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ON THE GLOBAL WELL-POSEDNESS OF
THE 2D EULER EQUATIONS FOR A LARGE CLASS

OF YUDOVICH TYPE DATA

 F BERNICOT  S KERAANI

A. – The study of the 2D Euler equation with non Lipschitzian velocity was initiated by
Yudovich in [20] where a result of global well-posedness for essentially bounded vorticity is proved.
A lot of works have been since dedicated to the extension of this result to more general spaces. To
the best of our knowledge all these contributions lack the proof of at least one of the following
three fundamental properties: global existence, uniqueness and regularity persistence. In this paper we
introduce a Banach space containing unbounded functions for which all these properties are shown to
be satisfied.

R. – L’étude de l’équation d’Euler bidimensionnelle dans un cadre non lipschitzien a été
initiée par Yudovich [20], qui a montré l’existence globale pour des tourbillons initiaux bornés. Depuis,
de nombreux travaux ont été dédiés à l’extension de ce résultat à des espaces plus généraux. Au meilleur
de notre connaissance aucun de ces travaux ne contient de résultat où les propriétés fondamentales
suivantes soient vérifiées : existence globale, unicité et propagation de la régularité. Dans cet article,
nous introduisons un nouvel espace de Banach contenant des fonctions non bornées et pour lequel ces
trois propriétés sont vérifiées.

1. Introduction

We consider the Euler system related to an incompressible inviscid fluid with constant
density, namely

(1)


∂tu+ u · ∇u+∇P = 0, x ∈ Rd, t > 0,

∇.u = 0,

u|t=0 = u0.

Here, the vector field u = (u2, u1, . . . , ud) is a function of (t, x) ∈ R+ × Rd denoting the
velocity of the fluid and the scalar function P stands for the pressure. The second equation
of the system ∇.u = 0 is the condition of incompressibility. Mathematically, it guarantees
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560 F. BERNICOT AND S. KERAANI

the preservation of Lebesgue measure by the particle-trajectory mapping (the classical flow
associated to the velocity vector fields). It is worth noting that the pressure can be recovered
from the velocity via an explicit Calderón-Zygmund type operator (see [5] for instance).

The question of local well-posedness of (1) with smooth data was resolved by many au-
thors in different spaces (see for instance [5, 14]). In this context, the vorticityω = curlu plays
a fundamental role. In fact, the well-known BKM criterion [2] ensures that the development
of finite time singularities for these solutions is related to the blow-up of the L∞ norm of the
vorticity near the maximal time existence. A direct consequence of this result is the global
well-posedness of the two-dimensional Euler solutions with smooth initial data, since the
vorticity satisfies the transport equation

(2) ∂tω + (u · ∇)ω = 0,

and then all its Lp norms are conserved.
Another class of solutions requiring lower regularity on the velocity can be considered:

the weak solutions (see for instance [12, Chap 4]). They solve a weak form of the equation in
the distribution sense, placing the equations in large spaces and using duality. The divergence
form of Euler equations allows to put all the derivatives on the test functions and so to obtain∫ ∞

0

∫
Rd

(∂tϕ+ (u · ∇)ϕ).u dxdt+

∫
Rd
ϕ(0, x)u0(x) dx = 0,

for all ϕ ∈ C∞0 (R+ × Rd,Rd) with ∇.ϕ = 0. In the two dimensional space and when the
regularity is sufficient to give a sense to Biot-Savart law, then one can consider an alternative
weak formulation: the vorticity-stream weak formulation. It consists in resolving the weak
form of (2) supplemented with the Biot-Savart law:

(3) u = K ∗ ω, with K(x) =
x⊥

2π|x|2
.

In this case, (v, ω) is a weak solution to the vorticity-stream formulation of the 2D Euler
equation with initial data ω0 if (3) is satisfied and∫ ∞

0

∫
R2

(∂tϕ+ u.∇ϕ)ω(t, x)dxdt+

∫
R2

ϕ(0, x)ω0(x)dx = 0,

for all ϕ ∈ C∞0 (R+ × R2,R).
The questions of existence/uniqueness of weak solutions have been extensively studied

and a detailed account can be found in the books [5, 14, 12]. We emphasize that, unlike the
fixed-point argument, the compactness method does not guarantee the uniqueness of the
solutions and then the two issues (existence/uniqueness) are usually dealt with separately.
These questions have been originally addressed by Yudovich in [20] where the existence and
uniqueness of weak solution to 2D Euler systems (in bounded domain) are proved under
the assumptions: u0 ∈ L2 and ω0 ∈ L∞. Serfati [15] proved the uniqueness and existence
of a solution with initial velocity and vorticity which are only bounded (without any in-
tegrability condition). There is an extensive literature on the existence of weak solution to
Euler system, possibly without uniqueness, with unbounded vorticity. DiPerna-Majda [7]
proved the existence of weak solution for ω0 ∈ L1 ∩ Lp with 2 < p <∞. The L1 assump-
tion in DiPerna-Majda’s paper has been removed by Giga-Miyakawa-Osada [9]. Chae [4]
proved an existence result for ω0 in L ln+ L with compact support. More recently, Taniuchi
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ON THE GLOBAL WELL-POSEDNESS OF THE 2D EULER EQUATIONS 561

[16] has proved the global existence (possibly without uniqueness nor regularity persistence)
for (u0, ω0) ∈ L∞ × BMO. The papers [18] and [19] are concerned with the questions of exis-
tence and uniqueness of weak solutions for larger classes of vorticity. Both have intersections
with the present paper and we will come back to them at the end of this section (Remark 2).
A framework for measure-valued solutions can be found in [6] and [13] (see also [8] for more
detailed references).

