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SEMI-POSITIVITY IN POSITIVE CHARACTERISTICS

 Z PATAKFALVI

A. – Let f : (X, ∆)→ Y be a flat, projective family of sharply F -pure, log-canonically
polarized pairs over an algebraically closed field of characteristic p > 0 such that p - ind(KX/Y + ∆).
We show that KX/Y + ∆ is nef and that f∗(OX(m(KX/Y + ∆))) is a nef vector bundle for m� 0

and divisible enough. Some of the results also extend to non log-canonically polarized pairs. The
main motivation of the above results is projectivity of proper subspaces of the moduli space of stable
pairs in positive characteristics. Other applications are Kodaira vanishing free, algebraic proofs of
corresponding positivity results in characteristic zero, and special cases of subadditivity of Kodaira-
dimension in positive characteristics.

R. – Soit f : (X, ∆)→ Y une famille projective plate de paires nettement F -pures et
log-canoniquement polarisées sur un corps algébriquement clos de caractéristique p > 0 tel que
p - ind(KX/Y + ∆). Nous montrons que KX/Y + ∆ est nef et que f∗(OX(m(KX/Y + ∆))) est un
fibré vectoriel nef pour m� 0 et qu’il est assez divisible. Certains des résultats s’étendent également
aux couples non log-canoniquement polarisés. La principale motivation de ces résultats est la projec-
tivité de sous-espaces propres de l’espace des modules des paires stables en caractéristiques positives.
D’autres applications incluent des nouvelles preuves algébriques des résultats de positivité en carac-
téristique nulle, et un cas particulier de sous-additivité de la dimension de Kodaira de caractéristique
positive.

1. Introduction

Results stating positivity of the (log-)relative canonical bundle and of the pushforwards
of its powers played an important role in the development of modern algebraic geometry
(e.g., [3]∼ Corollary 1.9 , [11, 9, 19, 45, 21]∼ Theorem 1.7, where∼ denotes our statements
of similar flavor). Applications are numerous: projectivity and quasi-projectivity of moduli
spaces (e.g., [22, 46] ∼ Corollary 4.1), subadditivity of Kodaira-dimension (e.g., [45, 21] ∼
Corollary 4.6), Shafarevich type results about hyperbolicity of moduli spaces (e.g., [34, 1,
43]), Kodaira dimension of moduli spaces (e.g., [31, 4]), etc. Most of the proofs of the above
mentioned general positivity results are either analytic or depend on Kodaira vanishing.
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992 Z. PATAKFALVI

Either way, they work only in characteristic zero. The word “general” and “most” has to
be stressed here: there are positivity results available for families of curves (e.g., [43, 22]),
abelian varieties [5] and K3 surfaces [27] in positive characteristics. The aim of this article is
to present positivity results available for arbitrary fiber dimensions in positive characteristics,
bypassing the earlier used analytic or Kodaira vanishing type techniques. The strongest
statements are in the case of (log)-canonically polarized fibers, but there are results for
fibers with nef log-canonical bundles as well. As in characteristic zero, one also has to put
some restrictions on singularities. Here we assume the fibers to be sharply F -pure, which
corresponds to characteristic zero notion of log-canonical singularities via reduction mod p
(see [42] for a survey on F -singularities, and Definition 2.4 for the definition of sharply
F -pure singularities).

Some differences between our results and the characteristic zero statements mentioned
above have to be stressed. First, we only claim the semi-positivity of f∗ωmX/Y for m big and
divisible enough. This is a notable difference, since the characteristic zero results usually
start with proving the m = 1 case and then deduce the rest from that. However, in positive
characteristics there are known counterexamples for the semi-positivity of f∗ωX/Y [30, 3.2].
So, any positivity result can hold only for m > 1, and its proof has to bypass the m = 1

case. Second, the characteristic zero results are birational in the sense that for example it
is enough to assume that ωF is big for a general fiber of F . In our results nefness of ωF is
essential, and for the semi-positivity of pushforwards we even need ωF to be ample. Hence,
our results give exactly what one needs for projectivity of moduli spaces (as in [22]), but yield
subadditivity of Kodaira dimension only together with the log-Minimal Model Program in
positive characteristics.

1.1. Results: normal, boundary free versions over a curve base

Here we state our results in a special, but less technical form. We assume that the spaces
involved are normal and we do not add boundary divisors to our varieties. The base is also
assumed to be a smooth projective curve. For the general form of the results, see Section 1.2.

We work over an algebraically closed field k of characteristic p > 0.

T 1.1. – Let f : X → Y be a surjective, projective morphism from a normal variety
to a smooth projective curve with normal generic fiber, such that rKX is Cartier for some
integer r > 0. Further assume that

(a) either p - r and the general fiber is sharply F -pure,
(b) or p|r and the general fiber is strongly F -regular.

Then:

(1) If KX/Y is f -nef and KXy
is semi-ample for generic y ∈ Y , then KX/Y is nef.

(2) If KX/Y is f -ample, then f∗OX(mrKX/Y ) is a nef vector bundle for m� 0.
(3) (A subadditivity of Kodaira dimension type corollary:) If KX/Y is f -semi-ample,KXy

is big for generic y ∈ Y and g(Y ) ≥ 2, then KX is big as well.
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R 1.2. – To explain the scope of the above results, let us mention a few facts
about F -singularities. First, the usual singularities of the minimal model can be defined
in arbitrary characteristics (e.g., [24]). Then, every S2, G1, sharply F -pure singularity is
semi-log-canonical (i.e., the pair of its normalization and its conductor is log-canonical)
and every strongly F -regular singularity is Kawamata log-terminal. Furthermore, if the
(log-)canonical divisor is Q-Cartier, then the difference between the two is “small” in both
cases in a measurable sense via reductions mod p [13, 15, 44, 29, 33, 32].

For example, in dimension one sharply F -pure includes smooth and nodal singularities,
and strongly F -regular includes smooth singularities. In particular, Theorem 1.1 applies to
stable curves, recovering results of [43].

In dimension two, strongly F -regular singularities (without boundaries) are equivalent to
Kawamata log-terminal singularities for p > 5 [14]. In particular Theorem 1.1 applies to
stable degenerations with Kawamata log-terminal general fibers when p > 5, regardless of
the index. Furthermore, in the sharply F -pure case, much worse singularities can be allowed
in the general fibers. For example the general fiber can have nodes or a big portion of log-
canonical singularities with index not divisible by p. See [14] and [28], for the actual list.

In higher dimensions one experiences similar behavior, but fewer explicitly worked out
examples are known. Intuitively, the non-sharply F -pure but log canonical singularities can
be thought of as being supersingular in a very strong sense. This phenomenon can be made
more precise in particular cases. For example cones over abelian varieties are sharply F -pure
exactly if the underlying abelian variety is ordinary.

Point (2) of Theorem 1.1 is the F -singularity version of the characteristic zero statement
used to show projectivity of the moduli space of stable varieties [22, 6]. Therefore, it implies
projectivity of coarse moduli spaces of certain sharply F -pure moduli functors. For the
precise statement we refer the reader to Section 1.2.

Furthermore, Theorem 1.1 combined with lifting arguments gives a new algebraic proof
of the following characteristic zero semi-positivity statement.

C 1.3. – Let f : X → Y be surjective, projective morphism from a Kawamata
log terminal variety to a smooth projective curve over an algebraically closed field of character-
istic zero. Let r be the index of KX .

(1) If KX/Y is f -semi-ample, then KX/Y is nef.
(2) If KX/Y is f -ample, then f∗OX(mrKX/Y ) is a nef vector bundle for m� 0.

1.2. Results: full generality

In algebraic geometry, one is frequently forced to work with pairs or even with non-
normal pairs for various reasons: induction on dimension, compactification, working with
non-proper varieties, etc. Hence, in the present article we put our results in a more general
framework than that of Section 1.1. The actual framework that we work in is motivated by
the main application, the projectivity of coarse moduli spaces, and is as follows.

N 1.4. – Let f : X → Y be a flat, relatively S2 and G1, equidimensional, pro-
jective morphism to a projective scheme over k and ∆ a Q-Weil divisor on X, such that
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(1) Supp ∆ contains neither codimension 0 points nor singular codimension 1 points of
the fibers,

(2) there is a p - r > 0, such that r∆ is a Z-divisor, Cartier in relative codimension 1 and
ω

[r]
X/Y (r∆) is a line bundle (note that ω[r]

X/Y (r∆) is defined as ι∗(ωrU/Y (r∆|U )) where
ι : U → X is the intersection of the relative Gorenstein locus and the locus where
r∆ is Cartier) and

(3) for all but finitely many y ∈ Y , (Xy,∆y) is sharply F -pure (see Definition 2.4).

N 1.5. – Sometimes instead of the assumptions of Notation 1.4, we drop the as-
sumption p - r, but instead of sharply F -purity we assume strong F -regularity of (Xy,∆y)

for all but finitely many y ∈ Y (see [41, Definition 2.10] for the definition of strong F -regu-
larity).

The main results of the paper are as follows.

T 1.6. – In the situation of Notation 1.4 or Notation 1.5, ifω[r]
X/Y (r∆) is f -nef and

for all but finitely many y ∈ Y , KXy + ∆y is semi-ample, then ω[r]
X/Y (r∆) is nef.

T 1.7. – In the situation of Notation 1.4, if ω
[r]
X/Y (r∆) is f -ample, then

f∗(ω
[mr]
X/Y (mr∆)) is nef for all integers m� 0.

T 1.8. – In the situation of Notation 1.5, if ω[r]
X/Y (r∆) is f -ample and Y is a

smooth curve, then f∗(ω
[mr]
X/Y (mr∆)) is nef for all integers m� 0.

Contrary to Theorem 1.6, in Theorem 1.7 we assumed that all but finitely many fibers are
sharply F -pure. In fact, when KX/Y + ∆ is Q-Cartier, the locus over which the (geomet-
ric) fibers are not sharply F -pure is closed [38, Theorem B]. Hence the seemingly weaker hy-
pothesis of Theorem 1.6 is in fact only a specialization of Notation 1.4. Further, one cannot
have assumptions only on the singularities of the generic fiber, if the goal is to prove nefness
of f∗(ω

[mr]
X/Y (mr∆)). Indeed, it is easy to construct examples of families over a curve with

very singular fibers (i.e., projective cones over high genus curves) for which the above sheaf
is not nef. On the other hand, if only the general fiber is required to be sharply F -pure, one

can still try to prove weak-positivity of f∗
(
ω

[mr]
X/Y (mr∆)

)
. This issue is addressed in other

articles (e.g., [36, 38]).

C 1.9. – In the situation of Notation 1.4, if ∆ = 0, KX/Y is f -ample and for
every y ∈ Y , Xy is sharply F -pure, Aut(Xy) is finite and there are only finitely many other

y′ ∈ Y such that Xy
∼= Xy′ , then det

(
f∗ω

[m]
X/Y

)
is an ample line bundle for all m� 0 and

divisible enough.

The author has evidence that taking determinant can be removed from the above corol-
lary. I.e., it can be shown that f∗ω

[m]
X/Y is ample as a vector bundle. This issue will be also

addressed in upcoming articles.
In addition to the above statements, the semi-ample assumption in Theorem 1.6 can be

dropped on the expense that the index r has to be 1, as stated in the following theorem.
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T 1.10. – In the situation of Notation 1.4, if r = 1 and ωX/Y (∆) is f -nef, then
ωX/Y (∆) is nef.

For the proofs of the above statements, see Sections 3.3, 3.4 and 3.5. In the case that
MMP and the moduli space of stable pairs work in positive characteristics as they do in
characteristic zero, one would hope that the divisibility condition of Notation 1.4 could be
removed and the sharplyF -pure condition could be relaxed to semi-log canonical eventually.
Unfortunately, the author has no evidence pro or against this (see Section 5).

