ISSN 0012-9593

quatriéme série - tome 47 Jascicule 6 novembre-décembre 2014

ANNALES

SCIENTIFIQUES
de

I/ ECOLE
NORMALE
SUPERIEURE

Raf CLUCKERS & Julia GORDON & Immanuel HALUPCZOK

Local integrability results in harmonic analysis on reductive groups in
large positive characteristic

SOCIETE MATHEMATIQUE DE FRANCE



Ann. Scient. Ec. Norm. Sup.
4¢ série, t. 47,2014, p. 1163 a 1195

LOCAL INTEGRABILITY RESULTS
IN HARMONIC ANALYSIS ON REDUCTIVE GROUPS
IN LARGE POSITIVE CHARACTERISTIC

BY RAr CLUCKERS, JurLia GORDON
AND IMMANUEL HALUPCZOK

ABSTRACT. — Let G be a connected reductive algebraic group over a non-Archimedean local field
K, and let g be its Lie algebra. By a theorem of Harish-Chandra, if K has characteristic zero, the Fourier
transforms of orbital integrals are represented on the set of regular elements in g(K) by locally constant
functions, which, extended by zero to all of g(KK), are locally integrable. In this paper, we prove that
these functions are in fact specializations of constructible motivic exponential functions. Combining
this with the Transfer Principle for integrability of [8], we obtain that Harish-Chandra’s theorem holds
also when K is a non-Archimedean local field of sufficiently large positive characteristic. Under the
hypothesis that mock exponential map exists, this also implies local integrability of Harish-Chandra
characters of admissible representations of G(K), where K is an equicharacteristic field of sufficiently
large (depending on the root datum of G) characteristic.

RESUME. — Soit G un groupe algébrique réductif connexe au-dessus d’un corps local non archi-
médien K, et soit g son algebre de Lie. D’apres un théoreme de Harish-Chandra, si K est de carac-
téristique zéro, alors les transformés de Fourier d’intégrales orbitales sont représentés, sur I’ensemble
des éléments réguliers de g(K), par des fonctions localement constantes, qui, si on les étend par zéro
a tout g(K), sont localement intégrables. Dans ce papier, nous démontrons que ces fonctions sont en
fait des spécialisations de fonctions motiviques constructibles exponentielles. En combinant ceci avec
le principe de transfert d’intégrabilité de [8], nous obtenons que le théoréme de Harish-Chandra est va-
lable aussi quand K est un corps local non archimédien de caractéristique positive suffisamment grande.
Sous I’hypothése que I’application exponentielle feinte existe, ceci implique aussi 'intégrabilité locale
des caracteres de Harish-Chandra de représentations admissibles de G(K), ou K est un corps d’équi-
caractéristique suffisamment grande (en fonction de la donnée radicielle de G).

1. Introduction

In this paper we prove an extension of Harish-Chandra’s theorems about local integrabil-
ity of the functions representing various distributions arising in harmonic analysis on p-adic
groups to the positive characteristic case, when the residue characteristic is large. Our method
consists in transferring Harish-Chandra’s results from characteristic zero to positive charac-
teristic. In the recent years such transfer has become a prominent technique, culminating in
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the transfer of the Fundamental Lemma from positive characteristic to characteristic zero,
[9], [38]. Two distinct ways of carrying out transfer have been described in the literature—one
method is based on the idea of close local fields, due to D. Kazhdan and J.-L. Waldspurger, cf.
[39]. The other method is based on the program outlined by T.C. Hales in [22] of making har-
monic analysis on reductive groups over non-Archimedean local fields “field-independent”
via the use of motivic integration, and this is the method we use.

We observe that the statements we are proving in this paper are much more analytic in
nature than any of the statements previously handled by the transfer methods—namely, here
we talk about L'-integrability, as opposed to much more algebraic-type statements about
equalities between integrals of functions that are known to be integrable. In this sense it is
somewhat surprising that the transfer is still possible, and it requires a new type of transfer
principle, which we prove in [8]. We note that the use of this very general transfer principle
allows us to avoid substantial technical difficulties that one faces when using the method of
transfer based on the technique of close local fields, at the cost, however, of not getting a
precise lower bound on the characteristic of the fields for which our results apply.

Our main technical result is Theorem 5.8 showing that the functions representing the
Fourier transforms of the orbital integrals form a family of so-called constructible motivic
exponential functions. These functions were introduced by R. Cluckers and F. Loeser in [12];
they are defined in a field-independent manner by means of logic (in fact, we use a slight
generalization; see §B.3.1). Theorem 5.8 implies that Transfer principles for integrability
and boundedness apply to the Fourier transforms of all orbital integrals, and in particular,
to the nilpotent ones. Once all the required properties of the nilpotent orbital integrals
are transferred to the positive characteristic in Theorem 2.1, the analogues of many of the
classical results for general distributions follow, thanks to the work of DeBacker [14], and
J. Adler and J. Korman, [3]. Thus we obtain our main results: Theorems 2.2 and 5.9 (the
former assumes the hypothesis on the existence of a mock exponential map, which we review
in 2.2.1).

We note that for GL,,, the local integrability of characters was proved by Rodier [35]
for p > n, and by a different method, by B. Lemaire [29] for arbitrary p. Lemaire also proved
the local integrability of characters for the inner forms of GL,, and SL,,, and for twisted
characters of GL,, [30], [31].
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2. Results

2.1. Notation

For a discretely valued field K, its ring of integers will be denoted by {2k, the maximal
ideal by pk, and the residue field by kk.

Let & be the collection of all non-Archimedean local fields K of characteristic zero, with
a chosen uniformizer wy of Q, and let B be the collection of all local fields K of positive
characteristic, with a uniformizer wg of Qx. The notation K will always stand for a local field
that lies in & U 4B. For an integer M > 0, we will also often use the collections @y, and By
of fields in & and B respectively, with residue characteristic greater than M.

We use Denef-Pas language ¥z with coefficients in Z—this is a first-order language of
logic; roughly speaking, formulas in this language define subsets of affine spaces uniformly
over all local fields K € @ U B, (see Appendix B for precise definitions). By “definable” we
shall mean, definable in the language ¥7. We survey all the definitions and theorems from the
theory of motivic integration that we use in Appendix B. We note that if one wishes to work
only with reductive groups defined over a fixed number field £ (with a ring of integers 2) and
its completions, then one can use the language ¥, defined in Appendix B; all the results still
apply since any language £, includes the language #7.

Throughout this paper, G stands for a connected reductive algebraic group over a local
field K, and g for its Lie algebra. For X € g(K), Dg(X) is the discriminant of X, see
Appendix A for the definition.

Following Kottwitz, [27], we call a function F'(X), defined and locally constant on the set
of regular elements g(IK)™&, “nice” if it satisfies the following two requirements:

— when extended by zero to all of g(K), it is locally integrable, and
— the function |Dg(X)|'/2F(X) is locally bounded on g(K).

Similarly, call a function on G(K) “nice”, if it satisfies the same conditions on G(K), with
D¢ (X) replaced by its group version D¢ (g), namely, the coefficient at ¢” (where r is the rank
of G) in the polynomial det ((¢ + 1)I — Ad(g)).

2.2. The statements

We refer to Appendix A for all the definitions (of orbital integrals, etc.) and a survey of
the classical results.

Our main result states that the Fourier transforms of orbital integrals are represented by
nice functions, in large positive characteristic.

THEOREM 2.1. — There exists a constant M&® > 0 that depends only on the absolute root
datum of G, such that for every K € %Mocrb, for every X € g(K), the function lix is a nice
Sfunction on g(K).

In this theorem and all similarly phrased statements below, our assertion that there exists
a constant M > 0 that depends only on the absolute root datum of G such that so-and-so
properties hold for G(K) with K € @, U By, has the following meaning. As discussed in
§3.1 below, given an absolute root datum ¥ (which is a field-independent construct), there
exist finitely many possibilities for the root data of reductive groups over non-Archimedean
local fields having the absolute root datum ¥. We parametrize these possibilities by points of
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a definable set in §3.1. Then our statement says that there exists a constant M that depends
only on ¥, such that for every local field K € @ U By, for all possible connected reductive
groups G defined over K with absolute root datum W, the assertions of the theorem hold.

Theorem 2.1 is proved below in §5.2.1.

Thanks to the local character expansion near a tame semisimple element, the above theo-
rem implies that Harish-Chandra characters of admissible representations are represented by
nice functions on the group, under the additional hypothesis on the existence of a so-called
mock exponential map. Local character expansion in large positive characteristic is proved
by DeBacker [14] near the identity, and by Adler-Korman [3] near a general tame semisimple
element, if the mock exponential map exists. We start by quoting the hypothesis, which uses
the notation defined in §3.3 below.

2.2.1. The exponential map hypothesis ([14, Hypothesis 3.2.1]). — Suppose r > 0. There
exists a bijective map e : g(K), — G(K), such that

1. for all pairs x € B(G,K), s € R>,, we have
(a) e(g(K)m,s) = G(K)z,s,
(b) Forall X € g(K)y , and for allY € g(K), s, we have e(X)e(Y) = e(X +7Y)
mod G(K), s+, and
(c) e induces a group isomorphism of §(K)z s/9(K)s s+ with G(K)z s/ G(K)g s+,
2. for all g € G(K) we have Int(g) o e = e 0 Ad(g),
3. e carries dX into dg (where dX and dg are Haar measures on g(K) and G(K), respec-
tively, associated with the same normalization of the Haar measure on K, cf.§3.5).

For classical groups one can take e to be the Cayley transform, for all » > 0.

THEOREM 2.2. — There exists a constant Mg > 0 that depends only on the absolute root
datum of G, such that if K € By and Hypothesis 2.2.1 holds for G(K) with some r > 0,
then for every admissible representation m of G(K), its Harish-Chandra character 0 is a nice
Sfunction on G(K), in particular, the integral fG(K) 0.(9)f(g) dg converges, and equals © . (f),
Sor all test functions f € C(G(K)).

We prove this theorem in §5.3.1 below.

