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A THEOREM OF PALEY-WIENER TYPE
FOR SCHRODINGER EVOLUTIONS

BY CArLOS E. KENIG, Gustavo PONCE AND Luis VEGA

ABSTRACT. — We prove unique continuation principles for solutions of evolution Schrédinger
equations with time dependent potentials. These correspond to uncertainly principles of Paley-Wiener
type for the Fourier transform. Our results extend to a large class of semi-linear Schrédinger equations.

RESUME. — On prouve des principes de prolongement unique pour les solutions d’équations d’évo-
lution de Schrodinger avec potentiels dépendant du temps. Ceux-ci correspondent a des principes d’in-
certitude de type Paley-Wiener pour la transformée de Fourier. Nos résultats se généralisent a une large
classe d’équations de Schrédinger semi-linéaires.

1. Introduction

In this paper we study unique continuation properties of solutions of Schroédinger equa-
tions of the form

(1.1) Ou = i(Au+ V(z,t)u), (z,t) e R" x [0,T], T >0.

The goal is to obtain sufficient conditions on the behavior of the solution u at two different
times and on the potential V' which guarantee that w = 0 in R™ x [0, T']. Under appropriate
assumptions this result will extend to the difference v = u; — us of two solutions uy, us of
semi-linear Schrodinger equation

(1.2) Owu = i(Au + F(u,u)),

from which one can conclude that u; = us.

Defining the Fourier transform of a function f as

flo) = o2 [ e fayan,

n
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one has
) ei|w—y|2/4t
u(z,t) = eztAuO(w) = /n W uo(y) dy
ilz|? /4t
e — 22 7 2
(1.3) = (47['7,15)”/2/]Rn e 2izy /4t ilyl /4tu0(y) dy
cilz|? /4t r

= (QZt)n/Q (eil-\2/4tu0) (27t>,

where e”*®ug(z) denotes the free solution of the Schrodinger equation with data ug
Ou = iAu,  u(z,0) =up(z), (z,t) R xR.

The identity (1.3) tells us that this kind of results for the free solution of the Schrodinger
equation are closely related to uncertainty principles for the Fourier transform. In this
regard, one has the well known result of G. H. Hardy [9]:

If f(z)=0( /%), f(&)=0(e*¢/*") and af <4, then f =0,
and if af =4, then f(z)= ce~® /8%

Its extension to higher dimensions n > 2 was obtained in [15]. The following generalization
in terms of the L?-norm was established in [3]:

|=|? 40612 ~

If er” f(x), e f(¢) € L*(R"™), and a3 <4, then f =0.

In terms of the free solution of the Schrodinger equation the L2-version of Hardy Uncer-
tainty Principle says :

|2 |22

(1.4) If e ug(z), e e®ug(x) € L*(R™), and af < 4t, then ug = 0.

In [6] the following result was proven:

THEOREM ([6]). — Given any solutionu € C([0,T] : L*(R™)) of
(1.5) O =i (Au+ V(z,t)u), (z,t) € R" x [0,T7,
withV € L*(R™ x [0,T7),

(1.6) pl'}gloo IV 21 (jo,77:L n\B,)) = O-

and
lo)? L2 ira 2 /n
e uy, ea? e “uge L*(R"),

with a 8 < 4T, then ug = 0.

Notice that the above Theorem recovers the L2-version of the Hardy Uncertainty Princi-
ple (1.4) for solutions of the IVP (1.5), except for the limiting case o« 8 = 4T for which the
corresponding result was proven to fail, see [6]. For further results in this direction concern-
ing other uncertainty principles we refer to [8] and references therein.
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UNIQUE CONTINUATION 541

Some previous results concerning uniqueness properties of solutions of the Schrodinger
equation were not directly motivated by the Formula (1.3).
For solutions u = u(z, t) of the 1-D cubic Schrodinger equation

(1.7) dru = i(02u =+ |u|?u),
B. Y. Zhang [17] showed :

If u(z,t) = 0 for (z,t) € (—o0,a) x {0,1} (or (z,t) € (a,00) x {0,1}) for some a € R,
then u = 0.

The proofis based on the inverse scattering method, which uses the fact that the equation
in (1.7) is a completely integrable model.