The following are the main applications. The first one states the existence of a projective
coarse moduli space for certain functors of stable varieties. Note that stable varieties are the
higher dimensional analogues of stable curves. According to Corollary 4.1, the last step of
the general scheme of proving existence of projective coarse moduli spaces initiated in [22]
works if the singularities are at most sharply F -pure (see Section 4.1 for details).

C 4.1. – Let F be a subfunctor of

Y 7→


X

f

��
Y

∣∣∣∣∣∣∣∣∣∣
f : X → Y is a flat, relatively S2 and G1, equidimensional, projective
morphism with sharply F -pure fibers, such that there is a p - r > 0,
for which ω

[r]

X/Y is an f -ample line bundle, and Aut(Xy) is finite for
all y ∈ Y


/
∼= over Y .

If F admits

(1) a coarse moduli space π : F → V , which is a proper algebraic space and
(2) a morphism ρ : Z → F from a scheme, such that π ◦ ρ is finite,

then V is a projective scheme.

The second application claims that the above positivity results hold in characteristic zero,
assuming Conjecture 4.3 stating that semi-log canonical equals dense sharply F -pure type.
Furthermore, in the Kawamata log-terminal case they hold unconditionally. It should be
noted that recently Fujino gave an unconditional proof of Corollary 4.5 [6] using the Hodge-
theoretic results of his joint paper with Fujisawa [8].

C 4.5. – Let (X,∆) be a pair over an algebraically closed field of characteristic
zero with Q-CartierKX +∆ and f : X → Y a flat, projective morphism to a smooth projective
curve. Further suppose that there is a y0 ∈ Y , such that ∆ avoids all codimension 0 and the
singular codimension 1 points of Xy0

, and either

(1) (Xy0
,∆y0

) is Kawamata log terminal, or
(2) (Xy0

,∆y0
) is semi-log-canonical and for every model over a Z-algebra A of finite type,

it satisfies the statement of Conjecture 4.3.

Assume also that KX/Y + ∆ is f -ample (resp. f -semi-ample). Then for m � 0 and divisible
enough, f∗OX(m(KX/Y + ∆)) is a nef vector bundle (resp. KX/Y + ∆ is nef).
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R 1.11. – Most likely the methods of the article yield a stronger result in charac-
teristic zero, if one works in characteristic zero throughout the proof and uses the Kodaira-
vanishing for semi-log canonical schemes [7, Theorem 1.7] instead of Proposition 2.17. This
would yield a result stating that for a flat family of slc pairs f : (X,∆)→ Y with ∆ avoiding
the codimension zero and singular codimension one points of the fibers and ω[r]

X/Y (r∆) an

f -ample line bundle, ω[r]
X/Y (r∆) and f∗ω

[mr]
X/Y (mr∆) are nef for m � 0. Notably this would

yield a proof of the f -ample case of [6, Theorem 1.8] without using the variations of mixed
Hodge structures techniques of [8]. We leave the details of such approach to later articles.

The third application is a special case of subadditivity of Kodaira-dimension. It states
that in our special setup, suited for moduli theory, if both the base and the general fiber is
of (log-)general type then so is the total space.

C 4.6. – In the situation of Notation 1.4 or Notation 1.5, if furthermore Y is
an S2, G1, equidimensional projective variety withKY Q-Cartier and big,KX/Y +∆ is f -semi-
ample and KF + ∆|F is big for the generic fiber F , then KX + ∆ is big.

1.3. Idea of the proof

To prove the above mentioned semi-positivity results first we show two general statements,
Propositions 3.6 and 3.7, about semi-positivity of a line bundle and its pushforward. We con-
sider the following situation, neglecting ∆ at this time. Given a fibration f : X → Y and a
Cartier divisorN onX with certain positivity (e.g.,N −KX/Y is nef and f -ample), we want
to prove positivity of f∗OX(N). One way to approach this problem is to try to find sections
of f∗N , where N := OX(N). For that, notice that for nice Y and generic y ∈ Y , there
is an isomorphism f∗N ⊗ k(y) → H0(Xy,N ). So lifting every element of f∗N ⊗ k(y)

to H0(Y, f∗N ) is equivalent to lifting every element of H0(Xy,N ) to H0(X,N ). Fortu-
nately, there is a nice lifting result available for F -singularities by Karl Schwede, see Proposi-
tion 2.17. This leads us to proving a global generation result for some twist of f∗N in Propo-
sition 3.3, which then implies nefness of the same twist of f∗N . The next step is to get rid of
this twist. For that we use the product trick of Notation 2.11, i.e., we apply our global gen-
eration result for n-times fiber products of X with itself over Y . The upshot is that we ob-
tain nefness of

⊗n
i=1 f∗N twisted by a line bundle. However, the twist is independent of n,

which yields nefness of f∗N itself. This is done in Proposition 3.6. Then one can consider
the natural morphism f∗f∗N → N . If this is surjective enough and f∗N is a nef vector
bundle, N is nef as well. This is Proposition 3.7.

Having shown the general semi-positivity statements, deducing the semi-positivities of
Theorems 1.6, 1.7 and 1.10 is still a bit of work. The most tricky is Theorem 1.6, because
the index can be an arbitrary integer not divisible by p. In the index one case, the rough
idea is as follows. We take a very positive Cartier divisor L, and we prove by induction
on q > 0 that qKX/Y +L is nef, using the general nefness result mentioned in the last sentence
of the previous paragraph. Then, if this holds for all q > 0, KX/Y has to be nef as well.
Unfortunately, this argument breaks down when r := ind(KX/Y ) > 1. In that case we have
to argue by contradiction. We choose a Cartier divisor B, which is the pullback of an ample
Cartier divisor from Y , and we consider the smallest t > 0, such thatKX/Y +tB is nef. Then
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similarly to the index one case, we prove inductively that q(rKX/Y + (r − 1)tB) + L is nef
for all q > 0. Therefore, so is rKX/Y + (r − 1)tB, and then also KX/Y + r−1

r tB. However,
r−1
r t < t, which contradicts the choice of t, unless KX/Y was nef originally. Unfortunately,

there is a point where one has to be a bit more careful with this argument: (r − 1)tB has
to be Cartier. Hence, we cannot really use t, we have to use a rational number a

b which is
slightly bigger than t and for which (r−1)ab is integer. However, then the question is whether
r−1
r

a
b < t is going to hold or not. This is solved at least for t > 1 by Lemma 3.8 using

elementary number theoretic considerations. Then, by pulling back our family X → Y via
an adequate finite map Y ′ → Y , we can maneuver ourselves into a situation where t > 1.

1.4. Notation

We fix an algebraically closed base field k of positive characteristic p. Every scheme is
taken over this base field, and is assumed to be separated and Noetherian. The generic point
of a subvarietyW of a schemeX is denoted by ηW . For any schemeX over k,Xsing denotes
the (reduced) closed set of X, where X is not regular.

In the present article, many schemes are not normal. For every such X we consider only
Weil divisors that have no components contained in Xsing. By abuse of notation, a Weil
divisor will always mean such a special divisor. They form a free Z-module under addition,
which we denote by Weil∗(X). A Weil divisorial sheaf, on an S2, G1 scheme X is a rank one
reflexive subsheaf of the total space of fractions K (X). In the present article every Weil
divisorial sheaf is invertible in codimension one, hence by the abuse of notation Weil divisorial
sheaves will mean Weil divisorial sheaves that are invertible in codimension one. The usual
reference for such sheaves is [17], where they are called almost Cartier divisors. It is important
to note that every reflexive sheaf on an S2, G1 scheme which is invertible in codimension
one can be given a Weil divisorial sheaf structure. That is, one can find an embedding of it
into K (X). For every E =

∑
aDD ∈Weil∗(X) one can associate a Weil divisorial sheaf:

(1.11a) OX(−E) := {f ∈ K (X)|∀D : ordD f ≥ aD},

where if D ⊆ Xsing, then aD = 0 necessarily, and then by ordD f ≥ aD we mean that
f ∈ OX,ηD

. Linear equivalence of Weil divisorial sheaves is defined by multiplying with
an invertible element of K (X) and addition by multiplying them together and taking the
reflexive hull. That is, L ∼ K if and only if there is a f ∈ K (X)×, such that L = f ·K
and L + K = (L ·K )∗∗. Weil-divisorial sheaves modulo linear equivalence form a group
under the above addition, which is denoted by Pic∗(X).

If X is of finite type over k and reduced, then there are only finitely many divisors con-
tained in Xsing. Hence, by [17, Proposition 2.11.b], every Weil divisorial sheaf is linearly
equivalent to one of the form (1.11a). Therefore the construction of (1.11a) yields a surjec-
tive homomorphism Weil∗(X) → Pic∗(X). One can show that the kernel consists of the∑
aDD ∈ Weil∗(X), associated to an f ∈ K (that is, aD = ordD f for divisors D not

contained in Xsing and f generates OX,ηD
otherwise). Summarizing, Pic∗(X) is isomorphic

to Weil∗(X) modulo linear equivalence of Weil divisors. In the current article we mostly use
the latter representation of Weil∗(X).
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Similarly as above, a Q-divisor means a formal sum of codimension one points not con-
tained inXsing with rational coefficients. A Q-divisorD is effective, i.e.,D ≥ 0, if all its coef-
ficients are at least zero. For a Q-divisor D, ind(D) is the smallest integer n, such that nD is
an integer Cartier divisor. Given a flat projective morphism f : X → Y withX being S2 and
G1 and Y Gorenstein, ωX = ωX/Y ⊗ f∗ωY [35, Lemma 4.10]. Hence both ωX and ωX/Y
are Weil divisorial sheaves [25, Corollary 5.69], [17, Theorem 1.9]. Any of their representing
Weil divisors are denoted by KX and KX/Y .

Vector bundle means a locally free sheaf of finite rank. Line bundle means a locally free
sheaf of rank one. When it does not cause any misunderstanding, pullback is denoted by
lower index. E.g., if F is a sheaf on X, and X → Y and Z → Y are morphisms, then FZ is
the pullback of F toX×Y Z. This unfortunately is also a source of some confusion: Fy can
mean both the stalk and the fiber of the sheaf F at the point y. We will try to use F ⊗ k(y)

for the fiber so that no confusion arises.

There are some important conventions of orders of operations, since expressions as
F e∗ωX(∆) ⊗ L are used frequently. Push-forward has higher priority than tensor product,
but twisting with a divisor has higher priority than push-forward. E.g., the above expression
means (F e∗ (ωX(∆)))⊗L .

1.5. Organization

Section 3 is the core of the article. It contains the details of the argument outlined in
Section 1.3. The necessary definitions, background material and technical statements can be
found in Section 2. Many of these technical statements involve finding uniform bounds for
certain behaviors experienced in the presence of very positive line bundles. Section 4 contains
the proofs of the applications of the general positivity statements. Finally, we collected some
of the many questions the article brings up in Section 5.
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2. Background

This section contains the necessary technical definitions and statements used in the argu-
ments outlined in Section 1.3 and worked out in Section 3.

2.1. Definitions

Here we present the definitions used in the paper from the theory of F -singularities. As
mentioned in the introduction, these are characteristic p counterparts of the singularities of
the minimal model program. We give only the minimally needed definitions, we refer the
reader to [42] for a general survey on the theory of F -singularities. As the singularities of
the minimal model program, the F -singularities show up naturally in lifting statements for
sections of line bundles. This is how they appear in the present article.

D 2.1. – A pair (X,∆) is an S2, G1, separated scheme essentially of finite type
over k of pure dimension, with an effective Q-divisor ∆. Note that, according to Section 1.4,
a Q-divisor is a formal sum with rational coefficients of codimension one points that are not
contained in the singular locus of X. The index ind(X,∆) is defined as ind(KX + ∆), that
is, the smallest positive integer r such that r(KX + ∆) is an integer Cartier divisor.

