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Introduction

In this treatise we want to discuss some old and new topics con-
cerning the projective geometry of elliptic curves embedded in some
projective space P . To be more precise, we want to study three
different aspects of elliptic curves in Pn’ namely

1. The symmetries of elliptic normal curves
2. The Horrocks-Mumford vector bundle
3. The normal bundle of elliptic curves of degree 5.

These three subjects are closely related to each other and it is
exactly this interrelation which we want to study. In order to give
the reader some idea about what we intend to do, we want to outline

the contents of the individual chapters.

In chapter I we shall study the symmetries of elliptic normal
curves Cnggnh_1 of degree n. Translation by n-torsion points and in-

volution of the curve C, define 2n2 transformations of the projective
curve C, into itself, and they all lift to projective transformations

of Pn We shall first define a suitable embedding (by means of

_1'
specially chosen theta-functions which are products of translates of
the Weierstrass o-function), such that these symmetries take on a
particularly simple form. This leads us to the Heisenberg group Hn
in its Schrédinger representation. The material of this chapter

is classically well known and the results can be traced back as far

as to L. Bianchi [3] and A. Hurwitz [13].

If n=p=3 is a prime number, then the symmetries of an elliptic

normal curve Cnggn? lead to a special configuration of hyperplanes

n-1

and projective subspaces of dimension %(p—B). This configuration is
of type (p2p+1,p(p+1)p) and generalizes the classical configuration

of the points of inflection of a plane cubic (the case p=3). We
shall study this configuration in chapter II. Although it can already
be found in a paper by C. Segre [16], it was only fairly recently
that I discovered this. I first heard about this configuration from
W. Barth. In any case, our construction is quite different from

C. Segre's. We shall briefly come back to C. Segre's point of view

in chapter IX.
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In chapter III we shall discuss elliptic normal curves of degree
3,4 and 5 in order to illustrate the results of the previous chapters.

Chapter IV deals with the quadric hypersurfaces which go through

a fixed elliptic normal curve Cng;E> . We shall first give a simple

n-1
proof of a special case of a theorem of Mumford [15] on abelian

-1 of
degree n24 is the scheme-theoretic intersection of quadrics of

varieties. We shall show that every elliptic curve CnEEEE

rank 3. Then we shall use the symmetries of elliptic normal quintics

C cr, to find quadratic equations for these curves. The rest of

5
this chapter deals with the singular quadrics through a given ellip-
tic normal quintic. The main result is, that there exists a 1-dimen-
sional family of rank 3 quadrics through C5 whose singular lines
form a ruled surface F of degree 15. The surface F is birational to
the second symmetric product s2c of Cg and we shall construct an
explicit map between s2c and F. The methods used here go back to
Ellingsrud and Laksov [6]. Finally we shall briefly explain the re-
lation between the curves Cg and Shioda's modular surface S(5).

is

The normal bundle Ns of an elliptic normal quintic C.c TP

5 4
the main object of chapter V. We shall first prove that Ny is inde-
composable. It is then an easy consequence of Atiyah's classifi-
cation [1] of vector bundles over an elliptic curve to describe the
normal bundle Ng explicitly. We shall use this to give another proof
of a vanishing result originally due to Ellingsrud and Laksov [6].
This vanishing result will be essential for chapter VIII.

In chapter VI we shall return to the Heisenberg group H, and
study its natural operation on the space of homogeneous forms of
degree n in n variables. For every prime number p=n2= 3 we shall
determine the dimension of the space of invariant forms. In parti-
cular, if p=5, we find that

dim FH(®
a result which was first proved by Horrocks and Mumford in [9]
where it played an essential role in the study of the Horrocks-
Mumford bundle. One can easily give a basis of the space of invariant

quintic forms in terms of the configuration studied in chapter II.
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For application in chapter VIII we shall finally construct a basis
of the 3-dimensional space of invariant quintic forms whose corre-

sponding hypersurfaces are singular along Cg.

In chapter VII we shall explain the relation between the Horrocks-
Mumford bundle F on IP
that, if C.c ™

4 and elliptic normal quintics. We shall prove,

5 4 is an elliptic normal quintic embedded as described
in chapter I, then there exists a unique section s € T (F} whose zero-
set is (scheme-theoretically) the tangent surface Tan Cg. In other
words, the Horrocks-Mumford bundle can be reconstructed from the
tangent developable of Cg by means of the Serre-construction. This
makes the statement of [9, p. 79(a)] precise and supplies a proof

at the same time.

The main objective of chapter VIII is the study of the normal
bundle of elliptic space curves of degree 5. Every such curve is the
projection of an elliptic normal curve C5g]P4. The normal bundle of

these curves was first classified by Ellingsrud and Laksov in their
paper [6] which was the starting point for this work. The main point
is that their classification uses a certain 1-parameter family of

quintic hypersurfaces YM551P4. (For a precise statement see (VIII.

2.7)). We shall first recall the results of Ellingsrud and Laksov
and then turn to the hypersurfaces Yy. To describe and understand
this family was my original motive for this work. We shall see that
the Yy, form a linear family of quintic hypersurfaces, whose base
locus consists of the union of the tangent surface Tan Cg and the
ruled surface F which we have studied in chapter IV. This enables us

to characterize the 2-dimensional space UEEF(@EQ(S}) which belongs

to the linear family Yy. We shall first of all see that the elements
of U are invariant under the Heisenberg group Hg. Moreover, U con-
sists exactly of those Hs-invariant quintic forms which vanish on
the tangent surface Tan Cgs and whose associated hypersurfaces are
singular along C5, i.e.

2
= )] )
v rH(JTan c(5’)nFH(Jc(5”‘

We shall then relate this description to the Horrocks-Mumford vector
bundle. Finally we shall describe U explicitly as a subspace of
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FH(Jé(S)) using the basis of this space which we have found in

chapter VI.

In chapter IX we shall discuss the normal bundle of elliptic
space curves of degree 5 from a more geometric point of view. In

order to say more precisely what we want to do let CZE}P3 be a smooth

elliptic quintic. Then the maximal degree of a line subbundle of the

normal bundle N of C in P, is 10, and there always exists at

C/TP4 3
least one such subbundle M. Our aim is to realize every maximal sub-
bundle geometrically by a surface S of small degree which contains C.
In order to define a subbundle M of degree 10, the surface S must
have k singularities along C, where

k = 5.deg S -10.

We shall prove the following result: Every maximal subbundle

McN can be represented by a quartic surface Sg]P3, which is

C/Py
the projection of the complete intersection of two quadric hyper-
surfaces in P4, and which is singular in 10 points (counting multi-
plicities) of C. We shall also discuss special cases where a maximal
subbundle M can be represented by a ruled cubic surface S which is

singular in 5 points of C.

Throughout we shall work over the ground field C. Many results,

however, are also valid in positive characteristic.

I should like to thank all those mathematicians who discussed
this subject with me. I am particularly indebted to W. Barth,
J. Harris and A. Van de Ven, whose ideas and help were very important

for me during the preparation of this manuscript.

I should also like to thank J. Lubin for the computations he did

for me on the computer of Brown University.

Thanks to Kathy Jacques and Berta HSpfl for their excellent typing
of this manuscript.

Finally I should like to thank Brown University for kind hospita-
lity during the academic year 1982/83 and the Deutsche Forschungs-
gemeinschaft for, financial support during this year.



I. The elliptic normal curve cng;mn_1

In this chapter we want to collect some material concerning the

symmetries of elliptic normal curves Cnggn’ . Practically all of

n-1
this was classically known. A very readable reference is an article
by Bianchi [3] which was published in Mathematische Annalen in 1880.
There Rianchi mainly treats the case of a plane cubic and of an
elliptic quintic in P, but he also looks at the general case of an
elliptic normal curve of odd degree. The even degree case was treated
by A. Hurwitz in [13]. Although at a first glance his formulas look
somewhat different from ours, both treatments are, nevertheless,

very similar.

1. Preliminaries

(I.1.1} Let C be an elliptic curve with fixed origin &. Moreover,
let
T = {n1w1 +nyw,i ny.n, € 7}

be a lattice such that C=C/T. The n-torsion points of (the group) C
are then given by
—pw,] +quu2

g~ - (p,q € 7).

By abuse of notation we write p,q € Z, . The n-torsion points form a
w w
subgroup Gnggc and by identifying - 7} with (1,0) and 7% with (0,1)

we fix an isomorphism
G. T B x7Z_.
n n n

The following picture shows the group of 3-torsion points:

W, L Wy + W,
l? x x
[ x x (n = 3;
S
I 4 )
3
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(I.1.2) Recall that the Weierstrass o-function is defined by

(2+5)
o(z) : = 2zl (1-23) & 20°

wer-{oj}
It is an entire function with simple zeroes exactly at the points of

the lattice. Moreover, it is an odd function, i.e.
og(=2z) = =g (z).

With respect to translation by w4 and Wy the following fundamental
formulas hold:

w

nlz+=)
e

1) o(z +w1) o (2)

w
ny (2 +=2) \
e o(z).

(2) c(z +w2)

Here nq and n, denote the period constants of the Weierstrass

t-function. The above formulas can be combined to give the mqre

general formula
kw, +Lw
1 2
kg +JL“Z)(Z'+ 2 )o(z)

ki +k +4
e

(3 o(z +kwy + 4wy} = (-1

1

Finally recall for later reference the important Legendre-Weierstrass

relation which reads

(4) Ny = Mpwg = 2ni.

2. The symmetries of elliptic normal curves

Here we shall describe explicitly a set of functions embedding C
as a linearly normal curve of given degree. These functions are
chosen in such a way that the symmetries of the embedded curve take

on a particularly simple form.

(I.2.1) For what follows we shall have to distinguish the case of
odd and even degree. So let us first fix an odd integer n= 3. For

p:g € ZZ we set
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o (z) : = c(z—&;&) .

Moreover we define the following constants

N2%q K

- h-1 -
2 2n

n
w : = -e , B =e

Finally we define functions X mé€ Z by setting

2 mn,z
x (z) : = ™8™ e 1 o]

n m'O(z)-...-

Gm,n-1(Z)'

Next let n= 4 be an even integer. Then we set

~ puy +quy )
Foq(@) ¢ = o [r -2 -3 ey + ) -

Similarly as above we define constants

-l(ﬂ W, +NLw —n1w1
~ e 21 271 , 8 :i-06=e 2n
which give rise to functions
~m~m2 mnqz_ ~
x (z2) = w6 e om,o(z)-...‘cm,n_1(z).

We first note the following

(I.2.2) Lemma: For a fixed integer n and for all m we have

We shall postpone the proof of this lemma to section (I.3). In any

case we have now defined a set of n functions {xm; m(EZn} which

are a product of suitably adjusted o-functions. The choice of these
functions is justified by the following theorem.
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(I.2.3) Theorem: The functions X define n linearly independent

sections x“ler(GC(nG)) and the map
zr (x5(2) o0 x 4(2))

embeds C as a linearly normal curve C cT _, of degree n. If

e==e2%l then the following formulas hold:
(1) x (=2) ~ (-D" x__(2)
(111) xm(z-+2%) ~ eMx (2).

Here ~ means that equality holds up to a common nowhere vanishing

function independent of m. Moreover, at the origin one has

(1v) x, (0 = (=1 "x__ (0).

We shall prove this theorem in the next section.

(I.2.4) We want to rephrase the above result in a slightly diffe-
rent terminology. To do this we consider the vector space
v =P

and denote its standard basis by {em} . We define elements

m EZZn
g,t €EGL(V) by

c(em)

il
D

t(em)

i
™
(0]

The automorphisms ¢ and 1t do not commute but one finds

-id

h
™

Lo,7]

10
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Definition: The subgroup HnggGL(V) generated by o and 1t is called
the Heilsenberg group of dimension n. The representation defined by

the inclusion is called the Schrddinger representation of Hn'

Remarks: (i) For a more general definition of the Heisenberg
group and its Schrédinger representation see Igusa's book [14, p.10].
Instead of an arbitrary locally compact group we have just con-

sidered ZZn here.

(11) The centre of the Heisenberg group Hn equals
- m .
un-{e idv,mEZZ}

and the group Hn is a central extension

1>y —=H = 7Z xZ_ =1
n n n n

where ¢ and t are mapped to (1,0) and (0,1) respectively. The order
of Hn is n3. In fact if n=p=23 is a prime number then Hp is the
unique group of order p3 with exponent p.

(ii1) The Schrédinger representation of Hn is an irreducible re-
presentation. Moreover if n=p is a prime number it is not difficult

to describe all irreducible representations of Hp. To do this let

: H = GL(V
P pG()

be the Schrddinger representation. We shall denote the corresponding
H_-module by V1. The Schrddinger representation gives rise to p-1
irreducible Hp-modules Vi, i=1,...,p-1 of dimension p in the follow-

ing way:
i
ot Hp - GL(V}
pi(c) = g
Di(T) : o= 1T,

In addition Zp){Zp and hence also Hp has p2 characters which we

shall denote by vkL with k,4 € Z, . Since the sum over the squares of

dimensions of the irreducible representations described is

11
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2

(p-1)p? +p2 =p° = Ia,|

this is a complete list of irreducible Hp-modules.

In order to rephrase our result we finally consider the involution

1 : V>V

Remark: Note that the subgroup ﬁngiGL(V) generated by Hn and 1

has order 2n3. In fact it is a semi-direct product of Hn by EZ =
(id,v).

Now theorem (I.2.3) can be expressed as follows.

(I.2.5) Theorem: (i) The involution 1 leaves the elliptic normal

curve C_ c T _, invariant (as _a curve) and operates on it as the in-

volution with respect to the origin @.

(1i) Similarly the Heisenberg group Hn leaves the curve Cng;mn_1

invariant and operates on it by translation with n-torsion points.

Remark: We can look at the situation from a somewhat more ab-

stract point of view. The group Gn'ézznx Zn of n-torsion points

operates on C by translation. This defines an operation of Gn on
P (T(6 c(no) )) in the following way

n n
z P, = z (P, +P)
i=1 1=1

where + denotes addition on the elliptic curve. Identifying IPn_1

with P(T(6,(n@® ) we can say that we have extended the operation of
the group Gn on Cn to projective space EB_1. We thus get a pro-

jective representation

SIS Gn - PGL(n,C).

On the other hand the Feisenberg group Hn is a representation

12
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group of Gn;Zan zn , i.e. each projective representation

of G, can be lifted to a linear representation of H and vice
versa. Theorem (I.2.3) then tells us that the above projective
representation p of G, lifts to the Schrddinger representation
of Hn‘

3. Computations
In this section we want to give proofs for lemma (I.2.2) and
theorem (I.2.3)

(I.3.1) Proof of lemma (I.2.2): This is a straightforward calcu-

lation which goes in the case of n odd as follows:

2 (m+n)n,z
_ wm+ne(m+n) e 1 (z)

X+n (2) “m+n,0 ."°'°m+n,n—1(z’
_ (wmemzemn1z)(wneZmn+nzenn1z).
(m+n)w (m+njw, + (n=-1)w
1 1 2
U(Z———n—) ’...'O(Z- n )
2 mn 2 nn,z
_ (mmeme 1Z)(mn62mn+ne 1).
mw mw, + (n-1)w
. . _ 1 2 _
U(Z-T’w1) o s U(Z —n— (1)1)
(3) 2 nn.,z
- erl(z)mneZmn+n e 1 (_1)n
nw, o mw, + (n-1)w w
1 1 1 2 1
-n (z - ———— -1 {z-—m ———— = -
e 1 n 2‘---'e 1( n 2)
1 n
2 - {-mw, —s(n-1w, - 3w
- xm(z)wnGZmn+n (_1)ne 1( 1 2 2 2 1)

- (-1 L R
2 "2 1, 2n

2
(2mn+n“)
xm(z)(—1)2ne

13
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n 1 .
nl{n oy ¢ Jaetray)

1, _ _
IR -5(n N ln,e, n1w2] (i) ()
T m € m

The proof for n even is very much the same and since we are mostly

concerned with the case n odd, anyway, we shall omit it.

(I.3.2) Proof of theorem (I.2.3): Again we shall limit ourselves to

the case n odd since the case n even is very similar. The proof con-

sists of several steps.
(i) We first have to see that the map

zr (X, (2):...:X (z))

(¢} n-1

is well defined. To see this we shall check that the functions X

have the same automorphy factor.

2 mn, (z+kow, +Lw.,)
xm(z +kw1 +£w2) = oM™ e 1 L 2%,

0 o2 tkey +Luwy) Tt e (z +kuy +4w,)

’

m m2 mn.‘z mn1 (km1 +£w2)
= w 0 e e

c(z-r—n%l-!—kw1 +£w2)-...'c(z—mw Finthe

(33 mn, (kw, + 4w.,)
=x (ze | 2

n(ks +k +4)

mw kw, +Lw
1 1 2
(kn1 "’11’]2) ( z ———ﬁ—'f'—-—z——)

e el
mw, + (n=-1)w kw, + 4w
1 2 1 2

(knq +4n,) ( z - 5 + 5 )

e

14
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. (v:(_1\(k£ +k +z)emn1(kuu.' +£m2)
m -/ i

1 n
(kn1 +£n2)[nz - mw, -i(n-1,‘w2 +§(kw1 +£w2)]

e
“ ‘ (ke +k +4) ml[n1w2—n2w1]
= ox_(z; (=1) e

m

1
e(kn1 +4n,) [nz +g<kw' +4w,) =5 (n=1)w,]
n L AP

(é)x (z\(_1\(k£+k+£) (kn1+£n2)[nz +2(kw1 +£w2) 2(n 1,w2]

m" "’ ’ e

This proves that the automorphy factor does not depend on m. In
particular, this implies that the X0 define sections in the same

line bundle L on C. Since

n-1 mw 4 +iw

= O mod T.
i=0 n

We have L==®C(nd§. By construction the X have no common zero and

our map is well defined.

(ii; The next step is to check formulas (i) to (iv). We shall
restrict ourselves to the most interesting case which is (i) . This

will give us a proof of (iv) at the same time.

2 -mn,z

m,m 1

-} = -z ) . . -
xm( z) w 0 e cm,O( z) ... 0m,n—1( z)
2 -mn,z mw mw, + (n-Nuw
= wmem e 1 c(—z-—-—1- '._.'o(—z-—1————2)
n n

n m m2 mnq2 mw1

-1)"w 8 e c(z-+—;—)

15
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c(z +mw1n+w2)..“.°(z +mw1 +rin—1)w2)
= ( 1)nwm6m2e—mn1zc(z - (n_:)w1 +u,)

c(z _(n-m)w; +(n-1)w2 +w1+w2).....o(z_ff:fi;lifg_+w1+w2)
D mgn? T n’in_m’o(z) O g (2

en1[z‘(n;m)“’1 +w71]e("1+”2’[z - (n-m>w;+(n-1>w2 + +2m2]

(n—m,:w1 +w2 +w1 +w2
5]

o ey tnplz -

n

2 -mn,z

MaM o o (z)*..."0 1(z)

™1 w .
n-m,0 n-m,n-

’ _E\ -1) _r_l_f_[_\ -1‘.
n1[nz~+\m 2,m1]en2[(n Tiz+ m-3 n-+2,m1]

n
_ 2m-n -n2 +2mn N2 M~V Z nquym-3
= X (z)w 5} e e

n m, 1
en2w1(m-§-—5+§)

(n=-1) (2m-n} NyWg

nz(n—1)z

= x_ (z)e (_1)2m—n 2 n

e

2 —mn w0, N, m-=-2) now (111—13——4-1
2 171 "1 27 21 2 n 2
e e e

16
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(111) In order to finish the proof we have to show that the X
form a basis of F(@C (n®)). This is equivalent to saying that the
image C,, of C spans I _, . But the latter follows from (ii)

together with the fact that the Schrddinger representation is irre-

ducible, i.e. the orbit of any point under Gn spans :an_1

17
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II. An abstract configuration

Throughout this chapter let n=p23 be a prime number. We want
to describe an abstract configuration in Pp_1 which can be associa-

ted to the Heisenberg group Hp and the involution 1. In case p=3
this will turn out to be nothing but the well-known "Wendepunkts-

konfiguration" of a plane cubic (see Chapter III).