Roughly speaking, the proof of uniqueness of weak solutions requires a uniform, in time,
bound of the log-Lipschitzian norm of the velocity. This “almost” Lipschitzian regularity
of the velocity is enough to assure the existence and uniqueness of the associated flow (and
then of the solution). Initial conditions of the type ω0 ∈ L∞(R2) (or ω0 ∈ BMO, B0

∞,∞, . . .)
guarantee the log-Lipschitzian regularity of u0. However, the persistence of such regularity
when time varies requires an a priori bound of these quantities for the approximate-solution
sequences. This is trivially done (via the conservation law) in the L∞ case but is not at all
clear for the other cases. The main issue in this context is the action of Lebesgue measure
preserving homeomorphisms on these spaces. In fact, it is easy to prove that all these spaces
are invariant under the action of such class of homeomorphisms, but the optimal form of
the constants (depending on the homeomorphisms and important for the application) are
not easy to find. It is worth mentioning, in this context, that the proof by Vishik [17] of the
global existence for (1) in the borderline Besov spaces is based on a refined result on the action
of Lebesgue measure preserving homeomorphisms on B0

∞,1.

In this paper we place ourselves in some Banach space which is strictly imbricated between
L∞ and BMO. Although located beyond the reach of the conservation laws of the vorticity
this space has many nice properties (namely with respect to the action of the group of
Lebesgue measure preserving homeomorphisms) allowing to derive the above-mentioned
a priori estimates for the approximate-solution sequences.

Before going any further, let us introduce this functional space (details about BMO spaces
can be found in the book of Grafakos [10]).

D 1. – For a complex-valued locally integrable function on R2, set

‖f‖LBMO := ‖f‖BMO + sup
B1,B2

|AvgB2
(f)−AvgB1

(f)|
1 + ln

(
1−ln r2
1−ln r1

) ,

where the supremum is taken aver all pairs of balls B2 = B(x2, r2) and B1 = B(x1, r1) in R2

with 0 < r1 ≤ 1 and 2B2 ⊂ B1. Here and subsequently, we denote

AvgD(g) :=
1

|D|

∫
D

g(x)dx,

for every g ∈ L1
loc and every non negligible setD ⊂ R2. Also, for a ballB and λ > 0, λB denotes

the ball that is concentric with B and whose radius is λ times the radius of B.

We recall that

‖f‖BMO := sup
ball B

AvgB |f −AvgB(f)|.
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562 F. BERNICOT AND S. KERAANI

It is worth noting that if B2 and B1 are two balls such that 2B2 ⊂ B1 then(1)

(4) |AvgB2
(f)−AvgB1

(f)| . ln(1 +
r1
r2

)‖f‖BMO.

In the definition of LBMO we replace the term ln(1 + r1
r2

) by ln
(

1−ln r2
1−ln r1

)
, which is smaller.

This puts more constraints on the functions belonging to this space(2) and allows us to
derive some crucial property on the composition of them with Lebesgue measure preserving
homeomorphisms, which is the heart of our analysis.

The following statement is the main result of the paper.

T 1. – Assumeω0 ∈ Lp ∩ LBMO with p ∈ [1, 2[. Then there exists a unique global
weak solution (v, ω) to the vorticity-stream formulation of the 2D Euler equation. Besides, there
exists a constant C0 depending only on the Lp ∩ LBMO-norm of ω0 such that

(5) ‖ω(t)‖Lp∩LBMO ≤ C0 exp(C0t), ∀ t ∈ R+.

Some remarks are in order.

R 1. – The proof gives more, namely ω ∈ C(R+, L
q) for all p ≤ q <∞.

Combined with the Biot-Savart law(3) this yields u ∈ C(R+,W
1,r) ∩ C(R+, L

∞) for all
2p

2−p ≤ r <∞.

R 2. – The essential point of Theorem 1 is that it provides an initial space which is
strictly larger than Lp ∩ L∞ (it contains unbounded elements) which is a space of existence,
uniqueness and persistence of regularity at once. We emphasize that the bound (5) is crucial
since it implies that u is, uniformly in time, log-Lipschitzian which is the main ingredient
for the uniqueness. Once this bound established the uniqueness follows from the work by
Vishik [18]. In this paper Vishik also gave a result of existence (possibly without regularity
persistence) in some large space characterized by growth of the partial sum of the L∞-norm
of its dyadic blocs. We should also mention the result of uniqueness by Yudovich [19] which
establishes uniqueness (for bounded domain) for some space which contains unbounded
functions. Note also that the example of unbounded function, given in [19], belongs actually
to the space LBMO (see Proposition 3 below). Our approach is different from those in [18]
and [19] and uses a classical harmonic analysis “à la Stein” without appealing to the Fourier
analysis (para-differential calculus).