N 2.2. – Let (X,∆) be a pair, such thatKX+∆ is Q-Cartier and p - ind(X,∆).
Set g := min{e ∈ Z>0|(pe − 1)(KX + ∆) is Cartier}. (Note that there is an integer e > 0

for which (pe− 1)(KX + ∆) is Cartier, by the index assumption and Euler’s theorem. Hence
g exists and furthermore, these integers are exactly the multiples of g.) For any e ≥ 0 such
that g | e, define

Le,∆ := OX((1− pe)(KX + ∆)).

Let F e : X → X be the e-th iteration of the absolute Frobenius morphism, i.e., the map,
which is the identity on points and is r 7→ rp

e

on the structure sheaf. Denote
by φe : F e∗Le,∆ → OX the unique extension from the Gorenstein locus of the composi-
tion of following maps:

– the embedding F e∗OX((1− pe)(KX + ∆))→ F e∗OX((1− pe)KX) induced by
OX((1 − pe)∆) → OX (note that twisting with a divisor has higher priority than
pushforward according to Section 1.4) and

– the twist F e∗OX((1− pe)KX)→ OX of the Grothendieck trace by ω−1
X .

P 2.3. – In the situation of Notation 2.2,

(2.3a) φe
′
F e
′

∗ Le′,∆ ⊆ φe
′′
F e
′′

∗ Le′′,∆, for e′′ ≥ e′ such that g|e′′, e′.

Proof. – Let f := e′ − e′′. Then,

φe
′
F e
′

∗ Le′,∆ = φe
′′
F e
′′

∗

(
φf ⊗ idLe′′,∆(F f∗Lf,∆ ⊗Le′′,∆)

)
︸ ︷︷ ︸

φe′′◦F e′′
∗ (φf⊗idL

e′′,∆
)=φe′ up to multiplication by a unit, because

of [40, Lemma 3.9] and the projection formula (using that (F e)∗L ∼= L pe
)

⊆ φe
′′
F e
′′

∗ Le′′,∆.
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D 2.4. – In the situation of Notation 2.2, define the non-F-Pure ideal of (X,∆)

as

σ(X,∆) =
⋂
e≥0

φe·gF e·g∗ Le·g,∆.

According to [10, Lemma 13.1] (see also [41, Remark 2.9]) and Proposition 2.3 this intersec-
tion stabilizes, that is,

(2.4a) φe·gF e·g∗ Le·g,∆ = σ(X,∆), for all e� 0.

Also by [41, Remark 2.9], if e > 0 is any integer such that g|e, then σ(X,∆) is the unique
largest ideal I such that

φeF e∗ (Le,∆ ·J ) = J .

The pair (X,∆) is sharply F -pure if σ(X,∆) = OX .

In the known counterexamples to Kodaira vanishing (e.g., [39]) one finds elements in
adjoint linear systems that do not come from some high Frobenius. Hence, a technique to lift
sections in positive characteristic is to consider only sections of adjoint bundles that come
from arbitrary high Frobenius. One such collection of sections is the following subgroup
of H0(X,L ). For the main application, see Proposition 2.17.

D 2.5. – In the situation of Notation 2.2, if N is a line bundle on X, then
define

(2.5a) S0(X,σ(X,∆)⊗N )

:=
⋂

e∈Z≥0

im(H0(X,F e·g∗ (σ(X,∆)⊗Le·g,∆)⊗N ) −−−−−−−−−→
H0(φe·g⊗idN )

H0(X,σ(X,∆)⊗N )).

R 2.6. – It is very important to stress that S0(X,σ(X,∆) ⊗ N ) depends on ∆

and N , not only on σ(X,∆)⊗N and not even on σ(X,∆) and N .

The following proposition gives an alternative description of S0(X,σ(X,∆)⊗N ),
frequently used throughout the article. To prove it, use the consequence of (2.4a) that for
all e� 0,(
φe
′·g ⊗ idLe·g,∆

)
F e
′·g
∗ L(e′+e)·g,∆ = (φe

′·gF e
′·g
∗ Le′·g,∆)⊗Le·g,∆ = σ(X,∆)⊗Le·g,∆.

P 2.7. – In the situation of Notation 2.2, if N is a line bundle on X then

(2.7a) S0(X,σ(X,∆)⊗N ) =
⋂

e∈Z≥0

im(H0(X,F e·g∗ Le·g,∆⊗N ) −→
H0(φe⊗idN )

H0(X,N )).

R 2.8. – In the situation of Definition 2.5, if X is projective, then H0(X,N ) is
finite dimensional. Therefore,

S0(X,σ(X,∆)⊗N ) = im
(
H0(X,F e·g∗ (σ(X,∆)⊗Le·g,∆)⊗N )→ H0(X,σ(X,∆)⊗N )

)
= im

(
H0(X,F e·g∗ Le·g,∆ ⊗N )→ H0(X,N )

)
for all e� 0.
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2.2. Cohomology and base change

Here, we list a couple of standard statements about cohomology and base change as a
reference for the following sections. We also introduce the product construction in Nota-
tion 2.11, one of the main tricks of the article.

L 2.9. – Let f : X → Y be a projective morphism over a Noetherian scheme, and G a
coherent sheaf onX flat overY , such that for all i > 0,Rif∗G = 0. Then, the natural morphisms

(2.9a) f∗G ⊗ k(y)→ H0(Xy,G )

are isomorphisms, and for all y ∈ Y and i > 0,

Hi(Xy,G ) = 0.

Further, the above base-change holds more generally. That is, if g : T → Y is a morphism of
Noetherian schemes, then the natural homomorphism g∗f∗G → fT,∗GT is an isomorphism.

Proof. – Everything except the addendum follows from the statement of [16,
Theorem III.12.11]. To see the addendum we have to understand slightly the proof of
[16, Theorem III.12.11]. Let SpecA be an affine open set of Y . Using the notations
of [16, Section III.12], by passing also to affine open sets of T we have to show that
T 0(A)⊗AM → T 0(M) is an isomorphism for every A-module M . However, by [16,
Proposition III.12.5] this is equivalent to proving that T 0 is right exact, which by [16,
Proposition III.12.10] is satisfied if the natural map T 0(A)⊗A k(y)→ T 0(k(y)) is an iso-
morphism for every point y ∈ SpecA. On the other hand the latter condition is exactly the
base-change isomorphism (2.9a) that we have already showed.

L 2.10 ([16, Theorem III.9.9 and Corollary III.12.9]). – Let f : X → Y be a pro-
jective morphism over a Noetherian, integral scheme, and G a coherent sheaf on X flat over Y ,
such that for all i > 0, and y ∈ Y ,

Hi(Xy,G ) = 0.

Then Rif∗G = 0 for i > 0, f∗G is locally free, and the natural homomorphisms

f∗G ⊗ k(y)→ H0(Xy,G )

are isomorphisms.

N 2.11. – For a morphism f : X → Y of schemes, define

X
(m)
Y := X ×Y X ×Y · · · ×Y X︸ ︷︷ ︸

m times

,

and let f (m)
Y : X

(m)
Y → Y be the natural induced map. If F is a sheaf of OX -modules, then

F
(m)
Y :=

m⊗
i=1

p∗iF ,

where pi is the i-th projection X(m)
Y → X. Similarly, if Γ is a divisor on X and f is flat, then

Γ
(m)
Y :=

m∑
i=1

p∗iΓ,
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In most cases, we omit Y from our notation. I.e., we useX(m), Γ(m), f (m) and F (m) instead
of X(m)

Y , Γ
(m)
Y , f (m)

Y and F
(m)
Y , respectively.

L 2.12. – Let f : X → Y be a projective flat morphism over a Noetherian scheme
and G a coherent sheaf on X flat over Y , such that Hi(Xy,G ) = 0 for all i > 0 and y ∈ Y .
Then, using Notation 2.11, the natural morphisms

(2.12a) f
(n)
∗ (G (n))→

n⊗
i=1

f∗G

and

(2.12b) f
(n)
∗ (G (n))⊗ k(y)→ H0(X(n)

y ,G (n))

are isomorphisms.

Proof. – First note, that since both G and X are flat over Y , p∗iG is flat over Y as well.
However then G (n) =

⊗n
i=1 p

∗
iG is also flat over Y . By the assumptions and the Künneth

formula, Hi(Xy,G (n)) = 0 for all i > 0 and y ∈ Y . Therefore, by applying Lemma 2.10 for
both G (n) and G , one obtains that Rif (n)

∗ G (n) = 0 and Rif∗G = 0 for i > 0, f∗G is locally
free, and that (2.12b) holds. The following isomorphisms show (2.12a).

f
(n)
∗ G (n) ∼= Rf

(n)
∗ G (n)︸ ︷︷ ︸

Rif
(n)
∗ G (n)=0 for i>0

∼=
⊗
L

n
i=1Rf∗G︸ ︷︷ ︸

Künneth formula

∼=
⊗
L

n
i=1f∗G︸ ︷︷ ︸

Rif∗G =0 for i>0

∼=
n⊗
i=1

f∗G .︸ ︷︷ ︸
f∗G is locally free

2.3. Global generation

Here we prove a Fujita type uniform global generation result for flat families in Proposi-
tion 2.15. The main tool is the relative version of Fujita vanishing, which is also crucial for
many other statements of the article.

T 2.13 ([20, Theorem 1.5] Relative Fujita vanishing). – Let f : X → Y be a
projective morphism over a Noetherian scheme, and N an f -ample line bundle on X. Then
for all coherent sheaves F on X there is an m > 0, such that for every i > 0 and f -nef line
bundle K ,

Rif∗(F ⊗N m ⊗K ) = 0.

T 2.14 (e.g., [26, Theorem 1.8.5]). – If on a projective schemeX, N is a globally
generated ample line bundle and F a coherent sheaf such thatHi(X,F ⊗N −i) = 0 for i > 0,
then F is globally generated.

P 2.15. – Let f : X → Y be a projective morphism over a Noetherian scheme,
and N an f -ample line bundle onX. Then for all coherent sheaves F onX flat over Y , there is
an m > 0, such that for every y ∈ Y and f -nef line bundle K , F ⊗N m ⊗K |Xy is globally
generated.
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Proof. – Let n be the biggest dimension of a fiber of f . Pick a globally generated ample
line bundle A on X. Using Theorem 2.13, fix a m > 0, such that for every f -nef line
bundle K on X,

Rif∗(F ⊗A −n ⊗N m ⊗K ) = 0.

Then by Lemma 2.9 for all y ∈ Y and f -nef K ,

Hi(Xy,F ⊗A −n ⊗N m ⊗K ) = 0.

In particular since A n−i is nef for every i ≤ n: for all i ≤ n, y ∈ Y and f -nef K ,

Hi(Xy,F ⊗A −i ⊗N m ⊗K ) = 0.

Therefore, by Theorem 2.14, F ⊗N m ⊗K |Xy
is globally generated, which concludes our

proof.

2.4. Adjunction and surjectivity

In Proposition 2.17 another main ingredient of the article, the lifting statement, is stated
for easier reference (see Section 1.3 for explanation, and Proposition 3.3 for the main appli-
cation).

D 2.16. – In the situation of Notation 2.2, a subvariety Z ⊆ X is an F -pure
center, if (X,∆) is sharply F -pure at the generic point of Z and if for some (or equivalently
all [40, Proposition 4.1]) e > 0,

(2.16a) φe·g(F e·g∗ (IZ ·Le·g,∆)) ⊆ IZ .

Furthermore, if Z is the union of F -pure centers, then (2.16a) still holds. In both situations
for any e > 0, Le·g,∆ → OX descends then to

φe·g(F e·g∗ (Le·g,∆|Z)) ⊆ OZ .