REMARK 2.3. — DeBacker’s result on the local character expansion that we use in the
proof of this theorem requires, in its full strength, the assumption that Hypothesis 2.2.1 holds
for r € R such that g, = g,(x)+, where p(7) is the depth of w. Here we only use the fact
that the local character expansion holds in some (definable) neighborhood of the identity,
which is yielded by DeBacker’s proof assuming just the existence of the mock exponential
for some r > 0. Note also that we do not require the mock exponential map to be definable.

Finally, Theorem 2.1 also implies (thanks to a result of DeBacker) that Fourier transforms
of general invariant distributions on g(KK) with support bounded modulo conjugation are
represented by nice functions in a neighborhood of the origin. This is Theorem 5.9.

The rest of the main body of the paper is devoted to the proof of these theorems. Two ap-
pendices are provided for the reader’s convenience—Appendix A contains a brief summary
of the definitions and relevant classical results in harmonic analysis on p-adic groups, and
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Appendix B summarizes the definitions and results from the theory of motivic integration,
which is used in the proofs.

3. Definability of Moy-Prasad filtration subgroups

From now on we will freely use the language of definable subassignments, and con-
structible motivic functions; please see Appendix B for definitions and all related notation.
We start by setting up the definition of the group, Lie algebra, and Moy-Prasad filtration
subgroups in Denef-Pas language. As explained in Appendix B, for a group, specific sub-
group, etc. to be definable, roughly speaking, means that it can be defined uniformly for all
local fields K of sufficiently large residue characteristic, by formulas in a first-order language
of logic, which do not depend on the field themselves.

3.1. Root datum and the group

The first step is to realize the group and its Lie algebra as definable subassignments, so
that the methods of motivic integration apply. From now on we assume that the residue
characteristic p is large enough so that the group G splits over a tamely ramified extension
of K.

Split reductive groups G are classified by the root data ¥ = (X*, &, X, ®V) consisting
of the character group of a split maximal torus T in G, the set of roots, the cocharacter
group, and the set of coroots. The set of possible root data of this form is completely field-
independent. Given a root datum ¥, the group G(F) is a definable subset of GL,, (F"), defined
as the image of a definable embedding = : G — GL,,, defined over Z[1/R] for some large
enough R (see [9, §4.1], where such an embedding is denoted by pp, with D denoting the root
datum).

We showed that general reductive groups are definable (or, more precisely, appear as
members of a constructible family), in [36, Appendix B]. This is based on the fact that
every reductive group splits over the separable closure of F', and the F-forms of a group
are in one-to-one correspondence with the Galois cohomology set H! (F, Aut(G)) (see e.g.,
[37, §16.4.3]). Here we recall this construction briefly, also introducing the notation for the
intermediate unramified extension of K that will be used below.

Recall that we are assuming that p is large enough so that G splits over a tamely ramified
extension; let e be the ramification index. Then there exists an unramified extension K /K of
some degree f, such that G splits over a field L, which is a totally ramified Galois extension
of Ky. Let 6 be a generator of Gal(Ky/K) (the Frobenius element); and let m = fe be the
degree [L : K]. LetI' = Gal(L/K) = {o1,...0m}.

We have the exact sequence of Galois groups

1 - Gal(L/Ky) — Gal(L/K) — Gal(K;/K) — 1.

Let us assume that {071, ...0.} is the subgroup of I fixing Ky and that o,,, projects to 8
under the last map.

In [36, §B.4.2], we constructed a definable subassignment Sr; C A[m + m3,0,0], with the

following property. Given a local field K of sufficiently large residue characteristic, Sir spe-
cializes to the set of tuples (b, 01, . .., 0. ), where:
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bis a tuple of coefficients of a minimal polynomial over K that gives rise to a degree m
extension, which we denote by Kz;

- 01,...,0, are m X m matrices, defining automorphisms of K; over K, and

the group {o1,...,0m} is isomorphic to T

We also can, and do, add the condition that Kz contains an unramified extension Ky of
degree f, fixed by {o1,...,0.}, and that o, projects to 6—the Frobenius element of Ky,
by stipulating that the restriction of oy, is a generator of Gal(Ky/K), which can be phrased
using Denef-Pas language formulas. We are using [I'] as a subscript (as opposed to I') to
emphasize that the subassignments S|rj and Zjr) depend only on the isomorphism class of T,
and not on a specific group.

Suppose ¥ = (X*, &, X,, ®V) is an absolute root datum as above. Then it defines a split
reductive group G*P! over K, and therefore we get a definable subassignment Z, (] over Sy
that specializes to the set of 1-cocycles Z1(T", Aut(G*P!)(K3)). Finally, suppose G is a group
defined over K that splits over an extension L as above. Then there exists a tuple b such
that L is isomorphic to Kj. Let G*P! be the split form of G. Then we can think of G as
the group G, corresponding to a cocycle z € Z1(T', Aut(G*P!)(K3)). It follows that G(K)
appears as a fibre of a definable subassignment over Zr (by taking {z- o1, ...,z - 0y, }-fixed
points, cf. [36, §B.4.3]).

Given an absolute root datum W, there are finitely many possibilities for the root data of
the groups G over K with the absolute root datum ¥. Let My be the constant such that when
K € @, U By, all possible reductive groups G over K with the absolute root datum ¥
(up to isomorphism) appear as fibres of definable subassignments over the subassignments
Z1ry, as [I'] runs over the finite set of all the possibilities relevant for ¥.

3.2. Bruhat-Tits building

Here we follow the notation of [15] and [1] as much as possible. Let us first review this
notation. Let Z = %B(G,K) denote the (enlarged) building of G(K). Fix a maximal
unramified extension K"** of K. Let S be a maximal K-split torus of G. Let T be the
maximal K" -split torus of G containing S. Let Z be the centralizer of T in G; it is a
maximal torus of G, defined over K. Let L be the extension over which G splits, as above,
and let Ky = K" N L be its maximal unramified part. Then T splits over K. Let </ be
the apartment of T(Ky) in (G, Ky). We can identify <7 (S, K) with the Gal(Ky/K)-fixed
points of &7

Let ®"™ be the set of roots of G relative to T and K, and let "™ be the set of affine
roots of G relative to T, K¢, and our choice of valuation on K. We observe that ®"** can be
recovered from the root datum and the action z-o;, 1 < i < m, (Where z and o; are as above
in §3.1). Hence, we can use ®""" and ®"™" in the constructions of subassignments over Siry.
In this sense there is no harm in including the (possibly non-reduced) root system ®"** as
part (though redundant) of the given root datum defining the group G.

In this paper, we will only need to use a fixed alcove C in the apartment <7 such that
Gal(K/K)-fixed points of its closure C (in the p-adic topology) contain an alcove of .
Note that C is a poly-simplicial set. Moreover, the set C*% of Gal(K/K)-fixed points of C
is also a poly-simplicial set, since the Galois action is compatible with the poly-simplicial
structure. In fact, we will need only the following information about the set C*?:

4¢ SERIE - TOME 47 — 2014 - N° 6



LOCAL INTEGRABILITY FOR LARGE p 1169

1. the list of its faces;
2. incidence relations between the faces;
3. acertain finite set of points in C, called optimal points, discussed in the next subsection.

We observe that & = X, (T) ® R is an affine space of dimension determined by &"**,
and the affine roots (which also are pre-computed from ®""*) define the hyperplanes in it,
which, in turn, determine C. Thus, the list of faces of C' can be pre-computed once the root
system ®""" is given. The action of z - # determines a permutation 7 of ®""*, which, in
turn, allows us to determine the list of faces of C**?. In summary, the information we need
about C#? is determined by the root datum ¥ and the permutation 7; and 7 is determined
by the parameter z € Zr in a definable way. More precisely, given the root datum ¥, there
is a finite number of possibilities for the list of faces of C**?, and we can decompose Z[ry
into a disjoint union of finitely many definable subsets, according to which possibility of C'*?
a given cocycle z gives rise to. We will denote these subsets, indexed by the pairs (""", 1),
where ®""" is a root system and 7 is a permutation acting on """, by Zgunr . Once we have
done that, we can assume that the list of faces of C#*? is part of the data defining G, and use
it in the definitions of definable sets with parameters in Z|r.

Now let us turn to the set of optimal points. We will see that it can also be pre-computed
from the root datum.

3.2.1. Optimal points. — In [33, §6.1], Moy and Prasad define the set @) of the so-called
optimal points; we will denote this set by 93, since the notation @ is reserved for the orbits.

Let C be the alcove in o7 that gave rise to the set C*? as above. Let X be the set of affine
roots ¢ € @ that satisfy ¢|c > 0, (¥ — 1)|c < 0. This is a finite set that depends only
on ®"**. Further, let €y; be the collection of all the Gal(K;/K)-invariant subsets & of 3; this
finite collection depends only on the root datum """ and the permutation 7, as above.

Let S C X be an element of €x. Now we quote [1, §2.3], where it is stated that there exists
a point zg € C such that:

(i) minges ¥(zs) > minges ¥(y) forally € C;

(i) ¥(ze) is rational for all ¢y € dur;
(ili) ze is Gal(Ky/K)-invariant.

We observe that for the future constructions, we do not need the point z g itself, but rather
the tuple of its “barycentric coordinates” (¢/(zg)),cx- As pointed out in [33, §6.1], finding
optimal points is a problem of linear programming. The input for this problem is the field-
independent set of affine roots X; thus the output is also a field-independent tuple of rational
coordinates ¥ (zg).

We denote by Ppunr - the set

Pounr r = {(1/)(936))1&62}66@:-

3.3. Moy-Prasad filtrations

In [33], Moy and Prasad associate with each pair (z,r), where z € Z(G,K) and r > 0,
(respectively, r € R):

— subgroups G(K), ,+ C G(K),, of G(K), for r > 0;

— lattices g(K), .+ C g(K), in g(K), for r € R.
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When r = 0, it is omitted from the notation; thus by definition, G(K), = G(K),o,
G(K)F = G(K)z0t» 8(K)z = §(K)z,0, 8(K)F = 9(K), 0+ The groups G(K), and G(K)7
and the corresponding lattices in the Lie algebra depend only on the facet that contains the
point z. Therefore, for a facet F' we will denote them by G(K) ¢, G(K) £, and g(K) r, g(K) £,
respectively.