R 3. – The main ingredient of the proof of (5) is a logarithmic estimate in the
space Lp ∩ LBMO (see Theorem 2 below). It would be desirable to prove this result for
BMO instead of LBMO. Unfortunately, as it is proved in [3], the corresponding estimate with
BMO is optimal (with the bi-Lipschitzian norm instead of the log-Lipschitzian norm of the
homeomorphism) and so the argument presented here seems to be not extendable to BMO.

(1) Throughout this paper the notation A . B means that there exists a positive universal constant C such that
A ≤ CB.
(2) Here, we identify all functions whose difference is a constant. In Section 2, we will prove that LBMO is complete
and strictly imbricated between BMO and L∞. The “L” in LBMO stands for “logarithmic”.
(3) If ω0 ∈ Lp with p ∈ [1, 2[ then a classical Hardy-Littlewood-Sobolev inequality gives u ∈ Lq with 1

q
= 1

p
− 1

2
.
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The remainder of this paper is organized as follows. In the two next sections we introduce
some functional spaces and prove a logarithmic estimate which is crucial to the proof of
Theorem 1. The fourth and last section is dedicated to the proof of Theorem 1.

2. Functional spaces

Let us first recall that the set of log-Lipschitzian vector fields on R2 , denoted by LL, is
the set of bounded vector fields v such that

‖v‖LL := sup
x6=y

|v(x)− v(y)|
|x− y|

(
1 +

∣∣ ln |x− y|∣∣) <∞.
The importance of this notion lies in the fact that if the vorticity belongs to the Yudovich
type space (say L1 ∩ L∞) then the velocity is no longer Lipschitzian, but log-Lipschitzian.
In this case we still have existence and uniqueness of flow but a loss of regularity may occur.
Actually, this loss of regularity is unavoidable and its degree is related to the norm L1

t (LL)

of the velocity. The reader is referred to Section 3.3 in [1] for more details about this issue.
To capture this behavior, and overcome the difficulty generated by it, we introduce the

following definition.

D 2. – For every homeomorphism ψ, we set

‖ψ‖∗ := sup
x 6=y

Φ
(
|ψ(x)− ψ(y)|, |x− y|

)
,

where Φ is defined on ]0,+∞[×]0,+∞[ by

Φ(r, s) =

{
max{ 1+| ln(s)|

1+| ln r| ; 1+| ln r|
1+| ln(s)|}, if (1− s)(1− r) ≥ 0,

(1 + | ln s|)(1 + | ln r|), if (1− s)(1− r) ≤ 0.

Since Φ is symmetric then ‖ψ‖∗ = ‖ψ−1‖∗ ≥ 1. It is clear also that every homeomor-
phism ψ satisfying

1

C
|x− y|α ≤ |ψ(x)− ψ(y)| ≤ C|x− y|β

for some α, β, C > 0, has its ‖ψ‖∗ finite (see Proposition 2 for a reciprocal property).
The definition above is motivated by this proposition (and by Theorem 2 below as well).

P 1. – Let u be a smooth divergence-free vector field and let ψ be its flow:

∂tψ(t, x) = u(t, ψ(t, x)), ψ(0, x) = x.

Then, for every t ≥ 0

‖ψ(t, ·)‖∗ ≤ exp(

∫ t

0

‖u(τ)‖LLdτ).

Proof. – It is well-known that for every t ≥ 0 the mapping x 7→ ψ(t, x) is a Lebesgue
measure preserving homeomorphism (see [5] for instance). We fix t ≥ 0 and x 6= y and set

z(t) = |ψ(t, x)− ψ(t, y)|.

Clearly the function Z is strictly positive and satisfies

|ż(t)| ≤ ‖u(t)‖LL(1 + | ln z(t)|)z(t).
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564 F. BERNICOT AND S. KERAANI

Accordingly, we infer

|g(z(t))− g(z(0))| ≤
∫ t

0

‖u(τ)‖LLdτ

where

g(τ) :=

{
ln(1 + ln(τ)), if τ ≥ 1,

− ln(1− ln(τ)), if 0 < τ < 1.

This yields in particular that exp(g(z(t)))
exp(g(z(0))) and exp(g(z(0)))

exp(g(z(t))) are both controlled by

exp(
∫ t
0
‖u(τ)‖LLdτ) leading to

Φ(z(t), z(0)) ≤ exp(

∫ t

0

‖u(τ)‖LLdτ),

as claimed.

The following proposition follows directly from the definition by a straightforward com-
putation.

P 2. – Let ψ be a homeomorphism with ‖ψ‖∗ <∞. Then for every
(x, y) ∈ R2 × R2 one has

1. If |x− y| ≥ 1 and |ψ(x)− ψ(y)| ≥ 1

e−1|x− y|
1
‖ψ‖∗ ≤ |ψ(x)− ψ(y)| ≤ e‖ψ‖∗ |x− y|‖ψ‖∗ .

2. If |x− y| ≤ 1 and |ψ(x)− ψ(y)| ≤ 1

e−‖ψ‖∗ |x− y|‖ψ‖∗ ≤ |ψ(x)− ψ(y)| ≤ e|x− y|
1
‖ψ‖∗ .

3. In the other cases

e−‖ψ‖∗ |x− y| ≤ |ψ(x)− ψ(y)| ≤ e‖ψ‖∗ |x− y|.

As an application we obtain the following useful lemma.