In [13], under general assumptions on F' in (1.2), it was proven that :

Ifuy, ug € C([0,1] : H5(R™)), with s > max{n/2; 2} are solutions of the Equation (1.2)
with F' as in (1.2) such that
uy(z,t) = uz(x,t), (x,t) €Ty x{0,1},
where I'g ' denotes the complement of a cone ', with vertex zo € R™ and opening < 180°,
then u; = us.
For further results in this direction, see [12, 13], [10, 11] and references therein. Note that

in [8] a unified approach was given to both kinds of results, using Lemma 3 and Corollary 1
below.

Returning to the uncertainty principle for the Fourier transform one has :

If f € L'(R") is non-zero and has compact support, then fcannot satisfy a condition of
the type f(y) = O(e<¥!) for any € > 0.

This is due to the fact that f(y) = O(e~“l¥l) implies that f has an analytic extension to
the strip {z € C" : |Im(z)| < €}.

In this regard the Paley-Wiener Theorem [14] gives a characterization of a function or dis-
tribution with compact support in term of the analyticity properties of its Fourier transform.

Our main result in this work is the following:

THEOREM 1. — Let u € C([0,1] : L2(R™)) be a strong solution of the equation

(1.8) Ou = i(Au+ V(z,t)u), (z,t) € R™ x [0,1].
Assume that
(1.9) sup / lu(z,t)|>dz < Ay,

o<t<1 Jgrn
(1.10) / e?lmil |y (z,0)2de = Ay < 0o,  for some a; > 0,
(1.11) suppu(,1) C{z € R™ : 21 < as}, forsome ay < oo,
with
(1.12) VeL®R"x[0,1]), [[VllLewnxio,1) = Mo,
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542 C. E. KENIG, G. PONCE AND L. VEGA

and
(1.13) S VLo, @n\g,)) = 0-
Then v = 0.

REMARKS. — (a) Note that in order to prove Theorem 1, by translation in x;, we can
choose who as is. We will show that there exists m > 0 (small) with the property that if (1.9),
(1.10), (1.12), (1.13) hold and (1.11) holds with as = m, then

u(z,1)=0 for z € R"™ suchthat m/2 <z; <m.

This clearly yields the desired result. Without loss of generality we will assume m < 1.
(b) By rescaling it is clear that the result in Theorem 1 applies to any time interval [0, T7].
(c) We recall that in Theorem 1 there are no hypotheses on the size of the potential V' in
the given class or on its regularity.

(d) A weaker version of Theorem 1 was announced in [8].

As a direct consequence of Theorem 1 we get the following result regarding the uniqueness
of solutions for non-linear equations of the form (1.2).

THEOREM 2. — Given
u1, ug € C([0,T] : H*(R™)), 0<T < oo,

strong solutions of (1.2) withk € Z+, k >n/2, F : C?> —» C, F € C*¥ and F(0) = 0,F(0) =
0z F(0) = 0 such that

(1.14) supp (u1(-,0) —u2(-,0)) C {x € R™ : @1 <@z}, a2 <oo.
If for some t € (0,T') and for some € > 0
(1.15) ur (1) = () € L?(ef 1™ da),

then u; = us.

REMARKS. — (a) In particular, by taking us = 0, Theorem 2 shows that if u;(-,0) has
compact support, then for any ¢ € (0,T) u;(+, t) cannot decay exponentially.

(b) In the case F(u,u) = |u|* 1u, with @ > n/2 if o is not an odd integer, we have that if
 is the unique non-negative, radially symmetric solution of

—Ap+wy = p|* Ny, w >0,
then
(1.16) ui(z,t) = e“o(x)
is a solution (“standing wave”) of
(1.17) Opu = i(Au + |u|*u).
It was established in [16, 1] that there exist constants cg, ¢; > 0 such that

(1.18) o(z) < coell,
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Therefore, if we denote by us(x,t) the solution of the Equation (1.17) with & > n/2 and
data us(z,0) = ¢(z) + ¢(x), o € H*(R™), s > n/2 having compact support it follows from
Theorem 2, (1.16) and (1.18) that for any ¢ # 0

(1.19) ug(+,t) ¢ L2(e1ldz), forany e > 0.