I should mention here that I first heard about this configuration
from W.Barth. We both did not know then that it bad been classically
known and it was only by chance that I found C.Segre's paper [16]
where he gives a different description of the same configuration.

1. The invariant hyperplanes

(I.1.1) Recall that there are exactly p+1 subgroups Zng Zp xZZp :

They are generated by (0,1) and (1,%), léimp respectively. Before
we can describe the configuration we shall first have to determine
all hyperplaneng]Pp_1 which are invariant (as hyperplanes) under

one of these subgroups.

Let us start with the subgroup generated by (0,1). Clearly
t(H) = H

if and only if H is one of the hyperplanes

o = {x_, =0].

Note that

H

L = ot H) .
Next we shall determine all hyperplanes H such that

fom) = H.

We first remark that, because of o, the equation of any such H must
be of the form

18



AN ABSTRACT CONFIGURATION

It is easy to check that invariance under rzc is equivalent to

b _
A1 1
sm (m=-£)
Am = AT':Z form=2,...,p-1.
Hence we can set
1
‘i(p—1)l k

= €

M
for some k € ZZp and the other Am's then become

%(m-p)z—mk
A = € .

It follows that the p hyperplanes

p-1 g(m-p)z-mk
L ¢

H x_=0}; k =0,.0.,p-1

k4 n=0 m

are exactly the hyperplanes invariant under tzc. Note that

k

Hey = 7 (Hgy).

We can sum this up as follows:

(I.1.2) Proposition: For each of the p+1 subgroups ZZpg szzzp
there are exactly p hyperplanes which are invariant under this sub-

group.

2. The configuration

(I.2.1) At this point we want to return to the involution 1 which
was defined in (I.2). Recall that it is given by

v:cP P
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It defines a decomposition of cP into eigenspaces, namely

cP =t eocE

where
EY = ( + +
= (egregtey qre.aie g te +17
2 2
E = (e “ep_qrerereg g€ +1?
2 2

Clearly dim E+==%(p+1) and dim E—==%(p—1).

(I1.2.2) Lemma: E = HyNHyN... NHy o q.

Proof: (i) We shall first prove that E is contained in this

intersection. Clearly E cH Furthermore recall that H is

(oM oL

given by

p-1

L Ax =0

m=:0
where

P %xn(m-p)z

A = €

m

The assertion now follows from

1 1
~ 5 (p~m) (-m) 4 ~ 5 m (m-p) 4 2
A = € = € = A_ .

(1i) To finish the proof we have to show that %(p+1) of the

hypersurfaces H. and H are independent. To do this we have to

(0] o4
examine the matrix
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AN ABSTRACT CONFIGURATION

2 p-1
1 1 Ao AO . AO

2 p-1
0 1 x1 A1 cee A1

2 p-1
o 1 Ap—1 Ap-1 e Ap-1

Using the well known formula for the Vandermonde determinant it will
be sufficient to see that %(p+1) of the Am's are different. There-
fore we look at

X2k - Ek(2k-p) - e2k
It suffices to see that

2k? 3 242 mod P
p-1 . . . .
for k#4€{0,..., > }. But this is clearly so since otherwise

pl2 (k-2) (k+2)

which is impossible. This finishes the proof.

Remark: It follows immediately from the formulae given in

(II.2.1) that E- is not contained in any of the hyperplanes H, or

k
sz unless k =0.

Our next step is to define for all k,4 € ZZp subspaces

:=chL(E-).

(IT.2.3) Lemma: E,,6 NE =0 if (k,4) #(k',4").

k4 k'e!

Proof: It will be enough to show that
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E n

oo MEyx, 4,0

for (k,4) # (0,0). To see this assume that

p-1
x= 2L xe €E_NE
n=0 m m 00 -k,-4
Since x:EEOO it follows that
(1) X, = "X _o.

On the other hand, since x €E_ it follows that rkol(x) €Eqg-

k,-4
This is equivalent to

2mk

(2) X € = =X

m+4 -m+4
If £=0 and k #0 it follows immediately from (1) and (2) that x =0.
Hence assume £ #0. By (1) it follows that x.=0. Setting m=-4 in

(o}
(2) this implies x,, =0 which because of (1) leads to X_o =0. Using

24
(2) again, this time for m=-34 we find x

way one finds x =o0.

£

4£=:0. Proceeding in this

(IT.2.4). We can now sum up the situation as follows: We have found

p(p+1) hyperplanes which we have denoted by Hy and H, respectively.

Moreover, we have constructed p2 subspaces Ek of dimension %(p—1).

£

Now each of the spaces Ek is contained in exactly p+1 of the hyper-

L
planes and is in fact their common intersection. On the other hand,

each of the hyperplanes Hk and H contains exactly p of the sub-

k4

spaces E and is indeed spanned by any two of them. In particular

k4
we can say:

(IT.2.5) Proposition: The p(p+1) hyperplanes Hk and sz together

with the p2 subspaces Ek
2

(p p+1 ' p(p+1)p).

P form a configuration of type

(IT.2.6) So far we have said nothing about the relation of this
configuration to the elliptic normal curve Cp. Because of
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- (0;
xm(O) X_. (0}
it follows that the (projective) space EOO==E_ contains the
origin &. Hence each of the subspaces Ek£ goes through exactly one
—km1 +Zm2
of the p-torsion points of Cp’ namely Pk£=J———z;———n In fact

this is the only point of intersection of Ekz with Cp.

Since the hyperplanes Hk and Hk are invariant under some sub-

£
group Zng Gp it follows that they each contain exactly p of the

p-torsion points. On the other hand the hyperplanes are determined
by these points. The exact relation is given by

-kuu1 +mw2
imeEZ = {——= ; mecZ
0 p} p}

H 3 {um +kP 5

1

m(-w1 +£w2) +kw2
+kPo1;mGZZp]={ 5 ;mGZZp}.

H

) [mP1

k4 £

We can summarize this as follows:

(IT1.2.7) Proposition: Each of the hyperplanes Hy and H inter-

k4
sects Cp in exactly p of the p-torsion points. The union of all p
2

hyperplanes belonging to a fixed subgroup Zpg;Gp contains all p

hyperosculating points of Cp.

3. The fundamental polyhedra

(IT.3.1) 1In this section we want to discuss some polyhedra which
arise naturally from the above configuration and which will be
useful later.

Definition: The fundamental polyhedron associated to a subgroup

Zpg;Gp is the union of all hyperplanes which are invariant under

this subgroup.

Remarks: (i) By what we have said before there are exactly
p+1 fundamental polyhedra and each of them is the union of p
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hyperplanes. The homogeneous forms describing these polyhedra are

p-1
Q_, = T x
1 k=0 k
p-1 p-1 g(m—p)L—mk
QL = n (X ¢ xm) ; 4= 0,...,p-1

k=0 m=0

(11) Another way of describing the fundamental polyhedra is as
follows. Since the operation of Gp on the space of hyperplanes is
irreducible it follows that the p hyperplanes forming a fundamental
polyhedron are independent. Hence any p-1 of them intersect in a
point. In this way we get a p-simplex whose vertices are exactly the
fixed points under the subgroup Ep belonging to the fundamental
polyhedron. The fundamental polyhedron itself consists of the
(p-2)-dimensional faces of this simplex. For example if Ep={rm ;
n\GZZp} then the p-simplex in question is nothing but the simplex of

reference.

(1iii) Note that by (II.2.7) each fundamental polyhedron inter-
sects the elliptic normal curve Cp exactly in the p2 points of
p-torsion.

(IT1.3.2) Proposition: The p+1 homogeneous forms Qz are invariant
under the operation of the Heisenberg group H

p*
Proof: The assertion is clear for Q_1. To prove it for QL’
£=0,...,p~1 we show the following:

p-1 p=1 3(m-p)4 -mk
T ( L € X

it

(i) T(Qz) .
=0 m=0

It

€

m
p-1,p=1 3(m-p)4 -m(k+1)

I ( T el X
m=0

k=0 m

I

P p-1 %(m-p)ﬁ -mk )
it ( L e X
1 m

m=0

it
0
=
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P P p-1 p-1 %(m—p)z -mk
(1ii) T o(Qz) =10 ( it L e X
k=0 m=0

p-1; p-1 %(m-p)z-mk - (m=1)4 )
H(Ze x1

m—

k=0"' m=0

p=1,p=2 (%) mr1-p)4 - 1)k -ms
i ( Z e X )

=0 ==1

p—1( $0-p) =% p=2 D(m-p)s -mk )
mle Z e X,

k=0 m=-1

li

Q-

Since 1 and rta generate the Heisenberg group Hp this concludes the
proof.
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III. Examples

In this chapter we want to illustrate the results of the preceding
two chapters by looking at elliptic normal curves of low degree. We
shall treat the cases n=3,4 and 5. In order to complete the picture
in the case of the elliptic normal quintic we shall also state some
results here whose proofs will be given in chapters IV and V.

1. The plane cubic

(ITTI.1.1) Let C gJPz be a plane cubic curve embedded as described

3
in chapter I. Then C3 is invariant (as a curve) under H3 and the
involution 1 and the same holds for its equation - at least up to
a multiplicative constant. Now the only homogeneous forms of degree
3 in 3 variables which have this property are of the form
3 3 3
a(xo+x1 +x3) + bx

ox1x2 = 0.

Since C3 is irreducible it follows that a #0 and the equation of C3
is given by
3,.3,.3.b _
xo-+x1<+x2-+5 XX X, = 0.

Hence we see that to embed the curve as described in chapter I

implies that C3 is already in Hesse normal form.

(IIT.1.2) Next we want to describe the configuration determined by

H, and 1. Each of the 4 subgroups Z3§;G gives rise to 3 invariant

3 3
lines, i.e., to a triangle. Each of these lines intersects C3 in 3
points of inflection and each of the triangles contains all 9 points

of inflection. The 9 subspaces E have (affine) dimension 1 hence

k4
coincide with the 9 points of inflection. So the configuration we
get is exactly the well known "Wendepunktskonfiguration" of a plane

cubic. It is of type (94,123).

In the following picture we want to describe how the invariant
lines are related to the 3-torsion points.
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H° H:Hz HEH1

-1

(02) H..

(01) He

V) <100  20) W1

2. The elliptic normal quartic

(IIT.2.1) Let C,cIP, be an elliptic normal quartic embedded as

4 3
before. Any such curve is the complete intersection of two quadric
surfaces and the first point we want to make is that we can use the
symmetries of the curve to determine this pencil of quadrics. To do
this we look at the H4—module

* 0
SV = H (®]P3(2))'

As an H4—module it has a decomposition

2% 2
SV=®Vi
i=1
where
) 2 2
V1 (x0+x2 ,x1-+x3)
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Vy = (xox1-+x2x3 P X X%, +x0x3)

V5 = (xox1 —x2x3 P X X, -xox3)

Now V1§:V3 as H4-modules whereas no other two of the direct summands

are isomorphic. Clearly the pencil of quadrics which cuts out Cy4
must be invariant under Hy. We first want to exclude that it is
either V2 ,V4 or V5. It cannot be V2 since C4 is not a plane curve.
w
To exclude V4 and V5 it is sufficient to remark that xi(%(m1+—§0)= (o]

if and only if 1 =0. Hence we find that

rd.(2)) ¢ v, @V,

Moreover, as an H4-module P(JC(Z)) is isomorphic to V1 and V3. Hence
. _ _ -1
it has a basis QO,Q1 with t(QO)--QO and Q1v—c (QO). It follows that

C4 is the intersection of the quadrics

.2 2
QO = xo+x2+2ax1x3

.2 2
Q1 = x1-+x3-+2axox2
where
xg(zo) Wy Wy
a -——F————F— with 2z = — +—45.
2x1(zo)x3(zo) 0 2 8

Note that a #0,®, +1, i .

(IT1.2.2) Although we cannot associate a configuration similar to
the Wendepunktskonfiguration to the curve C4 we have still got an
interesting geometric picture which we want to describe next. To do
this note that the pencil of quadrics

0 = A0, +0,
counts four singular quadrics which are given by

A= t%, ta.
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The vertices of these quadric cones can be easily computed to be

5,4 (0:1:0:-1)
€, = (0:1:0:1)

S3=-(1:O:-1:O)
Sy = (1:0:1:0).

Next note that the involution 1 :e + e_ defines a decomposition

v-e k€
where
E = (e1 —e3)
E = (eo,ez,e1 +e3).

We see that S1 is just the point defined by E  whereas the other
vertices span the plane determined by EY. This has the following

consequence. Projection from S1 defined a 2:1 map

[}

n:C, »C

4 P

1

where C is a plane conic. The projection map n induces an isomorphism

s ”‘9191(2” ~ g*.

From this it follows that the branch points of n are the 2-torsion
points of C. In other words, the vertex S1 lies on the tangents
through the origin and the points related to ® by half-periods. In
this way the 16 tangents at the 4-torsion points can be grouped into
4 sets of 4 lines all meeting in one of the vertices.

3. The elliptic normal quintic

(III.3.1) Unlike in the cases before an elliptic normal quintic

c5g;m4 1s no longer a complete intersection. But it is still true

that Cg is cut out by quadric hypersurfaces. We shall see in the next
chapter that
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h®a.(2)) = 5
i.e. that there are 5 independent quadrics through C5 and, moreover,
that their common intersection is (scheme-theoretically) the elliptic
normal quintic curve. As in the case of an elliptic quartic one can

again make use of the symmetries of C5 to determine the space

._ .0
W= H (3,(2))
As a result one finds the following basis of W:

.2
Q. = x0-+ax X

where

(III.3.2) Next we want to discuss the configuration associated to
the Heisenberg group H5 and the involution 1. For each of the 6 sub-
groups ZZSg_ ZS X ZZS we get five invariant hyperplanes which together

form the 6 fundamental pentahedra. On the other hand the 25 sub-

spaces Ek define 1lines L

P whose equations are

k4

Together they form a configuration of type (256,305).

Recall that we had seen in (II.3.2) that the quintic forms
associated to the fundamental pentahedra
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4

(@] I x

-1 k=0 k
4 4 %(m—S)l - mk

QE = I Z e xm) (£ =0,...,4)
k-0 m=0

are invariant under the Heisenberg group HS' We shall see in chapter
V that all quintic forms which are HS—invariant form an affine
6-dimensional space

r (6. (5)) € I'(6, (5))
H :[P4 1P4

and that the quintic forms associated to the fundamental pentahedra
form a basis of this space. We shall also see that the common inter-
section of these quintics are the 25 skew lines Lkl‘ We can summarize
this as follows:

(IT1.3.3) Proposition: The six fundamental pentahedra determine a

basis of the space PH(@E@(S)) of invariant quintic forms and the

25 skew lines Lk are the common intersection of these quintics.

£

(ITI.3.4) We want to conclude this section with a remark relating
the curves C,4 and Cg. If one projects Cg from the origin one gets an

elliptic normal curve C g]P3. This projection is compatible with the

4

involution. It maps L..=~IP(E ) to the point S

00 1 in IP3 which is the

1-dimensional eigenspace of 1 belonging to the eigenvalue -1. Hence
S, is the vertex of a quadric cone through Cy. But this means that

Loo is the singular line of a rank 3 quadric in P, which contains

Cg. Corresponding to the four quadric cones through C4 there are 4
such lines. LOO is distinguished among these by the fact that it

is contained in the osculating plane of C5 at ¢. An analogous state-
ment holds, of course, for the other lines Lkz’ too.
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IV. Elliptic normal curves and quadric hypersurfaces

In this chapter we want to study the quadric hypersurfaces

through an elliptic normal curve Cn§;E> To start with we shall

n-1"°
prove that the curves C, are projectively normal. This is well known.
For lack of a suitable reference, however, we want to include a proof.
Next we shall show that an elliptic normal curve of degree at least
4 is the scheme-theoretic intersection of quadrics of rank 3. This
is a special case of a result of Mumford on abelian varieties [15,
theorem 10]. Here we shall give a simple proof for the case of

elliptic curves.

In section 2 we shall return to the case n=5 and determine the

space of quadrics through an elliptic normal gquintic.

Sections 3 and 4 finally deal with the singular quadrics through
an elliptic normal curve of degree 5. Some of the results here are
new, in particular the description of the locus of the singular
lines of rank 3 quadrics through Cg and its connection with the 25
skew lines Lkz'

1. The space of gquadrics through Cn

As usual we denote by Cng;mn_1 an elliptic normal curve of

degree n.

(IV.1.1; Lemma: Let P1""’Pk be k different points on Cn. Then

these points are independent if k<n-1, i.e. they span a subspace

of dimension k -1.

Proof: It will be enough to prove the lemma for k =n-1. Hence
assume that the points PireeasP g lie in some subspace of dimension

n-3. Then if P ECn is any other point different from P1""'Pn we

-1
can always choose a hyperplane H such that it cuts out the divisor

P+P1 +... +Pn_1 on Cn' This is a contradiction.

(IV.1.2) Proposition: Every elliptic normal curve Cn of degree n=3

is projectively normal.
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Proof: The assertion is clear for n=3,4. Hence we assume nz25. We

have to show that the map

r(6 (£3) = T(6, (£))

Ipn-—1 n

is surjective for all £ =0. We want to give a proof by induction
using the fact that C, is linearly normal. To do this we choose a
general hyperplane H such that the set

rr« =C_NH
n

consists of n different points P1,...,Pn. Then there is a commutative

and exact diagram

o = JC(Z+1)-o GIP (£+1) =» G6,(£+1) - O

n-1 ¢
Il ] ]
n
0 = J.(4+1) ~ 6, (4+1) - § c, =~ O
i=1
] ] !
0 o) o)

where Jr denotes the ideal sheaf of I' in H. To prove the proposition
it will then be enough to show that

Rl (o, (e41)) = 0 for 121,
But that follows if we can prove that the map

n
T(GH(£+1,) - _Z C,
i=1
is surjective for £z2 1. To see this, however, it will be enough to
prove it for £ =1. To do so we want to show that for each Pi there

exists a quadric Q in H which goes through all points of T with the
exception of Pi‘ To simplify our notation we take i =n. Then the
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points P.',...,Pn_2 span a hyperplane H' CH which does not contain Pn.

On the other hand, we can certainly choose a hyperplane H" through
P -1 which does not contain P . Therefore, we can choose Q as the

union of H' and H".

Mumford [15, theorem 10] has shown that every abelian variety
embedded by a complete linear system |nH| where H is ample and n = 4
is the scheme-theoretic intersection of quadrics of rank s<4. For
elliptic curves a stronger statement holds:

(IV.1.3) Theorem: Every elliptic normal curve CnEJPn_1 of degree

n>4 is the scheme-theoretic intersection of the quadrics of rank 3

which contain it.

Remark: Since Cn spans P _4 there are no quadrics of rank <2

containing the curve Cn'

Proof: We shall proceed by induction on n. For n =4 the statement
is true since every elliptic quartic C4§jm3 is the complete inter-

section of two quadric cones (see (IV.1.2) and (III.2.2)). Now assume
n2>5. We shall first show that Cn is a set-theoretic intersection of
rank 3 quadrics. To do this let P QCn be an arbitrary point not lying

on C . We can choose a point P_€C_  such that the line 5?0 is neither
a secant nor a tangent of Ch- Otherwise projection from Po would map

C, onto a curve EEIPn__Z of degree <2. Since C spans P this

-2
implies

n
521’]—2

which is a contradiction to n=5. Projecting from Po we get an
elliptic normal curve C _,c® .. The image P of P does not lie on

Cn-1‘ By our induction hypothesis there is a rank 3 quadric Q'

through € _, which does not contain P. Let Q be the cone over Q'

with vertex P_. Then C _, <O but P¢Q.

-1
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It remains to show that the rank 3 quadrics separate tangents.
Let P ecn be an arbitrary point on the curve Cn and let L be a
line through P which is not tangent to Cn at P. Next choose a
point Po ECn which does not lie on L. Projecting from P0 we get
an elliptic normal curve C _,cP _,. Let B, resp. L, be the
image of P, resp. L. Using once more our induction hypothesis
we can choose a quadric Q' through C _, such that Q' and the line L
intersect transversally at P. The cone Q over Q' with vertex PO
therefore intersects the line L at P transversally and we are

done.