L 1. – For every r > 0 and a homeomorphism ψ one has

4ψ(B(x0, r)) ⊂ B(ψ(x0), gψ(r)),

where(4),

gψ(r) :=

{
4e‖ψ‖∗r‖ψ‖∗ , if r ≥ 1,

4 max{er
1
‖ψ‖∗ ; e‖ψ‖∗r}, if 0 < r < 1.

In particular,

(6)

∣∣∣∣ln(1 + | ln gψ(r)|
1 + | ln r|

)∣∣∣∣ . 1 + ln
(
1 + ‖ψ‖∗

)
.

(4) This notation means that for every ball B ⊂ ψ(B(x0, r)) we have 4B ⊂ B(ψ(x0), gψ(r)).
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Proof. – The first inclusion follows from Proposition 2 and the definition of gψ. Let us
check (6). This comes from an easy computation using the following trivial fact: ifα, β, γ > 0

then

sup(β,
1

β
) ≤ αγ ⇐⇒ | ln(β)| ≤ γ ln(α).

– If r ≥ 1 then

1 ≤ 1 + | ln gψ(r)|
1 + | ln r|

=
1 + ln 4 + ‖ψ‖∗ + ln r

1 + ln r
≤ 3 + ‖ψ‖∗.

– If r < 1 then we have to deal with two possible values of gψ(r).

C 1. – If gψ(r) = 4er
1
‖ψ‖∗ then

| ln gψ(r)| = | ln 4 + 1 + ‖ψ‖−1
∗ ln(r)|.

Since ‖ψ‖∗ ≥ 1, we get

1 + | ln gψ(r)|
1 + | ln r|

≤
3 + 1

‖ψ‖∗ | ln r|
1 + | ln r|

≤ 3 + | ln r|
1 + | ln r|

≤ 3.

To estimate 1+| ln r|
1+| ln gψ(r)| we consider two possibilities.

– If | ln(r)| ≤ 8‖ψ‖∗ then

1 + | ln r|
1 + | ln gψ(r)|

≤ 1 + | ln r| ≤ 1 + 8‖ψ‖∗.

– If | ln(r)| ≥ 8‖ψ‖∗ then

| ln(4) + 1 + ‖ψ‖−1
∗ ln(r)| ≥ 1

2
‖ψ‖−1

∗ | ln(r)|,

and so
1 + | ln r|

1 + | ln gψ(r)|
≤ 1 + | ln r|

1 + 1
2‖ψ‖

−1
∗ | ln(r)|

≤ 2(1 + ‖ψ‖∗).

C 2. – If gψ(r) = 4e‖ψ‖∗r then

| ln gψ(r)| = | ln 4 + ‖ψ‖∗ + ln(r)|.

Thus,
1 + | ln gψ(r)|

1 + | ln r|
≤ 3 + ‖ψ‖∗ + | ln r|

1 + | ln r|
≤ 3 + ‖ψ‖∗.

As previously to estimate 1+| ln r|
1+| ln gψ(r)| , we consider two possibilities.

– If | ln(r)| ≤ 2(ln(4) + ‖ψ‖∗) then

1 + | ln r|
1 + | ln gψ(r)|

≤ 1 + | ln r| ≤ 5 + 2‖ψ‖∗.

– If | ln(r)| ≥ 2(ln 4 + ‖ψ‖∗) then | ln(4) + ‖ψ‖∗ + ln r| ≥ 1
2 | ln(r)| and so

1 + | ln r|
1 + | ln gψ(r)|

≤ 1 + | ln r|
1 + 1

2 | ln(r)|
≤ 2.

R 4. – The estimate (6) remains valid when we multiply gψ(r) by any positive
constant.
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3. The LBMO space

Let us now detail some properties of the space LBMO introduced in the first section of
this paper.

P 3. – The following properties hold true.
(i) The space LBMO is a Banach space included in BMO and strictly containing L∞(R2).
(ii) For every g ∈ C∞0 (R2) and f ∈ LBMO one has

(7) ‖g ∗ f‖LBMO ≤ ‖g‖L1‖f‖LBMO.

Proof. – (i) Completeness of the space. Let (fn)n be a Cauchy sequence in LBMO. Since
BMO is complete then this sequence converges in BMO and then inL1

loc. Using the definition
and the convergence in L1

loc, we get that the convergence holds in LBMO.
It remains to check that L∞ ( LBMO. Since L∞ is obviously embedded into LBMO, we

have just to build an unbounded function belonging to LBMO. Take

f(x) =

{
ln(1− ln |x|) if |x| ≤ 1

0, if |x| ≥ 1.

It is clear that both f and ∇f belong to L2(R2) meaning that f ∈ H1(R2) ⊂ BMO.
Before going further three preliminary remarks are necessary.
– Since f is radially symmetric and decreasing then, for every r > 0, the mapping

x 7→ AvgB(x,r)f is radial and decreasing.
– For the same reasons the mapping r 7→ AvgB(0,r)(f) is decreasing.
– Take (r, ρ) ∈]0,+∞[2 and consider the problem of maximization of

AvgB(x1,r)(f)−AvgB(x2,r)(f)

when |x1 − x2| = ρ. The convexity of f implies that x1 = 0 and |x2| = ρ are solutions of this
problem.