We will use the fact that for a group that splits over a tamely ramified extension, the
filtration subgroups with > 0 can be obtained from its split form by taking Galois-fixed
points. We first recall the definitions (this version is quoted from [1], see also [16]) for the
split group GP!(L) = G(L), where L is the extension that splits G, as above. First, for any
torus T defined over L, and for any extension E of L, define, for any r € R,

4(E), := {H € {(E) | ord(dx(H)) > r for all x € X*(T)}.

For a torus T that is split over L, one can define the filtration subgroups of T(E) simply as
follows: for » > 0, let

T(E), :={t € T(E) | ord(x(t) — 1) > r forall x € X*(T)}.
Similarly, define
t(E),+ :={H € t(E) | ord(dx(H)) > r forall x € X*(T)};
T(E),+ :={t € T(E) | ord(x(t) — 1) > r forall x € X*(T)}.

Once and for all, fix a splitting (B, T, {z,}) of G*P!, defined over Q. This splitting deter-
mines a well-defined subgroup Gy = G(Qr) of G(L). Let U, be the one-parameter subgroup
corresponding to z,: U, = 1+ Lx,. Let ¢ = a + n € ® be an affine root. Define

3.1 Upy={9€Us|g=1+tz,, ord(t)>n}.
Note that Uy49 = Us N Go. Similarly, one can define the sublattices u(L), C g(L) (with
each u(L), contained in the root subspace g(L),, where « is the gradient of ¢).
Finally, let z € &/(T, L), r € R. Then one can define
9(L)zr = (L), & Z u(L)y

{ped|y(z)>r}
g(L)w,r+ = t(L)r"' @ Z u(L)lﬁ‘
{ped|v(x)>r}
Similarly for the group, for » > 0, define G(L),, as the subgroup of G(L) generated
by T(L), and the subgroups U, with ¢(z) > r, and G(L), .+ as the subgroup of G(L)
generated by T(L),+ and the subgroups Uy, with ¢(z) > r.
Let R be the set RU {s | s € R}, with the natural ordering (see e.g., [2, §1.1] for details).

The key fact (quoted in this form from [2, Lemma 2.2.1, Remark 2.2.2]) we use is that since
L/K is a tamely ramified Galois extension,

1. #(G,L)' = #(G,K), and )
2. forx € B(G,K), (9(L)z ) = ¢(K)p,r, forreR,
3. (G(L)yr)' = G(K),,, for r € Rsyg.
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Note that if L/K is unramified, the equality in (3) holds for r = 0 as well.

For a non-split group, we will use (2) as a definition of the filtration lattices g(K),. ., € R,
and use (3) as the definition of the filtration subgroups G(K), ., r € Ro.

The definition of the parahoric subgroups G(K), o for a group that splits over a ramified
extension is more complicated, and does not readily translate to Denef-Pas language (which
is our main goal in recalling the definitions). We will show below that for our purposes we

can replace G(K), o with the (in general, larger) set (G(L)4,0)".

DEFINITION 3.1. — Define

0K), = |J 9Kar, and GK), = | GEK)ay
z€B(GK) z€B(GK)

Then the sets g(K), and G(K),. are open and closed, and are both G(K)-domains.

3.4. Definability

Here we collect some basic statements about definability (or in one case, almost-
definability) in Denef-Pas language of the filtration subgroups (respectively, the corre-
sponding lattices in the Lie algebra) defined above.

LeEMMA 3.2. — Let x € By be an optimal point. Then the sets §(K) . and g(K), .+ are
definable using the parameter in z € Z.

Proof. — Consider the split case first. By definition,

9(K)z,r = t(K), @ Z u(K)y.
{ped@|y(z)>r}

Since the set of values {¢(z)}yex (Where ¥ is the set of affine roots from the definition
of an optimal point) is field-independent by §3.2.1, the indexing set in the sum is a field-
independent set determined by the point x; each set u(K),, is definable by definition, cf.(3.1).
Note that due to natural inclusions between the sets u(K),;, for the affine roots ¢ = o+ n
with the same gradient «, the above sum in fact has finitely many non-redundant terms, and
the number of these terms is field-independent.

The set t(KK).,. is clearly definable. Hence, the sum is definable. The same argument applies
to g(K), .+ . The non-split case follows from the split case. Indeed, by our definition, g(K),
is the set of I'-fixed points of g(L), ,, which we just proved is definable. The group I" acts by
linear transformations (which depend on the parameter in z € Zjr); hence, the set of fixed
points is definable, using the parameter z € Zrj. We note that in the split case, a similar
lemma was first proved by J. Diwadkar, [18, Lemma 78]. O

COROLLARY 3.3. — 1. Fixr € R. Then the sets g(K), and g(K),+ are definable with
parameters in Zjry.

2. If we let 1 vary, then {14x), hiez is a constructible family of motivic functions indexed
byl eZ.
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Proof. — (1) By [1, Lemma 2.3.2, and Remark 3.2.4], we have:
9(K), = U G(K)Q(K)z,r‘

T€Pgunt
The finite set of optimal points Peunr - depends only on the parameter in Zjr) (more specifi-
cally, there are finitely many possibilities for this set, and the specific choice is determined by
the definable subset Zgun: - C Zjr) from §3.2 that contains the cocycle z defining G). Then by
the previous lemma, g(K),. is a finite union (indexed by a field-independent set) of definable
subsets, and hence, is definable. For g(K),+, there exists an s € R, such that g(K),+ = g(K),
(cf. [1, Remark 3.2.4]); hence, the second statement follows from the first.

(2) Since the set of optimal points is independent of [, we only need to show that for an
arbitrary optimal point z € #(G, K), the set g(K), ; depends on [ in a definable way. Recall
that by our definition,

r

{wed|v(z)>1}
where L is the Galois extension that splits G and I' = Gal(L/K), as in §3.1. We see directly
from the definitions that both the set (L);, and the indexing set {t) € & | ¢(z) > I} are
defined by inequalities with [ on one side, and a definable function on the other, and thus,
depend on [ in a definable way. O

There are finitely many conjugacy classes of maximal parahoric subgroups in G(L), cor-
responding to the hyperspecial points of (G, L). One would like to prove that parahoric
subgroups corresponding to special points in (G, K) are definable. Here we prove a weaker
statement, sufficient for the purposes of his article. As always, when talking about definabil-
ity, the residue characteristic of K is assumed to be sufficiently large. We note that the split
case of the first statement of the following lemma first appeared in [18].

LEMMA 3.4. — Letz € B(G,K) be a special point. Let L be a finite tamely ramified Galois
extension such that G splits over L, and I" = Gal(L/K), as above. Then

1. The set Ko := G(L)Y is a definable (using a parameter z € Zry) subset of G(K), and

2. the set Ky contains the parahoric subgroup G(K),, and there exists a constant c that
depends only on the root datum of G such that [Ky : G(K),] < ¢° where q is the
cardinality of the residue field of K. If L/K is unramified, then Ko = G(K),.

3. For every optimal point x € C as in §3.2.1 above, for every r > 0, the subgroup G(K),,
is definable.

Proof. — The proof of (1) is almost identical to the proof of Lemma 3.2 above. We start
with the split case, and examine the definition of G(L),. This subgroup depends only on
the facet that contains x; and the values ¢(z) of the affine roots are rational numbers
(independent of the field) determined by the facet. Thus we have a finite, field-independent
set of definable subgroups Uy, and a definable subgroup T'(L),.. To show that G (L), which,
by definition, is generated by these subgroups, is definable, it remains to observe that there
is a uniform bound on the length of the word of generators required to write down every
element. In fact, it follows from Chevalley commutator relations that this length is bounded
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by |®| + 7, where r is the absolute rank of the group G. Hence, G(L), is definable. Then
G (L)L is definable, using the parameter z € Zry, since I' acts by definable automorphisms.

The statement (2) is Lemma B.14 in [36].

The proof of the statement (3) in the split case (i.e., for G(L)) is identical to the proof of
Part 1 of Lemma 3.3 above, with the lattices u(L),; replaced with the subgroups Uy, and using
the same remark about the bound on the length of the word of generators as in part (1). The
statement for G(K), . follows immediately from the split case, since we assume that r > 0,
by the condition (3) in §3.3. O

3.5. Haar measures

The functions representing the distributions that we study in this paper depend on the
choice of the normalizations of the Haar measures on G(K) and g(K). However, we note
that the questions we are interested in, namely, those of local integrability and local bound-
edness, are not sensitive to scaling by a constant, hence, any normalization of Haar mea-
sure that makes it a specialization of a motivic measure will work for our purposes. Let us
describe some aspects of motivic measures related to differential forms and our choices for
the normalizations.

3.5.1. — Given a definable subassignment and a definable differential form on it, there is
an associated motivic measure, see [11, §8] and [13, §12.3]. Let us explain how this works,
focusing on what we need in this paper, namely uniformity in K and in families. A definable
differential d-form w on the affine space KV with the coordinates z1, ...,z is given by a
finite sum of terms of the form fdx;, A--- Adz;, for0 < iy < --- <ig < N and where the
coefficients f are definable functions from K to K. For a d-dimensional K-analytic definable
submanifold A ¢ K, such a d-form w gives a measure on A, usually denoted by |w|, since
any definable function is K-analytic away from a definable set of smaller dimension. This
construction goes back to Weil and is detailed in [5]. Here we explain how to think of the
measures defined by volume forms uniformly in K and in families.

