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LOCAL-GLOBAL COMPATIBILITY FOR l = p, II

 T BARNET-LAMB, T GEE, D GERAGHTY
 R TAYLOR

A. – We prove the compatibility at places dividing l of the local and global Langlands
correspondences for the l-adic Galois representations associated to regular algebraic essentially (con-
jugate) self-dual cuspidal automorphic representations of GLn over an imaginary CM or totally
real field. We prove this compatibility up to semisimplification in all cases, and up to Frobenius
semisimplification in the case of Shin-regular weight.

R. – Nous prouvons la compatibilité entre les correspondances de Langlands locale et glo-
bale aux places divisant l pour les représentations galoisiennes l-adiques associées à des représenta-
tions automorphes cuspidales algébriques régulières de GLn sur un corps CM ou totalement réel qui
sont duales de leur conjuguée complexe à un twist près. Nous prouvons cette compatibilité à semi-
simplification près dans tous les cas, et à semi-simplification de Frobenius près lorsque le poids est ré-
gulier au sens de Shin.

Introduction.

Thanks to the work of (among others) Chenevier, Clozel, Harris, Kottwitz, Labesse,
Shin and R.T., given F an imaginary CM field or totally real field, and (Π, χ) a regular,
algebraic, essentially (conjugate) self-dual automorphic representation of GLm(AF ), if l is
prime and we fix some ı : Ql

∼→ C, then there is a semisimple l-adic Galois representation
rl,ı(Π) : GF → GLm(Ql), where GF is the absolute Galois group of F . This representation
is uniquely determined by the requirement that it satisfies local-global compatibility at the
unramified places. It is also expected to satisfy local-global compatibility at all finite places;
this has been established for the places not dividing l by Caraiani ([10]), building on the work
of Harris-Taylor, Taylor-Yoshida, Shin and Chenevier-Harris.
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supported by NSF grant DMS-0635607 and the fourth author was partially supported by NSF grant DMS-0600716
and by the Oswald Veblen and Simonyi Funds at the IAS.
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166 T. BARNET-LAMB, T. GEE, D. GERAGHTY AND R. TAYLOR

It is important in some applications to have this compatibility at places dividing l; for ex-
ample, our original motivation for considering this problem was to improve the applicability
of the main results of [4]; in that paper a variety of automorphy lifting theorems are proved
via making highly ramified base changes, and one loses control of the level of the automor-
phic representations under consideration. This control can be recovered if one knows local-
global compatibility at primes dividing l, and this is important in applications to the weight
part of Serre’s conjecture (cf. [2], [1]).

Our main result is as follows (see Theorem 1.1 and Corollary 1.2).

T A. – Let F be an imaginary CM field or totally real field, let (Π, χ) be a regular,
algebraic, essentially (conjugate) self-dual automorphic representation of GLm(AF ) and let
ı : Ql

∼→ C. If v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )ss ∼= rec(Πv ⊗ | det |(1−m)/2)ss.

Furthermore, if Π has Shin-regular weight, then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).

Here WD(r) denotes the Weil-Deligne representation attached to a de Rham l-adic
representation r of the absolute Galois group of an l-adic field; and rec denotes the local
Langlands correspondence; and F-ss denotes Frobenius semi-simplification. (See Section 1
for details on the terminology.) In fact, we prove a slight refinement of this result which
gives some information about the monodromy operator in the case where Π does not have
Shin-regular weight; see Section 1 for the details of this.

The proof of Theorem A is surprisingly simple, and relies on a generalization of a base
change trick that we learned from the papers [17] and [21] (see the proof of Theorem 4.3
of [17] and Section 2.2 of [21]). The idea is as follows. Suppose that Π has Shin-regular
weight. We wish to determine the Weil-Deligne representation ıWD(rl,ı(Π)|GFv )F-ss. The
monodromy may be computed after any finite base change, and in particular we may make
a base change so that Π has Iwahori-fixed vectors, which is the situation covered by [3];
so it suffices to compute the representation of the Weil group WFv . It is straightforward to
check that in order to do so it is enough to compute the traces of the elements σ ∈ WFv of
nonzero valuation (that is, those elements which map to a nonzero power of the Frobenius
element in the Galois group of the residue field). This trace is then computed as follows: one
makes a global base change to a CM field E/F such that there is a place w of E lying over v
such that BCE/F (Π)w has Iwahori-fixed vectors, and σ is an element of WEw ≤ WFv . By
the compatibility of base change with the local Langlands correspondence, the trace of σ
on ıWD(rl,ı(Π)|GFv )F-ss may then be computed over E, where the result follows from [3].

The subtlety in this argument is that the field E/F need not be Galois, so one cannot
immediately appeal to solvable base change. However, it will have solvable normal closure, so
that by a standard descent argument due to Harris, together with local-global compatibility
for the p-adic Galois representations with p 6= l, it is enough to know that for some prime l′,
the global Galois representation rl′,ı′(Π) is irreducible. Under the additional assumption
that Π has extremely regular weight, the existence of such an l′ is established in [4]. Having
thus established Theorem A in the case that Π has extremely regular and Shin-regular weight,
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we then pass to the general case by means of an l-adic interpolation argument of Chenevier
and Harris, [13] and [12]. The details are in Section 3.