We fix r1 and r2 such that r1 ≤ 1 and 2r2 ≤ r1. For every x1 ∈ R2 one defines x̃1 and x̂1

as follows:

x̃1 =

{
x1(1− r2+r1

|x1| ) if |x1| ≥ r2 + r1

0, if |x1| ≤ r2 + r1,

and

x̂1 =

{
x1(1 + r2+r1

|x1| ) if |x1| 6= 0

(r2 + r1, 0) if |x1| = 0.

Let A(x1) be the set of admissible x2: the set of x2 such that 2B(x2, r2) ⊂ B(x1, r1). Using
the two preliminary remarks above, we see that

sup
x2∈A(x1)

|AvgB(x2,r2)(f)−AvgB(x1,r1)(f)| ≤ max{J1, J2},

with

J1 = AvgB(x̃1,r2)(f)−AvgB(x1,r1)(f),

J2 = AvgB(x1,r1)(f)−AvgB(x̂1,r2)(f).
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In fact, if AvgB(x2,r2)(f)−AvgB(x1,r1)(f) is positive (resp. negative) then it is obviously
dominated by J1 (resp. J2). Thus, we obtain

sup
x2∈A(x1)

|AvgB(x2,r2)(f)−AvgB(x1,r1)(f)| ≤ J1 + J2 = AvgB(x̃1,r2)(f)−AvgB(x̂1,r2)(f).

The right hand side is maximal in the configuration when x̃1 = 0 and x̂1 the farthest away
from 0. This means when |x1| = r1 + r2, x̃1 = 0 and |x̂1| = 2(r1 + r2).

Since f is increasing (going to the axe) then

AvgB(x̂2,r1)(f) ≥ f(4r1).

Finally, we get for all x1 ∈ R2 and x2 ∈ A(x1)

|AvgB(x2,r2)(f)−AvgB(x1,r1)(f)| ≤ AvgB(0,r2)(f)− f(4r1).

Now it is easy to see that

f(4r1) = ln(1− ln(r1)) + O(1),

and (with an integration by parts)

AvgB(0,r2)(f) = ln(1− ln(r2)) +
1

r22

∫ r1

0

1

1− ln(ρ)
ρdρ

= ln(1− ln(r2)) + O(1).

This yields

|AvgB(x2,r2)(f)−AvgB(x1,r1)(f)| ≤ ln
(1− ln(r2)

1− ln(r1)

)
+ O(1),

as desired.

(ii) Stability by convolution. (7) follows from the fact that for all r > 0

x 7→ AvgB(x,r)(g ∗ f) = (g ∗AvgB(·,r)(f))(x).

The advantage of using the space LBMO lies in the following logarithmic estimate which
is the main ingredient for proving Theorem 1.

T 2. – There exists a universal constant C > 0 such that

‖foψ‖LBMO∩Lp ≤ C ln(1 + ‖ψ‖∗)‖f‖LBMO∩Lp ,

for any Lebesgue measure preserving the homeomorphism ψ.

Proof of Theorem 2. – Of course we are concerned with ψ such that ‖ψ‖∗ is finite (if not
the inequality is empty). Without loss of generality one can assume that ‖f‖LBMO∩Lp = 1.
Sinceψ preserves Lebesgue measure then theLp-part of the norm is conserved. For the other
two parts of the norm, we will proceed in two steps. In the first step we consider the BMO

term of the norm and in the second one we deal with the other term.
S 1. – Let B = B(x0, r) be a given ball of R2. By using the Lp-norm we need only to

deal with balls whose radius is smaller than a universal constant δ0 (we want r to be small
with respect to the constants appearing in the Whitney covering lemma below). Since ψ is a
Lebesgue measure preserving homeomorphism then ψ(B) is an open connected(5) set with

(5) We have also that ψ(B)C = ψ(BC) and ψ(∂B) = ∂(ψ(B)).
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|ψ(B)| = |B|. By the Whitney covering lemma, there exists a collection of balls (Oj)j such
that:

– The collection of double ball is a bounded covering:

ψ(B) ⊂
⋃

2Oj .

– The collection is disjoint and, for all j,

Oj ⊂ ψ(B).

– The Whitney property is verified:

rOj ' d(Oj , ψ(B)c).

C 1: r ≤ 1
4e
−‖ψ‖∗ . In this case

gψ(r) ≤ 1.

We set B̃ := B(ψ(x0), gψ(r)). Since ψ preserves the Lebesgue measure we get

AvgB |foψ −AvgB(foψ)| = Avgψ(B)|f −Avgψ(B)(f)|
≤ 2Avgψ(B)|f −AvgB̃(f)|.

Using the notations above

Avgψ(B)|f −AvgB̃(f)| . 1

|B|
∑
j

|Oj |Avg2Oj

∣∣f −AvgB̃(f)
∣∣ . I1 + I2,

with

I1 =
1

|B|
∑
j

|Oj |Avg2Oj

∣∣f −Avg2Oj (f)
∣∣

I2 =
1

|B|
∑
j

|Oj |
∣∣Avg2Oj (f)−AvgB̃(f)

∣∣.
On one hand, since

∑
|Oj | ≤ |B| then

I1 ≤
1

|B|
∑
j

|Oj |‖f‖BMO ≤ ‖f‖BMO.

On the other hand, since 4Oj ⊂ B̃ (remember Lemma 1) and rB̃ ≤ 1, it yields that

I2 .
1

|B|
∑
j

|Oj |
(
1 + ln

( 1− ln 2rj
1− ln gψ(r)

))
.