In general, the same Result (1.19) applies (in the time interval [0, T']) if one assumes that u; is
a solution of (1.16) having exponential decay
lup (z,t)] < cge™ @Il ¢g, e >0 (x,t) € R™ x [0,T7,
and wus is the solution of (1.16) corresponding to an initial data
uz(z,0) = uy (x,0) + ¢(z), ¢ € H°(R"), s>n/2 with compact support.

The rest of this paper is organized as follows: Section 2 contains all the preliminary results
to be used in the proof of Theorem 1. A version of them has been proved in [7], [6], [8].
However, in some cases modifications are needed to apply them in the setting considered here.
Hence, some of their proofs will be sketched. Section 3 contains the proof of Theorem 1.

2. Preliminary estimates

In this section we describe the estimates to be used in the proof of Theorem 1.
First we recall a key step in the uniform exponential decay estimate established in [13] :

LEMMA 1. — There exists €, > 0 such that if
2.1 ViR" % [0,1] = C,  with [|V|pipe < €n,
andu € C([0,1] : L2(R™)) is a strong solution of the IV P

0w = (A + V(z,t))u + G(z, 1),
22) { u(z,0) = up(z),
with
(2.3) ug, up = u(-,1) € L*(e**%dz), G e L*([0,1] : L*(e***dx)),

for some \ € R™, then there exists c,, independent of X such that

sup X u(-,t)||L2@n)
0<t<1

(2.4) 1
< Cn(”‘f)\'xUO”Lz(R") + ||} us || L2 rn) +/0 [|er® G(‘,t)||L2(Rn)dt>-

Notice that in Lemma 1 one assumes the existence of a reference L?-solution u of the
Equation (2.2) and gets a control on the decay of the solution in the whole time interval in
terms of that at the end points and that of the “external force”. In general, under appropriate
assumptions on the potential V' (z,¢) in (1.1) one writes

V(z,t)u = va(xv tu+ (1- Xp)V(.'I},t)'LL = V(z,t)u + G(z,1),

with x, € C§°, x,(z) =1, |z| < p, supported in |z| < 2p, and obtains the estimate (2.4) by
fixing p sufficiently large. Also under appropriate hypotheses on F' and u a similar argument
can be used for the semi-linear equation in (1.2).
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544 C. E. KENIG, G. PONCE AND L. VEGA

Next, we recall the conformal or Appell transformation:
LEMMA 2. — Ifu(y, s) verifies
2.5 su=i(Au+V(y,s)u+ F(y,s)),  (y,8) €eR" x[0,1],

and o and B are positive, then

(2.6) Az, t) = (ﬂ)gu( L st )e%

a(l—t)+p8t 1—-t)+0t’ a(l—t)+3t
verifies
2.7) Bt = i (M 4 V(z, t)i + F(a, t)) . () eR" % [0,1],
with
oy VaBzx Bt

(2.8) V(z,t) = (o(1— t)+gt)2 4 (a(l 1)+t (1—t)+,8t>
and

Flot) = (—vaB ¥ p(_vase st e
(29) F(:E,t) = (m) F (Ot(lft)+ﬂt7 Dt(l*‘b)«l»,@t) e di(a(1-t)+8¢t) |

The following result is a modified version of the one in [4] (Lemma 3.1, page 1818). It will
provide a needed lower bound of the L2-norm of the solution of the Equation (1.1) and its
first order derivatives in the z;-variable in the domain {z : R — 1 < z; < R} x [0,1].

LEMMA 3. — Assume that R > 0 is large enough and that ¢ : [0,1] — R is a smooth
Sunction. Then, there exists ¢ = c(n; [|¢'[|oo + [|¢"[|cc) > O such that the inequality
53/2
R2
holds when o > cR? and g € C$°(R™11) is supported on the set

‘zl *0,1 ‘Il 0,1

o +o(t)[?

e o

(2.10)

§4
L2 (dxdt)

e (39, + A g‘

L2 (dadt)

1 — To,1

{(z,t) = (1, ..,2p,t) € R . 7

+o0)] 2 1)

Proof. — As it was remarked above this result is a variation of the one given in detail in
[4], hence a sketch will suffice.
By translation, without loss of generality, we can assume zo; = 0. Let

flz,t) = e”|%+‘p(t)|zg(a:, t).