This defines a natural Z(p)-Weil divisorial sheaf, which then defines a Q-Weil divisorial sheaf:
the different ∆ on Z, denoted by ∆Z [41, Definition 5.1], [37, Definition 4.4]. The only
situation where ∆Z will be used in this article is if Z is an S2, G1 Cartier divisor and ∆ is
Q-Cartier at the codimension one points of Z with index relatively prime to p. Then ∆Z is
the natural restriction ∆|Z [37, Lemma 4.6]. Furthermore, if (Z,∆Z) is sharply F -pure, then
∆Z is automatically a divisor in the sense of the current article (cf., paragraph before [37,
Lemma 4.6]). That is, none of its components are contained in the singular locus of Z. In
our situations this will always be the case.

P 2.17. – In the situation of Notation 2.2, if X is projective, Z ⊆ X is the
union of F -pure centers of (X,∆), and N a Cartier divisor, such that N −KX −∆ is ample,
then there is a commutative diagram as follows with surjective left vertical arrow.

S0(X,σ(X,∆)⊗ OX(N)) �
� //

����

H0(X,OX(N))

��
S0(Z, σ(Z,∆Z)⊗ OX(N)) �

� // H0(Z,OX(N)).

Proof. – The statement is shown in [41, Proposition 5.3] for normalX. For S2 andG1 X,
verbatim the same proof works.
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2.5. Fujita type version for S0 = H0

This section contains Fujita type results on the equality of H0 with its subgroup S0,
introduced in Definition 2.5. As the statements of Section 3 need an absolute and a relative
version as well, both are presented here.

N 2.18. – In the situation of Notation 2.2, define

B∆ := ker(F g∗ (σ(X,∆)⊗Lg,∆)→ σ(X,∆)).

Fix also an ample line bundle N on X and assume that X is projective over k.

R 2.19. – Note that the definition B∆ makes sense if we replace ∆ by any Q-Weil
divisor 0 ≤ ∆′ ∼ ∆, since then ind(KX + ∆′) = ind(KX + ∆). Here ∆ ∼ ∆′ means ordi-
nary linear equivalence, not Q-linear equivalence. That is, it means that ∆−∆′ is the divisor
of a f ∈ K (X).

L 2.20. – In the situation of Notation 2.18, choose an integer m > 0 such that

(1) for every nef line bundle K , H1(X,B∆ ⊗N m ⊗K ) = 0 and
(2) Lg,∆ ⊗N m(pg−1) is nef.

Then for every nef line bundle K ,

S0(X,σ(X,∆)⊗N m ⊗K ) = H0(X,σ(X,∆)⊗N m ⊗K ).

Proof. – Consider the exact sequence

0 // B∆
// F g∗ (Lg,∆ ⊗ σ(X,∆)) // σ(X,∆) // 0.

Applying the functorF e·g∗ ( ⊗Le·g,∆)⊗N m⊗K to it yields the following vertically drawn
exact sequence.

0

��
F e·g∗ (B∆ ⊗Le·g,∆)⊗N m ⊗K

��
F e·g∗ (F g∗ (Lg,∆ ⊗ σ(X,∆))⊗Le·g,∆)⊗N m ⊗K

��

∼= F
(e+1)·g
∗

(
σ(X,∆)⊗L(e+1)g,∆

)
⊗N m ⊗K

qq
F e·g∗ (σ(X,∆)⊗Le·g,∆)⊗N m ⊗K

��
0.

Hence,

(2.20a) H0
(
X,F

(e+1)·g
∗ (σ(X,∆)⊗L(e+1)g,∆)⊗N m ⊗K

)
→ H0 (X,F e·g∗ (σ(X,∆)⊗Le·g,∆)⊗N m ⊗K )

is surjective if

(2.20b) H1(X,F e·g∗ (B∆ ⊗Le·g,∆)⊗N m ⊗K ) = 0.
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If we guarantee (2.20b) for all e ≥ 0, then we obtain the surjectivity of (2.20a) for every e ≥ 0,
and consequently, that

S0(X,σ(X,∆)⊗N m ⊗K ) = H0(X,σ(X,∆)⊗N m ⊗K ).

However,

H1 (X,F e·g∗ (B∆ ⊗Le·g,∆)⊗N m ⊗K )

∼= H1
(
X,F e·g∗ (B∆ ⊗Le·g,∆ ⊗N mpeg

⊗K peg

)
)

∼= H1
(
X,B∆ ⊗Le·g,∆ ⊗N mpeg

⊗K peg
)

∼= H1

(
X, (B∆ ⊗N m)⊗

(
Lg,∆ ⊗N m(pg−1)

) peg−1
pg−1 ⊗K peg

)
,

where the latest group is zero whenever the assumptions of the lemma hold.

C 2.21. – In the situation of Notation 2.18, there is anm > 0 such that for every
nef line bundle K ,

(2.21a) S0(X,σ(X,∆)⊗N m ⊗K ) = H0(X,σ(X,∆)⊗N m ⊗K ).

Proof. – Both conditions of Lemma 2.20 holds for m� 0. The first one by Fujita
vanishing and the second by basic properties of ample line bundles.

Recall that Notation 1.4 is the general framework in which our results were worded: a flat
morphism f : X → Y and an effective Weil divisor ∆ on X with adequate properties.

P 2.22. – In the situation of Notation 1.4, if N is an f -ample line bundle onX
and dimY ≥ 1, then there is anm > 0 such that for every f -nef line bundle K and generic y ∈ Y
(i.e., contained in a dense open set),

H0(Xy,N
m ⊗K ) = S0(Xy, σ(Xy,∆y)⊗ (N m ⊗K )y).

Proof. – By discarding the finitely many points over which (Xy,∆y) is not sharply F -pure,
we may assume that the pair (Xy,∆y) is sharply F -pure for every y ∈ Y . Further by pulling
back to an open set of Yred we may also assume that Y is regular. (For that, one also
has to show that all assumptions of the corollary, after assuming that every (Xy,∆y) is
sharplyF -pure, hold for any pullback of the family. To see that the reflexive powerω[r]

X/Y (r∆)

of the relative log-canonical sheaf being a line bundle holds for the pulled back family, show
that the corresponding sheaf of the pulled back family is isomorphic to the pullback of
the sheaf of the original family and hence is a line bundle. To show the isomorphism, use
that it holds in relative codimension one, and [18, Corollary 3.7]. The other conditions are
immediate.) Let us fix then a y = y′. By Corollary 2.21, there is an m > 0, such that

H0 (Xy′ ,N
m ⊗K ) = S0 (Xy′ , σ(Xy′ ,∆y′)⊗ (N m ⊗K )y′) ,

for every f -nef line bundle K on X. However, then the above condition also holds for y′

replaced by generic y, according to [38, Theorem C, (c)].
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P 2.23. – In the situation of Notation 1.4, if N is an f -ample line bundle onX,
then there is anm > 0 such that for every nef line bundle K and all y ∈ Y for which (Xy,∆y) is
sharply F -pure,

H0(Xy,N
m ⊗K ) = S0(Xy, σ(Xy,∆y)⊗N m

y ⊗Ky).

Proof. – By discarding the points of y for which (Xy,∆y) is not sharply F -pure, we
may assume that (Xy,∆y) is sharply F -pure for every y ∈ Y . By Proposition 2.22, there
is an m > 0 and an open set U1 ⊆ Y , such that the statement of the proposition holds for
all y ∈ U1, instead of all y ∈ Y . Using Proposition 2.22 again for the pullback of the family
over Y \ U1, one finds an open setU2 ⊆ Y \ U1 and possibly even biggerm > 0, such that the
statement of the proposition holds also for all y ∈ U2, and then for all y ∈ U1 ∪ U2. Iterating
this process, by the Noetherian property, one obtains finitely many Ui ⊆ Y as above such
that

⋃
Ui = Y . This finishes our proof.

2.6. Auxiliary statements about the product construction

Here we present some statements about the construction of Notation 2.11.

P 2.24. – Using Notations 2.11, if f : X → Y is a morphism with Y Cohen-
Macaulay and F a flat Sr coherent sheaf on X, then F (n) is Sr as well.

Proof. – Let g : Z →W be a morphism to a Cohen-Macaulay scheme, and G a flat
coherent sheaf on Z. Then by [12, Proposition 6.3.1] and [12, Corollaire 6.1.2], G is Sr
if and only if for each Q ∈W , G |ZQ

is Sr−dim OW,Q
(if r − dim OW,Q < 0 then we define

Sr−dim OW,Q
with the usual formula just allowing negative value inside the minimum as well).

Getting back to the situation of our proposition, since F is Sr, F |XQ
is Sr−dim OY,Q

for
all Q ∈ Y . Then, by [37, Lemma 4.2], F (n)|

X
(n)
Q

is Sr−dim OY,Q
for all Q ∈ Y . Therefore,

F (n) is Sr on X(n).

P 2.25. – Using Notations 2.11, if f : X → Y is a morphism from a G1

scheme to a smooth curve, then X(n) is G1 for any n.

Proof. – Notice that for X to be G1, Xy has to be G1 for generic y, and G0 for
every y ∈ Y . However then for every n ∈ Z+, X(n)

y is G1 for generic y, and G0 for
every y ∈ Y , which concludes our proof.

P 2.26. – Using Notations 2.11, if f : X → Y is a projective, flat morphism
from an S2 and G1 scheme to a smooth curve, then ω(n)

X/Y
∼= ωX(n)/Y .

Proof. – First, notice that both ωX/Y and ωX(n)/Y are reflexive. Furthermore, by [2,

Lemma 2.11], so is ω(n)
X/Y . Therefore, it is enough to prove that ω(n)

X/Y
∼= ωX(n)/Y in codi-

mension one. However if U is the relative Gorenstein locus of f , then the isomorphism is
clear over U (n). This concludes our proof since codimX(n) X(n) \ U (n) ≥ 2 by Proposi-
tion 2.25.
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L 2.27. – In the situation of Notation 2.2, if N is a line bundle onX andX is reduced,
then

S0
(
X(m), σ

(
X(m),∆(m)

)
⊗N (m)

)
∼= S0(X,σ(X,∆)⊗N )

⊗
m.

(Here X(m) and N (m) are taken over Spec k.)

Proof. – A word of caution before starting the proof: for S0
(
X(m), σ(X(m),∆(m))⊗N (m)

)
to be defined, (X(m),∆(m)) has to be a pair. That is, X(m) has to be S2 and G1, and ∆(m)

has to be an element of Weil∗(X), i.e., none of the components of ∆(m) can be contained
in
(
X(m)

)
sing

. The conditions on X(m) follow from Propositions 2.24 and 2.25. For the

condition on ∆(m), notice that since X is reduced and we are working over an algebraically
closed field, the components of X are generically smooth. It is immediate then that all
generic points of ∆(m) are contained in the smooth locus of X(m).

After the preliminary considerations note that for every e > 0 such that g | e,

(1− pe)(KX(m) + ∆(m)) =

m∑
i=1

p∗i ((1− pe)(KX + ∆))

over the Gorenstein locus and then by codimension argument it holds everywhere. Hence for
every e > 0, such that g | e,

(2.27a) Le,∆(m)
∼=

m⊗
i=1

p∗iLe,∆.

Next we claim that, for any collection of m coherent sheaves Fi on X,

(2.27b)
m⊗
i=1

p∗iF
e
∗Fi

∼= F e∗

(
m⊗
i=1

p∗iFi

)
.

