rj by a cylinder with core curve αj and

∫
αj
ω = rj such that∫

βj
ω satisfies zj = exp(2πi(

∫
βj
ω/rj)). The function Ψ is obviously holomorphic outside the

boundary and continuous on all of Ω D′g,r(m1, . . . ,mk), hence holomorphic there. Moreover,
plumbing is obviously inverse to unplumbing, thus proving the claim.

Together with generalized period coordinates, this claim on Ψ shows that period and
plumbing functions are indeed coordinates on Ω M̃g(m1, . . . ,mk).

The proof for the case of half-translation surfaces is the same. Again, the anti-invariant
periods on the canonical double cover give, by the arguments of [18] or [23], coordinates
along the boundary of Q̃(d1, . . . , dn), since q is non-zero on each irreducible component.
Note that the holonomy around each curveαj around a puncture of Σg,r is among these anti-
invariant period functions since the double covering map is unramified near the punctures,
because by hypothesis q has precisely a double pole there. We now can define the unplumbing
map Ψ and its inverse given by plumbing as above.

3. Divisor classes

In this section we recall the Picard group of the moduli space of curves with marked points
and collect the expression of several geometrically defined divisors on the moduli space of
curves in low genus with few marked points in terms of the standard generators of the Picard
group. The results are basically contained in the literature ([17], [10]), but in several cases not
all boundary terms were calculated in full detail. We will thus perform the calculation for the
cases we need.
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Use Pic(·) to denote the rational Picard group Picfun(·)Q of a moduli stack (see [11,
Chapter 3.D] for more details). Since the quantities we are interested in, the sum of Lyapunov
exponents and slope, are invariant under finite base change, this is the group we want to use,
not the Picard group of the coarse moduli scheme.

Recall the standard notation for elements in the Picard group. Let λ denote the first Chern
class of the Hodge bundle. Let δi, i = 1, . . . , bg/2c be the boundary divisor of Mg whose
generic element is a smooth curve of genus i joined at a node to a smooth curve of genus g−i.
The generic element of the boundary divisor δ0 is an irreducible nodal curve of geometric
genus g−1. In the literature sometimes δ0 is denoted by δirr. We write δ for the total boundary
class. All the divisor classes we consider here are stacky. In particular, the divisor class δ1
equals one-half of the pullback of the corresponding divisor ∆1 from the coarse moduli
scheme, due to the elliptic involution of order 2.

For moduli spaces of curves with marked points we denote byω the first Chern class of the
relative dualizing sheaf of Mg,1 → Mg and ωi its pullback to Mg,n via the map forgetting all
but the ith marked point. For a subset S ⊂ {1, . . . , n} let δi;S denote the boundary divisor
whose generic element is a smooth curve of genus i joined at a node to a smooth curve of
genus g − i such that the component of genus i contains exactly the marked points labeled
by S.

T 3.1 ([1]). – The rational Picard group of Mg for g ≥ 3 is freely generated by λ
and δi, i = 0, . . . , bg/2c.

More generally, the rational Picard group of Mg,n for g ≥ 3 is freely generated by λ, ωi,
i = 1, . . . , n, by δ0 and by δi;S , i = 0, . . . , bg/2c, where |S| > 1 if i = 0 and 1 ∈ S if i = g/2.

Alternatively, we define ψi ∈ Pic( Mg,n) to be the class with value −π∗(σ2
i ) on the

universal family π : X → C with section σi corresponding to the ith marked point. We
have the relation

ωi = ψi −
∑
i∈S

δ0;S ,

see e.g., [17, p. 107-108] for details. Consequently, a basis of Pic( Mg,n) can be formed by λ,
the ψi and the boundary classes as well.

Given the structure of the Picard group of Mg, it is natural to define the slope of a Teich-
müller curve C as

s(C) =
C · δ
C · λ

.

In general, slope can be defined for any one-parameter family of stable genus g curves, which
measures how the complex structures vary with respect to the number of singular fibers in
the family.

For Abelian differentials, the slope of a Teichmüller curve in Ω Mg(µ) carries as much
information as the Siegel-Veech constant or the sum of Lyapunov exponents (see [9, The-
orem 1] and [6, Theorem 1.8]):

(4) s(C) =
12c(C)

L(C)
= 12− 12κµ

L(C)
.

Not surprisingly, a similar relation holds for Teichmüller curves generated by quadratic
differentials after replacing L(C) by L+(C), see (15) in Proposition 4.2.
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Occasionally we need to mark some zeros or poles of a quadratic differential and lift the
corresponding Teichmüller curve to Mg,n. Therefore, we introduce several divisor classes
on Mg,n for later use.

Let W be the divisor of Weierstrass points in Mg,1. It has divisor class (see e.g., [8])

(5) W = −λ+
g(g + 1)

2
ω1 −

g−1∑
i=1

(g − i)(g − i+ 1)

2
δi.

Let BN1
g,(s1,...,sr) be the pointed Brill-Noether divisor parameterizing pointed curves

(X, z1, . . . , zr) in Mg,r where
∑r
i=1 si = g such that h0(X,

∑r
i=1 sizi) = 2. In particular,

BN1
g,(g) is just the divisor W of Weierstrass points.

The divisor class of BN1
g,(1,...,1) was fully worked out in [17, Section 5]. The divisor class

of BN1
g,(s1,...,sr) was also implicitly calculated there. Below we give explicitly the divisor

classes for the cases we need.

3.1. Genus 3

Let H be the divisor of hyperelliptic curves in M3. It has divisor class

(6) H = 9λ− δ0 − 3δ1,

see e.g., [11, Chapter 3.H].
We also have pointed Brill-Noether divisor classes as follows:

BN1
3,(1,1,1) = −λ+ ω1 + ω2 + ω3 −

∑
i,j

δ0;{i,j}(7)

− 3δ0;{1,2,3} −
∑
i,j

δ1,{i,j} − δ1;∅ − 3δ1;{1,2,3}.

(8) BN1
3,(2,1) = −λ+ 3ω1 + ω2 − 2δ0;{1,2} − δ1;∅ − δ1;{1} − 3δ1;{1,2}.

As noted above, the class of BN1
3,(1,1,1) was calculated in [17, Section 5]. The class

of BN1
3,(2,1) essentially follows from BN1

3,(1,1,1). We skip this calculation and instead, we
will prove a completely analogous but harder case in genus four.

3.2. Genus 4

In genus four we need the following pointed Brill-Noether divisors.

L 3.2. – The pointed Brill-Noether divisors in genus four have divisor classes as
follows.

W = BN1
4,(4) = −λ+ 10ω − 6δ1 − 3δ2 − δ3.(9)

BN1
4,(1,1,1,1) = −λ+ ω1 + ω2 + ω3 + ω4 −

∑
|S|≥2

|S|(|S| − 1)

2
δ0;S

−
∑
|S|6=1

(||S| − 1|)(||S| − 1|+ 1)

2
δ1;S

−
∑
|S|6=2

(||S| − 2|)(||S| − 2|+ 1)

2
δ2;S .
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BN1
4,(2,1,1) = −λ+ 3ω1 + ω2 + ω3 − 2δ0;{1,2} − 2δ0;{1,3}

− δ0;{2,3} − 5δ0;{1,2,3} − δ1;∅ − δ1;{1} − δ1;{2,3} − 3δ1;{1,3}

− 3δ1;{1,2} − 6δ1;{1,2,3} − 6δ2;∅ − 2δ2;{2} − 2δ2;{3}.

BN1
4,(3,1) = −λ+ 6ω1 + ω2 − 3δ0;{1,2}(10)

− δ1;∅ − 3δ1;{1} − 6δ1;{1,2} − 6δ2;∅ − 2δ2;{1}.

BN1
4,(2,2) = −λ+ 3ω1 + 3ω2 − 4δ0;{1,2}

− δ1;∅ − δ1;{1} − δ1;{2} − 6δ1;{1,2} − 6δ2;∅.

Proof. – Let πi : Mg,n → Mg,n−1 be the map forgetting the ith marked point. Then

πn∗(BN
1
g,(a1,...,an) · δ0;{n−1,n}) = BN1

g,(a1,...,an−2,an−1+an).

Let us first determine the class of BN1
4,(2,1,1). Interchanging the first and the third marked

points in the above equality, we have

π4∗(BN
1
4,(1,1,1,1) · δ0;{1,4}) = BN1

4,(2,1,1).

Moreover, based on [17, Table 1, p. 112] we have

π4∗(ω1 · δ0;{1,j}) = ωj , for j = 1, 2, 3,

π4∗(ω4 · δ0;{1,4}) = ω1, π4∗(λ · δ0;{1,4}) = λ,

π4∗(δ0;{1,4} · δ0;{1,4}) = −ψ1 = −ω1 −
∑

1∈S δ0;S ,

π4∗(δi;S · δ0;{1,4}) = δi;S , {1, 4} ∩ S = ∅, π4∗(δi;S · δ0;{1,4}) = 0, 1 ∈ S, 4 6∈ S,
π4∗(δi;S∪{4} · δ0;{1,4}) = δi;S , 1 ∈ S, π4∗(δi;S∪{4} · δ0;{1,4}) = 0, 1 6∈ S.

As a consequence,

BN1
4,(2,1,1) = −λ+ 2ω1 + ω2 + ω3 + ω1 +

∑
1∈S

δ0;S − δ0;{2,3} − 3δ0;{1,2} − 3δ0;{1,3}

− 6δ0;{1,2,3} − δ1;∅ − δ1;{1} − δ1;{2,3} − 3δ1;{1,3} − 3δ1;{1,2} − 6δ1;{1,2,3}

− 3δ2;∅ − δ2;{2} − δ2;{3} − δ2;{1,2} − δ2;{1,3} − 3δ2;{1,2,3}.

Using π3∗(BN
1
4,(2,1,1) · δ0;{1,3}) = BN1

4,(3,1), we deduce that

BN1
4,(3,1) = −λ+ 3ω1 + ω2 + ω1 + 2ω1 + 2δ0;{1,2} − 5δ0;{1,2}

− δ1;∅ − 3δ1;{1} − 6δ1;{1,2} − 6δ2;∅ − 2δ2;{2}.

Similarly, using π3∗(BN
1
4,(2,1,1) · δ0;{2,3}) = BN1

4,(2,2), we conclude that

BN1
4,(2,2) = −λ+ 3ω1 + ω2 + ω2 + ω2 + δ0;{1,2} − 5δ0;{1,2}

− δ1;∅ − δ1;{1} − δ1;{2} − 6δ1;{1,2} − 6δ2;∅.

In each case, after simplifying we get the result stated above.
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3.3. Genus 1

Recall the divisor theory of M1,n. Its rational Picard group is freely generated by λ and
δ0;S for 2 ≤ |S| ≤ n. Moreover, we have

δ0 = 12,

ψi = λ+
∑
i∈S

δ0;S .

3.4. Genus 2

On the moduli space M2, the rational Picard group is generated by λ, δ0 and δ1 with the
relation (see [2, Theorem 2.2])

(11) λ =
δ0
10

+
δ1
5
.

The following result is quite useful to prove non-varying strata in genus two.

L 3.3. – If a one-dimensional family of stable curves of genus two does not inter-
sect δ1, then its slope is 10.

Proof. – This follows from the definition of slope and the relation (11).

The rational Picard group of M2,n is generated by the divisor classes λ, ωi, i = 1, . . . , n,
by δ0, by δ0;S with |S| > 1 and by δ0,S with 1 ∈ S. By [2, Theorem 2.2] the only relation
among them is

5λ = 5ψ + δ0 −
∑
|S|>1

δ0,S + 7
∑
1∈S

δ1,S ,

where ψ =
∑n
i=1 ψi is the total ψ class. We will use two divisors in genus two. As a special

case of (5), the divisor of Weierstrass points in M2,1 has class

(12) W = −λ+ 3ω1 − δ1.

The pointed Brill-Noether divisor BN1
2,(1,1) in M2,2 has class

(13) BN1
2,(1,1) = −λ+ ω1 + ω2 − δ0;{1,2} − δ1;∅.

4. Properties of Teichmüller curves

4.1. Computing intersection numbers

LetC be a Teichmüller curve generated by a half-translation surface in Q(d1, . . . , dn). We
always work with an appropriate unramified cover ofC whose uniformizing group is torsion
free and we denote this cover still by C. In particular we will assume that over C there is a
universal family π : X → C. This also implies that χ = 2g(C)− 2 + |∆|, where ∆ is the set
of cusps in C and χ is the orbifold Euler characteristic of C. Denote by Sj the section of X
corresponding to the zero or pole of order dj . Use ωπ to denote the relative dualizing sheaf
of π.
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P 4.1 ([13]; [5]). – For a Teichmüller curve C generated by a half-translation
surface in Q(d1, . . . , dn), we have

L+(C) =
2 deg λ

χ
.

P 4.2. – Intersection numbers of the Teichmüller curves with various divisor
classes and the sum of Lyapunov exponents are related as follows:

(14)
S2
j = − χ

dj + 2
, Sj · ωπ =

χ

dj + 2
,

C · δ = 6χ · c, C · λ =
χ

2
· (c+ κ),

where c = c(C) is the Siegel-Veech constant of C related to L+ by (2). In particular, we have

(15) s(C) =
12c(C)

L+(C)
= 12− 12κ

L+(C)
.

Proof. – Let F be the universal line bundle on C parameterizing the quadratic differen-
tials that generate C. Denote by S the union of the sections Sj for j = 1, . . . , n. By the exact
sequence

0→ π∗ F → ω⊗2
π → OS

( n∑
j=1

djSj

)
→ 0

and the fact that deg F = χ (see [20]), one calculates that

S2
j = −Sj · ωπ = − χ

dj + 2
,

which shows the first two formulas. Moreover, it implies that

c21(ωπ) =
χ

4
·
( n∑
j=1

dj(dj + 4)

dj + 2

)
= 6χ · κ.

By Noether’s formula, we know that

12λ = δ + c21(ωπ).

Dividing both sides by 6χ, the left hand side equals L+(C) by the preceding proposition and
the right hand side equals δ

6χ +κ. By (2), we read off c = δ
6χ . Hence the intersection numbers

with δ and λ follow immediately.

Finally, by (2) and the definition of slope we obtain that

s(C) =
12c

c+ κ
=

12(L+(C)− κ)

L+(C)
= 12− 12κ

L+(C)
.

R 4.3. – We can also deduce the above formulas by passing to the canonical
double cover. Note that Q(d1, . . . , dn) → Ω M(. . . , di/2, di/2, . . . , dj + 1, . . .) for di even
and for dj odd, since the double cover is branched at the singularities of odd order. Restrict
this to a Teichmüller curve C in Q(d1, . . . , dn). Then it gives rise to a Teichmüller curve
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isomorphic toC in the corresponding stratum of Abelian differentials. We have the following
commutative diagram

X ′
f //

��

X

��
C

and let S′j be the section of X ′ → C over Sj in case dj is odd and Sj,1, Sj,2 be the sections
over Sj in case dj is even. Then we have

f∗S
′
j = Sj , f∗Sj = 2S′j ,

f∗(Sj,1 + Sj,2) = 2Sj , f∗Sj = Sj,1 + Sj,2.

In the case when dj is odd, we have

S2
j = (f∗S

′
j) · Sj = 2(S′j)

2 = − χ

dj + 2
.

In the case when dj is even, we have

S2
j =

1

2
(f∗(Sj,1 + Sj,2)) · Sj =

1

2
(S2
j,1 + S2

j,2) = − χ

dj + 2
.

Hence we recover the self-intersection formula.

4.2. Boundary behavior

The following results are needed later for the proofs of non-varying strata. Roughly
speaking, they imply that degenerate half-translation surfaces parameterized in a Teich-
müller curve behave similarly to the smooth ones and, as in the case of Abelian differentials,
the corresponding stable curves are obtained by squeezing core curves of cylinders (see [21,
Proposition 5.9]).

P 4.4. – SupposeC is a Teichmüller curve generated by a quadratic differential
in Q(d1, . . . , dn). The pointed stable curves in Mg,k corresponding to the boundary points ∆ of C
are obtained by choosing a parabolic direction of a generating half-translation surface (X, q)

and replacing each cylinder by a pair of half-infinite cylinders whose points at i∞ resp. at−i∞
are identified.

Proof. – The cusps of Teichmüller curves are obtained by applying the Teichmüller
geodesic flow (et/2, e−t/2) to a direction in which (X, q) decomposes completely into cylin-
ders. Once we have shown that the object resulting from the above cylinder replacement
construction is stable (including the punctures), the rest of the proof is the same as in [21,
Propositions 5.9 and 5.10].

We need to show that each rational tail (i.e., a genus zero component of a stable curve
joined to the rest of the curve at a separating node and without nodes joining the tail to itself)
has at least two punctures. If we cut along the core curve γ that produces the separating node
and glue the two halves of γ together, we obtain a closed half-translation surface (P1, qP) of
genus zero with two simple poles on the glued γ. Since deg(div(qP)) = −4 and since poles
are simple, there exist two more poles somewhere on this P1, proving our claim.
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The proof cited above provides a geometric way of constructing a quadratic differential q∞
on the degenerate fibers. Since the zeros and poles of q∞ lie in the complement of the union
of open cylinders for any given direction, they are untouched by the surgery performed while
degeneration. We summarize the consequences of this as follows.

C 4.5. – The section q of ω⊗2
X of each smooth fiber X over a Teichmüller curve

extends to a section q∞ of ω⊗2
X∞

for each degenerate fiber X∞ over the closure of a Teichmüller
curve. The signature of zeros and poles of q∞ is the same as q.

C 4.6. – Let (X∞, q∞) be a degenerate fiber of a Teichmüller curve generated
by a half-translation surface (X, q). Then (X∞, q∞) is of polar type.

Moreover, every irreducible component of X∞ contains at least one singularity of q∞. In
particular, the number of irreducible components of X∞ is bounded from above by the number
of singularities of q.

R 4.7. – If q is a global square of an Abelian differential, thenX∞ does not have
separating nodes, as a consequence of the topological fact that the core curve of a cylinder
does not disconnect a flat surface. In other words, Teichmüller curves generated by Abelian
differentials do not intersect δi for i > 0 in Mg. On the other hand, if q is not a global square,
then the Teichmüller curve generated by q may intersect δi for i > 0.

P 4.8. – Let C be a Teichmüller curve generated by a half-translation surface
in Q(d1, . . . , dn). LetC be the closure of the lift ofC to Mg,m using the firstm ≤ n singularities.
ThenC is disjoint with the boundary divisors that have non-zero coefficients in the divisor classes
of the Brill-Noether divisors given in Section 3, if the tuple (g,m, Q(d1, . . . , dn)) and the divisor
are listed in Table 1.