By Lemma 11.3 of [13], and by observing the construction in its proof, the following holds
for any definable set A C KV of dimension d. There exist an integer s > 0 and a definable
bijection f : A’ C kf x A — A, induced by the coordinate projection, such that for each
§ € kg, the fiber A; := {z | ({,z) € A’} is a K-analytic manifold of dimension at most d for
which there is a definable, isometric isomorphism of K-analytic manifolds ¢ : A’§ — B C K¢
which is induced by one of the coordinate projections K — K¢. Clearly there is a definable
differential d-form we on K? whose restriction to B¢ coincides with the pullback of the
restriction of w to A’§ under ¢:~1. Now we 1s of the form fdx; A --- A dzg for some definable
function f, and a measure can be defined on K¢ (and hence on each of the B and the Aé),
by defining the measure of an open set U in K¢ as the integral of | f| over U against the Haar
measure on K¢, normalized so that the unit ball has measure 1. This gives the measure |w]
on A. This construction of forms and measures works uniformly in families and also when
K varies, and corresponds to the motivic treatment of forms and measuresin [11, §8] and [13,
§12.3].
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3.5.2. — For a split connected reductive group G*!, one can explicitly write down a definable
differential form, which we denote by w®P!, that gives rise to a Haar measure on G*P!(K) (see
e.g., [9, §7.1]). For a non-split reductive group, we define the invariant differential form on
it by pull-back from its split form, using the same construction as Gross uses for an inner
form, cf. [21, (4.8)]. Since here we are working with not necessarily inner forms, we need
to generalize this construction slightly to allow the volume form to have coefficients in an
extension of the field K, and in the end we do not generally get the canonical measure of
Gross.

As in §3.1, we think of a general connected reductive group G as a fibore G = G,
of a definable subassignment (constructed in §3.1) over a point z € Zjr). Recall that
the subassignment Zr) specializes to the set of cocycles that give rise to forms of a given
split reductive group. For every such form G, with z € Zjrj, we have an isomorphism
Y, : L, g G, — L, ®k G*P!, where L, is the finite extension over which G, splits. Being
an isomorphism of algebraic groups (defined over L), the map v, is definable, using z as a
parameter (recall that as discussed in §3.1, using the parameter z allows us to use the elements
of L, in all Denef-Pas formulas).

At the identity, the map 1, induces an isomorphism of 1-dimensional vector spaces (which
we denote by the same symbol)

1/)2 . /\dimG(LZ QK gz) N /\dimG(LZ QK gSpl)7

defined over L, and which is, clearly, definable using the parameter z. (We observe that in
the case 1, is an inner twisting, this isomorphism is actually defined over K (cf. [28], pp. 68-
69), but we do not need this fact here.) Similarly, for every z € G(K), the map ¢, induces
an isomorphism (over L) of AT, (G) ®k L. and AT, (G*?") ®x L., where T}, denotes the
tangent space at x. We still denote this isomorphism by .

Let w, = ! (wP!). Then w, is a non-vanishing (since v, is an isomorphism at every
z € G(K)) top-degree differential form on G(K), of the form f(z1,...zq)dz1 A --- A dzg
in any coordinate chart on G(K), with f a regular L,-valued function on the correspond-
ing coordinate chart, whose coeflicients are definable functions of z. Finally, w, is G(K)-in-
variant, since it comes from a G(L,)-invariant form on G, ® L,. We can define the mea-
sure |w|r, on G(K) associated with the form w, by taking the L.-absolute value of the func-
tion f(z1,...,xz4) on each coordinate chart as above, as in §3.5.1, except replacing the K-ab-
solute value with its unique extension to L.

We see that (w,),e Zi is a constructible family of definable differential forms on the fi-
bres G.. Therefore, the measures |w,|z. form a family of (specializations of) motivic mea-
sures. These will be the Haar measures we consider on the groups G (K).

REMARK 3.5. — We observe that the resulting Haar measure coincides with the canonical
measure defined by Gross [21] in the case when G splits over an unramified extension, cf. [9,
§7.1], as well as in the case when G is a non-quasi-split inner twist of GP!, by definition in
[21]; in the quasi-split ramified case this relationship still needs to be better understood, cf.
[36, §B.5.2].
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3.5.3. Integrability of motivic functions. — In this article, we occasionally integrate motivic
(exponential) functions. We do that without further comment only in the situation when
such integration amounts to integration of a function which is clearly integrable, such as
a Schwartz-Bruhat function in the sense of [12, §7.5], or a product of a Schwartz-Bruhat
function and an additive character. Such functions are known to be integrable in the sense of
motivic integration by the results of [12], and the convergence of the p-adic integrals of their
specializations is clear. In [8] we prove much stronger results about integrability for motivic
functions, allowing us to handle questions of integrability of their specializations in the sense
of L'; here every time there is any issue with the convergence of the integral, we include a
careful discussion, and invoke the corresponding transfer principles from [8].

4. Orbital integrals as “motivic distributions”

4.1. The linear dual of g, and assumptions on p

Let g(K)* denote the linear dual of g(K). In [33, §3.5], Moy and Prasad define a filtration
of g(K)* by lattices g(K); .., where x is a point in the building #(G,K), and r is a real
number, by

9(K)z» = {A € g(K)" | Mg(K)a,(—r)+) C px}-

We will need a particularly nice non-degenerate bilinear form on g(K); its existence is
guaranteed by [4, Proposition 4.1]. We quote this proposition here omitting the details about
the list of bad primes.

ProPOSITION 4.1 ([4, Proposition 4.1]). — If the characteristic of K is outside a certain
finite list of primes determined by the root datum of G, then there exists a K-valued, non-
degenerate, bilinear, G(K)-invariant, symmetric form {,) on g(K) such that, under the asso-
ciated identification of g(K) with g(K)*, for all z € (G, K) and allr € R, the lattice g(K) ,
is identified with g(K); ..

Note that the proof of [4, Proposition 4.1] is, in fact, constructive, so we can use the form
constructed in the proof from now on to identify g(K)* with g(K). This allows us to think
of g(K)* as a definable set, identical to g(K). Recall that in the beginning, we have fixed an
embedding of g**! into gl,,, defined over Q, that leads to a consistent choice of coordinates on
all its forms g = g,; so let us, once and for all, fix the coordinates on the linear space g(K).
Let X = (z;)%, with respect to these coordinates, where d stands for dim G. Examining
the proof of [4, Proposition 4.1], we observe that for X, Y € g(K), the value (X,Y) is a
definable function of the coordinates of X and Y (using z as a parameter). Thus, to us,
g(K)* is the same definable set as g(K), with the same Haar measure, though we keep the *
for the convenience of interpretation, and sometimes denote this set by g*(K).
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4.1.1. Nilpotent orbits. — In the rest of this paper, we will need to make assumptions on the
characteristic of the field, which guarantee that the nilpotent orbital integrals are sufficiently
well-behaved.

For an element of a Lie algebra g(K), there are several definitions of “nilpotent” in the
literature; it turns out that for large p (or in characteristic zero) they are all equivalent, but
we will not use this fact here. We adopt the same definition as in [15], namely, we call an
element X € g(K) nilpotent if there exists A € XX(G) such that

lim Ad(A()) X = 0.
Following DeBacker, we denote by 0)(0, K) the set of orbits of nilpotent elements.

4.1.2. The assumptions on p. — Everywhere from now on, we need to assume that the
characteristic of the field is sufficiently large so that all of the following conditions hold:

1. there are finitely many nilpotent orbits in g;
2. the nilpotent orbital integrals are distributions on g(K);
3. the bilinear form from Proposition 4.1 exists.

Itis proved in [32] and also [14] that when p is larger than some constant that can be computed
from the absolute root datum of G, the first two conditions hold. Let M\‘f,ﬂp denote the
constant such that for p > My the above conditions hold. We also enlarge My ™ if
necessary, and assume that Mf;lp > My, where M, is the constant of §3.1.

4.2. Orbital integrals as motivic distributions

Let X € g(K). The definition of an orbital integral ®x, which is a distribution on the
space C°(g(K)), is recalled in §A.1.2. In this paper, rather than use the approach to the
definition of an orbital integral that requires us to fix a Haar measure on G(K) and a Haar
measure on the centralizer Cg(X), we will use a specific G(K)-invariant differential form
on the orbit of X. We start by recalling the construction of such a form, that goes back to
Kirillov. The version we use here is quoted from [27, §17.3].

4.2.1. Invariant volume forms on orbits. — Let (, ) be the (definable) non-degenerate, symmet-
ric, G(K)-invariant bilinear form on g(K) from Proposition 4.1. We use this form to iden-
tify g(K) with its linear dual g* (K), as above; this also identifies adjoint orbits with co-adjoint
orbits, since the form {, ) is G(K)-invariant.

Let X € g(K), and let &x be the adjoint orbit of X. The orbit fx, as a p-adic manifold,
is identified with G(K)/Ca(X), and its tangent space at X is identified with g/gx, where,
with our identification of g and g*,

4.1) gx ={Y eg | (X,[Y,Z]) =0forall Z € g}.
Consider the alternating form
4.2) wx (Y, Z) = (X,[Y, Z])

on g. This form descends to a non-degenerate alternating form on g/gx, [27, §17.3], and
therefore, it gives a symplectic form on the tangent space to fx at X. Let w be the symplectic
form on Ox defined by w(X) = wx. Then w is a non-degenerate symplectic form on Ox.
Note that the form w depends only on the choice of the bilinear form (, ). It follows that the
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orbit Ox is a symplectic manifold, and in particular, its dimension is even. Let dim O)x = 2m.
Consider the form v,,, = A™w—it is a non-vanishing G(K)-invariant top degree differential
form on Oy, that is, a volume form, see [27, §17.3].

DEeFINITION 4.2. — In this paper, we denote by ® x the orbital integral (as a distribution)
over the orbit of X equipped with the measure |dv,, |, where v, is the volume form on O x
as above (we assume that the bilinear form of Proposition 4.1 is fixed once and for all), and
m = % dim Ox.

The next proposition states that for every integer m, 1 < m < (dim G — rank G)/2,
the volume forms v, defined above form a family of definable volume forms on orbits
of dimension 2m. As a corollary, we obtain that the orbital integrals ®x form a family
of “motivic distributions”, in the sense that the result of the application of ®x to any
constructible family of definable test functions is a motivic function in X and the parameters
indexing the family. We note that a similar statement (just for semisimple elements, and with
less detail) appears also in [36, §B.5.3].

PrOPOSITION 4.3. — Fixanintegerm,1 < m < (dim G—rank G)/2. Then for the fields K
of sufficiently large residue characteristic, the set of elements X € g(K) such that dim Ox = 2m
is definable, and by restricting the form vy, to the orbits Ox of dimension 2m, we obtain a family
of definable G (K)-invariant volume forms on these orbits.