Then,
(2.11) IR (10, + A)g = S, f — 4o A, f,
where

Sy =i + A+ 22 |xl+<p|2

Ao = 5 (R +9) 0os + 3t + £ (% +9).
Thus,
(2.12) Sr=5,  Al=-A,,
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and integrating by parts (possible since g € C§°(R™1)) one sees that
el +2F(i0, + A)gll3 = (So f —40As f, S0 f — 40 A f)
> —40((S:Ac — AsS5) [, f) = —40([So, Ao, f) -
A calculation shows that
[Sos Ao] = 2202, — %1% + 0 — 3% +9)¢" + (¢)?] + 2£ 0.
From this it follows that

@2.13) [l BT 60, + A)gl}
1603
> i

+ 2(7/[(%1 + )" + (¢)?]| f|?dzdt — (% / ¢’ O, f fdxdt) .

80
/|%1+<p|2|f|2d:rdt+ﬁ/|6wlf|2dxdt

Now, when o > cR? one has
3

g 2

R > co,
so by taking clarge enough, depending on [|¢’||c and [|¢" ||, and using that | %4 (t)] > 1
on the supp(f) = supp(g), we can hide the third term on the right hand side (r.h.s.) in the
inequality (2.13) in the first term in the r.h.s. Also, since

%2 [1¢'on, il idoat

8o 4o
< 210l [ 19110001 < 201012 [ IfPdsdt+ T [ 10, Szt

the contribution of this term in (2.13) can be hidden by the first and second term in the r.h.s.
of (2.13) if ¢ is large. This concludes the proof.

O

Note that the same proof works by taking c a bit larger, if we only assume | % + o(t)| >

on supp(g).
In the proof of Theorem 1 we shall need the following extension of Lemma 3.

1
2

COROLLARY 1. — Assume g € L*(R™*Y) with x4, t on supp(g) bounded,

Z1 — Zo,1

supp(g) C {(z,t) = (z1,...,2n,t) € R*T!: 7 =+ p(t)| > 1}

and (i0; + A)g € L*(R™*1Y), then the inequality (2.10) holds.

Proof. — We can again assume that =5 ; = 0. We introduce the notation = (z1,2’) €
R x R"~1 Letn; € C(R), m1 > 0, supp(m1) C {|z1| < 1} and ny € C(R™ 1), my > 0,
supp(nz2) C {|z'| < 1} with

/ n(xy)dr; =1 and / ne(x’)dz’ = 1.
For 6 > 0 small define

1
hs(@,t) = sogm (t/6%)m (@1/O)ma(a’/6"7)  and g5 = hs xg.
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Let 0 € C§°(R™1), §(a’) = 1, |z'| < 1, and supp(#) C {|z’| < 2}. For [ large, define
gs,(z,t) = 0(z' /1) g5(z, 1)
Note that for § > 0 small,
supp(9s) C {(z,1) : |5 + p(®)|* > 1/2},

and the same holds for gs ;. Moreover, gs; € C5°(R"H).
We apply Lemma 3 to gs; to obtain:

3/2
c ‘ ol F e

(2.14)

< C‘
L2 (dzdt)

Next, we fix § > 0 small and see that

(2.15) (i + A)gsy = 0(z' /1) (10 + A)gs + %V'G(x’/l) -V'gs(z,t) + Z%AQ(x’/l)gg(x,t).

ea|%+<ﬁ(t)|2 (10 + A)g&l ‘

gs.1 ‘ .
L2(dadt)

Therefore, by taking | — oo the L?(dxdt)-norm of the last two terms on the r.h.s. of (2.15)
tends to zero. Hence, inserting this in (2.14) we obtain the same estimate for gs. Next, we have
that

(10 + A)gs = (10 + A)(hs * g) = hs * (10, + A)g.
Using the supremum in § (non-isotropic maximal function) and its boundedness, together

with the boundedness of the support in (z1,¢) of g, so that
eolm/Rre®P < ¢ o

by the dominated convergence theorem we can pass to the limitas § — 0 to obtain the desired
result. O