Notation and terminology

We write all matrix transposes on the left; so tA is the transpose of A. We let Bm ⊂ GLm
denote the Borel subgroup of upper triangular matrices and Tm ⊂ GLm the diagonal torus.
We let Im denote the identity matrix in GLm.

If M is a field, we let M denote an algebraic closure of M and GM the absolute Galois
group Gal (M/M). Let εl denote the l-adic cyclotomic character.

Let p be a rational prime and K/Qp a finite extension. We let OK denote the ring of inte-
gers of K, ℘K the maximal ideal of OK , k(νK) the residue field OK/℘K ,
νK : K× � Z the canonical valuation and | |K : K× → Q× the absolute value given
by |x|K = #(k(νK))−νK(x). We let | |1/2K : K× → R×>0 denote the unique positive un-
ramified square root of | |K . If K is clear from the context, we will sometimes write | |
for | |K . We let FrobK denote the geometric Frobenius element of Gk(νK) and IK the kernel
of the natural surjection GK � Gk(νK). We will sometimes abbreviate FrobQp by Frobp.
We let WK denote the preimage of FrobZ

K under the map GK � Gk(ν(K)), endowed with a
topology by decreeing that IK ⊂ WK with its usual topology is an open subgroup of WK .
We let ArtK : K×

∼→ W ab
K denote the local Artin map, normalized to take uniformizers to

lifts of FrobK .

Let Ω be an algebraically closed field of characteristic 0. A Weil-Deligne representation
of WK over Ω is a triple (V, r,N) where V is a finite dimensional vector space over Ω,
r : WK → GL(V ) is a representation with open kernel andN : V → V is an endomorphism
with r(σ)Nr(σ)−1 = |Art−1

K (σ)|KN . We say that (V, r,N) is Frobenius semisimple if
r is semisimple. We let (V, r,N)F-ss denote the Frobenius semisimplification of (V, r,N) (see
for instance Section 1 of [23]) and we let (V, r,N)ss denote (V, rss, 0). If Ω has the same
cardinality as C, we have the notions of a Weil-Deligne representation being pure or pure of
weight k – see the paragraph before Lemma 1.4 of [23]. (If N = 0 then the representation is
pure if the eigenvalues of Frobenius are Weil numbers of the same weight, but ifN is nonzero
then the definition is more involved.)

We will let recK be the local Langlands correspondence of [16], so that if π is an irreducible
complex admissible representation of GLn(K), then recK(π) is a Weil-Deligne representa-
tion of the Weil group WK . We will write rec for recK when the choice of K is clear. If ρ is a
continuous representation of GK over Ql with l 6= p then we will write WD(ρ) for the corre-
sponding Weil-Deligne representation of WK . (See for instance Section 1 of [23].)

If m ≥ 1 is an integer, we let Iwm,K ⊂ GLm( OK) denote the subgroup of matrices which
map to an upper triangular matrix in GLm(k(νK)). If π is an irreducible admissible super-
cuspidal representation of GLm(K) and s ≥ 1 is an integer we let Sp s(π) be the square
integrable representation of GLms(K) defined for instance in Section I.3 of [16]. Similarly, if
r : WK → GLm(Ω) is an irreducible representation with open kernel and π is the supercus-
pidal representation rec−1

K (r), we let Sps(r) = recK(Sps(π)). If K ′/K is a finite extension
and if π is an irreducible smooth representation of GLn(K) we will write BCK′/K(π) for the
base change of π to K ′ which is characterized by recK′(πK′) = recK(π)|WK′ .
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If ρ is a continuous de Rham representation of GK over Qp then we will write WD(ρ)

for the corresponding Weil-Deligne representation of WK (its construction, which is due to
Fontaine, is recalled in Section 1 of [23]), and if τ : K ↪→ Qp is a continuous embedding of
fields then we will write HTτ (ρ) for the multiset of Hodge-Tate numbers of ρ with respect
to τ . Thus HTτ (ρ) is a multiset of dim ρ integers. In fact, if W is a de Rham representation
of GK over Qp and if τ : K ↪→ Qp then the multiset HTτ (W ) contains i with multiplicity

dimQp(W ⊗τ,K K̂(i))GK . Thus for example HTτ (εl) = {−1}.
If F is a number field and v a prime of F , we will often denote FrobFv , k(νFv ) and Iwm,Fv

by Frobv, k(v) and Iwm,v. If σ : F ↪→ Qp or C is an embedding of fields, then we will
write Fσ for the closure of the image of σ. If F ′/F is a soluble, finite Galois extension and
if π is a cuspidal automorphic representation of GLm(AF ) we will write BC F ′/F (π) for
its base change to F ′, an automorphic representation of GLn(AK′). If R : GF → GLm(Ql)
is a continuous representation, we say that R is pure of weight w if for all but finitely
many primes v of F , R is unramified at v and every eigenvalue of R(Frobv) is a Weil
(#k(v))w-number. (See Section 1 of [23].) If F is an imaginary CM field, we will denote its
maximal totally real subfield by F+ and let c denote the non-trivial element of Gal (F/F+).

