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TRANSFORMING METRICS ON A LINE BUNDLE
TO THE OKOUNKOV BODY

 D WITT NYSTRÖM

A. – Let L be a big holomorphic line bundle on a complex projective manifold X. We
show how to associate a convex function on the Okounkov body ofL to any continuous metric ψ onL.
We will call this the Chebyshev transform of ψ, denoted by c[ψ]. Our main theorem states that the dif-
ference of metric volume of L with respect to two metrics, a notion introduced by Berman-Boucksom,
is equal to the integral over the Okounkov body of the difference of the Chebyshev transforms of the
metrics. When the metrics have positive curvature the metric volume coincides with the Monge-Ampère
energy, which is a well-known functional in Kähler-Einstein geometry and Arakelov geometry. We
show that this can be seen as a generalization of classical results on Chebyshev constants and the
Legendre transform of invariant metrics on toric manifolds. As an application we prove the differ-
entiability of the metric volume in the cone of big metrized R-divisors. This generalizes the result of
Boucksom-Favre-Jonsson on the differentiability of the ordinary volume of big R-divisors and the
result of Berman-Boucksom on the differentiability of the metric volume when the underlying line
bundle is fixed.

R. – Soit L un fibré en droite holomorphe gros sur une variété complexe X, projective et
lisse. Nous montrons comment associer une fonction convexe sur le corps d’Okounkov de L à chaque
métrique continue ψ sur L. Nous l’appelons la transformée de Chebyshev de ψ, désignée par c[ψ].
Notre théorème principal affirme que la différence des volumes métriques de L par rapport à deux
métriques, une notion introduite par Berman-Boucksom, s’écrit comme une intégrale de la différence
des transformations de Chebyshev des métriques. Quand les métriques sont de courbure positive, le
volume métrique coïncide avec l’énergie de Monge-Ampère, qui est une fonctionnelle bien connue dans
la géométrie de Kähler-Einstein et la géométrie d’Arakelov. On démontre que ceci peut être considéré
comme une généralisation des résultats classiques sur les constantes de Chebyshev et la transformation
de Legendre des métriques invariantes sur des variétés toriques. En guise d’application, on démontre
la différentiabilité du volume métrique dans le cône des gros R-diviseurs métrisés. Ceci généralise le
résultat de Boucksom-Favre-Jonsson sur la différentiabilité du volume ordinaire des R-diviseurs gros
et le résultat de Berman-Boucksom sur la différentiabilité du volume métrique quand le fibré L est fixe.
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1112 D. WITT NYSTRÖM

1. Introduction

In [10] ([9] is a published shortened version) and [12] Kaveh-Khovanskii and Lazarsfeld-
Mustat,ă initiated a systematic study of Okounkov bodies of divisors and more generally of
linear series. Our goal is to contribute with an analytic viewpoint.

It was Okounkov who in his papers [13] and [14] introduced a way of associating a convex
body in Rn to any ample divisor on a n-dimensional projective variety. This convex body,
called the Okounkov body of the divisor and denoted by ∆(L), can then be studied using
convex geometry. It was recognized in [12] that the construction works for arbitrary big
divisors.

We will restrict ourselves to a complex projective manifold X, and instead of divisors
we will for the most part use the language of holomorphic line bundles. Because of this, in
the construction of the Okounkov body, we prefer choosing local holomorphic coordinates
instead of the equivalent use of a flag of subvarieties (see [12]). We use additive notation for
line bundles, i.e., we will write kL instead of L⊗k for the k-th tensor power of L. We will also
use the additive notation for metrics. If h is a hermitian metric on a line bundle, we may write
it as h = e−ψ, and in this paper we will denote that metric by ψ. Thus if ψ is a metric on L,
kψ is a metric on kL. The pair (L,ψ) of a line bundle L with a continuous metric ψ will be
called a metrized line bundle.

The main motivation for studying Okounkov bodies has been their connection to the
volume function on divisors. Recall that the volume of a line bundle L is defined as

vol(L) := lim sup
k→∞

n!

kn
dim(H0(kL)).

A line bundle is said to be big if it has positive volume. From here on, all line bundles L we
consider will be assumed to be big. By Theorem A in [12], for any big line bundle L it holds
that

vol(L) = n!volRn(∆(L)).

We are interested in studying certain functionals on the space of metrics on L that refine
vol(L).

The notion of a metric volume of a metrized line bundle (L,ψ) was introduced by Berman-
Boucksom in [1]. Given a metric ψ one has a natural norm on the spaces of holomorphic
sections H0(kL), namely the supremum norm

||s||kψ,∞ := sup{|s(x)|e−kψ(x)/2 : x ∈ X}.

Let B∞(kψ) ⊆ H0(kL) be the unit ball with respect to this norm.
H0(kL) is a vector space, thus given a basis we can calculate the volume of B∞(kψ) with

respect to the associated Lebesgue measure. This will depend on the choice of basis, but given
a reference metric ϕ one can compute the quotient

vol( B∞(kψ))

vol( B∞(kϕ))

and this quantity will be invariant under the change of basis. The k:th L-bifunctional is
defined as

Lk(ψ,ϕ) :=
n!

2kn+1
log

(
vol( B∞(kψ))

vol( B∞(kϕ))

)
.
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The metric volume of a metrized line bundle (L,ψ), denoted by vol(L,ψ, ϕ), is defined as
the limit

(1) vol(L,ψ, ϕ) := lim
k→∞

Lk(ψ,ϕ).

R 1.1. – In [1] this quantity is called the energy at equilibrium, but we have in this
paper chosen to call it the metric volume in order to accentuate the close relationship with the
ordinary volume of line bundles.

The metric volume obviously depends on the choice of ϕ as a reference metric but it is
easy to see that the difference of metric volumes vol(L,ψ, ϕ) − vol(L,ψ′, ϕ) is independent
of the choice of reference.

The definition of the metric volume is clearly reminiscent of the definition of the volume
of a line bundle. In fact, one easily checks that when adding 1 to the reference metric ϕ, we
have that

vol(L,ϕ+ 1, ϕ) = vol(L).

From this it follows readily that the metric volume is zero whenever the line bundle fails to
be big.

In [1] Berman-Boucksom prove that the limit (1) exists. They do this by proving that it
actually converges to a certain integral over the space X involving mixed Monge-Ampère
measures related to the metrics.

A metric ψ is said to be psh if the corresponding function expressed in a trivialization of
the bundle is plurisubharmonic, so that

ddcψ ≥ 0

as a current. Given two locally bounded psh metrics ψ and ϕ one defines E(ψ,ϕ) as

1

n+ 1

n∑
j=0

∫
X

(ψ − ϕ)(ddcψ)j ∧ (ddcϕ)n−j ,

which we will refer to as the Monge-Ampère energy of ψ and ϕ. This bifunctional first
appeared in the works of Mabuchi and Aubin in Kähler-Einstein geometry (see [1] and
references therein).

If ψ and ϕ are continuous but not necessarily psh, we may still define a Monge-Ampère
energy, by first projecting them down to the space of psh metrics,

P (ψ) := sup{ψ′ : ψ′ ≤ ψ,ψ′psh},

and then integrating over the Zariski-open subset Ω where the projected metrics are locally
bounded. We are therefore led to consider the composite functional E ◦ P :

(2) E ◦ P (ψ,ϕ) :=
1

n+ 1

n∑
j=0

∫
Ω

(P (ψ)− P (ϕ))(ddcP (ψ))j ∧ (ddcP (ϕ))n−j .

The Monge-Ampère energy can also be seen as a generalization of the volume since if we
let ψ be equal to ϕ+ 1, from e.g., [1] we have that

E ◦ P (ψ,ϕ) =

∫
Ω

(ddcP (ϕ))n = vol(L).
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1114 D. WITT NYSTRÖM

This is not a coincidence. In fact Berman-Boucksom prove that for any pair of continuous
metrics ψ and ϕ on a big line bundle L we have that

E ◦ P (ψ,ϕ) = vol(L,ψ, ϕ).

In [6] Boucksom-Favre-Jonsson proved that the volume function on the Néron-Severi
space is C1 in the big cone. This result was later reproved in [12] by Lazarsfeld-Mustat,ă
using Okounkov bodies. Berman-Boucksom proved in [1] the differentiability of the metric
volume when the line bundle is fixed. A natural question is what one can say about the
regularity of the metric volume when the line bundle is allowed to vary as well. In this paper
we approach this question by combining the pluripotential methods of Berman-Boucksom
with Okounkov body techniques inspired by the work of Lazarsfeld-Mustat,ă.

Given a continuous metricψ, we will show how to construct an associated convex function
on the interior of the Okounkov body of L which we will call the Chebyshev transform
of ψ, denoted by c[ψ]. The construction can be seen to generalize both the Chebyshev
constants in classical potential theory and the Legendre transform of convex functions (see
Subsections 9.2 and 9.3 respectively).

First we describe how to construct ∆(L). Choose a point p ∈ X and local holomorphic
coordinates z1, . . . , zn centered at p. Choose also a trivialization of L around p. With respect
to this trivialization any holomorphic section s ∈ H0(L) can be written as a convergent
power series in the coordinates zi,

s =
∑
α

aαz
α.

Consider the lexicographic order on Nn, and let v(s) denote the smallest index α (i.e., with
respect to the lexicographic order) such that

aα 6= 0.

We let v(H0(L)) denote the set {v(s) : s ∈ H0(L), s 6= 0}, and finally let the Okounkov
body of L, denoted by ∆(L), be defined as closed convex hull in Rn of the union⋃

k≥1

1

k
v(H0(kL)).

Observe that the construction depends on the choice of p and the holomorphic coordinates.
For other choices, the Okounkov bodies will in general differ.

Now let ψ be a continuous metric on L. There are associated supremum norms on the
spaces of sections H0(kL),

||s||2kψ := sup
x∈X
{|s(x)|2e−kψ(x)}.

If v(s) = kα for some section s ∈ H0(kL), we let Aα,k denote the affine space of sections
in H0(kL) of the form

zkα + higher order terms.

We define the discrete Chebyshev transform F [ψ] on
⋃
k≥1 v(H0(kL))× {k} as

F [ψ](kα, k) := inf{ln ||s||2kψ : s ∈ Aα,k}.
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T 1.2. – For any point p ∈ ∆(L)◦ and any sequenceα(k) ∈ 1
kv(H0(kL)) converg-

ing to p, the limit

lim
k→∞

1

k
F [ψ](kα(k), k)

exists and only depends on p. We may therefore define the Chebyshev transform of ψ by letting

c[ψ](p) := lim
k→∞

1

k
F [ψ](kα(k), k),

for any sequence α(k) converging to p.

The main observation underlying the proof is the fact that the discrete Chebyshev trans-
forms are subadditive. Our proof is thus very much inspired by the work of Zaharjuta, who in
[19] used subadditive functions on Nn when studying directional Chebyshev constants, and
also by the article [3] where Bloom-Levenberg extend Zaharjutas results to a more general
metrized setting, but still in Cn (we show in Section 7 how to recover the formula of Bloom-
Levenberg from Theorem 1.2). Another inspiration comes from the work of Rumely-Lau-
Varley in Arakelov geometry (see below).

We prove a general statement concerning subadditive functions on subsemigroups of Nd

that extend Zaharjuta’s results.

T 1.3. – Let Γ ⊆ Nd be a semigroup which generates Zd as a group, and let F be
a subadditive function on Γ which is locally bounded from below by some linear function. Then
for any sequence α(k) ∈ Γ such that |α(k)| → ∞ and α(k)

|α(k)| → p ∈ Σ(Γ)◦ (Σ(Γ) denotes the
convex cone generated by Γ) for some point p in the interior of Σ(Γ), the limit

lim
k→∞

F (α(k))

|α(k)|
exists and only depends on F and p. Furthermore the function

c[F ](p) := lim
k→∞

F (α(k))

|α(k)|
thus defined on Σ(Γ)◦ ∩ Σ◦ is convex.

Theorem 1.2 will follow from Theorem 1.3.

Our main result on the Chebyshev transform is the following.

T 1.4. – Let ψ and ϕ be two continuous metrics on L. Then it holds that

(3) vol(L,ψ, ϕ) = n!

∫
∆(L)◦

(c[ϕ]− c[ψ])dλ,

where dλ denotes the Lebesgue measure on ∆(L).

The proof of Theorem 1.4 relies on the fact that one can use certain L2-norms related to
the metric, called Bernstein-Markov norms, to compute the Chebyshev transform. With the
help of these one can interpret the right-hand side in Equation (3) as a limit of Donaldson
bifunctionals closely related and asymptotically equal to the ones used in the definition of
the metric volume. This gives a new proof of the fact that the limit (1) exists.
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In the setting of Arakelov geometry one studies adelic metrized line bundles L, and there
is a corresponding notion of metric volume called sectional capacity. The relationship be-
tween these concepts is described in [1]. The sectional capacity is defined as a limit of volumes
of adelic unit balls in the space of adelic sections of powers of L. The existence of the limit
was proved for ample adelic line bundles by Rumely-Lau-Varley in [15]. The method is simi-
lar to ours in that it defines a Chebyshev type transform following Zaharjuta’s construction
of directional Chebyshev constants. In order to define the directional Chebyshev constants
Rumely-Lau-Varley construct an ordered basis for the ring of sections with good multiplica-
tive properties similar to those of the monomial basis. In this paper we use the fact that the
local holomorphic coordinates used when defining the Okounkov body also gives rise to a
natural system of affine spaces with good multiplicative properties, and that this allows us
to define our Chebyshev constants. For more on the use of Okounkov bodies in arithmetic
geometry, see [4, 17, 18].

Because of the homogeneity of the Okounkov body, i.e.,

∆(kL) = k∆(L),

one may define the Okounkov body of an arbitrary Q-divisor D by letting

∆(D) :=
1

p
∆(pD),

for any integer p clearing all denominators inD. Theorem B in [12] states that one may in fact
associate an Okounkov body to an arbitrary big R-divisor, such that the Okounkov bodies
are fibers of a closed convex cone in Rn×N1(X)R, whereN1(X)R denotes the Néron-Severi
space of R-divisors. We show that this can be done also on the level of Chebyshev transforms,
i.e., there is a continuous and indeed convex extension of the Chebyshev transforms to the
space of continuous metrics on big R-divisors. This shows that the metric volume also has a
continuous extension to this space.

