Bulletin

de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE

ESTIMATES OF THE LINEARIZATION OF CIRCLE DIFFEOMORPHISMS

Mostapha Benhenda

Tome 142
Fascicule 4

2014

SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du Centre national de la recherche scientifique

ESTIMATES OF THE LINEARIZATION OF CIRCLE DIFFEOMORPHISMS

by Mostapha Benhenda

Abstract

A celebrated theorem by Herman and Yoccoz asserts that if the rotation number α of a C^{∞}-diffeomorphism of the circle f satisfies a Diophantine condition, then f is C^{∞}-conjugated to a rotation. In this paper, we establish explicit relationships between the C^{k} norms of this conjugacy and the Diophantine condition on α. To obtain these estimates, we follow a suitably modified version of Yoccoz's proof.

Résumé (Estimées de la linéarisation de difféomorphismes du cercle) Un célèbre théorème de Herman et Yoccoz affirme que si le nombre de rotation α d'un C^{∞}-difféomorphisme du cercle f satisfait une condition diophantienne, alors f est C^{∞}-conjugué à une rotation. Dans cet article, nous établissons des relations explicites entre les C^{k} normes de cette conjuguée et la condition diophantienne sur α. Pour obtenir ces estimées, nous suivons une version convenablement modifiée de la preuve de Yoccoz.

[^0]
1. Introduction

In his seminal work, M. Herman [5] shows the existence of a set A of Diophantine numbers of full Lebesgue measure such that for any circle diffeomorphism f of class C^{ω} (resp. C^{∞}) of rotation number $\alpha \in A$, there is a C^{ω}-diffeomorphism (resp. C^{∞}-diffeomorphism) h such that $h f h^{-1}=R_{\alpha}$. In the C^{∞} case, J. C. Yoccoz [14] extended this result to all Diophantine rotation numbers. Results in analytic class and in finite differentiability class subsequently enriched the global theory of circle diffeomorphisms $[9,8,7,13,6,15,4,10]$. In the perturbative theory, KAM theorems usually provide a bound on the norm of the conjugacy that involves the norm of the perturbation and the Diophantine constants of the number α (see $[5,12,11]$ for example). We place ourselves in the global setting, we compute a bound on the norms of this conjugacy h in function of the class of differentiability k, of norms of f, and of the Diophantine parameters β and C_{d} of α (an irrational number $\alpha \in D C\left(C_{d}, \beta\right)$ satisfies a Diophantine condition of order $\beta \geq 0$ and constant $C_{d}>0$ if for any rational number p / q, we have: $\left.|\alpha-p / q| \geq C_{d} / q^{2+\beta}\right)$. The dependency in C_{d} is particularly interesting to study, because for any fixed $\beta>0$, the set of Diophantine numbers of parameter β has full Lebesgue measure. It follows that the control of the conjugacy for a typical diffeomorphism, with fixed norms, is approached as $C_{d} \rightarrow 0$.

To obtain these estimates, we follow a suitably modified version of Yoccoz's proof. Indeed, Yoccoz's proof needs to be modified because a priori, it does not exclude the fact that the following set could be unbounded for any fixed $X>0$:

$$
\begin{aligned}
E_{X}=\left\{|D h|_{0} / \exists f\right. & \in \operatorname{Diff}_{+}^{k}\left(\mathbb{T}^{1}\right), f=h^{-1} R_{\alpha} h \\
\alpha & \left.\in D C\left(\beta, C_{d}\right), \max \left(k, \beta, C_{d},|D f|_{0}, W(f),|S f|_{k-3}\right) \leq X\right\}
\end{aligned}
$$

where Diff ${ }_{+}^{k}\left(\mathbb{T}^{1}\right)$ denotes the group of orientation-preserving circle diffeomorphisms of class $C^{k}, D f$ denotes the derivative of $f, W(f)$ the total variation of $\log D f$, and $S f$ the Schwarzian derivative of f.

These estimates have natural applications to the global study of circle diffeomorphisms with Liouville rotation number: in [2], they allow to show the following results: 1) there is a Baire-generic set $A_{1} \subset \mathbb{R}$ such that for any $f \in D^{\infty}\left(\mathbb{T}^{1}\right)$ of rotation number $\alpha \in A_{1}$, there is a sequence $h_{n} \in D^{\infty}\left(\mathbb{T}^{1}\right)$ such that $h_{n}^{-1} f h_{n} \rightarrow R_{\alpha}$ in the C^{∞}-topology. 2) There is a Baire-generic set $A_{2} \subset \mathbb{R}$ such that for any $f \in D^{\infty}\left(\mathbb{T}^{1}\right)$ of rotation number $\alpha \in A_{2}$ and any g of class C^{∞} with $f g=g f, f$ and g are accumulated in the C^{∞}-topology by commuting C^{∞}-diffeomorphisms that are C^{∞}-conjugated to rotations. Moreover, if β is the rotation number of g, R_{α} and R_{β} are accumulated in the C^{∞}-topology by commuting C^{∞}-diffeomorphisms that are C^{∞}-conjugated to f and g.
1.1. Notations. - We follow the notations of [14].

- The circle is denoted by \mathbb{T}^{1}. The group of \mathbb{Z}-periodic maps of class C^{r} of the real line is denoted by $C^{r}\left(\mathbb{T}^{1}\right)$. We work in $D^{r}\left(\mathbb{T}^{1}\right)$, which is the group of diffeomorphisms f of class C^{r} of the real line such that $f-I d \in$ $C^{r}\left(\mathbb{T}^{1}\right)$. It is the universal cover of the group of orientation-preserving circle diffeomorphisms of class C^{r}. Note that if $f \in D^{r}\left(\mathbb{T}^{1}\right)$ and $r \geq 1$, then $D f \in C^{r-1}\left(\mathbb{T}^{1}\right)$.
- The Schwarzian derivative $S f$ of $f \in D^{3}\left(\mathbb{T}^{1}\right)$ is defined by:

$$
S f=D^{2} \log D f-\frac{1}{2}(D \log D f)^{2}
$$

- The total variation of the logarithm of the first derivative of f is:

$$
W(f)=\sup _{0 \leq a_{0} \leq \cdots \leq a_{n} \leq 1} \sum_{i=0}^{n}\left|\log D f\left(a_{i+1}\right)-\log D f\left(a_{i}\right)\right| .
$$

- For any continuous and \mathbb{Z}-periodic function ϕ, let:

$$
|\phi|_{0}=\|\phi\|_{0}=\sup _{x \in \mathbb{R}}|\phi(x)| .
$$

- Let $0<\gamma^{\prime}<1$. The map $\phi \in C^{0}\left(\mathbb{T}^{1}\right)$ is Holder of order γ^{\prime} if:

$$
|\phi|_{\gamma^{\prime}}=\sup _{x \neq y} \frac{|\phi(x)-\phi(y)|}{|x-y|^{\gamma^{\prime}}}<+\infty .
$$

Let $\gamma \geq 1$ be a real number. All along the paper, we write $\gamma=r+\gamma^{\prime}$ with $r \in \mathbb{N}$ and $0 \leq \gamma^{\prime}<1$.

- A function $\phi \in C^{\gamma}\left(\mathbb{T}^{1}\right)$ if $\phi \in C^{r}\left(\mathbb{T}^{1}\right)$ and if $D^{r} \phi \in C^{\gamma^{\prime}}\left(\mathbb{T}^{1}\right)$. The set $C^{\gamma}\left(\mathbb{T}^{1}\right)$ is endowed with the norm:

$$
\|\phi\|_{\gamma}=\max \left(\max _{0 \leq j \leq r}\left\|D^{j} \phi\right\|_{0},\left|D^{r} \phi\right|_{\gamma^{\prime}}\right)
$$

If $\gamma=0$ or $\gamma \geq 1$, the C^{γ}-norm of ϕ is indifferently denoted $\|\phi\|_{\gamma}$ or $|\phi|_{\gamma}$. Thus, when possible, we favor the simpler notation $|\phi|_{\gamma}$.

- If $x \in \mathbb{T}^{1}$ and \tilde{x} is a lift to \mathbb{R}, then:

$$
|x|=\inf _{p \in \mathbb{Z}}|\tilde{x}+p|
$$

- For $x, y \in \mathbb{R}$, if $x \leq y,[x, y]$ denotes $\{t \in \mathbb{R}, x \leq t \leq y\}$ and if $x \geq y,[x, y]$ denotes $\{t \in \mathbb{R}, y \leq t \leq x\}$.
- For $\alpha \in \mathbb{R}$, we denote $R_{\alpha} \in D^{\infty}\left(\mathbb{T}^{1}\right)$ the map $x \mapsto x+\alpha$.
- An irrational number $\alpha \in D C\left(C_{d}, \beta\right)$ satisfies a Diophantine condition of order $\beta \geq 0$ and constant $C_{d}>0$ if for any rational number p / q, we have:

$$
\left|\alpha-\frac{p}{q}\right| \geq \frac{C_{d}}{q^{2+\beta}} .
$$

Moreover, if $\beta=0$, then α is of constant type C_{d}.

- Let $\alpha_{-2}=\alpha, \alpha_{-1}=1$. For $n \geq 0$, we define a real number α_{n} (the Gauss sequence of α) and an integer \hat{a}_{n} by the relations $0<\alpha_{n}<\alpha_{n-1}$ and

$$
\alpha_{n-2}=\hat{a}_{n} \alpha_{n-1}+\alpha_{n} .
$$

- In the following statements, $C_{i}[a, b, \ldots]$ denotes a positive numerical function of real variables a, b, \ldots, with an explicit formula that we compute.
$C[a, b, \ldots]$ denotes a numerical function of a, b, \ldots, with an explicit formula that we do not compute.
- We use the notations $a \wedge b=a^{b}, e^{(n)} \wedge x$ the $n^{\text {th }}$-iterate of $x \mapsto \exp x,\lfloor x\rfloor$ for the largest integer such that $\lfloor x\rfloor \leq x$, and $\lceil x\rceil$ for the smallest integer such that $\lceil x\rceil \geq x$.

We recall Yoccoz's theorem [14]:
Theorem 1.1. - Let $k \geq 3$ be an integer and $f \in D^{k}\left(\mathbb{T}^{1}\right)$. We suppose that the rotation number α of f is Diophantine of order β. If $k>2 \beta+1$, there exists a diffeomorphism $h \in D^{1}\left(\mathbb{T}^{1}\right)$ conjugating f to R_{α}. Moreover, for any $\eta>0, h$ is of class $C^{k-1-\beta-\eta}$.

1.2. Statement of the results

1.2.1. C^{1} estimations

Theorem 1.2. - Let $f \in D^{3}\left(\mathbb{T}^{1}\right)$ be of rotation number α, such that α is of constant type C_{d}. Then there exists a diffeomorphism $h \in D^{1}\left(\mathbb{T}^{1}\right)$ conjugating f to R_{α}, which satisfies the estimation:

$$
|D h|_{0} \leq e \wedge\left(\frac{C_{1}\left[W(f),|S f|_{0}\right]}{C_{d}}\right) .
$$

The expression of $C_{1.2}$ is given in page 681.
More generally, for a Diophantine rotation number $\alpha \in D C\left(C_{d}, \beta\right)$, we have:
Theorem 1.3. - Let $k \geq 3$ be an integer and $f \in D^{k}\left(\mathbb{T}^{1}\right)$. Let $\alpha \in D C\left(C_{d}, \beta\right)$ be the rotation number of f. If $k>2 \beta+1$, then there exists a diffeomorphism $h \in D^{1}\left(\mathbb{T}^{1}\right)$ conjugating f to R_{α}, which satisfies the estimation:

$$
\begin{equation*}
|D h|_{0} \leq C_{2}\left[k, \beta, C_{d},|D f|_{0}, W(f),|S f|_{k-3}\right] . \tag{1}
\end{equation*}
$$

The expression of C_{2} is given in page 693.
Moreover, if $k \geq 3 \beta+9 / 2$, we have:

$$
\begin{equation*}
|D h|_{0} \leq e^{(3)} \wedge\left(C_{3}[\beta] C_{4}\left[C_{d}\right] C_{5}\left[|D f|_{0}, W(f),|S f|_{0}\right] C_{6}\left[|S f|_{[3 \beta+3 / 2\rceil}\right]\right) \tag{2}
\end{equation*}
$$

The expressions of $C_{2}, C_{2}, C_{2}, C_{2}$ are given in page 695.

[^1]Let $\delta=k-2 \beta-1$. When $\delta \rightarrow 0$, we have:

$$
\begin{align*}
&|D h|_{0} \leq e^{(3)} \wedge\left(\frac{1}{\delta^{2}} C_{7}[k\right. \tag{3}\\
&\left.\left.C_{d},|D f|_{0}, W(f),|S f|_{0}\right]+\frac{C[\delta]}{\delta^{2}} C\left[k, C_{d},|D f|_{0}, W(f),|S f|_{0},|S f|_{k-3}\right]\right)
\end{align*}
$$

where $C[\delta] \rightarrow_{\delta \rightarrow 0} 0$. The expression of C_{3} is given in page 695.
Remark 1.4. - Katznelson and Ornstein [8] showed that the assumption $k>$ $2 \beta+1$ in Yoccoz's theorem is not optimal (instead it is $k>\beta+2$). Therefore, the divergence of the bound given by estimation (3) is because we compute the bound of the conjugacy following the Herman-Yoccoz method.

Remark 1.5. - Let α_{n} be the Gauss sequence associated with α. Yoccoz's proof already gives the following result: if $k \geq 3 \beta+9 / 2$ and if, for any $n \geq 0$,

$$
\begin{equation*}
\frac{\alpha_{n+1}}{\alpha_{n}} \geq C_{8}\left[n, k, W(f),|S f|_{k-3}\right] \tag{4}
\end{equation*}
$$

then:

$$
|D h|_{0} \leq \exp \left(C_{9}\left[k, W(f),|S f|_{k-3}\right]^{C_{10}(\beta)}\right)|D f|_{0}^{2} .
$$

The expressions of $C_{8}, C_{1.5}, C_{1.5}$ are given in page 696.