Proof. – An irreducible component Z of a degenerate half-translation surface X∞
over a cusp of C contains at least one zero or pole of the degenerate quadratic differ-
ential q∞. Moreover, ω⊗2

X∞
restricted to Z has degree equal to 4g(Z) − 4 + 2m, where

m = #(Z ∩X∞\Z). Using these facts, the claim follows easily by a case-by-case study. For
instance, let us show that a Teichmüller curve C generated by a half-translation surface
in Q(7, 1) does not intersect δ1 in M3,1. Otherwise, there exists a degenerate half-translation
surface X∞ consisting of two components Z1 and Z2 of genus 1 and 2, respectively, joined
at a node such that div(q∞) = 7p1 + p2 for two distinct points p1, p2 ∈ X∞. But the degree
of ω⊗2

X∞
restricted to Z1 is 2, in particular, not equal to 7 or 1. Hence Z1 does not contain

any zero of q∞, contradicting Corollary 4.6.

P 4.9. – LetC be a Teichmüller curve parameterizing half-translation surfaces
(Xt, qt) such that for generic t the quadratic differential qt is not a global square of an Abelian
differential. Then q0 is not a global square of a stable one-form on the special fiber X0.

Proof. – If qt has a singularity of odd order, the claim is obvious. Assume that all singu-
larities are of even order. Let X → C be the universal curve and Γ ⊂ X the divisor parameter-
izing the singularities of qt. Define L = O X (Γ/2), which is a well-defined line bundle by the
assumption. Denote by s ∈ H0( X , L⊗2) the section whose vanishing locus is Γ. Then there
exists a canonical double covering π : X ′ → X such that π∗ L possesses a section s′ satisfying
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T 1. Divisors disjoint with Teichmüller curves.

g m Stratum Divisor

2 1 Q(3, 2,−1), Q(6,−1,−1), Q(5, 1,−1,−1), Q(7,−1,−1,−1) W

2 2 Q(3, 1, 1,−1), Q(2, 2, 1,−1), Q(4, 2,−1,−1),

Q(3, 3,−1,−1), Q(3, 2, 1,−1,−1), Q(4, 3,−1,−1,−1), BN1
2,(1,1)

3 1 Q(8), Q(7, 1), Q(9,−1), Q(8, 1,−1),

Q(10,−1,−1), Q(9, 1,−1,−1) W

3 2 Q(6, 2), Q(5, 3), Q(4, 4), Q(6, 1, 1), Q(7, 2,−1), Q(5, 4,−1),

Q(4, 3, 1), Q(5, 2, 1), Q(6, 3,−1), Q(5, 3, 1,−1), Q(7, 3,−12) BN1
3,(2,1)

3 3 Q(4, 2, 2), Q(3, 3, 2), Q(3, 3, 3,−1), Q(4, 3, 2,−1)

Q(3, 2, 2, 1), Q(3, 3, 1, 1) BN1
3,(1,1,1)

4 1 Q(13,−1), Q(12), Q(11, 1) W

4 2 Q(10, 2), Q(9, 3), Q(8, 4), Q(8, 3, 1) BN1
4,(3,1)

4 2 Q(6, 6) BN1
4,(2,2)

4 3 Q(7, 3, 2), Q(6, 3, 3), Q(5, 4, 3) BN1
4,(2,1,1)

4 4 Q(3, 3, 3, 3) BN1
4,(1,1,1,1)

(s′)2 = π∗s. In other words, along each fiber X ′t → Xt the pullback of qt is a square of an
Abelian differential. Moreover, qt is a global square if and only if X ′t is disconnected. Now
the result follows from the fact that a family of connected curves cannot specialize to a dis-
connected one.

The following proposition says that some hyperelliptic and non-hyperelliptic strata stay
disjoint even along the boundary of Mg. For a motivation the reader may compare with the
corresponding statement for Abelian differentials in [7, Proposition 4.4].

P 4.10. – LetC be a Teichmüller curve generated by a half-translation surface
(X, q). Suppose that (X∞, q∞) is a point corresponding to one of the cuspsC \C. If (X∞, q∞)

is a hyperelliptic half-translation surface and X∞ is irreducible, then (X, q) is a hyperelliptic
half-translation surface.

If (X, q) is a half-translation surface in one of the strata

Q(6, 2), Q(6, 1, 1), Q(3, 3, 2), Q(10, 2), Q(6,−1,−1), Q(3, 3,−12) or Q(10,−12),

then the conclusion holds without the irreducibility assumption.
For the stratum Q(3, 3, 1, 1) the same conclusion holds for the cusps parameterizing stable

curves with a separating node.

Proof. – Let (X0, q0) denote the ‘core’ of the half-translation surface (X∞, q∞), that is
obtained by removing from (X∞, q∞) the maximal half-infinite cylinders, i.e., the cylinders
corresponding to the nodes of X∞ that are swept out by closed geodesics in the direction of
the residue of q∞ at a node.
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If X∞ is hyperelliptic, there is an admissible double cover of a semistable model of X∞
to P1. Suppose first that X∞ is irreducible with h nodes. Then the double cover induces an
involution ρ of the semistable model ofX∞ that, by our hypothesis, acts as (−1) on q∞. This
involution ρ preserves the central componentX∞ as well as all the non-stable projective lines.
We deduce that ρ preserves X0 and interchanges each pair of half-infinite cylinders that is
glued together to form a node. Moreover, ρ has 2(g − h) + 2 fixed points on X0.

Nearby surfaces (X, q) in C are obtained by replacing the pairs of infinite cylinders with
cylinders of finite height. Since all pairs of infinite half-cylinders are preserved by ρ, we can
extend ρ to an involution on (X, q) still acting as (−1) on q with 2 fixed points in each
cylinder. This gives 2g + 2 fixed points in total and (X, q) is a hyperelliptic half-translation
surface, as we claimed.

Boundary points of the Teichmüller curve generated by a half-translation surface in one
of the above strata are either irreducible or consist of two components X1 of genus one
and X2 of genus g − 1 > 1 in the first four cases and g(X1) = 0, g(X2) = g in the next three
cases. The involution ρ induced by the admissible double covering cannot exchange the two
components and it has to fix the unique node joining the two components. Reproducing the
preceding argument for nodes joining the irreducible components to itself, if there are, we
conclude that ρ fixes all pairs of half-infinite cylinders. We can now complete the proof as in
the preceding case.

Thanks to the restrictions on the cusps in question we are just in position to apply the
argument again to the last case.

5. Limit canonical curves in genus three and four

For a smooth, non-hyperelliptic curve X of genus three, its canonical embedding is a
smooth plane quartic. In that case, the zeros of a holomorphic quadratic differential corre-
spond to the intersection of a unique plane conic with X. This picture holds more generally
if X is nodal, non-hyperelliptic and ωX is very ample, i.e., the dual graph of X is 3-con-
nected (see e.g., [12, Proposition 2.3]). If X is 2-connected or less, or if X is hyperelliptic,
its canonical map may no longer be an embedding. We need a replacement for this picture,
when the canonical map of a curve of genus three (and also of genus four) fails to be an
embedding.

Since quadratic differentials are sections of ω⊗2
X , naturally we should consider the bi-

canonical map ofX. The bicanonical linear system on a stable genus three curveX provides
an embedding to P5, unless X possesses an elliptic tail. Now conics in P2 corresponding to
quadratic differentials become hyperplane sections in P5. Then the ambient P2 containingX
turns out to be a surface in P5 as the image of the Veronese embedding induced by | OP2(2)|.
As X degenerates, say to a smooth hyperelliptic curve X0, we do not have a canonical em-
bedding of X0 in P2. Nevertheless, in P5 we have a bicanonical embedding of X0 contained
in a singular surface which is a degeneration of the Veronese P2. In summary, the idea is to
treat the pair (P2, X) as a log surface, i.e., a surface plus a divisor with mild singularities,
and degenerate P2 as well. This procedure was carried out by Hassett completely for stable
genus three curves [12]. We summarize Hassett’s results as well as the degenerations we need
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in genus four. This will be useful when we analyze the boundary behavior of Teichmüller
curves in the exceptional strata.

Recall that a Hirzebruch surface Fd is a ruled surface over P1 such that the section e with
minimal self-intersection number has e2 = −d. Let f be a ruling ofFd. The rank of the Picard
group of Fd is two, hence any curve class of Fd can be written as a linear combination ae+bf

with integer coefficients a, b and f2 = 0, f · e = 1. Moreover, the canonical line bundle of Fd
has class

KFd
= −2e− (2 + d)f.

5.1. Genus three

We start with a description of the generic situation. Consider the Veronese embedding
P2 ↪→ P5 by the complete linear system | O(2)|. Denote by S the image surface of degree four.
A plane curve of degree d maps to a curve of degree 2d in S ⊂ P5. Holomorphic quadratic
differentials onX modulo scalar are in bijection to conicsQ in P2. They become hyperplane
sections of S in P5.

P 5.1. – In the above setting, suppose a family of log surfaces (St, Xt) degen-
erates such that X0 is hyperelliptic but still 3-connected. Then St degenerates to a cone over a
rational normal quartic, whose resolution is a Hirzebruch surface F4. On F4, the curve X0 has
class 2e+ 8f .

Two points p1, p2 are conjugate in X0 if and only if they are cut out by a ruling. A point p is
a Weierstrass point of X0 if and only if there is a ruling tangent to X0 at p.

The degeneration of divisors associated to holomorphic quadratic differentials onXt has two
possibilities, either it consists of four rulings or it has class e + 4f , depending on whether the
hyperplane section Q passes through the singularity, respectively.

Let S4 be the degeneration of St in the above, i.e., S4 is a cone over a rational normal
quartic curve in P5. More precisely, take a smooth, degree four, rational curve R that spans
a hyperplane in P5, and a point v not contained in that hyperplane. Then S4 consists of
the union of lines connecting v with each point of R. Those lines are called rulings of S4.
The vertex v is a surface singularity of type A3. Blowing up S4 at v, we obtain a smooth
Hirzebruch surface of type F4. More details on this and the following proposition can be
found in [12].

The second case we need is precisely 2-connected.

P 5.2. – In the above setting, suppose a family of log surfaces (St, Xt) degen-
erates such that X0 is hyperelliptic and consists of two components X1, X2, both of genus one,
meeting at two nodes t1, t2. Then St degenerates to a cone S2,2 over a one-nodal union of two
conics in P5 Let S1, S2 be the two components of S2,2, containing X1, X2, respectively. Then
their common ruling contains t1, t2.

The zero divisor of the degenerate quadratic differential onX0 has two possibilities, either it is
cut out by two conics in each of theSi or it consists of four rulings, two in each of theSi, depending
on whether the hyperplane section Q passes through the singularity of S2,2, respectively.
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5.2. Genus four

We start again with a description of the generic situation. For a general genus four
curve X, its canonical embedding lies in a smooth quadric surface Q in P3. Let f1, f2 be
the two ruling classes of Q. Then X has class 3f1 + 3f2. For any holomorphic quadratic
differential q on X, there exists a unique elliptic curve E (possibly singular) as an element
of the linear system |2f1 + 2f2| such that E ·X = div(q).

With the hyperelliptic situation in mind, we need to consider the bicanonical embedding.
Then Q is embedded into P8 by the linear system |2f1 + 2f2|, i.e., by its anti-canonical
system | − KQ|. The image of Q is a surface S of degree eight. In particular, S is a conic
bundle correspondence between two conics, i.e., the rulings of Q map to conics in P8.

The Gieseker-Petri divisor is the (closure of) the locus of genus four curves such that the
quadric surface Q is singular. We call X contained in the Gieseker-Petri divisor as Gieseker-
Petri special.

P 5.3. – In the above setting, suppose X is Gieseker-Petri special and 3-con-
nected, but not hyperelliptic. Then its canonical image lies on a quadric coneQ0 in P3. Blowing
up the vertex gives a Hirzebruch surface F2. On F2 the class of X is 6f + 3e and the zeros of
a holomorphic quadratic differential correspond to a divisor of class 4f + 2e.

P 5.4. – In the above setting, supposeX is hyperelliptic and 3-connected. Then
its bicanonical image lies on a surface scroll isomorphic to a Hirzebruch surface F5. On F5 the
class of X is 10f + 2e and the zeros of a holomorphic quadratic differential correspond to the
union of a line and a divisor of class 6f + e.

Proof. – LetX be a hyperelliptic curve of genus four, embedded in P8 by its bi-canonical
system. A pair of conjugate points under the hyperelliptic involution of X span a line in P8.
Take the union of these lines and we obtain a surface scroll of degree seven containing X.
It is easy to check that the resulting surface is S1,6, i.e., the union of line correspondences
between a line L and a rational normal sextic. Namely, S1,6 is a component of a degree eight
surface S, which is a degeneration of the degree eight anti-canonical embedding of Q, hence
the other component of S must have degree one, i.e., a plane P2. The plane is spanned by L
and a ruling F , since S is embedded in P8 by its anti-canonical system.

Note thatS1,6 is the image of the Hirzebruch surfaceF5 by |e+6f |. Under this embedding,
the distinguished section emaps to L and f maps to a ruling. Consequently, the class ofX is
2e+10f . Moreover, the elliptic curveE cutting out the zeros of a quadratic differential onX
has the same class as the anti-canonical class of the log surface S = P2 ∪ S1,6, i.e., E is
a hyperplane section of S. Its restriction to S1,6 has class e+ 6f , whose sections are rational
normal curves in the hyperplane P7. Since (e + 6f) · e = (e + 6f) · f = 1, such a rational
normal curve R in P7 intersects L at t1 and intersects F at t2. So E is the union of the line
t1t2 and R, i.e., two rational curves jointed at two nodes.
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6. Genus three: exceptional strata

By [16] in genus three the strata with an exceptional number of connected components are

E3 = {(9,−1), (6, 3,−1), (3, 3, 3− 1)}.

For each of the strata Q(k1, k2, k3,−1) in this list, the following properties are known to hold.

i) The stratum Q(k1, k2, k3,−1) has exactly two components.
ii) Only one of the two components Q(k1, k2, k3,−1)reg is adjacent to Q(8).

iii) The stratum Q(9,−1)reg is obtained from Q(5,−1) by gluing in a cylinder with angle
in {π, 2π, 4π} and Q(9,−1)irr is obtained by gluing in a cylinder with angle 3π.

We stick to Zorich’s notation ([26]) on the labeling ‘reg’ and ‘irr’, corresponding to regular
and irregular, respectively, for a reason that will soon become clear. Originally [16] used the
labels reduced and irreducible, to indicate which of the strata by property ii) could be reduced
to the stratum Q(8). But this mnemonic works in g = 3 only.

Let us explain the meaning of ‘adjacent’ in ii). Say, for a quadratic differential in Q(9,−1)reg,
one can merge the simple pole and the zero and obtain a non-degenerate flat surface in Q(8),
while merging the simple pole and the zero for a quadratic differential in Q(9,−1)irr would
necessarily degenerate the underlying Riemann surface, see [26, Appendix A].

The gluing construction used in iii) gives a topological distinction of the two components.
In [16] Lanneau asked for an algebraic distinction. We provide a solution to this question as
one of the main results of this section. In fact, we will give an algebraic proof, independent
of [16], for the existence and construction of the two components for each stratum in E3.

For a quadratic differential q, let div(q)0 (resp. div(q)∞) be the divisor of zeros (resp. of
poles) of q. Define a divisor

L(X, q) = div(q)0/3

and also use the same notation to denote its associated line bundle on X.

T 6.1. – Each stratum in E3 has exactly two components, distinguished by the
following parity condition:

iii′) The surface (X, q) belongs to

Q(k1, k2, k3,−1)irr iff dimH0(X, L(X, q)) = 2

and it belongs to

Q(k1, k2, k3,−1)reg iff dimH0(X, L(X, q)) = 1.

Moreover, the component Q(k1, k2, k3,−1)irr is not adjacent to Q(8).

Consequently, we may say that in the irregular components the linear system | L(X, q)|
has an irregularly high dimension.

In spirit, this behavior is very similar to Abelian differentials. There, in a stratum
Ω Mg(k1, . . . , kr) where all the ki are even, the two components are distinguished by the
parity of the spin structure, i.e., by the parity of H0(X,div(ω)/2). Whereas the parity of the
spin structure is well-known to be deformation invariant, the invariance of the number of
sections of a third root of the zero divisor of a quadratic differential appears rather strange.

To prove the above theorem, the first step is an equivalent interpretation of the parity con-
dition in terms of a torsion order on a secretly underlying elliptic curve. Next, we construct
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the components of the strata in E3 from moduli spaces and projective bundles that are known
to be irreducible.

As a by-product, we found that almost all the exceptional strata are non-varying.

T 6.2. – All the components of the exceptional strata in genus g = 3 with the
exception of Q(3, 3, 3,−1)irr are non-varying. The values are collected in the following table:

component Qirr component Qreg

Q(9,−1) L+ = 14/11 L+ = 12/11

Q(6, 3,−1) L+ = 7/5 L+ = 23/20

Q(3, 3, 3,−1) varying L+ = 6/5

6.1. Parity given by torsion conditions

Let Q(k1, k2, k3,−1) be a stratum in E3. We consider first a half-translation surface (X, q)

in Q(k1, k2, k3,−1) that is not hyperelliptic. Later, in Lemma 6.7 we will see that in all strata
this is generically the case. We write div(q)0 = k1z1 + k2z2 + k3z3 and let p be the pole of q.

Consider the canonical embedding X ↪→ P2. Take a general line L passing through the
pole of q but not through its zeros. Then L intersects X at three points r1, r2 and r3. By the
long exact sequence of cohomology associated to the short exact sequence

0→ OP2(−1)→ OP2(3)→ OX(3)→ 0

we obtain an isomorphismH0(P2, OP2(3)) ∼= H0(X, OX(3)). Note that OX(3) ∼= ω⊗3
X . Thus

there exists a unique plane cubic E such that

(16) E ·X = div(q)0 + r1 + r2 + r3.

P 6.3. – Fix a half-translation surface (X, q) in Q(k1, k2, k3,−1) and suppose
it is not hyperelliptic. For a generic choice of L the plane cubic E is irreducible and div(q)0 is
contained in the smooth locus of E.

To help the reader quickly grasp our idea, we postpone the proof of the above technical
statements to Appendix B.1 and continue with the parity construction. From r1 + r2 + r3 ∼ OE(1)

and (16) we deduce that

(17) 3 L(X, q) ∼ OE(3).

The key observation is that linear equivalence may or may not hold when dividing both sides
by three, thus providing a parity to distinguish the two components.

P 6.4. – In the above setting, the parity dimH0(X, L(X, q)) = 2 if and only
if L(X, q) ∼ OE(1) and the parity dimH0(X, L(X, q)) = 1 if and only if L(X, q) 6∼ OE(1)

but 3 L(X, q) ∼ OE(3).