As an application, using the differentiability result of Berman-Boucksom and some
pluripotential theory and combining it with the new Okounkov body machinery we prove
that the metric volume is differentiable.

T 1.5. – The metric volume function is C1 on the open cone of big R-divisors
equipped with two continuous metrics.

1.1. Organization

In Section 2 we start by defining the Okounkov body of a semigroup, and we recall a result
on semigroups by Khovanskii that will be of great use later on.

Section 3 deals with subadditive functions on subsemigroups of Nn+1 and contains the
proof of Theorem 1.3.

The definition of the Okounkov body of a line bundle follows in Section 4.
In Section 5 we define the discrete Chebyshev transform of a metric, and prove that

this function has the properties needed for Thereom 1.3 to be applicable. We thus prove
Theorem 1.2.

The metric volume is defined in Section 6. Here we also state our main theorem, Theo-
rem 1.4.
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In Section 7 we show how one can use Bernstein-Markov norms instead of supremum
norms in the construction of the Chebyshev transform.

The proof of Theorem 1.4 follows in Section 8.

The Monge-Ampère energy of metrics is introduced in Section 9. We state the result of
Berman-Boucksom which says that the metric volume is equal to a certain Monge-Ampère
energy.

Section 10 discusses previous results.

In Subsection 10.1 we observe that if we let ψ be equal to ϕ + 1 in (3), then we recover
Theorem A in [12], i.e., that

vol(L) = n!volRn(∆(L)).

In Subsection 10.2 we move on to clarify the connection to the classical Chebyshev
constants. We see that if we embed C into P1 and choose our metrics wisely then formula (3)
gives us the classical result in potential theory that the Chebyshev constant and transfinite
diameter of a regular compact set in C coincide. See Subsection 9.2 for definitions.

Subsection 10.3 studies the case of a toric manifold, with a torus invariant line bundle
and invariant metrics. We calculate the Chebyshev transforms, and observe that for invariant
metrics, the Chebyshev transform equals the Legendre transform of the metric seen as a
function on Rn.

We show in Section 11 that if the first holomorphic coordinate z1 defines a smooth sub-
manifold Y not contained in the augmented base locus of L then the Chebyshev transform
will be bounded near the interior of the zero-fiber of ∆(L), denoted by ∆(L)0. It follows that
the transform can be continuously extended to that part.

We also note that one can define another Chebyshev transform cX|Y , defined on the
interior of the zero fiber, by looking at a restricted subadditive function. When the line bundle
is ample we prove, using the Ohsawa-Takegoshi extension theorem, that

(4) EY (P (ϕ)|Y , P (ψ)|Y ) = (n− 1)!

∫
∆(L)0

(c[ψ]− c[ϕ])(0, α)dα.

In Section 12 we show how to translate the results of Bloom-Levenberg to our language
of Chebyshev transforms. We reprove Theorem 2.9 in [3] using our Theorem 1.4, equation
(4) and a recursion formula from [1].

We show in Section 13 how to construct a convex and therefore continuous extension of
the Chebyshev transform to arbitrary big R-divisors.

In Section 14 we move on to prove Theorem 1.5 concerning the differentiability of the
metric volume.

1.2. Acknowledgement
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I wish to thank Bo Berndtsson and Sébastien Boucksom for their numerous comments and
suggestions concerning this article. Also I am very grateful for the insightful critique given
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2. The Okounkov body of a semigroup

Let Γ ⊆ Nn+1 be a subsemigroup of Nn+1. We denote by Σ(Γ) ⊆ Rn+1 the closed convex
cone spanned by Γ. By ∆k(Γ) we will denote the set

∆k(Γ) := {α : (kα, k) ∈ Γ} ⊆ Rn.

D 2.1. – The Okounkov body ∆(Γ) of the semigroup Γ is defined as

∆(Γ) := {α : (α, 1) ∈ Σ(Γ)} ⊆ Rn.

It is clear that for all non-negative k,

∆k(Γ) ⊆ ∆(Γ).

The next theorem is a result of Khovanskii from [11].

T 2.2. – Assume that Γ ⊆ Nn+1 is a finitely generated semigroup which gener-
ates Zn+1 as a group. Then there exists an element z ∈ Σ(Γ), such that

(z + Σ(Γ)) ∩ Zn+1 ⊆ Γ.

When working with Okounkov bodies of semigroups it is sometimes useful to reformulate
Theorem 2.2 into the following lemma.

L 2.3. – Suppose that Γ is finitely generated, generates Zn+1 as a group, and also
that ∆(Γ) is bounded. Then there exists a constant C such that for all k, if

α ∈ ∆(Γ) ∩
(

1

k
Z
)n

and if the distance between α and the boundary of ∆(Γ) is greater than C/k, then in fact we
have that

α ∈ ∆k(Γ).

Proof. – By definition we have that

α ∈ ∆(Γ) ∩
(

1

k
Z
)n

iff (kα, k) ∈ Σ(Γ) ∩ Zn+1.

Also by definition
α ∈ ∆k(Γ) iff (kα, k) ∈ Γ.

By Theorem 2.2, there exists z ∈ Σ(Γ) such that

(kα, k) ∈ Γ if (kα, k)− z ∈ Σ(Γ),

and since Σ(Γ) is a cone, (kα, k) − z ∈ Σ(Γ) iff (α, 1) − z/k ∈ Σ(Γ). If (α, 1) lies
further than |z|/k from the boundary of Σ(Γ), then trivially (α, 1) − z/k ∈ Σ(Γ). Since by
assumption the Okounkov body is bounded, the distance between (α, 1) and the boundary
of Σ(Γ) is greater than some constant times the distance between α and the boundary
of ∆(Γ). The lemma follows.

C 2.4. – Suppose that Γ generates Zn+1 as a group, and also that ∆(Γ) is
bounded. Then ∆(Γ) is equal to the closure of the union

⋃
k≥0 ∆k(Γ).
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Proof. – That

∪k≥0∆k(Γ) ⊆ ∆(Γ)

is clear. For the opposite direction, we exhaust ∆(Γ) by Okounkov bodies of finitely gen-
erated subsemigroups of Γ. Therefore, without loss of generality we may assume that Γ is
finitely generated. We apply Lemma 2.3 which says that all the ( 1

kZ)n lattice points in ∆(Γ)

whose distance to the boundary of ∆(Γ) is greater that some constant depending on the
element z in Theorem 2.2, divided by k, actually lie in ∆k(Γ). The corollary follows.

3. Subadditive functions on semigroups

Let Γ be a semigroup. A real-valued function F on Γ is said to be subadditive if for all
α, β ∈ Γ it holds that

(5) F (α+ β) ≤ F (α) + F (β).

If S is a subset of Γ we say that a function F is subadditive on S if whenever α, β and
α+ β lie in S the inequality (5) holds.

If α ∈ Rn+1, we denote the sum of its coordinates
∑
αi by |α|. We also let Σ0 ⊆ Rn+1

denote the set

Σ0 := {(α1, . . . , αn+1) : |α| = 1, αi > 0}.

In [3] Bloom-Levenberg observe that one can extract from [19] the following theorem on
subadditive functions on Nn+1.

T 3.1. – Let F be a subadditive function on Nn+1 which is bounded from below by
some linear function. Then for any sequence α(k) ∈ Nn+1 such that |α(k)| → ∞ when k tends
to infinity and such that

α(k)/|α(k)| → θ ∈ Σ0,

it holds that the limit

c[F ](θ) := lim
k→∞

F (α(k))

|α(k)|
exists and does only depend on θ. Furthermore, the function c[F ] thus defined is convex on Σ0.

We will give a proof of this theorem which also shows that it holds locally, i.e., that F does
not need to be subadditive on the whole ofNn+1 but only on some open convex cone and only
for large |α|. Then Zaharjuta’s theorem still holds for the part of Σ0 lying in the open cone.
We will divide the proof into a couple of lemmas.

L 3.2. – Let O be an open convex cone in Rn+1
+ and let F be a subadditive function

on (O\B(0,M))∩Nn+1, whereB(0,M) denotes the ball of radiusM centered at the origin, and
M is any positive number. Then for any closed convex cone K ⊆ O there exists a constant CK
such that

F (α) ≤ CK |α|
on (K \B(0,M)) ∩ Nn+1.
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Proof. – Pick finitely many points in (O \ B(0,M)) ∩ Nn+1 such that if we denote by Γ

the semigroup generated by the points, the convex cone Σ(Γ) should contain (K \B(0,M))

and the distance between the boundaries should be positive. The points should also gener-
ate Zn+1 as a group. Then from Theorem 2.2 it follows that there exists an M ′ such that

(6) (K \B(0,M ′)) ∩ Nn+1 ⊆ Γ.

Let αi denote the generators of Γ we picked. The inclusion (6) means that for all
α ∈ (K \B(0,M ′)) ∩ Nn+1 there exist non-negative integers ai such that

α =
∑

aiαi.

By the subadditivity we therefore get that

F (α) ≤
∑

aiF (αi) ≤ C
∑

ai ≤ C|α|.

Since only finitely many points in (K \B(0,M))∩Nn+1 do not lie in (K \B(0,M ′))∩Nn+1

the lemma follows.

L 3.3. – Let O,K and F be as in the statement of Lemma 3.2. Let α be a point
in (K◦ \B(0,M)) ∩ Nn+1, and let γ(k) be a sequence in (K \B(0,M)) ∩ Nn+1 such that

|γ(k)| → ∞

when k tends to infinity and that
γ(k)

|γ(k)|
→ p ∈ K◦

for some point p in the interior of K. Let l be the ray starting in α/|α|, going through p, and
let q denote the first intersection of l with the boundary of K. Denote by t the number such that

p = t
α

|α|
+ (1− t)q.

Then there exists a constant CK depending only of F and K such that

lim sup
k→∞

F (γ(k))

|γ(k)|
≤ tF (α)

|α|
+ (1− t)CK .

Proof. – We can pick points βi in (K\B(0,M))∩Nn+1 with βi/|βi| lying arbitrarily close
to q, such that if Γ denotes the semigroup generated by the points βi and α, Γ generates Zn+1

as a group and
p ∈ Σ(Γ)◦.

Therefore from Theorem 2.2 it follows that for large k γ(k) can be written

γ(k) = aα+
∑

aiβi

for non-negative integers ai and a. The subadditivity of F gives us that

F (γ(k)) ≤ aF (α) +
∑

aiF (βi) ≤ aF (α) + CK
∑

ai|βi|,

where we used Lemma 3.2 in the last inequality. Dividing by |γ(k)| we get

F (γ(k))

|γ(k)|
≤ a|α|
|γ(k)|

F (α)

|α|
+ CK

∑ ai|βi|
|γ(k)|

.
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Our claim is that a|α|
|γ(k)| will tend to t and that

∑ ai|βi|
|γ(k)| will tend to (1 − t). Consider the

equations
γ(k)

|γ(k)|
=

a|α|
|γ(k)|

α

|α|
+
∑ ai|βi|
|γ(k)|

βi
|βi|

and
p = t

α

|α|
+ (1− t)q.

Observe that

t =
|p− α

|α| |
|q − α|

.

If | γ(k)
|γ(k)| − p| < δ and | βi

|βi| − q| < δ for all i, then we see that

a|α|
|γ(k)|

≤
|p− α

|α| |+ δ

|q − α
|α| | − δ

≤ t+ ε(δ),

where ε(δ) goes to zero as δ goes to zero. Similarly we have that

(7)
a|α|
|γ(k)|

≥
|p− α

|α| | − δ
|q − α

|α| |+ δ
≥ t− ε′(δ),

where ε′(δ) goes to zero as δ goes to zero. Since

a|α|
|γ(k)|

+
∑ ai|βi|
|γ(k)|

= 1,

inequality (7) implies that ∑ ai|βi|
|γ(k)|

≤ 1− t+ ε′(δ).

The lemma follows.

C 3.4. – Let O and F be as in the statement of Lemma 3.2. Then for any
sequence α(k) in O ∩ Zn+1 such that |α(k)| → ∞ when k tends to infinity and such that
α(k)/|α(k)| converges to some point p in O the limit

lim
k→∞

F (α)

|α(k)|
exists and only depends on F and p.

Proof. – Let α(k) and β(k) be two such sequences converging to p. Let K ⊆ O be some
closed cone such that p ∈ K◦. Let us as in Lemma 3.3 write

p = tk
β(k)

|β(k)|
+ (1− tk)qk.

For any ε > 0, tk is greater than 1 − ε when k is large enough. By Lemma 3.3 we have that
for such k

lim sup
m→∞

F (α(m))

|α(m)|
≤ (1− tk)

F (β(k))

|β(k)|
+ εCK ≤

F (β(k))

|β(k)|
+ εCK + εC,

where C comes from the lower bound
F (β)

|β|
≥ C
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which holds for all β by assumption. Since ε tends to zero when k gets large we have that

lim sup
k→∞

F (α(k))

|α(k)|
≤ lim inf

k→∞

F (β(k))

|β(k)|
.

By letting α(k) = β(k) we get existence of the limit, and by symmetry the limit is unique.

P 3.5. – The function c[F ] on O ∩ Σ◦ defined by

c[F ](p) := lim
k→∞

F (α(k))

|α(k)|

for any sequence α(k) such that |α(k)| → ∞ and α(k)
|α(k)| → p, which is well-defined according

to Corollary 3.4, is convex, and therefore continuous.

Proof. – First we wish to show that c[F ] is lower semicontinuous. Let p be a point
in O ∩ Σ◦ and qn a sequence converging to p. From Lemma 3.3 it follows that

c[F ](p) ≤ lim inf
qn→p

c[F ](qn),

which is equivalent to lower semicontinuity.
Using this the lemma will follow if we show that for any two points p and q in O ∩ Σ◦ it

holds that

(8) 2c[F ](
p+ q

2
) ≤ c[F ](p) + c[F ](q).

Choose sequences α(k), β(k) ∈ O ∩ Nn+1 such that

α(k)

|α(k)|
→ p,

β(k)

|β(k)|
→ q,

and for simplicity assume that |α(k)| = |β(k)|. Then

α(k) + β(k)

|α(k) + β(k)|
→ p+ q

2
.

Hence

2c[F ](
p+ q

2
) = lim

k→∞

F (α(k) + β(k))

|α(k)|
≤ lim
k→∞

F (α(k))

|α(k)|
+ lim
k→∞

F (β(k))

|β(k)|
= c[F ](p) + c[F ](q).