1. Automorphic Galois representations

We recall some now-standard notation and terminology. Let F be an imaginary CM field
or totally real field. LetF+ denote the maximal totally real subfield ofF . By a RAECSDC (if
F is imaginary) or RAESDC (if F is totally real) (regular, algebraic, essentially (conjugate)
self dual, cuspidal) automorphic representation of GLm(AF ) we mean a pair (Π, χ) where

– Π is a cuspidal automorphic representation of GLm(AF ) such that Π∞ has the same
infinitesimal character as some irreducible algebraic representation of the restriction
of scalars from F to Q of GLm,

– χ : A×F+/(F
+)× → C× is a continuous character such that χv(−1) is independent

of v|∞,
– and Πc ∼= Π∨ ⊗ (χ ◦NF/F+ ◦ det).

If χ is the trivial character we will often drop it from the notation and refer to Π as a
RACSDC or RASDC (regular, algebraic, (conjugate) self dual, cuspidal) automorphic
representation. We will say that (Π, χ) has level prime to l (resp. level potentially prime to l)
if for all v|l the representation Πv is unramified (resp. becomes unramified after a finite base
change).

If Ω is an algebraically closed field of characteristic 0 we will write (Zm)Hom (F,Ω),+ for the
set of a = (aτ,i) ∈ (Zm)Hom (F,Ω) satisfying

aτ,1 ≥ · · · ≥ aτ,m.

Let w ∈ Z. If F is totally real or imaginary CM (resp. if Ω = C) we will write (Zm)
Hom (F,Ω)
w

for the subset of elements a ∈ (Zm)Hom (F,Ω) with

aτ,i + aτ◦c,m+1−i = w

(resp.
aτ,i + ac◦τ,m+1−i = w.)
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(These definitions are consistent when F is totally real or imaginary CM and Ω = C.) If
F ′/F is a finite extension we define aF ′ ∈ (Zm)Hom (F ′,Ω),+ by

(aF ′)τ,i = aτ |F ,i.

Following [20] we will be interested, inter alia, in the case that either m is odd; or that m is
even and for some τ ∈ Hom (F,Ω) and for some odd integer iwe have aτ,i > aτ,i+1. If either
of these conditions hold then we will say that a is Shin-regular. (This is often referred to as
‘slightly regular’ in the literature. However as this notion is strictly stronger than ‘regularity’
we prefer the terminology ‘Shin-regular’.) Following [4], we say that a is extremely regular if
for some τ the aτ,i have the following property: for any subsetsH andH ′ of {aτ,i+n− i}ni=1

of the same cardinality, if
∑
h∈H h =

∑
h∈H′ h then H = H ′. (The condition of extreme

regularity will be used in order to apply Theorem 5.5.2 of [4], in order to guarantee that a
Galois representation associated to an automorphic representation is irreducible.)

If a ∈ (Zm)Hom (F,C),+, let Ξa denote the irreducible algebraic representation of GLHom (F,C)
m

which is the tensor product over τ of the irreducible representations of GLn with highest
weights aτ . We will say that a RAECSDC automorphic representation Π of GLm(AF ) has
weight a if Π∞ has the same infinitesimal character as Ξ∨a . Note that in this case a must lie
in (Zm)

Hom (F,C)
w for some w ∈ Z.

We recall (see for Example Theorem 1.2 of [5]) that to a RAECSDC or RAESDC auto-
morphic representation (Π, χ) of GLm(AF ) and ı : Ql

∼→ C we can associate a continuous
semisimple representation

rl,ı(Π) : Gal (F/F ) −→ GLm(Ql).

This representation satisfies

rl,ı(Π)c ∼= rl,ı(Π)∨ ⊗ ε1−ml rl,ı(χ)|GF ,

where rl,ı(χ) : GF+ → Q×l is the de Rham character with the property that

ı

(rl,ı(χ) ◦Art F+)(x)
∏

τ∈Hom (F+,C)

(ı−1τ)(xl)
−aτ

 = χ(x)
∏

τ∈Hom (F+,C)

(τx)−aτ ,

where a ∈ ZHom (F+,C) is determined by the property that

χ|((F+)×∞)0 : x 7−→
∏

τ∈Hom (F+,C)

(τx)aτ .

For v|l a place of F , the representation rl,ı(Π)|GFv is de Rham and if τ : F ↪→ Ql then

HTτ (rl,ı(π)) = {aıτ,1 +m− 1, aıτ,2 +m− 2, ..., aıτ,m}.

If v 6 | l, then the main result of [10] states that

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).