Indeed, (2.27b) immediately follows from the natural isomorphism of
⊗

k Ai-modules

(2.27c)
⊗

k F
e
∗Mi

∼= F e∗ (
⊗

kMi) ,⊗
F e∗ (mi)

∈

� // F e∗ (
⊗
mi)

∈

where Mi are modules over a collection of m (commutative) algebras Ai over k, and F e∗
denotes the twist of the original module structure by taking pe-th powers. The map of (2.27c)
is an isomorphism of abelian groups almost by definition. One subtlety should be mentioned
here: when applying the tensor product, the action of k on theMi on the two sides is different.
On the right side it acts regularly, while on the left side it acts after taking pe-th powers.
A priori, this could ruin the chances of getting even a bijection by the formula of (2.27c).
However, k being perfect saves the day, since then kp

e

= k. Hence the relations on the tensors
on the left are the same as on the right. To see that the map of (2.27c) is an isomorphism
of
⊗

k Ai-modules, we have to check that the actions on the two sides match up. Indeed,

(
⊗
ai)(

⊗
F e∗ (mi)) =

⊗
F e∗

(
ap

e

i mi

)
7→ F e∗

(⊗
ap

e

i mi

)
= (
⊗
ai)(F

e
∗ (
⊗
mi)).
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This concludes the proof of our claim. In particular,

(2.27d) F e∗Le,∆(m)
∼= F e∗

(
m⊗
i=1

p∗iLe,∆

)
︸ ︷︷ ︸

(2.27a)

∼=
m⊗
i=1

p∗iF
e
∗Le,∆.︸ ︷︷ ︸

by (2.27b)

Furthermore, the induced trace maps also respect the decomposition of (2.27d), since they
respect it on the dense set of smooth points and then also globally since all sheaves involved
are torsion free. Therefore, the following commutative diagram concludes the proof.

H0(X,F e∗Le,∆ ⊗N )
⊗
m //

OO
∼= (2.27d)
��

H0(X,N )
⊗
m

OO

∼=
��

H0
(
Xm, F e∗Le,∆(m) ⊗N (m)

)
// H0

(
X(m),N (m)

)
.

3. Semi-positivity

In this section we present the main results of the article. For an outline of the arguments,
see Section 1.3.

3.1. Generic global generation

We prove our most general results in the setting of Notation 1.4. However, since nefness
is decided on curves, we are able to reduce this general setting to the special case when Y is a
smooth curve (cf., Lemma 3.11, proof of Theorem 1.6, etc.). So, first we consider the special
case of Notation 1.4 when Y is a smooth curve. Then we can replace the sheaf notation of
Notation 1.4 with a divisorial one and further it is enough to have just one nice fiber. This is
summarized below.

N 3.1. – We use the following notations in this section

(1) (X,∆) is a pair, such that KX + ∆ is Q-Cartier and p - ind(KX + ∆),
(2) f : X → Y is a flat, projective morphism to a smooth projective curve,
(3) fix also a closed point y0 ∈ Y such thatX0 := Xy0

isS2,G1 and reduced and ∆ avoids
all codimension 0 and the singular codimension 1 points of X0,

(4) set ∆0 := ∆|X0
and r := ind(KX + ∆).

R 3.2. – In the situation of Notation 3.1, note the following:

(1) if a codimension one point ξ of X0 is singular, then ∆ avoids ξ hence it is Cartier
there, otherwise if it is non-singular then KX is Cartier at ξ and hence by the index
assumption on KX + ∆, ∆ is Q-Cartier with index not divisible by p,

(2) therefore, at all codimension one points ξ of X0, ∆ can be sensibly restricted,
(3) (X0,∆|X0) is a pair and
(4) by [37, Lemma 4.6], ∆|X0 agrees with the F -different of ∆ at X0.

Recall that a coherent sheaf F on a scheme X is generically globally generated, if there is
a homomorphism O

⊕
m

X → F which is surjective over a dense open set.

4 e SÉRIE – TOME 47 – 2014 – No 5



SEMI-POSITIVITY IN POSITIVE CHARACTERISTICS 1009

P 3.3. – In the situation of Notation 3.1, choose a Cartier divisor N and set
N := OX(N). Assume that

(1) N −KX/Y −∆ is an f -ample Q-divisor,
(2) H0(X0,N ) = S0(X0, σ(X0,∆0)⊗N |X0

),
(3) N −KX/Y −∆ is nef.

Then f∗N ⊗ ωY (2y0) is generically globally generated.

Proof. – Set M := N + f∗KY + 2X0 and M := OX(M). Consider the commutative
diagram below.
(3.3a)

f∗M // (f∗M )⊗ k(y0) �
� // H0(X0,M |X0

)

S0(X,σ(X,∆ +X0)⊗M )⊗ OY

OO

// S0(X0, σ(X0,∆0)⊗M |X0
),

where H0(X0,M |X0) = S0(X0, σ(X0,∆0)⊗M |X0), because

H0(X0,M |X0
) ∼= H0(X0,N |X0

) = S0(X0, σ(X0,∆0)⊗N |X0
) ∼= S0(X0, σ(X0,∆0)⊗M |X0

).

Note that
(3.3b)
M −KX−∆−X0 = N +f∗KY +2X0−KX/Y −f∗KY −∆−X0 = N −KX/Y −∆+X0.

Note also that N −KX/Y −∆ is nef by assumption (3) and it is relatively ample by (1).
Furthermore,X0 is the pullback of an ample divisor from Y . Hence,N −KX/Y −∆ +X0 is
ample and then by (3.3b) so is M −KX −∆−X0. Note now the following:

– p - ind(KX + ∆) = ind(KX + ∆ +X0), and
– since X0 is smooth at all its general points (by reducedness) and ∆ contains no

components of X0, X0 is a union of F -pure centers of (X,∆ +X0).

Hence, Proposition 2.17 implies that the diagonal arrow in (3.3a) is surjective. This finishes
our proof.

3.2. Semi-positivity general case

L 3.4. – If F is a vector bundle on a smooth curve Y and L is a line bundle such that
for every m > 0, (

⊗m
i=1 F )⊗L is generically globally generated, then F is nef.

Proof. – Take a finite cover τ : Z → Y by a smooth curve and a quotient line bundle E

of τ∗F . Since (
⊗m

i=1 F )⊗L is generically globally generated, so is (
⊗m

i=1 τ
∗F )⊗τ∗L and

hence Em ⊗ τ∗L as well. Therefore mdeg(E ) + deg(τ∗L ) ≥ 0 for all m > 0. In particular
then deg(E ) ≥ 0. Since this is true for arbitrary τ and E ,F is nef indeed.

L 3.5. – In the situation of Notation 3.1 (using the product notations introduced in
Notation 2.11) f (n) : (X(n),∆(n))→ Y also satisfies the assumptions of Notation 3.1.

Proof. – We show every assumption of Notation 3.1 for f (n) : X(n) → Y one by one.

– X(n) is S2 and G1 by Propositions 2.24 and 2.25.
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– Since all the components of X0 are generically smooth, the same holds for a generic
fiber and then forX itself. Therefore, ∆(n) ∈Weil∗(X(n)), in particular, (X(n),∆(n))

is a pair.
– f : X(n) → Y is flat, projective.
– X

(n)
0 is reduced, S2 (by [37, Lemma 4.2]) and G1.

– ∆(n)|
X

(n)
y0

=
∑n
i=1 p

∗
i∆0 avoids the codimension 0 and the singular codimension

one points of X(n)
y0 , because the same holds for ∆0 and every component of X0 is

generically smooth.
– By Proposition 2.26,

ind(KX + ∆) = ind(KX/Y + ∆) = ind((KX/Y + ∆)(n))

= ind(KX(n)/Y + ∆(n)) = ind(KX(n) + ∆(n))

and hence KX(n) + ∆(n) is Q-Cartier and p - ind(KX(n) + ∆(n)).

P 3.6. – In the situation of Notation 3.1, choose a Cartier divisor N and
set N := OX(N). Assume that

– Rif∗N = 0 for all i > 0,
– N −KX/Y −∆ is an f -ample Q-divisor,
– H0(X0,N |X0) = S0(X0, σ(X0,∆0)⊗N |X0),
– N −KX/Y −∆ is nef.

Then f∗N is a nef vector bundle.

Proof. – The proof uses the notations introduced in Notation 2.11. Let n > 0 be an
integer. First, notice the following:

– by Lemma 3.5, the assumptions of Notation 3.1 are satisfied for f (n) : (X(n),∆(n))→ Y ,
– N (n) −KX(n)/Y −∆(n) = (N −KX/Y −∆)(n) is f (n)-ample,
– by Lemma 2.27 and the Künneth formula,

H0
(
X

(n)
0 ,N (n)|

X
(n)
0

)
= H0 (X0,N |X0)

⊗
n

∼= S0 (X0, σ(X0,∆0)⊗N |X0
)
⊗
n

∼= S0
(
X

(n)
0 , σ

(
X

(n)
0 ,∆(n)

)
⊗N (n)|

X
(n)
0

)
,

– N (n) −KX(n)/Y −∆(n) = (N −KX/Y −∆)(n) is nef.

Hence Proposition 3.3 applies to (X(n),∆(n)) and N (n), and consequently, f (n)
∗ (N (n))⊗ ωY (2y0)

generically globally generated for every n > 0.

By assumption (3.6) and Lemmas 2.9, 2.10 and 2.12, f (n)
∗ (N (n)) ∼=

⊗n
i=1 f∗N and

f∗N is a vector bundle. Therefore, f∗N is a vector bundle, such that (
⊗n

i=1 f∗N )⊗ωY (2y0)

is generically globally generated for every n > 0. Hence, by Lemma 3.4, f∗N is a nef vector
bundle. This concludes our proof.

P 3.7. – In the situation of Proposition 3.6, if furthermore N is f -nef and
Ny globally generated except possibly finitely many y ∈ Y , then N is nef.
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Proof. – Consider the following commutative diagram for every y ∈ Y

(3.7a) f∗f∗N

��

// N

��
H0(Xy,N )⊗ OXy

// Ny.

The left vertical arrow is surjective because of assumption (3.6) of Proposition 3.6 and
Lemmas 2.9 and 2.10. The bottom horizontal arrow is surjective except finitely many y ∈ Y .
Hence f∗f∗N → N is surjective except possibly at points lying over finitely many points
of y ∈ Y . To show that N is nef, we have to show that deg N |C ≥ 0 for every smooth pro-
jective curve C mapping finitely toX. By assumption this follows if C is vertical. So, we may
assume that C maps surjectively onto Y . However, then (f∗f∗N )|C → N |C is generically
surjective. Since f∗N is nef by Proposition 3.6, so is f∗f∗N and hence deg(N |C) ≥ 0 has
to hold.

3.3. Semi-positivity when the relative log-canonical divisor is relatively semi-ample

L 3.8. – Let r > 0 be an integer. If t > 1 is a real number, then there is a rational
number a

b , such that r | b+ 1 and

(3.8a)
a

b+ 1
< t <

a

b
.

Furthermore, both a and b can be chosen to be arbitrarily big.

Proof. – (3.8a) is equivalent to

b+ 1

a
>

1

t
>
b

a
.

Since b+ 1 = cr has to hold for some integer c, (3.8a) together with r | b+ 1 is equivalent to
finding a rational number c

a , such that

c

a
>

1

tr
>
c

a
− 1

ar
,

which is equivalent to finding positive integers a and c, such that

c >
1

tr
a > c− 1

r
,

which is equivalent to finding a positive integer a, such that

1 >

{
1

tr
a

}
> 1− 1

r
.

However there is such an a, since t > 1 and hence 1
tr <

1
r .

L 3.9. – IfX → Y is a flat, projective morphism to a smooth, projective curve, N is
an f -nef line bundle on X such that Ny is semi-ample for generic y ∈ Y and A an ample line
bundle on Y , then N ⊗ f∗A l is nef for l� 0.
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Proof. – By [16, Corollary 12.9] on an open set (depending on n) of Y , f∗N n is locally
free and

(f∗N
n)⊗ k(y)→ H0(Xy,N

n)

is an isomorphism. Therefore, for n� 0 and divisible enough, f∗f∗N n → N n is surjective
over an open set of Y (cf., (3.7a)). Choose l > 0 such that (f∗N n)⊗A nl is globally gener-
ated. Choose also any curve C on X. If C is vertical, deg N ⊗ f∗A l|C ≥ 0 by the assump-
tion that N is f -nef. Otherwise ifC is horizontal, by the choice of A , (f∗f∗N n)⊗ f∗A nl is
globally generated. Hence, by the homomorphism (f∗f∗N n) ⊗ f∗A nl → N n ⊗ f∗A nl,
which is surjective over an open set of Y , N n ⊗ f∗A nl|C is generically globally generated.
Therefore deg N ⊗ f∗A l|C ≥ 0.