Together with Theorem 2.2 these lemmas yield a general result for subadditive functions
on subsemigroups of Nn+1.

A function F defined on a cone O is said to be locally linearly bounded from below if for
each point p ∈ O there exists an open subcone O′ ⊆ O containing p and a linear function λ
on O′ such that F ≥ λ on O′.

T 3.6. – Let Γ ⊆ Nn+1 be a semigroup which generates Zn+1 as a group, and
let F be a subadditive function on Γ which is locally linearly bounded from below. Then for any
sequence α(k) ∈ Γ such that |α(k)| → ∞ and α(k)

|α(k)| → p ∈ Σ(Γ)◦ for some point p in the
interior of Σ(Γ), the limit

lim
k→∞

F (α(k))

|α(k)|
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exists and only depends on F and p. Furthermore the function

c[F ](p) := lim
k→∞

F (α(k))

|α(k)|
thus defined on Σ(Γ)◦ ∩ Σ◦ is convex.

Proof. – By Theorem 2.2 it follows that for any point p ∈ Σ(Γ)◦ there exist an open
convex cone O and a number M such that

(O \B(0,M)) ∩ Nn+1 ⊆ Γ.

We can also choose O such that F is bounded from below by a linear function on O.
Therefore the theorem follows immediately from Corollary 3.4 and Proposition 3.5.

We will show how this theorem can be seen as the counterpart to Theorem 2.2 for subad-
ditive functions.

D 3.7. – Let Γ be a subsemigroup of Nn+1 and let F be a subadditive function
of Γ which is locally linearly bounded from below. One defines the convex envelope ofF , denoted
by P (F ), as the supremum of all linear functions on Σ(Γ)◦ dominated by F , or which amounts
to the same thing, the supremum of all convex one-homogeneous functions on Σ(Γ)◦ dominated
by F .

T 3.8. – If Γ generates Zn+1 as a group, then for any subadditive function F on Γ

which is locally linearly bounded from below it holds that

F (α) = P (F )(α) + o(|α|)

for α ∈ Γ ∩ Σ(Γ)◦.

Proof. – That
F (α) ≥ P (F )(α)

follows from the definition. If we let c[F ] be defined on the whole of Σ(Γ)◦ by letting

c[F ](α) := |α|c[F ](
α

|α|
),

it follows from Theorem 3.6 that c[F ] will be convex and one-homogeneous. It will also be
dominated by F since by the subadditivity

F (α)

|α|
≥ F (kα)

|kα|
for all positive integers and therefore

F (α)

|α|
≥ lim
k→∞

F (kα)

|kα|
= c[F ](

α

|α|
).

It follows that
P (F ) ≥ c[F ].

For α ∈ Γ by definition we have that

P (F )(α) ≤ F (kα)

k
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for all positive integers k. At the same time

c[F ](α) = lim
k→∞

F (kα)

k
,

hence we get that
P (F )(α) ≤ c[F ](α)

for α ∈ Γ. Since both P (F ) and c[F ] are convex they are continuous, so by the homogeneity
we get that

P (F ) ≤ c[F ]

on Σ(Γ)◦, and therefore P (F ) = c[F ]. The theorem now follows from Theorem 3.6.

4. The Okounkov body of a line bundle

In this section, following Okounkov, we will show how to associate a semigroup to a line
bundle.

D 4.1. – An order < on Nn is additive if α < β and α′ < β′ implies that

α+ α′ < β + β′.

One example of an additive order is the lexicographic order where

(α1, . . . , αn) <lex (β1, . . . , βn)

iff there exists an index j such that αj < βj and αi = βi for i < j.
Let X be a compact projective complex manifold of dimension n, and L a holomorphic

line bundle, which we will assume to be big. Suppose we have chosen a point p in X, and
local holomorphic coordinates z1, . . . , zn around that point, and let ep ∈ H0(U,L) be a
local trivialization of L around p. Any holomorphic section s ∈ H0(X, kL) has a unique
representation as a convergent power series in the variables zi,

s

ekp
=
∑

aαz
α,

which for convenience we will simply write as

s =
∑

aαz
α.

We consider the lexicographic order on the multiindices α, and let v(s) denote the smallest
index α such that aα 6= 0.

D 4.2. – Let Γ(L) denote the set⋃
k≥0

(
v(H0(kL))× {k}

)
⊆ Nn+1.

It is a semigroup, since for s ∈ H0(kL) and t ∈ H0(mL)

(9) v(st) = v(s) + v(t).

The Okounkov body of L, denoted by ∆(L), is defined as the Okounkov body of the associated
semigroup Γ(L).
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We write ∆k(Γ(L)) simply as ∆k(L).

Let us recall some basic facts on Okounkov bodies.

L 4.3. – The number of points in ∆k(L) is equal to the dimension of the vector space
H0(kL).

This is part of Lemma 1.4 in [12].

L 4.4. – The Okounkov body of a big line bundle is bounded, hence compact.

This is Lemma 1.11 in [12].

L 4.5. – If L is a big line bundle, Γ(L) generates Zn+1 as a group. In fact Γ(L) con-
tains a translated unit simplex.

It is proved as part of Lemma 2.2 in [12].

R 4.6. – Note that the additivity of v as seen in equation (9) only depends on the
fact that the lexicographic order is additive. Therefore we could have used any total additive
order on Nn to define a semigroup Γ̃(L), and the associated Okounkov body ∆̃(L). We will
only consider the case where the Okounkov body ∆̃(L) is bounded, and the semigroup Γ̃(L)

generates Nn as a group.

L 4.7. – For any closed set K contained in the convex hull of ∆M (L) for some M ,
there exists a constant CK such that if

α ∈ K ∩ (
1

k
Z)n

and the distance between α and the boundary of K is greater than CK

k , then α ∈ ∆k(L).

Proof. – Let Γ be the semigroup generated by the elements (Mβ,M) where β ∈ ∆M (L),
and some unit simplex in Γ(L). Applying Lemma 2.3 gives the lemma.

L 4.8. – If K is relatively compact in the interior of ∆(L), there exists a number M
such that for k > M ,

α ∈ K ∩ (
1

k
Z)n

implies that α ∈ ∆k(L).

Proof. – This is a consequence of Lemma 4.7 by choosing M such that the distance
between K and the convex hull of ∆M (L) is strictly positive, therefore greater than CK

k for
large k.
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5. The Chebyshev transform

D 5.1. – A continuous hermitian metric h = e−ψ on a line bundle L is a
continuous choice of scalar product on the complex line Lp at each point p on the manifold.
If f is a local frame for L on Uf , then one writes

|f |2 = hf = e−ψf ,

where ψf is a continuous function on Uf . In this paper we let ψ denote the metric h = e−ψ.

The pair (L,ψ) of a line bundle L together with a continuous metric ψ will be called a
metrized line bundle.

We will show how to a given metrized line bundle (L,ψ) one associates a subadditive
function on the semigroup Γ(L).

For all (kα, k) ∈ Γ(L), let us denote by Aα,k the affine space of sections in H0(kL) of the
form

zkα + higher order terms.

Consider the supremum norm ||.||kψ on H0(kL) given by

||s||2kψ := sup
x∈X
{|s(x)|2e−kψ(x)}.

D 5.2. – We define the discrete Chebyshev transform F [ψ] on Γ(L) by

F [ψ](kα, k) := inf{ln ||s||2kψ : s ∈ Aα,k}.

A section s in Aα,k which minimizes the supremum norm is called a Chebyshev section.

L 5.3. – The function F [ψ] is subadditive.

Proof. – Let (kα, k) and (lβ, l) be two points in Γ(L), and denote by γ

γ :=
kα+ lβ

k + l
.

Thus we have that
(kα, k) + (lβ, l) = ((k + l)γ, k + l).

Let s be some section in Aα,k and s′ some section in Aβ,l. Since

ss′ = (zkα + higher order terms)(zlβ + higher order terms)

= z(k+l)γ + higher order terms,

we see that ss′ ∈ Aγ,k+l. We also note that the supremum of the product of two functions is
less than or equal to the product of the supremums, i.e.,

||ss′||2(k+l)ψ ≤ ||s||
2
kψ||s′||2lψ.

It follows that

inf{||s||2kψ : s ∈ Aα,k} inf{||s′||2lψ : s′ ∈ Aβ,l} ≤ inf{||t||2γ,k+l : t ∈ Aγ,k+l},

which gives the lemma by taking the logarithm.

L 5.4. – There exists a constant C such that for all (kα, k) ∈ Γ(L),

F [ψ](kα, k) ≥ C|(kα, k)|.
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Proof. – Let r > 0 be such that the polydisc D of radius r centered at p is fully con-
tained in the coordinate chart of z1, . . . , zn. We can also assume that our trivialization
ep ∈ H0(U,L) of L is defined on D, i.e., D ⊆ U . Let s be a section in Aα,k and let

s̃ :=
s

ekp
.

Denote by ψp the trivialization of ψ. Hence

|s|2e−kψ = |s̃|2e−kψp .

Since ψp is continuous,

e−ψp > A

on D for some constant A. This yields that

||s||2 ≥ sup
x∈D
{|s̃(x)|2e−kψp(x)} ≥ Ak sup

x∈D
{|s̃(x)|2}.

We claim that

sup
x∈D
{|s̃(x)|2} ≥ rk|α|.

Observe that

sup
z∈D
{|zkα|2} = rk|α|.

One now shows that

sup
z∈D
{|zkα|2} ≤ sup

z∈D
{|zkα + higher order terms|2}

by simply reducing it to the case of one variable where it is immediate. We get that

||s||2 ≥ Akrk|α|

and hence

F [ψ](kα, k) ≥ k lnA+ k|α| ln r ≥ C(k + k|α|),

if we choose C to be less than both lnA and ln r.

D 5.5. – We define the Chebyshev transform ofψ, denoted by c[ψ], as the convex
envelope of F [ψ] on Σ(Γ)◦. It is convex and one-homogeneous. We will also identify it with its
restriction to ∆(L)◦, the interior of the Okounkov body of L. Recall that by definition

∆(L) := Σ(L) ∩ (Rn × {1}).

P 5.6. – For any sequence (kα(k), k) in Γ(L), k →∞, such that

lim
k→∞

α(k) = p ∈ ∆(L)◦,

it holds that

c[ψ](p) = lim
k→∞

1

k
ln ||tα(k),k||2,

where tα(k),k is a Chebyshev section in Aα((k),k.
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Proof. – By Lemma 5.3 and Lemma 5.4 we can apply Theorem 3.8 to the function F [ψ]

and get that

c[ψ](p) = |(p, 1)|c[ψ](
(p, 1)

|(p, 1)|
) = |(p, 1)| lim

k→∞

F [ψ](kα, k)

k|(α(k), 1)|
=

= lim
k→∞

F [ψ](kα, k)

k
= lim
k→∞

1

k
ln ||tα(k),k||2.

L 5.7. – Let ψ be a continuous metric on L and consider the continuous metric on L
given by ψ + C for some constant C. Then it holds that

(10) F [ψ + C](kα, k) = F [ψ](kα, k)− kC,

and that
c[ψ + C] = c[ψ]− C

on ∆(L)◦.

Proof. – For any section s ∈ H0(kL) we have that

||s||2k(ψ+C) = e−kC ||s||2kψ,

therefore
ln ||s||2k(ψ+C) = ln ||s||2kψ − kC.

The lemma thus follows from the definitions.

L 5.8. – If ψ and ϕ are two continuous metrics such that

ψ ≤ ϕ,

then
F [ψ] ≥ F [ϕ],

and also
c[ψ] ≥ c[ϕ].

Proof. – Follows immediately from the definitions.

P 5.9. – For any two continuous metrics on L, ψ and ϕ, the difference of the
Chebyshev transforms, c[ψ]− c[ϕ], is continuous and bounded on ∆(L)◦.

Proof. – It is the difference of two convex hence continuous functions, and is therefore
continuous. Since ψ − ϕ is a continuous function on the compact space X, there exists a
constant C such that

ψ ≤ ϕ+ C.

Thus by Lemma 5.8 and Lemma 5.7 we have that

c[ψ] ≤ c[ϕ+ C] = c[ϕ]− C.

By symmetry we see that c[ψ]− c[ϕ] is bounded on ∆(L)◦.

For Okounkov bodies we have that

∆(mL) = m∆(L),

see e.g., [12]. The Chebyshev transforms also exhibit a homogeneity property.
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P 5.10. – Let ψ be a continuous metric on L. Consider the metricmψ onmL.
For any p ∈ ∆(L)◦ it holds that

c[mψ](mp) = mc[ψ](p).

Proof. – We observe that triviallyAmα,k = Aα,km, as affine subspaces ofH0(kmL), and
hence

F [mψ](kmα, k) = F [ψ](kmα, km).

Let α(k)→ p ∈ ∆(L)◦.We get that

c[mψ](mp) = |(mp, 1)|c[mψ](
(mp, 1)

|(mp, 1)|
) = |(mp, 1)| lim

k→∞

F [mψ](kmα(k), k)

k|(mα(k), 1)|

= lim
k→∞

F [ψ](kmα(k), km)

k
= mc[ψ](p).

6. The metric volume

Recall that the volume of a line bundle L is defined as

vol(L) := lim sup
k→∞

n!

kn
dim(H0(kL)).

Let (L,ψ) be a metrized line bundle. A metric version of the volume was introduced by
Berman-Boucksom in [1]. In [1] it was called the energy at equilibrium, but in this paper we
simply call it the metric volume because of the similarities it has with the ordinary volume
function.

Given a metric ψ one has a natural norm on the spaces of holomorphic sections H0(kL),
namely the supremum norm

||s||kψ,∞ := sup{|s(x)|e−kψ(x)/2 : x ∈ X}.

Let B∞(kψ) ⊆ H0(kL) be the unit ball with respect to this norm.

H0(kL) is a vector space, thus given a basis we can calculate the volume of B∞(kψ) with
respect to the associated Lebesgue measure. This will however depend on the choice of basis.
But given a reference metric ϕ one can compute the quotient

vol( B∞(kψ))

vol( B∞(kϕ))

and this will be independent of the choice of basis. The k-th L-bifunctional is defined as

Lk(ψ,ϕ) :=
n!

2kn+1
log

(
vol( B∞(kψ))

vol( B∞(kϕ))

)
.