Let p be a prime number, K/Qp be a finite extension and let Ω be an algebraically
closed field of characteristic 0. Let J denote the set of equivalence classes of irreducible
representations of WK over Ω with open kernel, where s ∼ s′ if s ∼= s′ ⊗ χ ◦ det for some
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unramified character χ : K× → Ω×. Let ρ = (V, r,N) be a Weil-Deligne representation
of WK over Ω. We decompose

V ∼=
⊕
σ∈ J

V [σ]

where V [σ] is the largest WK-submodule of V with all its irreducible subquotients lying
in σ. Then each V [σ] is stable by N and ρ[σ] := (V [σ], r|V [σ], N |V [σ]) is a Weil-Deligne
subrepresentation of (V, r,N). For each σ ∈ J with V [σ] 6= (0), there is a unique decreasing
sequence of integers m1(ρ, σ) ≥ · · · ≥ mn(ρ,σ)(ρ, σ) ≥ 1 with

ρ[σ]F-ss ∼=
n(ρ,σ)⊕
i=1

Spmi(ρ,σ)(si)

si ∈ σ for each i. If ρ′ is another Weil-Deligne representation of WK over Ω, we say that

ρ ≺ ρ′

if ρss ∼= (ρ′)ss and if for each σ ∈ J we have

m1(ρ, σ) + · · ·+mi(ρ, σ) ≤ m1(ρ′, σ) + · · ·+mi(ρ
′, σ)

for each i ≥ 1. The goal of this paper is to establish the following local-global compatibility
result at places dividing l, our main theorem.

T 1.1. – Let (Π, χ) be a RAECSDC automorphic representation of GLm(AF ) and
let ı : Ql

∼→ C. If v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )F-ss ≺ rec(Πv ⊗ | det |(1−m)/2).

Furthermore, if Π has Shin-regular weight, then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).

The following corollary follows immediately using base change as in Proposition 4.3.1 of
[14].

C 1.2. – Let (Π, χ) be a RAESDC automorphic representation of GLm(AF )

and let ı : Ql
∼→ C. If v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )F-ss ≺ rec(Πv ⊗ | det |(1−m)/2).

Furthermore, if Π has Shin-regular weight, then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).
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2. The extremely regular, Shin-regular case

We start by treating the special case where, thanks to the irreducibility results of [4], we
can give a direct argument. We use an analogue of the trick of [17] and [21] (see the proof of
Theorem 4.3 of [17] and Section 2.2 of [21]), but in a situation where we need to use a non-
abelian, indeed non-Galois, base change. Because of this the argument makes essential use
of the irreducibility results of [4], and hence at present can only be made in the extremely
regular case.

T 2.1. – Let m ≥ 2 be an integer, l a rational prime and ı : Ql
∼−→ C. Let F be

an imaginary CM field and (Π, χ) a RAECSDC automorphic representation of GLm(AF ). If
Π has extremely regular and Shin-regular weight and v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).

Proof. – We first reduce to the RACSDC case: using Lemma 4.1.4 of [14] we choose an
algebraic Hecke character ψ : A×F /F× → C× such that ψ · (ψ ◦ c) = χ−1

F ◦ NF/F+ . Then
Π⊗ ψ ◦ det is RACSDC and the theorem holds for Π if and only if it holds for Π⊗ ψ ◦ det.
We may therefore assume that Π is RACSDC.

To prove the theorem, it suffices to establish the weaker result that

ıWD(rl,ı(Π)|GFv )ss ∼= rec(Πv ⊗ | det |(1−m)/2)ss.

(Suppose this weaker result holds. By Proposition 1.1 of [3], it suffices to prove that
WD(rl,ı(Π)|GFv ) is pure. This is established in Corollary 1.3 of [3].)

To establish the weaker result, it suffices to show that

tr (σ|ıWD(rl,ı(Π)|GFv )) = tr (σ|rec(Πv ⊗ | det |(1−m)/2))

for every σ ∈ WFv mapping to a non-zero power of Frobv ∈ Gk(v). (This follows from the
proof of Lemma 1 of [19].) Fix such an element σ ∈ WFv . We can and do choose a finite
extension Ev/Fv inside F v such that

– σ ∈WEv ⊂WFv and
– BCEv/Fv (Πv)

Iwm,Ev 6= {0}.

(If we write WD(rl,ı(Π)|GFv ) = (V, r,N), we could take Ev to be the fixed field of the sub-
group ofWFv generated by σ and the kernel of r|IFv .) Let E′v/Ev denote the normal closure
of Ev/Fv. Choose a finite CM soluble Galois extension F ′/F such that for each place w|v
of F ′, F ′w/Fv ∼= E′v/Fv. Let ΠF ′ = BC F ′/F (Π). By Theorem 5.5.2 of [4] we can and do
choose a rational prime l′ and ı′ : Ql′

∼−→ C such that rl′,ı′(ΠF ′) is irreducible. Choose
a prime w|v of F ′ and an Fv-embedding F ′w ↪→ F v. Let E = F ′ ∩ Ev ⊂ F ′w be the fixed
field of Gal (F ′w/Ev) ⊂ Gal (F ′/F ). The inclusion E ↪→ Ev determines a prime u of E.
By Lemma 1.4 of [5] (which we can apply because rl′,ı′(ΠF ′) is irreducible), there exists a
RACSDC automorphic representation ΠE of GLm(AE) with rl′,ı′(ΠE) ∼= rl′,ı′(Π)|GE and
hence rl,ı(ΠE) ∼= rl,ı(Π)|GE . Local-global compatibility for rl′,ı′(ΠE)|GEu and rl′,ı′(Π)|GFv
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(which is part of the main theorem of [20]) shows that ΠE,u = BCEv/Fv (Πv). Then Theo-
rem 1.2 of [3] (which we can apply by our assumption above that BCEv/Fv (Πv)

Iwm,Ev 6= {0})
implies that

tr (σ|ıWD(rl,ı(Π)|GFv )) = tr (σ|ıWD(rl,ı(ΠE)|GEu ))

= tr (σ|rec(ΠE,u ⊗ | det |(1−m)/2))

= tr (σ|rec(Πv ⊗ | det |(1−m)/2)),

and the result follows.