Moreover, in a family of quadratic differentials (Xt, qt) with Xt a smooth non-hyperelliptic
curve for all t ∈ ∆, the special member (X0, q0) for t = 0 has the same parity as the generic
member.
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Proof. – Since E is smooth at the zi by Proposition 6.3, the condition L(X, q) ∼ OE(1)

says for (X, q) ∈ Q(9,−1) that the tangent line to E at z1 is a flex line, i.e., a tangent
line with contact of order three at z1. Since E and X have contact of order 9 at z1, either
they possess the same flex line or they both have simple tangent lines at z1. Rephrasing in
the language of linear systems, z1 being a flex of X is equivalent to h0(X, 3z1) = 2. For
(X, q) ∈ Q(6, 3,−1) the same argument works for the secant line z1z2 being tangent to X
at z1 and for (X, q) ∈ Q(3, 3, 3,−1) the same argument works for the collinearity of z1, z2

and z3.
If ∆ parameterizes a family of half-translation surfaces with generic member satisfying

h0(Xt, L(Xt, qt)) = 2, then any special member (X0, q0) also satisfies h0(X0, L(X0, q0)) = 2,
because the dimension of the linear system is upper semicontinuous. Suppose for a family
of half-translation surfaces in this stratum we have h0(X, L(Xt, qt)) = 1 for t 6= 0. Then we
need to prove that they cannot specialize to (X0, q0) with h0(X, L(X0, q0)) = 2. Since the
support of L(Xt, qt) is in the smooth locus of Et by Proposition 6.3, L(Xt, qt) ⊗ OE(−1)

is a well-defined family of Cartier divisors for all t ∈ ∆. It is well-known that two distinct
torsion sections are disjoint in a family of elliptic fiberations (see e.g., [19]). In our situation,
it implies that if the torsion order in the Picard group of Et is three at a generic point t, it
cannot drop to one at a special point.

Note that at this stage we have not yet shown that the dimension of the locus with
dimH0(X, L(X, q)) = 2 is the same as the corresponding stratum. The possibility of this
locus being of smaller dimension will be ruled out in the next section.

6.2. Construction of components

Suppose we deal with an exceptional stratum Q(k1, . . . , kn,−1) with n zeros and one

simple pole. Consider the moduli spaces M
reg

1,n+1 and M
irr

1,n+1 of stable pointed elliptic curves
(E, z0, z1, . . . , zn) with the additional property that

n∑
i=1

ki
3
zi ∼ 3z0

in the case ‘irr’, respectively
n∑
i=1

ki
3
zi 6∼ 3z0 but

n∑
i=1

kizi ∼ 9z0

in the case ‘reg’. Mapping this tuple to (E, z1, . . . , zn) exhibits these moduli spaces as finite
connected unramified coverings of M1,n. We embed the elliptic curve as a plane cubic in P2

using the linear system |3z0|, i.e., such that 3z0 ∼ OE(1). Now choose moreover a line L
in P2, i.e., a section of |3z0| and let L · E = r1 + r2 + r3. Define two parameter spaces
Breg

(k1,...,kn,−1) and Birr
(k1,...,kn,−1) parameterizing tuples (E, z0, z1, . . . , zn, L). They are fiber

bundles over M
reg

1,n+1 and M
irr

1,n+1 respectively.
We let

f : Sreg
(k1,...,kn,−1) → Breg

(k1,...,kn,−1) resp. f : Sirr
(k1,...,kn,−1) → Birr

(k1,...,kn,−1)

be the subspace of plane quartics X whose fiber over (E, z0, z1, . . . , zn, L) parameterizes
those X such that X · E =

∑
kizi + r1 + r2 + r3.
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P 6.5. – For both indices irr and reg the parameter spaces B(k1,...,kn,−1) are
irreducible of dimension n + 2 and the parameter spaces S(k1,...,kn,−1) are irreducible of
dimension n + 5, which is the dimension of the incidence correspondence consisting of a point
in P Q(k1, . . . , kn,−1) together with a line in P2 passing through the unique pole.

Moreover, the generic quarticX parameterized by S(k1,...,kn,−1) is a smooth curve of genus 3

in all the cases.

Proof. – The irreducibility of M
reg

1,n+1 (resp. M
irr

1,n+1) for n = 1 is a consequence of the
irreducibility of the space of elliptic curves with marked points together with the choice of a
primitive 9-torsion point (resp. a primitive 3-torsion point). The case n > 1 is reduced to the
previous case by using the irreducibility of the fiber under the addition map (r1, . . . , rn) 7→∑n
i=1 kiri ∈ E. Irreducibility of Breg

(k1,...,kn,−1) and Birr
(k1,...,kn,−1) follows because they are

fiber bundles over the previous parameter spaces. Tensoring the defining sequence of the ideal
sheaf of E with OP2(4), we obtain an exact sequence

0→ OP2(1)→ OP2(4)→ OE(4)→ 0.

The associated long exact sequence of cohomology shows that any two quadrics in a fiber
of f differ by a section of OP2(1). This shows first the irreducibility. Moreover, both for
• = reg and • = irr we have dim M•1,n+1 = n, hence dimB•(k1,...,kn,−1) = n + 2 and since
h0(P2, OP2(1)) = 3 we finally obtain dimS•(k1,...,kn,−1) = n+ 5.

To prove generic smoothness we may fix a point in B(k1,...,kn,−1) corresponding to
a smooth elliptic curve E. The base points of the linear system cutting out the X with
X ·E =

∑n
i=1 kizi + r1 + r2 + r3 are precisely the points zi and ri. Moving L we may move

the ri and by Bertini’s theorem for a Zariski open set in each fiber over M1,n+1 the curvesX
are smooth except possibly at the zi.

We now argue that at the zi the generic X is also smooth. In fact, let D =
∑n
i=1 kizi

and F = r1 + r2 + r3, considered as divisors on E. Since D + F is a section of OE(4), the
line bundle OE(4) ⊗ OE(−D − F ) is trivial. It implies that for all quartics in a fiber of f
their restrictions to E are unique up to scalars. Lifting to P2, we conclude that the defining
homogeneous polynomial ofX can be expressed as f0 + le, where f0 is the defining equation
for a fixed X0 in S, l is an arbitrary linear form and e is the equation of E. Since E is non-
singular at zi, for a generic choice of l, the vanishing locus of f0 + le is non-singular at zi as
well.

Proof of Theorem 6.1. – The existence of period coordinates shows that strata of
quadratic differentials are smooth. Consequently, disregarding subsets of complex codi-
mension at least one does not change connectivity. By Lemmas 6.6 and 6.7 below we
may thus restrict the question on the number of components to the complement of the
hyperelliptic locus and to the locus where E is smooth.

On this restricted locus by Proposition 6.4 the parity is deformation invariant and hence
there are at least two components. To each point (X, q) in a stratum Q(k1, . . . , kn,−1) listed
in E3 and the additional choice of L we associated at the beginning of Section 6.1 an elliptic
curve E in P2. By the homogeneity of an elliptic curve we may take z0 ∈ E so that the
embedding is given by |3z0|. Let z1, . . . , zn be the points inX ·E \L ·E. Finally, (17) implies
that (E, z0, z1, . . . , zn, L,X) defines a point in Sk1,...,kn with upper index either ‘irr’ or ‘reg’.
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This space has the expected dimension 2 + dim(P Q(k1, . . . , kn,−1)) by Proposition 6.5 and
the irreducibility statement in that proposition completes the proof.

L 6.6. – None of the strata in E3 has a component such that for a generic half-
translation surface in the component the plane cubic E defined by (16) is singular.

Proof. – If this was the case, we could reconstruct this component by the argument
leading to Proposition 6.5, but replacing M•1,n+1 by a configuration space for n + 1 points
on an irreducible rational nodal or cuspidal curve by Proposition 6.3. If the points z1, . . . , zn
lie in the smooth locus of the rational curve, there is still the torsion constraint and this
parameter space is of dimension one smaller than M•1,n+1. If one of the zi lies at a node, the
torsion constraint may no longer be well-defined, but zi being restricted to a node imposes
one more condition so that this parameter space is still of dimension at least one smaller
than M•1,n+1.

The remaining dimension argument for the fibers of B•(k1,...,kn,−1) → M•1,n+1 and
f : S•(k1,...,kn,−1) → B•(k1,...,kn,−1) in Proposition 6.5 still holds with E singular but irre-
ducible. In total, the locus with E singular is thus too small to form a component of a
stratum in E3.

The same type of argument using the description of hyperelliptic curves in Section 5.2
shows the following lemma, whose proof will be given in the appendix.

L 6.7. – None of the strata in E3 has a component entirely contained in the hyper-
elliptic locus.

Finally, let us verify the last sentence in Theorem 6.1. Recall the meaning of ‘adjacent’ in
[26, Appendix A].

L 6.8. – The irregular component of each stratum in E3 is not adjacent to Q(8).

Proof. – Suppose there is a family of half-translation surfaces in Q(9,−1)irr that degen-
erates to (X, q) in Q(8), where div(q) = 8z1. Since h0(X, 3z1) is upper semicontinuous, z1 is
a Weierstrass point onX and ωX ∼ 3z1 +r for some r ∈ X. Then from 8z1 ∼ ω⊗2

X we obtain
that 2z1 ∼ 2r. If z1 = r, then ωX ∼ 4z1 and q is a global square, leading to a contradiction.
If z1 6= r, then X is hyperelliptic. Again ωX ∼ 4z1 and we obtain the same contradiction.
The same argument works for the other strata in E3.

R 6.9. – From the above construction it is obvious that Q(k1, k2, k3,−1)irr is
adjacent to Q(k1+k2, k3,−1)irr and that Q(k1, k2, k3,−1)reg is adjacent to Q(k1+k2, k3,−1)reg,
while the strata with different upper indices are not adjacent by Proposition 6.4.

R 6.10. – For the irregular components there is another construction and irre-
ducibility proof. It relies on the following observation. We give details for Q(9,−1)irr and
the other cases can be dealt with similarly.

Let z1 be the 9-fold zero of q. Let Birr
(9,−1) parameterize tuples (z1, L1, L2) with z1 a point

and theLi lines in P2 such that z1 ∈ L1 but z1 /∈ L2. Define Sirr
(9,−1) to be the parameter space

of plane quartics X such that i) L1 is a flex line to X at z1 and ii) L2 is a flex line to X at the
intersection point r of L1 and L2. As above one checks that the parameter space Sirr

(9,−1) is
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irreducible of dimension 13 and hence its quotient by the action of PGL(3) is of dimension 5.
One easily checks that an open subset of this quotient is indeed P Q(9,−1)irr.

6.3. The non-varying property

Throughout this section let C be a Teichmüller curve generated by (X, q) in one of
the strata in E3 and let C be its closure over the compactified moduli space of curves.
Note that using the language of linear series the components Q(9,−1)irr, Q(6, 3,−1)irr and
Q(3, 3, 3,−1)irr lie in the divisors BN1

3,(3), BN
1
3,(2,1) and BN1

3,(1,1,1), respectively, after a
suitable lift to the moduli space of curves with marked points. Consequently these divisors are
the natural candidates to prove non-varying for the regular components of the strata in E3.
But we are still left with ruling out possible intersections at the boundary of the components.
This is the content of Proposition 2.2 together with Corollary 4.6.

L 6.11. – For each stratum Q(k1, . . . , kn,−1) in E3, the closures of its two compo-
nents do not intersect at a boundary point of a Teichmüller curve in that stratum.

Proof. – Since the two components are of the same dimension, if they intersect,
Q̃(k1, . . . , kn,−1) would be singular at the common locus, contradicting Proposition 2.2.

P 6.12. – IfC is generated by (X, q) in Q(9,−1)irr, thenC is disjoint with the
hyperelliptic locus.

Proof. – Suppose div(q) = 9z1− p1 with z1 a Weierstrass point. If X is hyperelliptic, we
haveωX ∼ 4z1. Byω⊗2

X ∼ 9z1−p1, we conclude that z1 ∼ p1, contradicting that z1 6= p1.

Proof of Theorem 6.2. – For the components of Q(9,−1) this is straightforward from the
divisor classes given in Section 3, from Lemma 6.11 and Proposition 6.12, respectively, since
the stable curves parameterized by the boundary of C are irreducible.

In the case of Q(6, 3,−1)reg we know from Lemma 6.11 that C and the divisor BN1
3,(2,1)

are disjoint in M3,2. For a curve X parameterized in the boundary divisor δ1, the degree
of ω⊗2

X restricted to the genus one component is equal to 2, hence the only marked δ1-bound-
ary divisorC could intersect is the divisor δ1;{2}, where the zero of multiplicity 3 and the sim-
ple pole are contained in the genus one component. Note that δ1;{2} does not appear in (8).
Hence we obtain that

C · (−λ+ 3ω1 + ω2) = 0.

By Proposition 4.2, we have

C · ω1

C · λ
=

2

(6 + 2)L+(C)
=

1

4L+(C)
,

C · ω2

C · λ
=

2

(3 + 2)L+(C)
=

2

5L+(C)
.

Therefore, we obtain that L+(C) = 23/20.
For Q(6, 3,−1)irr, the lift of C is contained in BN1

3,(2,1), so this divisor does not work

for the disjointness property. Instead, one can find a divisor inside BN1
3,(2,1) disjoint with C

and perform the intersection calculation. The trade-off is a tedious study of the Picard group
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of BN1
3,(2,1) as well as its singularities. Here we take an alternative approach, adapting the

idea of [25] and using a filtration of the Hodge bundle on C. Since it has a different flavor
and requires a technical setup, we will treat this approach independently in Appendix A.

Finally, we consider Q(3, 3, 3,−1). The boundary terms appearing in the divisor class
of BN1

3,(1,1,1) in (7) are either irreducible or, if over δ1 have any number but one of the three

marked points on the elliptic tailX1. Since ω⊗2
X has degree two restricted to the subcurveX1,

a boundary point of C in δ1 has precisely one of the marked zeros inX1 along with the pole.
Consequently, all the boundary terms are irrelevant for the intersection number and from
this we can calculate the sum of Lyapunov exponents.

7. Genus four: exceptional strata

Among all the strata of quadratic differentials in genus four, only Q(12) was claimed in
[16] to have two components not arising from any hyperelliptic component. This claim is
incomplete. In addition, even for Q(12) in [16] there is no terminology distinguishing the two
components.

Consider the following strata

E4 = {(12), (9, 3), (6, 6), (6, 3, 3), (3, 3, 3, 3)}.

Some of these strata obviously possess a hyperelliptic component according to Section 2. In
what follows we will show that each of the strata in E4 possesses two non-hyperelliptic com-
ponents. As in the case of genus three, we also provide algebraically a parity to distinguish
the two (non-hyperelliptic) components. We thus keep the labels ‘irr’ and ‘reg’ as to make the
following result look consistent with Theorem 6.1.

T 7.1. – Each of the strata Q(6, 6), Q(6, 3, 3) and Q(3, 3, 3, 3) has a hyperelliptic
component, denoted by Q(6, 6)hyp etc. Besides the hyperelliptic components each of the strata
in E4 has exactly two additional components distinguished as follows. Let L(X, q) = div(q)/3,
then the surface (X, q) belongs to

Qirr iff dimH0(X, L(X, q)) = 2

and it belongs to
Qreg iff dimH0(X, L(X, q)) = 1.

Many of the exceptional strata are non-varying.

T 7.2. – The exceptional strata in genus four with the exception of Q(6, 6)irr,
Q(6, 3, 3)irr and Q(3, 3, 3, 3)irr are non-varying. The values are collected as follows:

hyperell. comp. component Qirr component Qreg

Q(12) −−− L+ = 11/7 L+ = 10/7

Q(9, 3) −−− L+ = 92/55 L+ = 82/55

Q(6, 6) L+ = 2 varying L+ = 3/2

Q(6, 3, 3) L+ = 11/5 varying L+ = 31/20

Q(3, 3, 3, 3) L+ = 12/5 varying L+ = 8/5
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7.1. Parity given by torsion conditions

Let Q(k1, . . . , kn) be a stratum in E4 and consider a half-translation surface (X, q) in this
stratum that is not hyperelliptic and not in the Gieseker-Petri locus. Later, in Lemma 7.7 we
will see that this holds for a generic surface in all components but the hyperelliptic ones.
Let X ↪→ P3 be the canonical embedding. Since X is not in the Gieseker-Petri locus, the
image of the canonical embedding lies in a smooth quadric surface Q ∼= P1 × P1.

Let OQ(1) denote the hyperplane class in P3 restricted to Q. It has divisor class (1, 1) in
the Picard group ofQ. A general section E of | OQ(2)| is an elliptic curve of degree four with
divisor class (2, 2). We have the following exact sequence

0→ OQ(−1)→ OQ(2)→ OX(2)→ 0,

hence H0(Q, OQ(2)) → H0(X, OX(2)) is an isomorphism. Note that OX(2) ∼= ω⊗2
X .

Therefore, a bicanonical divisor ofX is uniquely cut out by a sectionE of | OQ(2)|. Therefore,
we can choose E uniquely corresponding to q modulo scalars, that is

(18) E ·X = div(q).

We say that (E,div(q)) is sufficiently smooth ifE is reduced (possibly reducible) and div(q)

is supported on the smooth locus of E. In that case, we also say that X has a sufficiently
smooth parity curve. This condition allows us to study torsion in the Picard group of divisors
supported away from the singular locus of E. Since X is a section of | OQ(3)|, we have

(19) 3 L(X, q) ∼ OE(3).

in the Picard group of E. This linear equivalence may or may not hold when dividing both
sides by three. Contrary to the case of genus three we cannot just focus on irreducibleE. Our
substitute is the following lemma. As before, we postpone the proof of all the technical results
to the appendix.

L 7.3. – In the above setting, suppose X is neither hyperelliptic nor Gieseker-Petri
special. Then either E is sufficiently smooth or dimH0(X, L(X, q)) = 1.

P 7.4. – For X neither hyperelliptic nor Gieseker-Petri special and with suffi-
ciently smooth parity curve, the parity

dimH0(X, L(X, q)) = 2 if and only if L(X, q) ∼ OE(1)

and

dimH0(X, L(X, q)) = 1 if and only if L(X, q) 6∼ OE(1) but 3 L(X, q) ∼ OE(3).

Moreover, in a family of quadratic differentials (Xt, qt) with Xt a smooth non-hyperelliptic
curve, not Gieseker-Petri special and with sufficiently smooth parity curve for all t ∈ ∆, the
special member (X0, q0) has the same parity as the generic member.

Proof. – By assumption, the canonical embedding ofX is contained in a smooth quadric
surface Q in P3. By the Riemann-Roch formula, dimH0(X, L(X, q)) = 2 is equivalent to
the existence of a unique plane section C of Q such that C ·X = L(X, q) + r + s for some
points r, s ∈ X. Since E · X = 3 L(X, q), this is equivalent to C · E = L(X, q). Since by
definition C · E ∼ OE(1), this equivalence proves the first statement.

4 e SÉRIE – TOME 47 – 2014 – No 2



QUADRATIC DIFFERENTIALS IN LOW GENUS 337

For a sufficiently smooth parity curve E, the line bundle L(X, q) ⊗ OE(−1) is well-
defined and is torsion of order either one or three that cannot jump in a family. As in genus
three, using upper semicontinuity of cohomology, we only need to show that in a family of
half-translation surfaces whose special fiber is no longer sufficiently smooth, the dimension
of H0(X, L(X, q)) does not increase. This is precisely the content of Lemma 7.3.

Note that at this stage we have not yet shown that the dimension of the locus with
dimH0(X, L(X, q)) = 2 is the same as the corresponding stratum in E4. The case of
smaller dimension (thus necessarily contained in the hyperelliptic locus or in the Gieseker-
Petri divisor) will be ruled out in the next section.