3. Proof of Theorem 1
We divide our argument into six steps:
STEP 1: We claim that

(3.1 sup/ 2% |y (z,t)2dx < As.
0<t<1JRrn

ProOF OF STEP 1 : Using (1.13) in Theorem 1 we choose p so large such that

IV X (121203 121 (0,1): L0 (Rr)) < €n,

with €, as in Lemma 1. From (1.9)-(1.11) we have
/ 24171 |y (2, 0)[Pdr < A,

and
/ g2z |u(z, 1)|2dac < A+ 21T < A 4 €201,

We apply Lemma 1, with G(z,t) = —x{|z|<p} V (2, t)u(z,t), using that

1
/ || ealxl)({‘ﬂgp} Vu||2dt § ealpMoAl,
0

which gives step 1 with A3 = A3(A1; Aa;a1; Mo; p).
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STEP 2: Define § > 0 as

€n

with My asin (1.12) and €, as in Lemma 1. Note that 6 < 1, and
1
(3.3) / V(- 8)]codt < €.
1-6
Let
(3.4) vz, t) = w(6 %z, 6t +1 - 6).
We shall show that under the hypothesis of Theorem 1
(3.5 / lv(z, 1)2dzx = / lu(z,1)|?dz = 0
2(5%<$1<61% %<$1<m
as desired.
Defining
(3.6) Vs(x,t) =6V (62,6t +1 — 6)

we see that v(z, t) satisfies the equation
0w = i(Av + Vsv), (z,t) € R" x [0,1].
We notice, using (3.3), that

1
(3.7) Vil o xto)) < Mo < e, / 1V D)lodt < en,
0

and

[ toteoPds =5 [ utwst 1 - 0Py < 51k
with
supp(v(-,1)) C {z1 < m/6'/?}.
Thus, from (3.1)

A
/ 62a1’”151/2|y(a;,0)|2dx _ / €2a1x161/2|u((51/2$, 1 6)|2d$ < (5n7/32

We remark that § was fixed in (3.2) (independent of m), and that we can still choose m small.
STEP 3: Using the Appell (conformal) transformation Lemma 2 we have that if
0sv =i(Av + Vsv), (y,s) € R" x[0,1],
then for any «, 8 > 0

n

S t) = (vaB_\?, (_vaB ot w2y
(3.8) v(z,t) = (a(l—ctx)—&-ﬂt) v (a(l_o‘t)iﬂt, a(1—t)+ﬂt> e Tila(i-1)+AD)

verifies
v =i(AvV+ VD), (z,t) € R" x[0,1],
with

~ _ af Vapz pt
Vo) = =0 + pop Vé(a(l —t)+ Bt a(l-t)+ 5’5)'
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For A > 0 given we will choose a = a(),d), 8 = B(A, §). We recall that

ayz161/2 2 AB
e+ o, 0)l3 < 22,
and from the support hypothesis
2mA/6"/? 4
Azq 2 ¢ 1
e v(, DI < 7t
We want v = (A, §) such that
AL/?
713z, 0)l2 = 7/ 0(2, )|z = e “u(-, 0)]l2 < Tz
and
Am/§1/2 41/2
5@, Dl = 17/ (@, Do = 7 0(, Dl € 557
Thus, we choose
(3.9) va/B)? =6 ar,  y(B/a)'/? = A,
ie.,
(3.10) y=(A6Y2a)V2 B=)  a=6Y%.
Next, using the change of variable
~ B ~ af
t=— = dt=——"  __dt,
a(l—1t)+ 6t (a(l —t) + Bt)?

it follows that

| 170l
0

f vapa Bt )t

:/0 ”(a(l —t —|—ﬁt)2V5(a(1 — 1)+ Bt a(l—t)+ Bt

1
=/nwmm&as%
0

using (3.7). So we can apply Lemma 1 again, this time with G = 0, to obtain that

A1/2 A1/2 1/2
YR (- < n( 3 1 Am/§ )
o 17 0C, Dz < enl Fom + Fura @
(3.11) /612
< Csa1,41,43 e/
Am /812

<ce

if A > Ois large and A; # 0 (how large ) is for this depends on m, A1, As and 4, but this will
not matter). Note that

~ A

(3.12) 15, D15 = llv(-, L

Bt

2
a(l —t) +ﬁt)”2 =
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hence

1/2
3.13 sup [[0(, )]s < L.
(3.13) s 50l < 5l

Now, we denote by ¢g(x1) > 0 a C* convex function such that

0, r1 <0,
(3.14) do(a1) = {xl 14 m>1)2,

and define
d(z1) = (L + (go(z1))?)"/2.
Since v = (A3%/2a1)!/?, from (3.11) and for ) large we have