Proof. — First, observe that the vector spaces gx of (4.1) form a family of definable sets
indexed by X, as is clear from their definitions, since the form (, ) is definable, as discussed
below Proposition 4.1. Now, for every integer k between the rank and the dimension of G
of the same parity as dim G, let Let Vj, = {X € g(K) | dimgx = k}. The sets V}, partition
g(K), and they are definable since for every positive integer k, the statement dim gx = k can
be expressed by means of Denef-Pas language formulas stating that there exists a collection
of k vectors forming a basis of the linear space gx (cf. [19]).

Let w be the differential 2-form on g(K), which, at every X, coincides with the alternating
form wx of (4.2), viewed as an element of A%g(K)*. Recall that we have chosen the coordi-
nates (7;)%_, on g(K) (see the discussion after Proposition 4.1). We observe that the coeffi-
cients of the form w are linear functions of z;, with coefficients that are definable K-valued
functions of the parameter z, since the form (, ) is definable using z as a parameter. For every
integer m < (dim G —rank G)/2, consider the 2m-form v,,, :== A™w on g. Then it is a defin-
able 2m-form on the definable subassignment g, and it has the form v, = >~ ¢ fs Aies d;,
where S runs over the subsets of cardinality 2m of {1,...,n}, and fg are polynomials with
coefficients that are definable functions of z.

By restricting the definable form v, from g to the definable family of orbits of elements
of V;_a,,, we obtain a family (indexed by X and z) of definable 2m-forms on the orbits £)x
with X € V4_ap,. By [27, §17.3] (as summarized above), the specialization of the definable
form v4 to K coincides with a G(K)-invariant volume form on the orbit of X. Thus, we
obtain that the measures on the orbits that we have defined above come from a family of
definable volume forms. O
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COROLLARY 4.4. — Given a family of motivic exponential test functions {fq,}acs, such
that fox € CP(G(K)), where S € Def is some definable subassignment, there exist a
constant M > 0, and a motivic exponential function F on g x S, such that for all local fields
K € @ U By, for every X € gk, we have

Px(fax) = Fx(X,a) foralla€ Sk.
( Note that naturally, both F and M depend on the family {fo}acs.)

Proof. — The statement follows immediately from the above proposition, the construc-
tions of §3.5.1 and §3.5.2 and the main theorems on motivic integration of Sect. 4in [12]. O

5. Local integrability in large positive characteristic

5.1. The function 7

In [2, Appendix A], R. Huntsinger proved an integral formula for the function represent-
ing the Fourier transform of an invariant distribution, which plays a crucial role in our proof.
We need to quote some definitions from [2, Appendix A]. Let A be an additive character of K
with conductor pk. Here we will make use of the notation defined in Appendix A, see §A.3
below; we will also use the Fourier transform on g; the definition is recalled in §A.1.3.

DEFINITION 5.1 ([2, Definition A.1.1]). — Let K be an open compact subgroup of G(K).
For A € g*(K) and X € g(K), define

1x() = [ AOAI®)X) ar,
K
where dk is the Haar measure on K normalized so that the volume of K is 1.

In this definition, the subgroup K is arbitrary. Later we will need to assume that it is
definable. Once and for all, let us pick a definable open compact subgroup, for example,
take K = G(K),,,» for some fixed optimal point z¢ in an alcove C as in §3.3 (i.e., more
precisely, we pick an arbitrary tuple of barycentric coordinates of x, that is, an element of
the set Pounr - 0f §3.2.1), and an arbitrary r > 0, say, 7 = 1 (such a subgroup is definable
by Lemma 3.4). Everywhere below, we will use this subgroup K. Let ¢k be the volume of
this subgroup K = G(K),,.1 C G(K) with respect to the measure on G(K) defined in §3.5.
Then ck is a “motivic constant”, that is, a motivic function on a point. Since cx might not
be invertible in the ring of motivic functions, we cannot say that the motivic measure will be
normalized to give K volume 1; instead, the constant ck will appear as a denominator every
time we need to replace the integral over K with a motivic integral.

DEerINITION 5.2. — Fix r € R. Let 14.(g), denote the characteristic function of the set
g"(K); C g*(K). Let
NX,r = Nx g+ (),
For every r € R, the function 7x , belongs to the space C°(g*(K),), see [2, Corol-
lary A.3.4]. Then, given a distribution u € J(g*(K),) (where we use the notation recalled

in §A.3 below), it makes sense to write p(nx) = u(nx,r). Moreover, the map X — nx , is
locally constant in X . The main theorem of [2, Appendix A] is:
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THEOREM 5.3 ([2, Theorem A.1.2]). — Fixr € R. Let p € J(g*(K),.). Then i is repre-
sented on g*8 by the locally constant function X — p(nx).

Using the bilinear form (, ) to identify g(K) with g*(K), we can transport the function 7
to g(K).

DEFINITION 5.4, — Let 7} be the function on g(K) defined by:

ﬁX(Y)z/KA(<Ad(k)X,Y>)dk,

and let

Nx,r = Nx1gx),-

Now, observe that if we identify g(K) with g*(K) using the form (, ), then the space of
distributions J(g*(K)) is identified with the space J(g(K)). Since the set g*(KK),. is identified
with g(K),. for all » € R, the space J(g*(K),.) is identified with J(g(K), ). Now Theorem 5.3
can be restated as:

COROLLARY 5.5. — Fixr € R. Let u € J(g(K),.). Then [i is represented on g**¢ by the
locally constant function X — u(fjx).

5.2. Fourier transforms of orbital integrals

In this section, we use the bilinear form of Proposition 4.1. We continue to work with the
function 7x from Definition 5.4 above.

LEMMA 5.6. — Up to a constant, the functions Y — 17ix(Y) form a constructible family
of motivic exponential functions (indexed by X € g). More precisely, there exist a motivic
exponential function T on g x g, and a constant M~ such that for all K € @pr. U Bary, we
have

T(X,Y) = ix(Y),
Jor all (X,Y) € ¢g(K) x g(K), where cx is the motivic constant that is defined below
Definition 5.1.

Proof. — In the definition of the function 7jx, the compact open subgroup K is arbitrary.
Pick the definable subgroup K discussed after the Definition 5.1. Then the statement follows
immediately from the main theorem about motivic integrals of motivic exponential func-
tions, [12, Theorem 4.1.1], which states that if we integrate a motivic exponential function
with respect to some of its variables, with respect to a motivic measure, the result is a motivic
exponential function of the remaining variables. Note that here the integral over K is with
respect to the measure that comes from the differential form on G(K) defined in §3.5, which
requires a slight generalization of the framework of motivic integration, which is described
in §B.3.1. O
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Recall that the locally constant function on g**® representing the Fourier transform of @ x
is denoted by fix (cf. Appendix A). In order to prove the next theorem about local integra-
bility of the functions ix in positive characteristic, we need a family version of Lemma 5.6
for the functions 7jx , as r varies. More precisely, it will be sufficient to consider the fam-
ily of functions 7x ;, as [ runs through the integers. Here we use the subscript ‘u’ in all the
notation to emphasize that this is a uniform in a_family version of the corresponding earlier
constructions.

LEmMMA 5.7. — Up to a constant, the functions Y — fjx (V') form a constructible family
of motivic exponential functions (indexed by X € g andl € 7). More precisely, there exist
a motivic exponential function T* on g x h|0,0,1] x g, and a constant M¥ such that for all
K e @y U Q?M%, we have
1 -
—Tg(X,LY) =0x.(Y),
K

Sorall (X,1,Y) € g(K) x Z x g(K).

Proof. — By definition, fx; = 7x14(x),. By Lemma 5.6, the family {7x } x4 is a con-
structible family of motivic exponential functions, and by Corollary 3.3, Part 2, the func-
tions 14(x), also form a constructible family indexed by I € Z; thus, 7jx ; is a constructible
family of motivic exponential functions, indexed by g x Z. O

Now we are ready to prove the main theorem of this section.

THEOREM 5.8. — There exist a constant M depending only on the root datum of G, and a
motivic exponential function H on g x g*®8 such that for every local field K € Gpr U By, for
every X € g, we have

- 1
px(Y) = —Hg(X,Y)
CK

JorallY € gii®, where cx is the volume of the subgroup K, see the discussion after Definition 5.1.

Proof. — We recall that g(K) = U, o 9(K),.

For the moment, fix a field K; let X € g(K), and letr € R be an arbitrary real number such
that X € g(K),. Then the distribution ® x lies in the space J(g(K),), and by Huntsinger’s
formula (of Corollary 5.5), we have iix (Y) = ®x(7jy,), where 7y, are the functions from
§5.1. Note that the right-hand side does not depend on r as long as X € g(K),.. Thus, for
every integer [, we have

ﬁx(Y) = <DX(77]Y,l) for X € Q(K)l, Y g(K)reg.

By Lemma 5.7, for K € ¢ Mz U B Mz, We have that cxfjy; is the specialization to K of the
motivic exponential function T*. Take the family 7jy; (indexed by Y € g™& and | € Z) as
the family of test functions. The theorem now follows by applying Proposition 4.4 to this
family. O
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5.2.1. Proof of Theorem 2.1. — The statement now follows from Theorem 5.8 and Harish-
Chandra’s theorems [25] (reproduced as Statement (2) in §A.2), by the Transfer of local
integrability and Transfer of boundedness principles, [8], quoted here as Theorems B.2 and
B.3. Indeed, Harish-Chandra’s result asserts nice-ness of jix when the characteristic of K
is zero, and the transfer results of [8], which apply thanks to Theorem 5.8, yield that the
conditions of nice-ness (local integrability and local boundedness) are independent of the
characteristic of K, once the residue field characteristic is sufficiently large. O

Let us summarize the origins of the constant M&™ that provides the restriction on the
characteristic in this theorem.

1. MZ® > My (where My is the constant defined in §3.1), so that the group G(K) indeed
appears as an element in the constructible family for some parameter in Zjr) with a
suitable T".

2. We assume that Mg® > M$ilp, which ensures that it is large enough so that there are
finitely many nilpotent orbits, and nilpotent orbital integrals are well-defined distribu-
tions. It is also large enough so that the bilinear form (, ) of §4.1 exists.