7.2. Construction of components

Let Birr
(k1,...,kn) resp. Breg

(k1,...,kn) be subset of the moduli space of stable elliptic curves
(E, q1, r1, . . . , rn, D) with n+ 1 marked points and additionally with the linear equivalence
class D of a divisor of degree two satisfying the condition

(20)
n∑
i=1

ki
3
ri ∼ 2q1 +D

resp. satisfying
n∑
i=1

ki
3
ri 6∼ 2q1 +D but

n∑
i=1

kiri ∼ 6q1 + 3D

and 2q1 6∼ D. The linear systems |2q1| and |D| define maps E → P1 and by definition of
the parameter spaces the product E → Q := P1 × P1 is an embedding. Instead of D we
could choose a point q2 ∈ E up to a two-torsion translation and let D be the divisor class
associated to OE(2q2). We will consider Q ↪→ P3 given by the Veronese embedding | O(1, 1)|
and, as above, let OQ(k) be the restriction of OP3(k) toQ. Thus,E can be viewed as a section
of | OQ(2)|.

Let f : Sirr
(k1,...,kn) → Birr

(k1,...,kn) and f : Sreg
(k1,...,kn) → Breg

(k1,...,kn) be the fibrations
whose fiber over (E, q1, r1, . . . , rn, D) consists of all sections X of | OQ(3)| together with the
quadratic differential q obtained from restricting E to X.

P 7.5. – The parameter spaces B•(k1,...,kn) are irreducible of dimension n + 1

for both upper indices • = irr and • = reg and the parameter spaces S•(k1,...,kn) are irreducible
of dimension n+ 5, which equals dimP Q(k1, . . . , kn).

Moreover, a generic section X parameterized by S(k1,...,kn) is a smooth curve of genus four
in all the cases.

Proof. – Forgetting the last marked point and using the interpretation of D exhibit a
finite, dominant map to a quotient of the moduli space of elliptic curves with n+ 1 marked
points by a finite group action. This proves the first dimension count. Tensoring the defining
sequence for E with OQ(3), we obtain an exact sequence

0→ OQ(1)→ OQ(3)→ OE(3)→ 0,

and read off h0(Q, OQ(1)) = 4, which implies that the dimension of S(k1,...,kn) is four
larger than B(k1,...,kn). The irreducibility of B(k1,...,kn) for n = 1 is a consequence of the
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irreducibility of the space of elliptic curves with one marked point together with a choice
of primitive 4-torsion point (respectively a primitive 12-torsion point). The case n > 1 is
reduced to the previous case by using the irreducibility of the fiber under the addition map
(r1, . . . , rn) 7→

∑n
i=1 kiri ∈ E.

The proof that a generic curve X is smooth is completely parallel to the case of genus
three.

Proof of Theorem 7.1. – The existence of period coordinates shows that strata are
smooth. Consequently, disregarding subsets of complex codimension at least one does not
change connectivity. By Lemmas 7.6 and 7.7 below we may thus restrict the question on the
number of components to the complement of the hyperelliptic locus and the Gieseker-Petri
locus and to half-translation surfaces with sufficiently smooth parity curves.

On this complement by Proposition 7.4 the parity is deformation invariant and hence
there are at least two components for each stratum listed in E4. Recall that to a point (X, q) in
a stratum Q(k1, . . . , kn) in E4 we associated at the beginning of Section 7.1 an elliptic curveE
and a mapE → Q ∼= P1×P1. By the homogeneity of an elliptic curve we may define q1 ∈ E
so that the first projection is given by |2q1| and letD be the pullback of OP1(1) via the second
projection. Since X · E = div(q), we can associate X canonically n points on Q. Finally,
Equation (19) implies that (X,E, q1, D, div(q)) defines a point in Sk1,...,kn

with upper index
either irr or reg. The irreducibility statement in Proposition 7.5 completes the proof.

L 7.6. – None of the strata in E4 has a component such that for a generic half-
translation surface in that component the parity curve defined by (18) is singular.

Proof. – The proof is identical to Lemma 6.6. If E is singular but sufficiently smooth,
the torsion constraint is still valid, so dimension of the base space drops by one, since the
parameter for the j-invariant of E has been lost. If E is singular and at least one of the zi
is at a node, the parity condition (20) no longer makes sense, but this cannot compensate
the loss of at least two parameters for the j-invariant of E and for the location of the zi at
a node.

L 7.7. – Except the hyperelliptic components defined in Section 2.1 no component of
a stratum in E4 is contained in the hyperelliptic locus or contained in the Gieseker-Petri locus.

The proof of Lemma 7.7 will be given in the appendix.

R 7.8. – For the irregular components there is another construction and irre-
ducibility proof. It relies on the following observation. We give details for Q(12)irr and the
other cases can be dealt with similarly.

Let z1 be the 12-fold zero of q. Since z1 is a Weierstrass point, ωX ∼ 4z1 + r+ s for some
points r and s. Since ω⊗2

X ∼ 12z1, we conclude that 4z1 ∼ 2r + 2s, hence ωX ∼ 3r + 3s.
Conversely, if we can find r, s ∈ X such that ωX ∼ 3r + 3s and ωX ∼ 4p + r + s, then
one easily checks that ω⊗2

X ∼ 12z1. Now, consider (X,ω) in Ω M4(3, 3)non-hyp such that
div(ω) = 3r + 3s. The dimension of this locus modulo scalars is 8. Let z1 be a Weierstrass
point of X and choose a plane section through z1 whose intersection with the canonical
embedding of X is 4z1 + x + y. If we require (x, y) = (r, s), this imposes two conditions,
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hence the dimension of the locus where ωX ∼ 3r + 3s ∼ 4z1 + r + s is equal to 8 − 2 = 6,
which equals dimP Q(12).

7.3. The non-varying properties

Throughout this section let C be a Teichmüller curve generated by (X, q) in one of the
strata in E3 and let C be its closure in the compactified moduli space. The non-varying
property of the hyperelliptic components is an immediate consequence of Corollary 2.1.
Note that using the language of linear series the components Q(12)irr, Q(9, 3)irr, Q(6, 6)irr,
Q(6, 3, 3)irr and Q(3, 3, 3, 3)irr lie in the divisors BN1

4,(4), BN
1
4,(3,1), BN

1
4,(2,2), BN

1
4,(2,1,1)

and BN1
4,(1,1,1,1) respectively, after a suitable lift the moduli space of curves with marked

points. Consequently these divisors are the natural candidates to prove non-varying for the
regular components. But we are still left with ruling out intersections at the boundary. As
for g = 3, this is the content of Proposition 2.2 together with Corollary 4.6.

L 7.9. – For any stratum Q(k1, . . . , kn) in E4, the closures of its two components
Q̃(k1, . . . , kn)irr and Q̃(k1, . . . , kn)reg do not intersect at a boundary point of a Teichmüller
curve in the stratum lifted to M4,n by marking the zeros of q.

Proof of Theorem 7.2. – By Lemma 7.9 and the disjointness of the boundary of the Teich-
müller curve with the boundary terms appearing in Lemma 3.2 as established in Proposi-
tion 4.8, the non-varying property of the regular components in E4 is a direct consequence
of Proposition 4.2.

For Q(12)irr and Q(9, 3)irr, due to the same issue as Q(6, 3,−1)irr in genus three, we will
take an alternative approach to prove their non-varying property. The details will be given
in Appendix A.

8. Genus one

T 8.1. – In genus one, the following strata are non-varying:

Stratum L+ Stratum L+

Q(n,−1n) L+ = 2/(n+ 2) Q(n, 1,−1n+1) L+ = 2/(n+ 2)

Moreover, the stratum Q(4, 2,−16) is varying.

An example justifying that Q(4, 2,−16) is varying will be given in the appendix. In general,
to show a stratum is varying one only needs to find two Teichmüller curves in the stratum
such that they have different values for the sum of Lyapunov exponents. Such examples of
Teichmüller curves come from a special branched cover construction, called ‘square-tiled
surfaces’, see Appendix C for more details.

Proof. – LetC be a Teichmüller curve generated by a half-translation surface in Q(n,−1n)

and liftC to M1,n+1 by marking all the zeros and poles of q. For any degenerate fiber overC
the zero z1 does not lie in a component of genus zero, because ω⊗2

X restricted to this rational
tail has degree −2. Hence we conclude that

C ·
∑
1∈S

δ0;S = 0,
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i.e., C · (ψ1 − λ) = 0. Using Proposition 4.2 we read off L+(C) = 2
n+2 .

For the stratum Q(n, 1,−1n+1) the same argument works without any change.

We suspect that all the strata Q(a, b,−1a+b) for a ≥ b > 1 are varying. Genus one strata
are also the first testing ground for finer asymptotic questions on the behavior of Lyapunov
exponents as the number of poles grows. This is beyond the scope of this paper. Nevertheless,
the above method already provides an upper bound of L+ for all strata in genus one.

T 8.2. – Let C be a Teichmüller curve in the stratum Q(d1, . . . , dr) in genus one.
Suppose d1 is the largest order of zeros of q. Then L+(C) ≤ 2

d1+2 .

Proof. – As in the preceding proof, we now have an inequality

C ·
∑
1∈S

δ0;S ≥ 0,

sinceC is not entirely contained in the boundary of M1,r. Using the relation of divisor classes
on M1,r, we conclude thatC ·(ψ1−λ) ≥ 0. Then by Proposition 4.2 the desired upper bound
follows right away.

9. Genus two

Recall the definition of hyperelliptic half-translation surfaces in Section 2.1. In particular,
any Riemann surface of genus two is hyperelliptic, but being a hyperelliptic half-translation
surface requires more, i.e., the quadratic differential has to be invariant under the hyperellip-
tic involution. Throughout we denote by a′ the conjugate of a in a hyperelliptic curve under
the hyperelliptic involution.

Several strata of (non-hyperelliptic) quadratic differentials with a small number of zeros
are indeed empty, e.g., Q(4), Q(3, 1), Q(2, 2)non-hyp, Q(2, 1, 1)non-hyp and Q(1, 1, 1, 1)non-hyp.
This was shown by [15] and can also be quickly retrieved in our language. For example,
for (X, q) ∈ Q(1, 1, 1, 1), let div(q) = z1 + z2 + z3 + z4 ∼ z1 + z2 + z′1 + z′2. Hence
z3 + z4 ∼ z′1 + z′2. Up to relabeling, we conclude that z1 and z2 are conjugate and so are p3

and p4. Consequently (X, q) is a hyperelliptic half-translation surface, hence Q(1, 1, 1, 1)non-hyp

is empty.

We will verify the following strata in genus two are non-varying. The upshot of the proof is
that for Teichmüller curves C in such a non-varying stratum, we exhibit a divisor D disjoint
from C in the moduli space of curves. Then using C · D = 0 and the divisor class of D,
we can calculate L+(C) based on Proposition 4.2. As a result, L+(C) only depends on the
signature (and possibly the parity) of the stratum and is independent ofC. We thus conclude
the desired non-varying property.
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T 9.1. – In genus two, besides the components of hyperelliptic flat surfaces and the
empty strata mentioned above, the following strata are non-varying:

Stratum L+ Stratum L+

Q(5,−1) L+ = 6/7 Q(4, 2,−1,−1) L+ = 5/6

Q(6,−1,−1)non-hyp L+ = 3/4 Q(3, 3,−1,−1)non-hyp L+ = 4/5

Q(4, 1,−1) L+ = 1 Q(3, 1, 1,−1) L+ = 16/15

Q(3, 2,−1) L+ = 9/10 Q(2, 2, 1,−1) L+ = 1

Q(7,−1,−1,−1) L+ = 2/3 Q(4, 3,−1,−1,−1) L+ = 11/15

Q(5, 1,−1,−1) L+ = 6/7 Q(3, 2, 1,−1,−1) L+ = 9/10

All the other strata in genus two of dimension less than or equal to seven are varying.

Examples of square-tiled surfaces certifying the varying strata are listed in the appendix.
The proof of Theorem 9.1 uses three types of divisors, grouped in the following sections.

9.1. Irreducible degenerations

L 9.2. – For a Teichmüller curve C generated by (X, q) in one of the strata Q(5,−1)

or Q(4, 1,−1) all the stable curves parameterized by points in the boundary ofC are irreducible.
Consequently, Theorem 9.1 follows in these cases from Lemmas 3.3 and (4).

Proof. – This follows immediately from Corollary 4.6.

9.2. The Weierstrass divisor

L 9.3. – For a Teichmüller curve C generated by (X, q) in one of the strata
Q(3, 2,−1), Q(7,−1,−1,−1), Q(5, 1,−1,−1) or Q(6,−1,−1)non-hyp, lift C to M2,1 using
the first zero. Then C does not intersect the divisor of Weierstrass points, i.e., W · C = 0.

Using the divisor class (12) and Proposition 4.2, we can readily calculate L+(C) from
W · C = 0, hence this completes the theorem in these cases.

In the proof of the lemma and in several other places we will use the notion of admissible
covers, which parameterize certain branched covers of nodal curves. Just as stable nodal
curves provide a nice compactification for the moduli space of smooth curves, admissible
covers provide a nice compactification for the Hurwitz space of branched covers of smooth
curves, see [11, Chapter 3.G] for an excellent introduction to this topic.

Proof. – Suppose to the contrary X is in the intersection. In the first case div(q) =

3z1 + 2z2 − p1 together with 2z1 ∼ ωX ; this implies z1 + p1 ∼ 2z2 for X irreducible,
impossible for p1 6= p3. This reasoning is also valid ifX is reducible, consisting of two elliptic
componentsX1, X2, whereX1 contains z1, p1,X2 contains p2 and they intersect at a node t.
Analyzing the admissible double cover, we see that Figure 1 is the only possibility and we
obtain 2z1 ∼ 2t in X1. Restricting q to X1, we also have 3z1 − p1 ∼ 2t. Hence we conclude
that z1 ∼ z3, leading to a contradiction.

In the second case, div(q) = 7z1 − p1 − p2 − p3 and 2z1 ∼ ωX , hence 4z1 ∼ div(q).
Consequently 3z1 ∼ p1+p2+p3. By Riemann-Roch, we know h0(X, 3z1) = h0(X, 2z1) = 2.
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This shows that z1 is a base point of the linear system |3z1|. But p1 + p2 + p3 is a section of
this linear system, contradicting that z1 6= p1, p2, p3.

In the third case, div(q) = 5z1 + z2 − p1 − p2 and 4z1 ∼ ω⊗2
X imply p1 + p2 ∼ z1 + z2,

hence z2 ∼ z′1 = z1, impossible for z1 6= z2.
In the last case, div(q) = 6z1 − p1 − p2 and 4z1 ∼ ω⊗2

X imply p1 + p2 ∼ 2z1, hence (X, q)

is a hyperelliptic half-translation surface, contradicting Proposition 4.10.

9.3. The Brill-Noether divisor BN1
2,(1,1)

L 9.4. – For a Teichmüller curve C generated by (X, q) in one of the strata
Q(3, 1, 1,−1), Q(2, 2, 1,−1), Q(4, 3,−1,−1,−1), Q(3, 2, 1,−1,−1), Q(4, 2,−1,−1) or
Q(3, 3,−1,−1)non-hyp, lift C to M2,2 using the first two zeros. Then C does not intersect the
Brill-Noether divisor BN1

2,(1,1), i.e., BN1
2,(1,1) · C = 0.

Next, one checks that in each of the cases, C does not intersect the boundary terms
appearing in (13). Thus one can readily calculate L+(C) based on BN1

2,(1,1) · C = 0.

Proof. – In the first case div(q) = 3z1 + z2 + z3 − p1. We claim that z1 and z2 are not
conjugate. Otherwise z1 +z2 ∼ ωX and consequently z2 +p1 ∼ z1 +z3. Hence p1 and z1 are
both conjugate to z2, impossible for p1 6= z1. This reasoning is also valid if X is reducible,
consisting of two elliptic components X1, X2, where X1 contains z1, p1, X2 contains z2, z3

and they intersect at a node. Analyzing the double cover, we see that it is impossible for z1

and z2 to have the same image.
The strata Q(2, 2, 1,−1), Q(4, 2,−1,−1) and Q(3, 2, 1,−1,−1) can be solved by the same

argument.
In the case Q(4, 3,−1,−1,−1) let div(q) = 4z1+3z2−p1−p2−p3. If z1, z2 are conjugate,

then z1 +z2 ∼ ωX and 2z1 +2z2 ∼ div(q). Consequently we have 2z1 +z2 ∼ p1 +p2 +p3. By
Riemann-Roch, we know h0(X, 2z1+z2) = h0(X, z1+z2) = 2, hence z1 is a base point of the
linear system |2z1 + z2|. But p1 +p2 +p3 is also a section of this linear system, contradicting
that z1 6= p1, p2, p3.

Finally in the case Q(3, 3,−1,−1)non-hyp, let div(q) = 3z1 + 3z2 − p1 − p2. If z1 and z2

are conjugate, then 2z1 + 2z2 ∼ div(q) and p1 + p2 ∼ z1 + z2, contradicting that (X, q) is a
non-hyperelliptic half-translation surface by Proposition 4.10.

t
z1 z2

g = 1 g = 1

P1P1

F 1. Admissible double cover for a reducible degeneration with zi a Weier-
strass point.
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10. Genus three: non-exceptional strata

T 10.1. – In genus three, besides the components of hyperelliptic flat surfaces and
those non-varying exceptional components, the following strata are non-varying:

Stratum L+ Stratum L+

Q(8) L+ = 6/5 Q(8, 1,−1) L+ = 6/5

Q(7, 1) L+ = 4/3 Q(7, 2,−1) L+ = 7/6

Q(6, 2)non-hyp L+ = 5/4 Q(5, 4,−1) L+ = 25/21

Q(5, 3) L+ = 44/35 Q(10,−1,−1)non-hyp L+ = 1

Q(4, 4) L+ = 4/3 Q(5, 3, 1,−1) L+ = 44/35

Q(6, 1, 1)non-hyp L+ = 17/12 Q(4, 3, 2,−1) L+ = 37/30

Q(5, 2, 1) L+ = 19/14 Q(3, 3, 1, 1) L+ = 22/15

Q(4, 3, 1) L+ = 7/5 Q(3, 2, 2, 1) L+ = 7/5

Q(4, 2, 2) L+ = 4/3 Q(7, 3,−1,−1) L+ = 16/15

Q(3, 3, 2)non-hyp L+ = 13/10

All the other strata in genus three of dimension less than or equal to eight are varying.

Examples of square-tiled surfaces certifying the varying strata are listed in the appendix.
Again, we prove Theorem 10.1 by the disjointness of Teichmüller curves with various

divisors on moduli spaces of genus three curves with marked points.

10.1. The Weierstrass divisor

L 10.2. – For a Teichmüller curveC generated by (X, q) in Q(8), Q(7, 1), Q(8, 1,−1)

or Q(10,−1,−1)non-hyp, lift C by the first zero to M3,1. Then C does not intersect the
Weierstrass divisor W .