2. Quadratic equations for 05

In this section we want to return to the case n =5 and determine
the quadric hypersurfaces through an elliptic normal quintic thus
providing a proof of our statemtnt in (III.3.1). Since for the rest
of this chapter we shall restrict ourselves to the case of an ellip-
tic normal quintic we shall frequently write C instead of C5.

The following result can already be found in Bianchi's paper [3]:

(IV.2.1) Proposition: There exists a 5-dimensional space of quadric

hypersurfaces through an elliptic normal quintic CS' A basis of

this space is given by

-~ 2 1
Qo = Xp tax Xy = XX,
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03 = x3 +axox1 - x4x2
Q X2 +ax,x., - sx_x
4~ T4 172 073
where
x1(0)
RN (o)

Proof: (1) It follows from the exact sequence
o =~ JC(Z) - 6. (2] = @c(2) - 0

and the fact that C5 is projectively normal that

1
=3y

o) vy - 10
h (JC(2)) (2}) h (GC(Z))

15-10=5.
(ii) To determine the space HO(JC(2)) we look at the H5—modu1e

s%v* = 1%, ().
4

*
As an H5-module 82V has a decomposition

where

2.2 2 2 2
Vo = (XorXj 1 X5 0 X34 %y)
Vo o= (XpXg oy XXy 0 XX s XoXq oo XgX5)

vV, = (x1x4 ¢ KRG s XaXy o, XX xox3).

Note that the Hs—modules Vi are all mutually isomorphic. Indeed with
respect to the given bases the operation of H5 is given by

ole,} = e

i i-1
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It follows that the H5—module HO($C(2)) itself must be isomorphic to

the Vi. Therefore we can choose a basis Qo,...,§4 EHO(JC(Z)) such
that

[of (Qi) = Qi_1

T(ﬁi) = S—Ziéi .

In particular, 50 must be invariant under t, hence it must be of the

form

A — 1 2 ] 1
Qo = a xo-+b x2x3-+c x1x4

Lw
We first note that a' #0 since xk(—gl)==0 if and only if k= 4.
Hence we can rewrite 60 as
Q. = 2 + ax +b
0 T ¥o TaXp¥3 TOXXy

and it remains to determine the constants a and b. We find

2 1“1 2

o x (=) e x0

. (ﬂ)x (-m_-) X4 (O)X2(O/ XZ(O/

2175 3175
and
2w
1 R O A
= 2u, 2w1) - %, (0)x, (0} x 0y~ ar

(IV.2.2) It is known (see [4]) that one gets equations for C5 by
taking the 4 x4-pfaffians of a suitable skew-symmetric 5 x 5-matrix
whose entries are linear forms. We briefly want to mention how this
fits into our picture. The first remark is that there are the follow-

ing linear relations between the quadrics éi :

37



K. HULEK

(x361-—x204} + a(x162-x463) =0
(x40, =%305) + alxy03-x0,) =0
(X053 -X4§1) + a(x364 -x1éo) =0
(2,04 =x,0,) + a(x,0,-%,0,) =0
<x260-x1§3> + a(xoé1 -x3§2) = 0.

Indeed one can easily see that these are the only such relations. We
can rewrite the above set of equations in the form

Mt = o
where

Q = (QOI---'Q4)

and where M is the following 5 x 5-matrix:

(@) “X3 -ax, ax, X,

X3 (o} X, -ax, axgq

M = ax, Xy o --x0 -axg
—ax, ax, xo O X4

“X, -~ax, ax, X4 (0]

It is then easy to check that the quadrics éi are just the
4 x 4-pfaffians of the matrix M.

3. The singular quadrics through C5

(IV.3.1) Here we want to study the singular quadrics through an
elliptic normal quintic C==C5. Recall that C is embedded by the line
bundle
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= Vo= )
L ®C(56, @C(H,.

We denote its space of sections by

v o= 10w = % (1)
4
and we shall frequently identify a point P € P4 with the hyperplane

VPg;V* of linear forms vanishing in P.

Finally if P is any point of C we denote the (up to a scalar
unique) section in the line bundle @c(P) by

6} \
t, € H (@C(P)).
The following proposition is a slight generalization of a result

of Ellingsrud and Laksov [6, prop. 2].

(IV.2.3) Proposition: Let P,,/P,€C be two points (possibly equal}

and let L be the secant line (resp. tangent) of C through P1 and Pz.

Then for each point P € L-C the space curve Copr i.e. the projection

of C from P lies on a unique quadric QP' If 2P1 +3P2'% H and

3P1 +2P2<fH then there exists a unique point POE'L-C such that QP
(o]

is singular, otherwise no such point exists.

Proof: TIf the quadric QP exists it must clearly be unique since
Cp is a space curve of degree 5 and hence cannot lie on two different
quadrics. To prove that the quadrics QP exist we want to distinguish

between two different cases.

Case 1: Assume that 2P1 +3P2 «,&H%3P1 + 2P We define points Q,REC

2
by the equations
Q ~H - 2P1 - 2P2

R ~ 3P1 + 3P2 - H

Note that Q # P #R and that
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) 30 + 2P ~ H.
At this point it 1s convenient to introduce two more subcases.

Subcase 1: 20Q ';\’—P1 +P2 .

We first note that

o 0 2
(2) H (L(-P1-P2))tP1tP2 N H(L(-2R-Q))t ty = O.

Because otherwise we would have

Q + 2R + P1 + P2 ~ H

which together with (1) would imply

20 ~ P, + P,.

1 2

Now we fix some point P €L, P;éPi. Then

P, — P

EO(L(-P,-P.))t. t. < V. .
17F2 )t tp

Because of (2' it follows that
dim (B0 (L (-2R-0)) £ t2 N V) = 1
QR P :

This implies that there are (unique)} points R,/R, €C such that

2
tQthR1tR € VP .

2

We then define sections Yy EVP as follows:

_ 2,2 Lo 42
Y 8 7 tQtP1tP2 r Yy 2 = tQthP1tP2

Yy i = tptp tp tp tp .

2
Y, ¢ =t t
3 QR 1 P2 Ry Ry

The equation

Y1Y3 T Yo¥y & o
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then defines - unless it is identically O - a quadric QP which con-
tains Cp. We shall have to prove that Qp has rank 4 for all points
in L-C but one. To see this we first notice that Y1 and y, are
linearly independent since Q;fPi #R and that because of (2) the
section y; is not in the span of y, and Yyo. Hence any possible
linear relation between the Yy must be of the form

3
(3) Yy = % vy
This implies that Q is one of the points Pi ,Ri or R. We know that

Q# P, (1=1,2). Moreover, Q#R since otherwise

2Q~Q+R~P1+P2

which was excluded. Hence we can assume Q=R But then it follows

1°

from
2R+2Q+R2~H~2R+3Q
that in fact R1==R2==Q. Hence (3) is possible only if PO is given by
0 2,3
VPO = H (L (-P, Pz))tp1t1>2 ® Ctpty -

Clearly Poifpi (1 = 1,2) and this implies that Py € L-C since C has

no trisecants. Since, moreover, the quadric QP has rank 3 we are
(0]
done in this case.

+P

Subcase 2: 2Q~P1 5

In this case we have 50 ~H and Q =R. But we have still Q;fPi (1=1,2)
since 2P, +3P2-%}I%3P1 +2P,. Because of Q;éPi it follows that

(L(—3Q))té = ¢ttt

0
H op, e

o
H (L(-P,-P.))ty ty N
17727 e py 2

Again let P € L-C be some fixed point with corresponding hyperplane
VP. Since

, 0 2,
dlm(VP nH (L(-ZQ)tQ/ z 2
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. 2 .
there are points R1,R2,R3 € C such that tQtR1tR2tR3 EVP is inde-
3 . .
pendent from tQtP1tP2 . We define sections Yy EVP by
2 .2 3
vy, ¢ = t ot ' vy, = =ttt
1 Q P1 P2 2 Q P1 P2
Ya ¢ = t2t t, t vy, ¢ =t t, t, t_ t
- = 2 - = .
3 Q R1 R2 R3 4 P1 P2 R1 R2 R3

As before the equation
Y1Y3 'Y2Y4 =0

defines a quadric QP which contains CP . It remains to see that QP
has rank 4 for all points but one in L-C. By construction Y, and
y3 are independent and y¢ is not in the span of y, and y3 since
Q;fPi. Hence there can only be a relation of the form

In this case we can assume Q =Rj3. If o3 #0 the above relation implies
Ry =Py (1 =1,2) and hence y, =y3 which is a contradiction. It

follows that ag =0 and that the relation must be of the form

We can apply the above argument once more to conclude that az#(L
Hence

5 3 3
tQ € (tQtR1tR2 ’ tQtP1tP2) c V.

Hence QP can only be of rank 3 if P is the point PO given by

= 5%(1(-p. -
Vp = B (L(-P,=P,))t, t

5
p p @ Ct

o 1 P Q-

As before we can see that POGEL-C and since QP has indeed rank 3 we

are again done.
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Case 2. 2P1 +3P2~H or 3P1 +2P2~H.
After possibly interchanging P1 and P2 we can assume that

(4) 2P1 + 3P2 ~ H.

We can choose a point S %Pi (i=1,2) such that

28 ~ P1 + P2 .

First note that

0 0] 3 _
(5) H (L(-P1-P2))tP1tP2 N H (L(=38))tg = O

since otherwise we would have

P1+P2+3S~H

which one can rewrite as

S + 2P +2P2~H.

1
Together with (4) this would imply S==P2 which we have excluded.
Let P €L-C be some fixed point. Because of (4) we find

3

aim (50 (L (-38) £

n VP) = 1

i.e. there are (unique) points R./R, €C such that

2 .3 2. .2
s = tf ot . =
Y1 p.%p, , Y2 ¢ tstp1th
v, i =ttt V.ot o= tot. £ £t
. = , . -
3 s°r, "R, 4 s*p,%p, R R,

Then we can define OP as
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Yq¥3 ~ ¥p¥y = O.

In order to finish our proof it remains to see that QP has rank 4
for all pointsP € L-C. Because of (5) we know that Y3 is not in the
span of Yq1Y, and Vg Moreover, since S;éPi (i=1,2), it follows

that ¥4 is not in the span of Y, and Yg+ Hence any relation between
the Yy must be of the form

a2y2 + a4y4 = 0.

In this case we can assume that R1 =S and R, =P But then P is

2 2°
given by

= 1%L (-p. - 4, o
Vp = H(L(-Py=P,y))t, t, @ a:tstPz =V

1 P2 P

2

P = P2 € C.

This concludes the proof.

Remark: In the above proposition we have not said anything about
what happens if we project from a point on the curve C. In this case
CP i1s an elliptic normal quartic and as such it is cut out by a

pencil of quadrics. In particular, C, lies on 4 different quadric

P
cones, i.e. C itself lies on 4 rank 3 quadrics whose singular lines

go through P.

In the above proof we have associated to each (unordered) pair
(P1,P2) with 2P1-+3P2¢}i¢3P1-+2P2 a point P in SecC -C together with

a rank 3 quadric QP which contains C and whose singular line goes
through P. We shall see later that the map which associates to
(P1,P2) the point P is injective. The point which we want to make
here is that the quadric QP only depends on the divisor class of

P1 +P2.

(IV.3.3) Proposition: The guadric QP depends only on the divisor
class of P1 +P2.
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Proof: Let (P1,P2> and (P{,Pé) be two (unordered) pairs with
] 1
P1+P2~P1+P2.

The quadrics QP and QP' associated to these pairs are given by

2 o )2
Qp = ¥1¥3 =Y, » Qpr = ¥qv3 = (¥3)

where
2 .2 2 .2
v, = t tl ot , y! =t ti,t
1 Q°P, P, 1 Q Pi Pé
= t%¢ t, t = 2ttt
Yy 7 Yotrtp P, Y 0"R"P; P!
. .3,2
Y3 = ¥3 T tatg
Since

P + P, ~P, + P

1 2 1 2 ~ QFR

and since (P1,P2) # (Q,R) there is a linear relation
t o, t., = o
2

tP1tP2 + athtR .

1
Note that o, #0 since (Pi,Pé) # (Q,R) .Using this relation we find
Yo T ¥y *oop¥3

Yy = “$Y1 t 20005y, * “§y3'
But then
(a3 * 20505, +a5y3)yy = (agy, +agyy)?

o2 —y2
T epYY3 Ty,

The above proposition can be interpreted as follows: If we vary
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the secant line through the points P1,P2 in such a way that P1+P2
remains in the same divisor class then the distinguished point P on
the secant line moves along the singular line of the (fixed) quadric
QP
section. But before doing so we want to conclude this section with

. We shall come back to this and make it more precise in the next

an easy corollary to proposition (IV.3.2).

(IV.3.4) Corollary: The secant variety Sec C of C is the union of

the singular loci of all quadrics of rank <4 through C.

Proof: We have already seen that if P € Sec C then Cp lies on a
quadric surface, i.e. P lies on the singular locus of the cone over
this quadric surface. Now assume that P ¢ Sec C. In this case CP is
smooth and we have to see that an elliptic space curve of degree 5
cannot lie on a quadric surface QP' If QP were smooth then Cp would
have to have bidegree (1,4) or (2,3). But these curves have genus
g =0 or g =2 respectively. On the other hand, every smooth curve of
degree 5 on a quadric cone also has genus g = 2. Since CP is not a

plane curve this proves the corollary.

(IV.3.5) Remark: From the above corollary it follows immediately
that every quadric of rank <4 through C is one of those which we
described in the proof of proposition (IV.3.2). In particular,

every rank 3 quadric through C is of the form
2
Q = Y-|Y3 —y2

where the y; are as in the proof of proposition (IV.3.3).

4., The locus of singular lines

In this section we want to discuss the locus which is the union
of the singular lines of rank 3 quadrics through C. Before we can
do this, however, we shall have to collect some basic facts about

the second symmetric product of C.

(IV.4.1) Let C be an elliptic curve with origin &. The second
symmetric product of C is defined as the variety

2, _ CxC

s“c /~

46



ELLIPTIC CURVES AND QUADRICS

where ~ 1s the equivalence relation given by

(p,,P ~ (P2,P1).

1772

It is well known that 82C is a smooth surface and the canonical map

p: CXxC = 52C

is a 2:1 covering of 82C by C XC branded over the diagonal A€ CXxC.
For points in 52C we shall use the notation

(P Pz) HEE D(P.]lpz).

(IV.4.2) To study the surface SZC more closely we look at the map

(P P ) e P1~+P2.

Here + means addition on C. In other words we associate to each pair

(P , P ) the class of the divisor P1 +P2 in the Jacobian of degree 2

and then use the origin & to identify Jac2C and C. By means of the
map n the surface SZC becomes a EH -bundle over C itself. It is not
hard to determine the rank 2 vector bundle (unique up to a twist
with a line bundle) on C which gives rise to this ruled surface.

In [1] Atiyah proved that

where E is the vector bundle associated to the non-trivial extension

class

1 € Exté
C

(6, () ,6,)

c c’

i.e. E 1s given by a non-split extension

- - - ) -
o) 6c E 6o (@) 0.

(Iv.4.3) The P,-bundle P (E} is well understood (see e.g. [8]}.
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It is easy to see that the minimal self-intersection number of a
section COEJP(E) is 1. In fact this characterizes TP (E). The
Picard group of s2c - (E) is

Pic (S°C) = BW@®t*Pic C

where we can choose a generator CO of Z such that Cé=—1. In parti-
cular, the group of numerical equivalence classes is

Num 52C = O Z

where the second copy of ZZ is generated by the class of a fibre f.
The intersection pairing is given by

2
CO—COf 1
£2 - o.

Before leaving this general discussion we want tO make one more

remark. For every point P € C we set

C = Cx{P} € CxcC

Lav IR

co : = {P} xC

n

cCxC.

N

Then we get sections CPESZC by

. 1, 2
CP B n(CP; = n(CP).

One finds immediately that

2 =

1 2.2 _
P (CP+CP) = 1.

Nl=

In fact any section with self-intersection number 1 arises in this
way. In the future we shall set

Then we do not only know that Cé==1 but the above discussion also

shows that we can write more precisely
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For future reference we shall make the following definition

D : = {(P1,P2) ; 2P, + 3P

1 2 ~ H}.

R 2
By this we mean that we take all points (P1,P2) € S“C wich have a
representative (P1,P2) with 2P1-+3P21~H.

(IVv.4.4) Lemma: D is a section of 82C =IP(E) and its linear

equivalence class is

D ~ Co + 12f0

where fG HES n—1(e) denotes the fibre over .

Proof: We first want to show that D is a section. To see this
let DO be a fixed divisor of degree 2 on C. Our assertion then
follows from the fact that the two equations

P, + P, ~D

1 2 0

2P1 + 3P2 ~ H
have exactly 1 common solution. To finish the proof of the lemma it
remains to compute the intersection of D with CO. It follows from

the definition of D that as a divisor on CO one has

D.Cy = L P+ L Q~ 130.
2P~20  3Q~3®

This proves the lemma.

(IV.4.5) We can now return to our discussion of the rank 3 quadrics
through an elliptic normal quintic. It is our aim to describe the
locus of the union of the singular lines of these quadrics. We

want to denote this union by F. In other words we set
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F : = Using Q .
Q=2C
rank Q=3

The first thing we want to do is to define a map

which we shall do as follows: If 2P1 +3P21%}i%3P1 +2P2 we set

J—— _ O _ _
¢(P1,P2): = H (L( P1 PZ))tP t

2.3
1 @a:thng*.

P

Here R,Q are defined as in the previous section, i.e. by

Q~H - 2P, - 2P

1 2

R ~ 3P1 + 3P2 - H

and as before we shall identify points in IP4 with hyperplanes in V¥,

Now if 2P1 +3PZ«~H or 3P1 +2P2«~H we set

Py

It

S o
¢ (PP, : = H (L(-P,) )tP2

or

= . _ 0 B
¢ (P P : = H (L(=P,))t,

|
b

1
respectively. The first thing to notice is that ¢ is well-defined.
This is clear if 2P1 +3P2A74H4763P1 +2P2 . To see it in the other

cases 1t is enough to remark that if simultaneously

2P, + 3P2 ~ H

1

3P1 + 2P2 ~ H

then this implies that P1=rP2.

The fact that ¢ maps s2c to F follows from the proof of proposi-
tion (IV.3.2) and the remark following it. Moreover, it follows
from (IV.3.5) that ¢ is surjective.
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(IT.4.6) Proposition: The map

is a birational morphism. It is 1:1 outside the section

D= ¢"1(C)

1]

{(P /Py); 2P, + 3P

1 2 ~ H]

and the restriction of ¢ to D

¢D : D - C

is a 4:1 covering. Moreover, ¢ maps the rulings of SZC to the sin-

gular lines of the rank 3 quadrics through C.

Proof: We shall first verify the set-theoretic properties of ¢.
It follows immediately from the definition of ¢ that

¢"'() =D = (5,7 28, + 32, ~ H].

The restriction of ¢ to D is given by

To see that this 1is a 4:1 map it is enough to remark that for each
P2 € C the equation

2P1 ~ H - 3P2
has exactly 4 different solutions. Next we want to show that ¢ is

1:1 outside D. To do this we first remark that C has only ordinary
secants. Now assume that

[0 (P1IP2/ = ¢ (Q1 IQ2/

where (P,,P,} ¢D and (Q1,Q2) ¢D. This implies that the (different)

1’
secants (resp. tangents) through P1,P2 and Q1,Q2 meet in the point

¢(P1,P2)

(0,0, ¢ C. But this cannot be. Projecting from this
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point we would get a curve CP of degree 5 being on a quadric cone QP‘
Moreover, CP would have at least two singularities. On the other
hand every degree 5 curve on a quadric cone has arithmetic genus 2.
But since there are at least two singularities this would make C
rational which is a contradiction.

Next we want to prove that ¢ maps the rulings of S2C to the sin-
gular lines of the rank 3 quadrics through C. To do this we fix
some divisor class D, of degree 2 on C. Then for every point

0

(P1,P2) En-1(DO) -D the image ¢(P1,P2) lies on the singular line

of the rank 3 quadric
Qp = y1y3-y§
which is given by
L = sing O, = {y, =y, =y5=0}.