3. Mg® > M%, where M% is the constant defined in Lemma 5.7, so that the family of
motivic functions of Lemma 5.7 specializes to Huntsinger’s functions 7x ;.

4. MP needs to be large enough so that for the family of functions fjx ;, the motivic
integrals over the orbits specialize to the orbital integrals, see Proposition 4.4.

5. Finally, MZ® might need to be enlarged further so that transfer of integrability holds
for the motivic exponential function H(X,Y") that specializes to cxfix (V).

5.3. Harish-Chandra characters

Let Mg be a constant, determined by the root datum of G, such that all the hypotheses
listed in §A.5 hold. That is, we take Mg to be the maximum of the constants MgP of
Theorem 2.1 for every M on the list of possible reductive groups that can arise as the
connected component of a centralizer of a semisimple element of G.

5.3.1. Proof of Theorem 2.2. — Let K € By, where Mg is defined above, and let m be an
admissible representation of G(K). First, we prove this theorem in a neighborhood of the
identity, more precisely, on the set G(K),., where r is chosen so that g, = g,(x)+, Where p() is
the depth of 7, or any larger number such that Hypothesis 2.2.1 holds for r. The niceness
of 6, restricted to this neighborhood is immediate; indeed, by Theorem A.7, on G(K), the
function 6 is a finite linear combination of the functions /iy, and these functions are nice
by Theorem 2.1, Part (1). The next statement is an easy technical point: since 6, is nice,
the integral fG(K) 0.(9)f(g) dg converges for all test functions f with support contained
in G(K),, not just those with support contained in the set of regular elements. One still
needs to show that this integral coincides with the value of the distribution 0, (f) for such
functions. This is almost a tautology, based on careful reading of the work of DeBacker.
Indeed, even though the local character expansion is stated in [14] as an equality of functions
defined on the regular set, in fact it is proved at the level of distributions, without the
assumption that the support of the test function is contained in the regular set; see the proof
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of [14, Theorem 3.5.2], where (using our notation for the orbital integral) it is shown that for

any f € C°(g(K)y),
Ox(foe )= Y co(mo(f).
De 0(0,K)
Then we have, for all f € C°(G(K),):

0= > comBolfoe)= > colm [ (Foe)(X)o(X)dx

0 0(0,K) D€ 0(0,K) 8(K)
- / 0.-(9)1(9) dg,
G(K)

where now we know that all the integrals converge, by Theorem 2.1.

Now let us prove that 6, is nice away from the identity as well. Our strategy, roughly
speaking, is to prove that 6, is nice in a neighborhood of every semisimple element, and
that any compact set in G(K) can be covered with finitely many such neighborhoods.
Harish-Chandra’s descent [23, Chapter 6] allows to reduce the statement about 6, in a
G (K)-neighborhood of a semisimple element v to a statement about a related distribution
defined on a neighborhood of  inside the centralizer M = Cg () of 7. Finally, on a suitable
neighborhood in M, niceness of 6 follows from the local character expansion due to Adler
and Korman [3] and the fact that Fourier transforms of nilpotent orbital integrals are nice,
as we have shown above.

We proceed with the proof. By our choice of the constant Mg, all the hypotheses listed in
§A.5 hold. Let v € G(K) be an arbitrary semisimple element, let M be the algebraic group
such that Cg () = M(K), let M = M(K) = Cg(v), and let all the remaining notation be
asin §A.5. Let r > max{p(m), 2s(y)}.

Let 0 be the distribution on M defined in [35, Proposition 1] (cf. also [3, §7], where the same
definition is explained for the restriction of 8 to M,.). By [23, Corollary from Theorem 11,
p- 49], if we show that 6 is represented by a nice function (which is also denoted by 6, by
slight abuse of notation) on the set M, it will follow that the function 6, is nice on G(K). So,
it remains to prove that € is a nice function on M.

1

By Theorem A.8 (and using the notation of that theorem), for ¥ € m!, the func-
tion f(ye(Y)) is a finite linear combination of the functions fig(Y"), as @ runs over the set
of nilpotent orbits in m. Let us extend both sides by zero to yvM,.. Then we have the equality
on yM,. By Theorem 2.1, 1iy(Y") are nice functions on m(K). Hence, 6 is a nice function as a
function on vM,.. Now we would like to show that 6 is a nice function on M. For this, since
it is conjugation-invariant, it suffices to show that the sets ™~y M, (which, by definition, are
open in M) cover M, as y runs over the set of semisimple elements in M.

We observe that all semisimple elements of M are covered automatically. Now suppose
m is an arbitrary element of M. Our assumptions on the characteristic of K guarantee that
M(K) contains semisimple and unipotent parts of its elements. Then we have m = ~,7,,, with
Yu € Cur(7s). Then we can conjugate m by an element of C(7s) so that v, gets replaced
by a conjugate that is as close to the identity as we wish; in particular, we can ensure that it
is in M,., which completes this part of the proof.
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Finally, an argument identical to that shown above for a neighborhood of the identity
shows that the equality

0= [ 6:(0)1()dg
G(K)

holds for all test functions f € C°(G(K)). O

5.4. General invariant distributions near the origin

Combining our Theorem 2.1 with DeBacker’s results summarized in Appendix A as
Theorem A.6, we obtain a partial extension to the large positive characteristic case (in a
neighborhood of the origin) of Harish-Chandra’s theorem about invariant distributions with
support bounded modulo conjugation.

THEOREM 5.9. — Let G be a connected unramified reductive group with the Lie algebra g.
Let M&rb be the constant from Theorem 2.1. Let K € @Marb, and let T be an invariant
distribution on g(K) with support bounded modulo conjugation. Suppose that the support of T
is contained in §(K)_,y+ with some r € R. Then the restriction of T to 9(K),. is represented
by a nice function 91 on g(K),..

Proof. — Let K € B merv» and let T be an invariant distribution on g(K) with support
bounded modulo conjugation. Then the support of 7" is contained in g(K) )+ for suf-
ficiently large » > 0. Fix such an r, and let f be an arbitrary test function with support
contained in g(K),. Then by Remark A.5, the function f belongs to the space P(_,y+. By
Theorem A.6, the restriction of 7" to the space 9_,)+ is a linear combination of the nilpo-
tent orbital integrals. Since by definition, T(f) = T(f), this implies that for all functions

f € C2(g(K),),
T(H=TF)= . cp®of)= > coPp(f)

PeD(0,K) Pe O(0,K)

with some constants cg). Therefore on g(KK),., the distribution T is represented by the function
Y7 = )y Cplip, Which is nice, by Theorem 2.1. O

Appendix A

Invariant distributions: classical results

In this section we review the notation, definitions, and some of the classical results of
harmonic analysis on p-adic groups that are relevant to the present paper.

A.1. Definitions

As before, K is a non-Archimedean local field (with no assumption on its characteristic),
G is a reductive algebraic group over K, and g is its Lie algebra.
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A.1.1. Characters. — Let (w, V') be an irreducible admissible representation of G(K). Then
the distribution character of w is the distribution on the space C2°(G(K)) of locally constant,
compactly supported functions on G(K) defined by

O.(f) =Tr f(g)m(g) dg
G(K)

(since 7 is admissible, the linear operator on the right-hand side is of finite rank, and hence
its trace is well defined).

It was proved by Harish-Chandra in characteristic zero, and in positive characteristic, by
G. Prasad [1, Appendix B] for connected groups, and by J. Adler and J. Korman in general
[3, Appendix] that there exists a locally constant function 8. defined on the set of regular
elements G(K)™# that represents the distribution character:

(A1) 0.(f) = /G REOROL

for all f € C°(G(K)*®). The function 8, is called the Harish-Chandra character.

A.1.2. Orbital integrals. — Let X € g(K); we denote by @x its adjoint orbit
Ox ={Ad(9)X | g € G(K)}. Then Ox (with the p-adic topology) is homeomorphic
to G(K)/Cq(X) (where C(X) is the stabilizer of X); given Haar measures on G(K)
and Cg(X), the space G(K)/Cg(X) carries a G(K)-invariant quotient measure. For the
fields K of characteristic zero, it was proved by Deligne and Ranga Rao [34] that when
transported to the orbit of X, this measure is a Radon measure on g(K), i.e., it is finite on
compact subsets of g(K) (strictly speaking, it is the group version of this statement that is
proved in [34], but in characteristic zero this is equivalent to the Lie algebra version). We
denote this quotient measure on G(K)/Cg(X) by d*g; then the orbital integral at X is the
distribution ®x on C°(g(K)) defined by

x(f) = / f(Ad(g)X)d"g.
G(K)/Ca(X)

For the fields of good positive characteristic, convergence of this integral is proved by
McNinch [32]. We emphasize that the orbital integral, as a distribution, depends on the
normalization of Haar measures on G(K) and on Cg(X), which together determine a
normalization of the invariant measure on the orbit of X. In this paper, instead of fixing
these normalizations, we use the normalization of the measures on the orbits that comes
from a family of volume forms obtained from the symplectic forms on co-adjoint orbits,
see §4.2.

A.1.3. Fourier transform. — Given an additive character A of K, we can define the Fourier
transform on the Lie algebra g(K), which maps functions on g(K) to functions on g*(K).

DEerINITION A.1 ([14, §3.1]). — Let dX be a Haar measure on g(K). For any f €
Ce2(9(K)), let

foy = (K)f(X)A(/\(X))dX,
where X € g*(K).
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The Fourier transform on g*(K) is defined similarly.

REMARK A.2. — As pointed out in [2, §0], there are in fact three objects appearing here:
9(K), its linear dual g*(K), and its Pontryagin dual g(K). The choice of the character A is
equivalent to the choice of an identification of g*(K) with g(K).

From now on, we will assume that the characteristic of K is large enough so that Proposi-
tion 4.1 holds. Then one can use the bilinear form (, ) from Proposition 4.1 to identify g(K)
with g*(K). With this identification, the definition of Fourier transform for a function
f € C(g(K)) takes the form:

for) = / o JOOME V) ax,

and f is again a locally constant compactly supported function on g(K).