D 6.1. – The metric volume of a metrized line bundle (L,ψ), denoted by
vol(L,ψ, ϕ), is defined as the limit

(11) vol(L,ψ, ϕ) := lim
k→∞

Lk(ψ,ϕ).
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The metric volume obviously depends on the choice ofϕ as a reference metric. But one can
easily check that the difference of metric volumes vol(L,ψ, ϕ)− vol(L,ψ′, ϕ) is independent
of the choice of reference (see [1]), so without an explicit reference the metric volume is well-
defined only up to a constant.

The definition of the metric volume is clearly reminiscent of the definition of the volume
of a line bundle.

Consider the case where we let ψ = ϕ+ 1. Since

||s||2k(ϕ+1) = e−k||s||2kϕ
we get that

B∞(k(ϕ+ 1)) = e−k B∞(kϕ)

and thus by the homogeneity of the Lebesgue volume

Lk(ϕ+ 1, ϕ) =
n!

2kn+1
log ek2Nk ,

where
Nk = dimCH

0(kL).

Thus the right hand side is equal to

n! dimCH
0(kL)

kn
,

which converges to the volume of L by definition.

In [1] Berman-Boucksom prove that the limit (1) exists. They do this by proving that it
actually converges to a certain integral over the space X involving mixed Monge-Ampère
measures related to the metrics. This will be described in Section 9.

We now state our main result.

T 6.2. – Let ψ and ϕ be continuous metrics on L. Then it holds that

(12) vol(L,ψ, ϕ) = n!

∫
∆(L)◦

(c[ϕ]− c[ψ])dλ,

where dλ denotes the Lebesgue measure on ∆(L)◦.

The proof of Theorem 6.2 will depend on the fact that one can also use L2-norms to
compute the Chebyshev transform of a continuous metric. This will be explained in the next
section. It also yields a new proof of the existence of the limit (11).

7. Bernstein-Markov norms

D 7.1. – Let µ be a positive measure on X, and ψ a continuous metric on a line
bundle L. One says that µ satisfies the Bernstein-Markov property with respect to ψ if for each
ε > 0 there exists C = C(ε) such that for all non-negative k and all holomorphic sections
s ∈ H0(kL) we have that

(13) sup
x∈X
{|s(x)|2e−kψ(x)} ≤ Ceεk

∫
X

|s|2e−kψdµ.
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If ψ is a continuous metric on L and µ a Bernstein-Markov measure on X with respect
to ψ, we will call the L2-norm on H0(kL) defined by

||s||2kψ,µ :=

∫
X

|s|2e−kψdµ

a Bernstein-Markov norm. We will also call the pair (ψ, µ) a Bernstein-Markov pair
on (X,L).

For any continuous metric ψ on L there exist measures µ such that (ψ, µ) is a Bernstein-
Markov pair. In fact any smooth volume form dV on X satisfies the Bernstein-Markov
property with respect to any continuous metric, see Lemma 3.2 in [1].

We want to be able to use a Bernstein-Markov norm instead of the supremum norm to
calculate the Chebyshev transform of a continuous metric ψ.

We pick a positive measure µ with the Bernstein-Markov property with respect to ψ. For
all (kα, k) ∈ Γ(L), let tα,k be the section in H0(kL) of the form

zkα + higher order terms

that minimizes the L2-norm

||tα,k||2kψ,µ :=

∫
X

|tα,k|2e−kψdµ.

It follows that

< tα,k, tβ,k >kψ= 0

for α 6= β, since otherwise the sections tα,k would not be minimizing. Hence

{tα,k : α ∈ ∆k(L)}

is an orthogonal basis for H0(kL) with respect to ||.||kψ,µ. Indeed they are orthogonal, and
by Lemma 4.3 we have that

#{tα,k : α ∈ ∆k(L)} = #∆k(L) = dim(H0(kL)),

therefore it must be a basis.

D 7.2. – We define the discrete Chebyshev transform F [ψ, µ] of (ψ, µ) on Γ by

F [ψ, µ](kα, k) := ln ||tα,k||2kψ,µ.

We also denote 1
kF [ψ, µ](kα, k) by ck[ψ, µ](α).

We will sometimes write ck[ψ] when we mean ck[ψ, µ], considering µ as fixed.

P 7.3. – For any sequence (kα(k), k) in Γ(L), k →∞, such that

lim
k→∞

α(k) = p ∈ ∆(L)◦,

it holds that

c[ψ](p) = lim
k→∞

ck[ψ, µ](α(k)).
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Proof. – For a point (kα, k) ∈ Γ, let tα,k be the minimizer with respect to the Bernstein-
Markov norm. By the Bernstein-Markov property we get that

||tα,k||2sup ≤ Ceεk||t
µ
α,k||

2
µ,

and hence

(14) F [ψ](kα, k) ≤ F [ψ, µ](kα, k) + lnC + εk.

Let s be any section in Aα,k. We have that by definition

||tα,k||2µ ≤ ||s||2µ ≤ µ(X)||s||2sup,

so

(15) F [ψ, µ](kα, k) ≤ F [ψ](kα, k) + lnµ(X).

Equations (14) and (15) put together give that

(16) F [ψ](kα, k)− lnC − εk ≤ F [ψ, µ](kα, k) ≤ F [ψ](kα, k) + lnµ(X).

It follows that

lim
k→∞

F [ψ, µ](kα(k), k)

k
= lim
k→∞

F [ψ](kα(k), k)

k
= c[ψ](p),

which gives the proposition.

L 7.4. – Let ψ be a continuous metric on L and consider the continuous metric on L
given by ψ + C for some constant C. Then it holds that

F [ψ + C, µ](kα, k) = F [ψ, µ](kα, k)− kC.

Proof. – This follows exactly as in the case of the supremum norm, see proof of
Lemma 5.7.

P 7.5. – Let (ψ, µ) and (ϕ, ν) be two Bernstein-Markov pairs, and assume that

ψ ≤ ϕ.

Then for every ε > 0 there exists a constant C ′ such that

F [ψ, µ](kα, k) ≥ F [ϕ, ν](kα, k)− C ′ − εk.

Proof. – Let tψα,k and tϕα,k be the minimizing sections with respect to the Bernstein-
Markov norms ||.||kψ,µ and ||.||kϕ respectively. From equation (16) and Proposition 7.5 we
get that

F [ψ, µ](kα, k) ≥ F [ψ](kα, k)− lnC − εk ≥ F [ϕ](kα, k)− lnC − εk
≥ F [ϕ, ν]− ln ν(X)− lnC − εk.

P 7.6. – For any two Bernstein-Markov pairs on (X,L), (ψ, µ) and (ϕ, ν) the
difference of the discrete Chebyshev transforms

ck[ψ, µ]− ck[ϕ, ν]

is uniformly bounded on ∆(L)◦.
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Proof. – By symmetry it suffices to find an upper bound. Let C̃ be a constant such that
ψ ≤ ϕ+ C̃. By Lemma 7.4 and Proposition 7.5 we get that

ck[ψ, µ](α) =
1

k
F [ψ, µ](kα, k) ≥ 1

k
F [ϕ+ C, ν](kα, k)− C ′

k
− ε

=
1

k
F [ϕ, ν](kα, k)− C − C ′

k
− ε = ck[ϕ, ν](α)− C − C ′

k
− ε.

The proposition follows.

Finally let us consider L functionals using Bernstein-Markov norms instead of supremum
norms.

Let B2
(µ, kϕ) denote the unit ball inH0(kL) with respect to the norm

∫
X
|.|2e−kϕdµ, i.e.,

B2
(µ, kϕ) := {s ∈ H0(kL) :

∫
X

|s|2e−kϕdµ ≤ 1}.

Consider the quotient of the volume of two unit balls

vol B2
(µ, kϕ)

vol B2
(ν, kψ)

with respect to the Lebesgue measure on H0(kL), where by some linear isomorphism we
identifyH0(kL) with CN ,N = h0(kL). In fact the quotient of the volumes does not depend
on how we choose to represent H0(kL).

L 7.7. – We have

(17)
vol B2

(µ, kϕ)

vol B2
(ν, kψ)

=
det(

∫
sis̄je

−kψdν)ij
det(

∫
sis̄je−kϕdµ)ij

,

where {si} is any basis for H0(kL).

Proof. – First we show that the right hand side does not depend on the basis. Let {ti} be
some orthonormal basis with respect to

∫
|.|2e−kψdν, and let A = (aij) be the matrix such

that
si =

∑
aijtj .

Then we see that

(18)
∫
sis̄je

−kψdν =

∫
(
∑

aiktk)(
∑

ajltl)e
−kψdν =

∑
aikājk.

Therefore by linear algebra we get that

(19) det

(∫
sis̄je

−kψdν

)
ij

= det(AA∗) = |detA|2.

If we let {s′i} be a new basis,

s′i =
∑

bijsj , B = (bij),

then

det

(∫
s′is̄
′
je
−kψdν

)
ij

= |detB|2det

(∫
sis̄je

−kψdν

)
ij

.

Since |detB|2 also will show up in the denominator, we see that the quotient does not depend
on the choice of basis.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1134 D. WITT NYSTRÖM

Let as above {ti} be an orthonormal basis with respect to
∫
|.|2e−kψdν and let {si} be an

orthonormal basis with respect to
∫
|.|2e−kϕdµ and let

si =
∑

aijtj , A = (aij).

It is clear that
vol B2

(µ, kϕ)

vol B2
(ν, kψ)

= |detA|2.

Note that the square in the right-hand side comes from the fact that we take the determinant
of A as a complex matrix. By equations (18) and (19) we also have that

det

(∫
sis̄je

−kψdν

)
ij

= |detA|2,

and since {si} were chosen to be orthonormal

det

(∫
sis̄je

−kϕdµ

)
ij

= 1.

The lemma follows.

D 7.8. – Let (ϕ, µ) and (ψ, ν) be two Bernstein-Markov pairs on (X,L). The
L2-version of the Donaldson L bifunctional, denoted by Lk,2, is defined as

Lk,2(ϕ,ψ) :=
n!

2kn+1
ln

(
vol B2

(µ, kϕ)

vol B2
(ν, kψ)

)
.

To avoid confusion, let us here denote the k-th L bifunctional using the supremum norm
by Lk,∞.

L 7.9. – For any two Bernstein-Markov pairs (ϕ, µ) and (ψ, ν) we have that

lim
k→∞

Lk,2(ϕ,ψ) = lim
k→∞

Lk,∞(ϕ,ψ)

if either limit exists.

Proof. – By the Bernstein-Markov property we get that for any ε > 0 there exists a
constant C such that

C−1e−kε B2
(µ, kϕ) ⊆ B∞(kϕ) ⊆ ||µ||B2

(µ, kϕ).

LetNk denote the complex dimension ofH0(kL). Because the Lebesgue volume onH0(kL)

is 2Nk-homogeneous we get that

(C−1e−kε)2Nkvol( B2
(µ, kϕ)) ≤ vol( B∞(kϕ)) ⊆ ||µ||2Nkvol( B2

(µ, kϕ)).

SinceNk ≤ C ′kn for some constant C ′ and in the expression for Lk we divide the logarithm
of the volume by k−n−1 we get that the two L functionals are asymptotically equal.
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8. Proof of main theorem

Here follows the proof of Theorem 6.2.

Proof. – We let {si} be a basis for H0(kL) such that

si = zkαi + higher order terms,

where αi ∈ ∆k(L) is some ordering of ∆k(L). Let

si =
∑

aijt
ψ
αj ,k

, A = (aij).

From the proof of Lemma 7.7 we see that

det

(∫
X

sis̄je
−kψdν

)
ij

= |detA|2det

(∫
X

tψαi,k
t̄ψαj ,k

e−kψdν

)
ij

= |detA|2
∏

α∈∆k(L)

||tψα,k||
2,

since tψα,k constitute an orthogonal basis. Also since the lowest term of si is zkαi we must
have that aij = 0 for j < i and aii = 1. Hence detA = 1, and consequently

det

(∫
X

sis̄je
−kψdν

)
ij

=
∏

α∈∆k(L)

||tψα,k||
2.

From equation (17) we get that

Lk,2(ϕ,ψ) =
n!

kn

∑
α∈∆k(L)

(ck[ψ](α)− ck[ϕ](α)).

For all k let c̃k[ψ] denote the function on ∆(L)◦ assuming the value of ck[ψ] in the nearest
lattice point of ∆k(L) (or the mean of the values if there are multiple lattice points at equal
distance). Then

n!

kn

∑
α∈∆k(L)

(ck[ψ](α)− ck[ϕ](α)) = n!

∫
∆(L)◦

(c̃k[ψ]− c̃k[ϕ])dλ+ ε(k),

where the error term ε(k) goes to zero as k tends to infinity since by Khovanskii’s theorem we
have that ∆k(L) fills out more and more of ∆(L)◦ ∩ ((1/k)Z)n. By Propositions 7.3 and 7.6
we can thus use dominated convergence to conclude that

lim
k→∞

Lk,2(ϕ,ψ) = n!

∫
∆(L)◦

(c[ψ]− c[ϕ])dλ.

Combined with Lemma 7.9 this proves the theorem.
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9. The Monge-Ampère energy

In [1] Berman-Boucksom prove that the limit (1) exists. They do this by proving that it
actually converges to a certain integral over the space X involving mixed Monge-Ampère
measures related to the metrics. In order to describe this we need to introduce some concepts
in pluripotential theory.

One can define a partial order on the space of metrics to a given line bundle. Let ψ <w ϕ
if

ψ ≤ ϕ+O(1)

on X. If a metric is maximal with respect to the order <w, it is said to have minimal
singularities. It is a fact that a metric with minimal singularities on a big line bundle is locally
bounded on a dense Zariski-open subset ofX, see Section 1.4 in [5]. On an ample line bundle,
the metrics with minimal singularities are exactly those who are locally bounded.

Let ψ and ϕ be two locally bounded psh-metrics. By MAm(ψ,ϕ) we will denote the
positive current

m∑
j=0

(ddcψ)j ∧ (ddcϕ)m−j ,

and by MA(ψ) we will mean the positive measure (ddcψ)n.

D 9.1. – Ifψ andϕ are two psh metrics with minimal singularities, then we define
the Monge-Ampère energy of ψ with respect to ϕ as

E(ψ,ϕ) :=
1

n+ 1

∫
Ω

(ψ − ϕ) MAn(ψ,ϕ),

where Ω is a dense Zariski-open subset of X on which ψ and ϕ are locally bounded.