Here

_ .23
1 Y3 T thQ .

We have seen in (IV.3.3) that QP’ and hence in particular L, do not

depend on (P1,P2) but only on the divisor class D On the other

o*
hand the above description shows that ¢ maps n_1(DO) -D to L. We
finally remark that

and that

$(R,Q) = QE€L.

This together with what we have said above then implies immediately
that in fact ¢ defines an isomorphism

[ In_1(DO) : n—1(D )

Ve have also already seen that every singular line arises in this

way.
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What remains to be seen is that ¢ is a morphism on the whole of

SZC. Clearly

o0 : = ¢|sc-p

is a morphism. From the above it follows that if ¢O has an extension
as a morphism then this must necessarily be equal to ¢. Therefore it
is enough to see that the rational map ¢O has no points of indeter-
minacy. So let us assume that ¢O is defined outside the points

P ,Pn. Then for a general hyperplane section

qree.

HF : = FNH

the inverse image (¢O}-1(HF) is a section in SZC not meeting the
points P;. But this implies that an open neighborhood of the points
Pi is mapped into an affine set and therefore ¢O can be extended as

a morphism to the whole of SZC.

This finally concludes the proof.

Remarks: (i) That the map ¢D is 4:1 is easily understood. This is
nothing else but the fact (which we have already pointed out’ that
the elliptic normal quartic CP lies on exactly 4 quadric cones, i.e.
that there are exactly 4 rank 3 quadrics through C whose singular
lines go through P.

(ii) The space of quadrics through C has (projective) dimension
4. Hence one would expect that there is a 1-dimensional family of
rank 3 quadrics through C. The above proposition shows that this is
indeed the case and that the rank 3 quadrics through C are in fact
parametrized by C itself.

(Iv.4.7) Proposition: If HF is the hyperplane section of F then

+*
Vo~
o (HF Co-+7fg .

In particular

deg F = 15.

Proof: Since ¢ maps the rulings of 82C isomorphically to lines
in P4 it follows for its numerical class that
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In order to verify our claim it is therefore sufficient to compute

the intersection of ¢WHF\ with the section DT C. One finds

* (1)) | D= o )y = 6
¢ (HQ)) | D= ¢ (6, (H)} = 6,(200).

From this it follows readily that
*
¢ (HF)~ CO + 7fd .
But then the degree of F can be computed as

deg F = ¢~ (H

(IV.4.8) We finally want to say a word about the relation between
this picture and the configuration which we have associated to an
elliptic normal quintic in chapter II. We have already seen in

(I1IT1.3.4) that the 25 skew lines L are singular lines of rank 3

k4
quadrics throuch C. Hence they must correspond to certain rulings in

the Bﬁ -bundle S2C. To find out which these are let & be the image
of the diagonal AcC xC under the canonical projection onto s2c.
Then

5 .D = 50
and set-theoretically

AanND={(®,P); 5P ~ H}

where each of these 25 points has to be counted with multiplicity 2.
Note that if 5P ~H then

¢(P,P) =P € C.

(IV.4.9) Proposition: The image of the 25 rulings through the
points

>

no=f{(®,P) : 5P ~ H}
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under the map ¢ are the skew lines Lki'

Proof: Let LP be the image of the ruling through the point (P,P)

under the map ¢. We have already seen that
LP = {y] ;Vz == y3 :o}
where

_ 4 3.2 B
Y1 = tptg r ¥y = tptg s V3 = tp .

Here S €C is a point with 2S ~2P but S #P. To see that L_ is one of

P
the lines Lkz we have to show that LP lies in all those hyperplanes
Hk and sz of our configuration which go through P. But any such

hyperplane is of the form

=y = 0]

where

y = t_t R

P "P+P’ P+4p’

for some 5-torsion point P' #®. We have to see that y is in the span
of the sections Yy- Since P #S the sections tg,té EHO(@C(2P)) form

a basis of this space. Hence there is a linear relation

o t2 + 2

Epyprtprgpr T qtg * aytp .
It then follows that
. .3
Yg i 7 %q¥p + ¥p¥3 T tptp pitp e € (Yy s YY)

Similarly one sees that

_ 2
Yg ¢ = tptotp pitpigpr € (y1 rYo)

Applying the same argument once again, this time to Yg and Yg ¢ We
finally find that

Y €KYy 1 ¥5) SKYq 1Yy 1Y)
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and we are done.

5. Shioda's modular surface S(5)

(IV.5.1) Here we want to touch briefly on the relation between the
results of the previous chapters and Shioda's modular surface S(5).
We shall only state facts without giving proofs. This has several
reasons: One is that the remainder of this treatise is only concerned
with one fixed elliptic curve and the question what happens if one
varies this curve does not play a role here. The second is that the
results which follow are not due to myself only. They are joint work
with W.Barth and R.Moore and were only worked out after the first
version of this paper was written up. Moreover some of the proofs
are rather long and technical and would lengthen this text out of
proportion. For details the reader is referred to [18] ,[19].

Recall that every smooth elliptic quintic CSEJP4 embedded as in
chapter I is the intersection of five quadrics

(1=0,...,4).

_ W2 21
Qy (@) = xy+ax; o X3 = 3%;,1%Xi44

1l

0y

We write
4

c_.=2¢C =N Q. (a).
a 5,a j=0 1

We can now ask what happens if we vary the parameter a € Hﬁ . The
first result is this:

(Iv.5.2) Proposition: For every value of a€IPq the set Ca is a

curve in P, . If a€ Py-{0,=, -%(Hﬁ)ek} where ¢ =e2“l/5 ;

k=0,...,4 the curve Ca is a smooth elliptic quintic. Otherwise Ca
is a connected cycle of 5 lines, i.e. a pentagon.

Proof: See [18, theorem 1].

(IV.5.3) Remarks: (i) By varying the parameter a we get, therefore,
a 1-dimensional family of elliptic quintics. This family contains

precisely 12 singular curves, namely the 12 pentagons.

(11) If one identifies T, with the 2-sphere S2cR> then the 12

1
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points A={0,», -%(1tyr§)€k} can be identified with the 12 vertices
of an icosahedron sitting inside S2 §]P1.

Another important property of the elliptic family Ca is the
following.

(IV.5.4) Proposition: 1If a and a' are different parameters then

the two curves Ca and Ca' do not intersect unless a and a' belong to

opposite vertices of the icosahedron A. In this case the two singu-

lar curves have common vertices and thus form a complete pentagon.

Proof: See [18, proposition 2].

One can easily envisage the geometric situation by means of the

following picture:

(a=0) (a =)
e, &, g
€, \ \ €+€, € =6, e,
N
e2 eS ez eS ez. e5
Let us now consider the union
815 : =a€%£ Ca

1

of the family Ca of elliptic curves. Clearly 815 is a surface in Eu.

We collect some of the properties of 515 by quoting the following:

(Iv.5.6) Proposition: (i) S15 is a determinantal surface. More
precisely
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2 2 2 2 2
Xq X3 X, X3 Xy
815 = {x E]P4; rank x2x3 XX, x4xo xox1 X X, <2}
Xq%, XX, X3X, X4%, XoX3

(1ii) The surface 815 is irreducible and has degree 15.

(1i1) S15 is smooth outside the 30 vertices of the 6 complete penta-

gons formed by the singular curves Ca’ a €MA. There, two smooth

branches meet transversely.

(iv) The normalization §15 of S15 has in a natural way the structure
of an elliptic surface over IH . The fibres are the curves Ca'

Proof: Can be found in [18, section 4].

(IV.5.7) Our next aim is to give an interpretation of the surface
815 (resp. its normalization §15). To do this we have to make a

slight detour. Recall that the modular group
r : = SL(2,7Z)

operates on the upper half plane

¥ + = {2€C; Imz >0}

by

az +b
cz +d

where (: g) € SL(2,Z). The quotient

parametrizes the (isomorphism classes of) elliptic curves.

For every integer n 22 one defines the principal congruence sub-

group of level n as follows:

rn) : = {y€r;y= 1 mod n}.

58



ELLIPTIC CURVES AND QUADRICS

As a subgroup of T it also operates on ¥ and the quotient is an

open Riemann surface

X'(n) = %/F(n).

X' (n) parametrizes the (smooth) elliptic curves with a level n
structure. Recall that a level n structure is (up to isomorphism)
given by the choice of a pair of generators (o,t) of the group
Gn=Zan Zn of n-torsion points such that for the Weil pairing

(,) on Gn one has

(o,7) = 1.

For details see e.g. [18, section 4.1].

By adding a finite number of cusps one can compactify X' (n) and
gets a complete curve

X = XTE =¥

called the modular curve of level n. The number of cusps needed to

compactify X'(n) is

and the genus of the resulting curve is

g(n) = 1+ Bﬁgt(n).

Note that in particular

t(5) = 12
and that

g(5) = 0.
Hence

X(5) = I
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is a rational curve. Moreover we have a diagram

n

,/////" * e B
¥ \\\\\\\‘ n
¥ F oy

Since -1 € T operates trivially on ¥ and -1} ¢ r (5) the quotient
map n is given by the group

PSL(2,%) /y5) = PSL(2,%g) = Ag

where T'(5) is identified with its image under the canonical map

SL(2,2Z) - PSL(2,Z). The 12 cusps of X(5) form the minimal orbit of
the action of A5 on EH
cusp €]P1=X(O). Moreover they can be identified with the vertices

= X(5). They are mapped under n to the unique

of the icosahedron A in Eﬁ .

(IV.5.8) It is well known that no universal elliptic curve exists.
However, if n =3 then there exists a universal elliptic curve with
level-n structure. For this we define the semi-direct product

I (Z x Z) by

(v, (my,my)) - (y'y (my,m3)) = (yy', (my,my)y' + (mg,m3)).
It operates on ¥ xC by

(y,(m1,m2)) : (z,8) = (yz, (T +m,z +m2) (cz +d)'1)

For n=3 the subgroup T (n) x (Z x Z) operates without fixed points.

The resulting quotient

§'(n) =¥ XC/o iy k (mx @)

is smooth and admits in a canonical way a projection

s'(n) = X'(n)
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which makes it an elliptic fibration. The surface S'(n) has n2
sections which intersect each fibre in its n-torsion points. Shioda
has constructed a natural compactification

S(n) = S'(n)

of S'(n). The surface S(n) (called Shioda's modular surface of level

n) comes together with a natural map

S(n) = X(n)

which is an extension of the map S'(n) =X'(n). In this way S(n)
becomes an elliptic surface. Its singular fibres lie over the cusps
of X(n) and are of type In’ i.e. they are cycles of the following
form:

In particular S(5) has 12 singular fibres of type 15, i.e. 12 penta-
gons.

The sections of the surface S'(n) extend to n2 sections of S(n).
After choosing a zero-section they form a group mn><zn and we shall

denote the sections by Lkz where (k,4) € Zan Zn.

We can now formulate the connection between S(5) and the surface

815.

(IV.5.9) Theorem: (i) The normalization §15 of the surface S
is isomorphic to Shioda's modular surface S(5).

15

(11) There exists a unique divisor I € Pic S(5) such that

5T ~ 2 L

(k,4) **

The complete linear system |I +2F| defines an immersion of S(5) into
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IP4 whose image is the surface S15.

(iii) Under this map the sections Lkz of the surface S(5) are

mapped to the 25 skew lines of the configuration described in (III.3)

Proof: See [18, section 4].

(IV.5.10) The reader ought to be warned that the relation between
the curves Cn and the surface S(n) is not always as straight for-
ward as in the case n=5. For example if n =4 every elliptic quartic
is given by two quadratic equations (see (III.2.1)):

.2 2
QO = xO + X, + 2ax.|x3

R 2
Q1 = Xy + X5 + 2axox2.
Varying a one gets a 1-dimensional family of disjoint elliptic
curves which contains 4 singular members. Together they sweep out
the surface

2. 2. 2. 2
xoxz(xo-+x2) = x1x3(x1 +x3)

which is projectively equivalent to the Fermat quartic F4§jm3.

But Shioda's modular surface is not isomorphic to the Fermat quartic.
There is, however, an isogeny F - S(4) of degree 4. For details
see [19, section 1IV].
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V. The normal bundle of 05

The principal purpose of this chapter is to discuss the normal

bundle N of an elliptic normal quintic C==C59JP4. Our main

C/TPy
result is that the normal bundle is indecomposable. This was also

known to G. Sacchiero and appears to be the first case of a curve in
Py
vector bundles on elliptic curves [1] it is then straightforward to

where this has been proved. Using Atiyah's classification of

describe the normal bundle N explicitly.

C/IP4
In section 2 we want to recall a vanishing result due to Ellings-
rud and Laksov [6] which we shall use later. We shall give two
proofs of this. The first uses the indecomposability of the normal
bundle whereas the second proof (which is the one given by Ellings-

rud and Laksov) uses the quadratic equations of C.

1. Indecomposability of the normal bundle

(V.1.1) First of all we want to recall the definition of normal
bundle. Let X and Y be smooth, irreducible varieties and let

f : X-»Y

be a morphism whose differential is injective at every point of X.
Then the normal bundle of the map f is defined as the quotient

R
Ng @ = £T /T, .

It is a vector bundle with rank equal to the codimension of X in Y.

If £f :X-Y is an embedding we shall frequently write N or even

X/Y’
Ny , rather than Ne. In this case one can give an equivalent defini-
tion of the normal bundle as follows: Let JXQEGY be the ideal sheaf

of X in Y. Then J.,/,2 is a locally free @X—module whose rank is

/
X JX

just the codimension of X in Y. It can be identified with the conor-
mal bundle of X in Y, i.e.

Ny g = Homsx(sx/J§,®X>.
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(V.1.2) Proposition: The normal bundle N of an elliptic normal

C/Ip,
quintic is indecomposable.

Proof: The proof is based on the following observation which can
be proved in exactly the same way as [10, theorem 1.6]. Assume that
the vector bundle NC(-1) has a quotient line bundle

No(=1) = L = ©

of degree 4. Since N, is a quotient of T lC we can define a rank 3

c
|c by

Py
subbundle UZ TIP
4

U : = ker (TIP4

The Gauss map of the bundle U is the map

g : G =~ ]P'z
which sends a point P to the unique hyperplane which is tangent to

UPETP4J“ We set

D : =gl(C).

Then it follows from the Nakano sequence that

4 = deg(g) -deg D.

The relation between C and D is as follows: If D is a point or a
line then C lies necessarily in a hyperplane. If D is a plane curve
(space curve} then C lies on the cone over the plane dual curve v
(the dual surface DY) whose vertex is the dual of the linear space
spanned by D. Finally if D is not contained in a hyperplane then C
lies on the dual threefold DY of D.

The rest of the proof then goes as follows: We shall show that if
Na decomposes then NC(—1) has a quotient line bundle L of degree
£ <3, This will then give rise to a contradiction in the following
way. Since £ <3 and since C is elliptic D must either be a point or
a line or a smooth plane cubic. The first two cases can be excluded
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since C is not contained in a hyperplane. If D is a smooth plane
cubic then its dual curve DY has degree 6. On the other hand C has
to lie on the cone (with vertex a line) over pY. Since C has degree

5 this is impossible.

Hence it remains to prove that if N, splits then Nc(—1) has a

quotient line bundle L of degree 4 s3.CIt follows from the exact
sequence
o-»Tc—»TIP4|c-»NC-o
that
deg NC = deg T]P lC deg TC = 25.
Hence

deg NC(-1) = 10.

We want to distinguish between three cases.

Case 1: We assume that N, splits into three line bundles, i.e.

C

w

Nc(-1) = .? Li.
i=1

Since deg NC(—1) =10 it follows that at least one of the line bundles
Li has degree <3.

Case 2: Here we assume that
1) =
NC(1, E®L

where L is a line bundle and where E is an indecomposable rank 2

bundle of even degree, say

dea E = 2k.

If 2k =28 then deg L<2 and we are done. Hence we can assume that

2k = 6. By Atiyah's classification E is given by an extension

0 -+ M - E - M - O
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where
deg M = k =< 3.
Hence NC(-1) also has a quotient line bundle of degree <3.

Case 3: It remains to treat the case

where E is an indecomposable rank 2 bundle of odd degree

deg E = 2k + 1.

If 2k+1=27 then deg L<3. Hence we can assume 2k +1 =<5, In this

case E is given by an extension

0-M'@det E~ E= M= 0

where

deg M = k+1<3,

This concludes the proof.

(V.1.3) Using Atiyah's classification of vector bundles over an

elliptic curve it is now easy to describe the normal bundle NC.
It follows from the exact sequence

0 - To = Tp |c - N, = O

that

det N, = det T]P4 |c = 6. (5) = 6,(25@).

Hence the bundle

E, : = NC(-BG).

has determinant

det EC = @C(O).
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Since EC is indecomposable and since its rank and degree are rela-

tively prime it follows from [1, p.343] that E.
mined by its determinant. Moreover, it is given by the (unique) non-

is uniquely deter-

split extension

- - - !
(1) 0 @C EC EC - 0
where Eé is the unique indecomposable rank 2 bundle with determinant
@C(G). I.e. Eé itself is given by the non-split extension
- - 1 - -
(2) o) @C EC @C(G) 0.

We can summarize this as follows.

(V.1.4) Corollary: The normal bundle N of an elliptic normal

4

Cc/Tp
quintic is

NC/IP4 = Ec (80)

where EC is the unique indecomposable rank 3 bundle on C with deter-

minant GC(G).

2. A vanishing result

Here we want to prove the following vanishing result.

(V.2.1) Proposition: For any line bundle M EPico(C) of degree O

one has
n' %2 em = o.

Proof 1: It follows from the description of NC in the previous
section that there is an exact sequence

- vy ¥ - * M . - -
o] (EC) ®(9C(2G) ®M NC(Z) &M @C(ZG) ®M o.

Since

0 1

h! (60 (20) &My = hO (6, (-20) &M™) = 0

it suffices to prove that
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1 1y # =
h ((EC) ® @C(ZG) ® M) = 0.

On the other hand it follows from (2) that there is an exact

sequence

- ! * -
0 (SC(U) O M ~ (EC) %)(SC(ZG) M GC(20) &M = O.

From this our assertion follows immediately.

Proof 2: We saw in (IV.1.3) that C is the scheme-theoretic
intersection of the quadrics containing it. Hence the natural map

0]
H™ (9, (2)) ®®IP4 = I:(2)

1s surjective. Together with the exact sequence
0~ 32(2) = 3.(2) » N%(2) - O
C C C
this gives rise to a surjective map
0 LNt -
H (JC(Z)) ® @c NC(Z) o

In order to determine the kernel of this map we recall from (IV.2.2)
that the matrix

0 X -ax, ax, X5

x3 (6} -x4 —ax2 axO

M = ax, Xy 0] “Xy Taxg
—ax, ax, Xq (0] -,

-X, -axg ax, X4 0]

gives the linear relations between the quadrics éi which form a

basis of HO(JC(Z)). We claim that the sequence

o, M o, . o % N
(4 \ -1' - =y -
H \JC(Z,) ®®c( 13 H (JC(Z)) %@C NC(Z) (¢}
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is exact. It follows from the construction of M that

im(M) < ker (a).

On the other hand M has rank 2 over each point of C and this proves

exactness. Dualising the above sequence we get

at 0 Mt 0
(3) O = N,(-2) = H (JC(Z))®(9C—-' H (JC(Z))QG

c (1).

C

To prove the proposition it is enough to show that

1

h (N, (-2) ® M ') = 0

C
since by Serre duality

| - _ .0 _ -1
h (NC(2> ® M) = h (NC( 2) © M ),

For M;5®c this follows immediately from (3). For M::GC it also

follows from (3) since Mt is injective on global sections.
An immediate consequence of the above result is:

(V.2.2) Corollary: For all line bundles M.GPicOC of degree O

one has

ho(NE(Z) ®M = 5.