T 3.10. – In the situation of Notation 3.1, if (X0,∆0) is sharply F -pure,
KX/Y + ∆ is f -nef and KXy

+ ∆y is semi-ample for generic y ∈ Y (e.g., this is satisfied
if KX/Y + ∆ is f -ample or f -semi-ample), then KX/Y + ∆ is nef.

Proof. – Assume thatKX/Y +∆ is not nef. Choose a general member of a complete linear
system of a very ample divisor on Y and letB be its pullback toX. By Lemma 3.9 for s� 0,
KX/Y + ∆ + sB is nef. Let then

t := min{s ∈ R|0 ≤ s and KX/Y + ∆ + sB is nef}.

If t = 0, there is nothing to prove. Hence we may assume t > 0.

First, we claim that in fact t > 1 can be assumed. The reason is that if t ≤ 1, then by taking
a degree d smooth cyclic cover(1) Y ′ → Y of Y for some d� 0 and p - d, and pulling back
everything there, we may replace B by a Cartier divisor B′, such that B′d = B. Indeed,
set X ′ := X ×Y Y ′ and let π : X ′ → X be the natural projection. Then, one has to verify
that the pulled back family still satisfies the assumptions of Notation 3.1: for example X ′ is
S2 because according to [12, Corollaire 6.1.2 and Proposition 6.3.1], a flat fibration over a
smooth curve is S2 exactly if the generic fiber is S2 and the special fibers are S1. This is stable
under pullback. One has to be also careful about pulling back ∆. It is not Q-Cartier, but
according to Definition 2.1, none of its components is contained in Xsing and hence ∆ is
Cartier outside of a codimension at least two open set. Then one can pull back by pulling
back over this open set, and then extending it in the unique way. The only trap in this process
is that a priori one of the components of π∗∆ can end up in the singular locus. However,
this cannot happen, since outside of finitely many general fibers, π is étale, and ∆ does
not contain any components of the branched and therefore general fibers by assumption.
The other conditions are immediate(2). Note that we also have to replace y0 by any of its
preimages y′0 ∈ Y ′.

After applying the above pullback and replacing B by B′, t changes to d · t, because:

KX′/Y ′ + π∗∆ + d · tB′ = π∗(KX/Y + ∆ + tB)

(1) To be precise, if B = f∗D, then we choose a general very ample, effective divisor H on Y , such that there is a

divisor G, for which D +H ∼ dG. Then Y ′ := SpecY

(⊕d−1
i=0 OY (−iG)

)
, where the ring structure is given by

the embedding OY (−dG) ↪→ OY using D +H ∼ dG. Y ′ will be smooth because D +H is smooth.
(2) Remember that since D and H are general, π is étale over X0.
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is nef, and if there was a s < dt, such thatKX′/Y ′+π
∗∆+sB′ was nef, then for every curveC

on X ′, KX′/Y ′ + π∗∆ + sB′|C ≥ 0 would hold. However, then also

0 ≤ KX′/Y ′ + π∗∆ + sB′|C = π∗
(
KX/Y + ∆ +

s

d
B
)∣∣∣
C

= KX/Y + ∆ +
s

d
B
∣∣∣
π∗(C)

would hold. Since every curve on X is (a fraction of) the pushforward of a curve from X ′,
this would mean that KX/Y + ∆ + s

dB was nef, which would contradict the definition of t.
Hence as claimed, t changes to d · t. Therefore, since d can be chosen to be arbitrary big, we
may indeed assume that t > 1. This finishes the proof of our claim.

So, from now we assume that t > 1. Then, by Lemma 3.8, there is a rational number a
b ,

such that r | b + 1 and a
b+1 < t < a

b . Set A := a
bB. By Theorem 2.13, Corollary 2.21 and

Proposition 2.15, there is an ample Cartier divisor Q on X such that for all i > 0 and f -nef
Cartier divisor L,

Rif∗(OX(Q+ L)) = 0,(3.10a)

H0(X0,OX0
(Q+ L)) = S0(X0, σ(X0,∆0)⊗ OX0

(Q+ L))(3.10b)

and

(3.10c) OXy
(Q+ L) is globally generated for all y ∈ Y.

We prove by induction that q((b+ 1)(KX/Y + ∆) + bA) +Q is nef for every integer q ≥ 0.
For q = 0 the statement is true by the choice of Q. Hence, we may assume that
(q − 1)((b+ 1)(KX/Y + ∆) + bA) +Q is nef. Now, we verify that the conditions of Propo-
sition 3.7 hold for N := q((b+ 1)(KX/Y + ∆) + bA) +Q and N := OX(N). Indeed:

– N is Cartier by the choice of b and A,
– Rif∗N = 0 for all i > 0 because of (3.10a) and that

(3.10d) N −Q = q((b+ 1)(KX/Y + ∆) + bA)

is an f -nef Cartier divisor,
– the Q-divisor

N −KX/Y −∆ =
(
b(KX/Y + ∆ +A)

)
+
(

(q − 1)((b+ 1)(KX/Y + ∆) + bA) +Q
)

is not only f -ample, but also nef, because of the inductional hypothesis and that
A = a

bB ≥ tB,
– using (3.10b) and the f -nefness of (3.10d),

H0(X0,N |X0) = S0(X0, σ(X0,∆0)⊗N |X0),

– since all the summands of N are f -nef, so is N ,
– N |Xy

is globally generated, by (3.10c) and since N −Q is f -nef according to (3.10d).

Hence Proposition 3.7 implies that N is nef. This finishes our inductional step, and hence
the proof of the nefness of q((b+ 1)(KX/Y + ∆) + bA) +Q for every q ≥ 0. However, then
(b+ 1)(KX/Y + ∆) + bA has to be nef as well. Therefore, so is

1

b+ 1
((b+ 1)(KX/Y + ∆) + bA) = (KX/Y + ∆) +

b

b+ 1
A

= (KX/Y + ∆) +
b

b+ 1

a

b
B = (KX/Y + ∆) +

a

b+ 1
B.
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However, a
b+1 < t, which contradicts the definition of t. Therefore our assumption was false,

KX/Y + ∆ is nef indeed.

L 3.11. – In the situation of Notation 1.4, let τ : Y ′ → Y be a finite morphism from
a smooth curve and setX ′ := X×Y Y ′ and π : X ′ → X, f ′ : X ′ → Y ′ the induced morphisms.
Let ∆′ be the pullback of ∆, which is defined by the following procedure. Take the open set U
of Notation 1.4 and notice that r∆|U is a Cartier divisor. Then, pull it back to π−1U , extend
it uniquely over X ′ and finally divide all its coefficients by r. The extension is unique, since
codimX′ X

′ \ π−1U ≥ 2. In the above situation we claim that

π∗ω
[r]
X/Y (r∆) ∼= ω

[r]
X′/Y ′(r∆

′).

In particular, p - r = ind(KX′/Y ′ + ∆′).

Proof. – Notice that by construction π∗ω[r]
X/Y (r∆) and ω[r]

X′/Y ′(r∆
′) agree over π−1U ,

that is, in relative codimension one. Notice also that since ω[r]
X/Y (r∆) is assumed to be a

line bundle, so is π∗ω[r]
X/Y (r∆), and therefore π∗ω[r]

X/Y (r∆) is reflexive in the sense of [18].

On the other hand, since ω[r]
X′/Y ′(r∆

′) is defined as a pushforward of a line bundle from
relative codimension one, it is reflexive by [18, Corollary 3.7]. Therefore by [18, Proposi-
tion 3.6], π∗ω[r]

X/Y (r∆) and ω
[r]
X′/Y ′(r∆

′) are isomorphic everywhere. In particular, then

ω
[r]
X′/Y ′(r∆

′) is a line bundle.

Recall that Theorem 1.6 states that in the situation of Notation 1.4 or Notation 1.5,
if ω[r]

X/Y (r∆) is f -nef and for all but finitely many y ∈ Y , KXy
+ ∆y is semi-ample, then

ω
[r]
X/Y (r∆) is nef. Theorem 3.10 proves this statement when Y is a smooth curve, to which

we reduce the general case below.

Proof of Theorem 1.6. – Choose any curve C on X. We are supposed to prove that

deg ω
[r]
X/Y (r∆)

∣∣∣
C
≥ 0. If C is vertical this is immediate since ω

[r]
X/Y (r∆) is assumed

to be f -nef. Otherwise, let Y ′ be the normalization of C. It is enough to prove that

deg ω
[r]
X/Y (r∆)

∣∣∣
Y ′
≥ 0. Let τ : Y ′ → Y be the induced morphism. Then, we are in the

situation of Lemma 3.11. Using the notation introduced there, it is enough to prove that
π∗ω

[r]
X/Y (r∆) is nef. However, according to Lemma 3.11, this is the same as proving that

ω
[r]
X′/Y ′(r∆

′) is nef. But, f ′ : (X ′,∆′)→ Y ′ satisfy all assumptions of Theorem 3.10 (or

Theorem 3.16 in the case of Notation 1.5). Therefore, ω[r]
X′/Y ′(r∆

′) is nef indeed.

T 3.12. – In the situation of Notation 3.1, assume that (X0,∆0) is sharply F -pure
and KX/Y + ∆ is f -ample. Further choose an M > 0 such that for all i > 0 and m ≥M ,

(3.12a) Rif∗(OX(mr(KX/Y + ∆))) = 0 and

(3.12b) H0(X0,OX0
(mr(KX/Y + ∆))) = S0(X0, σ(X0,∆0)⊗ OX0

(mr(KX/Y + ∆))).

Then f∗(OX(mr(KX/Y + ∆))) is a nef vector bundle for every m ≥M .

Proof. – Let N := mr(KX/Y + ∆) for some m ≥M , and N := OX(N). Then the
assumptions of Proposition 3.6 for this N are satisfied:
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– Rif∗N = 0 for all i > 0 by (3.12a),
– N −KX/Y −∆ is an f -ample Q-divisor,
– H0(X0,N |X0

) = S0(X0, σ(X0,∆0)⊗N |X0
) by (3.12b),

– N −KX/Y −∆ is nef by the nefness of KX/Y + ∆ granted by Theorem 3.10.

Therefore, Proposition 3.6 applies indeed and hence f∗N = f∗OX(mr(KX/Y +∆)) is a nef
vector bundle for all m ≥M . This finishes our proof.

R 3.13. – Note that by Theorem 2.13 and Corollary 2.21, there is an M as in the
statement of Theorem 3.12.

Recall that Theorem 1.7 states that in the situation of Notation 1.4, if ω[r]
X/Y (r∆) is

f -ample, then f∗(ω
[mr]
X/Y (mr∆)) is nef for all integers m� 0. Theorem 3.12 proves this

statement when Y is a smooth curve, to which we reduce the general case below.

Proof of Theorem 1.7. – First, using Theorem 2.13 and Proposition 2.23, choose
an M > 0 such that for every m ≥M , i > 0 and all but finitely many y ∈ Y ,

(3.13a) Rif∗(ω
[mr]
X/Y (mr∆)) = 0 and

(3.13b) H0(Xy,OXy (mr(KXy + ∆y))) = S0(Xy, σ(Xy,∆y)⊗ OXy (mr(KXy + ∆y))).

Choose now any finite map τ : Y ′ → Y from a smooth, projective curve. We are supposed
to prove that τ∗f∗(ω

[mr]
X/Y (mr∆)) is nef for all m ≥ M . By Lemma 2.9, f∗(ω

[mr]
X/Y (mr∆))

commutes with base change for every m ≥ M . I.e., using the notations of Lemma 3.11, for
every m ≥M ,

τ∗f∗(ω
[mr]
X/Y (mr∆)) ∼= f ′∗(π

∗ω
[mr]
X/Y (mr∆)).