(3.15) sup [|e"*EIT(, t)l5 < e50, /0
0<t<1

A computation shows that

vy Bo(z1) go(x1)
(.19 )= T ol
and

" B (¢ (x1))? do(1) ¢ (1)
G317 )= T o)) T T+ Gola) D
Thus, for ; > 1/2 one has that

” 1 1 1 1
(3.18) ¢ (x1) > 10122 4@y

We now follow an argument similar to that in [7] Section 2. Let
f(z,t) = @) 5(x,t).
Then f verifies
(3.19) Of =Jf +Gf +ie"F, in R" x [0,1],
with symmetric and skew-symmetric operators J and &
J = —iv (200,605, + 02, 9),

(3.20) b =1i(A+7%05,0)
and
F=V7u.
A calculation shows that
(3.21) do+ 1y O] = — [100, 600, — 19%0" (&) + 69

By Lemma 2 in [7]
OH =07 (f,f) =20Re (0 f — Sf — Cf . f) +2(J,.f + 4, G f. f)

3.22
(322 10nf — G + SFIE = nf — Gf — SFIP,
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SO
07 H > 20,Re (0:f — Jf — Gf, )
+2(J,f + 14, G f, f)—0.f - Gf - JF|>.

Multiplying (3.23) by ¢(1 — t) and integrating in ¢ we obtain

(3.23)

1
(3.24) 2/ t(1 =) (J,f + [, Q) f, f)dt < cosup €D + cn sup [le” *F(2)]]2.
0 [0,1] [0,1]

This computation can be justified by parabolic regularization using the fact that we already
know the decay estimate for v, see [5]. Note that for A sufficiently large

A 612 M,
< ———6My="—""".
= §1/2q, 0 a1

(3.29) Vlloo < (g) Vslloo
Hence, combining (3.11), (3.21), and (3.25) it follows that
1
8 t(1—1t)¢ (z1)|0s, f|2dzdt
1 [ [ =08 @) on, s
1
g3 -1 e ! 2| flPdadt
w870 [ [ t1-06" @) @ @21

(3.26)

< cny sup || £ (- 0)|3 + 5,M0,a1,n A SUp | F(, )13 + cn sup || £+, 1) (|3

0,1 [0,1] [0,1]

< €5, Mg a1,m A ez)‘m/‘;m.

We recall that
Oy f = €771 0,5+ 7 €70 ¢/ (1) T,
thus
WOa, 17 = 7€*70E|8,, 7 + ¢ (1)
= €12 (4]0, 3% + 29°¢ (21)7 05,7 + 7 (¢ (1)) []%),

with

SO | ~ ~
12729/ (21)0 8;,0] < §7|3w1v|2 +29°(¢' (21))?[0].
Inserting these estimates in (3.26) for A large one gets
1
47/ / t(l1—1t) ¢”(sc1) 2@ |9, T2dadt < C5.Mo.a1.m A €2X™/0 .
0

Hence, for 1 > 1/2 from (3.18) one has that

1
1
1 [ [ = 1 [0, Rt < g AP
0 Z1

for A large. Collecting the above information, (3.11) and (3.26), we conclude that

1
1
sup IIeW’(“)ﬁ(-,t)II%ﬂ/ / t(1 — 1) €77 |0,, 0| dadt
(3.27) 0<t<1 0 Ja>3 (1)

2xm/§*/?
< C5,Mp,a1,n A€ ™/ .
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STEP 4 : We will give lower bounds for

5/8
cp:/ / iz, 6)[2dtda,
2<z,<R/2 J3/8

for R large to be chosen.
First, we recall that

5/8 n
SR (A
a<ii<R/2 J3 a(l—t)+p6t a(l—t)+6t’ a(l—t)+6t

/8
Next, for ¢t € [3/8,5/8] we see that
Bt
ty=—"""
O = a1
satisfies that ) )
dt = wdsg ﬂ—ds: éds
af af «
(where A = Bmeans:3C € (0,1) st. CA < B < C~1A) with
38
= 1/2,1
(3/8) = 5=raz € (1/2.1),
and
58
s(5/8) = 30150 € (1/2,1).
Therefore
2a8 L