R 9.2. – In [1] Berman-Boucksom use the notation E(ψ)− E(ϕ) for what we denote
by E(ψ,ϕ). Thus they consider E(ψ) as a functional defined only up to a constant.

An important aspect of the Monge-Ampère energy (and a motivation for calling it an
energy) is its cocycle property, i.e., that

E(ψ,ϕ) + E(ϕ,ψ′) + E(ψ′, ψ) = 0

for all metrics ψ,ϕ and ψ′. This is a reformulation of Corollary 4.2 in [1].

D 9.3. – If ψ is a continuous metric and K a compact subset of X, the psh
envelope of ψ with respect to K, PK(ψ), is given by

PK(ψ) := sup{ϕ : ϕ psh metric on L, ϕ ≤ ψ on K}.

For any ψ and K, as one may check, PK(ψ) will be psh and have minimal singularities.
When K = X, we will simply write P (ψ) for PX(ψ).

If ψ and ϕ are continuous metrics one can consider the composed functional E ◦ P :

E ◦ P (ψ,ϕ) :=
1

n+ 1

∫
Ω

(P (ψ)− P (ϕ))MAn(P (ψ), P (ϕ)).

We refer the reader to [5] for a more thorough exposition on Monge-Ampère measures
and psh envelopes.
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Theorem A in [1] states that for Bernstein-Markov pairs the Donaldson Lk bifunctional
converges to the composed functional E ◦ P . Combined with our main result it yields the
formula

(20)
1

n+ 1

∫
Ω

(P (ψ)− P (ϕ))MAn(P (ψ), P (ϕ)) = n!

∫
∆(L)◦

(c[ϕ]− c[ψ])dλ.

If ψ and ϕ happen to be psh then we get that

(21) E(ψ,ϕ) = n!

∫
∆(L)◦

(c[ϕ]− c[ψ])dλ.

10. Previous results

Some instances of formula (12) are previously known. Here follow three such instances.

10.1. The volume as a metric volume

In Section 6 we observed that for any metrized line bundle (L,ψ) we have that

(22) vol(L,ψ + 1, ψ) = vol(L).

Any minimizing section with respect to
∫
|.|2e−kψ will also minimize the norm∫

|.|2e−k(ψ+1) =

∫
|.|2e−kϕ.

It follows that c[ψ]− c[ϕ] is identically one. Therefore

(23)
∫

∆(L)◦
(c[ψ]− c[ϕ])dλ = volRn(∆(L)).

Equation (23) and Theorem 6.2 then give us that

vol(L) = n!volRn(∆(L)).

We have thus recovered Theorem A in [12].

10.2. Chebyshev constants and the transfinite diameter

Let K be a regular compact set in C. We let ||.||K denote the norm which takes the
supremum of the absolute value on K. Let Pk denote the space of polynomials in z with
zk as highest degree term. Let for any k

Yk(K) := inf{||p||K : p ∈ Pk}.

One defines the Chebyshev constant C(K) of K as the following limit

C(K) := lim
k→∞

(Yk(K))1/k.

Let {xi}ki=1 be a set of k points in K. Let dk({xi}) denote the product of their mutual
distances, i.e.,

dk({xi}) :=
∏
i<j

|xi − xj |.
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One calls the points {xi} Fekete points if among the set of k-tuples of points in K they
maximize the function dk. Define Tk(K) as dk({xi}) for any set of Fekete points {xi}ki=1.
Then the transfinite diameter T (K) of K is defined as

T (K) := lim
k→∞

(Tk(K))1/(k
2).

We will now think of C as imbedded in the complex projective space P1. Let Z0, Z1 be a
basis for H0( O(1)), therefore [Z0, Z1] are homogeneous coordinates for P1. Let

z :=
Z1

Z0
and w :=

Z0

Z1
.

Let p denote the point at infinity

[0, 1].

Then w is a holomorphic coordinate around p, and Z1 is a local trivialization of the line
bundle O(1) around p. Thus we will identify a section Zα0 Z

k−α
1 ∈ H0( O(k)) with the

polynomialwα as well as with zk−α. This means that the Okounkov body ∆( O(1)) of O(1) is
the unit interval [0, 1] in R. We observe that a section s ∈ H0( O(k)) lies in Pi as a polynomial
in z if and only if

s = wk−i + higher order terms.

For a section s let s̃ denote the corresponding polynomial in z. Consider the metric PK(ln |Z0|2).
It will be continuous since K is assumed to be regular (see e.g., [1]). Then we have the fol-
lowing lemma.

L 10.1. – For any α ∈ [0, 1], i.e., that lies in the Okounkov body of O(1), we have
that

c[PK(ln |Z0|2)](α) = 2(1− α) lnC(K).

Proof. – By basic properties of the projection operator PK (see [1]) it holds that for any
section s ∈ H0( O(k))

(24) sup
K
{|s|2e−k ln |Z0|2} = sup

P1

{|s|2e−kPK(ln |Z0|2)}.

Since the conversion to the z-variable means letting Z0 be identically one, we also have that

(25) sup
K
{|s|2e−k ln |Z0|2} = sup

K
{|s̃|2} = ||s̃||2K .

We see that s ∈ Aα,k iff s̃ = zk−kα + lower order terms. Hence

F [PK(ln |Z0|2)](kα, k) = 2 lnYkα−k(K),

and

c[PK(ln |Z0|2)](α) = lim
k→∞

F [PK(ln |Z0|2)](kα, k)

k
= lim
k→∞

2

k
lnYkα−k(K)

= lim
k→∞

2(1− α) ln(Yk−kα(K))k−kα = 2(1− α) lnC(K).
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Let K and K ′ be two regular compact subsets of C. From Theorem 6.2 and Lemma 10.1
we get that

E(PK′(ln |Z0|2), PK(ln |Z0|2))

=

∫
(0,1)

(c[PK(ln |Z0|2)]− c[PK′(ln |Z0|2)])dλ(α)

=

∫
(0,1)

(2(1− α) lnC(K)− 2(1− α) lnC(K ′)) dλ(α)

= lnC(K)− lnC(K ′).

On the other hand it follows from Corollary A in [1] that

(26) lnT (K)− lnT (K ′) = E(PK′(ln |Z0|2), PK(ln |Z0|2)).

Thus by Theorem 6.2, using Lemma 10.1 and equation (26) we get that

lnT (K)− lnT (K ′) = lnC(K)− lnC(K ′).

In fact it is easy to check that for the unit disc D, T (D) = C(D) = 1, so we recover the
classical result in potential theory that the transfinite diameter T (K) and the Chebyshev
constant C(K) are equal.

For a thorough exposition on the subject of the transfinite diameter and capacities of
compacts in C we refer the reader to the book [16] by Saff-Totik.

10.3. Invariant metrics on toric varieties

Let X be a smooth projective toric variety. We will view X as a compactified (C∗)n,
such that the torus action on X via this identification corresponds to the usual torus action
on (C∗)n. As is well-known, there is a polytope ∆ naturally associated to the embed-
ding (C∗)n ⊆ X. We assume that ∆ lies in the non-negative orthant of Rn. There is a line
bundle L∆ with a trivialization on (C∗)n such that

∆k(L∆) = ∆ ∩ (
1

k
Z)n,

and any section s ∈ H0(kL∆) can in fact be written as a linear combination of the monomi-
als zα where

α ∈ k∆ ∩ Zn.

Let dV be a smooth volume form on X invariant under the torus action. Then it holds
that for any torus invariant metric ψ,∫

X

zαz̄βe−kψdV = 0

when α 6= β. This follows from Fubini since trivially the monomials are orthogonal with
respect to the Lebesgue measure on e.g., tori. Because of this for any torus invariant metric ψ
the minimizing sections tψa,k are given by zkα, and consequently

ck[ψ, dV ](α) =
1

k
ln

∫
X

|zkα|2e−kψdV.

Assume for simplicity that ψ is positive.
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L 10.2. – For any strictly positive torus invariant metric ψ we have that

c[ψ](α) = ln

(
sup
z∈Cn

{|zα|2e−ψ(z)}
)
.

Proof. – We have that∫
X

|zkα|2e−kψdV ≤ dV (X) sup
X
{|zkα|2e−kψ} = dV (X)

(
sup
z∈X
{|zα|2e−ψ(z)}

)k
,

which yieds the inequality

c[ψ](α) ≤ ln

(
sup
z∈X
{|zα|2e−ψ(z)}

)
.

By the Bernstein-Markov property of dV with respect to ψ we get that∫
X

|zkα|2e−kψdV ≥ Ce−εk sup
z∈X
{|zkα|2e−kψ(z)} = Ce−εk

(
sup
z∈X
{|zα|2e−ψ(z)}

)k
.

Using Proposition 7.3 it follows from this that

c[ψ](α) = ln

(
sup
z∈X
{|zα|2e−ψ}

)
.

Since ψ is a metric on L∆ it obeys certain growth conditions in Cn. In fact for α lying in the
interior of ∆ = ∆(L∆) it holds that

sup
X
{|zα|2e−ψ(z)} = sup

z∈Cn

{|zα|2e−ψ(z)},

and the lemma follows.

R 10.3. – If we do not assume that the metric ψ is strictly positive, the lemma still
holds if in the supremum we replace ψ with the projection P (ψ).

Let Θ denote the map from (C∗)n to Rn that maps z to (ln |z1|, . . . , ln |zn|). Since we
assumedψ to be torus invariant, the functionψ◦Θ−1 is well-defined onRn. We will denoteψ◦
Θ−1 by ψΘ. Since ψ was assumed to be psh, it follows that ψΘ will be convex on Rn. Recall
the definition of the Legendre transform. Given a convex function g on Rn the Legendre
transform of g, denoted g∗, evaluated in a point p ∈ Rn is given by

g∗(p) := sup
x∈Rn

{〈p, x〉 − g(x)}.

Observe that

(27) ln
(
(|zα|2e−ψ) ◦Θ−1(x)

)
= 2〈α, x〉 − ψΘ(x).

Thus by equation (27) and Lemma 10.2 we get that

c[ψ](α) = 2

(
ψΘ

2

)∗
(α).

Formula (21) now gives us that for any two invariant metrics ψ and ϕ on L it holds that

E(ψ,ϕ) = 2n!

∫
∆◦

(ϕΘ

2

)∗
−
(
ψΘ

2

)∗
dλ,
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which is well-known in toric geometry. In fact this can be derived from the fact that the real
Monge-Ampère measure of a convex function is the pullback of the Lebesgue measure with
respect to the gradient of the convex function.

11. The Chebyshev transform on the zero-fiber

Let us assume that
z1 = 0

is a local equation around p for an irreducible variety which we denote by Y . Let H0(X|Y, kL)

denote the image of the restriction map from H0(X, kL) to H0(Y, kL|Y ), and let Γ(X|Y,L)

denote the semigroup ⋃
k≥0

(
v(H0(X|Y, kL))× {k}

)
⊂ Nn.

Note that since z2, . . . , zn are local coordinates on Y , v(H0(X|Y, kL)) will be a set of vectors
in Nn−1.

D 11.1. – The restricted Okounkov body ∆X|Y (L) is defined as the Okounkov
body of the semigroup Γ(X|Y,L).

L 11.2. – If Y is not contained in the augmented base locus B+(L), then
Γ(X|Y, L) generates Zn as a group.

This is part of Lemma 2.16 in [12].

R 11.3. – The augmented base locusB+(L) of L is defined as the base locus of any
sufficiently small perturbation L− εA, where A is some ample line bundle.

Assume now that Y is not contained in the augmented base locus B+(L). We will show
that the Chebyshev transform c[ψ] can be extended to the zero fiber,

∆(L)0 := ∆(L) ∩
(
{0} × Rn−1

)
,

in two different ways.
From Theorem 4.24 in [12] we get the following fact,

(28) ∆(L)0 = ∆X|Y (L).

Note that since the Okounkov body lies in the positive orthant of Rn, ∆(L)0 is a part of
the boundary of ∆(L), hence the Chebyshev transform of a continuous metric is a priori not
defined on the zero-fiber. Nevertheless, we want to show that one can extend the Chebyshev
transform to the interior of zero-fiber ∆(L)0 in two different ways.

First of all by restricting the discrete Chebyshev transform F [ψ] on Γ(L) to Γ(X|Y, L) we
get in the ordinary way a convex function on the interior of ∆(L)0, thanks to Lemma 11.2
and (28). We will call this function the restricted Chebyshev transform and denote it
by cX|Y [ψ].

It is not clear that cX|Y [ψ] gives a continuous extension of c[ψ]. However we will show
that there is a continuous extension of c[ψ] to the interior of the zero fiber which is at least
bounded from above by cX|Y [ψ].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1142 D. WITT NYSTRÖM

To do this, we need to know how Γ behaves near this boundary, something which Theo-
rem 2.2 does not tell us anything about.

L 11.4. – Assume Y is not contained in the augmented base locus of L, and let p be
any point in the interior of ∆(L)0. Let ΣZ

n+1 denote the unit simplex in Zn+1, ΣR
n−1 the unit

simplex inRn−1, and letS denote the simplex {0}×ΣR
n−1×{0}. Then Γ(L) contains a translated

unit simplex (α, k) + Σn+1 such that (kp, k) lies in the interior of the (n− 1)-simplex

(α, k) + S

(i.e., interior with respect to the Rn−1 topology).

Proof. – By Lemma 11.2 we may use Lemma 2.3 in combination with equation (28) to
reach the conclusion that for large k, there are sections sk such that (p, k) lies in the interior
of (v(sk), k) + S with respect to the Rn−1 topology. We may write L as a difference of two
very ample divisors A and B. We may choose B such that ∆1(B) contains Σn in Zn, and A
such that ∆1(A) contains origo. Now

kL = B + (kL−B).

Since L is big, for k large we can find sections s′k ∈ H0(kL − B) such that v(s′k) = v(sk).
We get that

(v(sk), k) + Σn ⊆ Γ(L),

by multiplying s′k by the sections of B corresponding to the points in the unit simplex
Σn ⊆ ∆1(B). Also observe that

(k + 1)L = A+ (kL−B).

Now by multiplying s′k with the section of A corresponding to origo in ∆1(A) we get

(v(s′k), k) + (0, . . . , 0, 1) ⊆ Γ(L).