Proof. – Suppose (X, q) lies in the intersection of C with W . For the first stratum,
div(q) = 8z1 but by definition q is not a global square of an Abelian differential, namely
4z1 6∼ ωX . This implies that h0(X, 4z1) = 2. If h0(X, 3z1) = 2, then h0(X,ωX(−3z1)) = 1,
hence ωX ∼ 3z1 + r for some r 6= z1. This holds even if X is stable, since by Corollary 4.6
it is irreducible and consequently has a canonical morphism to P2 with z1 as a flex point.
Then 6z1 + 2r ∼ 8z1, 2r ∼ 2z1, hence X is hyperelliptic. Since z1 is a Weierstrass point, we
conclude that 4z1 ∼ ωX , contradicting that q is not a global square.

For the second stratum, we have div(q) = 7z1 + z2 ∼ ω⊗2
X for z1 6= z2. Note that

3z1 + z2 6∼ ωX , since otherwise z1 ∼ z2, impossible. The hypothesis implies h0(X, 4z1) = 2.
If h0(X, 3z1) = 2, then ωX ∼ 3z1 +r for some r 6= z1, z2. This holds even ifX is degenerate,
since by Corollaries 4.5 and 4.6X is irreducible and consequently has a canonical embedding
in P2 with z1 as a flex point. Consequently, 6z1 +2r ∼ 7z1 +z2 implies thatX is hyperelliptic
and z1 and z2 are conjugate. But then 2z1+2z2 ∼ ωX ∼ 3z1+r and z2 has to be a Weierstrass
point, contradicting that it is conjugate to z1.

For the third stratum, we have div(q) = 8z1 + z2 − p1 ∼ ω⊗2
X . First consider the

case when X is irreducible. Note that z1 cannot be a Weierstrass point. Otherwise we would
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have ωX ∼ 3z1 + r, hence 2r+ p1 ∼ 2z1 + z2. Then ωX ∼ 2z1 + z2 + s and z1 + r ∼ z2 + s.
If X is hyperelliptic, then ωX ∼ 4z1 and z2 ∼ p1, impossible. Otherwise we have r = z2 and
s = z1. Then z2 + p1 ∼ 2z1, which still implies that X is hyperelliptic, leading to the same
contradiction.

IfX is reducible, by Corollaries 4.5 and 4.6, it consists of two irreducible componentsX0

and X2 of genus 0 and 2, respectively, meeting at two nodes t1 and t2, where X0 contains
z2, p1 and X2 contains z1. If h0(X, 3z1) = 2, by analyzing the associated triple admissible
cover, we obtain that 3z1 ∼ 2t1 +t2 inX2 (up to relabeling t1, t2). Since 8z1 +z2−p1 ∼ ω⊗2

X ,
we have 8z1 ∼ ω⊗2

X2
(2t1 + 2t2) ∼ 2z1 + 2z′1 + 3z1 + t2, hence 2t1 + t2 ∼ 3z1 ∼ t2 + 2z′1 and

t1, z
′
1 are both Weierstrass points ofX2. Then z1 is also a Weierstrass point. Since 2z1 ∼ 2t1,

then we get z1 ∼ t2, impossible for z1 being contained in the smooth locus of X.
For the last stratum, we have div(q) = 10z1 − p1 − p2 ∼ ω⊗2

X . First consider the case
when X is irreducible. We can write ωX ∼ p1 + p2 + r + s for some r, s ∈ X. If z1 is a
Weierstrass point, then ωX ∼ 3z1+t. Hence 3ωX ∼ 9z1+3t ∼ 10z1+r+s and consequently
3t ∼ z1 + r + s. Then ωX ∼ z1 + r + s + u ∼ p1 + p2 + r + s and z1 + u ∼ p1 + p2. We
conclude that X is hyperelliptic, contradicting that this is a non-hyperelliptic stratum and
Proposition 4.10.

IfX is reducible, by Corollaries 4.5 and 4.6, it consists of two irreducible componentsX0

andX3 of genus 0 and 3, respectively, meeting at a node t such thatX0 contains p1, p2 andX3

contains z1. If h0(X, 3z1) = 2, by analyzing the associated triple admissible cover, we see that
h0(X3, 3z1) = 2, henceωX3 ∼ 3z1+s for some s ∈ X3. Since 10z1 ∼ ω⊗2

X3
(2t) ∼ 6z1+2s+2t,

we conclude that 4z1 ∼ 2s + 2t. We may write ωX3 ∼ s + t + u + v. Then t + u + v ∼ 3z1

and u+ v + z1 ∼ 2s+ t. Note that z1 6= t. If z1 = s, then 2z1 ∼ 2t and X3 is hyperelliptic,
contradicting the non-hyperelliptic assumption. If z1 6= s, we have ωX3 ∼ u + v + z1 + w

and s + t ∼ z1 + w. Since z1 6= t, s, the curve X3 is hyperelliptic and we deduce the same
contradiction.

For a Teichmüller curve C in the first two strata, since the stable curves parameterized
by C are irreducible, the theorem follows in these cases from the above lemma together with
(5) and Proposition 4.2. For the last two strata of the lemma, by Proposition 4.8 C does not
intersect any boundary terms in the divisor class (5) of W . Using C · W = 0 we can thus
calculate the value of L+(C).

10.2. The Brill-Noether divisor BN1
3,(2,1)

L 10.3. – For a Teichmüller curve C generated by (X, q) in one of the strata
Q(6, 2)non-hyp, Q(6, 1, 1)non-hyp, Q(5, 3), Q(5, 2, 1), Q(4, 4), Q(4, 3, 1), Q(5, 4,−1), Q(5, 3, 1,−1),
Q(7, 2,−1) or Q(7, 3,−1,−1), lift C to M3,2 using the first two zeros of q. Then C does not
intersect the Brill-Noether divisor BN1

3,(2,1).

Proof. – The proofs for Q(6, 2)non-hyp and Q(6, 1, 1)non-hyp are completely analogous,
so we deal with Q(6, 2)non-hyp only. Suppose that (X, q) is in the intersection with the Brill-
Noether divisor and suppose moreover that X is irreducible first. We have div(q) = 6z1 + 2z2 ∼ ω⊗2

X

and 3z1 +z2 6∼ ωX for z1 6= z2. If h0(X, 2z1 +z2) = 2, then ωX ∼ 2z1 +z2 +r and 2z1 ∼ 2r

for some r 6= z1, hence X is hyperelliptic and z1, z2 are Weierstrass points. This contradicts
the assumption that C lies in the non-hyperelliptic component and Proposition 4.10.
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When X is reducible, by Corollaries 4.5 and 4.6, it consists of a one-nodal union of two
componentsX1 andX2 with genus 1 and 2, respectively, where z1 ∈ X2 and z2 ∈ X1. Denote
the node by t. If h0(X, 2z1 + z2) = 2, by analyzing the associated triple admissible cover, we
conclude that z1 and t are both Weierstrass points in X2. Since the restrictions of ωX to X1

and X2 are OX1
(t) and OX2

(2z1 + t) respectively, squaring it and comparing to 6p1 + 2p2,
we conclude that 2t ∼ 2z2 on X1 and 2t ∼ 2z1 on X2. We thus obtain that X is contained
in the closure of hyperelliptic curves and z1, z2 are both ramification points of the double
admissible cover. It contradicts again the assumption that C lies in the non-hyperelliptic
component.

The proofs for Q(5, 3), Q(5, 2, 1) and Q(7, 2,−1) are completely analogous, so we prove
for Q(5, 3) only. Suppose thatX is in the intersection with the Brill-Noether divisor. We have
div(q) = 5z1+3z2 ∼ ω⊗2

X . By Corollaries 4.5 and 4.6,X is irreducible. If h0(X, 2z1+z2) = 2,
we would have ωX ∼ 2z1 + z2 + r for some r ∈ X. It follows that 2r ∼ z1 + z2, hence X is
hyperelliptic and z1 and z2 are conjugate. This implies that ω⊗2

X ∼ 4z1 + 4z2 ∼ 5z1 + 3z2,
hence z1 ∼ z2, impossible for z1 6= z2.

The proofs for Q(4, 4), Q(4, 3, 1) and Q(5, 4,−1) are similar, so we prove for Q(4, 4) only.
Suppose a half-translation surface (X, q) parameterized by C also lies inBN1

3,(2,1). We have

div(q) = 4z1 + 4z2 ∼ ω⊗2
X . Moreover, h0(X, 2z1 + z2) = 2 and ωX 6∼ 2z1 + 2z2. First

consider the caseX is irreducible. We have ωX ∼ 2z1 +z2 + r for some r 6= z2 and 2z2 ∼ 2r.
Hence X is hyperelliptic and z2, r are both Weierstrass points. But this is impossible.

IfX is reducible, by Corollaries 4.5 and 4.6, it consists of two irreducible componentsX1

and X2 of genus g1 and g2, containing z1 and z2, respectively, joined at n nodes t1, . . . , tn
such that 2gi − 2 + n = 2 for i = 1, 2. Moreover, (g1, g2, n) is either (1, 1, 2) or (0, 0, 4).
Below we show that both cases are impossible.

For the former case, analyzing the triple cover given by |2z1 +z2| as shown in Figure 2, we
conclude that t1 + t2 ∼ 2z1 in X1. Consider the canonical model of a generic curve X ′ in C

z1

z2

X1
X2

g = 1

P1

P1 P1

F 2. Admissible double cover for a reducible degeneration of type
(g1, g2, n) = (1, 1, 2).

degenerating toX. By the description in Section 5.1, ifX ′ is non-hyperelliptic, the log surface
(S,X ′) degenerates to (S2,2, X), where S is the Veronese P2 and S2,2 is a cone over the one-
nodal union of two conics in P5. If X ′ is hyperelliptic, the log surface (S4, X

′) degenerates
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to (S2,2, X), where S4 is a cone over a rational normal quartic in P5. The two components
S1, S2 of S2,2 contain X1, X2, respectively. The common ruling of S1, S2 contains the two
nodes t1, t2. There exists a hyperplane sectionQ′ of S or S4 such thatQ ·X ′ = 4z′1 +4z′2. The
limit of Q′ is a hyperplane section Q of S satisfying Q ·X = 4z1 + 4z2. Suppose that Q1 and
Q2 are the components of Q lying in S1 and S2, respectively. Then Qi ·Xi = 4zi for i = 1, 2.
Since 2z1 ∼ t1 + t2, the ruling L1 = vp1 is tangent to X1 at z1. If Q1 is smooth, i.e., if the
ruling does not pass through v, then Q1 has L1 as its tangent line at z1. But Q1 · L1 = 1,
leading to a contradiction. Hence we conclude that Q1 = 2L1 is a double ruling. The other
conic Q2 now also passes through the vertex v, because the hyperplane cutting out Q does.
HenceQ2 consists of two rulings in S2. SinceQ2 ·X2 = 4z2, the only possibility is thatQ2 is a
double ruling 2L2, whereL2 = vp2 is tangent toX2 at z2. We thus conclude that t1+t2 ∼ 2z2

in X2. Therefore, 2z1 + 2z2 is a section of ωX . Consequently the quadratic differential q is
a global square, contradicting Proposition 4.9.

For the latter case, both components ofX are P1. First assume thatX is not hyperelliptic.
Since X is 4-connected, its canonical embedding consists of two conics X1, X2 in P2, inter-
secting at four nodes. The condition h0(X, 2z1 + z2) = 2 implies that the line L = z1z2 is
tangent to X1 at z1. Consider the conic Q satisfying Q ·X = 4z1 + 4z2. If Q is smooth, then
the intersection Q · L contains 2z1 + z2, contradicting Bézout’s theorem. Then Q must be
a double line 2L1 with L1 ·X = 2z1 + 2z2, contradicting that q is not a global square based
on Proposition 4.9. IfX is hyperelliptic, consider the log surface (S4, X). Then bothX1 and
X2 have class equal to 4f , where f is the ruling class. The condition h0(X, 2z1 + z2) = 2

implies that there exists a ruling L such that L · X = 2z1 or z1 + z2. Consider the limiting
hyperplane section Q in S4 such that Q · X1 = 4z1 and Q · X2 = 4z2. Since Q · L = 1, if
Q is smooth, the only possibility is that L ·X = z1 + z2. Since OX(2L) ∼ ωX , this implies
that q is a global square, contradicting Proposition 4.9. IfQ containsL as a component, then
it passes through v, hence as a consequence Q = 4L, which again contradicts that q is not
a global square.

For Q(5, 3, 1,−1), the proof simply combines that of Q(6, 2) and of Q(4, 4), since
the degeneration types of X are covered in those two strata. Finally for Q(7, 2,−1) and
Q(7, 3,−1,−1), an argument similar to that of Q(6, 2) works without any further complica-
tion.

Based on the argument above, for Q(6, 2)non-hyp the only possible intersection of the lift
of C to M3,2 with a component of the boundary over δ1 is δ1,{2}. This boundary term does
not appear in the divisor class (8) ofBN1

3,(2,1). More generally, by Proposition 4.8 the Teich-
müller curve hits none of the boundary terms in the presentation (8) of BN1

3,(2,1). From the
lemma we can thus calculate L+(C) = 5/4. The same reasoning applies to the other strata
listed in the lemma and one can quickly deduce the corresponding values of L+.

10.3. The Brill-Noether divisor BN1
3,(1,1,1)

L 10.4. – For a Teichmüller curveC generated by a half-translation surface (X, q) in
one of the strata Q(4, 2, 2), Q(3, 3, 2)non-hyp, Q(4, 3, 2,−1), Q(3, 2, 2, 1) and Q(3, 3, 1, 1)non-hyp,
liftC to M3,3 using the first three zeros of q. ThenC does not intersect the Brill-Noether divisor
BN1

3,(1,1,1) in M3,3.
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Proof. – For Q(4, 2, 2), suppose that a half-translation surface X parameterized by C
also lies in BN1

3,(1,1,1). We have div(q) = 4z1 + 2z2 + 2z3 ∼ ω⊗2
X . The linear system

|z1 + z2 + z3| yields a g1
3 for X. First consider the case when X is irreducible. The associated

triple cover implies that ωX ∼ z1 + z2 + z3 + r for some r ∈ X and we conclude that
2z1 ∼ 2r. If r = z1, thenωX ∼ 2z1+z2+z3. Consequently q is a global square, contradicting
Proposition 4.9. If r 6= z1, then X is hyperelliptic and z1, r are both Weierstrass points. But
ωX ∼ z1 + z2 + z3 + r is still impossible for z2, z3 6= z1.

IfX is reducible, by Corollaries 4.5 and 4.6,X consists of two irreducible componentsX1

andX2 of genus g1 and g2, containing z1 and z2, z3 respectively, meeting at n nodes t1, . . . , tn
such that 2gi−2+n = 2 for i = 1, 2. Moreover, (g1, g2, n) is either (1, 1, 2) or (0, 0, 4). Below
we show that both cases are impossible.

For the former case, analyzing the triple cover, we have z2+z3 ∼ t1+t2 inX2. Restricting q
to X1, we also have 2t1 + 2t2 ∼ 4z1 in X1. Consider the canonical model of a generic
curve X ′ in C degenerating to X. By the description in Section 5.1, the log surface (S,X ′)

degenerates to (S2,2, X). The image of S in P5 is the Veronese P2 if X ′ is non-hyperelliptic,
or it is a cone S4 over a rational normal quartic if X ′ is hyperelliptic, and S2,2 is a cone
over the one-nodal union of two conics. Denote by S1 and S2 the two components of S
and let v be the vertex. Note that Xi embeds into Si for i = 1, 2. The common ruling
of S1, S2 contains the two nodes t1, t2. For X ′, there exists a hyperplane section Q′ of S
such that Q′ · X ′ = 4z′1 + 2z′2 + 2z′3. The limiting hyperplane section Q of S2,2 satisfies
Q · S2,2 = 4z1 + 2z2 + 2z3. Let Q1 and Q2 be the components of Q lying in S1 and S2,
respectively. Then Q1 · X1 = 4z1 and Q2 · X2 = 2z2 + 2z3. Since z2 + z3 ∼ t1 + t2, the
ruling L23 = z2z3 passes through v and consequentlyQ2 is the double ruling 2L23. ThenQ1

also passes through v, hence it consists of two rulings. Since Q1 · X1 = 4z1, it must be the
double ruling 2L1, where L1 is tangent to X1 at z1. Then L1 + L23 cuts out 2z1 + z2 + z3

in X, hence it is a section of ωX . Then we conclude that q is a global square, contradicting
Proposition 4.9.

If both components of X are P1, first assume that X is not hyperelliptic. Since X is
4-connected, its canonical embedding consists of two conics in P2 intersecting at four nodes.
The assumption h0(X, z1 + z2 + z3) = 2 implies that z1, z2, z3 are contained in a line L.
Consider the conicQ that cuts out 4z1 +2z2 +2z3 inX. IfQ is smooth, then the intersection
Q · L contains z1 + z2 + z3, contradicting Bézout’s theorem. Hence Q must be a union of
two lines L1 and L2 such that L1 ·X = 2z1 + 2z2, L2 ·X = 2z1 + 2z3 or L1 ·X = L2 ·X =

2z1 + z2 + z3. The former case is impossible, because L1, L2 would be the same line tangent
to X at z1. The latter is also impossible, because it would imply that q is a global square,
contradicting Proposition 4.9. Now consider the case when X is hyperelliptic. We use the
log surface (S0,4, X). BothX1 andX2 have class equal to 4f , where f is the class of a ruling.
There exists a rulingL such thatL·X = z1+z2 (up to relabeling z2, z3). SinceωX ∼ OX(2L),
we conclude that 4z1 +4z2 ∼ 4z1 +2z2 +2z3, hence 2z2 ∼ 2z3. Then the ruling L through z2

is tangent to X at z2, contradicting that L ·X = z1 + z2.
For Q(3, 3, 2)non-hyp, suppose that X is in the intersection with the Brill-Noether di-

visor. We have div(q) = 3z1 + 3z2 + 2z3 ∼ ω⊗2
X . Let us deal with irreducible X first. If

h0( OX(z1 + z2 + z3)) = 2, then ωX ∼ p1 + p2 + p3 + r and p1 + p2 ∼ 2r, which contradicts
that it is non-hyperelliptic together with Proposition 4.10.
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If X is reducible, by Corollaries 4.5 and 4.6, it consists of two irreducible components
X1 and X2 of genus 1 and 2, containing z3 and z1, z2 respectively, meeting at a node t. If
h0(X, z1 +z2 +z3) = 2, by analyzing the triple admissible cover, we have z1 +z2 ∼ 2t inX2,
hence t is a Weierstrass point and z1, z2 are conjugate in X2. Since 3z1 + 3z2 + 2z3 ∼ ω⊗2

X ,
we conclude that 3z1 + 3z2 ∼ 6t in X2 and 2z3 ∼ 2t. Therefore, X admits a double
admissible cover with z3 as a ramification point and z1, z2 being conjugate. It contradicts
the non-hyperelliptic assumption.

The proofs for the other strata listed in the lemma are completely analogous to either one
of the above two.

By Proposition 4.8 a Teichmüller curve in one of the above strata hits none of the bound-
ary terms in the presentation (7) ofBN1

3,(1,1,1). From the above lemma we can thus calculate
the values of L+ accordingly.