5(5/8) —s(3/8) = (5a + 38)(3a + 53) Gk

for A large, and
s(5/8) > s(3/8) 11 as A7 oo.
In the z-variable we have
__VaB |
al—-t)+8""
sofort € [3/8,5/8] and 2 < z; < R/2 one basically has that

Y1 € [2\/%,§\/%] = A.

y:

Thus,
(3.28) ®>c, p / lv(y, s)|2dsdy,
a JaJr,
with
«a
I, =[s(3/8),s(5/8)], |\l = 3 for A>1,
and
s(3/8) —»1 as A7 oco.
We choose
2MA/?m
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with

2 1
(3.30) —M > o,

a 51/4 1/2
21/5:2 )\1/2 —0 as A7 oo,

R o _2Mm = m
2V B e T ocadl/?

Hence, from (3.28) we can conclude

(3.31) liminf ® > c, / lv(y, 1)*dy.
0<y1<6?}2

to be fixed later, since

and

AToo

SteP 5 : Upper bounds for

31/32
E(R / / (|9(z,t)|? + |0z, 0(x, t)|?)dtde.
<z1<R J1/32

For the square of the L2-norm of 7 we have the bound A; /6™/2, see (3.12). For the square
of the L2-norm of 8,, v using the conclusion of Step 3 (3.27) we get the upper bound

5. Mo.ar.m (1 + R3) )\62)\m/51/2'

STEP 6 : Carleman estimate [2] and conclusion of the proof.

We assume that for m > 0 to be chosen

(3.32) b= / vy, 1)|2dy > 0.

25%<y1<m
We recall that
supp(v(-,1)) C {y1 < m/6Y/?}.

From step 4 we have that for A sufficiently large

5/8 b
(3.33) / / [o(x, t)|*dtdr > —.
2<z1<R/2 J3/8 2

Next, we shall use Corollary 1. Let

Zo,1 = R/Q,
and ¢ : [0,1] — R be a smooth function such that 0 < ¢(t) < 3/2 — 1/R,
3/2—-1/R, t €[3/8,5/8],
(3.34) p(t) =
0, te0,1/4)U[3/4,1],

with ¢, ¢, ¢ uniformly bounded in R for R large. We fix

o =cR?,
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with ¢ denoting a universal constant whose value may change from line to line. Choose
Or € C*(R), with 0 < 0(z1) < 1and

1, 1<Zlf1 <R_1a
(3.35) Or(r1) = {07 z1 <1/2 or z; > R.

Let ¢ € C(R) satisfy 0 < ((x;) < 1 and

0, =<1,
(3.36) ((z1) = { 1, ;,;11> 1+ 1/(2R).
Define
(3.37) 9(,t) = Op(z1) C(LRR/Q + so(t)) u(z, ).

Let us see that g(z, t) verifies the hypotheses of Corollary 1 so we can apply the inequality
(2.10). First, it is clear that it is supported on the set
xrp — R/2

1/2 < z1 < R, 1/32 < t < 31/32, i

+<p(t)‘ > 1.

Below we shall see that
(10, + A)g € L*(dxdt).

Note that
(3.38) if 3/2<z;<R-1 and 3/8<t<5/8, then g(z,t)="7(z,t).
In this domain, 6g(z1) = 1, and
St =2 41— >14 =
Rz telt)= g Fl-p 21+ on,

which gives (3.38).
Alsoifz; > 2onehasz;/R+1—1/R > 1+ 1/R, so that we have a lower bound T" for
the left hand side of (2.10) squared with

o? 2 5/8 b 2
(339)  T=pextf/m / / [(z, t)[dtdz > ~c®R? 2711/,
R 2<z1<R—-1 J3/8 2
for R large from (3.33). The equation for g is
. x1— R/2 ~ -
(i0; + A)g = 91{(%1)C(17R/ + cp(t))V(m,t) ]

e (B2 o) 281025+ 507

(3.40) R
+ [0 W) + ¢ () ) Pr(en) + 2 (Wn(ea)n, 7]
= El + E2 + E3.

Note that (i9; + A)g € L?(dzdt) by Step 5.