1.2.2. C^{u} estimations

Theorem 1.6. - Let $k \geq 3$ be an integer, $\eta>0$ and $f \in D^{k}\left(\mathbb{T}^{1}\right)$. Let $\alpha \in$ $D C\left(C_{d}, \beta\right)$ be the rotation number of f. If $k>2 \beta+1$, there exists a diffeomorphism $h \in D^{k-1-\beta-\eta}\left(\mathbb{T}^{1}\right)$ conjugating f to R_{α}, which satisfies the estimation:

$$
\begin{align*}
&\|D h\|_{k-2-\beta-\eta} \leq e^{(\lceil\log ((k-2-\beta) / \eta) / \log (1+1 /(2 \beta+3))\rceil)} \tag{5}\\
& \wedge\left(C_{11}\left[\eta, k, \beta, C_{d},|D f|_{0}, W(f),|S f|_{k-3}\right]\right)
\end{align*}
$$

The expression of C_{5} is given in page 712.
Moreover, if $k \geq 3 \beta+9 / 2$, we have:
(6)

$$
\begin{aligned}
&\|D h\|_{\frac{k}{2(\beta+2)}-\frac{1}{2}} \\
& \leq e \wedge\left(C[k] e^{(2)} \wedge\left(2+C_{2}[\beta] C_{2}\left[C_{d}\right] C_{2}\left[|D f|_{0}, W(f),|S f|_{0}\right] C_{2}\left[|S f|_{k-3}\right]\right)\right)
\end{aligned}
$$

If α is of constant type, for any $k>3$, we have:

$$
\begin{equation*}
\|D h\|_{\frac{k}{4}-\frac{1}{2}} \leq e \wedge\left(C[k]\left[C_{12}\left[W(f),|S f|_{k-3}\right]+\frac{C_{1.2}\left[W(f),|S f|_{0}\right]}{C_{d}}\right]^{4}\right) \tag{7}
\end{equation*}
$$

The expression of C_{7} is given in page 711.
Remark 1.7. - In [3], we specify the dependency $C[k]$ in the parameter k of the C^{u}-estimates $\left(u=k-1-\beta-\eta\right.$ or $\left.\frac{k}{2(\beta+2)}+\frac{1}{2}\right)$, a dependency that is not given in this paper.

2. Preliminaries

Let $f \in D^{0}\left(\mathbb{T}^{1}\right)$ be a homeomorphism and $x \in \mathbb{R}$. When n tends towards infinity, $\left(f^{n}(x)-x\right) / n$ admits a limit independent of x, which is denoted by $\rho(f)$. We call it the translation number of f. Two lifts f and f^{\prime} of a given circle homeomorphism \bar{f} only differ by a constant integer, so this is also the case for their translation numbers. We call the class of $\rho(f) \bmod \mathbb{Z}$ the rotation number of f (and of \bar{f}). We still denote it $\rho(f)$. It is invariant by conjugacy.

Suppose, moreover, that $f \in D^{2}\left(\mathbb{T}^{1}\right)$. When $\alpha=\rho(f)$ is irrational, Denjoy showed that f is topologically conjugated to R_{α}. However, this conjugacy is not always differentiable (see $[1,5,6,15]$). Its regularity depends on the Diophantine properties of the rotation number α and the regularity of f (see Yoccoz's Theorem 1.1).

Let α be an irrational number. Let $\|\alpha\|$ denote the distance from α to the closest integer, i.e.:

$$
\|\alpha\|=\inf _{p \in \mathbb{Z}}|\alpha-p| .
$$

For $n \geq 1, \hat{a}_{n} \geq 1$. Let $\alpha=\hat{a}_{0}+1 /\left(\hat{a}_{1}+1 /\left(\hat{a}_{2}+\cdots\right)\right)$ be the development of α in continued fraction. We denote it $\alpha=\left[\hat{a}_{0}, \hat{a}_{1}, \hat{a}_{2}, \ldots\right]$. Let $p_{-2}=q_{-1}=0$, $p_{-1}=q_{-2}=1$. For $n \geq 0$, let p_{n} and q_{n} be:

$$
\begin{aligned}
p_{n} & =\hat{a}_{n} p_{n-1}+p_{n-2} \\
q_{n} & =\hat{a}_{n} q_{n-1}+q_{n-2} .
\end{aligned}
$$

We have $q_{0}=1, q_{n} \geq 1$ for $n \geq 1$. The rationals p_{n} / q_{n} are called the convergents of α. They satisfy the following properties:

1. $\alpha_{n}=(-1)^{n}\left(q_{n} \alpha-p_{n}\right)$;
2. $\alpha_{n}=\left\|q_{n} \alpha\right\|$, for $n \geq 1$;
3. $1 /\left(q_{n+1}+q_{n}\right)<\alpha_{n}<1 / q_{n+1}$ for $n \geq 0$;
4. $\alpha_{n+2}<\frac{1}{2} \alpha_{n}, q_{n+2} \geq 2 q_{n}$, for $n \geq-1$.

The set of Diophantine numbers of constants β and C_{d} is denoted by $D C\left(C_{d}, \beta\right)$. The elements of this set are characterized by any of the following relations:

1. $\left|\alpha-p_{n} / q_{n}\right|>C_{d} / q_{n}^{2+\beta}$ for any $n \geq 0$;
2. $\hat{a}_{n+1}<\frac{1}{C_{d}} q_{n}^{\beta}$ for any $n \geq 0$;
3. $q_{n+1}<\frac{1}{C_{d}} q_{n}^{1+\beta}$ for any $n \geq 0$;
4. $\alpha_{n+1}>C_{d} \alpha_{n}^{1+\beta}$ for any $n \geq 0$.

All along the paper, we denote $C_{d}^{\prime}=1 / C_{d}$.

- For $x \in \mathbb{R}$, let $T(x)=x-1, f_{n}(x)=f^{q_{n}} T^{p_{n}}(x), m_{n}(x)=\left|f_{n}(x)-x\right|$, $n \geq 1$, let $M_{n}=\max _{x \in \mathbb{R}} m_{n}(x)$ and $m_{n}=\min _{x \in \mathbb{R}} m_{n}(x)$.
tome 142 - $2014-\mathrm{N}^{\mathrm{O}} 4$
- For any $\phi, \psi \in C^{\gamma}\left(\mathbb{T}^{1}\right)$, we have:

$$
\begin{align*}
|\phi \psi|_{\gamma} & \leq\|\phi\|_{0}|\psi|_{\gamma}+|\phi|_{\gamma}\|\psi\|_{0} \tag{8}\\
\|\phi \psi\|_{\gamma} & \leq\|\phi\|_{0}|\psi|_{\gamma}+\|\phi\|_{\gamma}\|\psi\|_{0} . \tag{9}
\end{align*}
$$

In the rest of the paper, for any integer i, C_{i}^{f} denotes a constant depending only on $W(f)$ and $|S f|_{0}$ (i.e., C_{i}^{f} is a numerical function of these variables). $C_{i}^{f, k}$ denotes a constant depending only on $k, W(f),|S f|_{0}$ and $|S f|_{k-3} . C_{i}$ denotes a constant that might depend on $k, W(f),|S f|_{0},|S f|_{k-3}$ and also β and C_{d}.
2.1. C^{1} estimations: constant type. - The proof of Theorem 1.2 is divided in three steps. The first step is based on the improved Denjoy inequality, which estimates the C^{0}-norm of $\log D f^{q_{l}}$. In the second step, we extend this estimation to $\log D f^{N}$ for any integer N. To do this, following Denjoy and Herman, we write $N=\sum_{s=0}^{S} b_{s} q_{s}$, with b_{s} integers satisfying $0 \leq b_{s} \leq q_{s+1} / q_{s}$ and we apply the chain rule. In the third step, we derive a C^{0}-estimation of the derivative $D h$ of the conjugacy h.

The first step is based on the Denjoy inequality:
Proposition 2.1. - Let $f \in D^{3}\left(\mathbb{T}^{1}\right)$ and $x \in \mathbb{R}$. We have:
$\left|\log D f^{q_{l}}(x)\right| \leq W(f)$.
Proposition 2.1 is used to obtain an improved version of Denjoy inequality [14, p. 342]:

Lemma 2.2. - Let $f \in D^{3}\left(\mathbb{T}^{1}\right)$. We have:

$$
\begin{align*}
\left|\log D f^{q_{l}}\right|_{0} & \leq C_{13}^{f} M_{l}^{1 / 2} \tag{10}\\
\left|D f^{q_{l}}-1\right|_{0} & \leq C_{14}^{f} M_{l}^{1 / 2} \tag{11}
\end{align*}
$$

Moreover, we can take:

$$
C_{10}^{f}=2 \sqrt{2}\left(2 e^{W(f)}+1\right) e^{W(f)}\left(|S f|_{0}\right)^{1 / 2}
$$

and

$$
C_{11}^{f}=6 \sqrt{2} e^{3 W(f)}|S f|_{0}^{1 / 2}
$$

In the second step, we estimate $D \log D f^{N}$ independently of N. This step is based on the following lemma:

Lemma 2.3. - Let $f \in D^{3}\left(\mathbb{T}^{1}\right)$. We have:

$$
\sum_{l \geq 0} \sqrt{M_{l}} \leq \frac{1}{\sqrt{C_{15}^{f}}-C_{2.3}^{f}}
$$

with

$$
\begin{equation*}
C_{2.3}^{f}=\frac{1}{\sqrt{1+e^{-C_{16}^{f}}}} \tag{12}
\end{equation*}
$$

and:

$$
\begin{equation*}
C_{16}^{f}=6 \sqrt{2} e^{2 W(f)}\left(\max \left(|S f|_{0}^{1 / 2}, 1\right)\right) . \tag{13}
\end{equation*}
$$

Proof. - To obtain this lemma, we need the claim:
Claim 2.4. - Let $f \in D^{2}\left(\mathbb{T}^{1}\right)$ be of rotation number α, and let p_{n} / q_{n} be the convergents of α. Then for every $x \in \mathbb{R}$, we have:

$$
\left[x, f_{l+2}(x)\right] \subset\left[x, f_{l}(x)\right]
$$

Proof. - By topological conjugation, it suffices to examine the case of a rotation of angle α. It is also sufficient to take $x=0$.

Reasoning by contradiction, suppose that $0<q_{l} \alpha-p_{l}<2\left(q_{l+2} \alpha-p_{l+2}\right)$. Then $-q_{l+2} \alpha+p_{l+2}<\left(q_{l}-q_{l+2}\right) \alpha-\left(p_{l}-p_{l+2}\right)<q_{l+2} \alpha-p_{l+2}$. Therefore, $0<\left|\left(q_{l+2}-q_{l}\right) \alpha-\left(p_{l+2}-p_{l}\right)\right|<\left|q_{l+2} \alpha-p_{l+2}\right|$. This contradicts the fact that

$$
\left\|q_{l+2} \alpha\right\|=\inf \left\{\|q \alpha\| / 0<q \leq q_{l+2}\right\} .
$$

Let I be an interval of length $|I|$. Lemma 2.2 implies the estimation:

$$
\frac{\left|f^{q_{l+2}}(I)\right|}{|I|} \geq e^{-C_{16}^{f} M_{l+2}^{1 / 2}} .
$$

Let $x \in \mathbb{R}$ be such that $M_{l+2}=\left|f^{q_{l+2}}(x)-x-p_{l+2}\right|$ and let $I=\left[x, f_{l+2}(x)\right]$. The former estimation implies:

$$
\left|f^{2 q_{l+2}}(x)-f^{q_{l+2}}(x)\right| \geq e^{-C_{16}^{f} M_{l+2}^{1 / 2} M_{l+2}}
$$

By applying claim 2.4, and since $M_{n} \leq 1$, we obtain:

$$
M_{n+2}+e^{-C_{16}^{f}} M_{n+2} \leq M_{n+2}+e^{-C_{16}^{f} M_{n+2}^{1 / 2}} M_{n+2} \leq M_{n} .
$$

Therefore, for any $l \geq 0$,

$$
\begin{equation*}
M_{l} \leq\left(C_{2.3}^{f}\right)^{l-1} \tag{14}
\end{equation*}
$$

with

$$
C_{2.3}^{f}=\frac{1}{\sqrt{1+e^{-C_{16}^{f}}}}
$$

Estimation (14) above gives:

$$
\sum_{l \geq 0} \sqrt{M_{l}} \leq \frac{1}{\sqrt{C_{2.3}^{f}}} \frac{1}{1-\sqrt{C_{2.3}^{f}}} \leq \frac{1}{\sqrt{C_{2.3}^{f}}-C_{2.3}^{f}}
$$

Hence we get Lemma 2.3.
Now, let N be an integer. Following Denjoy, since α is of constant type, we can write $N=\sum_{l=0}^{s} b_{l} q_{l}$, with b_{l} integers satisfying $0 \leq b_{l} \leq q_{l+1} / q_{l} \leq C_{d}^{-1}$. By the chain rule and by Lemma 2.2, since for every $y \in \mathbb{R}, D f^{N}(y)>0$, then:

$$
\left.\begin{array}{rl}
\left|\log D\left(f^{N}\right)(y)\right| & =\mid \log D\left(f \sum_{l=0}^{s} b_{l} q_{l}\right.
\end{array}\right)(y)\left|=\left|\sum_{l=0}^{s} \sum_{i=0}^{b_{s}} \log D f^{q_{l}} \circ f^{i q_{l}}(y)\right|, ~\left(\left.\sup _{0 \leq l \leq s} b_{l} \sum_{l=0}^{s}|\log | D\left(f^{q_{l}}\right)\right|_{0} \mid \leq C_{d}^{-1} C_{16}^{f} \sum_{l \geq 0} M_{l}^{1 / 2} .\right.\right.
$$

By taking the upper bound on $y \in \mathbb{R}$ and $N \geq 0$, we obtain an estimation of $\sup _{N \geq 0}\left|\log D\left(f^{N}\right)\right|$.