Therefore, it is enough to prove that the latter is nef. However, again by Lemma 3.11, this
is equivalent to proving that f ′∗ω

[mr]
X′/Y ′(mr∆

′) is nef for all m ≥M , which is exactly the
statement of Theorem 3.12.

Proof of Corollary 1.9. – By Theorem 1.7 there is a i0 > 0 such that for all i ≥ i0,
f∗ω

[ir]
X/Y is a nef vector bundle. By possibly increasing i0 we may also assume that there is

a d0 > 0 such that for all d ≥ d0, for all i ≥ i0 and all y ∈ Y ,

(1) the formation of f∗ω
[ir]
X/Y commutes with base-change,

(2) i0rKXy
is very ample,

(3) ξdy : SdH0
(
Xy, ω

[i0r]
Xy

)
→ H0

(
Xy, ω

[di0r]
Xy

)
is surjective and

(4) Ker ξdy , which can be identified withH0(Xy,Iy(d)) for the ideal Iy of the embedding

Xy ↪→ Ph
0
(
Xy,ω

[i0r]

Xy

)
−1, globally generates Iy(d) for all y ∈ Y .

By (1) and (3) the following natural map is surjective:

(3.13c) Sd
(
f∗ω

[i0r]
X/Y

)
� f∗ω

[di0r]
X/Y .

The fiber of the kernel of this map at y is Ker ξdy . Hence using assumption (4), the fiber of the
“classifying map” of [22, 3.9 Ampleness lemma] associated to the surjection (3.13c) are the
sets {y′ ∈ Y |Xy′

∼= Xy}. By the assumption of the corollary these sets and hence the fibers
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of the classifying map are finite. In particular then by [22, 3.9 Ampleness lemma], using the

finiteness of the automorphism groups, det
(
f∗ω

[di0r]
X/Y

)
is ample for all d ≥ d0.

3.4. Semi-positivity when the relative log-canonical divisor is relatively nef

T 3.14. – In the situation of Notation 3.1, if ind(X,∆) = 1, (X0,∆0) is sharply
F -pure and KX/Y + ∆ is f -nef, then KX/Y + ∆ is nef.

Proof. – Using Theorem 2.13, Corollary 2.21 and Proposition 2.15, there is an ample
enough line bundle Q on X, such that for all i > 0 and f -nef line bundle K ,

(3.14a) Rif∗(Q ⊗K ) = 0,

(3.14b) H0(X0,Q ⊗K |X0
) = S0(X0, σ(X0,∆0)⊗ (Q ⊗K )|X0

)

and

(3.14c) Q ⊗K |Xy
is globally generated for all y ∈ Y.

Let Q be a divisor of Q. We prove by induction that q(KX/Y + ∆) + Q is nef for
all q ≥ 0. For q = 0 the statement is true by the choice of Q. Hence, we may assume that
(q − 1)(KX/Y + ∆) +Q is nef. Now, we verify that the conditions of Proposition 3.7 hold
for N := q(KX/Y + ∆) +Q and N := OX(N). Indeed:

– N is Cartier by the index assumption,
– Rif∗N = 0 for all i > 0 because of (3.14a) and that KX/Y + ∆ is an f -nef Cartier

divisor,
– furthermore, the Q-divisor

N −KX/Y −∆ = (q − 1)(KX/Y + ∆) +Q

is not only f -ample, but also nef by the inductional hypothesis,
– using the f -nefness of KX/Y + ∆ and (3.14b),

H0(X0,N |X0
) = S0(X0, σ(X0,∆0)⊗N |X0

),

– since all the summands of N are f -nef, so is N ,
– for every y ∈ Y , N |Xy is globally generated by (3.14c).

Hence Proposition 3.7 implies thatN is nef. This finishes our inductional step, and hence the
proof of the nefness of q(KX/Y + ∆) +Q for every q ≥ 0. However, then KX/Y + ∆ has to
be nef as well. This concludes our proof.

Proof of Theorem 1.10. – The proof is identical to that of Theorem 1.6 after setting r := 1

and using Theorem 3.14 instead of Theorem 3.10.
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3.5. The case of indices divisible by p

Given a pair (X,∆) with p| ind(KX + ∆), one can perturb ∆ carefully to obtain another
pair (X,∆′) such that p - ind(KX + ∆′). This method can be used to move some of our
results to the situation where the index of the log-canonical divisor is divisible by p. There
is one price to be paid: since the perturbed pair has to still satisfy the adequate sharply
F -pure assumptions, slightly stronger singularity assumptions have to be imposed on the
original pair. The adequate class of singularities is strongly F -regular singularities, positive
characteristic analogues of Kawamata log terminal singularities. These, contrary to sharply
F -pure singularities are closed under small perturbations, and furthermore form a subset of
sharply F -pure singularities. In particular, their perturbations are guaranteed to be sharply
F -pure. For the definition of stronglyF -regular singularities we refer to [41, Definition 2.10].
Here, we only use the property that given a Cartier divisor A ≥ 0 and a strongly F -regular
pair (X,∆), (X,∆ + εA) is strongly F -regular as well, for every 0 < ε� 1. In fact, this
property can be even used to define strongly F -regular singularities for quasi-projective X.
That is, when X is quasi-projective, (X,∆) is strongly F -regular if and only if for every
effective Cartier divisor A there is an ε > 0 such that (X,∆ + εA) is sharply F -pure.

L 3.15. – Let (X,∆) be a pair with a flat morphism to a Gorenstein scheme Y ,
such that KX + ∆ is Q-Cartier and p| ind(KX + ∆). Choose also an effective Z-divi-
sor D which is linearly equivalent to KX/Y + A for some Cartier divisor A on X. Then
KX + ∆ + 1

pv−1 (D + ∆) is Q-Cartier with index not divisible by p for every v � 0.

Proof. – First, since Y is Gorenstein, it is enough to show thatKX/Y +∆+ 1
pv−1 (D+∆)

Q-Cartier with index not divisible by p for every v � 0. For proving that, we may choose
for KX/Y the representative D − A. Let r be an integer such that r(KX/Y + ∆) is Cartier.
Then (here the (_, _) sign stands for greatest common divisor),

r

(r, pv)
(pv − 1)

(
KX/Y + ∆ +

1

pv − 1
(D + ∆)

)
∼ r

(r, pv)
(pv − 1)

(
D −A+ ∆ +

1

pv − 1
(D + ∆)

)
= r

pv

(r, pv)
(D + ∆)− r

(r, pv)
(pv − 1)A

∼ r pv

(r, pv)
(KX/Y + ∆) +

(
r

pv

(r, pv)
− r

(r, pv)
(pv − 1)

)
A,

which is Cartier. Furthermore, for v � 0, r
(r,pv) (pv − 1) is an integer not divisible by p. This

concludes our proof.

T 3.16. – In the situation of Notation 3.1 by possibly allowing p| ind(KX + ∆),
if (X0,∆0) is strongly F -regular, KX/Y + ∆ is f -nef and KXy

+ ∆y is semi-ample for
generic y ∈ Y , then KX/Y + ∆ is nef.

Proof. – Fix an ample integer Cartier divisor A on X such that there is an effective
Z-divisor D linearly equivalent to A + KX/Y and furthermore D avoids the codimension 0
and the singular codimension 1 points of X0 as well as the singular codimension 1 points
ofX. Define for v � 0, ∆′ := ∆+ 1

pv−1 (D+∆). Then if we replace ∆ by ∆′, the assumptions
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of Notation 3.1 are still satisfied for every v � 0, even p - ind(KX + ∆′) by Lemma 3.15.
Furthermore, since (X0,∆0) was strongly F -regular and ∆′0 := ∆′|X0

differs from ∆0 in a
small enough divisor, (X0,∆

′
0) is sharply F -pure for every v � 0. Also, the f -nefness and

the semi-ampleness assumptions hold for KX/Y + ∆′, since

(3.16a) KX/Y + ∆′ ∼Q
pv

pv − 1
(KX/Y + ∆) +

1

pv − 1
A.

Hence, Theorem 3.10 implies that KX/Y + ∆′ is nef. However then using (3.16a), so is

pv − 1

pv

(
pv

pv − 1
(KX/Y + ∆) +

1

pv − 1
A

)
= (KX/Y + ∆) +

1

pv
A.

Since this holds for all v � 0, KX/Y + ∆ is nef.

The following lemma follows from Definition 2.5, using the natural embedding Le,∆′ → Le,∆

given for every integer e ≥ 0 and effective divisors ∆ ≤ ∆′.

L 3.17. – Let (X,∆) and (X,∆′) be two pairs with the same underlying spaces, such
that bothKX+∆ andKX+∆′ areQ-Cartier with indices not divisble by p. Assume furthermore
that ∆ ≤ ∆′. Then for any line bundle N on X,

S0(X,σ(X,∆)⊗N ) ⊇ S0(X,σ(X,∆′)⊗N ).

T 3.18. – In the situation of Notation 3.1 by possibly allowing p | ind(KX + ∆),
assume also that (X0,∆0) is strongly F -regular and KX/Y + ∆ is f -ample. Then
f∗OX(mr(KX/Y + ∆)) is a nef vector bundle for every m� 0.

Proof. – First, note that by Theorem 3.16, KX/Y + ∆ is nef. Let A be the pull-
back of any ample Cartier divisor B from Y . Then, by the f -ampleness of KX/Y + ∆,
r(KX/Y + ∆) +A is ample. Therefore, there is a d > 0, such that dr(KX/Y + ∆) + dA+KX/Y

is linearly equivalent to an effective Z-divisor D, which avoids the codimension 0 and the
singular codimension 1 points of X0 as well as the singular codimension 1 points of X.
Let n = pv − 1 for arbitrary v � 0 (which notation will be used throughout the proof)
and define ∆n := ∆ + 1

n (D + ∆). By Lemma 3.15, (X,∆n) satisfy the assumptions of
Notation 3.1 for v � 0, even the divisibility condition on the index. Furthermore the same
holds for (X(n),∆

(n)
n ) by Lemma 3.5. Note that here the upper and the lower indices agree

on purpose. Similarly, throughout the proof the n’s in the upper and lower indices agree on
purpose.

Fix now an′ = pv
′ − 1� 0. Then, since ∆n′−∆ is a small effective divisor, (X0, (∆n′)0) is

sharply F -pure. In particular, by Theorem 2.13 and Corollary 2.21 we may choose anM > 0

such that for all i > 0 and m ≥M ,

(3.18a) Rif∗(OX(mr(KX/Y + ∆))) = 0 and

(3.18b) H0(X0,OX0
(mr(KX/Y +∆))) = S0(X0, σ(X0, (∆n′)0)⊗OX0

(mr(KX/Y +∆))).

Define then for any m ≥ max{2,M} and v ≥ v′ (still keeping the notation n = pv − 1),
N := mr

(
KX(n)/Y + ∆(n)

)
+ d

nA
(n). Then the assumptions of Proposition 3.6 hold

for
(
X(n),∆

(n)
n

)
and N , because if N := OX(n)(N):

– N is Cartier, since d
nA

(n) =
(
f (n)

)∗
(dB).
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– Rif
(n)
∗ N = 0 for all i > 0 by (3.18a), Lemmas 2.9, 2.10 and the Künneth formula.

We also use here that OX(n)(mr(KX(n)/Y + ∆(n))) ∼= OX(mr(KX/Y + ∆))(n).

– N −
(
KX(n)/Y + ∆

(n)
n

)
is an f (n)-ample and nef Q-divisor, because of the following

computation and the nefness of KX/Y + ∆ granted by Theorem 3.16. Note that we
also use that n+1+dr

n < 2 because v ≥ v′ and v′ � 0.