Proof: This follows immediately from the above proposition and

from Riemann-Roch.
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VI. The invariant quintics

Let Hn denote the Heisenberg group in dimension n. As before we

shall consider the Schrddinger representation:
p : H =~ GL(V)

which was defined in (I.2). Here we are interested in the induced
representation Snp* of Hn on the space of homogeneous forms of degree
n in n variables. We shall first determine the dimension of the space
of Hn—invariant forms if n=p=3 is a prime number. Then we shall
turn to the case n=5. This case was first treated by Horrocks and
Mumford [9] where it plays an important role in the construction
of the Horrocks-Mumford bundle. We shall come back to this in
chapter VII. Next we shall discuss the space of invariant quintics
through an elliptic normal curve C5E]P4 and finally we shall deter-
mine the invariant quintics which are singular along C5. These

results will be useful in chapter VIII.

1. Some invariant theory

(VI.1.1) Recall that the Heisenberg group in dimension n is defined
as the subgroup HnggGL(V) which is generated by the elements

2ni

where ¢ =e ©  and where the {ei}ieZZ denote the standard basis
n

of V=c™. The representation

p Hn -  GL (V)

given by the inclusion is called the Schrddinger representation of
Hn' By S"p* we denote the induced representation of Hn on the space

n. —
STV¥* = I'((9]P (n))
n-1

of homogeneous polynomials of degree n in n variables. In this
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section we want to determine the dimension of the space of Hn—inva—
riant forms for a prime number p=n=z=3. In order to simplify our
notation we shall sometimes drop the index n and write H instead

of H_.
n

(VI.1.2) Before we can give the main result of this section we shall
first have to prove a lemma on symmetric functions. Let n=z=2 be a
fixed integer. For each integer m= 1 one can define symmetric poly-

nomials of degree m as follows:

i
N ~Ms
X
2=

sm(x) S sm(x1,...,xn)

The sets of polynomials {sm ; 1smsn} and {hm ; 1sms<n} both generate

the ring of symmetric polynomials. In particular there is a relation

h (x) = z @y 4 S, t...tS

=1
(VI.1.3) Lemma: ®%5. . .01 - n °

Proof: We consider the polynomial

n
(1) P(t) = T (1-x,t)
i=1 *

Then

(2}

it

1+ T hm(x)tm.

P(t) m=1

Taking logarithms in (1) we get

(3) log

i

!
n™MBs

1
’ﬁ'(T)- = 110g(1—xit)

n n
(2%) £+] (i§1xi)t2+...
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]

= olg (x)t™
oq@om

We can now combine (2) and (3) to get

(4) 1+ Zh x)t"=exp ( T ls )™
mep M (m=1m m )
e (Zls ™ )eg ((Zs ™) Bl
m=1 *'m=1 O

Comparing coefficients in (4) finally gives the result

0...01

o

Si=

We are now ready to state and prove the main result of this

section.

(VI.1.4) Proposition: Let p23 be a prime number. Then the dimen-

sion of the space of HD-invariant p-forms is given by

. N 1,2,
dim I‘H(@]P (p)) = - ( ) + —7(p -1)
p-1 P p P
Proof: We set
N(p) : = dim I‘H(GIPP_1(p)).

Then

1
N(p) = TET L x (g) = = L x (g).
Hp gGHp Spp* p3 gEHp Spp*

On the other hand

X (9) = z o, C X ox (9)
Spp* i1+...+pip=p Tge-- P P

Since p is a prime number it follows that

72



INVARIANT QUINTICS

i
xp*(g ) =0

unless g is in the centre of Hp or i =p. For p23 the group Hp has

exponent p, hence
Xgx (9F) = x 4 (1d) = p
for all g'EHp. This implies

_ ] .
NPl =3 L o xp @3 ( F oo X x (TP
p> gez (m) sPox 0> (gGH-Z(H) 0...0pXp* (97}

21 . 1 3
= dim FZ(H) (G]P (p)) + —3(p -p)
p p-1 p

Since the centre Z(Hp) operates trivially on the p-forms it follows
that

o 2p-1
aim Ty 0p @) =100, ©) = (T )

p-1 p-1 p

and this concludes the proof.
(VI.1.5) Example: For p=3 the above formula gives
N(3) = 2.

In fact it is easy to find a basis for the H3-invariant forms:

_,.3..3..3
I‘H(GIPZ(3)) = (xo+x1 +tx5 xox1x2).

2. The case n=5
If we apply the above proposition to the case p=5 we find
immediately that

dim T_ (6

5(6p (5)) = 6.

P,

This was in fact first observed by Horrocks and Mumford [9]. In

their paper the space of Hs-invariant quintic forms oplays an
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important role in the construction of the Horrocks-Mumford bundle.
The following two propositions can also be found in [9].

(VI.2.1) Proposition- The following quintic forms define a basis
of the space T, E>(5))

4 4
o= I ox, Q' : = L o T(XIX.X,)
L i=0 * 0 oo 0*1%4
4 4
1 . = -i3 . = 2 2
9 = Lo " (XgXyX3) 0 := Lo * xgxixy)
i=0 i=0
4 4
2 5
Q! = Lo (x %2x ) Q! : = I xI .
3 it 2% 4 e

The scheme-theoretic intersection of the Hs—invariant quintics is

the union of the 25 reduced skew lines Lkz'

Proof: It is clear that 0Q!,,...,Q, form a basis of the space
of invariant quintics. Hence it remains to determine their common
intersections. Recall that the 25 skew lines Lkz have the equation

24

X + € +x =0 (O<sk,24<4).

_ Y’
-k T ¥1-x Xg-x ~ € Xoox TX3x

Note that each of these lines is contained in one of the hyperplanes
x_k==0. Because of Q'_, it is therefore sufficient to consider the
intersection of the quintics Qé""'Q& with those hyperplanes. We
shall restrict ourselves to x. =0. The other cases then follow from

0
symmetry considerations. Hence we have to look at the equations

(1) x3x2(x§x4 + x§x1) =0
(2) x1x4(xix2 + x$x3) =0
(3) x1x4(x§x4 + x§x1) =0
(4) x2x3(x‘21x2 + x$x3) =0
(5) X2 + x5 + x5 + xp = O,
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We first assume that all xi.#o. It then follows from (1) that

(1) X, =

Together with (2) this gives

4 4
(2)" X, + x5 = 2 (e X, +x3) = 0.

(3)" elx + x, = x, + ¢ Xy = O.

These are just the equations for LOL in xo-=0. One checks immedia-
tely that every point which fulfills (3)' also fulfills (1) to (5).
It remains to treat the case where some xi==o. Let (i,j,k,4) be

a permutation of (1,2,3,4) and assume xi==0. Then at least one other

coordinate say xj=ro. From (5) it then follows that

5 5 _
Xy + X, = 0.
This gives - apart from the cases covered by (3)' - 20 more points

which are precisely the points of intersection of the lines Lkz
where k #0 with the hyperplane xo=§o. It remains to see that the Lkz
are the scheme-theoretic intersection of the quintics Ql1,...,QA.

Again it will be enough to look at just one line, say LOO' which is

given by

If P ELOO is a point with xi(P) #0 for i=1,...,4 then the quintics
o, ,Qé and Q% intersect transversally in P. It remains to consider

the points P1 =({(0:1:0:0:-1) and P, =(0:0:1:-1:0). In the
case of P1 the quintics Qi ,Q§ and Qa intersect transversally, in

the case of P2 the same holds for Qé ,Qé and Q&.
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Remark: Note that the Hs-invariant quintics Qi are also invariant
under the operation induced by the involution 1 introduced in (I.2).

(VI.2.2) 1In section (II.2) we gave the definition of a fundamental
pentahedron. Recall that there are precisely 6 fundamental pentahedra,
one for each subgroup ZZSE Zs XZZ5 . In fact the fundamental penta-
hedron associated to a given subgroup Z% is the (up to a scalar
unique) quintic form whose zero-set is the union of the 5 hyper-
planes which are invariant under this subgroup. Recall that these
forms are given by

Q4

]
=
E

4 4 %(m—S)L-mk
I (2 ¢ X)) (£L=0,...,4).

Q
il

(VI.2.3) Proposition: The fundamental pentahedra Qi ;i=-1,...,4

also form a basis of the space T, (6. (5)).
H Eu

Proof: We have already seen in (II.3.2) that the Qi are Hs—in-
variant. Hence it remains to prove that they are linearly independent.
To see this we want to relate the Qi to the basis Qi. We first note
that Q_, =QL1. It is somewhat tedious but not difficult to check
that the following relations hold modulo Q',.

Qq = -5Q6 - SQi + SQé + 5Q§ + Qa

0, = -5e0} - 5oy + 5c%0y + 5c%05 + Qg
0, = -5¢%0) = 5¢°0; + 5¢05 + 5e’Q) + 0
0, = -5e%0y - 5?01 + sefoy + se0y + o

0, = -5etoy - scor + Seloy + 5e30y + o

Hence we have to see that the matrix
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2 3 4
1 € € € €
4 3 2
1 € € € €
A= 1 e3 € 84 52
2 4 3
1 € € € €

-
—_
ey
Py
=y

is non-singular. But this follows immediately from the fact that A

is a Vendermonde matrix.
Remarks: (i) The last two propositions together give a proof for
(ITT.3.3).

(ii) At this point we do want to point out that the case p=5 is
special in so far that the above proposition cannot be generalized
to other prime numbers. Already for p =7 we have

dim I‘H((SJPs(?)) = 36

whereas there are only 8 fundamental polyhedra. In general the
function N(p) grows much faster than p+1.
Now let C==C5§JP4 be an elliptic normal curve of degree 5. For

later applications we shall be particularly interested in the space
of invariant quintics which are singular along C. Before we turn to

this problem, however, we want to prove the following result.

(VI.2.4) Proposition: There are 5 independent invariant gquintics

through an elliptic normal curve C5 c EM , i.e.

dim TH(JC(S)) = 5.

Every invariant quintic which does not contain C5 intersects the

elliptic normal curve precisely in its 25 hyperosculating points.

Proof: First note that the fundamental pentahedra do not contain

the curve C. Hence

dim FH(JC(S)) < 5.
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Since the fundamental pentahedra intersect C in the 25 hyperocsula-
ting points it remains to prove that the above inequality is in fact
an equality. To see this let P €C be a general point, i.e. not a
5-torsion point. By

W © Ty (GIP4(5) )
we denote the space of invariant quintics through P. To go through
one point imposes one condition, i.e.

dim WP =5,

We claim that

To see this recall that any quintic QéSWP is invariant under both
the Heisenberg group H5 and the involution 1. Hence Q contains the
orbit of P under the action of the group generated by H5 and 1. This
orbit consists of 50 points and by Bezout's theorem this implies
that C is contained in Q. This concludes the proof.

(VI.2.5) It is possible to improve the above results to some degree.
Recall from (I.2) that the Heisenberg group Hg has exactly 4 irredu-
cible representations v' of dimension 5 and 24 characters VK4, The

HS-module F(GE,(S)) has dimension
4

o]

h (®E>(S)) = 126

4

It is not difficult to determine the canonical decomposition of this
module. The result is

(VI.2.6) Proposition: The canonical decomposition of the H5-module
r (@IP4(5) ) is

_ k
I’((SIP (5)) = ® 5v

2
®r. (6 (5)).
4 (k,2)#(0,0) HOP,

Since we shall not use this result in what follows we shall omit its
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proof. We only want to remark that it is easy to find an explicit

basis for each of the components 5Vk£

(VI.2.7) A similar result also holds for the H5—module F(JC(S)).

From the exact sequence

and the fact that C is projectively normal it follows that

(o] (o)
h (@E,(S)) - h (@C(S)

4

0
h™ (I, (5))

126-25

i

I

101.

We can then prove

(VI.2.8) Proposition: The canonical decomposition of the Hs—module
P(JC(S)) is

T (I, (5)) = ® Wt or (4

(5)).
(k,£)#(0,0) HC

As before we want to omit the proof. It is enough to remark that it

k4

is easy to find elements Q € 5V which do not contain C.

3. The H5—module HO(Jg(S))

In this section we want to study the space of quintic hypersur-
faces which are singular along an elliptic normal curve C==C55JP4.

Our first result is

(VI.3.1) Lemma: hO(Jé(S)) = 51,

Proof: We consider the short exact sequence

- 2 - - * -
o] I (2) 9o (2) NG (2) 0.

Since C is not a plane curve it follows that
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0, ,2 _
h (JC(Z)) = 0.

But then it follows from (IV.2.1) and (V.2.2) that

o] ~ .0 %
H (JCKZ)) = H (NC(Z))

since both these vector spaces have dimension 5. Moreover, it follows

from the proof of proposition (V.2.1) that we have an exact sequence

(9o(2)) © 6 % N’é(z) - 0

0]
H C

QO = F -

where
F = ker (a) = im (M)
is a rank 2 bundle with
2

ATF = ®C(-1)

o

h”(F) = O.

Then F is either a direct sum of line bundles
F = M1 @ M2
with

-5 < deg Mi <0

or is given by a non-split exact sequence

o = @C(-3U) @M - F = @C(-ZG) ®M = O

where M is a theta-characteristic, i.e. M2=:®C. In any case we find
that

h(F(3)) = o.

This implies that we have a surjective map

0] \ 0 \ LOJPINE
H™(3,(2)) ® H(6,(3)) ~ H Ne(5)) = ©
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Since C is projectively normal this implies that the natural map

(e} O %
H (JC(S)) - H (NC(S))

is surjective. It therefore follows from the exact sequence

2 *
- Y - - -
(0] JC(S, JC(S) NC(S) (0]

that

o

2 _ .0 _ 3.0 ¥
h (JC(5)) = h (JC(S)) h (NC(S)).

We have already seen that

Y -
h (JC(S)) = 101.

Moreover it follows from (V.1.4) that

0]

h 50.

[

(N*é(S))

Hence

ho(Jé(S)) = 101 -50 = 51.

We are now ready to describe the canonical decomposition of the

H_.-module F(Jg(S)).

5

(VI.3.2) Proposition: The canonical decomposition of the Hs—module
rg2(s)) is

k4

2 B 2
T (35(5)) = v T (90(5)) .

®
(k,£)#(0,0)

In particular the space of invariant gquintics which are singular

along C has dimension 3, i.e.

dim FH(Jé(S)) = 3.

Proof: Recall from (IV.2.1) that the space HO(JC(Z)) has a basis

Borene10y € BO(9,(2))
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where

We can use this basis to describe the canonical decomposition of
HO(Jé(S)). In order to keep this proof to a reasonable length we
shall simply give a basis for each of the components. We leave it to
the reader to verify that the quintics given are linearly independent.
In any case this is straightforward though somewhat tiresome.
Counting dimensions then concludes the proof.

Case 1: A basis for the space of invariant quintics which are
singular along C is given by

2 -
Ty(9a(5) = 05r0;,0Q,)

where

4 4
=2 -i =2
Q.= Lx.00= Lo " (x.09)
0 ,Toiti oy 0~0

4 .

4

0, = igoc (x50,03) -

Case 2: For k #0 one finds

kO k k
VAY == (Qo ’ Q1>
with
4 4
Qg = 5 elkxiéi = X elkﬁ—l(xoéé)
i=0 i=0
N R
Qy - .§ €770 T (xy040,) -
i==0
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Case 3: Finally if £ #0 one finds

2v*t = (aft, o)
where

k4 é ik =i = =

Q" = e o T(Q.Q,,)

(o i=o 0-24
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VII. The Horrocks-Mumford bundle and elliptic quintics

In this chapter we want to explain the relation between the
Horrocks-Mumford bundle F on P, and elliptic normal curves of de-
gree 5. The bundle F was first constructed by Horrocks and Mumford
in their famous paper [9] and is still essentially the only known
indecomposable rank 2 bundle over EM. The construction given in [9]
is to exhibit the bundle F as the cohomology of a certain monad. On
the other hand a general section of F has an abelian surface Z of
degree 10 as its zero-set and F can be reconstructed from Z by means
of the Serre-construction. In fact this is how the bundle F was found
in the first place.

In [9, p.79(a)] Horrocks and Mumford state (without proof) that
the abelian surface Z can degenerate into the tangent surface of an
elliptic normal quintic. In this chapter we want to make this state-
ment precise and supply a proof at the same time. We shall see that
if CEEEM is an elliptic normal curve, embedded as in chapter I, and
if Tan C is its tangent developable then there is a section s €T (F)
whose zero-set 1s the tangent surface Tan C, i.e. F can be recon-

structed from Tan C by means of the Serre-construction.

1. A property of tangent developables

In this section we shall first prove a general result about the
desingularization of the tangent developable of a smooth curve C in
E&1‘ We shall then apply this result to describe some properties of
the tangent surface of an elliptic normal quintic.

(VITI.1.1) Let Cc P be a smooth curve and let

f : C=- Gr(l,n)

be the map which sends each point P €C to the tangent of C at P. If
U is the universal subbundle on Gr(1,n) we set

E : = f¥(U) ® @c(n.

Then the canonical projection

p:X: = ({E) ~ Tan C
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is birational and finite (see [5, prop.3]).

(VIT.1.2) Lemma: The bundle E is the unique rank 2 bundle on C

1 )
associlated to 1 EExtGC(TC,GC,.

Proof: There is an exact and commutative diagram

o) o)
! Il
o8 = 6
! ]
n+1
0O - FE = ¢ 806, (1) NC/]Pn o}
] ] I
0 ~ T, - T |c - Neop - 0
n n
Il !
o} o}

To see that the extension on the left hand side is non-trivial we

look at the diagram

1 . - 1 \
Extg (TJP Op J—=Extg (T [c,@c> Extg (Ta,64)
o3 n C n C

I I l

n) —_ (QIPn ) — = H' Q) -

\_/

d

It is now sufficient to observe that the map 4 under suitable identi-
fications is nothing but the degree of C (e.g. [8, Ex. III.7.4]) and,

therefore, in particular non-zero.

(VII.1.3) We now return to the case of an elliptic normal quintic.
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Here X =1 (E) where E is the indecomposable rank 2 bundle on C

given by a non-split extension

o - @c - E = @C - 0.

As a ruled surface P (E) has invariant e =0 and there is a unique

section COEIP(E) with C2

Or=0. In fact, to be more precise, one has

6p (£)(Co) 1Co = Gco

The Picard group of IP(E) is of the form

Pic (P (E)) = @ ¥ (Pic Q)

where 1n: P(E) =C is the projection map. Here Z is generated by the

section Co. As before we shall denote the fibre over the origin

¥ €C by fG‘
Finally the group of numerical equivalence classes is given by

Num(IP(E)) = Z @ Z

where the two copies of ZZ are generated by the classes of CO and a
fibre f respectively.

As before we denote by

p:X= P(E)~Tan C < P,

the canonical projection map. Let H be the hyperplane section on
Tan C. It follows immediately from the Pliicker formulas that

deg Tan C = 10.

(VII.1.4) Proposition: The map p has the following properties:

(1) p (C) =¢C
3
(11) P (H)1~Co-+5fg.

Proof: Since the fibres of TP(E) are mapped to lines by p it
follows that the numerical equivalence class of H is given by
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Since

H2 = deg Tan C = 10 = 2A

it follows that X -:5.

Next we observe that each point of C lies on only one tangent as

can be seen by projecting from this point. Hence p'1(C) is a section

say
T =c' = c. + uf
p ) o @
It follows from
deg C = 5 = H.C' = 5+

that uw =0. This in fact implies assertion (i) namely

Assertion (ii) now follows from the fact that

p¥6 (1) |cy = 6 (p)(5fg) [Co-

This concludes the proof.

2. The Horrocks-Mumford bundle

Here we want to recall briefly some basic facts about the
Horrocks-Mumford bundle F which we shall use later.

(VITI.2.1) 1In their paper [9] Horrocks and Mumford construct the
bundle F as the cohomology of a monad

a 2 b
) - -
56, (2) 2A TIP 5(9]P (3)

Py a 4
i.e. F is given by

r = ket .
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The difficult step in this construction is to find suitable maps
a and b such that bea = 0. Their construction is closely related to
the Heisenberg group H:THS. Details can be found in [9].

From the above description one concludes readily that the Chern

classes of F are given by

c(F) =1 +5h-+10h2.

This implies in particular that F is indecomposable.