We turn to the third step: we relate the norms of $D h$ and $D f^{N}$. By [14], h is C^{1} and conjugates f to a rotation. Therefore, we have:

$$
\log D h-\log D h \circ f=\log D f
$$

Hence, for any integer n :

$$
\log D h-\log D h \circ f^{n}=\log D\left(f^{n}\right)
$$

Since there is a point z such that $\operatorname{Dh}(z)=1$, then we have:

$$
\left|\log D h \circ f^{n}(z)\right|=\left|\log D\left(f^{n}\right)(z)\right| \leq \sup _{i \geq 0}\left|\log D\left(f^{i}\right)\right|_{0}
$$

Moreover, since $\left(f^{n}(z)\right)_{n \geq 0} \bmod 1$ is dense in \mathbb{T}, and since $D h$ is continuous, then we obtain:

$$
|\log D h|_{0} \leq \sup _{i \geq 0}\left|\log D\left(f^{i}\right)\right|_{0}
$$

We conclude:

$$
\begin{equation*}
|D h|_{0} \leq \exp \left(C_{d}^{-1} C_{16}^{f} \sqrt{e^{C_{16}^{f} \max \left(M_{0}^{1 / 2}, M_{1}^{1 / 2}\right)}+1}\left(\sqrt{M_{0}}+\sqrt{M_{1}}\right)\right) \tag{15}
\end{equation*}
$$

Finally, since $\max \left(M_{0}^{1 / 2}, M_{1}^{1 / 2}\right) \leq 1$, we obtain:

$$
|D h|_{0} \leq \exp \left(C_{1.2}^{f} / C_{d}\right)
$$

where $C_{1.2}^{f}=2 C_{16}^{f} \sqrt{e^{C_{16}^{f}}+1}$. We recall that:

$$
C_{16}^{f}=6 \sqrt{2} e^{2 W(f)}\left(\max \left(|S f|_{0}^{1 / 2}, 1\right)\right)
$$

Corollary 2.5. - Since $\frac{1}{\min _{\mathbb{R}} D h} \leq \exp \left(\sup _{i \geq 0}\left|\log D\left(f^{i}\right)\right|_{0}\right)$, the proof above also provides an estimation on $\frac{1}{\min _{\mathbb{R}} D h}$:

$$
\frac{1}{\min _{\mathbb{R}} D h} \leq \exp \left(C_{1.2}^{f} / C_{d}\right)
$$

3. C^{1} estimations: non-constant type

We have $\max _{n \geq 0}\left|D f^{n}\right|_{0} \leq \max _{n \geq 0} M_{n} / m_{n}$, by [14, p. 348]. Therefore, in order to prove Theorem 1.3, we can estimate M_{n} / m_{n}. To that end, we proceed in two steps: first, we establish some preliminary results. An important result is Corollary 3.6, which gives an estimation of M_{n+1} / M_{n} in function of M_{n}, $\alpha_{n+1} / \alpha_{n}$ and a constant $C_{21}^{f, k}$. This estimation is already given in [14, p. 345], but we still recall the steps to reach it, because we need to estimate the constant $C_{21}^{f, k}$ in function of $k, W(f),|S f|_{0}$ and $|S f|_{k-3}$.

In the second step, we establish an estimation of the C^{1}-conjugacy, based on a modification of the proof given in [14]. The main idea is to establish an alternative between two possible situations for the sequences M_{n} and α_{n} : the "favorable" situation $\left(R_{n}\right)$ and the "unfavorable" situation (R_{n}^{\prime}) (Proposition 3.10). The "unfavorable" situation only occurs a finite number of times, due to the Diophantine condition on α (Propositions 3.13 and 3.15).

In the "favorable" situation $\left(R_{n}\right)$, we can estimate M_{n+1} / α_{n+1} in function of M_{n} / α_{n} (see estimation (31)) and likewise, we can estimate α_{n+1} / m_{n+1} in function of α_{n} / m_{n}. Therefore, we can estimate M_{n} / m_{n} in function of $M_{n_{4}} / m_{n_{4}}$, where n_{4} is the integer such that for any $n \geq n_{4}$, only the favorable case occurs (see Proposition 3.20). We relate $M_{n_{4}} / m_{n_{4}}$ to $\left.D f\right|_{0} ^{\frac{2}{\alpha_{n_{4}}}}$ (Proposition 3.18), and we compute a bound on $\alpha_{n_{4}}$ (Proposition 3.16). Yoccoz's proof needs to be modified because in its original version, it does not allow to compute a bound on $\alpha_{n_{4}}$.
3.1. Preliminary results. - We recall the following lemmas, which are in [14] (Lemmas 3,4 and 5):

Lemma 3.1. - For $l \geq 1$ and $x \in \mathbb{R}$, we have:

$$
\sum_{i=0}^{q_{n+1}-1}\left(D f^{i}(x)\right)^{l} \leq C_{17}^{f} \frac{M_{n}^{l-1}}{m_{n}(x)^{l}}
$$

with $C_{17}^{f}(l)=e^{l W(f)}$.
Remark 3.2. - This lemma is obtained by applying Denjoy inequality.

Lemma 3.3. - Let $f \in D^{k}\left(\mathbb{T}^{1}\right), k \geq 3$. For any $x \in \mathbb{R}$, any $n \in \mathbb{N}$, any $0 \leq p \leq q_{n+1}$, we have:

$$
\begin{align*}
\left|S f^{p}(x)\right| & \leq C_{18}^{f} \frac{M_{n}}{m_{n}(x)^{2}} \tag{16}\\
\left|D \log D f^{p}(x)\right| & \leq C_{19}^{f} \frac{M_{n}^{1 / 2}}{m_{n}(x)} \tag{17}
\end{align*}
$$

with $C_{16}^{f}=|S f|_{0} e^{2 W(f)}$ and $C_{17}^{f}=9 \sqrt{2|S f|_{0}} e^{4 W(f)}$.
Lemma 3.4. - For $1 \leq r \leq k-1, n \geq 0,0 \leq p \leq q_{n+1}, x \in \mathbb{R}$, we have:

$$
\begin{equation*}
\left|D^{r} \log D f^{p}(x)\right| \leq C_{20}^{f}(r)\left[\frac{M_{n}^{1 / 2}}{m_{n}(x)}\right]^{r} \tag{18}
\end{equation*}
$$

with

$$
C_{20}^{f}(1)=C_{17}^{f}, C_{20}^{f}(2)=82|S f|_{0} e^{8 W(f)}
$$

and, for $r \geq 3$:

$$
C_{20}^{f}(r)=\left[82(2 r)^{2 r}\left(\max \left(1,|S f|_{r-2}\right)\right)^{2} e^{(r+8) W(f)}\right]^{r!}
$$

In particular,

$$
C_{20}^{f, k}:=C_{20}^{f}(k-1) \leq\left[100(2 k-2)^{2 k-2}\left(\max \left(1,|S f|_{k-3}\right)\right)^{2} e^{(k+7) W(f)}\right]^{(k-1)!}
$$

Proof of Lemma 3.4. - The proof follows the line of [14], Lemma 5. See Appendix 5 for details.

The important preliminary result, Corollary 3.6, is obtained from the following proposition. It is obtained by computing the constants in Proposition 2 of [14]:

Proposition 3.5. - Let

$$
\begin{equation*}
C_{21}^{f, k}=(k+3)^{(k+3)!} e^{(k+2)!W(f)}\left(\max \left(1,|S f|_{k-3}\right)\right)^{k!} \tag{19}
\end{equation*}
$$

For any $x \in \mathbb{R}$, we have:

$$
\begin{equation*}
\left|m_{n+1}(x)-\frac{\alpha_{n+1}}{\alpha_{n}} m_{n}(x)\right| \leq C_{21}^{f, k}\left[M_{n}^{(k-1) / 2} m_{n}(x)+M_{n}^{1 / 2} m_{n+1}(x)\right] \tag{20}
\end{equation*}
$$

Corollary 3.6. - We have

$$
\begin{align*}
& M_{n+1} \leq M_{n} \frac{\frac{\alpha_{n+1}}{\alpha_{n}}+C_{21}^{f, k} M_{n}^{(k-1) / 2}}{1-C_{21}^{f, k} M_{n}^{1 / 2}} \tag{21}\\
& m_{n+1} \geq m_{n} \frac{\frac{\alpha_{n+1}}{\alpha_{n}}-C_{21}^{f, k} M_{n}^{(k-1) / 2}}{1+C_{21}^{f, k} M_{n}^{1 / 2}} \tag{22}
\end{align*}
$$

The proof of Proposition 3.5 combines the following three lemmas [14, pp. 343-344] (Lemmas 6, 7 and 8):

Lemma 3.7. - For any $x \in \mathbb{R}$, there exists $y \in\left[x, f_{n}(x)\right], z \in\left[x, f_{n+1}(x)\right]$ such that

$$
m_{n+1}(y)=\frac{\alpha_{n+1}}{\alpha_{n}} m_{n}(z)
$$

Lemma 3.8. - Suppose that m_{n+1} is monotonous on an interval $I_{z}=$ $\left(z, f_{n}(z)\right)$, $z \in \mathbb{R}$. Then, for any $x \in \mathbb{R}$, for any $y \in I_{x}\left(I_{x}=\left(x, f_{n}(x)\right)\right)$, we have:

$$
\left|\frac{m_{n+1}(y)}{m_{n+1}(x)}-1\right| \leq C_{22}^{f, k} M_{n}^{1 / 2}
$$

with

$$
C_{22}^{f, k}=2^{9}(k+2) e^{(11+k / 2) W(f)}\left(C_{11}^{f}\right)^{2} C_{17}^{f}
$$

Lemma 3.9. - If m_{n+1} is not monotonous on any interval of the form $I_{z}=$ $\left(z, f_{n}(z)\right), z \in \mathbb{R}$, then for any $x \in \mathbb{R}, y \in I_{x}$, we have:

$$
\left|m_{n+1}(y)-m_{n+1}(x)\right| \leq C_{23}^{f, k} M_{n}^{(k-1) / 2} m_{n}(x)
$$

with

$$
C_{23}^{f, k}=\left(C_{20}^{f}(k-1)\right) e^{W(f)}\left(e^{(k / 2+2) W(f)}\left(1+e^{W(f)}\right)^{2} \frac{e^{(k / 2+2) W(f)}-1}{e^{W(f)}-1}\right)^{k-1}
$$

Proof of Proposition 3.5. - The proof of Proposition 3.5 from these three lemmas is also found in [14, p. 344]. Let $x \in \mathbb{R}$ and $y \in I_{x}, z \in\left[x, f_{n+1}(x)\right]$ the points given by Lemma 3.7. By combining Lemmas 3.8 and 3.9, we obtain:
$\left|m_{n+1}(y)-m_{n+1}(x)\right| \leq\left(\max \left(C_{22}^{f, k}, C_{23}^{f, k}\right)\right)\left(M_{n}^{1 / 2} m_{n+1}(x)+M_{n}^{(k-1) / 2} m_{n}(x)\right)$.
Moreover, by Lemma 2.2, we have:

$$
\left|m_{n}(z)-m_{n}(x)\right| \leq C_{11}^{f} M_{n}^{1 / 2}|z-x| \leq C_{11}^{f} M_{n}^{1 / 2} m_{n+1}(x) .
$$

By applying Lemma 3.7, and since $\alpha_{n+1} / \alpha_{n} \leq 1$, we get:

$$
\left\{\begin{array}{l}
\left|m_{n+1}(x)-\frac{\alpha_{n+1}}{\alpha_{n}} m_{n}(x)\right| \leq\left|m_{n+1}(x)-\frac{\alpha_{n+1}}{\alpha_{n}} m_{n}(z)\right|+\frac{\alpha_{n+1}}{\alpha_{n}}\left|m_{n}(z)-m_{n}(x)\right| \\
\left|m_{n+1}(x)-\frac{\alpha_{n+1}}{\alpha_{n}} m_{n}(x)\right| \leq\left|m_{n+1}(y)-m_{n+1}(x)\right|+\left|m_{n}(z)-m_{n}(x)\right| .
\end{array}\right.
$$

Therefore, we have:

$$
\left|m_{n+1}(x)-\frac{\alpha_{n+1}}{\alpha_{n}} m_{n}(x)\right| \leq C_{24}^{f, k}\left(M_{n}^{1 / 2} m_{n+1}(x)+M_{n}^{(k-1) / 2} m_{n}(x)\right)
$$

with $C_{24}^{f, k}=\max \left(C_{22}^{f, k}, C_{23}^{f, k}\right)+C_{11}^{f}$.
Finally, we compute an estimation of $C_{24}^{f, k}$. Details can be found in [3].
3.2. Estimation of the C^{1}-conjugacy. Proof of Theorem 1.3. - We choose an integer n_{1} such that for any $n \geq n_{1}$, we have:

$$
\begin{equation*}
C_{21}^{f, k} M_{n}^{1 / 2} \leq C_{21}^{f, k}\left(C_{2.3}^{f}\right)^{\frac{n-1}{2}}<1 / 2 \tag{23}
\end{equation*}
$$

We can take:

$$
n_{1}=\left\lceil\frac{-\log \left(2 C_{21}^{f, k} /\left(C_{2.3}^{f}\right)^{1 / 2}\right)}{\log \left(\left(C_{2.3}^{f}\right)^{1 / 2}\right)}\right\rceil
$$

We choose a parameter θ such that $(k+1) / 2-\theta>(1+\beta+\theta)(1+\theta)$ (for the interpretation of this parameter θ, see the remark after Proposition 3.10. For example, we cannot take $\theta=0$ because we need that the infinite product $\prod_{n \geq 1}^{+\infty}\left(1+M_{n}^{\theta}\right)$ converges $)$. We can take:

$$
\begin{equation*}
\theta=\min \left(1 / 2,\left(\frac{3+\beta}{4}\right)\left(-1+\left(1+\frac{2(k-2 \beta-1)}{(3+\beta)^{2}}\right)^{1 / 2}\right)\right) \tag{24}
\end{equation*}
$$

(in the proof of estimation (2), we take $\theta=1 / 2$ instead).
For $x \geq 0,1+x \leq e^{x}$ and for $0 \leq x \leq 1 / 2, \log (1 /(1-x)) \leq x /(1-x) \leq 2 x$.
We apply estimation (14), we use the definition of n_{1} and the fact that $\theta \leq 1 / 2$.
We get:

$$
\begin{aligned}
& \prod_{n=n_{1}}^{+\infty}\left(1+M_{n}^{\theta}\right) \leq \exp \left(\sum_{n=n_{1}}^{+\infty} M_{n}^{\theta}\right) \leq \exp \left(\frac{1}{2 C_{21}^{f, k}\left(1-\left(C_{2.3}^{f}\right)^{\theta}\right)}\right) \\
& \prod_{n=n_{1}}^{+\infty}\left(\frac{1}{1-C_{21}^{f, k} M_{n}^{1 / 2}}\right) \leq \exp \left(\sum_{n=n_{1}}^{+\infty} 2 C_{21}^{f, k} M_{n}^{1 / 2}\right) \leq \exp \left(\frac{1}{1-\left(C_{2.3}^{f}\right)^{1 / 2}}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\prod_{n=n_{1}}^{+\infty}\left(\frac{1+M_{n}^{\theta}}{1-C_{21}^{f, k} M_{n}^{1 / 2}}\right) \leq \exp \left(\frac{2}{1-\left(C_{2.3}^{f}\right)^{\theta}}\right) \tag{25}
\end{equation*}
$$

Let:

$$
C_{25}=\exp \left(\frac{2}{1-\left(C_{2.3}^{f}\right)^{\theta}}\right)
$$

Let:

$$
\begin{equation*}
C_{26}=\max \left(\left(4 C_{21}^{f, k}\right)^{\frac{1}{(1+\beta+\theta)(1+\theta)-1}}, C_{25}\right) \tag{26}
\end{equation*}
$$

Let:

$$
C_{27}=\frac{-\log \left(2\left(C_{26}\right)^{2}\right)}{\log C_{2.3}^{f}}+1
$$

For any

$$
\begin{equation*}
n \geq C_{27} \tag{27}
\end{equation*}
$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
we have:

$$
\begin{equation*}
M_{n} \leq\left(C_{2.3}^{f}\right)^{n-1} \leq \frac{1}{2 C_{26}^{2}} \tag{28}
\end{equation*}
$$

We use this estimation in the second step of the proof, to which we come now. Let:

$$
\begin{equation*}
n_{2}=\max \left(n_{1}, \tilde{n}_{2}\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{n}_{2}=\left\lfloor C_{27}+\frac{4}{\log 2} \log \left(1 / C_{d}\right)+2\right\rfloor . \tag{30}
\end{equation*}
$$

Having defined the integer n_{2}, we can present the alternative between the "favorable" case $\left(R_{n}\right)$ and the "unfavorable" case $\left(R_{n}^{\prime}\right)$.