11. Genus four: non-exceptional strata

T 11.1. – In genus four, besides the components of hyperelliptic flat surfaces and
those non-varying exceptional components, the following strata are non-varying:

Stratum L+ Stratum L+

Q(13,−1) 4/3 Q(7, 5) 32/21

Q(11, 1) 20/13 Q(8, 3, 1) 8/5

Q(10, 2)non-hyp 3/2 Q(7, 3, 2) 47/30

Q(8, 4) 23/15 Q(5, 4, 3) 167/105

All the other strata in genus four of dimension less than or equal to nine are varying.

Examples of square-tiled surfaces certifying the varying strata are listed in the appendix.

11.1. The Weierstrass divisor

L 11.2. – For a Teichmüller curve C generated by (X, q) in one of the strata
Q(13,−1) or Q(11, 1), lift C to M4,1 using the first zero of q. Then C does not intersect the
Weierstrass divisor W .

Proof. – Suppose that (X, q) is in the intersection. In the case of Q(13,−1) we have
div(q) = 13z1 − p1 ∼ ω⊗2

X . If z1 is a Weierstrass point, then ωX ∼ 4z1 + r + s for some r
and s, hence 5z1 ∼ p1+2r+2s. If z1 is a base point of |5z1|, then r = z1 (up to relabeling r, s)
and 3z1 ∼ p1 +2s. By Riemann-Roch, we get h0(X, 2z1 +s) = 2, hence s = z1 and z1 ∼ p1,
impossible. If z1 is not a base point of |5z1|, we have h0(X, 5z1) = h0(X, 4z1) + 1 = 3. By
Riemann-Roch, we conclude that h0(X, r + s− z1) = 1, hence r = z1. Then ωX ∼ 5z1 + s

and 3z1 ∼ p1 + 2s. Arguing as above, we deduce the same contradiction.
For Q(11, 1), we have div(q) = 11z1 + z2 ∼ ω⊗2

X . If z1 is a Weierstrass point, then
ωX ∼ 4z1 + r + s for some r and s, hence 3z1 ∼ z2 + r + s. Then z1 + r + s gives
rise to a g1

3 which is different from the one given by z2 + r + s. If X is not hyperelliptic,
using its canonical embedding in a quadric surface in P3, there do not exist two different
rulings passing through r and s or both tangent to X at r (in the case r = s), leading to
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a contradiction. If X is hyperelliptic, since z1 is a Weierstrass point, we have 12z1 ∼ ω⊗2
X ,

hence z1 ∼ z2, impossible.

Since the stable curves parameterized by C in the above strata are irreducible, Theo-
rem 11.1 follows in this case from this lemma together with (5) and Proposition 4.2.

11.2. The Brill-Noether divisors BN1
4,(3,1), BN

1
4,(2,2) and BN1

4,(2,1,1)

L 11.3. – For a Teichmüller curve C generated by (X, q) in one of the strata
Q(10, 2)non-hyp, Q(8, 4) or Q(8, 3, 1), lift C to M4,2 using the first two zeros of q. Then C does
not intersect the Brill-Noether divisor BN1

4,(3,1).

Proof. – Suppose that (X, q) is in the intersection of C with BN1
4,(3,1). In the case

of Q(10, 2)non-hyp we know that div(q) = 10z1 + 2z2 ∼ ω⊗2
X . From h0(X, 3z1 + z2) = 2

we deduce that ωX ∼ 3z1 + z2 + r + s, hence 4z1 ∼ 2r + 2s for some r and s. Then
ωX ∼ 4z1 + u + v ∼ 3z1 + z2 + r + s. If these are the same divisor, we have u = z2 and
r = z1, hence 2z1 ∼ 2s. Note that s 6= p1, for otherwise q would be a global square. Then
we conclude that X is hyperelliptic, z1 is a Weierstrass point and s = p2 is also a Weierstrass
point, contradicting that (X, q) is non-hyperelliptic and Proposition 4.10.

If 4z1 + u + v ∼ 3z1 + z2 + r + s are two different divisors, then z2 + r + s yields a g1
3 .

By Riemann-Roch, 3z1 also yields a g1
3 . By h0(X, 4z1) = h0(X, 3z1) = 2, z1 is a base point

of |4z1|. But 2r+ 2s is a section, hence r = z1. Then we still conclude that X is hyperelliptic
and z1, z2 are Weierstrass points, leading to the same contradiction.

The proofs for Q(8, 4) and Q(8, 3, 1) are completely analogous.

L 11.4. – For a Teichmüller curve C generated by (X, q) in Q(7, 5), lift C to M4,2

using the two zeros of q. Then the intersection with the Brill-Noether divisorBN1
4,(2,2) ·C = 0.

Proof. – The proof of Lemma 11.3 can be copied almost verbatim, replacing coefficients
(3, 1) by (2, 2) at the appropriate places in the above.

L 11.5. – For a Teichmüller curve C generated by (X, q) in Q(7, 3, 2) or Q(5, 4, 3),
lift C to M4,3 using the three zeros of q. Then C does not intersect the Brill-Noether divisor
BN1

4,(2,1,1).

Proof. – The proof of this lemma is completely parallel to Lemma 11.3.

By Proposition 4.8 the Teichmüller curves in these strata hit none of the boundary terms
in the presentation (10) of BN1

4,(3,1), BN
1
4,(2,2) or BN1

4,(2,1,1), respectively. From the lemma
the claim on the sum of Lyapunov exponents follows.
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Appendix A

Filtration of the Hodge bundle

There are three exceptional components Q(6, 3,−1)irr, Q(12)irr and Q(9, 3)irr, non-
varying as claimed in Theorems 6.2 and 7.2, but the proof is not given yet. Since the lifts
of these components are contained in the Brill-Noether divisors that were used to show
non-varying for the regular components, respectively, it seems difficult to come up with
some other divisors disjoint with the Teichmüller curves in these strata. Here we take an
alternative approach, adapting the idea of [25]. Let us first do some preparatory setup. Some
of the lemmas below are also stated in [25], but we include their proofs for completeness.

Let f : X → C be the universal curve over a Teichmüller curve C. Let S1, . . . , Sk be the
disjoint sections specializing to the zeros z1, . . . , zn in each fiber. If h0(X,

∑k
i=1 aizi) = n

for every fiber X in X , then f∗ O X (
∑k
i=1 aiSi) is a vector bundle of rank n on C. Moreover,

any subsheaf of a vector bundle on C is locally free.

L A.1. – If h0(X,
∑k
i=1 dizi) is the same for every fiber X and if

h0
(
X,

k∑
i=1

dizi

)
= h0

(
X,

k∑
i=1

(di − ai)zi
)

+

k∑
i=1

ai,

then the first Chern classes of the corresponding direct images are related by

c1

(
f∗ O X

( k∑
i=1

diSi

))
= c1

(
f∗ O X

( k∑
i=1

(di − ai)Si
))

+

k∑
i=1

c1(f∗ OaiSi
(diSi)).

Proof. – We have the exact sequence

0→ f∗ O X

( k∑
i=1

(di − ai)Si
)
→ f∗ O X

( k∑
i=1

diSi

)
→

k∑
i=1

f∗ OaiSi
(diSi)

→ R1f∗ O X

( k∑
i=1

(di − ai)Si
)
→ R1f∗ O X

( k∑
i=1

diSi

)
→ 0.

All terms are locally free by assumption. The two R1f∗ terms have the same rank by
Riemann-Roch, hence they are isomorphic and then the claim follows.

L A.2. – Suppose the ai are positive integers. If h0(X,
∑k
i=1 aizi) = 1 for every

fiber X, then f∗ O X (
∑k
i=1 aiSi) = OC .

Proof. – Consider the exact sequence

0→ f∗ O X ((a1 − 1)S1 +

k∑
i=2

aiSi)→ f∗ O X

( k∑
i=1

aiSi

)
→ f∗ OS1

( k∑
i=1

aiSi

)
→ R1f∗ O X

(
(a1 − 1)S1 +

k∑
i=2

aiSi

)
→ R1f∗ O X

( k∑
i=1

aiSi

)
→ 0.
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By assumption we have

h0
(
X,

k∑
i=1

aiSi

)
= h0

(
X, (a1 − 1)S1 +

k∑
i=2

aiSi

)
= 1,

hence the first two f∗ terms are line bundles and the last two R1f∗ terms are vector bundles
whose ranks differ by one. The middle term is also a line bundle isomorphic to OS1

(a1S1),
which cannot have a torsion subsheaf. Hence the first two line bundles are isomorphic. Now
the claim follows by induction on a.

L A.3. – Let S be a section in the above setting and a ≥ 1. Define aS to be the
subscheme of X whose ideal sheaf is O(−aS). Then for any integer b we have

c1(f∗ OaS(bS)) =

a−1∑
i=0

c1(f∗ OS((b− i)S)).

Proof. – The claim holds trivially for a = 1. Suppose it is true for all positive integers
smaller than or equal to a. Treating aS as a subscheme of (a+ 1)S, we have

0→ I aS/(a+1)S → O(a+1)S → OaS → 0.

The ideal sheaf I aS/(a+1)S is isomorphic to (N∗S/ X )⊗a, where N∗S/ X is the conormal bundle
isomorphic to OS(−aS). Tensor the sequence with O X (bS) and apply f∗. We obtain that

0→ f∗ OS((b− a)S)→ f∗ O(a+1)S(bS)→ f∗ OaS(bS)→ 0,

sinceR1f∗ is zero acting on any line bundle over S. Then the claim follows by induction.

Let ω be the relative dualizing sheaf, γ = c1(ω) and η the nodal locus in X . In order to
deal with quadratic differentials, we need to express c1(f∗(ω

⊗2)) by tautological classes on
the moduli space of curves. An introduction to the calculations of the following type can be
found in [11, Chapter 3.E].

Since all the higher direct images of ω⊗2 are zero, by Grothendieck-Riemann-Roch we
have

ch(f∗(ω
⊗2)) = f∗

(
ch(ω)2 ·

(
1− γ

2
+
γ2 + η

12

))
= f∗

((
1 + γ +

γ2

2

)2

·
(

1− γ

2
+
γ2 + η

12

))
= f∗

(
1 +

3

2
γ +

13γ2 + η

12

)
= (3g − 3) +

(13

12
κ+

1

12
δ
)

= (3g − 3) + (λ+ κ),

where κ = f∗(γ
2). Hence we conclude that

c1(f∗(ω
⊗2)) = λ+ κ.

This formula was previously obtained by Trapani [22, Remark 5.7] using analytic techniques.
Recall the notation and the intersection calculation in Proposition 4.2. We have

ω⊗2 = f∗ F ⊗ O X

( n∑
j=1

djSj

)
.
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By the projection formula, we get

f∗(ω
⊗2) = F ⊗ f∗ O X

( n∑
j=1

djSj

)
.

Note that f∗ O X (
∑n
j=1 djSj) is a vector bundle of rank 3g− 3, whose fibers are H0(X,ω⊗2

X )

for X parameterized in C. Then we conclude that

c1(f∗ O X (
∑n
j=1 djSj))

χ
=
C · λ
χ

+
C · κ
χ
− (3g − 3)

=
1

2
L+(C) + 6κµ − (3g − 3),

where χ = deg( F ) and κµ = 1
24

(∑n
j=1

dj(dj+4)
dj+2

)
for the signature µ = (d1, . . . , dn).

Therefore, we obtain the following expression:

(21) L+(C) = (6g − 6) + 2 ·
c1(f∗ O X (

∑n
j=1 djSj))

χ
− 12κµ.

A.1. The component Q(6, 3,−1)irr

Let (X, q) be a half-translation surface parameterized by a Teichmüller curve C

in Q(6, 3,−1)irr. We have 6z1 + 3z2 − p ∼ ω⊗2
X . Moreover, by the parity we know

h0(X, 2z1 + z2) = 2.

L A.4. – We have h0(X, 3z1 + z2) = 2 and h0(X, z1 + z2) = 1 for all X in C.

Proof. – Consider first the case when X is irreducible. If h0(X, 3z1 + z2) ≥ 3, then
ωX ∼ 3z1 + z2 and 6z1 + 2z2 ∼ 6z1 + 3z2 − p. It implies that z2 ∼ p, impossible. If
h0(X, z1 + z2) ≥ 2, then X is hyperelliptic and z1, z2 are conjugate. Then we have
ωX ∼ 2z1 + 2z2 and 2z1 ∼ z2 + p, contradicting that z1, z2 are conjugate.

Next, suppose X is reducible. By Corollaries 4.5 and 4.6, the only degenerate type is that
X consists of X1 and X2 of genus 1 and 2, respectively, joined at a node t such that X1

contains z2, p and X2 contains z1. By h0(X2, 3z1) = 2 and h0(X1, z2) = 1, it implies that
h0(X, 3z1 + z2) = 2, since a section on X1 and a section on X2 need to have the same
value if they can be glued to form a global section on X. Similarly by h0(X2, z1) = 1 and
h0(X1, z2) = 1, we conclude that h0(X, z1 + z2) = 1.

Now we are ready to calculate L+. Let S1, S2 and S3 be the sections in X corresponding
to the loci of z1, z2 and p, respectively. By the exact sequence

0→ f∗ O X (6S1 + 3S2 − S3)→ f∗ O X (6S1 + 3S2)→ f∗ OS3
→ 0,

we have

c1(f∗ O X (6S1 + 3S2 − S3)) = c1(f∗ O X (6S1 + 3S2)).

Since R1f∗ OX(3S1 + S2) = 0 by the above lemma, we obtain that

c1(f∗ O X (6S1 + 3S2)) = c1(f∗ O X (3S1 + S2)) + c1(f∗ O3S1(6S1)) + c1(f∗ O2S2(3S2))

= c1(f∗ O X (3S1 + S2)) + 15S2
1 + 5S2

2 ,
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where Lemma A.3 is used in the last equality. Similarly using Lemmas A.1 and A.2 one can
show that

c1(f∗ O X (3S1 + S2)) = c1(f∗ O X (2S1 + S2))

= c1(f∗ O X (S1 + S2)) + 2S2
1

= 2S2
1 .

Then we obtain that

c1(f∗ O X (6S1 + 3S2 − S3)) = 17S2
1 + 5S2

2 = −25

8
χ,

where we use the self-intersection formula of the Sj in Proposition 4.2. Finally by the equal-
ity (21), we conclude that L+(C) = 7/5.

A.2. The component Q(12)irr

Let (X, q) be a half-translation surface parameterized by a Teichmüller curve C

in Q(12)irr. We have 12z ∼ ω⊗2
X . By the parity we know h0(X, 4z) = 2.

L A.5. – We have h0(X, 6z) = 3, h0(X, 5z) = 2 and h0(X, 3z) = 1 for all X in C.

Proof. – Since q has a unique zero, X is irreducible. If h0(X, 6z) ≥ 4, we have ωX ∼ 6z

and q is a global square, impossible. If h0(X, 5z) ≥ 3, then ωX ∼ 5z + r for some r 6= z.
We have 10z + 2r ∼ 12z, hence 2r ∼ 2z, X is hyperelliptic and z is a Weierstrass point,
still contradicting that q is not a global square. If h0(X, 3z) ≥ 2,X cannot be Gieseker-Petri
special, for otherwise q would be a global square. Then |3z| gives rise to a g1

3 and suppose
|z + r+ s| is the other g1

3 . We have ωX ∼ 4z + r+ s and 2r+ 2s ∼ 4z. But z is a base point
of |4z|, hence r = z and ωX ∼ 5z+s, contradicting that h0(X, 5z) = 2 as shown before.

Let S be the section of zeros of q in X . By the above lemma, R1f∗ OX(5S) = 0, hence we
conclude that

c1(f∗ O X (12S)) = c1(f∗ O X (5S)) + c1(f∗ O7S(12S))

= c1(f∗ O X (5S)) + 63S2.

Similarly we can show that

c1(f∗ O X (5S)) = c1(f∗ O X (4S))

= c1(f∗ O X (3S)) + 4S2

= 4S2.

Then we obtain that

c1(f∗ O X (12S)) = 67S2 = −67

14
χ.

By the identity (21), we conclude that L+(C) = 11/7.
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A.3. The component Q(9, 3)irr

Let (X, q) be a half-translation surface parameterized by a Teichmüller curve C

in Q(9, 3)irr. We have 9z1 + 3z2 ∼ ω⊗2
X . By the parity we know h0(X, 3z1 + z2) = 2.

L A.6. – We have h0(X, 4z1 + z2) = 2 and h0(X, 2z1 + z2) = 1 for all X
parameterized in C.

Proof. – By Corollaries 4.5 and 4.6, X is irreducible. If h0(X, 4z1 + z2) ≥ 3, then
ωX ∼ 4z1 + z2 + r, hence 2r ∼ z1 + z2, X is hyperelliptic and z1, z2 are conjugate. Then
ωX ∼ 3z1 + 3z2, hence 3z1 ∼ 3z2, which implies that z1, z2 are both Weierstrass points,
contradicting that they are conjugate. If h0(X, 2z1 + z2) ≥ 2, X cannot be Gieseker-Petri
special, for otherwise ωX ∼ 4z1 + 2z2 and z1 ∼ z2, impossible. Consequently |2z1 + z2|
provides a g1

3 and suppose that |z1 + r + s| is the other g1
3 . We have ωX ∼ 3z1 + z2 + r + s,

hence 2r + 2s ∼ 3z1 + z2. Note that z1 is a base point of |3z1 + z2|, hence r = z1 and we
thus obtain ωX ∼ 4z1 + z2 + s, contradicting that h0(X, 4z1 + z2) = 2 as shown before.

By the above lemma R1f∗ OX(4S1 + S2) = 0 and consequently

c1(f∗ O X (9S1 + 3S2)) = c1(f∗ O X (4S1 + S2)) + c1(f∗ O5S1(9S1)) + c1(f∗ O2S2(3S2))

= c1(f∗ O X (4S1 + S2)) + 35S2
1 + 5S2

2 .

Similarly one can show that

c1(f∗ O X (4S1 + S2)) = c1(f∗ O X (3S1 + S2))

= c1(f∗ O X (2S1 + S2)) + 3S2
1

= 3S2
1 .

Then we obtain that

c1(f∗ O X (9S1 + 3S2)) = 38S2
1 + 5S2

2 = −49

11
χ.

Finally by (21), we conclude that L+(C) = 92/55.

R A.7. – Once we understand the boundary behavior as well as h0(X,
∑
aizi)

for all X in a Teichmüller curve C, apparently the above method may provide a parallel
proof for many other non-varying strata of quadratic differentials. For instance, consider
a Teichmüller curve C generated by (X, q) in Q(8) with div(q) = 8z. By the proof of
Lemma 10.2, we know h0(X, 3z) = 1 and h1(X, 3z) = 0 for all X in C. Then we obtain
that

c1(f∗ O X (8S)) = c1(f∗ O X (3S)) + c1(f∗ O5S(8S))

= 30S2 = −3χ.