(VITI.2.2) Another way of looking at the Horrocks-Mumford bundle is
the following. If s €T (F) is a general section then its zero-set

Z = {s = 0}

is an abelian surface of degree 10. The canonical bundle Wy of Z is
trivial and F can be reconstructed from Z by means of the Serre-con-
struction. Moreover, every abelian surface in Eu arises in this way
(modulo projective transformations). It was, however, only recently
that direct proofs for the existence of abelian surfaces in IP4 were

given. See [21],[22].

The bundle F 1s acted on by the Heisenberg group. This group
action enables one to compute the cohomology groups of F. For future

reference we want to quote the following result from [9]:

(VII.2.3) Proposition: If F is the Horrocks-Mumford bundle then
hO(F(-1)) = 0. Moreover

dim T'(F) = dim PH(F) =4

and the map

APrE - () = 1o (5))

4

defines an isomorphism

M) T o6 (5)).
4

In particular, the bundle F is generated by its global sections
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everywhere outside the 25 skew lines Lkl

These will be the only properties of F which we shall need in
what follows.

3. Another construction of the Horrocks-Mumford bundle

In this section we want to prove the main result of this chapter.
Let C3§JP4 be an elliptic normal curve of degree 5 as in chapter I.
Then its tangent surface Tan C has degree 10 and the main point is
that the Horrocks-Mumford bundle can be reconstructed from Tan C by
means of the Serre-construction. Here I should mention that there
exist several proofs that Tan C is a locally complete intersection
with trivial dualizing sheaf, i.e. that it gives rise to some rank 2
bundle on P4.
Ven and Ein. But then it remains to be seen that this bundle is in

Such proofs were given by Ellingsrud, Barth -Van de

fact the Horrocks-Mumford bundle.

(VII.3.1) Theorem: There exists a section s €T (F) such that

Tan C = {s =0}

as schemes, i.e. the Horrocks-Mumford bundle can be reconstructed

from the tangent surface of an elliptic normal quintic via the

Serre-construction.

Before we give a proof of this assertion we shall first prove an

auxiliary result.

(VII.3.2) Lemma: There are at least 3 independent invariant quin-

tics which contain the tangent surface Tan C, i.e.

dim FH(JTan C(5)) > 3.

Proof: ©Let P€C be a 2-torsion point different from ®& and let
Tp be the tangent line of C at P. We choose 3 different points
P1,P2,P3 ETP not lying on C. Then the vector space

K

il

{oer

H(®]P4(5)> iC(Py) = 0}

has dimension
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dim K = 3.
It will be enough to prove that

Kc T (I (5)).

H'"Tan C

So let Q €K be an invariant quintic containing the points Pi‘ Since
Q is also invariant under the involution 1 it follows that Q also
contains the points

1(Pi) € T,.
Hence Q intersects TP in at least 6 points, i.e. it contains TP' But
then it also contains the tangent lines TP+P at the 25 points P+Pk£

k4
which form the orbit of P under the action of the Heisenberg group

H5. Now this implies that either Q contains Tan C or we have the
following equality of divisors on X=1(E):

p*(Q) = L f + D
(x,2) T*Pxy

where D is an effective divisor whose class is

D ~p¥(5H) - L f£

(x,4) B*P

k4
D ~ 5C, + (fg-fP).
But this is impossible since

o

h™ ( (5CO + (fo-fP)) = 0.

°p (k)
This proves the lemma.
We are now ready to give the

(VII.3.3) Proof of the main theorem: This can be done very much in

the same way as in [9, p.77]. First note that by lemma (VII.4.1) we
can choose a basis Sqre+-1Sy € T (F) such that one of the following

two possibilities holds:
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(1) S4A Sy, s3/\s4, s1/\ s3—sz/\s4 € FH(JTan c(5))

(2) sNASy, s;A sy, 3¥d jndependent element € Ty Ppan ¢ (5))-
If s €T (F) is a section then we shall denote its pullback to X =P (E)

by s. If sAt EFH(JTan C(5)) and if t #0 then this implies that

s=f-t for some rational function f €c (X).

To prove our result it will be sufficient to show that §1.=0 for

some i. Then

Tan C ¢ {s; = o}.

On the other hand, since hO(F(-1)) =0 it follows that {si==0} is a
surface of degree 10. Since this is also the degree of the tangent
surface it follows immediately that the scheme {si:=0} has Tan C as
its support and that it is generically reduced. But since it is a
locally complete intersection this implies in fact that it is re-

duced everywhere, i.e.

Tan C = {s, = 0}.

We shall give a proof by contradiction, i.e. we assume that Ei_#c

for all i.

Case 1: We find that
s, = -5,
§3 = g~§4.

Next note that §1/\§3 #0 since F is generated by its global sections

outside the lines L,,. Since 51/\§3 =§2/\§4 we find that fg=1, i.e.
that
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Let D be the polar divisor of f and set M := QP(EﬂD)’ Consider the

map

a : MO®M = p¥F

(gq:95) = g1§2+g2§3 .

Since «(1,0) =s,, a(0,1) =5 a(f,0) =8 anda(o,f)=§4 it

2’ 3’ 1
follows that o is an isomorphism whenever p#F is generated by its
global sections. On the other hand F is generated by its global
sections outside the lines Lkz which do not lie in the tangent sur-
face Tan C. Since p is bijective this implies that o is.an iso-
morphism outside a finite set of points and hence everywhere. But

then it follows that

4% = (5m)2 = 250

a contradiction.
Case 2: In this case we find

s, = f-s1

ni
w
]
Q
0
-

Let D be the minimal divisor such that D= (f), and D=z (g)_ and
define M : = @P(E)(D) . We can now look at the map

¢« : M®6 - p¥F
(91792) = 945, +9,8,.

Exactly as before we see that o is an isomorphism. But this implies
that

0 =c,(M@&6) = c,(p*F) = 100

which concludes the proof.
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We want to conclude this section with two easy corollaries of our

theorem.

(VII.3.4) Corollary: dim P(JTan C(5)) = dim rH(JTan C(5)) = 3.

Proof: This follows immediately from the exact sequence

s
o - 6 -

P F - J (5) - ©

4 Tan C

and from the fact that hO(F) =4,

(VII.3.5) Corollary: The common intersection of all quintic hyper-

surfaces through the tangent surface Tan C consists of the union of

Tan C and the 25 skew lines Lkl'

Proof: It is clear that the tangent surface and the lines Lkz
are contained in this intersection. Now let P be a point not on any

of these varieties. Let S1re-+1Sy €T (F) be a basis such that sS4

vanishes on Tan C. Note that s1(P) #0. We have to see that for some
i one has s1l\si(P) #0. But if this were not the case, the sections

s, would not generate the bundle F at P. This proves the corollary.

i

4. A lemma from linear algebra

The whole purpose of this section is to give a proof of the
following easy lemma which was used in [9] and in a similar way in
the proof of theorem (VII.3.1):

(VIT.4.1) Lemma: Let W be a 4-dimensional complex vector space and

let KgEAzw be a 3-dimensional subspace. Then there exists a basis

€qre--r€y of W such that either
i) eo/\e1, e2/\e3, eo/\ez—e1/\e3 € K or
ii) eqgNeqr eo/\ez, 3rd independent element € K.

Proof: Let

0 =06r(1,3) c ®%w

be the Pliicker quadric of decomposable tensors. Since K has dimension
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3 it follows that either P (K) €Q or that

C=I(K)NQ

is a conic section. In any case we can choose linearly independent

elements

uAvV, WAXEK.

Case 1: uAvVAWAX = 0.

We can assume that u,v,w € K are linearly independent and rename

these vectors as

Then

and

e2/\x = e2/\(>\oeo + A1e1).

If A.=0 or A, =0 we are in case (ii). Otherwise we set

0 1
eé : = Aoeo + Aey
ei :ooey (1=1,2)
Then eé, ei and eé are linearly independent and

1 L} oum
eo/\e1 = AOeOA e, € K

1 1 -
eo/\e2 == (Aoeo + x1e1)/\ e, €K

hence we are again in case (ii).
Case 2: UAVAWAX # 0.
Then these vectors form a basis of W and we set

e = u, e1:=v, e2:=w, e3:=x.
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We can choose a basis of K which consists of vectors
eOAe1, e2/\e3, eo/\eé-e1/\e§ € K
where
eé ,eé € (ez,e3)
First assume that eé and eé are linearly dependent say

1 —_ 1
e2 = Ae3

Then we define

LU — - L I — "o, = 1
eo : eo Ae1, e1 : e1, e2 : e2 .

These three vectors are linearly independent and we find that
eO/\e1 = eO/\e1 € K

e'"NAe! = e Ae! —Ae1/\eé = e, ANel

oNey = eghe; oNey-eNey € K

and we are once more back in (ii). Finally if eé and eé are linearly

independent then we can choose eo,e1,eé and eé as the basis of W and
are in case (i;. This concludes the proof.

5. Further comments

(VII.5.1) There are other ways to construct the Horrocks-Mumford

bundle F starting with an elliptic quintic curve C=C.cC P Here we

5 4 -
want to mention the perhaps most interesting one which, however, will
not be used in what follows. This construction is originally due to
Van de Ven and the present author and details can be found in [20].

Let us choose a 2-torsion point P € C different from ®. Then for
each point Q € C we can consider the line

L(Q) : =Q,P+Q,
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The union of these lines

X : = U L(Q)
Qec

is a smooth ruled surface of degree 5 in IP4 whose base curve is the

elliptic curve C' : = C/(P)' In other words X is an elliptic quintic

scroll in IP4 .

(VII.5.2) The main point is that X carries in a natural way a multi-

plicity 2 structure. Let NX/E’ be the normal bundle of X in Eu . For
4

every ruling LcX there is an exact sequence

-~ N |l - o
L/, X/P,

Hence

Nx/IP4lL =6, (1) ® 6 (2).

If n : X-C' is the projection map we can define a line bundle

£ENX/P4 by

(=2)) (2)

¢« == *
£ : ¥ (m, NX/P4

Over each ruling £ is just the uniquely determined rank 1 subbundle

of degree 2.

This line bundle defines a multiplicity 2 structure in the

following way. By construction we have a quotient map

* - *-o
NX/P4 £ 0]

Let I be the ideal sheaf of X in E@ . Then we can define an ideal
sheaf /< I by setting

J 1 = ker (w)
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where

LI L YRR

We define

In this way one finds a non-reduced structure X on X which is of
multiplicity 2. For details of this construction see [20].

(VII.5.3) It is easily checked that X is a locally complete inter-
section. Moreover one can show [20, prop.4] that

e

3*
£ wx .

From this one concludes [20, theorem 1] that

vg = %
Hence the hypotheses for the Serre construction are fulfilled and
there exists a rank 2 bundle F' on E@ together with a section
s €T(F') such that X ={s =0}. In fact one can show that F'=F, i.e.

one has

(VII.5.4) Theorem: If F is the Horrocks-Mumford bundle then there
exists a section O#s €T (F) such that

X = {s=0}.

In particular F can be reconstructed from X by means of the Serre

construction.

Proof: See [20].
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VIII. The normal bundle of elliptic space curves of degree 5

In this chapter we want to apply our previous results to study
the normal bundle of elliptic space curves of degree 5. Ellingsrud
and Laksov [6] and also Eisenbud and Van de Ven (unpublished) were
the first to work on this problem. In their paper [6] Ellingsrud
and Laksov classified the normal bundles of elliptic quintics, there-
by using a certain 1-parameter family of quintic hypersurfaces Yy in
P, . To describe and understand this family of quintic hypersurfaces

was my original motive for this work.

In section 1 we shall first discuss the normal bundles of elliptic
space curves of degree 5 with a node. We shall prove a slight
strengthening of a result due to Ellingsrud and Laksov. In section 2
we shall then recall the theorem of Ellingsrud and Laksov, i.e. we
shall construct the hypersurfaces YM and relate them to normal
bundles of elliptic quintics. The only new results here are a proof
that the Yy form a linear family of hypersurfaces and an explicit
equation for Y, =Sec C. In section 3 we shall finally describe the
linear family [YM}. After discussing the base locus of the linear
system we shall prove that the space formed by the equations of these
quintics equals

= 2
U= Ty (nan ¢(5)) N T(dg(5)),

Then we shall explain the relation to the Horrocks-Mumford bundle F

and finally we shall describe U as a subspace of FH(Jé

basis which we have found in (VI.3) for this space.

(5)) using the

1. The normal bundle of elliptic quintics with a node

Let C_C_]P4 be an elliptic normal quintic. For every point P € IP4
we denote the projection of C from P by CP' As long as P does not lie
on the tangent surface of C the differential of the projection

p - P

is nowhere O. Hence the normal bundle of the map T in the sense of

(V.1) exists and we shall denote it by
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If P gSec C then CPEIP3 is smooth and NP is the normal bundle in

the usual sense, i.e.

Here we are interested in the case where CP has a node. Although
it is interesting in itself to study the normal bundle of such a
curve we shall need this result mainly for applications in later
sections of this chapter. The following proposition is a slight
strengthening of a result of Ellingsrud and Laksov [6, p.17]. It
says essentially that an elliptic quintic with a node behaves with
respect to its normal bundle in exactly the same way as one would
expect it from a smooth curve of the same degree and arithmetic

genus [17].

(VIII.1.1) Proposition: For each point P € Sec C -Tan C the curve

CP lies on a unique quadric surface QP and has exactly one node.

The following two cases occur

(1) If QP is smooth then N_ is indecomposable and there is a

non-split exact sequence

P

- - * - -
o] @C NP(Z) GC o.

(i1) If Q, is a quadric cone with vertex E then E is a smooth

point of CP and

Proof: We have already seen in (IV.3) that CP must lie on a
unique quadric surface QP and that QP can be either smooth or a
quadric cone. In either case this implies that the arithmetic genus
of CP is 2, hence CP can only have one node. This can also be con-
cluded from lemma (IV.1.1).
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Case 1: Assume that QP is smooth. Then the equation of QP defines
a subbundle

It then follows from

2, # _
A™NG (2) = 6c

that we have an exact sequence
0O - 6, - Nf(2) - 6, = oO.

We have to show that this sequence is non-split which is equivalent
to

(o) _
h (NP(Z)) = 1.

To see this, note that we have an exact sequence

- * - 3 - -
o) NE (1) Ng (1) v*/vPcs@c o

where Nc denotes the normal bundle of C in Eﬁ and

*
AVAES F((SIP4(1)).

Moreover VPEEV* denotes as usual the space of linear forms vanishing
on P. (For this sequence see also the next section). Tensoring with
@C(1) we get an exact sequence
- 3* - 3* ¥ -
0 NP(Z) NC(Z) -V /VP(8@C(1) 0.

On the other hand we have already seen that

ks A o~ #*
r(3,(2)) = 1 (N,(2))
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Hence we have to see that the kernel of the map

3 .
T(Ia(2)) = VI/V,eTr(6,(1))

has dimension 1. For a quadric 0 to be in this kernel means that if

P='(po,...,p4) then
4 30,
L sz p; = O
i=0 i
Since
4 30 4 30,
i i
L —p, = L —(P)x,
i=0 °%; "1 i=0 %3 1

it follows that Q is a quadric through C which is singular at P.
Since there is exactly one such quadric, namely the cone over QP’ we

are done.

Case 2: Now assume that QP is a quadric cone with vertex E. Pro-

jection from E defines a map

of CP onto a conic section CO. Since

deg CP = 2-deg p+multECP

it follows that E must be a smooth point of CP‘
As before the equation of the quadric QP defines a map

. - #*
s : @C NP(Z)

which, however, has a zero at E. We claim that s vanishes of order 1
at E. To see this, we choose holomorphic coordinates t1 ,t2 ,t3 near
E such that

Then QP is given by an equation of the form
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Qp = {f1t1 + f,t, = o}.

Since QP is a cone over a non-degenerate conic it follows that at
least one fi must have a term ct3 with ¢ # 0. Hence s vanishes of

order 1. But then it follows that there is an exact sequence

0 - 6.(E) = N;(Z) -+ B6.(-E) = ©

C C

and since

0

h1(®c(2E)) = h%(6.(-2E)) =0

C

this sequence splits. This concludes the proof.

2. The result of Ellingsrud and Laksov

(VITI.2.1) We first want to define a certain l1-parameter family of
quintic hypersurfaces YycS P, . These hypersurfaces were first intro-
duced by Ellingsrud and Laksov in [6] and are essential in the study
of normal bundles of elliptic space curves of degree 5 in E% .

As always let C§51P4 be an elliptic normal quintic with hyperplane

section

Then

ve = 10 = 1%, (1))
4

and by VPEEV* we denote the hyperplane of linear forms vanishing on
P. Finally let

be the normal bundle of C in I@ .

For each point P EIP4— Tan C we have the following commutative

and exact diagram over C:
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C
l l v
b = S
! l
(0] (6]

where Pé(L) is the bundle of first principal parts of L. Note that

we can identify

- N*
FP = NP®L

Although we have started out with a point P EIP4- Tan C, the map Vp

and hence the map

* -
N® ®L @c

is also defined if P €Tan C. If P¢C then this map fails to be sur-
jective exactly at those points of C which lie over the cusps of CP'

In any case we have still got an exact sequence

O—»FP-N*@L-o(SC

where the right hand map is surjective if and only if P ¢ Tan C.

In order to vary the point P we consider the product
Eu x C
’///g/ \\\\\q
P4 C
This gives rise to a diagram
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3 +*

p- (6 (1)) = p (6., (1))
Py Py
! !
0 0

where the left-hand vertical row is exact over (IP4- Tan C) xC.
Tensoring this sequence with g¥* (L ®M) where NlEPicoC is a line bundle
of degree O, we get

2

oM
(1) O =~ F®q*(LeM) = g (N*BL GM) — p*6, (1) ®q* (LeM) .
4

M

Applying p, leads to a morphism

by = Puby * Pxd” (v*erfeMm) - @]P4(1) ® p,g¥ (LoM) .

It follows from Riemann-Roch that

o (Lem =5

for all NlEPicoC. Similarly it follows from (V.2.2) that
n® v+ ®L2®M) =5
for all M¢ PicoC. Hence the map

o, : HO(N* 012 eM) ® 6, - 6 (1) @O (L oM

M IP4 ]P4

can be viewed as a 5 x5 matrix with entries linear forms. Following
Ellingsrud and Laksov we define

Yy 2= {det by = o}.
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We now want to start collecting first properties of the hyper-

surfaces YM.

(VIII.2.2) Proposition: (i) For each M the variety YyE P, is

a hypersurface of degree 5.

(1ii) The support of Y

v is given by

supp Y, = {P;hO(FP‘&I,®M) # 0}.

(1ii) Y, =Sec C.

Proof: (1) All we have to see is that YM74EM . We first consider
the case M';£®c. It follows from (VIII.1.1) case (i) that for general
P €Sec C - Tan C one has

hO(NP*(2) ®M!) = 0.

Hence Y,,, ;£IP4 for M' %@C (c£. (ii)). Next assume M =6,. Again from
(VIII.1.1) we can conclude that there exists a point P€Y,, - Sec C.
Then Cp, is smooth and hence has semi-stable normal bundle ([10,p.61])
Hence NP*(Z) is given by an extension

0 =» M "4 NF(@2) 4 M' - O

from which one concludes that Y(9 # IM .

(ii) For each point P we have an exact sequence

0O - F,®L&M - N*®L2®M - LOM

and the assertion then follows from the definition of YM together

with basechange.

(iii) We first note that Sec C is a hypersurface of degree 5. This
follows since projection from a general line Lg;m4 maps C to a plane
curve of degree 5 which by the genus formula must have 5 nodes. Hence
it is enough to prove that

Sec C ¢ YG
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But it follows from (VIII.1.1) that for each point P € Sec C -Tan C
we have

nr, 1) = 0 (2) # o
and this concludes the proof.

Our next result is that the quintics Yy form a linear family of
hypersurfaces.