Let $a_{n_{2}}=1 /\left(\left(C_{26}\right)^{2}\right)$. Let $1 \geq \eta_{n} \geq 0$ be a sequence such that $\alpha_{n}=\alpha_{n+1}^{1-\eta_{n}}$. For any $n \geq n_{2}$, we can define a sequence a_{n} by: if

$$
\left(R_{n}\right) \quad C_{21}^{f, k} M_{n}^{(k+1) / 2-\theta} \leq M_{n} \frac{\alpha_{n+1}}{\alpha_{n}} \text { then } a_{n+1}=a_{n} \frac{1+M_{n}^{\theta}}{1-C_{21}^{f, k} M_{n}^{1 / 2}}
$$

and if

$$
\left(R_{n}^{\prime}\right) \quad C_{21}^{f, k} M_{n}^{(k+1) / 2-\theta}>M_{n} \frac{\alpha_{n+1}}{\alpha_{n}} \text { then } a_{n+1}=a_{n} .
$$

We can also define a sequence ρ_{n} such that $M_{n}=a_{n} \alpha_{n}^{\rho_{n}}$.
Proposition 3.10. - We have $1 /\left(\left(C_{26}\right)^{2}\right) \leq a_{n} \leq 1 / C_{26}$ and $\rho_{n}<1$.
Moreover, if $\left(R_{n}\right)$ holds, then $\rho_{n+1} \geq \rho_{n}+\eta_{n}\left(1-\rho_{n}\right)$, and if $\left(R_{n}^{\prime}\right)$ holds, then $\rho_{n+1} \geq((k+1) / 2-\theta)\left(1-\eta_{n}\right) \rho_{n}$. In particular, the sequence $\left(\rho_{n}\right)_{n \geq n_{2}}$ is increasing.

Remark 3.11. - The threshold between the alternatives $\left(R_{n}\right)$ and $\left(R_{n}^{\prime}\right)$ is controlled with a parameter θ, which could be freely chosen such that $\theta>0$ and $(k+1) / 2-\theta \geq(1+\beta+\theta)(1+\theta)$. When θ increases, the number n_{3} of occurrences of (R_{n}^{\prime}) increases. When n_{3} increases, all other quantities being equal, the bound on the norm of the conjugacy increases. Moreover, if θ gets too large, we can no longer show that n_{3} is finite (see Proposition 3.15), and therefore, we can no longer estimate the norm of the conjugacy.

On the other hand, when θ decreases, C_{25} increases. It increases the number n_{2} above which we consider the alternatives $\left(R_{n}\right)$ and $\left(R_{n}^{\prime}\right) . C_{28}$ increases too (see Proposition 3.20). When C_{25} and C_{28} increase, all other quantities being equal, the bound on the norm of the conjugacy increases. Moreover, when $\theta \rightarrow 0, C_{25} \rightarrow+\infty$, which makes this bound on the conjugacy diverge.

Thus, the variation of θ has contradictory influences on the bound of the norm of the conjugacy, and there is a choice of θ that optimizes this bound. However, in this paper, we do not seek this optimal θ, since it would complicate
further the expression of the final estimate. Instead, in estimation (2), we fix $\theta=1 / 2$, which allows simplifying the expression of the estimate. In estimation (3), we take $\theta \rightarrow 0$, which also allows simplifying the estimate.

Proof of Proposition 3.10. - For any $n \geq n_{2}$, since $n_{2} \geq n_{1}$,

$$
a_{n_{2}}=\frac{1}{C_{26}^{2}} \leq a_{n} \leq a_{n_{2}} \prod_{n=n_{1}}^{+\infty}\left(\frac{1+M_{n}^{\theta}}{1-C_{21}^{f, k} M_{n}^{1 / 2}}\right) \leq \frac{C_{25}}{C_{26}^{2}} \leq \frac{1}{C_{26}}
$$

and since

$$
\alpha_{n}^{\rho_{n}}>a_{n} \alpha_{n}^{\rho_{n}}=M_{n} \geq \alpha_{n}
$$

then $\rho_{n}<1$.
Second, if $\left(R_{n}\right)$ holds, then by applying Corollary 3.6 , we have:

$$
\begin{equation*}
M_{n+1} \leq \frac{1+M_{n}^{\theta}}{1-C_{21}^{f, k} M_{n}^{1 / 2}} M_{n} \frac{\alpha_{n+1}}{\alpha_{n}} \tag{31}
\end{equation*}
$$

Therefore,

$$
M_{n+1}=a_{n+1} \alpha_{n+1}^{\rho_{n+1}} \leq a_{n+1} \alpha_{n+1} \alpha_{n}^{\rho_{n}-1}=a_{n+1} \alpha_{n+1} \alpha_{n+1}^{\left(1-\eta_{n}\right)\left(\rho_{n}-1\right)}
$$

and then:

$$
\rho_{n+1}-1 \geq\left(1-\eta_{n}\right)\left(\rho_{n}-1\right)
$$

hence the estimation:

$$
\rho_{n+1} \geq \rho_{n}+\eta_{n}\left(1-\rho_{n}\right) .
$$

If (R_{n}^{\prime}) holds, since $C_{21}^{f, k} M_{n}^{1 / 2} \leq 1 / 2$, then by applying Corollary 3.6 , we obtain:

$$
M_{n+1} \leq 4 C_{21}^{f, k} M_{n}^{(k+1) / 2-\theta}
$$

Moreover, since $a_{n} \leq 1 / C_{26}<1$, then:

$$
a_{n}^{(k+1) / 2-\theta} \leq a_{n}^{(1+\beta+\theta)(1+\theta)}=a_{n} a_{n}^{(1+\beta+\theta)(1+\theta)-1} \leq \frac{a_{n}}{C_{26}^{(1+\beta+\theta)(1+\theta)-1}} \leq \frac{a_{n}}{4 C_{21}^{f, k}}
$$

Therefore, by combining these two estimations, we obtain:

$$
\begin{aligned}
a_{n+1} \alpha_{n+1}^{\rho_{n+1}}=M_{n+1} & \leq 4 C_{21}^{f, k} M_{n}^{(k+1) / 2-\theta} \\
& \leq 4 C_{21}^{f, k} a_{n}^{(k+1) / 2-\theta} \alpha_{n}^{\rho_{n}((k+1) / 2-\theta)} \leq a_{n} \alpha_{n}^{\rho_{n}((k+1) / 2-\theta)}
\end{aligned}
$$

Moreover, since $a_{n+1}=a_{n}$, then

$$
1 \leq \alpha_{n+1}^{\left(\rho_{n}((k+1) / 2-\theta)\right)\left(1-\eta_{n}\right)-\rho_{n+1}}
$$

hence the estimation:

$$
\rho_{n+1} \geq\left(\rho_{n}((k+1) / 2-\theta)\right)\left(1-\eta_{n}\right) .
$$

The reader can notice that until now, we have not used the Diophantine condition on α yet. Now, we introduce this condition in order to estimate $\rho_{n_{2}}$ from below (Proposition 3.12), and in order to determine a bound ρ above which $\left(R_{n}\right)$ always occurs (Proposition 3.13).

Proposition 3.12. - If $\beta>0$, we have the estimation:

$$
\rho_{n_{2}} \geq \frac{\log 2}{\left((1+\beta)^{n_{2}+1}-1\right) \log \left(1 / C_{d}\right) / \beta} .
$$

If $\beta=0$, we have the estimation:

$$
\rho_{n_{2}} \geq \frac{\log 2}{\left(n_{2}+1\right) \log \left(1 / C_{d}\right)}
$$

Proof. - Since α is Diophantine, we have: $\alpha_{n+1} \geq C_{d} \alpha_{n}^{1+\beta}$. Therefore, for $\beta>0$,

$$
\log \left(\frac{1}{\alpha_{n+1}}\right)+\frac{\log \left(1 / C_{d}\right)}{\beta} \leq(1+\beta)\left(\log \left(1 / \alpha_{n}\right)+\frac{\log \left(1 / C_{d}\right)}{\beta}\right)
$$

and since $\alpha_{-1}=1$, then by iteration, for any $n \geq 0$,

$$
\log \left(1 / \alpha_{n}\right) \leq\left((1+\beta)^{n+1}-1\right) \frac{\log \left(1 / C_{d}\right)}{\beta}
$$

If $\beta=0$, we have:

$$
\log \left(1 / \alpha_{n}\right) \leq(n+1) \log \left(1 / C_{d}\right)
$$

Moreover, since $\rho_{n_{2}}=-\log \left(M_{n_{2}} / a_{n_{2}}\right) / \log \left(1 / \alpha_{n_{2}}\right)$ and $M_{n_{2}} / a_{n_{2}} \leq 1 / 2$, then we get Proposition 3.12.

Proposition 3.13. - Let $\beta_{1}=\beta+\frac{2 \log \left(1 / C_{d}\right)}{\left(n_{2}-1\right) \log 2}$. If

$$
\begin{equation*}
\rho_{n} \geq \frac{\beta_{1}}{(k-1) / 2-\theta}=\rho \tag{32}
\end{equation*}
$$

then $\left(R_{n}\right)$ occurs.
Remark 3.14. - Note that $\rho<1$, because $(k+1) / 2-\theta \geq(1+\beta+\theta)(1+\theta)$ and $\beta_{1} \leq \beta+1 / 2$.

Proof. - Since $\alpha_{n} \leq(1 / 2)^{\frac{n-1}{2}}$, then

$$
\begin{equation*}
0<\frac{\log C_{d}}{\log \alpha_{n}} \leq \frac{-\log C_{d}}{\frac{n-1}{2} \log 2} \tag{33}
\end{equation*}
$$

Furthermore, since $\alpha_{n+1}=\alpha_{n}^{\frac{1}{1-\eta_{n}}} \geq C_{d} \alpha_{n}^{1+\beta}$, then

$$
\frac{1}{1-\eta_{n}} \log \alpha_{n} \geq \log C_{d}+(1+\beta) \log \alpha_{n}
$$

and since $\log \alpha_{n}<1$ for $n \geq 0$, then by (33),

$$
\frac{1}{1-\eta_{n}}-1 \leq \beta+\frac{\log C_{d}}{\log \alpha_{n}} \leq \beta+\frac{\log \left(1 / C_{d}\right)}{\frac{n-1}{2} \log 2} .
$$

Therefore, if estimation (32) holds, then

$$
\left(\frac{k-1}{2}-\theta\right) \rho_{n}+1-\frac{1}{1-\eta_{n}} \geq 0
$$

and therefore,

$$
\left(\frac{1}{\alpha_{n}}\right)^{\left(\frac{k-1}{2}-\theta\right) \rho_{n}+1-\frac{1}{1-\eta_{n}}} \geq 1
$$

Hence

$$
\begin{aligned}
M_{n} \frac{\alpha_{n+1}}{\alpha_{n}}=a_{n} \alpha_{n}^{\rho_{n}} \frac{\alpha_{n+1}}{\alpha_{n}} & \geq a_{n} \alpha_{n}^{\left(\frac{k+1}{2}-\theta\right) \rho_{n}}=M_{n}^{\frac{k+1}{2}-\theta} a_{n}^{1-\left(\frac{k+1}{2}-\theta\right)} \\
& \geq M_{n}^{\frac{k+1}{2}-\theta} C_{26}^{\frac{k+1}{2}-\theta-1} \geq M_{n}^{\frac{k+1}{2}-\theta} C_{26}^{(1+\beta+\theta)(1+\theta)-1}
\end{aligned}
$$

Therefore,

$$
M_{n} \frac{\alpha_{n+1}}{\alpha_{n}} \geq C_{21}^{f, k} M_{n}^{\frac{k+1}{2}-\theta}
$$

Proposition 3.15. - Let n_{3} be the number of times the alternative $\left(R_{n}^{\prime}\right)$ occurs. We have:

$$
\begin{equation*}
n_{3}-n_{2} \leq \max \left(0, \frac{\log \left(\rho / \rho_{n_{2}}\right)}{\log \left(\frac{(k+1) / 2-\theta}{1+\beta_{1}}\right)}\right) \tag{34}
\end{equation*}
$$

Proof. - If $\rho_{n_{2}} \geq \rho$, then (R_{n}^{\prime}) does not occur for any $n \geq n_{2}$. We suppose $\rho_{n_{2}}<\rho$. For any $n \geq n_{2}$, since

$$
((k+1) / 2-\theta)\left(1-\eta_{n}\right) \geq \frac{(k+1) / 2-\theta}{1+\beta_{1}}
$$

then

$$
\rho_{n} \geq\left(\frac{(k+1) / 2-\theta}{1+\beta_{1}}\right)^{n-n_{2}} \rho_{n_{2}}
$$

Moreover,

$$
\left(\frac{(k+1) / 2-\theta}{1+\beta_{1}}\right)^{n-n_{2}} \rho_{n_{2}} \geq \rho
$$

when

$$
n \geq n_{2}+\frac{\log \left(\rho / \rho_{n_{2}}\right)}{\log \left(\frac{(k+1) / 2-\theta}{1+\beta_{1}}\right)}
$$

The next proposition gives a lower bound on $\alpha_{n_{4}}$, which allows computing a bound on the C^{1}-conjugacy.