Since

Σn × {0} ∪ (0, . . . , 0, 1) = Σn+1

we get

(v(s′k), k) + Σn+1 ⊆ Γ(L).

R 11.5. – The proof is very close to the argument in [12] which shows the existence
of a unit simplex in Γ(L), whenL is big. The difference here is that we need to control the position
of the unit simplex, but the main trick of writing L as a difference of two very ample divisors is
the same.

L 11.6. – Let p be as in the statement of Lemma 11.4. Then there exists a neighbor-
hood U of p such that if we denote the intersection U ∩∆(L) by Ũ , for k large it holds that

(kŨ , k) ∩ Zn+1 ⊆ Γ(L).
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Proof. – Let (α,m) + ΣZ
n+1 ⊆ Γ(L) be as in the statement of Lemma 11.4, and let

DZ ⊆ Γ(L) denote the set

DZ := (α,m) + ΣZ
n × {0} = (α+ ΣZ

n)× {m}.

Let also DR denote the set

DR := (α+ ΣR
n)× {m}.

Since trivially

ΣZ
n + · · ·+ ΣZ

n︸ ︷︷ ︸
k

= (kΣR
n) ∩ Zn,

we have that

(kDR, km) ∩ Zn+1 = DZ + · · ·+DZ︸ ︷︷ ︸
k

⊆ Γ(L).

Therefore the lemma holds when k is a multiple of m. Furthermore, since m and m+ 1 are
relatively prime, if k is greater than m(m+ 1) we can write

k = k1m+ k2(m+ 1),

where both k1 and k2 are non-negative, and k2 ≤ m. Thus we consider the set

DZ + · · ·+DZ︸ ︷︷ ︸
k1

+k2(α,m+ 1) ⊆ Γ(L).

Because of the bound k2 ≤ m, and since (α,m + 1) lies on the zero fiber, for a neighbor-
hood Ũ of p, when k gets large we must have that

(kŨ , k) ∩ Zn+1 ⊆ DZ + · · ·+DZ︸ ︷︷ ︸
k1

+k2(α,m+ 1) ⊆ Γ(L).

C 11.7. – Assume Y is not contained in the augmented base locus of L. Then
the Chebyshev function c[ψ] has a continuous extension to the interior of the zero-fiber, ∆(L)0,
and it is continuous and convex on its extended domain ∆(L)◦ ∪∆(L)◦0.

Proof. – Using Lemma 11.6 and the subadditivity ofF [ψ] yields that c[ψ] is bounded in a
neighborhood of any point p in the interior of ∆(L)0. It is an elementary fact that any convex
function defined on an open half space which is locally bounded near the boundary has a
convex continuous extension to the boundary. Therefore it follows that c[ψ] has a convex
continuous extension to the interior of ∆(L)0.

L 11.8. – Assume L is ample, and ψ is a continuous metric. Then for any regular
compact set K it holds that the projection PK(ψ) is also continuous. In particular, since X is
regular, P (ψ) is continuous when L is ample.

Proof. – See, e.g., [1].

We will have use for the Ohsawa-Takegoshi extension theorem. We choose to record one
version (see e.g., [7]).
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T 11.9. – Let L be a holomorphic line bundle and let S be a divisor. Assume that
L and S have metrics ΨL and ΨS respectively satisfying

ddcΨL ≥ (1 + δ)ddcΨS + ddcΨKX
,

where ΨKX
is some smooth metric on the canonical bundle KX . Assume also that

ddcΨL ≥ ddc(ΨS + ΨKX
).

Then any holomorphic section t̃ of the restriction ofL toS extends holomorphically to a section t
of L over X satisfying ∫

X

|t|2e−ΨLωn ≤ Cδ
∫
S

|t̃|2e−ΨL
dS

|ds|2e−ΨS
.

Here ωn is a smooth volume form on X and dS is a smooth volume form on S.

L 11.10. – Suppose L is ample. Let A be an ample line bundle, with a holomorphic
section s such that locally s = z1. Also assume that the zero-set of s, which we will denote by Y ,
is a smooth submanifold. Then for all α ∈ ∆X|Y (L) we have that

(29) cX|Y [ϕ](α) = cY [P (ϕ)|Y ](α).

Proof. – We may choose z̃1 = z2, . . . , z̃n−1 = zn as holomorphic coordinates on Y

around p. We consider the discrete Chebyshev transforms of the restrictions of P (ϕ)

and P (ψ) to Y . Since L is ample, by Lemma 11.8 P (ϕ) and P (ψ) are continuous, there-
fore the restrictions will also be continuous psh-metrics on L|Y , therefore the Chebyshev
transforms cY [P (ϕ)|Y ] and cY [P (ψ)|Y ] are well-defined.

We note that if t ∈ H0(X, kL) and

t = zk(0,α) + higher order terms,

the restriction of t to Y will be given by

t|Y = z̃kα + higher order terms.

Furthermore

sup
Y
{|t|Y |2e−kP (ϕ)} ≤ sup

X
{|t|2e−kP (ϕ)}.

This gives the inequality

cX|Y [ϕ](α) ≥ cY [P (ϕ)|Y ](α),

by taking t to be some minimizing section with respect to the supremum norm on X.
For the opposite inequality we use Proposition 7.3 which says that one can use Bernstein-

Markov norms to compute the Chebyshev transform.
If t̃ ∈ H0(Y, kL|Y ),

t̃ = z̃kα + higher order terms,

then if k is large enough there exists a section t ∈ H0(X, kL) such that t|Y = t̃. This
is because we assumed L to be ample, so we have extension properties (by e.g., Ohsawa-
Takegoshi). We observe that any such extension must look like

t = zk(0,α) + higher order terms,
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because if we had that
t = zk(β1,β) + higher order terms

with β1 > 0, then since all higher order terms also restrict to zero,

tY = 0,

which is a contradiction.
Let Ψ be some smooth strictly positive metric on L. Then for some m

ddcmΨ > (1 + δ)ddcΨA + ddcΨKX

and
ddcmΨ > ddcΨA + ddcΨKX

,

where ΨA and ΨKX
are metrics onA andKX respectively. We have that ddcP (ϕ) ≥ 0, hence

ddc((k −m)P (ϕ) +mΨ) > (1 + δ)ddcΨA + ddcΨKX

and
ddc((k −m)P (ϕ) +mΨ) > ddcΨA + ddcΨKX

for all k > m. Since P (ϕ) is continuous hence locally bounded, we also have that for some
constant C,

Ψ− C < P (ϕ) < Ψ + C.

We can apply Theorem 11.9 to these metrics, and get that for large k, given a t̃ ∈ H0(Y, kL|Y )

there exists an extension t ∈ H0(X, kL) such that∫
X

|t|2e−kP (ϕ)ωn ≤ emC
∫
X

|t|2e−(k−m)P (ϕ)−mΨdµ

≤ emCCδ
∫
Y

|t̃|2e−(k−m)P (ϕ)−mΨdν ≤ e2mCCδ

∫
Y

|t̃|2e−kP (ϕ)dν,

whereCδ is constant only depending on δ and dν is a smooth volume form on Y . By letting t̃
be the minimizing section with respect to

∫
Y
|.|2e−kP (ϕ)dν and using Proposition 7.3 we get

that
cX|Y [ϕ](α) ≤ cY [P (ϕ)|Y ](α),

since ∫
X

|t|2e−kϕωn ≤
∫
X

|t|2e−kP (ϕ)ωn.

P 11.11. – Let L, A and Y be as in the statement of Lemma 11.10. Then we
have that

vol(L|Y , P (ϕ)|Y , P (ψ)|Y ) = (n− 1)!

∫
∆(L)0

(cX|Y [ψ]− cX|Y [ϕ])(α)dα.

Proof. – The proposition follows from Lemma 11.10 by integration of equality (29) over
the interior of the zero-fiber, and Theorem 6.2 which says that

vol(L|Y , P (ϕ)|Y , P (ψ)|Y ) = (n− 1)!

∫
∆(L|Y )

cY [P (ψ)|Y ]− cY [P (ϕ)|Y ]dλ.

We will cite Proposition 4.7 from [1] which is a recursion formula relating the metric
volume with the restricted version.
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P 11.12. – Suppose L is ample, let s ∈ H0(L), and let Y be the smooth
submanifold defined by s. Let ψ and ϕ be two continuous metrics. Then

(n+ 1)vol(L,ψ, ϕ)− nvol(L|Y , P (ϕ)|Y , P (ψ)|Y )

=

∫
X

(ln |s|2 − P (ϕ))MA(P (ϕ))−
∫
X

(ln |s|2 − P (ψ))MA(P (ψ)).

In particular, combining Theorem 6.2, Proposition 11.11 and Proposition 11.12 we get the
following.

P 11.13. – Let L, s and Y be as in Proposition 11.12. Then it holds that∫
∆(L)◦

(cX [ϕ]− cX [ψ])dλn =
1

n+ 1

∫
∆(L)◦0

(cX|Y [ϕ]− cX|Y [ψ])dλn−1

+
1

(n+ 1)!

∫
X

(ln |s|2 − P (ϕ))MA(P (ϕ))− 1

(n+ 1)!

∫
X

(ln |s|2 − P (ψ))MA(P (ψ)).

12. Directional Chebyshev constants in Cn

In [3] Bloom-Levenberg define the metrized version of the directional Chebyshev
constants originally introduced by Zaharjuta in [19]. In this section we will describe how
this relates to the Chebyshev transforms we have introduced.

The setting in [3] is as follows. Let<1 be the order onNn such thatα <1 β if |α| < |β|, or if
|α| = |β| and α <lex β. Let Pα denote the set of polynomials p(z1, . . . , zn) in the variables zi
such that

p = zα + lower order terms.

Observe that here we want lower order terms, and not higher order terms. LetK be a compact
set and h an admissible metric function on K. For any α ∈ Nn they define the metrized
Chebyshev constant Y3(α) as

Y3(α) := inf{sup
z∈K
{|h(z)|α|p(z)|} : p ∈ Pα}.

They then show that the limit

τh(K, θ) := lim
α/deg(α)→θ

Y3(α)1/deg(α)

exists. These limits are called directional Chebyshev constants.
In our setting we wish to viewCn as an affine space lying inPn. Also, polynomials in zi can

be interpreted as sections of multiples of the line bundle O(1) on Pn in the following sense.
Let Z0, . . . , Zn be a basis for H0( O(1)) on Pn, and identify them with the homogeneous
coordinates [Z0, . . . , Zn]. We can choose

p := [1 : 0 : . . . : 0]

to be our base point, and let zi := Zi

Z0
be holomorphic coordinates around p. We also let

Z0 be our local trivialization of the bundle. Given a section s ∈ H0( O(k)) we represent it as
a function in zi by dividing by a power of Z0

s

Zk0
=
∑

aαz
α.
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Therefore we see that

Z(α0,α1,...,αn) 7→ z(α1,...,αn).

We could also choose a different set of coordinates. Let

q := [0 : . . . : 0 : 1]

be our new base point, and let wi := Zi

Zn
be coordinates around q. Let Zn be the local

trivialization around q. Given a section s ∈ H0( O(k)) we represent it as a function in wi
by dividing by a power of Zn

s

Zkn
=
∑

bαw
α.

Hence

Z(α0,α1,...,αn) 7→ w(α0,...,αn−1).

To define Chebyshev transforms we need an additive order on Nn. Since the semigroup Γ( O(1))

will not depend on the order, we are free to choose any additive order. Let <2 be the order
which corresponds to inverting the order <1 with respect to the zi variables, i.e.,

(α0, . . . , αn−1) <2 (β0, . . . , βn−1)

iff

(β1, . . . , βn) <1 (α1, . . . , αn).

Therefore

(30) z(α1,...,αn) + lower order terms = w(α0,...,αn−1) + higher order terms.

We may identify the metric function h with a metric h = e−ψ/2 on O(1). Consider the
metricPK(ψ). For simplicity assume thatK is regular. Since O(1) is ample from Lemma 11.8
it follows that PK(ψ) is continuous, therefore the Chebyshev transform c[PK(ψ)] is well-
defined. It is a simple fact that

(31) sup
z∈K
{|s(z)|2e−kψ(z)} = sup

z∈Pn

{|s(z)|2e−kPK(ψ)(z)}.

Let α0 = 0, and let k =
∑n

1 αi. By (30) we see that s ∈ A(α0,...,αn−1),k iff it is in the form

z(α1,...,αn) + lower order terms.

By (31) it follows that

lnY3(α1, . . . , αn) = F [PK(ψ)](kα, k).

Thus we get that for θ = (θ1, . . . , θn) ∈ Σ0

(32) cPn|Pn−1 [PK(ψ)](θ1, . . . , θn−1) = 2 ln τh(θ1, . . . , θn).

Observe that the order <2 we used to define the Chebyshev transform has the property
that (0, α) <2 (β1, β) when β1 > 0. It was this property of the lexicographic order we used in
the proof of Proposition 11.11. Therefore the theorem holds also for Chebyshev transforms
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defined using <2 instead of <lex. Let (K ′, h′) be another metrized set in Cn, and let ψ′ be
the corresponding metric on O(1) associated to h′. Then integrating (32) gives us that

(33)
1

meas(Σ0)

∫
Σ0

ln τh(K, θ)− ln τh
′
(K ′, θ)dθ

=
(n− 1)!

2

∫
∆( O(1))0

cPn|Pn−1 [PK(ψ)]− cPn|Pn−1 [PK′(ψ
′)]dθ,

where Y := {Z0 = 0}. Here we used that ∆( O(1))0 is an (n− 1)-dimensional unit simplex,
and thus

meas(∆( O(1))0) =
1

(n− 1)!
.

Bloom-Levenberg define a metrized transfinite diameter dh(K) of K which is given by

dh(K) := exp

(
1

meas(Σ0)

∫
Σ0

ln τh(K, θ)dθ

)
.

There is also another transfinite diameter, δh(K), which is defined as a limit of certain
Vandermonde determinants. By Corollary A in [1] we have that

ln δh(K)− ln δh
′
(K ′) =

(n+ 1)

2n
E(PK′(ψ

′), PK(ψ)).

Then by Theorem 6.2, equation (33) and Proposition 11.13 we get that

ln δh(K)− ln δh
′
(K ′) = ln dh(K)− ln dh

′
(K ′) +

1

n

∫
Pn

1

2
(ln |Z0|2 − PK(ψ))MA(PK(ψ))

− 1

n

∫
Pn

1

2
(ln |Z0|2 − PK′(ψ′))MA(PK′(ψ

′)).