On the domain 1/2 < z; < R, 1/32 < t < 31/32 (which contains the support of g) one
has (see (3.10))

||‘~/||oo < %MO for A>1.
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Thus, since

o3

_ 3p2
moC
for R sufficiently large we can absorb the contribution of the term containing E; in the right

hand side of (2.10) in the left hand side of (2.10). So we have

gCSR2620(1+1/R)2 < c/ |E2|2620‘21_1%R/2+*"(t)|2dxdt

+ C/ | E5)? e2! LR 240 gy,

Next, we analyze the contribution of Es. In this case, each term contains a factor equal to a
derivative of fg, so the possible contributions are from the sets :

1/2<z1<1 and R-1<z; <R.

If1/2 < z1 < 1, then

2, — R/2 1 1 3 1
AT )<= —Z42-Z =1
TR T I Rl
so in this domain
331—R/2 _
C(T + ga(t)) =0.
In the region R — 1 < ;1 < R we have
z, — R/2 1 3 1 1
A L) <1—4-—Z=2-=
R Trsl-5+5-3 R’

so the contribution of the term involving E5 is bounded above by

31/32 ,
/ / ([0 + |84, 8%) €2 =) dxdt
1/32 JR-1<e1<R

31/32

— ¢20(2-1/R)? / / (o) + |8115|2)dxdt
1/32 R—-1<z1<R

— 5(R) 820(2—1/1?,)2.

Next, we consider the term involving Fs. In this case, each term contains a factor equal
to a derivative of ( so its support is restricted to
ry — R/2
R
with 1/2 < z; < R (support of 8g) and t € (1/32,31/32). Hence, its contribution is
bounded by (see (3.12))

31/32 )
cR4/ / [5(z, t)[2e20 A+ CRD” gudy
1/32 $<z1<R

1< +o(t) <1+1/2R,

L [31/32
< ¢ R* 20 (1+1/(2R) / / [o(z, t)|?dzdt
1/32 $<z1<R

20(1+1/(2R))? Ay R,

<ce 6n/2
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Collecting this information and using that R is large we get
b
(3.41) 583R2620(1+1/R)2 < CE(R)eQJ(Q—l/R)2 + CA1,5620(1+1/2R)2R4.
Since R is large the second term on the right hand side (3.41) can be hidden on the left to get
that

(3.42) 2RO < o3 (R)e N,

Now, since 0 = ¢R? one has that

20(1+ £)* —20(2 — §)® = —6cR? + 12cR > —10cR?,
for R large. Thus, from (3.42) it follows that

b
(3.43) Zc?’R?e*Mz < cZ(R).

But using (3.27)

31/32
®=[ [P 10,7 tdeda
R—1<z1<R J1/32

[1]

31/32
(3.44) :/R 1 3/1/32 e219(@1) =279 (|52 4+ |8,, 0)?) (x, t)dtda
—1<z1<

_ 1/2 _ 1/2
<ce 'yRR3)\e2)\m/6 < CR36 'yReQ)\m/(S ,

for A > 1and z; > R > 1 one has that

1
2% < ¢(x1) < 21

Thus, inserting (3.44) into (3.43) it follows that
(345) b < Cel(]cRZ—'yR—i—3)\7n/(51/27

where
2M A/ 2m ) 9
= = /2,.\1/2 a 1/2
R (01/2a,) /2’ v =(A0""a1)"'7, and CnM >1/6Y=.

So we have, changing ¢, into c,

40cM?m2\ 2MAY2m, Am
2 12 _ 2VelMmmA 172, \1/2 “dA7T7m A
10cR* — YR+ 3Am/é 251 %ar (A0 4ay) (01 2ay)1 /% + 5172
_ (400M2m2 2Mm 3m )
B 26/2q¢; ¢ 51/2)"

We need the expression in parenthesis to be negative, i.e.,
40cM?m? 3m 2Mm
261/2q, 51/2

Divide by Mm, we need
40cMm 3 2
2512, T MO S ¢
First, we choose M so large such that 2M/c > 1/6'/? and
3 1

Moz S ¢
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So now we just need
40cMm 1

261/2q, ¢
This can be done by taking m > 0 small. Therefore, we have proved that b = 0, which
yields the desired result.
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