1

|B|
∑
j

|Oj |
(
1 + ln

( 1− ln rj
1− ln gψ(r)

))
.

Thanks to (6) we get

ln
( 1− ln rj

1− ln gψ(r)

)
≤ ln

(1− ln rj
1− ln r

)
+ ln

( 1− ln r

1− ln gψ(r)

)
. 1 + ln

(1− ln rj
1− ln r

)
+ ln(1 + ‖ψ‖∗).

(8)
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Thus it remains to prove that

II :=
1

|B|
∑
j

|Oj |(1 + ln
(1− ln rj

1− ln r

)
) . 1 + ln(1 + ‖ψ‖∗).(9)

For every k ∈ N we set

uk :=
∑

e−(k+1)r<rj≤e−kr

|Oj |,

so that

II ≤ 1

|B|
∑
k≥0

uk
(
1 + ln

(k + 2− ln r

1− ln r

))
.(10)

We need the following lemma.

L 2. – There exists a universal constant C > 0 such that

uk ≤ Ce−
k
‖ψ‖∗ r1+

1
‖ψ‖∗ ,

for every k ∈ N.

Proof of Lemma 2. – If we denote by C ≥ 1 the implicit constant appearing in the
Whitney Lemma, then

uk ≤ |{y ∈ ψ(B) : d(y, ψ(B)c) ≤ Ce−kr}|.

The preservation of the Lebesgue measure by ψ yields

|{y ∈ ψ(B) : d(y, ψ(B)c) ≤ Ce−kr}| = |{x ∈ B : d(ψ(x), ψ(B)c) ≤ Ce−kr}|.

Since ψ(B)c = ψ(Bc) then

uk ≤ |{x ∈ B : d(ψ(x), ψ(Bc)) ≤ Ce−kr}|.

We set

Dk = {x ∈ B : d(ψ(x), ψ(Bc)) ≤ Ce−kr}.

Since ψ(∂B) is the frontier of ψ(B) and d(ψ(x), ψ(Bc)) = d(ψ(x), ∂ψ(B)) then

Dk ⊂ {x ∈ B : ∃y ∈ ∂B with |ψ(x)− ψ(y)| ≤ Ce−kr}.

The condition on δ0 is just to assure that Cr ≤ 1 for all r ≤ δ0. In this case Proposition 2
gives

Dk ⊂ {x ∈ B : ∃y ∈ ∂B : |x− y| ≤ Ce1−
k
‖ψ‖∗ r

1
‖ψ‖∗ }.

Thus, Dk is contained in the annulus A = {x ∈ B : d(x, ∂B) ≤ Ce1−
k
‖ψ‖∗ r

1
‖ψ‖∗ } and so

uk ≤ |Dk| . e−
k
‖ψ‖∗ r1+

1
‖ψ‖∗ ,

as claimed.
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Let us come back to (10). Let N be a large integer to be chosen later. We split the sum in
the right hand side of (10) into two parts

II .
∑
k≤N

(· · ·) +
∑
k>N

(· · ·) := II1 + II2.

Since
∑
uk ≤ |B| then

II1 ≤ 1 + ln
(N + 2− ln r

1− ln r

)
.(11)

On the other hand

II2 ≤
∑
k>N

e−
k
‖ψ‖∗ r

1
‖ψ‖∗

−1(1 + ln
(k + 2− ln r

1− ln r

)
).

The parameter N will be taken bigger than ‖ψ‖∗ so that the function in k inside the sum
is decreasing and an easy comparison with integral yields

II2 . e−
N
‖ψ‖∗ ‖ψ‖2∗r

1
‖ψ‖∗

−1(1 + ln
(N + 2− ln r

1− ln r

))
.(12)

Putting (11) and (12) together and taking N = [‖ψ‖∗(‖ψ‖∗ − ln r)] + 1,

II .
(
1 + e−

N
‖ψ‖∗ ‖ψ‖2∗r

1
‖ψ‖∗

−1)(1 + ln
(N + 2− ln r

1− ln r

))
.

Taking N = [‖ψ‖∗(‖ψ‖∗ − ln r)] + 1,

II .
(
1 + e−‖ψ‖∗‖ψ‖2∗r

1
‖ψ‖∗

)(
1 + ln

(‖ψ‖∗(‖ψ‖∗ − ln r) + 2− ln r

1− ln r

))
. 1 + ln(1 + ‖ψ‖∗),

where we have used the fact that r ≤ 1 and the obvious inequality

‖ψ‖∗(‖ψ‖∗ − ln r) + 2− ln r

1− ln r
. (1 + ‖ψ‖∗)2.

This ends the proof of (9).

C 2: δ0 ≥ r ≥ 1
4e
−‖ψ‖∗ . In this case

| ln r| . ‖ψ‖∗.

Since ψ preserves the Lebesgue measure, we get

I := AvgB |foψ −AvgB(foψ)| ≤ 2Avgψ(B)|f |.