Proposition 3.16. - Let $n_{4} \geq 0$ be the smallest integer such that for any $n \geq n_{4}$, (R_{n}) occurs. We have:

$$
\alpha_{n_{4}} \geq C_{d}^{\exp \left(\left(n_{3}+1+\rho /(1-\rho)\right)\left(1+\beta_{1}\right)\right)} .
$$

Proof. - First, we suppose $n_{4} \geq n_{2}+1$ We need the lemma:
Lemma 3.17. - The set

$$
\left\{p \geq n_{2} / \sum_{n=n_{2}}^{p} \eta_{n} \geq n_{3}-n_{2}+\rho /(1-\rho)\right\}
$$

is not empty. Let n_{5} be its minimum. We have $\rho_{n_{5}+1} \geq \rho$. In particular, for this integer n_{5}, we have that for any $n \geq n_{5}+1$, (R_{n}) occurs. Moreover, $n_{5} \geq n_{4}-1$.

Proof. - First, let us show the existence of n_{5}. By absurd, suppose that

$$
\sum_{n=n_{2}}^{+\infty} \eta_{n}<n_{3}-n_{2}+\rho /(1-\rho)
$$

For any $1>x \geq 0$,

$$
\log \left(\frac{1}{1-x}\right) \leq \frac{x}{1-x}
$$

Therefore, for any integer $p \geq n_{2}+1$,

$$
\prod_{n=n_{2}}^{p-1}\left(\frac{1}{1-\eta_{n}}\right) \leq \exp \left(\sum_{n=n_{2}}^{p-1} \frac{\eta_{n}}{1-\eta_{n}}\right) .
$$

Moreover, $\frac{1}{1-\eta_{n}} \leq 1+\beta_{1}$ for any $n \geq 1$. Therefore,

$$
\sum_{n=n_{2}}^{p-1} \frac{\eta_{n}}{1-\eta_{n}} \leq\left(n_{3}-n_{2}+\rho /(1-\rho)\right)\left(1+\beta_{1}\right)
$$

Since $\eta_{n} \leq 1$, then $\sum_{n=0}^{n_{2}-1} \eta_{n} \leq n_{2}$. Therefore,

$$
\sum_{n=0}^{p-1} \frac{\eta_{n}}{1-\eta_{n}} \leq\left(n_{3}+\rho /(1-\rho)\right)\left(1+\beta_{1}\right)
$$

Moreover, since $\alpha_{0}=\alpha \geq C_{d}$ then for any $p \geq n_{2}+1$:

$$
\alpha_{p}=\alpha_{0}^{\prod_{n=0}^{p-1}\left(\frac{1}{1-\eta_{n}}\right)} \geq C_{d}^{\exp \left(\left(n_{3}+\rho /(1-\rho)\right)\left(1+\beta_{1}\right)\right)} .
$$

However, since $\alpha_{p} \geq 2 \alpha_{p+2}$, then $\alpha_{p} \rightarrow 0$ when $p \rightarrow+\infty$. Hence the contradiction and the existence of n_{5}. Note that $n_{5}+1 \geq n_{4}$.

Second, let us show that $\rho_{n_{5}+1} \geq \rho$. If there is $n_{6} \leq n_{5}$ such that $\rho_{n_{6}} \geq \rho$, then $\rho_{n_{5}+1} \geq \rho$ because the sequence ρ_{n} is increasing. Otherwise, for any $n \leq n_{5}$, we have: $\rho_{n} \leq \rho$.

TOME $142-2014-\mathrm{N}^{\circ} 4$

Let $E_{1}=\left\{n_{5} \geq n \geq n_{2} /\left(R_{n}\right)\right.$ occurs $\}$ and $E_{2}=\left\{n_{5} \geq n \geq\right.$ $n_{2} /\left(R_{n}^{\prime}\right)$ occurs $\}$.

We have:

$$
n_{3}-n_{2}+\frac{\rho}{1-\rho} \leq \sum_{n=n_{2}}^{n_{5}} \eta_{n}=\sum_{n \in E_{1}} \eta_{n}+\sum_{n \in E_{2}} \eta_{n} \leq \sum_{n \in E_{1}} \eta_{n}+n_{3}-n_{2} .
$$

Therefore,

$$
\sum_{n \in E_{1}} \eta_{n} \geq \rho /(1-\rho)
$$

Since ρ_{n} is increasing and $\rho_{n} \leq \rho$, we get:

$$
\begin{aligned}
\rho_{n_{5}+1} & =\rho_{n_{2}}+\sum_{n=n_{2}}^{n_{5}} \rho_{n+1}-\rho_{n} \\
\rho_{n_{5}+1} & \geq \rho_{n_{2}}+\sum_{n \in E_{1}} \rho_{n+1}-\rho_{n} \geq \rho_{n_{2}}+\sum_{n \in E_{1}}\left(1-\rho_{n}\right) \eta_{n} \\
& \geq \rho_{n_{2}}+(1-\rho) \sum_{n \in E_{1}} \eta_{n} \geq \rho .
\end{aligned}
$$

Now, let us show Proposition 3.16. Since $\eta_{n} \leq 1$ for any n, then we have:

$$
n_{3}-n_{2}+1+\frac{\rho}{1-\rho}>\sum_{n=n_{2}}^{n_{5}} \eta_{n} \geq n_{3}-n_{2}+\frac{\rho}{1-\rho}
$$

Since

$$
n_{3}-n_{2}+\frac{\rho}{1-\rho}+1 \geq \sum_{n=n_{2}}^{n_{5}} \eta_{n} \geq \sum_{n=n_{2}}^{n_{4}-1} \eta_{n}
$$

then by proceeding in the same way as in the first part of the proof of Lemma 3.17, we obtain:

$$
\begin{equation*}
\alpha_{n_{4}} \geq C_{d}^{\exp \left(\left(n_{3}+1+\rho /(1-\rho)\right)\left(1+\beta_{1}\right)\right)} . \tag{35}
\end{equation*}
$$

Finally, if $n_{4} \leq n_{2}$, then as in the proof of Lemma 3.17,

$$
\alpha_{n_{2}}=\alpha_{0}^{\prod_{n=0}^{n_{2}-1}\left(\frac{1}{1-\eta_{n}}\right)} \geq C_{d}^{\exp \left(n_{2}\left(1+\beta_{1}\right)\right)} .
$$

Therefore, the estimation given in Proposition 3.16 still holds.
Having bounded $\alpha_{n_{4}}$ from below, we show how this bound is related to M_{n} / m_{n} (and therefore, how this is related to the conjugacy).

Proposition 3.18. - Let $n \geq 1$. For any $j \leq n$,

$$
\frac{M_{j}}{m_{j}} \leq 3|D f|_{0}^{\frac{2}{\alpha_{n}}}
$$

Proof. - We need the following lemma, which is in [15, p. 140]:

Lemma 3.19. - For any $x \in \mathbb{R}$, let $J_{x}=\left[f_{n}^{-1}(x), f_{n}(x)\right]$. The intervals $f^{i} T^{k}\left(J_{x}\right), 0 \leq i<q_{n+1}, k \in \mathbb{Z}$, cover \mathbb{R}.

First, note that since $f(x+1)-f(x)=1$, then $|D f|_{0} \geq 1$. Let $x, y \in \mathbb{R}$ be such that $M_{n}=m_{n}(x)$ and $m_{n}=m_{n}(y)$. Let $0 \leq i<q_{n+1}$ and $k \in \mathbb{Z}$ be such that $x \in f^{i} T^{k}\left(J_{y}\right)$. We have:

$$
\begin{aligned}
f^{i-q_{n}}(y)-k+p_{n} & \leq x \leq f^{i+q_{n}}(y)-k-p_{n} \\
f^{i}(y)-k & \leq f_{n}(x) \leq f^{i+2 q_{n}}(y)-k-2 p_{n} .
\end{aligned}
$$

Therefore, $\left[x, f^{q_{n}}(x)\right] \subset\left[f^{i-q_{n}}(y)-k+p_{n}, f^{i+2 q_{n}}(y)-k-2 p_{n}\right]$. This implies:

$$
\begin{aligned}
M_{n} \leq & f^{i+2 q_{n}}(y)-k-2 p_{n}-f^{i-q_{n}}(y)-k+p_{n} \\
M_{n} \leq & f^{i+2 q_{n}}(y)-f^{i+q_{n}}(y)+f^{i+q_{n}}(y)-f^{i}(y)+f^{i}(y)-f^{i-q_{n}}(y)-3 p_{n} \\
M_{n} \leq & f^{i+q_{n}}\left(f^{q_{n}}(y)\right)-f^{i+q_{n}}\left(y+p_{n}\right)+f^{i}\left(f^{q_{n}}(y)\right)-f^{i}\left(y+p_{n}\right) \\
& +f^{i-q_{n}}\left(f^{q_{n}}(y)\right)-f^{i-q_{n}}\left(y+p_{n}\right) \\
M_{n} \leq & \left(\left|D f^{i+q_{n}}\right|_{0}+\left|D f^{i}\right|_{0}+\left|D f^{i-q_{n}}\right|_{0}\right)\left(f^{q_{n}}(y)-y-p_{n}\right)
\end{aligned}
$$

and therefore,

$$
\frac{M_{n}}{m_{n}} \leq\left(\left|D f^{i+q_{n}}\right|_{0}+\left|D f^{i}\right|_{0}+\left|D f^{i-q_{n}}\right|_{0}\right) \leq 3|D f|_{0}^{q_{n}+q_{n+1}}
$$

Since $q_{n}+q_{n+1} \leq 2 q_{n+1} \leq \frac{2}{\alpha_{n}}$, and since α_{n} is decreasing, we obtain Proposition 3.18.

Proposition 3.20. - For any $n \geq 1$,

$$
\begin{equation*}
\frac{M_{n}}{m_{n}} \leq C_{28} \frac{M_{n_{4}}}{m_{n_{4}}} \tag{36}
\end{equation*}
$$

with:

$$
\begin{equation*}
C_{28}=\exp \left(\frac{2\left(2 C_{26}^{2}\right)^{\theta}-1}{\left(2 C_{26}^{2}\right)^{\theta}-1} \frac{\left(C_{2.3}^{f}\right)^{\left(n_{2}-1\right) \theta}}{1-\left(C_{2.3}^{f}\right)^{\theta}}+3 C_{21}^{f, k} \frac{\left(C_{2.3}^{f}\right)^{\left(n_{2}-1\right) / 2}}{1-\left(C_{2.3}^{f}\right)^{1 / 2}}\right) . \tag{37}
\end{equation*}
$$

Proof. - Since for any $n \geq n_{4},\left(R_{n}\right)$ occurs, then by Corollary 3.6 , we have:

$$
\begin{aligned}
\frac{M_{n+1}}{M_{n}} & \leq \frac{1+M_{n}^{\theta}}{1-C_{21}^{f, k} M_{n}^{1 / 2}} \frac{\alpha_{n+1}}{\alpha_{n}} \\
\frac{m_{n+1}}{m_{n}} & \geq \frac{1-M_{n}^{\theta}}{1+C_{21}^{f, k} M_{n}^{1 / 2}} \frac{\alpha_{n+1}}{\alpha_{n}}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{M_{n+1} / m_{n+1}}{M_{n} / m_{n}} \leq \frac{1+M_{n}^{\theta}}{1-M_{n}^{\theta}} \frac{1+C_{21}^{f, k} M_{n}^{1 / 2}}{1-C_{21}^{f, k} M_{n}^{1 / 2}} \tag{38}
\end{equation*}
$$

tOME $142-2014-\mathrm{N}^{\circ} 4$

Therefore, for any $n \geq n_{4}$,

$$
\frac{M_{n}}{m_{n}} \leq \frac{M_{n_{4}}}{m_{n_{4}}} \prod_{j=n_{4}}^{+\infty} \frac{1+M_{j}^{\theta}}{1-M_{j}^{\theta}} \frac{1+C_{21}^{f, k} M_{j}^{1 / 2}}{1-C_{21}^{f, k} M_{j}^{1 / 2}}
$$

We finish the proof of estimation (25), using that $n_{4} \geq n_{2}$) and for $j \geq n_{2}$, $M_{j} \leq 1 /\left(2 C_{26}^{2}\right)$. Detailed computations are in [3].

Proof of estimation (2). - By combining Propositions 3.18 and 3.20 , and since by [14, p. 348], $|D h|_{0} \leq \sup _{n \geq 0} M_{n} / m_{n}$, we get:

$$
\begin{equation*}
|D h|_{0} \leq C_{29}|D f|_{0}^{\frac{2}{\alpha_{n_{4}}}} \tag{39}
\end{equation*}
$$

with

$$
C_{29}=3 C_{28}
$$

We estimate C_{28} : since $(2 x-1) /(x-1)=2+1 /(x-1)$, since $\left(C_{2.3}^{f}\right)^{\left(n_{2}-1\right) \theta} \leq$ $1 /\left(2\left(C_{26}\right)^{2}\right)^{\theta}$ and since $\theta \leq 1 / 2$, then:

$$
C_{28} \leq \exp \left(\left(2+\frac{1}{\left(2\left(C_{26}\right)^{2}\right)^{\theta}-1}+3 C_{21}^{f, k}\right) \frac{1}{\left(2\left(C_{26}\right)^{2}\right)^{\theta}\left(1-\left(C_{2.3}^{f}\right)^{\theta}\right)}\right)
$$

Since $C_{2.3}^{f} \geq 1$, we get:

$$
\begin{equation*}
|D h|_{0} \leq C_{30}|D f|_{0}^{\frac{2}{\alpha_{n_{4}}}} \tag{40}
\end{equation*}
$$

with

$$
C_{30}=3 e \wedge\left(\left(2+\frac{1}{\left(2\left(C_{26}\right)^{2}\right)^{\theta}-1}+3 C_{21}^{f, k}\right) \frac{1}{\left(2\left(C_{26}\right)^{2}\right)^{\theta}\left(1-\left(C_{2.3}^{f}\right)^{\theta}\right)}\right)
$$

We estimate C_{30} using expressions of θ (see (24)), of $C_{2.3}^{f}$ (see Lemma 2.3) and of C_{26} (see (26) and Proposition 3.5).