3. The general case

We will prove the next result using Theorem 2.1 and the methods of [12] and [6]. It
establishes the first statement of Theorem 1.1.

T 3.1. – Let m ≥ 2 be an integer, l a rational prime and ı : Ql
∼→ C. Let F be an

imaginary CM field and (Π, χ) a RAECSDC automorphic representation of GLm(AF ). If v|l
is a place of F , then

ıWD(rl,ı(Π)|GFv )F-ss ≺ rec(Πv ⊗ | det |(1−m)/2).

Before giving the proof, we first deduce the second statement of Theorem 1.1 as a
corollary.

C 3.2. – Let m ≥ 2 be an integer, l a rational prime and ı : Ql
∼→ C. Let F be

an imaginary CM field and (Π, χ) a RAECSDC automorphic representation of GLm(A). If Π

has Shin-regular weight and v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(ΠF,v ⊗ | det |(1−m)/2).

Proof. – This follows immediately from Theorem 3.1 together with Corollary 1.3 of [3]
and Proposition 1.1 of [3].

Let p be a prime number, K/Qp be a finite extension and let Ω be an algebraically
closed field of characteristic 0. In Section 1, we introduced a relation ρ ≺ ρ′ on Weil-
Deligne representations ofWK over Ω. Following [12, §3.10], we now introduce another such
relation≺I which will play a role in the proof below. See [12, Lemme 3.14] for the relationship
between≺ and≺I . Let J I denote the set of equivalence classes of irreducible representations
of IK over Ω with open kernel. Let ρ = (V, r,N) be a Weil-Deligne representation of WK

over Ω. We decompose
V ∼=

⊕
σ∈ J I

V [σ]

where V [σ] is the σ-isotypical component of V |IK . Then each V [σ] is stable by N and IK .
For each σ ∈ J I we let pI(ρ, σ) denote the partition of the integer dimV [σ]/ dimσ which
determines the conjugacy class of the operatorN onV [σ]. (See [7, §7.8.1].) If ρ′ = (V ′, r′, N ′)

is another Weil-Deligne representation of WK over Ω, we say that

ρ ≺I ρ′
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if V |IK ∼= V ′|IK and if for each σ ∈ J I we have pI(ρ, σ) ≺ pI(ρ′, σ). (If p = (m1 ≥ m2 ≥ . . . )
and p′ = (m′1 ≥ m′2 ≥ . . . ) are partitions of some integer d, we say p ≺ p′ ifm1 + · · ·+mi ≤
m′1 + · · ·+m′i for all i ≥ 1.)

Proof of Theorem 3.1. – As in the proof of Theorem 2.1, we may assume that Π is
RACSDC. Replacing F by a suitable finite soluble CM Galois extension in which v splits
we may also assume that:

– [F+ : Q] is even;
– F/F+ is unramified at all finite places;
– all places of F+ dividing l are split in F ;
– if Πw is ramified, then w|F+ is split in F ;
– if w 6= v then Π

Iwm,w
w 6= {0}.

Since [F+ : Q] is even, we can and do choose a unitary group U/F+ such that:

– U ×F+ F ∼= GLm /F ;
– U ×F+ F+

u is quasi-split for each prime u of F+;
– U(F+

σ ) is compact for each σ : F+ ↪→ R.

(We write F+
σ for the completion of F+ with respect to the absolute value induced by σ.)

For each place u of F+ which splits in F and w|u a prime of F , we fix an isomorphism
ıw : U(F+

u )
∼−→ GLm(Fw) such that ıwc = tı−cw . If σ : F+ ↪→ R and σ̃ : F ↪→ C extends σ,

we fix an embedding ıσ̃ : U(F+
σ ) ↪→ GLn(Fσ̃) which identifies U(F+

σ ) with the set of all g
with tgc · g = 1m. By Corollaire 5.3 and Théorème 5.4 of [18], there exists an automorphic
representation π0 of U(AF+) such that:

– if u is a prime of F+ which splits as wwc in F , then π0,u
∼= Πw ◦ ıw;

– if u is a prime ofF+ which is inert inF , then Πu is given by the local base change of π0,u

(see [18]);
– if σ : F+ ↪→ R and σ̃ : F ↪→ C extends σ, then there is an irreducible algebraic

representationWσ̃ of GLm(Fσ̃) such that π0,σ
∼= W∨σ̃ ◦ ıσ̃. Moreover, ifWσ̃ has highest

weight aσ̃ = (aσ̃,1, . . . , aσ̃,m), then Π has weight a = (aσ̃)σ̃:F↪→C.