In fact, the positive measure MA(PK(ψ)) has support onK, andPK(ψ) = ψ a.e. with respect
to MA(PK(ψ)). In the notation of [3], (ψ − ln |Z0|2)/2 is denoted Q, and MA(PK(ψ)) is
denoted (ddcV ∗K,Q)n. Thus in their notation

ln δh(K)−ln δh
′
(K ′) = ln dh(K)−ln dh

′
(K ′)− 1

n

∫
K

Q(ddcV ∗K,Q)n+
1

n

∫
K′
Q′(ddcV ∗K′,Q′)

n.

For the unit ball B, with h ≡ 1 ≡ |Z0|2 and therefore Qh = 0, it is straightforward to show
that we have an equality

δh(B) = dh(K).

Using this we get that

ln δh(K) = ln dh(K)− 1

n

∫
K

Q(ddcV ∗K,Q)n.

By taking the exponential we have derived the formula of Theorem 2.9 in [3].
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13. Chebyshev transforms of metrized Q-and R-divisors

Because of the homogeneity of Okounkov bodies, one may define the Okounkov
body ∆(D) of any big Q-divisor D. Set

∆(D) :=
1

p
∆(pD)

for any p that clears the denominators in D. In [12] Lazarsfeld-Mustat,ă show that this
mapping of a Q-divisor to its Okounkov body has a continuous extension to the class
of R-divisors.

In Proposition 5.10 we saw that Chebyshev transforms also are homogeneous under
scaling. Therefore we may define the Chebyshev transform of a Q-divisor D with metric ψ,
by letting

(34) c[ψ](α) =
1

p
c[pψ](pα), α ∈ ∆(D)◦,

for any p clearing the denominators in D. We wish to show that this can be extended
continuously to the class of metrized R-divisors.

We will use the construction introduced in [12]. LetD1, . . . , Dr be divisors such that every
divisor is numerically equivalent to a unique sum∑

aiDi, ai ∈ Z.

Lazarsfeld-Mustat,ă show that for effective divisors the coefficients ai may be chosen non-
negative.

D 13.1. – The semigroup of X, Γ(X), is defined as

Γ(X) :=
⋃
a∈Nr

(
v(H0( OX(

∑
aiDi)))× {a}

)
⊆ Zn+r,

where v stands for the usual valuation,

s = zα + higher order terms =⇒ s 7→ α.

Lazarsfeld-Mustat,ă show in [12] that Γ(X) generates Zn+r as a group.
Let Σ(Γ(X)) denote the closed convex cone spanned by Γ(X), and let for a ∈ Nr

∆(a) := Σ(Γ(X)) ∩ (Rn × {a}).

By [12] for any big Q-divisor D =
∑
aiDi,

∆(a) = ∆(D), a = (a1, . . . , ar).

For each 1 ≤ i ≤ r, let ψi be a continuous metric on Di. Then for a ∈ Nr,
∑
aiψ is a

continuous metric on
∑
aiDi. For an element (α, a) ∈ Γ(X), letAα,a ⊆ H0(

∑
aiDi) be the

set of sections of the form
zα + higher order terms.

D 13.2. – The discrete global Chebyshev transform F [ψ1, . . . , ψr] is defined by

F [ψ1, . . . , ψr](α, a) := inf{ln ||s||2α,a : s ∈ Aα,a}

for (α, a) ∈ Γ(X).
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L 13.3. – F [ψ1, . . . , ψr] is subadditive on Γ(X).

Proof. – If s ∈ H0( OX(
∑
aiDi)),

s = zα + higher order terms,

and t ∈ H0( OX(
∑
biDi)),

t = zβ + higher order terms,

then st ∈ H0( OX(
∑

(ai + bi)Di)) and

st = zα+β + higher order terms.

Thus the subadditivity of F [ψ1, . . . , ψr] follows exactly as for F [ψ] in Lemma 5.3.

L 13.4. – F [ψ1, . . . , ψr] is locally linearly bounded from below.

Proof. – Let (α, a) ∈ Σ(Γ(X))◦. Let ψi,p be the trivializations of the metrics ψi, then∑
aiψi,p

is the trivialization of
∑
aiψi. Let D be as in the proof of Lemma 5.4, and choose A such

that

e−
∑
aiψi,p > A.

Since the inequality

e−
∑
biψi,p > A

holds for all b in a neighborhood of a, the lower bound follows as in the proof of Lemma 5.4.

D 13.5. – The global Chebyshev transform c[ψ1, . . . , ψr] of the r-tuple
(ψ1, . . . , ψr) is defined as the convex envelope of F [ψ1, . . . , ψr] on Σ(Γ(X))◦.

P 13.6. – For any sequence (α(k), a(k)) ∈ Γ(X) such that |(α(k), a(k))| → ∞
and

(α(k), a(k))

|(α(k), a(k))|
→ (p, a) ∈ Σ(Γ(X))◦

it holds that

lim
k→∞

F [ψ1, . . . , ψr](α(k), a(k))

|(α(k), a(k))|
= c[ψ1, . . . , ψr](p, a).

Proof. – By Lemma 13.3 and Lemma 13.4 we can use Theorem 3.8, which gives us the
proposition.

P 13.7. – For rational a, i.e., a = (a1, . . . , ar) ∈ Qr, the global Chebyshev
transform c[ψ1, . . . , ψr](p, a) coincides with c [

∑
aiψi] (p), where the Chebyshev transform of

the Q-divisor
∑
aiDi is defined by (34).
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Proof. – By construction it is clear that for all (α, a) ∈ Γ(X) we have that

F [ψ1, . . . , ψr](α, ka) = F
[∑

aiψi

]
(α, k).

Choose a sequence (α(k), ka) ∈ Γ(X) such that

lim
k→∞

(α(k), ka))

|(α(k), ka))|
=

(p, a)

|(p, a)|
,

where we only consider those k such that ka is an integer. Then by Proposition 13.6 we have
that

c[ψ1, . . . , ψr](p, a) = lim
k→∞

|(p, a)|F [ψ1, . . . , ψr](α(k), ka)

|(α(k), ka)|

= lim
k→∞

|(p, a)|F [
∑
aiψi] (α(k), k)

|(α(k), ka)|

= lim
k→∞

(
|(p, a)|k
|(α(k), ka)|

)
c
[∑

aiψi

]
(p) = c

[∑
aiψi

]
(p).

Since the global Okounkov body and the global Chebyshev transform are convex it follows
that the formula (12) defines a continuous extension of the metric volume to the space of big
metric R-divisors.

In order to prove further regularity of the metric volume we wish to show that the formula
(20) still holds for the extension. First we need some preliminary lemmas.

L 13.8. – The function E ◦ P (tψ, tϕ) is (n+ 1)-homogeneous in t for t > 0, i.e.,

E ◦ P (tψ, tϕ) = tn+1 E ◦ P (ψ,ϕ).

Proof. – For metrics with minimal singularities ψ′ and ϕ′, by definition of the Monge-
Ampère energy we have that

E(tψ, tϕ) =
1

n+ 1

∫
Ω

(tψ′ − tϕ′)MAn(tψ′, tϕ′)

=
tn+1

n+ 1

∫
Ω

(ψ′ − ϕ′)MAn(ψ′, ϕ′) = tn+1 E(ψ,ϕ).

(35)

We also observe that tψ′ is a psh metric on tL iff ψ′ is a psh metric on L. Therefore we get
that

(36) P (tψ) = tP (ψ).

Combining (35) and (36) the lemma follows.

L 13.9. – Let ψ and ψ′ be two continuous metrics on L, and let ϕ and ϕ′ be two
continuous metrics on some other big line bundle L′. Then the function

E ◦ P (ψ + tϕ, ψ′ + tϕ′)

is continuous in t for t ≥ 0.
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Proof. – Since the Monge-Ampère energy is homogeneous we may assume that L′ has
a nontrivial section S. We let ϕS denote the (singular) metric defined such that the func-
tion |S|ϕS

is identically equal to one. Let ψt denote the singular metric P (ψ+tϕ)+(1−t)ϕS
and similarly let ψ′t denote the metric P (ψ′ + tϕ′) + (1− t)ϕS . Since the singular metric ϕS
is pluriharmonic outside of the zero locus it follows that

E ◦ P (ψ + tϕ, ψ′ + tϕ′) =
1

n+ 1

∫
U

(P (ψ + tϕ)− P (ψ′ + tϕ′))MAn(ψt, ψ
′
t),(37)

where U denotes a dense Zariski open set where the metrics in question are locally bounded.
Lemma 1.14 in [1] tells us that the projection operator is 1-Lipschitz continuous. In our

case this means that

sup
X
|P (ψ + tϕ)− P (ψ + tϕ′)| ≤ t sup

X
|ϕ− ϕ′|.

Therefore P (ψ + tϕ)− P (ψ + tϕ′) is uniformly bounded on X.
For any 0 ≤ s ≤ t we have that

P (ψ + tϕ) ≥ P (ψ + sϕ) + (t− s)P (ϕ).

It follows that ψt is increasing in t on the set where P (ϕ) > ϕS . It is also easy to see that
ψt decreases to ψr when t decreases to r, and that ψt increases to ψr a.e. when t increases
to r. Let U ′ denote the plurifine open set gotten by intersecting U by the sets where P (ϕ)

and P (ϕ′) are greater than ϕS . By the work of Bedford-Taylor we get that the measure

(P (ψ + tϕ)− P (ψ′ + tϕ′))MAn(P (ψ + tϕ), P (ψ′ + tϕ′)) =

= (P (ψ + tϕ)− P (ψ′ + tϕ′))MAn(ψt, ψ
′
t)

restricted to U ′ varies continuously in t in the weak sense (on U’). By using ϕS − C instead
of ϕS where C is an arbitrary constant we get that the restriction of the measure to U minus
the zero set of S varies continuously. The complement of U together with the zero set of S is
pluripolar, and is thus not charged by the mixed Monge-Ampère measures. The total mass
of MAn(P (ψ+ tϕ), P (ψ′+ tϕ′)) is by [1] equal to n+ 1 times the volume of L+ tL′, which
varies continuously with t by, e.g., [6]. As in Theorem 2.6 in [1] this implies that the integral
in (37) and thus the Monge-Ampère energy E ◦ P (ψ + tϕ, ψ′ + tϕ′) is continuous in t.

We are now ready to prove formula (20) in the setting of metrized big R-divisors.

T 13.10. – For big R-divisors
∑
aiDi we have that

(38)

E ◦ P (
∑

aiψi,
∑

aiϕi) = n!

∫
∆(
∑
aiDi)

(c[ϕ1, . . . , ϕr](p, a)− c[ψ1, . . . , ψr](p, a))dλ(p).

Proof. – First we show that (38) holds when a ∈ Qr. By the homogeneity of the
Okounkov body and the Chebyshev transform we have that

n!

∫
∆(tL)◦

(c[tψ]− c[tϕ])dλ = tn+1n!

∫
∆(L)◦

(c[ψ]− c[ϕ])dλ

= tn+1 E(ϕ,ψ) = E(tϕ, tψ),

where the last equality follows from Lemma 13.8. Then by Proposition 13.7, (38) holds
for a ∈ Qr. Therefore by the continuity of the Monge-Ampère energy, the continuity of
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the global Chebyshev transform, and the fact that equation (38) holds for rational a, the
proposition follows.

14. Differentiability of the metric volume

We wish to understand the behavior of the metric volume vol(Lt, ψt, ϕ) when Lt and the
metrics ψt and ϕt vary with t. In [1] Berman-Boucksom study the case where ψt and ϕt are
metrics on a fixed line bundle or more generally a big R-divisor. We are interested in the
case where the underlying R-divisor Lt is allowed to vary as well. As we have seen, by letting
ψt = ϕt+1 the problem reduces to that of the variation of the volume functional. It was first
proven by Boucksom-Favre-Jonsson in [6] that the volume functional was C1 on the space
of big R-divisors. In [12] Lazarsfeld-Mustat,ă reprove this differentiability result by studying
the variation of the Okounkov bodies. Since our Theorem 6.2 and Theorem 13.10 state that
the metric volume is given by the integration of the difference of Chebyshev transforms on
the Okounkov body, we wish to use the same approach as Lazarsfeld-Mustat,ă did in [12].
The situation becomes a bit more involved, since we have to consider not only the variation
of the Okounkov bodies but also the variation of the Chebyshev transforms.

To account for the variation of the Chebyshev transform when the underlying line bundle
changes it becomes necessary to consider not only continuous metrics but also metrics with
certain singularities.

Let S denote a section of an ample line bundleA. As above we letϕS denote the (singular)
metric defined such that the function |S|ϕS

is identically equal to one. Let also Ψ be some
fixed continuous positive metric on A. For any number R we denote by ϕS,R the metric

ϕS,R := max(ϕS ,Ψ−R).

L 14.1. – Let ψ be a continuous metric on a big line bundle L, and let t > 0 be such
that L− tA is still big. For R� 0 we have that

P (ψ − tϕS,R) = P (ψ − tϕS).

Proof. – That
P (ψ − tϕS,R) ≤ P (ψ − tϕS)

is clear since
ψ − tϕS,R ≤ ψ − tϕS .

P (ψ−tϕS) is psh, therefore upper semicontinuous by definition, which means that it is locally
bounded from above. Thus locally we can find R� 0 such that

ψ − t(Ψ−R) ≥ P (ψ − tϕS).

But we have assumed that our manifold X is compact, so there exists an R such that
ψ − t(Ψ−R) dominatesP (ψ−tϕS) on the whole ofX. The same must be true forψ−tϕS,R.
By definition P (ψ − tϕS,R) dominates all psh metrics less than or equal to ψ − tϕS,R, in
particular it must dominate P (ψ − tϕS).

L 14.2. – If L is integral, i.e., a line bundle, then for large enough R the func-
tion F [ψ − tϕS,R] is independent of R, and we will use F [ψ − tϕS ] to denote this function.
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Proof. – This follows from the fact that for all metrics ϕ and all sections s it holds that

sup
x∈X
{|s(x)|2e−ϕ(x)} = sup

x∈X
{|s(x)|2e−P (ϕ)(x)},

see, e.g., [1].