We estimate $\alpha_{n_{4}}$ using Propositions 3.16, 3.15, 3.13, 3.12, and the expressions of n_{2} (see (2)) and estimates of $\theta, C_{2.3}^{f}$ and C_{26}. We get:

$$
|D h|_{0} \leq C_{2}\left(k, \beta, C_{d},|D f|_{0}, W(f),|S f|_{k-3}\right)
$$

where C_{2} is the combination of the following functions:

1. $C_{2.3}^{f}=\left(1+e \wedge\left(-6 \sqrt{2} e^{2 W(f)}\left(\max \left(|S f|_{0}^{1 / 2}, 1\right)\right)\right)\right)^{-1 / 2}$ (since $|S f|_{0} \leq$ $|S f|_{k-3}$, we can estimate $C_{2.3}^{f}$ in function of $\left.W(f),|S f|_{k-3}\right)$;
2. $C_{21}^{f, k}=(k+3)^{(k+3)!} e^{(k+3)!W(f)}\left(\max \left(1,|S f|_{k-3}\right)\right)^{(k+1)!}$;
3. $\theta=\min \left(1 / 2,\left(\frac{3+\beta}{4}\right)\left(-1+\sqrt{1+\frac{2(k-(2 \beta+1))}{(3+\beta)^{2}}}\right)\right)$;
4. $C_{26}=\max \left(e^{\frac{2}{1-\left(C_{2.3}^{f}\right)^{\theta}}},\left(4 C_{21}^{f, k}\right)^{\frac{1}{(1+\beta+\theta)(1+\theta)-1}}\right)$;
5. $n_{2}=\left\lfloor\max \left(-\frac{\log \left(2 C_{26}^{2}\right)}{\log C_{2.3}^{f}}+\frac{2 \log \left(1 / C_{d}\right)}{\theta \log 2}+2,2+\frac{\left(2 C_{21}^{f, k}\right)}{\log \left(\left(C_{2.3}^{f}\right)^{1 / 2}\right)}\right)\right\rfloor$;
6. $\beta_{1}=\beta+\frac{2 \log \left(1 / C_{d}\right)}{\left(n_{2}-1\right) \log 2}$;
7. $n_{3}=\left\lceil\frac{1}{\log \left(\frac{(k+1) / 2-\theta}{1+\beta_{1}}\right)}\left(n_{2}(1+\log (1+\beta))+\log \left(\frac{\left(n_{2}+1\right) \log \left(1 / C_{d}\right)}{\log 2}\right)\right)\right\rceil$;
8. $\rho=\frac{\beta_{1}}{\frac{k-1}{2}-\theta}$;
9. $\alpha_{n_{4}}^{\prime}=C_{d} \wedge\left(e \wedge\left(\left(n_{3}+1+\frac{\rho}{1-\rho}\right)\left(1+\beta_{1}\right)\right)\right)$;
10. $C_{30}=3 e \wedge\left(\left(2+\frac{1}{\left(2\left(C_{26}\right)^{2}\right)^{\theta}-1}+3 C_{21}^{f, k}\right) \frac{1}{\left(2\left(C_{26}\right)^{2}\right)^{\theta}\left(1-\left(C_{2.3}^{f}\right)^{\theta}\right)}\right)$;
11. $|D h|_{0} \leq C_{30}|D f|_{0}^{\frac{2}{\alpha_{n_{4}}^{\prime}}}$.

Note that we have a bound $\alpha_{n_{4}}^{\prime} \leq \alpha_{n_{4}}$, but we do not know the value of $\alpha_{n_{4}}$.

In order to obtain relatively simple estimates, we can take the parameter θ (defined in (24)) either vanishingly close to 0 (estimation (3)), or fixed independently of the other parameters (estimation (2)).
3.3. Proof of estimation (2). - When θ is fixed independently of the other parameters, we need to assume that $k-2 \beta-1$ is sufficiently large, in order to keep $(k+1) / 2-\theta \geq(1+\beta+\theta)(1+\theta)$. To illustrate this case, we take $\theta=1 / 2$, which requires $k \geq 3 \beta+9 / 2$ (for any fixed θ, we cannot obtain an assumption of the form $k \geq 2 \beta+u$ for some number u : we necessarily have $k \geq \lambda \beta+u$ with $\lambda>2$).

To simplify the function C_{2}, we successively estimate $C_{28}, \alpha_{n_{4}}^{\prime}$ and n_{2}. Details of the computations are in [3]. We have:

$$
C_{28} \leq \exp \left(C_{26}^{\frac{3 \beta+1}{2}}\right)
$$

where C_{28} and C_{26} defined in Proposition 3.20 and (26) respectively. We also have:

$$
\begin{equation*}
\frac{1}{\alpha_{n_{4}}^{\prime}} \leq\left(\frac{1}{C_{d}}\right) \wedge e \wedge\left((\beta+3 / 2)\left(2+\frac{n_{2}}{\log (3 / 2)}\left(2+\log (1+\beta)+\log \log \left(1 / C_{d}\right)\right)\right)\right) \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
n_{2} \leq C_{31}\left(W(f),|S f|_{0}\right)(k+4)!\left(1+\log \left(\max \left(1,|S f|_{k-3}\right)\right)\right)\left(1+\log \left(1 / C_{d}\right)\right) \tag{42}
\end{equation*}
$$

with:

$$
C_{42}\left(W(f),|S f|_{0}\right)=e^{(2)} \wedge\left(3 W(f)+2 \log \left(\max \left(1,|S f|_{0}\right)\right)+4\right)
$$

By combining these estimates, and after some computations (that can be found in [3]), we obtain:

$$
\begin{align*}
|D h|_{0} \leq e^{(3)} \wedge((\beta+3 / 2)(\beta+3)(k+4)! & C_{2}\left(1+\log \left(1 / C_{d}\right)\right)^{2} \tag{43}\\
& \left.\left(1+\log \left(\max \left(1,|S f|_{k-3}\right)\right)\right)\right)
\end{align*}
$$

with $\left.C_{2}=10\left(1+\log ^{(2)}\left(|D f|_{0}\right)\right) e^{(2)} \wedge\left(3 W(f)+2 \log \left(\max \left(1,|S f|_{0}\right)\right)\right)+2\right)$.
This estimation of $|D h|_{0}$ is increasing with k. Therefore, to obtain a bound as low as we can, we take $k=\lceil 3 \beta+9 / 2\rceil$. We obtain:

$$
|D h|_{0} \leq e^{(3)} \wedge\left(C_{2}[\beta] C_{2}\left[C_{d}\right] C_{2}\left[|D f|_{0}, W(f),|S f|_{0}\right] C_{2}\left[|S f|_{\lceil 3 \beta+3 / 2\rceil}\right]\right)
$$

with:

1. $C_{2}[\beta]=(\lceil 3 \beta+21 / 2\rceil)!$;
2. $C_{2}\left[C_{d}\right]=\left(1+\log \left(1 / C_{d}\right)\right)^{2}$;
3. $C_{2}\left[|D f|_{0}, W(f),|S f|_{0}\right]$
$\left.=10\left(1+\log ^{(2)}\left(|D f|_{0}\right)\right) e^{(2)} \wedge\left(3 W(f)+2 \log \left(\max \left(1,|S f|_{0}\right)\right)\right)+4\right) ;$
4. $C_{2}\left[|S f|_{\lceil 3 \beta+3 / 2\rceil}\right]=1+\log \left(\max \left(1,|S f|_{\lceil 3 \beta+3 / 2\rceil}\right)\right)$.
3.4. Proof of estimation (3). - Let $\delta=k-2 \beta-1$ and $\beta>0$. We make a Taylor expansion with $\delta \rightarrow 0$ (since $k \geq 3$, this implies automatically $\beta>0$). To estimate $|D h|_{0}$, we successively estimate $n_{2}, n_{3}, \rho /(1-\rho)$ and $\alpha_{n_{4}}^{\prime}$. Details of the computations can be found in [3].

Since $\beta>0$, then for δ sufficiently small, $C_{26}=e^{\frac{2}{1-\left(C_{2.3}^{f}\right)^{\theta}}}$. This makes the dependence on k and $|S f|_{k-3}$ disappear. We have:

$$
n_{2}=\left(\frac{4}{\left(\log C_{2.3}^{f}\right)^{2}}+\frac{2 \log \left(1 / C_{d}\right)}{\log 2}\right) \frac{1}{\theta}+o\left(\frac{1}{\theta}\right) .
$$

We denote $C_{32}=\frac{4}{\left(\log C_{2.3}^{f}\right)^{2}}$ and $C_{33}=\frac{2 \log \left(1 / C_{d}\right)}{\log 2}$. We also have:

$$
\begin{equation*}
n_{3} \leq \frac{(1+\beta)^{2}\left(C_{33}+C_{32}\right)}{\theta^{2}(4+2 \beta)}+o\left(\frac{1}{\theta^{2}}\right) \tag{44}
\end{equation*}
$$

Moreover, $\rho /(1-\rho)=o\left(1 / \delta^{2}\right)$ (we recall that $1 / \delta=o\left(1 / \delta^{2}\right)$).
We have:

$$
\alpha_{n_{4}}^{\prime} \geq C_{d} \wedge\left(e \wedge\left(\frac{C_{3}}{\delta^{2}}+o\left(\frac{1}{\delta^{2}}\right)\right)\right)
$$

with:

$$
C_{3}\left[k, C_{d}, W(f),|S f|_{0}\right]=\frac{(k+5)^{2}(k+1)^{3}}{2 k \log 2}\left(\frac{2 \log 2}{\left(\log C_{2.3}^{f}\right)^{2}}+\log \left(1 / C_{d}\right)\right)
$$

We recall that:

$$
C_{2.3}^{f}=\left(1+e \wedge\left(-6 \sqrt{2} e^{2 W(f)} \max \left(|S f|_{0}^{1 / 2}, 1\right)\right)\right)^{-1 / 2}
$$

We have:

$$
|D h|_{0} \leq C_{30}|D f|_{0} \wedge\left(e \wedge\left(e \wedge\left(\frac{1}{\delta^{2}} C_{3}+o\left(1 / \delta^{2}\right)\right)\right)\right)
$$

Since $\left.|\log \log | D f\right|_{0} \mid \leq e^{o\left(1 / \delta^{2}\right)}$ and $\left|\log C_{30}\right| \leq e \wedge e \wedge\left(o\left(1 / \delta^{2}\right)\right)$, we conclude:

$$
|D h|_{0} \leq e^{(3)} \wedge\left(\frac{1}{\delta^{2}} C_{3}\left[k, C_{d}, W(f),|S f|_{0}\right]+o\left(1 / \delta^{2}\right)\right)
$$

In estimations (2) and (3), three iterations of the exponential appear. This calls for explanation. A first exponential comes from the estimation $\left|D f^{n}\right|_{0} \leq$ $C|D f|_{0}^{2 / \alpha_{n_{4}}}$, where n_{4} is the rank above which the "favorable" case always occurs. A second exponential comes from writing $\alpha_{n_{4}}=\alpha_{0}^{\prod_{n=0}^{n_{4}-1}\left(\frac{1}{1-\eta_{n}}\right)}$. We bound each $\frac{1}{1-\eta_{n}}$ using the Diophantine condition, and a third exponential comes from the estimation $\prod_{n \in E_{2}}\left(\frac{1}{1-\eta_{n}}\right) \leq C^{n_{3}-n_{2}}$, where E_{2} is the set and $n_{3}-n_{2}$ is the number of "unfavorable" cases.

This number is bounded logarithmically, by $C \log C_{26}$. However, C_{26} is bounded by an exponential of the parameters. Indeed, when δ is small, $C_{26} \sim e^{\frac{1}{\delta}}$, which gives estimation (3). Otherwise, $C_{26} \sim C_{21}^{f, k}$. In this case, $C_{21}^{f, k} \sim C^{k}$. Indeed, in Lemma 20, we need $k-1$ iterations to estimate $\left|D^{k-1} \log D f^{p}(x)\right|_{0}\left(p \leq q_{n+1}\right)$, an estimation that, in turn, gives an estimate of $C_{21}^{f, k}$. This gives estimation (2). Thus, we have explained the occurence of three exponentials in the estimates.

Since the number of "unfavorable" cases drives the dominant term of these estimates, they can be substantially improved when the "favorable" case always occurs. In Remark 1.5, we make this assumption, together with the assumption $k \geq 3 \beta+9 / 2$. Thus, we can take $\theta=1 / 2$, and a sufficient condition for the occurrence of the "favorable" case is:

$$
\frac{\alpha_{n+1}}{\alpha_{n}} \geq C_{21}^{f, k}\left(C_{2.3}^{f}\right)^{(n-1) \frac{k}{2}}=C_{8}\left(n, k, \beta, W(f),|S f|_{k-3}\right)
$$

which decreases geometrically with n.
We recall that:

$$
\begin{aligned}
C_{2.3}^{f} & =\left(1+e \wedge\left(-6 \sqrt{2} e^{2 W(f)} \max \left(|S f|_{0}^{1 / 2}, 1\right)\right)\right)^{-1 / 2} \\
C_{21}^{f, k} & =(k+3)^{(k+3)!} e^{(k+3)!W(f)}\left(\max \left(1,|S f|_{k-3}\right)\right)^{(k+1)!}
\end{aligned}
$$

We obtain the following estimation:

$$
|D h|_{0} \leq \exp \left(C_{1.5}\left[k, W(f),|S f|_{k-3}\right]^{C_{1.5}(\beta)}\right)|D f|_{0}^{2}
$$

with:

$$
C_{1.5}\left[k, W(f),|S f|_{k-3}\right]=\max \left(e^{\frac{2}{1-\left(C_{2.3}^{f}\right)^{1 / 2}}}, 4 C_{21}^{f, k}\right), \quad C_{1.5}[\beta]=\frac{3 \beta+1}{2}
$$

Note that numbers of constant type do not always satisfy (8) for any n (they only satisfy it above some rank). Moreover, there are numbers satisfying (8) that are not of constant type.

4. C^{k} estimations

In this section, we compute estimates of higher order derivatives of the conjugacy h in function of bounds on the first derivative of h. We compute the values of some of the constants appearing in Yoccoz's proof [14] (we do not compute the dependency in k). However, in order to obtain our result, we need to modify slightly the proof of Proposition 5 in the work of Yoccoz [14]. If we strictly followed Yoccoz's proof, we would find an estimate that depends on the C^{1}-norm of h, and on $k, \beta, C_{d}, W(f),|S f|_{k-3},\left|D^{k-1} \log D f\right|_{0}$, but this estimate would diverge as f gets closer to a rotation.

The proof has four steps. We let real numbers $0 \leq \gamma_{0}<\gamma_{1}<g\left(\gamma_{0}\right)$, with $g\left(\gamma_{0}\right)=\left((1+\beta) \gamma_{0}+k-(2+\beta)\right) /(2+\beta)$, and we let an integer N. In the first three steps, we compute $\left\|\log D f^{N}\right\|_{\gamma_{1}}$ in function of $\sup _{p \geq 0}\left\|\log D f^{p}\right\|_{\gamma_{0}}$ (estimation (45)). In the first step, using convexity estimations (Proposition 4.7) and a consequence of the Faa-di-Bruno formula (Lemma 4.6), we establish an estimation of $\left\|\log D f^{q_{s}}\right\|_{\gamma}$ for $0 \leq \gamma \leq k-1$ (Lemma 4.8).