We now follow the arguments of [12]. We have chosen to closely follow [12] even when
we could somewhat simplify the argument in the case of interest to us, in order to ease
comparison with that paper. We note however that we take the prime p of [12] to be the prime l
of this paper. Make the following definitions: let S̃l (resp. S̃v) denote the set of primes of F
dividing l but not equal to v or vc (resp. S̃v = {v, vc}). Let R̃ denote the set of primesw of F
not dividing l and with Πw ramified. Set S̃ = S̃v ∪ R̃. Let Sl, Sv, R and S denote the sets of
primes of F+ lying under S̃l, S̃v, R̃ and S̃ respectively. For each u ∈ Sl ∪ S, fix a prime ũ
of F dividing u such that ũ = v when u = v|F+ . We will henceforth identify U(F+

u ) and
GLm(Fũ) via ıũ for u ∈ Sl ∪ S.

Fix embeddings ı∞ : Q ↪→ C and ıl : Q ↪→ Ql such that ı◦ ıl = ı∞. For u|l a prime of F+,
following [12], we let Σ(u) ⊂ Hom (F+,Ql) denote the set of embeddings inducing u and
let Σ∞(u) = ıΣ(u) ⊂ Hom (F+,R). Let W∞ denote the representation ⊗σ∈Σ∞(v|F+ )π0,σ

of
∏
σ∈Σ∞(v|F+ ) U(F+

σ ).

Let KS =
∏
u6∈S Ku ⊂ U(A∞,SF+ ) be a compact open subgroup with

– Ku = Iwm,ũ if u ∈ Sl;
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– Ku a hyperspecial maximal compact subgroup of U(F+
u ) otherwise.

Let H S∪Sl = Z[U(A∞,S∪SlF+ )//KS∪Sp ] denote the commutative spherical Hecke alge-
bra. For u a finite place of F+, let H (U(F+

u )) denote the Hecke algebra consisting of
smooth, compactly supported functions on U(F+

u ) with values in Z. For u 6∈ S ∪ Sl, let
eu = 1Ku ∈ H (U(F+

u )) be the idempotent corresponding to Ku.
Choose a finite Galois extension E/Q in Q such that Πũ can be defined over E for each

u ∈ S. Foru ∈ S, let Bu denote the subcategory of the category of smoothE-representations
of GLm(Fũ) determined by the supercuspidal support of Πũ (see Proposition-définition 2.8
of [9]). Let zu denote the center of the category Bu. For u ∈ R, let eu = 1Iwm,ũ denote
the idempotent in H (GLm(Fũ)) corresponding to Iwm,ũ. For u ∈ Sv = {v|F+}, choose an
idempotent eu in H (GLm(Fv)) such that

– bueu = eu where bu ∈ H (GLm(Fv)) is the projector to Bu;
– euΠv 6= {0};
– for every irreducible π ∈ Bu ⊗E,ı∞ C, if euπ 6= {0}, then

rec(π) ≺I rec(Πv).

(We refer to Section 3.6 of [12] for the fact that one can choose such an idempotent eu;
the definition of the relation ≺I is recalled in the discussion preceding this proof.)

Extending E if necessary, we may assume that eu is defined over E for each u ∈ S and we
set e = ⊗′u6∈Sleu, an idempotent in the algebra

H := H S∪Sl ⊗Z (
⊗
u∈S

E zu).

Let LE denote the Galois closure (over Ql) of the closure of ıl(EF ) in Ql. Let T denote
the diagonal maximal torus in

∏
u∈Sl GLm(Fũ) and let T = Hom (T,Grig

m ) denote the rigid
analytic space over Ql parametrizing continuous l-adic characters of T .

Let A denote the set of automorphic representations π of U(AF+) for which e(π∞)KSl 6= {0}
and ⊗σ∈Σ∞(v|F+ )πσ ∼= W∞. If π ∈ A, then H acts on e(π∞,Sl) through an E-algebra ho-
momorphism ψC(π) : H → C (this follows from the fact that πKuu is 1-dimensional
for u 6∈ S ∪Sl while zu acts on πu through a character for u ∈ S). We define ψ(π) : H → Ql
to be ı−1 ◦ ψC(π).

If π ∈ A, we now associate to it an algebraic character κ(π) ∈ T (LE) as in Section 1.4
of [12]; this character records the highest weights of the representations πσ for σ ∈ Σ∞(u)

and u ∈ Sl. If u ∈ Sl and σ : F ↪→ Ql is an embedding inducing ũ, let κσ denote the highest
weight of the representation W∨ισ. Thus κσ = (κσ,1, . . . , κσm) with κσ1

≥ · · · ≥ κσm . We
regard κσ as an L×E-valued character of T as follows:

κσ : t = (tu′)u′∈Sl 7→
m∏
i=1

(σtu,i)
κσ,i .