From Lemma 14.2 it follows that the Chebyshev transform c[ψ − tϕS ] is well-defined,
also for R−divisors, and that Proposition 5.6 holds in this case. The formula for the Monge-
Ampère energy as the integral of Chebyshev transforms will also still hold.

P 14.3. – For any continuous metric ϕ on L− tA it holds that

(39) E ◦ P (ψ − tϕS , ϕ) = n!

∫
∆(L−tA)◦

c[ϕ]− c[ψ − tϕS ]dλ.

Proof. – For integral L, choose an R� 0 such that

P (ψ − tϕS,R) = P (ψ − tϕS).

Then (39) follows in this case from Theorem 6.2 and Lemma 14.2. By homogeneity (39) holds
for rational L, and by continuity for arbitrary big R-divisors.

Theorem B in [1] states that the Monge-Ampère energy is differentiable when the metrics
correspond to a fixed big line bundle. By the comment in the beginning of Section 4 in [1]
this holds more generally for big (1, 1) cohomology classes, e.g., R-divisors. We thus have
the following.

T 14.4. – Let ψ and ϕ be continuous metrics on a big R-divisor D, and let u be a
continuous function. Then the function

f(t) := vol(D,ψ + tu, ϕ)

is differentiable, and

f ′(0) =

∫
Ω

uMA(P (ψ0)).

We also need to consider the case where

ψt = ψ0 + t(Φ− ϕS),

where Φ is some continuous metric on A.

We state and prove a slight variation of Lemma 3.1 in [2].

L 14.5. – Let fk be a sequence of concave functions on the unit interval increasing
pointwise to a concave function g. Then

g′(0) ≤ lim inf
k→∞

f ′k(0),

allowing the possibility that f ′k(0) and g′(0) are plus infinity.
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Proof. – Since fk is concave we have that

fk(0) + f ′k(0)t ≥ fk(t)

hence

lim inf
k→∞

tf ′k(0) ≥ g(t)− g(0).

The lemma follows by letting t tend to zero.

L 14.6. – The function

f(t) := E ◦ P (ψ0 + t(Φ− ϕS), ϕ)

is concave for t ≥ 0 and for t > 0 we have that

(40)
d

dt |t+
f ≤

∫
Ω

(Φ− ϕS)MA(P (ψ0 + t(Φ− ϕS))) ≤ d

dt |t−
f.

Proof. – Without loss of generality we can assume that Φ− ϕS > 0 Thus
P (ψ0 + t(Φ− ϕS)) and therefore f(t) is increasing in t.

Let us denote Φ− ϕS by u, and let

uk := Φ− ϕS,k.

Let fk denote the function

fk(t) := E ◦ P (ψ0 + tuk, ϕ).

By, e.g., [1] the functions fk are concave, and by Theorem 14.4 they are differentiable with

f ′k(t) =

∫
Ω

ukMA(P (ψ0 + tuk)).

Clearly fk is increasing in k and by Lemma 14.1 fk increases pointwise to f . It follows that
f is concave.

By Lemma 14.1 and monotone convergence we get that f ′k(t) converges to∫
Ω

uMA(P (ψ0 + tu))

pointwise. The inequalities (40) follow from applying Lemma 14.5 to f and its reflection.

We will also need an integration by parts formula involving ϕS , which generalizes Propo-
sition 4.7 in [1].

L 14.7. – Let ϕ and ϕ′ be continuous metrics on a big R-divisor L. Let ψ be a
continuous psh metric on an ample line bundle A, and let S ∈ H0(A) be a section such that
its zero set variety Y is a smooth submanifold not contained in the augmented base locus of L.
Then it holds that∫

X

(ψ − ϕS)(MA(P (ϕ))−MA(P (ϕ′)))

=

∫
X

(P (ϕ)− P (ϕ′))ddcψ ∧MAn−1(P (ϕ), P (ϕ′))− n EY (P (ϕ)|Y , P (ϕ′)|Y ).
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Proof. – Following the proof of Proposition 4.7 [1] we observe that

MA(P (ϕ))−MA(P (ϕ′)) = ddc(P (ϕ)− P (ϕ′)) ∧MAn−1(P (ϕ), P (ϕ′)).

The lemma will follow by the Lelong-Poincaré formula as soon as we establish that∫
X

(ψ − ϕS)ddc(P (ϕ)− P (ϕ′)) ∧MAn−1(P (ϕ), P (ϕ′))

=

∫
X

(P (ϕ)− P (ϕ′))ddc(ψ − ϕS) ∧MAn−1(P (ϕ), P (ϕ′)),

which is an integration by parts formula. By [5] we may integrate by parts when the functions
are differences of quasi-psh metrics with minimal singularities. We denote by uk the quasi-
psh metric with minimal singularities ψ − ϕS,k and get that

(41)
∫
X

ukdd
c(P (ϕ)− P (ϕ′)) ∧MAn−1(P (ϕ), P (ϕ′))

=

∫
X

(P (ϕ)− P (ϕ′))ddcuk ∧MAn−1(P (ϕ), P (ϕ′)).

Let U be the dense Zariski open set where P (ϕ) and P (ϕ′) are locally bounded. As in the
proof of Lemma 13.9 we get that ddcuk ∧MAn−1(P (ϕ), P (ϕ′)) converge weakly to

(P (ϕ)− P (ϕ′)ddcϕS ∧MAn−1(P (ϕ), P (ϕ′))

on U . The integral ∫
U

ddcuk ∧MAn−1(P (ϕ), P (ϕ′))

is equal to n+1 times the restricted volume 〈Ln−1A〉, see [6] and [5], and thus is independent
of k. It is easily seen that also∫

U

ddcϕS ∧MAn−1(P (ϕ), P (ϕ′)) = (n+ 1)〈Ln−1A〉,

see, e.g., [8]. Since the restricted volume varies continuously with L (see [6]) it follows as in
the proof of Lemma 13.9 that the right hand side of equation (41) converges to∫

Y

(P (ϕ)− P (ϕ′)) ∧MAn−1(P (ϕ), P (ϕ′)) = EY (P (ϕ)|Y , P (ϕ′)|Y )

when k tends to infinity.

Clearly by monotone convergence∫
X

ukMA(P (ϕ))

converges to

(42)
∫
X

(ψ − ϕS)(MA(P (ϕ)),

but we need to show that it is finite to conclude that∫
X

uk(MA(P (ϕ))−MA(P (ϕ′))
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converges to

(43)
∫
X

(ψ − ϕS)(MA(P (ϕ))−MA(P (ϕ′)).

From the inequality (40) we see that∫
X

(ψ − ϕS)(MA(P (ϕ0 − rϕS)

is finite when ϕ0 is a continuous metric on L+rA. Letting ϕ be ϕ0−rϕS,k where k is chosen
so that P (ϕ0 − rϕS,k) = P (ϕ0 − rϕS) we see that∫

X

(ψ − ϕS)(MA(P (ϕ))

is finite for at least one continuous metric ϕ. But using equation (41) we see that the ab-
solute value of the difference (43) is bounded by a uniform constant times the supremum
of |P (ϕ)− P (ϕ′)|, which is bounded. We conclude that (42) is bounded for all continuous
metrics ϕ, and therefore the lemma follows from applying monotone convergence.

C 14.8. – The function

f(t) := E ◦ P (ψ0 + t(Φ− ϕS), ϕ)

is continuously differentiable with

f ′(t) =

∫
Ω

(Φ− ϕS)MA(P (ψ0 + t(Φ− ϕS)),

where for t = 0, f ′(0) here denotes the right derivative.

Proof. – Using the integration by parts formula one argues as in the proof of Lemma 13.9
and concludes that ∫

Ω

(Φ− ϕS)MA(P (ψ0 + t(Φ− ϕS))

varies continuously with t. Since f ′(t) is decreasing, the corollary follows from the inequality
(40).

Assume that we have chosen our coordinates z1, . . . , zn centered at p such that

z1 = 0

is a local equation for an irreducible variety Y not contained in the augmented base locus
of L. Assume also that Y is the zero-set of a holomorphic section S ∈ H0(A) of an ample
line bundle A. Then by Theorem 4.24 in [12] the Okounkov bodies of L and L + tA with
respect to these coordinates are related in the following way

∆(L) = (∆(L+ tA)− te1) ∩ (R+)n.

There is also a correspondence between the Chebyshev transforms of metrics on L and
L+ tA.

P 14.9. – Let A and S be as above. Suppose also that we have chosen the
holomorphic coordinates so that z1 = S locally. Then for a > r it holds that

(44) cL[ψ](a, α)− cL[ϕ](a, α) == cL−rA[ψ − rϕS ](a− r, α)− cL−rA[ϕ− rϕS ](a− r, α).
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Proof. – First assume that L is integral. Since we have that locally S = z1, for t ∈
H0(kL),

t = zk(a,α) + higher order terms,

if and only if
t

Srk
= zk(a−r,α) + higher order terms.

We also have that

sup
x∈X
{|t(x)|2e−kϕ(x)} = sup

x∈X
{ |t(x)|2

|srk(x)|2
e−k(ϕ(x)−r ln |s(x)|2)}.

Thus (44) holds for integral L. By the homogeneity and continuity of the Chebyshev trans-
form it will therefore hold for big R-divisors.

We are now ready to state and prove our differentiability theorem for the metric volume.

T 14.10. – LetLi, i = 1, . . . ,m be a collection of line bundles, and for each i letψi
andϕi be two continuous metrics onLi. Denote

∑
aiLi byLa,

∑
aiψi byψa and

∑
aiϕi byϕa.

Let O denote the open cone in Rm such that a ∈ O iff La is big. Then the function

f(a) := vol(La, ψa, ϕa)

is C1 on O.

Proof. – Let a be a point in O, and let L = La. Denote ψa by ψ and ϕa by ϕ. Let us
consider the (possible) partial derivative of f at a in the x1-direction. Since any line bundle
can be written as the difference of very ample line bundles, without loss of generality we can
assume that L1 = A is ample and has a section S defining a smooth hypersurface Y not
contained in the augmented base locus of L. Let us denote the metrics on A by Ψ and Φ in
order to avoid confusion. We consider the restricted function

f(t) := vol(L+ tA, ψ + tΨ, ϕ+ tΦ).

We claim that f is differentiable at t = 0, and that the derivative varies continuously with L,
ψ and ϕ. This will imply that the function f was C1 on the whole of O.

We choose local holomorphic coordinates such that z1 = S. Recall that the Okounkov
bodies of L and L+ tA are related in the following way

(45) ∆(L) = (∆(L+ tA)− te1) ∩ (R+)n.

Let ∆(L)r denote the fiber over r of the projection of the Okounkov body down to the
first coordinate, i.e.,

∆(L)r := ∆(L) ∩ ({r} × Rn−1).

Then one may write equation (45) as

(46) ∆(L+ tA) = ∪0≤r≤t∆(L+ tA)r ∪ (∆(L) + te1).
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Furthermore the metric volume is given by integration of the Chebyshev transforms over
the Okounkov bodies. Using (46) and Proposition 14.9 we get that

vol(L+ tA, ψ + tΨ, ϕ+ tΦ) = n!

∫
∆(L+tA)◦

c[ϕ+ tΦ]− c[ψ + tΨ]dλ

= n!

∫ t

r=0

∫
∆(L+tA)◦r

c[ϕ+ tΦ](r, α)− c[ψ + tΨ](r, α)dαdr

+ n!

∫
∆(L)◦

c[ϕ+ t(Φ− ϕS)]− c[ψ + t(Ψ− ϕS)]dp

= n!

∫ t

r=0

∫
∆(L+tA)◦r

c[ϕ+ tΦ](r, α)− c[ψ + tΨ](r, α)dαdr

+ EL ◦ P (ψ + t(Ψ− ϕS), ϕ+ t(Φ− ϕS)).

As in Corollary 11.7 the global Chebyshev transforms c[ψ,Ψ] and c[ϕ,Φ] will have contin-
uous extensions to the interior of the zero fiber of the corresponding global Okounkov body,
which simply consists of the zero fibers of ∆(L+ tA). Hence by the fundamental theorem of
calculus and Corollary 14.8 it follows that f is right-differentiable.

We get that

d

dt |0+
vol(L+ tA, ψ + tΨ, ϕ+ tΦ)

= n!

∫
∆(L)◦0

c[ϕ](0, α)− c[ψ](0, α)dα+
d

dt |0+
EL ◦ P (ψ + t(Ψ− ϕS), ϕ+ t(Φ− ϕS)).

The first term depends continuously on the data since ∆(L)◦0 depends continuously on L
and since the global Chebyshev transforms and their extensions are continuous.

Let us look at the second term. Because of the cocycle property of the Monge-Ampère
energy, we only need to consider two cases, one where ψ = ϕ, and the other one where we
let ψ 6= ϕ but instead assume that Ψ = Φ.

First assume that ψ = ϕ. We get that

d

dt |0+
EL ◦ P (ψ + t(Ψ− ϕS2), ψ + t(Φ− ϕS))

=

∫
X

(Ψ− ϕS)MA(P (ψ))−
∫
X

(Φ− ϕS)MA(P (ψ))

=

∫
X

(Ψ− Φ)MA(P (ψ)).

(47)

As in Lemma 13.9 this will depend continuously on ψ.
Now let ψ 6= ϕ but instead assume that Ψ = Φ′ is some metric on A. By Lemma 14.6, the

cocycle property, and the integration by parts formula in Lemma 14.7 we have that

d

dt |0+
EL ◦ P (ψ + t(Ψ− ϕS), ϕ+ t(Ψ− ϕS))

=

∫
X

(Ψ− ϕS)(MA(P (ψ))−MA(P (ϕ)))

=

∫
X

(P (ψ)− P (ϕ))ddcψ ∧MAn−1(P (ψ), P (ϕ))− n EY (P (ψ)|Y , P (ϕ)|Y ).

(48)
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Arguing as in the proof of Lemma 13.9 we get that both these terms depend continuously
on the data.

By Lemma 13.9 the function f(t) is continuous and we have seen that it is also continu-
ously right differentiable. An elementary application of the mean value for right differentiable
functions yields that any continuous and continuously right differentiable function is in fact
differentiable. Thus f(t) is continuously differentiable for t > 0 and since the choice ofLwas
arbitrary it is differentiable in a neighborhood of zero as well. Since the derivative depended
continuously on the data, and thus on the point a ∈ O, it follows that f is C1 in O.
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