By (21) we conclude that L+(C) = 6/5 as in Theorem 10.1.
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A.4. The missing non-varying strata of Abelian differentials

In our earlier work [7] three strata of Abelian differentials Ω M4(4, 2)odd, Ω M4(4, 2)even

and Ω M5(6, 2)odd were predicted to be non-varying based on the computer data of Zorich
and Delecroix, but no proof was given there. In [25] an argument for their non-varying
property was found using the filtration of the Hodge bundle. For completeness we include
a detailed proof in this section.

Let (X,ω) be a flat surface generating a Teichmüller curve C in a stratum of Abelian
differentials. Use zi to denote the zeros of ω.

L A.8. – For all X in C, we have the following results.
If C is in Ω M4(4, 2)odd, then h0(X, 2z1 + z2) = 1.
If C is in Ω M4(4, 2)even, then h0(X, 2z1 + z2) = 2 and h0(X, z1 + z2) = 1.
If C is in Ω M5(6, 2)odd, then h0(X, 3z1 + z2) = 1.

Proof. – The reader may refer to [7, Section 4] for properties of Teichmüller curves
generated by Abelian differentials. All the claims in the lemma follow directly from the spin
parity except that h0(X, z1+z2) = 1 for the stratum Ω M4(4, 2)even. Suppose on the contrary
h0(X, z1 + z2) ≥ 2. Then X is in the hyperelliptic locus and z1, z2 are conjugate. It implies
thatωX ∼ 3z1+3z2 ∼ 4z1+2z2, hence z1 ∼ z2, contradicting that z1 6= z2. It holds even ifX
is reducible. In that case each componentXi ofX has to contain a zero zi. By h0(Xi, zi) = 1

for i = 1, 2, we conclude that h0(X, z1 + z2) = 1, because gluing sections on the Xi to form
a global section on X imposes an additional condition.

Let Si be the section in X corresponding to the zero zi of order mi. Let ω be the relative
dualizing sheaf of f : X → C. We have

ω = f∗ L ⊗ O X

( k∑
i=1

miSi

)
,

where L is the line bundle on C corresponding to the generating Abelian differential and
deg( L) = χ/2. The projection formula implies that

f∗ω = L ⊗ f∗
(

O X

( k∑
i=1

miSi

))
.

Since f∗( O X (
∑k
i=1miSi)) is a vector bundle of rank g whose fibers areH0(X,ωX), we have

C · λ = c1(f∗ω)

= g · χ
2

+ c1

(
f∗

(
O X

( k∑
i=1

miSi

)))
.

By [7, Proposition 4.5] we conclude that

(22)

L(C) = 2 · C · λ
χ

= g + 2 ·
c1(f∗( O X (

∑k
i=1miSi)))

χ
.
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T A.9. – Let C be a Teichmüller curve generated by a flat surface in one of
the strata Ω M4(4, 2)odd, Ω M4(4, 2)even or Ω M5(6, 2)odd. Then the sum of Lyapunov expo-
nents L(C) equals 29/15, 32/15 or 46/21, respectively.

Proof. – For the stratum Ω M4(4, 2)odd, using the preceding Lemma to verify the hypoth-
esis of the Lemmas A.1, A.2 and A.3, we conclude

c1(f∗ O X (4S1 + 2S2)) = c1(f∗ O X (2S1 + S2)) + c1(f∗ O2S1
(4S1)) + c1(f∗ OS2

(2S2))

= 7S2
1 + 2S2

2

= −31

30
· χ,

where the self-intersection formula of the Si in [7, Proposition 4.5] is used in the last step. By
the relation (22), we finally obtain that

L(C) = 4− 2 · 31

30
=

29

15
.

For the stratum Ω M4(4, 2)even, by the above lemmas we have

c1(f∗ O X (4S1 + 2S2)) = c1(f∗ O X (3S1 + S2)) + c1(f∗ OS1(4S1)) + c1(f∗ OS2(2S2))

= c1(f∗ O X (3S1 + S2)) + 4S2
1 + 2S2

2

= c1(f∗ O X (2S1 + S2)) + 4S2
1 + 2S2

2

= c1(f∗ OS1(2S1)) + 4S2
1 + 2S2

2

= 6S2
1 + 2S2

2

= −14

15
· χ.

Then by the equality (22), we conclude that

L(C) = 4− 2 · 14

15
=

32

15
.

For the stratum Ω M6(6, 2)odd, we have

c1(f∗ O X (6S1 + 2S2)) = c1(f∗ O X (3S1 + S2)) + c1(f∗ O3S1
(6S1)) + c1(f∗ OS2

(2S2))

= c1(f∗ O X (3S1 + S2)) + 15S2
1 + 2S2

2

= 15S2
1 + 2S2

2

= −59

42
· χ.

Finally by (22), we conclude that

L(C) = 5− 2 · 59

42
=

46

21
.
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Appendix B

Local calculations for the exceptional strata

B.1. Genus three

We begin with the proof of Proposition 6.3, which is decomposed into the following
lemmas. We follow the notation of Section 6.

L B.1. – If X is a non-hyperelliptic, smooth genus three curve, then for a generic
choice of a line passing through p the parity plane cubic E is irreducible.

Proof. – Suppose that E consists of three lines. Then one of them passes through r1,r2

and r3 but none of the pi. Hence the other two lines intersect X at 9 points (counting with
multiplicity), leading to a contradiction.

Next, suppose that E consists of a line L and an irreducible conic Q. By the same argu-
ment, L has to contain precisely one of the ri, say r1. We now discuss case by case.

In the case Q(9,−1) it follows that L · X = 3z1 + r1 and Q · X = 6z1 + r2 + r3. Since
Q ∼ 2L as divisor classes, we have 2r1 ∼ r2 + r3 onX, which implies thatX is hyperelliptic,
contradicting the hypothesis.

In the case Q(6, 3,−1) we conclude that L ·X is one of the divisors

r1 + 3z1, r1 + 2z1 + z2, r1 + z1 + 2z2 or r1 + 3z2.

In the first case,Q ·X = r2 +r3 +3z1 +3z2. This implies 3z2 +r2 +r3−r1 ∼ r1 +r2 +r3 +p

as sections of OX(1). Then 3z2 ∼ 2r1 +p. Since 3z2−p is determined by q, there are at most
finitely many choices for such r1. One can choose L away from these r1. In the second case,
Q ·X = r2 + r3 + 4z1 + 2z2. Using Q ∼ 2L, we conclude that 2r1 ∼ r2 + r3, contradicting
the non-hyperelliptic assumption. In the third case, we have r1 + z1 + 2z2 ∼ r1 + r2 + r3 +p

as sections of OX(1). Hence r2 + r3 ∼ z1 + 2z2 − p. Since z1 + 2z2 − p is determined by q,
for such r2 and r3 there are finitely many choices, since otherwise X would be hyperelliptic.
In the last case, we have r1 + 3z2 ∼ r1 + r2 + r3 + p, hence r2 + r3 ∼ 3z2− p which restricts
r2 and r3 to finitely many choices.

In the case Q(3, 3, 3,−1) the intersection L ·X could be

r1 + 3z1, r1 + 2z1 + z2 or r1 + z1 + z2 + z3.

In the first case, 3z1 ∼ r2 + r3 + p, hence the choices of r2 and r3 are limited to a finite
number, since X is not hyperelliptic. In the second case, 2z1 + z2 ∼ r2 + r3 + p and the same
argument applies. Finally, in the last case since Q ·X = r2 + r3 + 2z1 + 2z2 + 2z3, we have
2r1 ∼ r2 + r3 on X, impossible for X being non-hyperelliptic.

Next two preparatory lemmas imply that the zi are contained in the smooth locus of E.

L B.2. – Let E be an irreducible plane cuspidal cubic with z1 as its cusp. If a plane
quartic X has intersection multiplicity (X · E)z1 ≥ 4, then X is singular at z1.
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Proof. – Without loss of generality, let y2 − x3 = 0 be the defining equation of E (in
affine coordinates) and z1 = (0, 0). Suppose that the quartic X is defined by

f(x, y) =
∑
i+j≤4

aijx
iyj .

Then we have

dimC C[[x, y]]/(y2 − x3, f(x, y)) ≥ 4.

We now use the rational parameterization of E by setting y = t3 and x = t2. Then

f(t) =
∑
i+j≤4

aijt
2i+3j

and

dimC C[[t2, t3]]/(f(t)) ≥ 4.

Since X contains z1, we know that a00 = 0. If a10 6= 0, then f(t) is proportional to
t2(1 + b1t + b2t

2 + · · · ). The vector space C[[t2, t3]]/(f(t)) can be generated by 1, t2, t3,
since 1 + b2t

2 + · · · is invertible in C[[t2, t3]]. Consequently, dimC C[[t2, t3]]/(f(t)) ≤ 3,
contradicting the assumption. Next, if a01 6= 0, then f(t) is proportional to
t3(1 + c1t + c2t

2 + · · · ). By the same token, C[[t2, t3]]/(f(t)) can be generated by 1, t2, t4,
hence dimC C[[t2, t3]]/(f(t)) ≤ 3, leading to a contradiction. We thus conclude that
f ∈ (x, y)2, hence X is singular at z1 = (0, 0).

L B.3. – Let E be an irreducible plane rational nodal cubic with z1 as its node.
Suppose that a plane quarticX has intersection multiplicity (X ·E)z1 ≥ 4 and thatX is smooth
at z1. Then z1 is not a flex of X.

Proof. – Without loss of generality, let y2 − x2 − x3 = 0 be the equation of E and
z1 = (0, 0). Then the two branches at the node have tangent lines L− : x − y = 0 and
L+ : x + y = 0, respectively. Since X is smooth at z1, it intersects one branch, say the one
tangent to L+, transversality, and intersects the other with multiplicity ≥ 3. We use a local
rational parameterization of E by setting x = s(s + 2) and y = s(s + 1)(s + 2). Suppose
f(x, y) =

∑
i+j≤4 aijx

iyj is the defining equation of X. Then we have

f(s) =
∑
i+j≤4

aijs
i+j(s+ 2)i+j(s+ 1)j ,

and dimC C[[s]]/(f(s)) ≥ 3. Writing out the coefficients we see that

a00 = 0, a10 + a01 = 0, a01 + 2(a20 + a11 + a02) = 0.

Now suppose that z1 is a flex of X. Then L− is the corresponding flex line. The condition
dimC C[[x, y]]/(f(x, y), x− y) ≥ 3 implies that

a00 = 0, a10 + a01 = 0, a20 + a11 + a02 = 0.

Combining the above equations, we conclude that

a00 = a10 = a01 = 0,

hence f ∈ (x, y)2 and X is singular at z1, contradicting the assumption.
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Proof of Proposition 6.3. – It remains to show that the zi are located at non-singular
points of E. In the case of Q(9,−1) the possibility that z1 is a singular point of E1 can be
ruled out by Lemmas B.2. In the case of Q(6, 3,−1) the fact that the 6-fold zero z1 is a smooth
point can also be verified by Lemmas B.2 and B.3. Smoothness at z2 is clear because the
line z1z2 intersects E at z2 with multiplicity one. The case Q(3, 3, 3,−1) is dealt with by the
same argument, using the line through z1, z2 and z3 instead.

We conclude this section by showing that an exceptional component in genus three cannot
be contained in the hyperelliptic locus.

Proof of Lemma 6.7. – Suppose on the contrary that such a component exists. In Sec-
tion 6.2 we added a line L in P2 to the given bicanonical divisor in order to work with the
effective divisor L(X, q)+L ·X. Such a line corresponds to a conic in P5 under the Veronese
embedding. Here we use the hyperelliptic assumption and add a line in P5 to get an effective
divisor. More precisely, we first start with (X, q) ∈ Q(k1, . . . , kn,−1) and X hyperelliptic.
As in Section 5.1, let S be a cone over a rational normal quartic in P5, which is the image of
the ruled surface F4. On F4, the class of X is 2e + 8f and ωX ∼ OX(2f). Take a ruling fp
passing through the unique pole p of div(q). Let p′ = (fp ·X)−p be the conjugate of p inX.
Let D = div(q) + p be a degree 9 divisor. A bicanonical divisor is a section of OX(e+ 4f),
so D is a section of OX(e+ 5f). By the exact sequence

0→ OF4(−e− 3f)→ OF4(e+ 5f)→ OX(e+ 5f)→ 0,

we know thatD+p′ is cut out by a unique rational curveR of class e+5f . The pair (R,D+p′)

takes the role of (E,
∑n
i=1 kizi + r1 + r2 + r3). Then we can mimic the dimension count in

Proposition 6.5.
Suppose that we have shown that R is irreducible. The dimension of the linear system

containing R equals dimPH0(F4, e + 5f) = 7. Hence the parameter space for (R,D + p′)

has dimension n+ 8. From

0→ OF4
(e+ 3f)→ OF4

(2e+ 8f)→ OR(2e+ 8f)→ 0

we deduce that for fixed (R,D + p′) the space of X with X · R = D + p′ has dimension
h0(F4, e + 3f) = 4. From the triple (X,R,D + p′) we recover div(q) = X · R − X · fp′ .
Altogether, since the automorphism group of F4 has dimension 9, the space of the triples
(X,R,D + p′) has dimension n+ 3, smaller than dimP Q(k1, . . . , kn,−1) = n+ 4.

Finally, we deal with the case whenR is reducible. In this caseR consists of a fibers along
with a component of class e+(5−a)f . Since e2 = −4, we have a = 5 or a = 1, for otherwise
R would not be effective.

In the first case we can disregard e, since e·X = 0. Let f be the fiber containing the pole p.
It contains also some zero zi, different from p. This implies that zi = p′, hence f ·X = 2zi
and zi is a Weierstrass point, contradicting that p 6= zi.

Now consider a = 1. In the case Q(9,−1) we have f · X = 2z1 by the same argument,
hence 10z1 ∼ 9z1 +p′ and z1 ∼ p′, leading to the same contradiction. In the remaining cases
f · X = 2z1 with z1 a 6-fold zero or f · X = z1 + z2 runs into a similar contradiction. We
thus may suppose that f ·X = 2zi with zi a 3-fold zero. In this case we count the dimension
as above.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



360 D. CHEN AND M. MÖLLER

The component of class e+ 4f moves in a linear system of dimension 5. For the stratum
Q(6, 3,−1) the choice of z1, z2 and p gives 3 more parameters. Now the choice ofX accounts
for h0(F4, e+ 4f) = 6 parameters, and taking the quotient by Aut(F4) we obtain a param-
eter space of dimension 5, less than dimP Q(6, 3,−1) = 6. For the stratum Q(3, 3, 3,−1)

the parameter space has one more dimension stemming from the choice of z3, but since the
dimension of this stratum is one larger than dim Q(6, 3,−1) we deduce the same contradic-
tion.

B.2. Genus four

We prove here the technical lemmas for the exceptional strata in genus four. Although
this may seem a tedious case distinction, it cannot be circumvented in some form, since
the hyperelliptic components appear from our perspective for some type of reducible parity
curves.

Proof of Lemma 7.3. – The elliptic curve E has class (2, 2) on Q. For the stratum Q(12)

the curve E is indeed irreducible and reduced. If it is not the case, suppose first that E con-
tains a conic C1 of class (1, 1). Then the other component of E is also a conic C2 of class
(1, 1). Both C1 and C2 cut out 6z1 in X, hence q is a global square, leading to a contradic-
tion. The other possibility is that E consists of a line L of class (1, 0) union a curve R of
class (1, 2), we have L · X = 3z1 and R · X = 9z1. Then h0(X, 3z1) = 2, hence 3z1 and
z1 + r+s both admit a g1

3 , where r, s are points inX not equal to z1. Then ωX ∼ 4z1 + r+s

and 4z1 ∼ 2r + 2s. Since h0(X, 4z1) = h0(X, 3z1) = 2, we conclude that p is a base point
of |4z1|. But 2r + 2s is a section of this linear series, which contradicts that r, s 6= z1.

For all the other strata we first suppose thatE is not reduced. IfE = 2C withC a conic of
class (1, 1), then q is a global square, contradicting the standing assumption. If E = 2L+C

with L a line of class (1, 0) and C a curve of class (0, 2), then C has to be a union of two
distinct lines L1, L2 of class (0, 1). Each Li cuts out a degree 3 divisor in X. Note that
L1 ·X and L2 ·X are disjoint, because they belong to two different rulings in the same g1

3 .
Moreover, if L and Li meet X at the same zj , then one of them intersects X transversely
at zj . Using these observations we can easily rule out Q(9, 3) and Q(6, 6). For Q(6, 3, 3),
the only possibility is that L · X = 3z1, L1 · X = 3z2 and L2 · X = 3z3. It implies
that ωX ∼ 3z1 + 3z2, hence 3z1 gives a g1

3 and 3z2 ∼ 3z3 gives the other. This is possible,
but we claim that then h0(X, 2z1 + z2 + z3) = 1. Otherwise by Riemann-Roch we have
h0(X, z1 + 2z2 − z3) = 1, hence z1 + 2z2 also provides a g1

3 , leading to a contradiction.
For Q(3, 3, 3, 3), the only possibility is that L · X = z1 + z2 + z3 (up to relabeling the zi).
Then (L1 +L2) ·X = z1 + z2 + z3 + 3z4 and one of them, say L1, has to contain two points
among z1, z2, z3, which contradicts that L1 6= L.

Now assume that E is reduced, but not sufficiently smooth and moreover that
dimH0(X,div(q)/3) = 2. Below we will seek a contradiction. The assumption implies
the existence of a hyperplane H such that H · E = div(q)/3. Suppose first that E = L + R

for some line L, say of class (1, 0), necessarily contained in H. Then H ·Q = L+L′ with L′

of class (0, 1).
If R decomposes further, say it contains another line L2 of class (1, 0) and a curve C of

class (0, 2). FromH ·E = div(q)/3 we deduce thatL·L′ = z1,L2 ·L′ = z2 andL·C = z3+z4
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are the zeros of q (for some choice of numbering). But thenX · (L+L2 +C) has multiplicity
at most one at z1, contradicting that it is at least three. If R contains a line L2 of class (0, 1)

the intersection point of L and L′ provides again the contradiction.
Suppose now that R is irreducible. We let again L · L′ = z1 and obtain the same

contradiction as above unlessR passes through z1. Then, if z2 denotes the second intersection
point of L and R, we obtain H ·E = (L+ L′) · (L+R) = 3z1 + z2. Consequently, we deal
with the stratum Q(9, 3). Since L′ · E = 2z1, a section of one of the two g1

3 corresponding
to L′ must be 2z1 + t for some t. Then ωX ∼ (L + L′) ·X = (z1 + 2z2) + (2z1 + t), since
L and L′ belong to different ruling classes due to H ·Q being of class (1, 1). Doubling it, we
obtain 6z1 + 4z2 + 2t ∼ 9z1 + 3z2, hence 3z1 ∼ z2 + 2t is also a g1

3 . But one checks that it
can neither be equivalent to z1 + 2z2 nor to 2z1 + t.

The second case is that E consists of two irreducible conics C1 and C2. If the supports
of X · C1 and X · C2 are disjoint, then E is sufficiently smooth. If these supports are equal,
then q is a global square. These supports can consist of at most three points, since otherwise
C1 and C2 have three points in common, contradicting the intersection degree. The same
argument applies to counting a common tangent, e.g., for Q(6, 3, 3) andX ·C1 = 4z1 + 2z2.
IfX ·C1−X ·C2 is the difference of two effective divisors of degree two, thenX is hyperelliptic.
Using these arguments, only the following cases remain.