(Here we denote the extension of σ to an embedding Fũ ↪→ Ql again by σ.) We then take
κ(π) =

∏
κσ where the product is over all σ : F ↪→ Ql inducing ũ for some u ∈ Sl. By

definition, we may regard κ(π) as an element of T (LE).
If u ∈ Sl and πũ is an irreducible smooth representation of GLm(Fũ) with πIwm,ũ

ũ 6= {0},
an accessible refinement of πũ is an unramified character χũ : Tm(Fũ)→ C× such that
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πũ embeds as a subrepresentation of n-Ind
GLm(Fũ)
Bm(Fũ) χũ. (Such a character always exists.)

If π ∈ A, then an accessible refinement of π is a character

χ =
∏
u∈Sl

χũ : T =
∏
u∈Sl

Tm(Fũ)→ Q×l

where each χũ : Tm(Fũ) → Q×l is unramified and ıχũ is an accessible refinement
of πũ ⊗ | det |(1−m)/2. Given such a pair (π, χ), we associate to it the character

ν(π, χ) := κ(π)χδ
−1/2
Bm
|det |

m−1
2 ∈ T (Ql)

as in Section 1.4 of [12].

We let

Z ⊂ HomE( H ,Ql)× T (Ql)

denote the set of all pairs (ψ(π), ν(π, χ)) where π ∈ A and χ is an accessible refinement of π.

By Théorème 1.6 of [12], the data (Sl,W∞, H , e) determines a four-tuple (X,ψ, ν, Z)

where:

– X is a reduced rigid analytic space over LE which is equidimensional of dimension
m

∑
u∈Sl [F

+
u : Ql];

– ψ : H → O(X) is a ring homomorphism with ψ( H S∪Sl) ⊂ O(X)≤1;
– ν : X → T is a finite analytic morphism;
– Z ⊂ X(Ql) is a Zariski-dense accumulation subset of X(Ql) such that the map

X(Ql)→ HomE( H ,Ql)× T (Ql)

which sends x 7→ (h 7→ ψ(h)(x), ν(x)) induces a bijection Z
∼−→ Z . (A subset

Z ⊂ X(Ql) is said to be an accumulation subset if for each z ∈ Z and each open
affinoid neighborhood U in X of z, there exists an open affinoid V ⊂ U containing z
such thatZ∩V is Zariski dense in V . (See [12, §1.5].)) We henceforth identifyZ and Z .

If π ∈ A, then by Corollaire 5.3 of [18] there exists a partition m = m1 + . . . + mr of m
and conjugate self-dual discrete automorphic representations Πi of GLmi(AF ) such that
Π̃ := Π1�· · ·�Πr is a strong base change of π. Let Σ = S̃∪S̃l and letFΣ denote the maximal
extension of F which is unramified outside Σ. LetGF,Σ = Gal (FΣ/F ). By Theorem 3.2.5 of
[13] and the argument of Theorem 2.3 of [15], there is a continuous semisimple representation
rl,ı(π) : GF,Σ → GLm(Ql) with

ıWD(rl,ı(π)|GFw )ss ∼= rec(Π̃w ⊗ | det |(1−m)/2)ss

for each prime w - l of F . Moreover, there is a unique continuous m-dimensional pseudo-
representation T : GF,Σ → O(X) such that Tz = tr (rl,ı(π)) for each z = (ψ(π), ν(π, χ)) ∈ Z.
(Here, for any x ∈ X(Ql), Tx denotes the composition of T with the evaluation map
O(X) → Ql; g 7→ g(x).) The existence of T follows from the proof of Proposition 7.1.1 of
[11] together with Proposition 7.2.11 of [6] (which shows that O(X)≤1 is compact, as T is

nested and ν is finite) and the fact that ψ( H S∪Sl) ⊂ O(X)≤1. By Theorem 1 of [22], for any
x ∈ X(Ql), there is a unique continuous semisimple representation rx : GF,Σ → GLm(Ql)
with Tx = tr (rx).
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Now, let u = v|F+ and recall that ũ = v. By Proposition 3.11 of [12], there is a unique
m-dimensional pseudo-character

T Bu : WFũ → zu

such that for each irreducible smooth representation πũ of GLm(Fũ) in Bu ⊗E,ı∞ C, if T Bu
πũ

denotes the composition of T Bu with the character zu → C giving the action of zu on πũ,
then

T Bu
πũ

= tr (rec(πũ ⊗ | det |(1−m)/2)).

Let z0 ∈ Z be a point corresponding to π0 together with the choice of some accessible
refinement. Let Zreg ⊂ Z denote the subset associated to pairs (π, χ) where π∞ is Shin-
regular and extremely regular. (If σ̃ : F ↪→ C and σ := σ̃|F+ , then πσ ◦ ıσ̃ is the restriction of
an irreducible algebraic representation of GLm(Fσ̃) of highest weight bσ̃, say. We say π∞ is
Shin-regular or extremely regular if b := (bσ̃)σ̃ has the corresponding property.) Then Zreg

is a Zariski-dense accumulation subset of X(Ql). Choose an open affinoid Ω ⊂ X such that
z0 ∈ Ω and Zreg ∩ Ω is Zariski-dense in Ω. Let TΩ denote the restriction of T to Ω. By
Lemme 7.8.11 of [6], there exists a reduced, separated, quasi-compact rigid analytic space Y
and a proper, generically finite, surjective morphism f : Y → Ω such that there exists an
OY -moduleM which is locally free of rank n and carries a continuous action ofGF,Σ whose
trace is given by f∗ TΩ.