(VIII.2.3) Proposition: The map

det ¢ : Pic%C = B : = B(I(6p (5)))
4

M — YM

is not constant and admits a factorization

(¢] det ¢ P

Pic™C
u///linear

picPc/1 P,

where 1 denotes the involution on PicoC. In particular each point

P ¢Sec C lies on a unique hypersurface YM:=Y -1
M

Proof: We shall first prove that det ¢ is not constant. To do
this let P € Sec C be a point such that CP lies on a smooth quadric
Qp. Then it follows from (VIII.1.1) that

nO(F, s em) = hOW5(2) M) = O

for all M#6,.. This implies that Y #Y if M#6..
C M @C C

We can now turn to the second part of the proposition. Since we
have chosen an origin & we can identify
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cxpric’c=cxc

and define the Poincaré-bundle E by
E : = GCXC(A—CO).

Here A is the diagonal and C, = {®@} xC. The bundle E has the
following properties:

E|cx{M} =M

o

E|PicC = 6,(0).

C

On the product 1P4x ¢ xPicOc we have a sequence

o -~ FALBE - N grlgE 6p (1) BLBE
4
where @ denotes the tensor product of the pullbacks to P4 xC xPicoC.
The restriction of this sequence to IP4x Cx {M} is just (1M). Let

£ IP4xCxPicOC -~ B, x picOc

be the projection map. It will then be enough to prove that

Sp gk g1 2 _
A’f, (N* gL° BE) = ‘9194” 6 (20)

5 —
ATE, “91194(1) @aLdE) = @P4(5) 86 (4@)

since this implies that

det ¢ = det f*tbGI'(@]P (5) & @C(ZO)) = I‘((S)IP (5)) BI‘(@C(ZG)).
4 4

To prove the above assertion we shall use Grothendieck-Riemann-Roch
(see e.g. [8, p.436])which reads

ch(f!F) = f*[ch(F‘.Td(Tf)].

Here Tf is the relative tangent sheaf of f and
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ch(f£,F) = L (-1)'R'f,F.
: i=0
Since Tf is trivial and since

1 2 1

h'(n* @L“eM) = h' (L®M) = O

for all MePicOC we find that

ch[ £, (N* ELZ aE)] = £,[ch (" an aE)]
ch[f, (L@E)] = f,[ch(LOE)].

It is easy to compute that

¥* 2 _
ch[N* gL BE] = 3+, x (32 +2CO) + 2P, x (A.Cy).
By Grothendieck-Riemann-Roch this implies
chlf,ov@aL’ @E)] = 542, x©
and hence
Af, (v @L° BE) = 6 B6,(20)
* E@ C :
Similarly one has
ch[L@E] = T+P, x (A+4CO) +41P, X (A.CO)

which implies in the same way as above that

A%, (LBE) = 65, B (40)
4

ané hence

5

Af*wmj1)0LﬂE)= G)GGCMGL

(]
Py

This concludes the proof of our proposition.

(VIII.2.4) The next point we want to make is that it is easy to

write down an explicit equation for the quintic hypersurface
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Y®==Sec C. To do this recall that we have an isomorphism

O (9. (2)) T HO(* (2))

and that a basis of HO(JC(Z)) is given by the quadrics

1
+ ax2x3 —SX X4

o]
=N ON

+ ax.x -1x X
374 a”2’o0

_ L2 21
Qy = X5 + ax,x, - 2X3%y

1
w N

+ ax.x —lx X
071 a"472

!
=N

1
+oax X, - IX Xy .

We then have

(VIII.2.5) Proposition: The quintic hypersurface Ye = Sec C is given

by
230,
Y, = Sec C = {det(ggf) = 0}.
J
Proof: The map
.0 2 o (o
bg * H (N¥* ®L )®@P4 @PJ1)®H (L)
is given by
- é 230,
b (Q) = X, ®—— .

Since éi is a quadric it follows that

and the assertion follows immediately.
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(VIII.2.6) Remark: We want to mention that one can at least in
principle employ a similar method to compute the equation of a gene-
ral YM - or at least reduce the problem to a computation involving
certain theta-functions. To sketch this, note that the quadric

is singular at the origin ®. We can then choose elements ho==id,

h ,h4 € H. (depending on a) such that the quadrics

qree. 5

QJ!_ : = hi(Q('))

form a basis of HO(JC(Z)). Next, note that the bundle

E = E@@cxc(co) = @CxC(A)

has a section t € HO (¥) such that

O# t(P) : =t]|Ccx{P} € HO(GC(P)).

Since Qé is singular at the origin & we can define sections

o

t(h, (P)) 2
v, : = Q! € H (N*®L

i 1FEWET & M)
where M==®C(P—O). At least for general P the vy will be linearly
independent and the map

2 0]

(0] .

by * (N¥* 9 L° ® M) “‘@IP4 - @IP4(1)®H (L ®M)

is given hy
g BQi t(hi(P))

b, (v,) = Xe ® —= ¢ ——rer

MU j=0 1 9%y t(h; (@)
where

aQ’ t(h (P))
wij : —(—H—(O—T- € H (L@M)

On the other hand we can define a basis xé,...,x 61{ (L®M) by
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' . = _P
x:(z) : = xi(z 5)

and there is a linear relation

Then YM is given by

k
s X

4
Y, = {det(Z 2y j)ik = 0}.

j=0

Now we are ready to give the main result of this section.

(VIII.2.7) Theorem (Ellingsrud/Laksov): Each point P g Sec C lies

on a unique quintic Y=Y _4 and the following holds:
M

P splits and

(1) If M2;4©C then the normal bundle N
* - -1
NP(Z) = M®M .

(ii) If M2==@C then there is an exact sequence

O - M = N;(2) - M - O

and there is a non-empty open set of points P €YM such that NP

is indecomposable.

Proof: We have already seen that each point P lies on a unique

quintic Yy=Y _q. It then follows from (VIII.2.2) that there is a
M
non-zero map

3
s + M=~ NP(Z).

Since P ¢Sec C it follows that

O % _
h (NP(Z)) =0

and hence s cannot have any zeroes, i.e., it defines an exact

sequence
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o-oM~N;(2)-M'1~o.

If M2;£®C this sequence must necessarily split since

h' (M™) = O.
Now assume that M2 =®C. Then the above sequence is non-split if
and only if
hO (% (2) em) = 1.

By semi~continuity it will be enough to find at least one point for
which this holds. To do this we choose a point P' € Sec C such that
CP'
of (IV.3). It then follows from (VIII.1.1) that

is a nodal curve on a quadric cone QP' . We can do this because

* = -
NE, (2) = 6, (-E) ® 6 (E)

C
and this concludes the proof.

(VIII.2.8) Remarks: (i) One consequence of the above theorem is
that the normal bundle of a smooth elliptic space curve of degree 5
is always semi-stable. This is no longer true for higher degree as
was shown in [10].

(1i) I have heard that Ellingsrud has constructed for each
theta-characteristic M;£®C examples of smooth curves Cpggﬁb such
that

3 -
NPQ)»~M@M
This means that every semi-stable rank 2 bundle on C with determinant

@C occurs as the normal bundle of a smooth elliptic curve of degree
5 with the exception of the trivial bundle.

3. The quintic hypersurfaces YM

The purpose of this section is to describe the linear family {YM}.

To do this we shall first determine the base locus of this linear
system. The next step is to prove that the equations of the YM are
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Hs-invariant. We shall then prove that the YM
quintics which contain the tangent surface of C and are singular

are exactly those

along C and relate this to the Horrocks-Mumford bundle. Finally we
want to determine the subspace UEiTH(Jg(5)) which belongs to the

family {YM} in terms of the basis FH(Jg(S)) which we have found

earlier.

(VIIT.3.1) We shall first have to recall a few basic facts from
earlier chapters. We showed in chapter IV that there is a 1-dimensio-
nal family of rank 3 quadrics through C whose singular lines form a
ruled surface F‘EJP4 of degree 15. Moreover, we gave an explicit

description of a birational map

2 = -
¢ : s°C = P(Ey) F

Here EO is the unique indecomposable rank 2 bundles over C with de-

terminant @C(G). We had also seen that

=1
D=4¢ (C) ~C, + 12fg

0

¥*
" (H) ~Cqy * 7f0

where Coc P(E,) is the unique section with

o]

) = 6, (@)
o] 0]

In (VII.1) we studied the desingularization

p: X = P(E,) - Tan C

of the tangent developable of C. Recall that E, was given by the non-
split extension

o =~ @C ~ E1 - @C - O.

Let C1EJP(E1) be the unique section with C? =0. Then we had seen
that
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*
p" (H) C1 + 5f0.

It follows directly from our explicit description of the map ¢

that the intersection of the tangent surface of C with F consists of

two curves,

where

and 3csic

projection.

namely

Tan CNF =CUE

E = ¢(B)
is the image of the diagonal A< C xC under the canonical

Since

A~ 4Co - ZfG

we can compute the degree of E to be

deg E AH = (4C0'—2fe).(co-+7fe) = 30.

Moreover, since

2

o1
I

DN { (P,P) € s°C ; 5P ~ 568}

it follows that

[}

CNE-={PeC, 5P ~50}

i.e. C and E intersect exactly in the 5-torsion points of C.

The last remark we want to make concerns the pre-image of the

curve E on the desingularization of the tangent surface. Since E

intersects each tangent only once, p_1(E) is a section of E(E1) and

since C and E intersect exactly in the 5-torsion points of C it
follows easily that

We shall now turn to the common intersection of the family Y

+ 25f0.

M:
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(VIII.3.2) Proposition: The base locus of the linear system {YM}

consists of the union of the tangent surface Tan C with the sur-

face F, i.e.

N YM = Tan C U F.
M

Proof: Since Yo =Sec C it follows that the common intersection
of the Yy is contained in the secant variety of C. If P €Sec C-Tan C
then it follows from (VIII.1.1) that P is in the common intersection
of the Yy if and only if CP lies on a quadric cone QP' i.e., if and
only if P €F. So it remains to see that the tangent surface Tan C is
contained in each of the hypersurfaces YM. This follows easily from
degree considerations but we also want to give a direct proof which

follows [6].

To do this we fix some point P € Tan C -C. Again CP lies on a
unique quadric QP‘ By arguments which we have already used in the
proof of (VIII.1.1) it follows that CP has no other singularities
but a simple cusp over some point R. We have the following commuta-

tive diagram:

\Y / ®6 = Vy ®®c

Over the point R the map
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has a simple zero, i.e. we have an exact sequence

0O - F, =~ n;(ﬂ (1)) = L(-R) = O

from which one concludes that

2 =
A FP(1) = @C(R).

Now assume that QP is smooth. Then similarly as in (VIII.1.1) this

quadric defines a subbundle 6 EFP(1) and hence an exact sequence

C

0 = 6, = Fp,(1) = 6,(R) = O

which proves that

hO(FP(1) &M) # O

for all MGPicOC, i.e.

PeENY
M M

It remains to consider the case where QP is a quadric cone. Then
the vertex E of QP must be a smooth point of CP and we get an exact
sequence

O = G6,(E) = FP(T) - @C(R—E) - O

which must split because of

1 -
h (@C(ZE—R)) =0 .

This concludes the proof.

The following consequence was also known to Ellingsrud and Laksov
although their argument is different.

(VITI.3.3) Corollary: The quintic hypersurfaces Yy are irreducible.

Proof: First note that the secant variety Sec C is irreducible.

Assume that some quintic YM is reducible. Then it follows from the
above proposition that Yy must be the union of a quadric Q, and a
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cubic hypersurface Q3. Moreover Q2 must intersect Sec C in the tan-
gent surface Tan C and Q3 meets Sec C in F. By reasons of degree Q2

cannot contain the surface F as well. Hence

* A [

$" (0,) = D+4+D
where D' is some effective divisor on SZC. But this is impossible
since

D+A ~ SCO-+1ofg

and

*
¢" (2H) ~ 2CO~+14fG .

The next step is to prove that the equations of the quintic hyper-

surfaces YM are invariant under the Heisenberg group H5.

(VIII.3.4) Proposition: The equations of the quintic hypersurfaces

YM are H5-invariant, i.e. if U is the affine 2-dimensional space of

quintic forms which belongs to the family YM then

ucr

c T (65 (5)).

4

In particular the Yy are linear combinations of the fundamental
pentahedra.

Proof 1: We have already seen that the YM

surface Tan C. On the other hand we have seen in (VII.3.4) that

contain the tangent

r(J (5)) = r_(J (5))

Tan C H' Tan C

and this implies our assertion immediately.

Proof 2: Since the above proof makes use of the whole set-up of
the Horrocks-Mumford bundle it may also be interesting to give a
second independent proof. To do this we first claim that the YM are
invariant under H5 as hypersurfaces, i.e. that H5 operates on U by
scalar multiplication. This is clear for Y, #Sec C. Let Yy be some
other quintic. Moreover let h EH5 be an element of the Heisenberg

group which operates on C by translation with a point P =Py . Let
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()EYM be any point not on Sec C and set

Q' : = h(Q).

By "o and Toe We denote the projections from Q and Q' respectively.

The relation between these two maps from C to 3-space is

nQ, = nQ oT_P
where T_, denotes translation on C by -P. Hence
— 3
Noo = T" _pNg

which implies that Q' EYM , i.e. the hypersurface Y 6 is H.-invariant.

M 5
It now suffices to show that the equation of at least one hyper-

surface YM is H5—invariant. Recall from (VIII.2.5) that

Y. = {det (gg%) = 0}.

It is convenient to write

0. = L q,.X.x.
o 1,5 ijTivj

where

1,

~ - _a - - -1
o0 ~ 3 T 932 T3 ¢+ g4 T 941 T T3

and qij==o otherwise. One finds that
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9o0¥0  914%4  923%3  932%2  941%y
d41%2 900%1  d14%0  923%yg  932%3
1 (——i ) = q44X X X X b
2\ 3%, 32%4 941%3 9p0*2 4% 923%0
923%1  932%0  941*s 9o0%3 914%2

994%3  923%2 932%1  U1*o Yoo*4
which we can also write as

1 (___.)= (q. . X L)
2 axj j-i,i-372i-3"13
Hence we have to prove Hs—invariance of the determinant

e és;, § Br-i i@ ¥ei-a @)

which can be done as follows:

. _ ~2i+x (1)
(1) ©(D) = % e ML) =i, 1i-2 (1)%2i-2 (1)
Since

Z(=2i+2(i)) = O mod 5

1

it follows immediately that (D) =D .

(il) U(D) == };, ;-[ qA (i)"i,i—)\ (i)XZi—)\ (i) -1
B E f Dy (1) -i+1,i-2 (i) = 1%2(i-1)=-2 (i)
= § g Dy (1-1) = (1=1), (i=1) =2 (i=-1) %2 (i-1) =2 (i-1)

= o (D).
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This concludes the proof.

Although the fact that

provides us with some information about the family {YM}, since we

know the space T (5)) of invariant quintic forms quite well, the

H(®P4
situation is not yet quite satisfactory. One would like to have an
accessible necessary and sufficient condition for an invariant
quintic to define one of the YM. Of course one could say that the
linear family {YM} is determined by its base locus Tan CUF. But we

want to replace the condition that the Y, contain the ruled surface

M
F by another condition which will then enable us to relate this de-

scription to the Horrocks-Mumford bundle.

(VIII.3.5) Theorem: The space U of gquintic forms which belong to
the family {YM} is given by

- 2
U = FH(aTan C(5)) n FH(JC(S))

i.e. an invariant quintic form defines one of the hypersurfaces YM

if and only if it vanishes on the tangent surface Tan C and is sin-

gular along C.

Proof: It will clearly be sufficient to prove that

M, (95 (5)) = 1, (32(5))
We first want to show that any quintic Q through F must be singular
along C. To see this recall that there are exactly 4 lines belonging
to F through each point P of C. These 4 lines correspond to the 4
quadric cones through the curve CP‘ They span P4 and this implies
that every hypersurface containing F must be singular along C.

In order to prove the other inclusion assume that Q€ FH(Jé(S))

defines a quintic hypersurface which does not contain F. Since Q is

invariant it must go through the 25 lines L Moreover since Q is

k4®
singular along C it follows that the pullback of Q to SZC is of the

form
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¢*(Q) =20+ L f_+D'

5p~5@ ©
for some effective divisor D'ggSZC. But this gives a contradiction,
since
2D+ L f,~2C, +49f
sp~s@ O o
whereas

¥*
¢¥* (SH) ~ 5C4 +35f4.
This proves the theorem.

Remark: We saw in (VI.2.4) that

2 -
dim FH(JC(S)) =3 .

There we also constructed an explicit basis of this vector space.

We now want to rephrase this result in terms of the Horrocks-
Mumford bundle F. Recall that

and that all the sections of F are Hs-invariant, i.e.

r(F) = Ty (E).

(VIII.3.6) Lemma: The vector space

W:={f€e€T(F); £(®& = 0}
has dimension 3.

Proof: This is an immediate consequence of proposition (VI.2.4)
which says that the scheme-theoretic intersection of the Hs—invariant
quintics £ Af' consists exactly of the 25 skew lines Lkﬁ‘ Hence all
sections are linearly dependent over the point GéELOO but there must
be at least one section which does not vanish at & since the inter-
section of these quintics could not be smooth at this point other-

wise.
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Note that the sections f € W must vanish at all the 5-torsion
points of C since they are invariant under the Heisenberg group Hg.
By our results from chapter VII there exists a unique section s €W
such that

Tan C = {s =0]}.

We can now formulate the following

(VIII.3.7) Theorem: The space U is given by

U=sAW={sAf;few].

Proof: Clearly any quintic sAf contains the tangent surface
Tan C. Since s(®) =£f(0®) =0 any such quintic must be singular at the
origin @ and hence at all the 5-torsion points of C. But any quintic
hypersurface which i1s singular at 25 points of the degree 5 curve C
must be singular along the whole curve. The assertion now follows
from our theorem.

(VIII.3.8) We want to conclude this section with yet one more de-
scription of U, i.e., we want to determine the 2-dimensional sub-
space Ug;rH(Jé(S)) in terms of the basis of the 3-dimensional space

rH(Jé(S)) which we have found in (VI.2.4). Unfortunately, the nu-

merical data involved do not seem to be very illuminating.

We shall first have to say a word about the tangent TG of C at
the origin ®. Using the quadric equations Qi of C it is easy to see
that TG is given by the linear equations

—x1-u2+m%+x4=0
1 2 _
- axo-2ax1 +a x3—ax4 =0

+1x +2x, +x, = 0

52
X0 T 3% 2 7 %3

(0]

The tangent T0 is invariant under the involution 1 (as a line) and
contains exactly two fixed points of 1, namely the origin

@@= (0O:=-a:1:-1:a)
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and the point

3

S = (10a” : -3a —a6 :1—3a5

:1-3a% : -3a -a?).
(VIII.3.9) Lemma: U = {QerH(Jé(S)) ;Q(s) = 0}

Proof: We have already seen that every quintic Q¢ TH(Jg(S))

contains the surface F. Let us assume that Q does not contain the

tangent surface Tan C. Then we have to show that Q(S) #0. Since Q is
singular along C it follows that the pullback of Q to the desingula-
rization §=EP(E1) contains the section C1 at least 4-fold plus the

curve p_1(E). Since

1

4C, +p ' (E) ~ 5C, +25f4 ~ 5H

it follows that

QO NTan C = C U E

Since S is neither on C nor on E this concludes the proof.

Now recall from (VI.3.2) that the following quintic forms are a
basis of FH(Jg(S))

52 =2 =2 =2 =2
9o * 7 ¥oUo * XqQp X0 * X303 *+ x40,
Qg F = %0Qp03 %9030, + 350,00 * %3000, *x,0,9,
Q2 * = X010 ¥ %90300 + %5039y +x30,0; * %4004

What remains to be done now, is to compute the value of the quin-
tics Qi at the point S. Using the computer of Brown University,

J.Lubin found the following result:

ho t = 9y(8) =32a° @0+ 11a% - 1) % (1 +142° a0
Ay 2= 0,(8) =160a” (a'@+11a° - 1) % (2 - a%)
A, : = 0,(5) =160a" (a'®+11a° - 1)% (1 +2a%)
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Since we are not interested in common factors of the Ai we set

- 5__10
Xo t = 1+14a°-a
X, 1= 5ad(2-a”)
X, = 5a’(1 +2a°%) .