Let Õj denote the ball which is concentric to Oj and whose radius is equal to 1 (we use
the same Whitney covering as above). Without loss of generality we can assume δ0 ≤ 1

4 . This
guarantees 4Oj ⊂ Õj and yields by definition

I .
1

|B|
∑
j

|Oj |Avg2Oj |f −AvgÕj (f)|+ 1

|B|
∑
j

|Oj ||AvgÕj (f)|

.
1

|B|
∑
j

|Oj |
(

1 + ln
(
1− ln 2rj

))
‖f‖LBMO +

1

|B|
∑
j

|Oj |‖f‖Lp

. 1 +
1

|B|
∑
j

|Oj |
(
1 + ln

(
1− ln rj

))
.
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As before one writes

I .
1

|B|
∑
k≥0

uk
(
1 + ln

(
k + 2− ln r

))
. 1 + ln

(
N + 2− ln r

)
+ e−

N
‖ψ‖∗ ‖ψ‖2∗r

1
‖ψ‖∗

−1(1 + ln
(
N + 2− ln r

))
.

Taking N = [‖ψ‖∗(‖ψ‖∗ − ln r)] + 1 and using the fact that | ln r| . ‖ψ‖∗ leads to the
desired result.

The outcome of this first step of the proof is

‖foψ‖BMO∩Lp . ln(1 + ‖ψ‖∗)‖f‖LBMO∩Lp .

S 2. – This step of the proof deals with the second term in the LBMO-norm. It is
shorter than the first step because it makes use of the arguments developed above. Take
B2 = B(x2, r2) and B1 = B(x1, r1) in R2 with r1 ≤ 1 and 2B2 ⊂ B1. There are three cases
to consider.

C 1: r1 . e−‖ψ‖∗ (so that gψ(r2) ≤ gψ(r1) ≤ 1
2 ).

We set B̃i := B(ψ(xi), gψ(ri)), i = 1, 2 and

J :=
|AvgB2

(foψ)−AvgB1
(foψ)|

1 + ln
(

1−ln r2
1−ln r1

) .

Since the denominator is bigger than 1 one gets

J ≤ J1 + J2 + J3,

with

J1 = |Avgψ(B2)(f)−AvgB̃2
(f)|+ |Avgψ(B1)(f)−AvgB̃1

(f)|

J2 =
|AvgB̃2

(f)−Avg2B̃1
(f)|

1 + ln
(

1−ln r2
1−ln r1

)
J3 = |AvgB̃1

(f)−Avg2B̃1
(f)|.

Since 2B̃2 ⊂ 2B̃1 and r2B̃1
≤ 1 then

J2 ≤
1 + ln

( 1−ln gψ(r2)
1−ln(2gψ(r1))

)
1 + ln

(
1−ln r2
1−ln r1

) ‖f‖LBMO.

Using a similar argument than (8) (and remembering Remark 4) we infer

ln
( 1− ln gψ(r2)

1− ln(2gψ(r1))

)
. 1 + ln(1 + ‖ψ‖∗) + ln

(1− ln r2
1− ln r1

)
.

Thus,
J2 . 1 + ln(1 + ‖ψ‖∗).

The estimation (4) yields
J3 . ‖f‖BMO.

The term J1 can be handled exactly as in the analysis of case 1 of step 1.

C 2: e−‖ψ‖∗ . r2. In this case we write

J ≤ Avgψ(B2)|f |+ Avgψ(B1)|f |.
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Both terms can be handled as in the analysis of case 2 of the proof of BMO-part in step 1.

C 3: r2 . e−‖ψ‖∗ and r1 & e−‖ψ‖∗ . Again since the denominator is bigger than 1 we
get

J ≤ Avgψ(B2)|f −AvgB̃2
(f)|+

|AvgB̃2
(f)|

1 + ln
(

1−ln r2
1−ln r1

) + Avgψ(B1)|f | = J1 + J2 + J3.

The terms J1 and J3 can be controlled as before. The second term is controlled as follows
(we make the average on B(ψ(x2), 1) appear and use Lemma 1 with ‖f‖Lp ≤ 1)

J2 ≤
1 + ln(1− ln r2)

1 + ln
(

1−ln r2
1−ln r1

) ≤ 1 + ln(1 + | ln r1|) ≤ 1 + ln(1 + ‖ψ‖∗).

4. Proof of Theorem 1

The proof falls naturally into three parts.

4.1. A priori estimates

The following estimates follow directly from Proposition 1 and Theorem 2.

P 4. – Let u be a smooth solution of (1) and ω its vorticity. Then, there exists
a constant C0 depending only on the norm Lp ∩ LBMO of ω0 such that

‖u(t)‖LL + ‖ω(t)‖LBMO ≤ C0 exp (C0t),

for every t ≥ 0.

Proof. – One has ω(t, x) = ω0(ψ−1
t (x)) where ψt is the flow associated to the velocity u.

Since u is smooth then ψ±1
t is Lipschitzian for every t ≥ 0. This implies in particular that

‖ψ±1
t ‖∗ is finite for every t ≥ 0. Theorem 2 and Proposition 1 yield together

‖ω(t)‖LBMO ≤ C‖ω0‖LBMO∩Lp ln(1 + ‖ψ−1
t ‖∗)

≤ C‖ω0‖LBMO∩Lp ln(1 + exp(

∫ t

0

‖u(τ)‖LLdτ))

≤ C0(1 +

∫ t

0

‖u(τ)‖LLdτ).

On the other hand, one has

‖u(t)‖LL ≤ ‖ω(t)‖L2 + ‖ω(t)‖B0
∞,∞

≤ C(‖ω0‖L2 + ‖ω(t)‖BMO).