By Proposition 3.16 of [12] (a result of Sen), the (generalized) Hodge-Tate weights
of My|GFũ are independent of y ∈ Y (Ql). (This follows from the quoted result and the
fact that the Hodge-Tate weights of rz|GFũ are independent of z ∈ Z.) Moreover, by the
improvement to Theorem C of [8] made in Corollary 3.19 of [12], there exists a finite Galois
extension F ′ũ/Fũ such that if F ′ũ,0 ⊂ F ′ũ denotes the maximal subfield which is unramified
over Ql, then the OY ⊗Ql F

′
ũ,0-module

D
F ′ũ
st (M) := (M ⊗Ql Bst)

GF ′
ũ

is locally free of rank m and satisfies the following: if y ∈ Y (Ql), then the natural map

D
F ′ũ
st (M)y → D

F ′ũ
st (My) is an isomorphism (and hence My|GF ′

ũ

is semistable).

The diagonal action of GFũ on M ⊗Ql Bst induces an OY -linear, F ′ũ,0-semilinear action

of GFũ on DF ′ũ
st (M). We define an OY ⊗Ql F

′
ũ,0-linear action rũ of WFũ ⊂ GFũ on DF ′ũ

st (M)

by letting g ∈ WFũ act as g ◦ ϕw(g) where w(g) ∈ Z is the power of Frobl to which g maps

in GFũ/IFũ . We have that N ◦ rũ(g) = lw(g)rũ(g) ◦ N on DF ′ũ
st (M). For each continuous

embedding τ : F ′ũ,0 ↪→ LE , we let

WDũ,τ = D
F ′ũ
st (M)⊗ OY ⊗QpF

′
ũ
,1⊗τ OY .

Then WDũ,τ is locally free of rank m as an OY -module and N ◦ rũ(g) = lw(g)rũ(g) ◦ N
on WDũ,τ . Moreover, ϕ induces an isomorphism WDũ,τ◦Frobl

∼−→ WDũ,τ compatible
with rũ and N . We let WDũ denote WDũ,τ for some choice of τ , regarded as a WFũ -mod-
ule with an operator N . We note that for each y ∈ Y (Ql), WDũ,y is the Weil-Deligne
representation associated to My|GFũ . It follows that Nm = 0 on WDũ. Let

TY,ũ = tr (rũ(·)|WDũ) : WFũ → OY .
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We claim that
TY,ũ = f∗ ◦ ψ ◦ T Bu .

This is proved as follows: let y ∈ f−1(Zreg ∩ Ω) and let z = f(y). Then z corresponds
to a pair (π, χ) where π ∈ A is Shin-regular and extremely regular (and χ is an accessible
refinement of π). Theorem 2.1 together with the regularity conditions satisfied by π and the
construction of the representation rl,ı(π) in the proof of Theorem 2.3 of [15] show that

WD(rl,ı(π)|GFũ )F-ss ∼= ı−1rec(πu ◦ ı−1
ũ ⊗ | det |(1−m)/2).

Since M ss
y
∼= rz = rl,ı(π), we deduce that TY,ũ(g) and f∗(ψ(T Bu(g))) agree on y ∈ Y (Ql)

for each g ∈WFũ . The claimed result now follows from the Zariski-density of f−1(Zreg∩Ω)

in Y .
We now choose some y0 ∈ Y (Ql) with f(y0) = z0. Since rl,ı(Π) = rl,ı(π0) = rz0

∼= M ss
y0 ,

the result just proved shows that

ıWD(rl,ı(Π)|GFũ )ss ∼= rec(Πũ ⊗ | det |(1−m)/2).

We deduce from this that

ıWD(rl,ı(Π)|GFũ )F-ss ≺ rec(Πũ ⊗ | det |(1−m)/2),

as follows: By Lemma 3.14(ii) of [12], it suffices to show that

ıWD(rl,ı(Π)|GFũ )F-ss ≺I rec(Πũ ⊗ | det |(1−m)/2).

For each y ∈ f−1(Zreg ∩ Ω) with f(y) corresponding to a pair (π, χ), we have

ıWD(M ss
y |GFũ )F-ss ∼= rec(πu ◦ ı−1

ũ ⊗ | det |(1−m)/2) ≺I rec(Πũ ⊗ | det |(1−m)/2)

(where the last relation follows from the choice of idempotent eu). By the proof of
Proposition 7.8.19(iii) of [6] and the Zariski-density of f−1(Zreg ∩ Ω) in Y , we have
ıWD(M ss

y |GFũ )F-ss ≺I rec(Πũ ⊗ |det |(1−m)/2) for all y ∈ Y (Ql). Taking y above z0 gives
the required result.
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