This finally leads us to

(VIII.3.10) Proposition: The space U which belongs to the linear
family {YM} is given by

A+ C

2
U=1{ Z¢c;05i¢4

i=0

A

171
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IX. Elliptic quintics and special surfaces of small degree

In this chapter we want to say a few more words about the normal

bundle NP of a smooth elliptic quintic CP

of view. In the previous chapter we have seen that there always

cp, from a geometric point

exists a subbundle MEENE(Z) of degree O which in general splits off.
Note that O is the maximal degree of any subbundle of N§(2). In this
chapter we want to describe, how a given subbundle M of maximal de-
gree can be realized geometrically. Recall that a smooth elliptic

quintic C&,EJP3 never lies on a quadric. On the other hand every such

curve lies e.g. on five independent cubic surfaces and every such
surface defines a map

Io (3)
s : 6, = N;(3) = P

c /92 (3) -

cP
The map s has a zero whenever C passes through a singularity of S.
Hence, if S has 5 singularities along C (properly counted), then S
represents a subbundle of maximal degree. Similarly a quartic sur-
face must have 10 singularities along C to give rise to a subbundle
blgNg(Z) of degree O. The problem is, whether it is always possible
to find suitable surfaces (of low degree) with sufficiently many
singularities along C. The aim of this chapter is, to prove, that a
given subbundle M5§N§(2)‘of (maximal) degree O can always be repre-
sented by a surface S which is the projection of a complete inter-
section of two quadric hypersurfaces in EM . We shall then see that
in special cases (which are a degeneration of the situation described
above), a maximal subbundle M can be represented by certain ruled

cubic surfaces.

1. The general case

(IX.1.1) As always let (!EJP4 be an elliptic normal quintic. More-
over, let

L= {2505 + 21975 (gt r;) € P, ]
be a pencil of quadrics through C whose base locus is

S=0,00, .
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Then the pencil L gives rise to a map

(Q.,0,)
= 0'*1 * _3.(2)
¢ 2 26, ——> N (2) = “C /Jé(

2)

Next let P £ Sec C be a fixed centre of projection. Then we have a

commutative and exact diagram

[0}
!
*
Np (2)
. l
¢ ¥*
26, —> N, (2)
l(Qé,Q{) !
l
(e}

The pencil L, therefore, gives rise to a map

. - P *
¢ = @C( 1) NP(2)

where
0!
Q4

0

Note that the map ¢ (up to a non-zero scalar) does not depend on the
choice of QO and Q1, but only on the pencil L. Hence we shall from

now on write ¢L instead of ¢.

(IX.1.2) The map ¢L has the following geometric interpretation:
First assume for the sake of simplicity that P ¢S and that S is
irreducible. Then the projection from P maps S onto an irreducible
quartic surface SP which contains the curve CP' The surface SP is

singular along a double conic C. which arises in the following way.

(¢}
Since P ¢ S there exists a unique quadric Q € L, which contains P. More-

over, since P ¢ Sec C it follows that Q is smooth at P. Let HP be the
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tangent hyperplane of Q at P. Then the degree 4 curve

D:=HPﬂS
is the branch curve of the projection o and will be mapped 2:1 onto
the double conic CO. The quintic CP intersects the conic Co in 5

points, namely the images of the hyperplane section HPIWC.
Since SP has degree 4 it defines a map

. - ¥*
s : @C Nc(4)

Note that (up to a twist) the kernel st is the normal bundle NC /s
PP

of CP in SP - at least outside the singularities of SP‘ The map
s has a zero whenever CP goes through a singular point of Sp, hence
in particular at those points where Cp intersects the double conic

C Therefore, s can be viewed as a morphism

o

and this map is just ¢L(1). We can also say this as follows: Let

R €C be a smooth point of S and let E be the tangent plane of S at R.
Then the projection from P maps E onto the tangent plane EP of SP at
nP(R) unless E contains P in which case we get a pinch point of Sp-
But the plane EP just represents the image of the morphism ¢L in
N;(Z)g\&>®sc(1) over the point R. This discussion also shows that

the map ¢L has a zero at R if and only if S is either singular at R

or if R lies over a pinch point of Sp (see also lemma (IX.1.6)).

A similar interpretation holds if P€S or if S is reducible.
First note that if S contains P then it is smooth at P since there
is no quadric through C which is singular in P. Then the projection
from P maps the blow up § of S at P to Eb . The image of S under
this map then plays the same role as the surface Sp did in the above
case, and we shall again denote it by Sp. We finally want to remark
that it can in fact happen that the surface S is reducible. Since C
does not lie on a quadric surface this can only be the case if S is
the union of a plane 1P, and a cubic surface F which then must con-
tain C. We shall come back to this case in section 2 of this chapter.
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Motivated by this discussion we make the following

(IX.1.3) Definition: Let MggN;(2) be a line subbundle. Then we

say that the surface S (resp. its projection S_) represents the sub-

P
bundle M if and only if the map ¢L is non-zero and factors through M,

i.e. if and only if there is a commutative diagram

oo (-1) —E—s NE(2)
\\\\\ ¢i ul
AN

Y
M

(IX.1.4) We have seen in (IV.2) that
h®(s.(2)) =5 .

Hence let

Py := P,y(r{d,(2)))

be the projectively 4-dimensional space of quadrics through C. By

G = Gr(1,4)

we denote the Grassmannian of lines in Eﬁ , i.e. the variety of

pencils L of quadrics which contain C.

For the rest of this section we want to fix once and for all a
centre of projection P¢gSec C. Let R€E€C be some point on the elliptic
normal quintic C. Then the quadrics Q EIP& which are singular at R
define a line

1
Lo € By

The line Lo is given by the pencil of quadrics which cuts out the

elliptic quartic C Next we define a hyperplane IP3§_P4 by

R

4
Py, r={oery;( L 2wmx, )@ =0} .
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I.e. EB consists of all those quadrics which are either singular at
R or whose tangent hyperplane at R goes through P. That this defines

a hyperplane IP3§ P& follows from the fact that the condition

4
22 ®ryx,) (®) =0
(i=0 0%y l)

is linear and non-empty. The latter holds, since C is the scheme-

theoretic intersection of the quadrics containing it.

We now define varieties

Sgt ={L€G; LNLy# o)}
Sz-={L€G-LC]P}
R ° re= T3

Note that S; is just the variety of pencils L for which the base
locus S is singular at R. Similarly Sé consists of those pencils for
which the tangent plane of S at R (if it exists) contains P. Since

P #R this just means that nP(R) is a pinch point of SP'

(IX.1.5) Observation: Note that both varieties S; and Sé are

defined by Schubert conditions. More precisely, in the cohomology
ring H¥ (G) of G one has

:
Sr ~ 920

2
Sp ~ 911

where o and 0qq are the respective Schubert cycles. For this

20
notation see [7, p.139 ff.].

Now let

L = {)\OQO + 20, (AO:A1) € 191}

be a pencil of quadrics through C and let

be the correspcnding map as defined in (IX.1.1).

129



K. HULEK

(IX.1.6) Lemma: The map ¢L has a zero at R€C if and only if

Proof: Assume that L ES; . We can then assume that Qo is singu-

lar at R. This implies that the map

. - *
0~ : 6 NG (2)

(0} C
has a zero at R and the same holds for the map
' .
Q5 6, = GC(1).
But this implies that the map

bp, = =000 + ;08

also has a zero at R. Next suppose that 1.es§ . Then Qé and Q; have
zeroes at R and so has ¢.
Finally assume that 1,¢s;le§ . We can then assume that Q% and

Q1 are smooth at R and that only the tangent hyperplane of QO at R
contains P. This means that of all the maps involved, only Qé has

a zero at R and hence we are done.

The next proposition plays an important role in the proof of the
main result of this chapter.

(IX.1.7) Proposition: For each pencil L €G of quadrics through C

the associated map

. - - *
: 6,(-1) NC(2)

is non-zero.
Proof: Let
L= o0 * 2@ 7 B iry) € Byl

be a pencil of quadrics through C and let
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S = QO n Q1

be its base locus. We have to show that a general point R€C is a

smooth point of S which is not mapped to a pinch point of S To do

p*
this we consider the maps
. 3

QO,Q1 : GC - NC(Z) .
Every quadric Q through C is in at most one point R of C singular.
If Q has an isolated singularity at R one sees exactly as in the
proof of (VIII.1.1) that the map Q has a simple zero at R. The only
other possibility is that Q is singular along a line LO which meets
C in R. But then it follows from the fact that Lo
C in R that Q again has a simple zero at R. Now assume that S is

is not tangent to

singular along the whole curve C. This can only be the case, if the

two maps
. ¥*
QrQq t 6 = NL(2)

define the same subbundle MEENE(z)- By what we have said above, M has
degree O or 1. In any case QO and Q1 define the same section (up to
a scalar) in NE(Z). But this is a contradiction to the fact that

~ 0

o
H™ (3. (2)) H (NE(Z))

So it remains to see that a general point of C is not mapped to a

pinch point of S We can assume that the centre of projection P lies

on QO and 1is a sﬁooth point of QO since P ¢ Sec C. Let HP be the tan-
gent hyperplane of QO at P. Now let R€C be a point which does not
lie on HP. Then R cannot lie over a pinch point. Otherwise the line
L1 through P and R would be tangent to QO at R and hence would be
contained in QO. But this would imply that L1§I{ which we have ex-

P
cluded.

This proves our proposition.

We are now ready to formulate and prove the main result of this

section.

(IX.1.8; Theorem: For each subbundle MSEN;(Z) of degree O there
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exists a pencil L of quadrics such that the associated surface S

represents the subbundle M.

Proof: It follows from theorem (VIII.2.7) that

hO(N;(a)) = 10.

We set

Py ¢ = P (HO(NE(3))).

9

From what we have said above and from proposition (IX.1.7) it follows
that we have a map

L » ¢L.

Now let Mg;N;(Z) be a fixed line subbundle of degree O. Since

hom)) =5

it follows that the maps

. - - #*
s 3 6.(-1) Np (2)

which factor through M form a (projectively) 4-dimensional space

P, c T

4 9
It will be enough to prove that

$(G) N P4# ¢ .

Rut this will follow, if we can show that

dim ¢ (G) = 5.

Since the Grassmannian G has dimension 6, it will be enough to show

that for general L € G one has

aim ¢ (6(L)) s 1.
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In order to see this, we fix a point R, € C and consider the variety

Recall that the map ¢L has a zero at R1 if and only if ¢I,ESR1‘

Moreover, we had seen that SR has dimension 4 and that in H* (G) one
1
has

S

+
R a

~ %0 11 °

1

Note that it follows from the Schubert calculus on Gr(1,4) that SR
1

intersects each cycle of dimension at least 2.

It is a consequence of proposition (IX.1.7) that for each I,ESR
1

the associated surface S is smooth at a general point R2 of C and

that its tangent plane at R2 does not contain P. Hence

and for each component Vi of this intersection we have

2 < dim VvV, < 3.
1

As before we can choose a point R3 € C such that

and such that each component Wi of this intersection has dimension

0O < dim wi < 2 .

If all these components are at most 1-dimensional then we are done,

because for each

Les ns ns

we have



K. HULEK

since these are the only pencils for which the associated map ¢L

has zeroes at R.I ,R2 and R3. If there is a component Wi of dimension

2 then we can choose yet another point Py such that

and where each component of this intersection has dimension at most

1. Then we are done by the same reasoning as above.

This proves the theorem.

2. A special case

In this section we want to study a special case of the above
situation, namely the case where the quartic surface S degenerates
into the union of a ruled cubic surface F and a plane IP2. We shall,
however, approach the problem from a somewhat different angle.

(IX.2.1) Again let CZ§2P4 be an elliptic normal quintic with origin

®. For each point PO €C we can define an involution

If POITG then this is just the involution 1 which we have considered
earlier. Note that « lifts to a linear map of P, if and only if P,
is a 5-torsion point of C. We can associate a ruled surface F to

the involution x by taking the union of the lines spanned by z and

k(z), resp. the tangents of C at z if z=«(z), i.e.

F=U (z,x(z)) .
zZ€C

Clearly F is a rational ruled surface. It was already studied by
C.Segre in [16] who also knew the following result.

(IX.2.2) Proposition: The surface F is a smooth ruled cubic surface,

i.e. it is isomorphic to the rational ruled surface

z

1

= P(Gﬂ? @ ®n>(—1)) and the embedding is given by the full linear
1 1

, . . ; 2
system |C0-+2f| where C, is the unique section of I; with Co=-1.
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Moreover, the divisor class of C is 2Co-+3f.

Proof: We first want to prove that F has degree 3. Let
P1 ,P2 ,P3 € C be different points with

(1) L P, = =P

Let E be the plane spanned by P1 ,P2 and P3 . Then for each point
z € C there is a unique hyperplane H through E which contains z.
Because of (1) it follows that

H.C = P, + P, + P3 +z +k(z).
Now choose planes E' and E" as above such that the degree 3 divisors
which are cut out by E , E' and E" on C span the linear system
|40 -p,]|.
E' and E" respectively. These pencils can be parametrized by

Let H, H' and H" be the pencils of hyperplanes through E,

C/k = EH .
Then for each A € r, the hyperplanes H(XA), H'(X) and H" (A) inter-
sect in a line which is a ruling of F. Hence F can be constructed by

a Steiner construction, i.e.

F= U (H(X) N H' (X)) N H"(A))
AEIP.l

and from this description it follows immediately (cf. [7, p.530 ff.])
that

deg F = 3.

Now we have to show that F is isomorphic to 21. Clearly F is a
rational ruled surface and we have a map

L = P (6

n ®®P1(—n)) - F

1

for some integer n=z= 0. This map is bijective, since no two secants
of C intersect outside C. Let Coggzn be a section with Cg==-n. This

section is determined uniquely unless n=0. Let H be the hyperplane
section. Then
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H~CO+)\f

Since

3 = deg F = H® = —-n +2)

it follows that n is odd. Moreover, since H is base point free it
follows that A >2n and hence n<3. It remains to exclude the case
n=3. To do this note that

H.CO = (Co+)\f).CO = -n+2A

If n=3 then X =3 and hence

which is impossible. It follows that n =1 and hence

H ~ Co + 2f.

The surface F spans P, and since

dim | Cy+2f | = 4

it follows that the map from 21 to F is given by the full linear
system lco-+2fl and this is well known to define an embedding.

It remains to determine the divisor class of C. Since C inter-

sects each fibre in 2 points, we have

C ~ 2Co+uf.

But then it follows from the fact that

5 =deg C =C.H= 2+

that

C ~ 2CO+3f

which concludes our proof.
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(IX.2.3) Remarks: (i) Note that one can construct the cubic ruled
surface F also by taking the projection of the Veronese surface

vc I, from a point on V itself.

5
(ii) The linear system |Co-+f| has projective dimension

dim |cy+f£| = 2.

Since

H.(Co-+f) = (Co-+2f).(Co-+f) = 2
it follows that each divisor E'EICO +f| is mapped to a degree 2
curve on F. If € is a section then this curve will be a conic
section, otherwise it will be the union of two lines. In any case,

every element C EICO-ffl determines a plane P, and the union of F

and E} is the complete intersection of two quadrics in EM (see

[2, p.58]), i.e.
FUPR, = Q4 N Q..

In this sense we are dealing with a special case of the situation

treated in section 1 of this chapter.

(iii) Note that by our construction of F each fibre f cuts out

a divisor of class 0-+P0 on C, i.e. we write

C.f ~ 0+PO .

Since

H.C ~ 50

one can conclude that

CO'C ~ 30-—2PO .

This implies that

C.(CO-+f) ~ 4@-—PO

and restriction to C defines an isomorphism
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~

F(@F(CO-+f)) F(@C(46-PO)).

(iv) Note that the unique section COEEZ1 with Cé==-1 is mapped

to a line L in r, which intersects C in the point 36-—2?0 . Clearly

L depends on the choice of P If one projects from a point L the

o °
cubic surface F is mapped to a quadric cone in Eﬁ . Hence L is the

singular line of a rank 3 quadric through C. Indeed, by varying PO
one gets every vertex of a rank 3 quadric through C in this way.
It is interesting to note that L is one of the 25 skew lines Lkz

which are part of the configuration which we studied in chapter II

if and only if Py is one of the 5-torsion points of C (see also
C.Segre'spaper [16]). In fact if P, =@ this follows immediately from
the fact that L meets C in ¢ and that 1 leaves L pointwise fixed.

A similar argument applies also to the other 5-torsion points.

(IX.2.4) Lemma: N = GC(9G-PO).

C/F

Proof: By what we have said in (iii) it follows that

NC/F = @C(C)
= @c(2CO-+2f)
= @C(9G-PO) .

(IX.2.5) Now let P ¢gSec C be a centre of projection. Then we have
the following maps between normal bundles
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The arguments of section 1 also show that ¢ # O. Hence its image

defines a subbundle

Mc N, (-2)

of degree =-2.

The geometric situation is the following. The point P lies on a
unique plane P, spanned by some‘conic TE€ |Cy+£|. Projection from
P maps F onto a cubic surface F g]P3 which has a double line,

4
namely the image of the conic T. Since

c.C=3

the curve CP meets this line in 3 points. Hence the subbundle of
NP(—Z) which is defined by the surface FP has degree =-2. Note that
the surface F (resp. FP) represents the subbundle

* ~
M: = ker(NP(Z) - M¥*)

precisely in the sense of section 1 of this chapter. Moreover

deg M = deg M=-2 .

(IX.2.6) Since we are really interested in subbundles of NP(-2) of
degree O we shall have to choose special centres of projection.
Therefore, let EéElCO-Ff[ be a smooth conic section on F which inter-
sects C in three different points P1 ,P2 and P3. Let P be the point
of intersection of two of the tangents of C at the points Pi’ say

P1 and P2’ First note that P ¢ Sec C, since the only double points

with respect to n_, lie on C (cf. the discussion in (IX.1.2)).On the

P
other hand the map

(=2) = N_(-2)

¢ ¢ Nejp p

has zeroes at P1 and P2 . Hence the resulting subbundle

Mc N, (-2)

has degree =0O. Since there are no subbundles of degree greater than
O it follows that
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deg M=o0.

We can summarize this as follows:

(IX.2.7) Proposition: The smooth elliptic gquintic Cp lies on the

ruled cubic surface Fp and meets the double line of FP in three

The subbundle of NP de-

points, two of which are pinch points of F
fined by F

P

has degree O.

P

(IX.2.8) Remarks: (i) We want to point out that this is a special
situation and that not every degree O subbundle of every elliptic
quintic Cp can be represented in this way. This follows from an easy
dimension count. In the above construction one can vary the point PO
and for fixed Py there exists a 2-dimensional family of conics

Efelco-+f|. This gives only 3 parameters altogether.

(1i) The last point we want to make is that this "variety of
special projection centres" is not contained in one of the hypersur-
faces Yy but intersects them all. The reason is that the line
bundle M is given by

M

i

(2P, + 2P, +P

1 2 ¥P3 =50

bc

(S)C(P,l +P2—0-PO).

So even for fixed PO we can always arrange P1 +P2 so that M is any
given line bundle of degree O. Note that ﬁ==®c if the conic C de-

generates into two lines C, and f in which case we can project from

[0}
a general point of the secant f which intersects C in

P, + P, ~P + O.

1 2

Then F is mapped to a smooth quadric surface containing the nodal

curve CP'

Klaus HULEK
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RESUME

Le sujet de cette monographie est la géométrie projective des

courbes elliptiques. Les principaux aspects développés sont les suivants:

1. En utilisant les fonctions théta spéciales, les symétries des courbes
elliptiques normales et l'action du groupe de Heisenberg peuvent &tre
explicitées.

2. Le fibré de Horrocks-Mumford est relié aux courbes elliptiques de

plusieurs facons ; en particulier, il peut étre reconstitué & partir du

>

"rouleau'" tangent des surfaces quintiques normales.

3. La géométrie du fibré de Horrocks-Mumford est aussi intimement liée

au fibré normal des courbes elliptiques gauches de degré 5.

Le but principal de ce texte est d'étudier les relations entre

ces différents aspects.
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