In the second step, we obtain an estimation of $\left\|\log D f^{n q_{s}}\right\|_{\gamma}, 0 \leq n \leq$ q_{s+1} / q_{s} for $0 \leq \gamma \leq \gamma_{1}$ (estimation (58)).

In the third step, we write $N=\sum_{s=0}^{S} b_{s} q_{s}$, with b_{s} integers satisfying $0 \leq b_{s} \leq q_{s+1} / q_{s}$, in order to get an estimation of $\left\|\log D f^{N}\right\|_{\gamma_{1}}$ in function of $\sup _{p \geq 0}\left\|\log D f^{p}\right\|_{\gamma_{0}}$. Thus, in these three steps, the aim is to establish the following proposition:
Proposition 4.1. - Let $0 \leq \gamma_{0}<\gamma_{1}<g\left(\gamma_{0}\right)=\frac{(1+\beta) \gamma_{0}+k-(2+\beta)}{2+\beta}$. We have:

$$
\begin{align*}
& \left\|\log D f^{N}\right\|_{\gamma_{1}} \tag{45}\\
\leq & e \wedge\left(C_{65}(k, \beta)\left(\log \left(C_{d}^{-1}\right)+C_{42}^{f, k}+C(k)\left(1+\sup _{p \geq 0}\left\|\log D f^{p}\right\|_{\gamma_{0}}\right)\right)^{4}\right)
\end{align*}
$$

The expressions of C_{65} and $C_{42}^{f, k}$ are given in page 710. $C(k)$ denotes a positive numerical function of the variable k, with an explicit formula that we do not compute, and this is why it does not have a sub-index.

In the fourth step, we iterate this reasoning: the inductive step is given by Proposition 4.1: if we have an estimate of $\sup _{N \geq 0}\left\|\log D f^{N}\right\|_{\gamma_{i}}$, then we can get an estimate of $\sup _{N \geq 0}\left\|\log D f^{N}\right\|_{\gamma_{i+1}}$ for $\gamma_{i}<\gamma_{i+1}<g\left(\gamma_{i}\right)$. We can initiate the induction with $\gamma_{0}=0$, because we have C^{1} estimates. We take $\gamma_{i+1}=\frac{1}{2}\left(g\left(\gamma_{i}\right)+\gamma_{i}\right)$ and we have:
$\lim _{i \rightarrow+\infty} \gamma_{i}=k-2-\beta$. Thus, we can obtain an estimation of $\|D h\|_{k-2-\beta-\eta}$. In all the rest of the paper, we denote:

$$
\begin{aligned}
M^{\prime} & =\exp \left(\sup _{i \geq 0}\left|\log D\left(f^{i}\right)\right|_{0}\right) \\
M & =\exp \left(\sup _{i \geq 0}\left\|\log D\left(f^{i}\right)\right\|_{\gamma_{0}}\right) .
\end{aligned}
$$

Note that $M \geq M^{\prime} \geq 1$.
The constants $C(k)$ only depend on k. This dependency is not specified. C denotes a numerical constant (independent of all parameters) of unspecified value. Numbered constants C_{i}, i integer, can depend on constants $C(k)$ or C.
4.1. Estimation of $\left\|\log D f^{q_{s}}\right\|_{\gamma}, 0 \leq \gamma \leq k-1$.- The following lemma is a converse of the implication used in [14, p. 348], according to which if M_{n} / m_{n} is bounded, then the conjugacy of f to a rotation is C^{1} :

Lemma 4.2. - Let $M^{\prime}=\exp \left(\sup _{i \geq 0}\left|\log D\left(f^{i}\right)\right|_{0}\right)$. Then we have the following estimation:

$$
\frac{M_{n}}{m_{n}} \leq M^{\prime}
$$

Proof. - Let $\epsilon>0, x, y$ be such that $M_{n}=\left|f^{q_{n}}(x)-x-p_{n}\right|$ and $m_{n}=$ $\left|f^{q_{n}}(y)-y-p_{n}\right|$.

Since $f^{p}(y)_{p \geq 0} \bmod 1$ is dense in \mathbb{T}^{1}, then there is a positive integer l and an integer k such
that $\left|f^{l}(y)-x-k\right| \leq \min \left(\frac{\epsilon}{\left|D f^{q_{n}}\right|_{0}}, \epsilon\right)$. Moreover, $m_{n}=\mid f^{q_{n}}(y-k)-(y-$ $k)-p_{n} \mid$.

Then we obtain:

$$
\begin{aligned}
& \left|f^{q_{n}}(x)-x-p_{n}\right| \\
& \quad \leq\left|f^{q_{n}}(x)-f^{q_{n}}\left(f^{l}(y)-k\right)\right|+\left|f^{l}\left(f^{q_{n}}(y-k)\right)-f^{l}(y-k)\right|+\left|f^{l}(y-k)-x\right| \\
& \quad \leq\left|D f^{l}\right|_{0}\left|f^{q_{n}}(y-k)-(y-k)-p_{n}\right|+2 \epsilon \leq M^{\prime} m_{n}+2 \epsilon
\end{aligned}
$$

for every $\epsilon>0$.
The C^{γ}-norms, when γ varies in \mathbb{R}^{+}, are related with each other by convexity inequalities (also called interpolation inequalities):

Proposition 4.3. - Let $\gamma_{2}, \gamma_{3} \in \mathbb{R}^{+}$with $0 \leq \gamma_{2} \leq \gamma_{3}$ and $\gamma_{3}>0$. For any $\phi \in C^{\gamma_{3}}\left(\mathbb{T}^{1}\right)$, we have:

$$
\|\phi\|_{\gamma_{2}} \leq C\left(\gamma_{3}\right)\|\phi\|_{0}^{\frac{\gamma_{3}-\gamma_{2}}{\gamma_{3}}}\|\phi\|_{\gamma_{3}^{3}}^{\gamma_{3}} .
$$

Using these convexity inequalities, we establish various relations, among which is the important Corollary 4.5, which relate the norms of $\log D f^{n}$ and those of $D f^{n}-1$.

For $0 \leq \gamma_{1} \leq \gamma_{2} \leq k-1, \gamma_{2} \neq 0$, and $n \in \mathbb{Z}$, Proposition 4.3 gives:

$$
\begin{align*}
\left\|\log D f^{n}\right\|_{\gamma_{1}} \leq C\left(\gamma_{2}\right) M^{\prime} C\left(\gamma_{2}\right)\left\|\log D f^{n}\right\|_{\gamma_{2}}^{\gamma_{1} / \gamma_{2}} \tag{46}\\
\left\|D f^{n}-1\right\|_{\gamma_{1}} \leq C\left(\gamma_{2}\right) M^{\prime C\left(\gamma_{2}\right)}\left\|D f^{n}-1\right\|_{\gamma_{2}}^{\gamma_{1} / \gamma_{2}} \tag{47}
\end{align*}
$$

For $n \geq 0, j \in \mathbb{Z}$, we have:

$$
\begin{equation*}
\left\|\left(D f^{n}\right)^{j}\right\|_{0} \leq M^{\prime}|j| \tag{48}
\end{equation*}
$$

and, for $0<\gamma^{\prime}<1$, since $\left|D f^{n}-1\right|_{\gamma^{\prime}}=\left|D f^{n}\right|_{\gamma^{\prime}}$:

$$
\begin{equation*}
\left|\left(D f^{n}\right)^{j}\right|_{\gamma^{\prime}} \leq|j| M^{\prime|j|-1}\left|D f^{n}-1\right|_{\gamma^{\prime}} \tag{49}
\end{equation*}
$$

Therefore, for $0 \leq \gamma^{\prime}<1, \phi \in C^{\gamma^{\prime}}\left(\mathbb{T}^{1}\right)$, we get, by the relations (8) and (9):

$$
\begin{equation*}
\left\|\left(D f^{n}\right)^{j} \phi\right\|_{\gamma^{\prime}} \leq C(j) M^{C(j)}\left(\|\phi\|_{\gamma^{\prime}}+\left\|D f^{n}-1\right\|_{\gamma^{\prime}}\|\phi\|_{0}\right) \tag{50}
\end{equation*}
$$

where $C(j)$ denotes a positive numerical function of the variable k, with an explicit formula that we do not compute, and this is why it does not have a sub-index.

Let $\Delta=X_{1}^{j_{1}} \cdots X_{l}^{j_{l}}$ be a monomial of l variables, such that $l=\sum_{p=1}^{l} p j_{p} \geq$ 1. Let $0 \leq \gamma^{\prime}<1, n \in \mathbb{Z}$. We estimate $\|\Delta\|_{\gamma^{\prime}}$ when $X_{i}=D^{i} \log D f^{n}$ or when $X_{i}=D^{i+1} f^{n}$, supposing that $l+\gamma^{\prime} \leq k-1$.

The relations (8) and (9) allow estimating $\|\Delta\|_{\gamma^{\prime}}$ by a sum of less than 2^{l} terms of the form $\left\|X_{p}\right\|_{\gamma^{\prime}}\left\|\Delta / X_{p}\right\|_{0}, 1 \leq p \leq l, j_{p} \neq 0$. By relation (46), we have:

$$
\begin{aligned}
\left\|D^{p} \log D f^{n}\right\|_{\gamma^{\prime}} & \leq C(l) M^{C(l)}\left\|\log D f^{n}\right\|_{l+\gamma^{\prime}}^{\left(p+\gamma^{\prime}\right) /\left(l+\gamma^{\prime}\right)} \\
\left\|D^{p+1} f^{n}\right\|_{\gamma^{\prime}} & \leq C(l) M^{C(l)}\left\|D f^{n}-1\right\|_{l+\gamma^{\prime}}^{\left(p+\gamma^{\prime}\right) /\left(l+\gamma^{\prime}\right)} \\
\left\|\frac{\Delta\left(D \log D f^{n}, \ldots, D^{l} \log D f^{n}\right)}{D^{p} \log D f^{n}}\right\|_{0} & \leq C(l) M^{C(l)}\left\|\log D f^{n}\right\|_{l+\gamma^{\prime}}^{(l-p) /\left(l+\gamma^{\prime}\right)} \\
\left\|\frac{\Delta\left(D^{2} f^{n}, \ldots, D^{l+1} f^{n}\right)}{D^{p+1} f^{n}}\right\|_{0} & \leq C(l) M^{C(l)}\left\|D f^{n}-1\right\|_{l+\gamma^{\prime}}^{(l-p) /\left(l+\gamma^{\prime}\right)}
\end{aligned}
$$

Scheme of the proof. - The first two estimates are straightforward. For the third estimate, we write

$$
\begin{aligned}
& \frac{\Delta\left(D \log D f^{n}, \ldots, D^{l} \log D f^{n}\right)}{D^{p} \log D f^{n}} \\
& \quad=\left(D \log D f^{n}\right)^{j_{1}} \cdots\left(D^{p} \log D f^{n}\right)^{j_{p}-1} \cdots\left(D^{l} \log D f^{n}\right)^{j_{l}}
\end{aligned}
$$

we apply estimation (46) to each $D^{i} \log D f^{n}$ and we use that $\sum j_{k} \leq l$.

The proof of the fourth estimate is analogous, by noting that for $i \geq 1$, $D^{i}\left(D f^{n}-1\right)=D^{i+1} f^{n}$.

Therefore, when $X_{i}=D^{i} \log D f^{n}$, we get:

$$
\begin{equation*}
\|\Delta\|_{\gamma^{\prime}} \leq C(l) M^{C(l)}\left\|\log D f^{n}\right\|_{l+\gamma^{\prime}} \tag{51}
\end{equation*}
$$

and when $X_{i}=D^{i+1} f^{n}$,

$$
\begin{equation*}
\|\Delta\|_{\gamma^{\prime}} \leq C(l) M^{C(l)}\left\|D f^{n}-1\right\|_{l+\gamma^{\prime}} . \tag{52}
\end{equation*}
$$

Using Appendix 6, this allows obtaining the following lemma:
Lemma 4.4. - Let P be one of the polynomials of Appendix 6. P is a polynomial of l variables X_{1}, \ldots, X_{l}, homogeneous of degree l if X_{i} has a degree of i. For every $n \in \mathbb{Z}$, every $0 \leq \gamma^{\prime}<1$, we have:

$$
\begin{aligned}
\left\|P\left(D \log D f^{n}, \ldots, D^{l} \log D f^{n}\right)\right\|_{\gamma^{\prime}} & \leq C(l) M^{C(l)}\left\|\log D f^{n}\right\|_{l+\gamma^{\prime}} \\
\left\|P\left(\frac{D^{2} f^{n}}{D f^{n}}, \ldots, \frac{D^{l+1} f^{n}}{D f^{n}}\right)\right\|_{\gamma^{\prime}} & \leq C(l) M^{C(l)}\left\|D f^{n}-1\right\|_{l+\gamma^{\prime}}
\end{aligned}
$$

Corollary 4.5. - For $n \in \mathbb{Z}, 0 \leq \gamma \leq k-1, \gamma=\lfloor\gamma\rfloor+\gamma^{\prime}, 0 \leq \gamma^{\prime}<1$. we have:

$$
\left(C(\gamma) M^{C(\gamma)}\right)^{-1}\left\|D f^{n}-1\right\|_{\gamma} \leq\left\|\log D f^{n}\right\|_{\gamma} \leq C(\gamma) M^{C(\gamma)}\left\|D f^{n}-1\right\|_{\gamma}
$$

Scheme of the proof. - For $0 \leq \gamma<1$, we prove the estimates directly, using that $\log x \leq x-1$.

When $\gamma \geq 1$, for the right-hand side of the estimation, we use formula (77) in Appendix 6 and the second estimate of Lemma 4.4.

For the left-hand side, we apply formula (76) in Appendix 6, the first estimate of Lemma 4.4, relation (50) with $\phi=D^{\lfloor\gamma\rfloor+1} f^{n} / D f^{n}$ and $j=1$, the left-hand side of this estimate of Corollary 4.5 with $\gamma<1$, and relation (46) twice.