The first estimate is classical (see [1] for instance) and the second one is just the conservation
of the L2-norm of the vorticity and the continuity of the embedding BMO ↪→ B0

∞,∞.
Consequently, we deduce that

‖u(t)‖LL ≤ C0(1 +

∫ t

0

‖u(τ)‖LLdτ),

and by Gronwall’s Lemma

‖u(t)‖LL ≤ C0 exp(C0t), ∀ t ≥ 0.
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This yields in particular

‖ω(t)‖LBMO ≤ C0 exp (C0t), ∀ t ≥ 0,

as claimed.

4.2. Existence

Let ω0 ∈ Lp ∩ LBMO and u0 = k ∗ω0, with K(x) = x⊥

2π|x|2 . We take ρ ∈ C∞0 , with ρ ≥ 0

and
∫
ρ(x)dx = 1 and set

ωn0 = ρn ∗ ω0, un0 = ρn ∗ u0,

where ρn(x) = n2ρ(nx). Obviously,ωn0 is aC∞ bounded function for every n ∈ N∗. Further-
more, thanks to (7),

‖ωn0 ‖Lp ≤ ‖ω0‖Lp and ‖ωn0 ‖LBMO ≤ ‖ω0‖LBMO.

The classical interpolation result between Lebesgue and BMO spaces (see [10] for more
details) implies that

‖ωn0 ‖Lq ≤ ‖ωn0 ‖Lp∩BMO ≤ ‖ω0‖Lp∩BMO, ∀ q ∈ [p,+∞[.

Since, ωn0 ∈ Lp ∩ L∞ then there exists a unique weak solution un with

ωn ∈ L∞(R+, L
p ∩ L∞),

according to the classical result of Yudovich [20]. According to Proposition 4 one has

‖un(t)‖LL + ‖ωn(t)‖Lp∩LBMO ≤ C0 exp(C0t), ∀ t ∈ R+.(13)

With this uniform estimate in hand, we can perform the same analysis as in the case
ω0 ∈ Lp ∩ L∞ (see Paragraph 8.2.2 in [14] for more explanations). For the convenience of
the reader we briefly outline the main arguments of the proof.

If one denotes by ψn(t, x) the associated flow to un then

(14) ‖ψ±1
n (t)‖∗ ≤ C0 exp(C0t), ∀ t ∈ R+.

This yields the existence of explicit time continuous functions β(t) > 0 and C(t) such that

|ψ±1
n (t, x2)− ψ±1

n (t, x1)| ≤ C(t)|x2 − x1|β(t), ∀ (x1, x2) ∈ R2 × R2.

Moreover,

|ψ±1
n (t2, x)− ψ±1

n (t1, x)| ≤ |t2 − t1|‖un‖L∞ ≤ C0|t2 − t1|, ∀ (t1, t2) ∈ R+ × R+.

Here, we have used the Biot-Savart law to get

‖un(t)‖L∞ . ‖ωn(t)‖Lp∩L3 ≤ ‖ω0‖Lp∩L3 .

The family {ψn, n ∈ N} is bounded and equicontinuous on every compact
[0, T ]× B̄(0, R) ⊂ R+ × R2. The Arzela-Ascoli theorem implies the existence of a limiting
particle trajectory ψ(t, x). Performing the same analysis for {ψ−1

n , n ∈ N} we figure out
that ψ(t, x) is a Lebesgue measure preserving homeomorphism . Also, passing to the limit(6)

in (14) leads to
‖ψt‖∗ = ‖ψ−1

t ‖∗ ≤ C0 exp(C0t), ∀ t ∈ R+.

(6) We take the pointwise limit in the definition formula and then take the supremum.
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One defines
ω(t, x) = ω0(ψ−1

t (x)), u(t, x) = (k ∗x ω(t, .))(x).

We easily check that for every q ∈ [p,+∞[ one has

ωn(., t) −→ ω(., t) in Lq.

un(., t) −→x u(., t) uniformly.

The last claim follows from the fact that

‖un(t)− u(t)‖L∞ . ‖ωn(t)− ω(t)‖Lp∩L3 .

All this allows us to pass to the limit in the integral equation on ωn and then to prove
that (u, ω) is a weak solution to the vorticity-stream formulation of the 2D Euler system.
Furthermore, the convergence of {ωn(t)} in L1

loc and (13) imply that

‖ω(t)‖Lp∩LBMO ≤ C0 exp(C0t), ∀ t ∈ R+.

as claimed.
The continuity of ψ and the preservation of Lebesgue measure imply that t 7→ ω(t)

is continuous(7) with values in Lq for all q ∈ [p,+∞[. This implies in particular that
u ∈ C([0,+∞[, Lr(Rd)) for every r ∈ [ 2p

2−p ,+∞].

4.3. Uniqueness

Since the vorticity remains bounded in BMO space then the uniqueness of the solu-
tions follows from Theorem 7.1 in [18]. Another way to prove that is to add the informa-
tion u ∈ C([0,+∞, L∞(Rd)) (which is satisfied for the solution constructed above) to the
theorem and in this case the uniqueness follows from Theorem 7.17 in [1].

(7) By approximation we are reduced to the following situation: gn(x)→ g(x) pointwise and

‖gn‖Lq = ‖g‖Lq .

This is enough to deduce that gn → g in Lq (see Theorem 1.9 in [11] for instance).
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