With the identification of g(K) with g*(K) given by the form (,), for a distribution T
on C°(g(K)), its Fourier transform is defined to be

T(f) = T(f).

A.2. Local integrability theorems

When the field K has characteristic zero, and G is connected, the following facts are due
to Howe [26] and Harish-Chandra [24], [25]:

1. For an admissible representation 7 of G (K), its Harish-Chandra character 6, is a nice
function on G(K); and in particular, the representation of the distribution character
(A.1) holds for all f € C*(G(K)).

2. For an arbitrary element X € g(K) the Fourier transform of the orbital integral ®x is
represented by a locally constant function zix supported on g(IK):

ex(f) = [ f@ix@dg
9(K)
for f € C°(g(K)); and the function [ix is nice.

Clozel [6] extended these results to the case of nonconnected G, still in characteristic zero.

In positive characteristic, the existence of the locally constant function zix of (2) on g8,
such that the integral in (2) converges for the test functions f with support contained
in G(K)*# is proved by R. Huntsinger [2, Appendix A], assuming the characteristic is
large enough so that the orbital integrals are, indeed, distributions.

For GL,,, SL,,, and their inner forms, the statements (1) and (2) in positive characteristic
were proved by Rodier [35] and Lemaire [29], [30], [31]. For general groups, we prove the
analogues of these statements in this paper (as they have been out of reach up to now).
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A.3. Some spaces of distributions

Everything in this short section is quoted from [14]. Here we state the key result about
the distributions with bounded support, which, in this precise quantitative version and this
generality is due to DeBacker. Recall the definitions first.

DEerINITION A.3. — Let J(g(K)) denote the space of G(K)-invariant distributions
on g(K), and J(g(K),) denote the space of G(K)-invariant distributions on g(K) with
support in g(K), (where g(K), is the G-domain defined in §3.3 as a union of Moy-Prasad
filtration lattices). We use the similar notation J(g*(K)), J(g*(K),) for the dual Lie algebra.
Let J(V") denote the space of G(K)-invariant distributions whose support is contained in
the set of nilpotent elements 7. Let ©(0, K) denote the set of nilpotent orbits in g(K).

DEFINITION A.4. — Let 9, be the space of functions on g(K) that can be represented as
afinite sum f = Y f;, where f; is a complex-valued, compactly supported function on g(K),
invariant under g(K),, , for some y; € B(G, K).

REMARK A.5. — We observe that with our choice of the conductor of the character A
(see §3.5), if a test function f on g(K) lies in the space 9,., then the support of its Fourier
transform f is contained in g(K)_,y+, and if the support of f is contained in g(KK),., then

f S @(_T)+ .

The following statement is the summary of the part of the main result of [14] that is used
in this paper.

THEOREM A.6 ([14, Theorem 2.1.5, Corollary 3.4.6 and Remark 2.1.7])
Suppose all the hypotheses mentioned in §4.1 hold. If r € R, then the distributions
{resq, ®p}pco(o,x).form a basis of resq, J(N'), and

resg, J(g(K),) =resq, J(N).

A.4. Local character expansion

For an admissible representation 7 of G(K), we denote its depth (defined in [33, Theo-
rem 5.2]) by p(7).

THEOREM A.7 ([14, Theorem 3.5.2]). — Let K be a complete non-Archimedean local field
with finite residue field of characteristic p. Let m be an admissible representation of G(K).
Choose r such that g, = @,(x)+. Suppose p is sufficiently large so that the hypotheses from $4.1
are satisfied. Suppose also that Hypothesis 2.2.1 holds. Then there exist constants cg(m) € C
indexed by 0(0,K) such that

Or(e(X) = > colm)iip(X)

Pe 0(0,K)
Jorall X € g(K), N g(K)ree.
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We observe that the coefficients cy(7) are defined only after the field K is fixed; at present
we do not have any general approach that would yield information about the way they depend
on the field, since such an approach to begin with would require a field-independent way to
parametrize representations. For toral very supercuspidal representations the beginnings of
such a parametrization are discussed in [7].

A.5. Local character expansion near a tame semisimple element

Let G, K, and an admissible representation 7 of G(K) be as above. For a semisimple
element v € G(K), its centralizer Cg(7y) is a reductive (not necessarily connected) algebraic
group over K. There is a finite list (depending only on the root datum of G) of the possible
root data for the (connected components of) the centralizers of semisimple elements in G (K).
We will denote a connected reductive group on this list by M°, and its Lie algebra by m.

Assume that the characteristic of K is large enough so that all the hypotheses of 4.1
hold for every possible M° (the connected component of the centralizer of a semisimple
element of G) in the place of G. We also need to assume Hypothesis 2.2.1 for every such M°
(more precisely, we need the slightly weaker Hypothesis 8.5 from [3]). We observe that when
the characteristic of K is large enough, then both G° and M?° split over the same tame
extension; thus, Hypothesis 8.3 of [3] holds; therefore, the restriction of the mock exponential
map for G(K) satisfies the conditions of Hypothesis 8.5 from [3]. Thus, when the residue
characteristic of K is large enough, it is sufficient to assume our Hypothesis 2.2.1, for some
r > 0.

We need to introduce some more notation from [3].

Let v € G*(K), and C¢(v) = M(K) as above. We can consider Moy-Prasad filtration
subgroups and the corresponding lattices in m (as defined in §3.3, with M° in place of G);
so we have the subgroups M°(K),, . for z € B(M°,K), etc. Let M,, = M(K),.. Following
[3, §4], define, for m € M:

Dgyar(m) = det ((Ad(m) - 1)|g/m)
(with the convention that when M = G, Dg /5 = 1). Further, for 7 > 0, let
M/ = {m € M, | Dg/p(ym) # 0}
M ={m € M, | ym € G(K)"¢}.
Then M)’ C M, are dense open subsets of M,..

For an element v € G(K)**, Adler and Korman introduced the notion of singular
depth s(vy) (see [3, Definition 4.1]); we will not need the precise definition here. The main
result we need is the following theorem (we are using our earlier notation 6, for the function
representing the distribution character of the representation 7).

Let 6 be the distribution on M, obtained from ©, via descent, as explained in [3, §7]. It
is represented on M/’ by a locally constant function 6, see [3, Lemma 7.5]. Then for 6, an
analogue of the local character expansion (in terms of the Fourier transforms of nilpotent
orbital integrals on M) holds:
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THEOREM A.8 ([3, Corollary 12.10]). — Let r > max{p(w),2s(7)}. Then
O(ve(Y)) = > cofp(Y)
0€ O

orallY € m” .= e~ (M), for some complex coefficients cy that depend on the representa-
. r r). 74 0 74 94
tion m, and where Oy, is the set of nilpotent orbits in m.

Appendix B

Constructible exponential functions

Here we recall briefly the main notions and notation used in motivic integration; we refer
to the original articles [11], [12], [13] for complete details, and to [10], [20], and especially [9]
for exposition.

B.1. Denef-Pas language and definable subassignments

Denef-Pas language is a first order language of logic designed for working with valued
fields. The formulas in this language can have variables of three sorts: the valued field sort, the
residue field sort, and the value group sort (in our setting, the value group is always assumed
to be Z, so we call this sort the Z-sort). Here is the list of symbols used to denote operations
and binary relations in this language:

In the valued field sort: + and x for the binary operations of addition and multiplica-
tion; ord(-) for the valuation (it is a function from the valued field sort to the Z-sort),
and ac(-) for the so-called angular component—a function from the valued field sort
to the residue field sort (more about this function below).

— In the residue field sort: 4+ and x for addition and multiplication.

In the Z-sort: 4+ for addition; the binary relations >, and =, for the congruence
modulo n for every n € N.

There is also the binary relation = in every sort.

Initially, the symbols for the constants are just 0 and 1 in every sort, and the symbol oo in
the Z-sort to denote the valuation of 0 (with the natural rules with respect to co and all the
operations and relations, such as co > n is true for all n, etc.).

Given a number field E with the ring of integers (2, one can make a variant of Denef-Pas
language with coeflicients in [¢] in the valued field sort. This means that a constant symbol
is formally added to the valued field sort for every element of Q[¢]. We denote this language
by #q. In this paper we use the language #7; however, since there might be applications
where one wishes to work over a fixed number field E that is different from Q, here we discuss
this slightly more general setting.

The formulas in #q are built from the symbols for variables in every sort and constant
symbols, using the listed above operations and relations, and conjunction, disjunction, nega-
tion, and the quantifiers V and 3.

Given a valued field K that is an algebra over Q2 with the choice of the uniformizer of the
valuation w, one can interpret the formulas in £ by letting the variables range, respectively,
over K, the residue field kx of K, and Z (which is the value group of K). The function
symbols ord(z) and ac(z) are interpreted as follows: ord(z) denotes the valuation of z,
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and ac(z) denotes the so-called angular component of z: if z is a unit, then ac(z) is the
residue of x modulo w (thus, an element of the residue field); for a general x # 0 define
ac(z) = ac(w— °"4®)z); thus, ac(x) is the first non-zero coefficient of the w-adic expansion
of z. By definition, ac(z) = 0 if and only if z = 0.

In this way, any formula @¢(z1,...,Zn, Y1, -, Ym, 21, - -, 2-) With n free (that is, not
bound by quantifiers) variables of the valued field sort, m free variables of the residue field
sort, and r free variables of the Z-sort yields a subset of K™ x k* x Z", namely those points
(T1,- s Tny Y1s- oy Ymy 21, - -5 2r) € K™ X k¥ X Z7 where ¢ takes the value “true”. Sets
of this form for some £q-formula ¢ are called definable. A function is called definable if its
graph is a definable set.

Let us (temporarily) denote the category of fields L which admit an injective ring homo-
morphism from § to L by Flds,. We write h[n, m, r] for the functor from Flds, to Sets that
sends L to L((#)" xL™ x Z". Any formula ¢(x1,...,Tn,Y1,--->Ym, 21, - - » Z-) &S above in
particular induces a map sending any L € Flds,, to a subset of L((t)" xL™ x Z". A map
obtained in this way from an #q-formula is called a definable subassignment of h|n,m,r] (or
simply a definable subassignment if we do not want to specify n,m,r). A similar notion of
assignments was first introduced in [17].