Case Q(9, 3) withX ·C1 = 6z1 andX ·C2 = 3z1 +3z2. This implies 3z1 ∼ 3z2, hence the
ruling L tangent to X at z1 is a flex line. But then C1 = 2L, contradicting its irreducibility.

Case Q(6, 6) withX ·C1 = 5z1+z2 andX ·C2 = z1+5z2. The existence of a hyperplaneH
withH ·X = 2z1 +2z2 implies ωX ∼ 5z1 + z2 ∼ z1 + 5z2 ∼ 2z1 + 2z2 + r + s for some r, s.
Hence h0(X, 3z1) = h0(X, 3z2) = 2. Consequently, we also have h0(X, 2z1 + z2) =

h0(X, z1 + 2z2) = 2. Since X is not hyperelliptic, the ruling through z1 and z2 is tangent
both at z1 and z2, a contradiction.

Case Q(6, 3, 3) with X · C1 = 5z1 + z2 and X · C2 = z1 + 2z2 + 3z3. The existence of
a hyperplane H with H ·X = 2z1 + z2 + z3 implies

ωX ∼ 5z1 + z2 ∼ z1 + 2z2 + 3z3 ∼ 2z1 + z2 + z3 + r + s

for some r, s. Since X is not hyperelliptic, h0(ωX(−z1 − z2)) ≤ 2, hence z2 + z3 = r + s,
which leads to the contradiction z1 ∼ z2.

Case Q(3, 3, 3, 3) with X · C1 = 3z1 + 2z2 + z3 and X · C2 = z2 + 2z3 + 3z4. The
existence of a hyperplane H with H ·X = z1 + z2 + z3 + z4 implies that h0(X, 2z1 + z2) =

h0(X, z1 + z2 + z3) = 2. This is a contradiction, since they both contain z1 and z2.

Proof of Lemma 7.7. – This follows from the two lemmas below, given that the strata are
smooth.

L B.4. – No component of a stratum in E4 except the hyperelliptic components lies
entirely in the hyperelliptic locus.

Proof. – By Section 5.2, a hyperelliptic curve X of genus four lies in S1,6, which is the
image of the Hirzebruch surface F5 in P8. Let R be a rational curve of class e + 6f . Since
e ·X = 0, we have OX(R) ∼ OX(6f) ∼ ω⊗2

X . By the exact sequence

0→ OF5(−e− 4f)→ OF5(e+ 6f)→ OX(e+ 6f)→ 0,
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there exists a unique section R in |e+ 6f | that cuts out D = div(q) in X.

The pair (R,D) now takes the role of (E,D) and we mimic the dimension count in Propo-
sition 7.5. Suppose that R is irreducible. The parameter space for R has dimension equal
to dimPH0(F5, e + 6f) = 8. Hence the parameter space for (R,D) has dimension 8 + n.
From

0→ OF5
(e+ 4f)→ OF5

(2e+ 10f)→ OR(2e+ 10f)→ 0,

we deduce that for fixed (R,D), the space of (necessarily hyperelliptic) genus four curves X
withX ·R = D has dimension h0(F5, e+4f) = 5. From (X,R,D) we recover div(q) = X ·R.
Since the automorphism group of F5 is 10-dimensional, the space of triples (X,R,D) has
dimension n+ 3, smaller than dimP Q(k1, . . . , kn) = n+ 5.

Finally, we have to treat the case when R is reducible. Suppose R consists of a fibers f
along with a component of class e+ (6− a)f . Since e2 = −5 we have a = 6 or a = 1, since
otherwise R would not be effective.

We first deal with the case a = 1 and perform a dimension count similar to the above.
The parameter space for the component of class e+ 5f has dimension equal to
dimPH0(F5, OF5(e + 5f)) = 6 and the parameter space for (R,D) has dimension 6 + n.
The other component of R of class f intersects X in 2zi or in zi + zj . In any case, it is
determined up to finitely many choices by R and D. Now the space of genus four curves X
withX ·R = D has dimension h0(F5, e+ 5f) = 7. As above, since the automorphism group
of F5 is 10-dimensional, the space of triples (X,R,D) has dimension n + 3, smaller than
the dimension of the corresponding stratum.

Finally, we deal with the case a = 6 to retrieve the hyperelliptic components. Now R is
the divisor e union several (possibly non-reduced) fibers.

For Q(12), the fiber has to have multiplicity 6 and z1 has to be a Weierstrass point. But
then q would be a global square, contradicting the hypothesis.

For Q(9, 3) both ki are odd, hence it is impossible that 9z1 + 3z3 is cut out by fibers only.

For Q(6, 6) and div(q) = 6z1+6z2, there are two possibilities. FirstRmay contain a 6-fold
fiber f with f ·X = z1 + z2. But then the zi are Weierstrass points and q is a global square,
contradicting the hypothesis. The other case is that R contains two 3-fold fibers f1 and f2

with fi ·X = 2zi. Then both zi are Weierstrass points. We recover in this way the hyperelliptic
component of this stratum.

For Q(6, 3, 3), there is only one possibility, namelyR contains 3f1+3f2, where f1·X = 2z1

and f2 ·X = z2+z3. Hence z1 is a Weierstrass point and z2, z3 are conjugate. We thus recover
the hyperelliptic component.

For Q(3, 3, 3, 3) there is again only one possibility, namely thatR contains 3f1 +3f2, with
f1 ·X = z1 + z2 and f2 ·X = z3 + z4 for an appropriate ordering of the zeros. In this way
we recover again the hyperelliptic component of this stratum.

L B.5. – No component of a stratum in E4 is contained entirely in the Gieseker-Petri
locus but is not entirely contained in the hyperelliptic locus.
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Proof. – By Section 5.2 we work on the Hirzebruch surface F2 withR a rational curve of
class 2e + 4f and X of class 3e + 6f . Since e · X = 0, we have OX(R) ∼ OX(6f) ∼ ω⊗2

X .
The argument is parallel to the hyperelliptic case. By the exact sequence

0→ OF2(−e− 2f)→ OF2(2e+ 4f)→ OX(2e+ 4f)→ 0,

there exists a unique section R in |2e+ 4f | that cuts out D = div(q) in X.
Suppose that R is irreducible. The parameter space for R has dimension equal to

dimPH0(F2, 2e + 4f) = 8. Hence the parameter space for (R,D) has dimension 8 + n.
From

0→ OF2(e+ 2f)→ OF2(3e+ 6f)→ OR(3e+ 6f)→ 0,

we deduce that for fixed (R,D), the space of (necessarily hyperelliptic) genus four curves X
withX ·R = D has dimension h0(F2, e+2f) = 2. From (X,R,D) we recover div(q) = X ·R.
Since the automorphism group of F2 is 7-dimensional, the space of triples (X,R,D) has
dimension n+ 3, smaller than dimP Q(k1, . . . , kn) = n+ 5.

If R is reducible, there are three possible decompositions: first, two components R1

and R2, both of class e + 2f ; second, two components of class e together with four fibers
and third, R1 = e+ bf with b ≥ 2 together with a component of class e and 4− b fibers.

The components R1 and R2 in the first case cannot be identical, otherwise q would be
a global square. Consequently, X · Ri = 6 and R1 · R2 = 2. If the divisor X · R = D is
supported away from the singular locusRsing of R, the same dimension count as above goes
through. If D meets Rsing and moreover the components R1 and R2 intersect transversely
at two nodes p1 and p2, at each node pi the curve X can only be tangent to one of the two
branches. This involves a choice of two possibilities, but once we choose one of the two, i.e.,
once we know which branch is tangent toX, then the above fiber dimension count is still fine.
More generally, if R1 and R2 are tangent at p and if D contains p with multiplicity n, then
suppose (X ·Ri)p = ni with n1+n2 = n and ni > 1. Once we specify the pair (n1, n2), which
again amounts to finitely many choices, the Cartier divisor D is determined and a similar
fiber dimension count goes through.

In the second case, if the four fibers are all distinct, X ·R = D is located away from Rsing

and the dimension count is the same. If the configuration is 2f1 + f2 + f3, then
X ·R = 2D1 +D2 +D3 with disjoint divisors Di. The only possible stratum is (6, 3, 3) with
Di = 3zi. Since 2f1 is a double ruling, the parameter space ofX for a given (R,D) increases
dimension by three compared to the above count, but the base dimension drops by three, so
the dimension argument is fine. If the configuration is 2f1 + 2f2 or 4f1, then q is a global
square, impossible. Finally, if the configuration is 3f1 + f2, we are in the stratum Q(9, 3).
Then the parameter space of X for a given (R,D) increases dimension by six compared to
the count in the irreducible case, but the base dimension drops by seven, so the dimension
argument still goes through.

In the third case, suppose first that R consists of an irreducible component R1 of
class e+ 3f together with a ruling f1 besides e. Then R1 · f1 = 1 and they intersect
transversely. So we can apply the above argument by specifying X tangent to R1 or f1,
if X · R contains the node. Next, suppose that R consists of R1 of class e + 2f and two
rulings f1, f2 besides e. First suppose f1 and f2 are distinct. If X is disjoint from Rsing, we
are done. If X intersects Rsing, since fi · R1 = 1, this is also fine. Now suppose f1 = f2 is
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a double ruling and X ·R contains the node p = f1 ·R1. Write (X ·R)p = n, (X ·R1)p = m

and we have (X · f1)p = k < 4 with m + 2k = n. This amounts to a finite case distinction.
Since R1 and f1 intersect transversely at p, we have m = 1 or k = 1. If m = 1, the condition
imposed to X is k = (n− 1)/2 instead of n as the expected fiber codimension. But the locus
of such (R, 2f1) in the linear system | O(2)| has dimension 4, i.e., codimension 5, which is
higher than n − k = k + 1 since k < 4. So the total dimension of the parameter space is
not enough for being a component. If k = 1, then the number of conditions imposed to X
is m = n − 2. The parameter space for X has dimension two larger than in the irreducible
case, but the base dimension drops by more than that.

Appendix C

Varying strata: examples

In this section we collect all data of half-translation surfaces indicating that beyond the
cases discussed in our main results, most of the other strata are varying. We emphasize
though, that we do not dispose of any proof that all strata beyond a certain dimension are
varying. Below we give lists of explicit surfaces, discussing one stratum at a time.

Almost all the half-translation surfaces were calculated using a computer program by Vin-
cent Delecroix, built on its predecessor by Anton Zorich. These programs were designed for
square-tiled surfaces. We thus list below the monodromy permutations of the canonical dou-
ble cover of a half-translation surface we are interested in. The program gives the sum L of
Lyapunov exponents for the double cover, but using (3) we can also compute the quantityL+.

In the table ‘Index’ refers to the index of the Veech group in SL2(Z).

The exceptional strata. We give examples completing Theorems 6.2 and 7.2, proving that
certain components of the exceptional strata are varying:

Stratum Monodromy Index L L+

Q(3, 3, 3,−1)irr r = (2, 3)(4, 5, 6, 7) 200 3 13
10

(9, 10, 11, 12)(14, 15)

u = (1, 2)(3, 4, 8, 9, 5, 10)

(6, 11, 7, 13, 12, 14)(15, 16)

Q(3, 3, 3,−1)irr r = (3, 4)(5, 6, 7, 8) 2350 150
47

328
235

(10, 11, 12, 13)(15, 16)

u = (1, 2, 3)(4, 5, 9, 10, 6, 11)

(7, 12, 8, 14, 13, 15)(16, 17, 18)
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Q(6, 6)irr r = (2, 3)(4, 5)(7, 8) 768 103
32

19949
12015

(10, 11)(12, 13)(15, 16)

u = (1, 2, 4, 6, 5, 10, 12)

(3, 7, 9, 8, 11, 14, 15)

Q(6, 6)irr r = (2, 3, 4, 5)(8, 9, 10, 11) 48 7
2

7
4

u = (1, 2, 6, 4)(3, 7, 8, 12)

(5, 13, 10, 15)(9, 14, 11, 16)

Q(6, 3, 3)irr r = (2, 3)(4, 5)(6, 7, 8, 9) 9420 5593
1570

1359
785

(10, 11)(12, 13, 14, 15)(17, 18)

u = (1, 2, 4, 6, 10, 12, 5)(7, 15)

(3, 14, 18, 11, 16, 17, 8)(9, 13)

Q(6, 3, 3)irr r = (2, 3)(5, 6, 7)(8, 9)(10, 11) 3480 514
145

999
580

(12, 13)(15, 16, 17)

u = (1, 2, 4, 5, 8, 10, 12, 6)

(3, 13, 16, 18, 11, 14, 15, 9)

Q(3, 3, 3, 3)irr r = (2, 3)(4, 5)(6, 7, 8, 9) 3390 2121
565

1004
565

(11, 12, 13, 14)(16, 17)(18, 19)

u = (1, 2, 4, 6, 10, 11, 3, 14, 7, 5)

(8, 15, 13, 18, 17, 20, 19, 12, 9, 16)

Q(3, 3, 3, 3)irr r = (2, 3)(5, 6)(7, 8, 9, 10) 690 441
115

209
115

(11, 12, 13, 14)(15, 16)(17, 18)

u = (1, 2, 4, 5, 7, 3, 9, 6)(8, 11)

(10, 13)(12, 15, 14, 17, 19, 16, 20, 18)

In genus one we give a pair of examples justifying that Q(4, 2,−16) is varying:

Stratum Monodromy Index L L+

Q(4, 2,−16) r = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12) 36 5
3 0

u = (1, 9, 4, 12)(2, 8, 5, 11)(3, 7, 6, 10)

Q(4, 2,−16) r = (1, 2, 3, 4, 5, 6, 7, 8) 148 13
6

1
4

(9, 10, 11, 12, 13, 14, 15, 16)

u = (1, 9, 6, 10, 4, 14, 8, 12)

(2, 16, 5, 13)(3, 15, 7, 11)

In genus two all the strata of dimension at most seven except for those listed in Theorem 9.1
are varying. We give examples in the two cases, with largest and smallest possible orders of
zeros:
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Stratum Monodromy Index L L+

Q(8,−14) r = (2, 3)(4, 5)(6, 7) 160 11
5

3
5

(9, 10)(11, 12)(13, 14)

u = (1, 2, 4, 6)(3, 5, 8, 9)

(7, 11, 13)(10, 12, 14)

Q(8,−14) r = (2, 3)(4, 5)(6, 7) 105 13
5

4
5

(9, 10)(11, 12)(13, 14)

u = (1, 2, 4, 6, 7, 10, 12)

(3, 5, 8, 9, 11, 13, 14)

Q(22, 12,−12) r = (2, 3)(6, 7, 8)(9, 10, 11)(13, 14) 192 3 7
6

u = (1, 2, 4, 3, 5, 6)(7, 9)

(8, 10)(11, 12, 13, 15, 14, 16)

Q(22, 12,−12) r = (2, 3, 4)(6, 7, 8) 522 220
87

27
29

(9, 10, 11)(12, 13, 14)

u = (1, 2, 5, 6, 9, 12, 4, 7)

(3, 8, 11, 15, 13, 16, 10, 14)

In genus three all the strata of dimension at most eight except for those listed in
Theorem 10.1 are varying. We give examples in the two cases, with largest and smallest
possible orders of zeros:

Stratum Monodromy Index L L+

Q(11,−13) r = (2, 3)(4, 5)(6, 7)(9, 10) 9828 6388
2457

173
189

(11, 12, 13)(14, 15, 16)

u = (1, 2, 4, 6)(3, 5, 8, 9)

(7, 11, 13, 15)(10, 12, 14, 16)

Q(11,−13) r = (3, 4)(5, 6)(7, 8)(11, 12) 78390 101078
39195

2728
3015

(13, 14, 15)(16, 17, 18)

u = (1, 2, 3, 5, 7)(4, 6, 9, 10, 11)

(8, 13, 15, 17)(12, 14, 16, 18)

Q(2, 2, 2, 2) r = (2, 3)(5, 6)(9, 10)(12, 13) 24 5
2

5
4

u = (1, 2, 4, 5, 7, 3, 8, 9)

(6, 11, 12, 14, 10, 15, 13, 16)

Q(2, 2, 2, 2) r = (2, 3, 4)(6, 7, 8) 36 8
3

4
3

(9, 10, 11)(12, 13, 14)

u = (1, 2, 5, 6, 9, 8, 10, 7)

(3, 12, 4, 14, 16, 11, 15, 13)
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In genus four all the strata of dimension at most nine except for those listed in
Theorem 11.1 are varying. We give examples in the two cases, with largest and smallest
possible orders of zeros:

Stratum Monodromy Index L L+

Q(14,−12)nh r = (2, 3)(5, 6)(7, 8)(9, 10, 11) 381280 138559
47660

114729
95320

(13, 14)(16, 17, 18)

u = (1, 2, 4, 5, 7, 9)(3, 10)

(6, 8, 12, 13, 15, 16)(14, 18)

Q(14,−12)nh r = (3, 4)(6, 7)(8, 9)(10, 11, 12) 3454784 626281
215924

518319
431848

(14, 15)(18, 19, 20)

u = (1, 2, 3, 5, 6, 8, 10)(4, 11)

(7, 9, 13, 14, 16, 17, 18)(15, 20)

Q(4, 4, 4) r = (2, 3)(5, 6)(8, 9) 6480 139
45

139
790

(10, 11)(12, 13)(16, 17)

u = (1, 2, 3, 4, 5, 7, 8, 10, 9)

(6, 12, 14, 11, 15, 16, 17, 18, 13)

Q(4, 4, 4) r = (2, 3)(5, 6)(8, 9) 180 44
15

22
15

(10, 11)(12, 13)(16, 17)

u = (1, 2, 4, 5, 7, 8, 10, 3, 9)

(6, 12, 14, 11, 15, 16, 18, 13, 17)

We remark that showing a varying stratum, say for dimension greater nine in genus four,
would heavily requires computer resources. For example, in dimension nine, the simplest
pillow-case tiled surface in the stratum (12, 1,−1) has 9 tiles, whose Veech group has index
292824 in SL2(Z) and L+ = 793/581. The next example with 10 tiles has a Veech group
of index 2635416 in SL2(Z) and also L+ = 793/581 ≈ 1.36488. However, this stratum is
varying, as an example with 11 tiles, a Veech group of index 13187664 and L+ = 851/623 ≈
1.3659 shows.

In genus five even the smallest stratum is varying:

Stratum Monodromy Index L L+

Q(16) r = (2, 3)(5, 6)(7, 8)(9, 10, 11) 648810 39898
12015

19949
12015

(12, 13)(16, 17, 18)

u = (1, 2, 4, 5, 7, 9)(6, 10)

(3, 12, 14, 8, 15, 16)(13, 18)

Q(16) r = 2, 3)(5, 6)(7, 8, 9)(10, 11) 6480 10
3

5
3

(12, 13, 14)(16, 17)

u = (1, 2, 4, 5)(3, 7, 10, 12, 14)

(6, 13, 17, 9, 8)(11, 15, 16, 18)
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