N −
(
KX(n)/Y + ∆(n)

n

)
= mr

(
KX(n)/Y + ∆(n)

)
+
d

n
A(n) −

(
KX(n)/Y + ∆(n) +

1

n

(
D(n) + ∆(n)

))
∼Q mr

(
KX(n)/Y + ∆(n)

)
+
d

n
A(n)

−
(
KX(n)/Y +

n+ 1

n
∆(n) +

1

n
(dr(KX/Y + ∆) + dA+KX/Y )(n)

)
= mr

(
KX(n)/Y + ∆(n)

)
− n+ 1

n

(
KX(n)/Y + ∆(n)

)
− dr

n

(
KX(n)/Y + ∆(n)

)
,

=

(
mr − n+ 1 + dr

n

)(
KX(n)/Y + ∆(n)

)
,

– H0
(
X

(n)
0 ,N |

X
(n)
0

)
= S0

(
X

(n)
0 , σ

(
X

(n)
0 , (∆

(n)
n )0

)
⊗N |

X
(n)
0

)
by (3.18b), Lem-

ma 3.17 and Lemma 2.27.

Therefore, applying Proposition 3.6 yields that the following vector bundle is nef for
every v � 0.

f
(n)
∗ N ∼= f

(n)
∗ OX(n)

(
mr(KX(n)/Y + ∆(n)) +

d

n
A(n)

)
∼= f

(n)
∗ OX(n)(mr(KX(n)/Y + ∆(n)))⊗ OY (dB)

∼=

(
n⊗
i=1

f∗OX(mr(KX/Y + ∆))

)
⊗ OY (dB).︸ ︷︷ ︸

by Lemma 2.12

Since this holds for every n = pv − 1� 0, f∗OX(mr(KX/Y + ∆)) is nef.

Proof of Theorem 1.8. – The statement is a special case of Theorem 3.18.

4. Applications

4.1. Projectivity of proper moduli spaces

Recently there have been great advances in constructing moduli spaces of varieties (or
pairs) of (log-)general type in characteristic zero, cf., [23]. The method used in these results
has been worked out in [22] and is as follows. First, one defines a subfunctor of the functor of
all families of (log-)canonically polarized varieties. Second, one proves nice properties of this
functor: openness, separatedness, properness, boundedness and tame automorphisms. Then
it follows that the chosen functor admits a coarse moduli space, which is a proper algebraic
space. Third, by exhibiting a semi-positive line bundle that descends to the coarse moduli
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space, one proves that the coarse moduli space is a projective scheme. Hence, Theorem 1.7
implies that in positive characteristics if for a subfunctor as above of families of sharply
F -pure varieties the first two steps are known, then the third step works as well. That is, the
subfunctor admits a coarse moduli space, which is a projective variety.

C 4.1. – Let F be a subfunctor of

Y 7→


X

f

��
Y

∣∣∣∣∣∣∣∣∣∣
f : X → Y is a flat, relatively S2 and G1, equidimensional, projective
morphism with sharply F -pure fibers, such that there is a p - r > 0,
for which ω

[r]

X/Y is an f -ample line bundle, and Aut(Xy) is finite for
all y ∈ Y


/
∼= over Y .

If F admits

(1) a coarse moduli space π : F → V , which is a proper algebraic space and
(2) a morphism ρ : Z → F from a scheme, such that π ◦ ρ is finite,

then V is a projective scheme.

R 4.2. – As mentioned in the introduction of this section, by [22, Theorem 2.2],
the assumptions of Corollary 4.1 is satisfied if F belongs to an open class with tame auto-
morphisms and is separated, bounded and complete.

Proof of Corollary 4.1. – To prove that V is a projective scheme, one has to exhibit an

ample line bundle on it. Let this be in our situation the descent of det
(
g∗ω

[mr]
W/Z

)
to V for

some divisible enough m, where g : W → Z is the element of F (Z) corresponding to the
morphism ρ : Z → F . (Here Z should really be thought of as the functor Hom(_, Z). Then
Z → F is a functor Hom(_, Z)→ F , so g is the image of idZ ∈ Hom(Z,Z) = Hom(_, Z)(Z)

via the map ρ(Z) : Hom(_, Z)→ F (Z).) Note that for divisible enough m, det
(
g∗ω

[mr]
W/Z

)
descends indeed to V by the finiteness of the automorphism groups of the fibers, cf., [22,
2.5]. To prove that it is ample, it is enough to show that its pullback via π ◦ ρ is ample. There-

fore we are supposed to prove that det
(
g∗ω

[mr]
W/Z

)
is ample for some m divisible enough.

However, since the isomorphism equivalence classes of the closed fibers of g are exactly the
fibers of π ◦ ρ, this ampleness is shown in Corollary 1.9.

4.2. Characteristic zero implications

Fix an algebraically closed field k′ of characteristic zero throughout this section. The
following is a major conjecture in the theory of F -singularities (cf., [32, 33], [29, Conjecture 1
and Corollary 4.5]).

C 4.3. – Given a pair (X,∆) with semi-log canonical singularities over k′,
consider a model (XA,∆A) of it over a Z-algebra A ⊆ k′ of finite type. Then there is a dense
set of closed points S ⊆ SpecA, such that (Xs,∆s) := ((XA)s, (∆A)s) is sharply F -pure for
all s ∈ S.

R 4.4. – If in the above conjecture semi-log canonical is replaced by Kawmata log
terminal and sharply F -pure by strongly F -regular, then the statement is known [44].
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Hence, the results of the paper has the following consequences in characteristic zero. We
emphasize this is a completely new algebraic method of obtaining such positivity results in
characteristic zero.

C 4.5. – Let (X,∆) be a pair over k′ with Q-CartierKX +∆ and f : X → Y a
flat, projective morphism to a smooth projective curve. Further suppose that there is a y0 ∈ Y ,
such that ∆ avoids all codimension 0 and the singular codimension 1 points of Xy0

, and either

(1) (Xy0
,∆y0

) is Kawamata log terminal, or
(2) (Xy0

,∆y0
) is semi-log-canonical and for every model over a Z-algebra A of finite type,

it satisfies the statement of Conjecture 4.3.

Assume also that KX/Y + ∆ is f -ample (resp. f -semi-ample). Then for m � 0 and divisible
enough, f∗OX(m(KX/Y + ∆)) is a nef vector bundle (resp. KX/Y + ∆ is nef).

Proof. – Consider a model fA : (XA,∆A) → YA of f : (X,∆) → Y over a Z-algebra
A ⊆ k′ of finite type. By normalizing and then further localizing A, we may assume that

(1) SpecA is Gorenstein,
(2) fA is flat,
(3) ∆A avoids the codimension 0 and the singular codimension 1 points of the fibers Xs,
(4) (Xs,∆s) is a pair, i.e., Xs is S2 and G1, for all s ∈ SpecA,
(5) KXs

+ ∆s is Q-Cartier (note that if we have r = ind(KXs
+ ∆s), then

r(KXA
+ ∆A)|Xs

= r(KXs
+ ∆s) in codimension one and then everywhere, there-

fore ind(KXs
+ ∆s) | ind(KXA

+ ∆A)),
(6) char(s) - ind(KXA

+ ∆A) for every s ∈ S (and then by the above considerations,
char(s) - ind(KXs

+ ∆s)),
(7) Ys is smooth for every s ∈ S,
(8) ∆ avoids all codimension 0 and the singular codimension 1 points of X(y0,s) for

all s ∈ SpecA,
(9) KXA/YA

+ ∆A is fA-ample (resp. fA-semi-ample) and
(10) in the fA-ample case, we may also assume that m is chosen big and divisible enough

such that fA,∗OX(m(KXA/YA
+∆A))|Ys

∼= (fs)∗OX(m(KXs/Ys
+∆s)) and the same

for s replaced by s̄ (if swas given by a morphismA→ k′′, then s̄ denotes a morphism
given by A→ k̄′′, where k̄′′ is any algebraic closure of k′′).

Note also that by the assumptions there is a dense set S ⊆ SpecA of closed points for which(
X(y0,s),∆(y0,s)

)
isF -pure. In particular then for every s ∈ S, fs : (Xs,∆s)→ Ys satisfy the

assumptions of Notation 3.1 and Theorem 3.12 (resp. Theorem 3.10) except that the base
field is not algebraically closed. However, the above assumptions are stable under passing
to the algebraic completion of the base-field. Therefore, fs̄ : (Xs̄,∆s̄)→ Ys̄ satisfies the as-
sumptions of Notation 3.1 and Theorem 3.12 (resp. Theorem 3.10) for all s ∈ S including the
algebraic closedness of the base field. In particular, by Theorem 3.12 (resp. Theorem 3.10),
(fA,∗OXA

(m(KXA/YA
+ ∆A)))s̄ is a nef vector bundle (resp. (KXA/YA

+ ∆A)s̄ is nef) for
every s ∈ S. However, then so is (fA,∗OXA

(m(KXA/YA
+ ∆A)))s (resp. (KXA/YA

+ ∆A)s).
By [26, Proposition 1.4.13], nefness at a point implies nefness at all its generalizations. Hence
fA,∗OXA

(m(KXA/YA
+ ∆A)) (resp. KXA/YA

+ ∆A) and then also f∗OX(m(KX/Y + ∆))

(resp. KX/Y + ∆) is nef.
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4.3. Subadditivity of Kodaira-dimension

Subadditivity of Kodaira dimension was one of the major applications in characteristic
zero of the semipositivity of f∗ωmX/Y (e.g., [45, 21]). We present here a similar result in
positive characteristic. However, we would like to draw the reader’s attention that in positive
characteristic, there is already some ambiguity to the notion of Kodaira dimension. See
Question 5.1 for explanation. Hence we have to phrase the statement slightly differently,
involving the bigness of (log-)canonical divisors instead of the (log-)Kodaira dimension.

C 4.6. – In the situation of Notation 1.4 or Notation 1.5, if furthermore Y is
an S2, G1, equidimensional projective variety withKY Q-Cartier and big,KX/Y +∆ is f -semi-
ample and KF + ∆|F is big for the generic fiber F , then KX + ∆ is big.

Proof. – Since, KY is big, there is a m > 0, such that mKY = A+ E for integer very
ample and effective divisors A and E. It is enough to prove that f∗A+m(KX/Y + ∆) is
big. By Theorem 1.6, KX/Y + ∆ is nef. So, since f∗A+m(KX/Y + ∆) is nef, it is enough
to show that (f∗A+m(KX/Y + ∆))dimX > 0. However then the following computation
concludes our proof.

(f∗A+m(KX/Y + ∆))dimX ≥ f∗AdimY ·m(KX/Y + ∆)dimF︸ ︷︷ ︸
both f∗A and KX/Y + ∆ are nef

= AdimY · (m(KF + ∆|F ))dimF > 0.︸︷︷︸
KF +∆|F is big

5. Questions

Here we list questions that are left open by the article and we feel are important. The first
question is motivated by the absence of resolution of singularities in positive characteristics.
Recall, that the Kodaira dimension of a variety X in characteristic zero is defined as the
Kodaira dimension of KX′ for a projective smooth birational model X ′ of X.

Q 5.1. – Is there a birational invariant in positive characteristics, which special-
izes to Kodaira dimension in the particular case when there is a smooth birational model? In
particular this question would be solved if we had resolution of singularities in positive char-
acteristics.

The following few questions concern sharpness of Theorem 1.7.

Q 5.2. – Can one drop the index not divisible by p assumption in Theorem 1.7?

Q 5.3. – Is there a family f : X → Y of semi-log canonical but not sharply
F -pure schemes over a projective smooth curve with KX Q-Cartier f -ample, such that
f∗ω

[m]
X/Y is not nef for every m� 0?

Q 5.4. – Can one give an effective bound onm for which Theorem 1.7 holds? Is
it possibly true for m ≥ 2?
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