A morphism of definable subassignments consists of a family of maps between the corre-
sponding definable sets for each L € Flds,, such that the family of graphs of these maps is
a definable subassignment.

DEerFINITION B.1. — The category of definable (in the language #q) subassignments
of h[n, m,r] with some integers n,m,r > 0 is denoted by Def. The category of definable
subassignments of k[0, m, 0] for some m > 0 is denoted by RDef (thus, the subassignments
in RDef are defined by formulas that can only have free variables of the residue field sort).

We also need the “relative” situation: suppose S € Defis a definable subassignment. Then
one can define Defg—the category of definable subassignments over S—to be the category
of definable subassignments with a fixed morphism to S (with morphisms, naturally, defined
to be morphisms over .S). The category RDefs consists of subassignments of S x k[0, n, 0]
with the projection onto the first coordinate as the fixed morphism to S. If X is a definable
subassignment, we write X [m, n,r| for X x h[m,n,r].

B.2. Specialization

The main point of using the language #q, is specialization, which we survey briefly, while
referring to [10, §6.7] or [20, §5] and [13] for a more extensive exposition. Let & be the
collection of completions of algebraic extensions of the base field E, and let 8 be the
collection of positive-characteristic local fields that admit a homomorphism from Q—these
are the collections of fields to which we would like to apply a transfer principle. Strictly
speaking, we should write @%q and Bq, but  is usually clear from the context; and in the
main body of this paper 2 = Z, so we drop this subscript.

Let S be a definable subassignment of h[n, m, r] for some m, n, and r; suppose that S is
defined by an £q-formula ¢. Let K € & U B be a discretely valued field, with a choice of
the uniformizer of the valuation . Then the formula ¢ can be interpreted in K to give a
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subset Sk of K™ x kg* x Z". The set Sk is called the specialization of the subassignment S
to K.

For two formulas ¢; and ¢- defining the same subassignment S, there exists a constant M,
such that for K € @, U B their specializations to K give the same set regardless of which
formula we use. We emphasize that a definable subassignment can be specialized both to the
fields of characteristic zero and those of positive characteristic, and the specialization is well
defined as long as the residue characteristic is sufficiently large.

B.3. Motivic exponential functions

For a definable subassignment X, the ring of the so-called constructible motivic functions
on X, denoted by € (X), is defined in [11]. We will use a slight generalization of this, described
below in §B.3.1. The elements of €' (X) are, essentially, formal constructions defined using
the language ¥q. For the sake of brevity (and consistency with [8]), we drop the word “con-
structible” everywhere from now on, and refer to the elements of ¢ (X) as “motivic func-
tions”. An important feature of motivic functions is specialization to functions on definable
subsets of affine spaces over discretely valued fields. Namely, let F € €(X). Let K € U B
be a non-Archimedean local field. Let w be the uniformizer of the valuation on K. Then the
motivic function F' specializes to a Q-valued function Fx on X, for all fields K of residue
characteristic bigger than a constant that depends only on the choice of the #q-formulas
defining F and X. As explained in [9, §2.9], one can tensor the ring € (X) with C, and then
the specializations Fx of elements of (X ) ® C form a C-algebra of functions on Xk, which
we denote by k(Xk). See [8, §4.2.5] for a general form of a motivic function.

Further, for a subassignment X as above, the ring of motivic constructible exponential
functions °*P(X) is defined in [12]. The elements of this ring specialize to what we call
(p-adic) constructible exponential functions. In the motivic setting, we also drop the word
“constructible” from now on. In order to get a specialization of a motivic exponential
function, one needs to choose, in addition to a local field K with uniformizer w, an additive
character A of K satisfying the condition

(B.1) Aw) = e (o))

for x € Q. Here, p is the characteristic of kx, £ € ki is the reduction of x modulo w,
and Try, is the trace of kx over its prime subfield (see [8, §§4.1, 4.2.6] for details). The set of
characters of K satisfying the condition (B.1) is denoted by Zk.

Given a field K € & U B as above, with a uniformizer w and an additive character A
as in (B.1), we consider the Q-algebra of functions on Xk generated by the specializations
of motivic exponential functions. As above, we can tensor it with C; we denote the resulting
C-algebra by € ¥ (Xk). See [8, §4.2.9, §3.2] for details.

We often need to talk about motivic (respectively, motivic exponential) functions on the
set of K-points of an algebraic group G or its Lie algebra g. We observe that any affine
algebraic variety V (for example, V = G or V = g) naturally gives a definable subassignment
of h[m,0,0] with some m; let us for the moment denote this subassignment by V. Then
Vk = V(K), for all non-Archimedean local fields K of sufficiently large residue characteristic.
However, to keep notation simple, we simply talk about motivic functions on V(K) for a
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variety V, implying that we replace V (K) with Vi; it is in this sense that we talk about motivic
functions on G(K) or g(K) in this paper.

In [11], Cluckers and Loeser defined a class IC(X) of integrable motivic functions, which
is closed under integration with respect to parameters (where integration is with respect to
the motivic measure). Given a local field K with a choice of the uniformizer, these functions
specialize to integrable (in the classical sense) functions on Xk, and motivic integration
specializes to the classical integration with respect to an appropriately normalized Haar
measure, when the residue characteristic of K is sufficiently large. In [12] the definition
of “integrable” and the notion of motivic integration are extended to motivic exponential
functions. Moreover, there is a notion of “motivic” Fourier transform that specializes to
the classical Fourier transform. In [8], we provide a more general treatment of the issues of
integrability, essentially, proving that any motivic exponential function whose specializations
are L'-integrable for almost all K € & can be “interpolated” by a motivic exponential
function integrable in the sense of [12] (where by “interpolation” we mean that it has the same
specilaizations for every K € @y U B) for a sufficiently large M), cf. [8, Theorem 4.3.3].

B.3.1. A generalization of motivic exponential functions. — In some places in this paper, we
have to take roots of g (the cardinality of the residue field), e.g., in the notion of “nice” in §2.1,
and in the definition of the measure on G(K) in §3.5. To this end, we generalize the notion
of motivic (exponential) functions as follows. Let F' be a motivic (exponential) function on
some S, let f : S — Z be a definable morphism, and let » > 1 be an integer. We call
any expression H of the form FL+f a motivic (exponential) function on S, and we call the
functions FKqufK on S the specializations Hx of H for K € @ U By of large residue field
characteristic gg. We also allow finite linear combinations of such expressions. All classical
results about motivic (exponential) functions easily generalize to this setting, by splitting .S
into r disjoint parts according to f mod 7.

B.3.2. Conventions. — For the sake of brevity, we use the term “motivic (exponential) func-
tion” a little loosely, in the sense that we sometimes refer to a p-adic function by this collection
of adjectives if it is obtained by specialization from a motivic exponential function. Precisely,
we say that a function f on some subset of an affine space over a non-Archimedean local field
K is a motivic (exponential) function if the following conditions hold:

1. the domain of f is a specialization Sk of some definable subassignment S € Def; and
2. there exists a motivic (exponential) function F' on S, and in the case when “expo-
nential” is relevant, an additive character A € %, such that f = Fk (respectively,
= Fx).
3. If Kis allowed to vary, then the definable subassignment .S and the motivic (exponen-
tial) function F' can be taken independently of K.
A similar convention applies to integration and Fourier transform; for example, when we
integrate the specialization of a motivic exponential function (with respect to a p-adic Haar
measure), we think of the integral as the specialization of the corresponding motivic integral.
Sometimes, we find it convenient to talk about families of motivic functions, of definable
sets, or even of definable volume forms. We occasionally use the term “constructible family”
to emphasize that the objects in question depend on the parameter indexing the family in
a definable way. Thus, by a constructible family of motivic (exponential) functions { f, }scs

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1192 R. CLUCKERS, J. GORDON AND I. HALUPCZOK

on X, where X and S are definable subassignments, we mean nothing but a motivic (expo-
nential) function on S x X.

B.4. Motivic exponential functions and representatives

As noted briefly in §B.2 above, and explained in [8] in detail, the specialization of a
subassignment (and therefore, of a motivic exponential function) depends, in principle,
on the choice of specific formulas used to define the subassignment and the function in
question. Given one such choice of formulas, there exists a constant M > 0 such that for the
fields K € @ U By, the specialization to K is well defined. In [8], the choice of formulas
is referred to as “the choice of representatives”, meaning that a subassignment is thought of
as an equivalence class of formulas.

We observe that in this paper (as well as in all applications of motivic integration so far)
whenever we prove that a certain object or function is “motivic”, it automatically comes
with a collection of formulas defining it; that is, the motivic objects always appear with the
choice of representatives in the sense of [8, §4.2.2] (we emphasize again that the choice of
representatives amounts to a choice of specific formulas defining the given subassignment).
Since all our definable objects come with a choice of formulas defining them, we can assume
that this is the choice of representatives built into all the constants that provide the lower
bounds on residue characteristic in all our results.

B.5. Transfer of integrability and boundedness

We quote the transfer of integrability and transfer of boundedness principles from [§].
(For simplicity, we quote the version without parameters, that is, we take the parametrizing
space X to be a point in [8, Theorem 4.4.1] and [8, Theorem 4.4.2].)

THEOREM B.2 ([8, Theorem 4.4.1]). — Let F be a motivic exponential function on h[n, 0, 0].
Then there exists M > 0, such that for the fields K € @pr U By, the truth of the statement
that Fx  is (locally) integrable for all A € Pk depends only on the isomorphism class of the
residue field of K.

THEOREM B.3 ([8, Theorem 4.4.2]). — Let F be a motivic exponential function on h[n, 0, 0].
Then, for some M > 0, for the fields K € Gnr U Bug, the truth of the statement that Fx , is
(locally) bounded for all A € Py depends only on the isomorphism class of the residue field
of K.

The main technical result of this paper is that Fourier transforms of orbital integrals are
represented on the set of regular elements by motivic exponential functions. Thus, the trans-
fer principles apply, yielding local integrability (respectively, local boundedness) for K € By
for large M.
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