Using mainly the Faa-d-Bruno formula, we have the lemma [14, p. 350]:
Lemma 4.6. - Let $\gamma_{0} \geq \gamma \geq 0, \psi \in D^{\max (1, \gamma)}\left(\mathbb{T}^{1}\right), \phi \in C^{\gamma}\left(\mathbb{T}^{1}\right)$. We have:

$$
\|\phi \circ \psi\|_{\gamma} \leq C(\gamma)\|D \psi\|_{\max (\gamma, 1)-1}^{C(\gamma)}\|\phi\|_{\gamma} .
$$

We have: $f^{n}=h R_{n \alpha} h^{-1}$. We apply Lemma 4.6 with $\psi=h^{-1}$ and $\phi=$ $h R_{n \alpha}-h-n \alpha$. To estimate $\left\|h R_{n \alpha}-h-n \alpha\right\|_{\gamma}$, we use the C^{γ}-norm of $D h$. We get:

Proposition 4.7. - For $n \in \mathbb{Z}, 0 \leq \gamma \leq \gamma_{0}$, we have:

$$
\left\|f^{n}-i d-n \alpha\right\|_{\gamma} \leq C(\gamma) M^{C(\gamma)}\|n \alpha\|
$$

Let $\alpha_{n}=(-1)^{n}\left(q_{n} \alpha-p_{n}\right)$ and let $\Delta_{s}=\left\|D^{k-1} \log D f^{q_{s}}\right\|_{0}+\alpha_{s}$ (the role of this additional α_{s} is explained at the end of the proof of Lemma 4.12). We could also have taken $\Delta_{s}=\max \left(\left\|D^{k-1} \log D f^{q_{s}}\right\|_{0}, \alpha_{s}\right)$). By applying Lemma 3.4, and since $M_{s-1} \leq M^{\prime} \alpha_{s-1}, 1 / m_{s-1} \leq M^{\prime} / \alpha_{s-1}$, and $\alpha_{s-1} \leq 1 / q_{s}$, then we have:

$$
\begin{equation*}
\Delta_{s} \leq\left(C_{20}^{f, k} M^{\prime \frac{3}{2}(k-1)}+1\right) q_{s}^{(k-1) / 2} \tag{53}
\end{equation*}
$$

Using Proposition 4.7 when $\gamma \leq \gamma_{0}-1$, using Corollary 4.5, Proposition 4.3(with $\gamma_{3}=k, \gamma_{2}=\gamma+1, \gamma_{1}=\gamma_{0}$), Proposition 4.7, and Corollary 4.5 again when $\gamma>\gamma_{0}-1$, we obtain the following lemma:

Lemma 4.8. - Let $\gamma \in[0, k-1]$ and $s \geq 0$. We have:

$$
\left\|\log D f^{q_{s}}\right\|_{\gamma} \leq C(k) M^{C(k)} q_{s+1}^{-1}\left(q_{s+1} \Delta_{s}\right)^{\max \left(0, \frac{\gamma+1-\gamma_{0}}{k-\gamma_{0}}\right)}
$$

We make a remark on the method and notation: in this Lemma 4.8, we estimate the C^{γ}-norm for $0 \leq \gamma \leq k-1$, instead of only estimating the $C^{\gamma_{1}}$-norm, because of two reasons: first, this lemma is used to obtain Lemma 4.9, in which we need an estimation of all the norms of order $\gamma \leq k-1$. Second, in the proof of Proposition 4.10, we need an estimate of $\left\|\log D f^{q_{s}}\right\|_{k-1}$.
4.2. Estimation of $\left\|\log D f^{n q_{s}}\right\|_{\gamma}, 0 \leq n \leq q_{s+1} / q_{s}, 0 \leq \gamma \leq k-1$. - We use Lemma 4.8 to estimate $\left\|\log D f^{n q_{s}}\right\|_{\gamma}, 0 \leq \gamma \leq k-1$ (Lemma 4.9) and second, we bootstrap this estimate (Lemma 4.12). This bootstrapping allows getting a higher degree of differentiability γ_{1} at the end (see estimation (59)).

The Diophantine condition on α implies $q_{s+1} \leq C_{d}^{-1} q_{s}^{1+\beta}$. Therefore, by applying estimation (53), we get:

$$
\begin{equation*}
\left(\Delta_{s} q_{s+1}\right)^{1 / k} q_{s}^{-1} \leq C_{34}(0) q_{s}^{-\epsilon} \tag{54}
\end{equation*}
$$

With $\epsilon=\frac{1}{2}-\frac{1+2 \beta}{2 k}>0$ and $C_{34}(0)=\left[\left(C_{20}^{f, k} M^{\frac{3}{2}(k-1)}+1\right) C_{d}^{-1}\right]^{1 / k}$.
The preceding estimates give the lemma:
Lemma 4.9. - Let $\gamma \in[0, k-1]$. For $s \geq 0,0 \leq n \leq q_{s+1} / q_{s}$, we have:

$$
\left\|\log D f^{n q_{s}}\right\|_{\gamma} \leq C(k) M^{C(k)} C_{34}(0)^{\lfloor\gamma\rfloor} q_{s}^{-1}\left(q_{s+1} \Delta_{s}\right)^{(\gamma+1) / k}
$$

Scheme of the proof. - This lemma is shown by induction on $r=\lfloor\gamma\rfloor$. If $r=0$, we write $\log D f^{n q_{s}}=\sum_{i=0}^{n-1} \log D f^{q_{s}} \circ f^{i}$ and we apply Lemma 4.8.

Suppose the lemma holds for $r-1+\gamma^{\prime}$, with $0 \leq \gamma^{\prime}<1$. We have, using the expression (80) in Appendix 6, and using estimations (8) and (9):

$$
\begin{equation*}
\left\|D^{r} \log D f^{n q_{s}}\right\|_{\gamma^{\prime}} \leq \sum_{l=0}^{r-1} \sum_{i=0}^{n-1}\left(A_{i, l}+B_{i, l}+C_{i, l}\right) \tag{55}
\end{equation*}
$$

with:

$$
\begin{aligned}
A_{i, l} & =\left\|D^{r-l} \log D f^{q_{s}} \circ f^{i q_{s}}\right\|_{\gamma^{\prime}}\left\|\left(D f^{i q_{s}}\right)^{r-l}\right\|_{0}\left\|E_{l}^{r}\right\|_{0} \\
B_{i, l} & =\left\|D^{r-l} \log D f^{q_{s}} \circ f^{i q_{s}}\right\|_{0}\left|\left(D f^{i q_{s}}\right)^{r-l}\right|{ }_{\gamma^{\prime}}\left\|E_{l}^{r}\right\|_{0} \\
C_{i, l} & =\left\|D^{r-l} \log D f^{q_{s}} \circ f^{i q_{s}}\right\|_{0}\left\|\left(D f^{i q_{s}}\right)^{r-}\right\|_{0}\left\|E_{l}^{r}\right\|_{\gamma^{\prime}} \\
E_{l}^{r} & =E_{l}^{r}\left(D \log D f^{i q_{s}}, \ldots, D^{l} \log D f^{i q_{s}}\right) .
\end{aligned}
$$

We estimate E_{l}^{r} with Lemma 4.4 (with the polynomial $P=E_{l}^{r}$), with (46) (for $B_{i, l}$) and with the induction assumption. We estimate $\| D^{r-l} \log D f^{q_{s}} \circ$ $f^{i q_{s}} \|_{\tilde{\gamma}}, \tilde{\gamma}=0$ or γ^{\prime}, by applying Lemma 4.6 with $\phi=D^{r-l} \log D f^{q_{s}}$ and $\psi=f^{i q_{s}}$, and by applying Lemma 4.8. We estimate $\left|\left(D f^{i q_{s}}\right)^{r-l}\right|_{0}$ with (48). For $\left|\left(D f^{i q_{s}}\right)^{r-l}\right|_{\gamma^{\prime}}$, we apply (49), Corollary 4.5, (46) and the induction assumption. We get:

$$
\begin{aligned}
& A_{i, l} \leq C(k) M^{C(k)} C_{34}(0)^{l} q_{s+1}^{-1} q_{s}^{-1}\left(\Delta_{s} q_{s+1}\right)^{\frac{r-l+\gamma^{\prime}+1}{k}+\frac{l+1}{k}} \\
& B_{i, l} \leq C(k) M^{C(k)} C_{34}(0)^{l} q_{s+1}^{-1} q_{s}^{-1}\left(\Delta_{s} q_{s+1}\right)^{\frac{r-l+1}{k}+\frac{l+\gamma^{\prime}+1}{k}} \\
& C_{i, l} \leq C(k) M^{C(k)} C_{34}(0)^{l} q_{s+1}^{-1} q_{s}^{-1}\left(\Delta_{s} q_{s+1}\right)^{\frac{r-l+1}{k}+\frac{l+\gamma^{\prime}+1}{k}} .
\end{aligned}
$$

Thus, we have:

$$
A_{i, l}+B_{i, l}+C_{i, l} \leq C(k) M^{C(k)} C_{34}(0)^{l} q_{s+1}^{-1} q_{s}^{-1}\left(\Delta_{s} q_{s+1}\right)^{\frac{\gamma+1}{k}+1 / k} .
$$

We conclude using estimation (34), and using the fact that the sum (55) has $r n \leq\lfloor\gamma\rfloor q_{s+1} / q_{s}$ terms.

By applying this Lemma 4.9, together with estimate (34), Lemma 4.8 and Lemma 4.4, we get the proposition [14, p. 355]:

Proposition 4.10. - The sequence $\left(\Delta_{s} / q_{s}\right)_{s \geq 0}$ is bounded by C_{35}.
C_{35} is defined by the following:

$$
\begin{aligned}
& C_{36}=C(k) M^{C(k)} C_{34}(0)^{k-1} \\
& C_{35}=C_{20}^{f, k} M^{C(k)} \prod_{s=0}^{\infty}\left(1+\frac{C_{36}}{q_{s}^{\epsilon}}\right) .
\end{aligned}
$$

Proof. - We slightly modify Yoccoz's proof. Let $\Delta_{-1}^{\prime}=0$ and, for $s \geq 0$:

$$
\Delta_{s}^{\prime}=\sup \left\{\left|D^{k-1} \log D f^{q_{t}} \circ f^{m}\left(D f^{m}\right)^{k-1}\right|_{0}, 0 \leq t \leq s, m \geq 0\right\} .
$$

For $s \geq 0$, we have: $\Delta_{s} \leq \Delta_{s}^{\prime}+\alpha_{s}$ (this implies $\Delta_{s} \leq \tilde{C} \Delta_{s}^{\prime}$ when f is not a rotation, but contrary to Yoccoz's proof, we do not use this estimate, because the constant \tilde{C} is of the form $\tilde{C}=1+\frac{M^{k-1}}{\left|D^{k-1} \log D f\right|_{0}}$, which diverges as f gets closer to a rotation). We compute a bound on $\left(\Delta_{s}^{\prime}+\alpha_{s}\right) / q_{s}$.

Let $s \geq 0$ (this is another difference with Yoccoz's proof, which only considers $s \geq 1$). We have: $q_{s+1}=\hat{a}_{s+1} q_{s}+q_{s-1}$ (we recall that $q_{-1}=0$). Using formula (79) in Appendix 6 with $g=f^{q_{s-1}}$ and $h=f^{\hat{a}_{s+1} q_{s}}$, we can write:

$$
\left(D^{k-1} \log D f^{q_{s+1}} \circ f^{m}\right)\left(D f^{m}\right)^{k-1}=X^{\prime}+Y^{\prime}+Z^{\prime}
$$

with

$$
\begin{aligned}
X^{\prime}= & \left(D^{k-1} \log D f^{q_{s-1}} \circ f^{\hat{a}_{s+1} q_{s}+m}\right)\left(D f^{\hat{a}_{s+1} q_{s}} \circ f^{m}\right)^{k-1}\left(D f^{m}\right)^{k-1} \\
Y^{\prime}= & D^{k-1} \log D f^{\hat{a}_{s+1} q_{s}} \circ f^{m}\left(D f^{m}\right)^{k-1} \\
Z^{\prime}= & \sum_{l=1}^{k-2}\left(D^{k-1-l} \log D f^{q_{s-1}} \circ f^{\hat{a}_{s+1} q_{s}+m}\right)\left(D f^{\hat{a}_{s+1} q_{s}} \circ f^{m}\right)^{k-1-l} \\
& \cdot\left(D f^{m}\right)^{k-1} G_{l}^{k-1}\left(D \log D f^{\hat{a}_{s+1} q_{s}} \circ f^{m}, \ldots, D^{l} \log D f^{\hat{a}_{s+1} q_{s}} \circ f^{m}\right)
\end{aligned}
$$

We have:

$$
\left|X^{\prime}\right|_{0} \leq \Delta_{s-1}^{\prime}
$$

Using formula (80) in Appendix 6 with $g=f^{q_{s}}$, we have:

$$
\begin{aligned}
Y^{\prime}=\sum_{l=0}^{k-2} & \sum_{n=0}^{\hat{a}_{s+1}-1}\left(D^{k-1-l} \log D f^{q_{s}} \circ f^{n q_{s}+m}\right)\left(D f^{n q_{s}+m}\right)^{k-1-l} \\
& \cdot E_{l}^{k-1}\left(D \log D f^{n q_{s}}, \ldots, D^{l} \log D f^{n q_{s}}\right) \circ f^{m}\left(D f^{m}\right)^{l}=\sum_{l=0}^{k-2} Y_{l}^{\prime}
\end{aligned}
$$

(with the convention $E_{0}^{k-1}=1$). We have: $\left|Y_{0}^{\prime}\right|_{0} \leq \hat{a}_{s+1} \Delta_{s}^{\prime}$.
For $l \geq 1$, we estimate $E_{l}^{k-1}\left(D \log D f^{n q_{s}}, \ldots, D^{l} \log D f^{n q_{s}}\right) \circ f^{m}\left(D f^{m}\right)^{l}$ using Lemma 4.6 (with $\psi=f^{m}$ and $\gamma=0$), Lemma 4.4 (with $P=E_{l}^{k-1}$), Lemma 4.9 (with $\gamma=l$) and estimation (34). We get:

$$
\begin{aligned}
\mid E_{l}^{k-1}\left(D \log D f^{n q_{s}}, \ldots, D^{l} \log D f^{n q_{s}}\right) & \left.\circ f^{m}\left(D f^{m}\right)^{l}\right|_{0} \\
& \leq C(k) M^{C(k)}\left(C_{34}(0)\right)^{l+1}\left(\Delta_{s} q_{s+1}\right)^{l / k} q_{s}^{-\epsilon}
\end{aligned}
$$

By applying Lemma 4.8 (with $\gamma=k-1-l$ and $\gamma_{0}=0$), and using that $\Delta_{s} \leq \Delta_{s}^{\prime}+\alpha_{s}$, we get:

$$
\left|Y_{l}^{\prime}\right|_{0} \leq \hat{a}_{s+1}\left(\Delta_{s}^{\prime}+\alpha_{s}\right) C(k) M^{C(k)}\left(C_{34}(0)\right)^{l+1} q_{s}^{-\epsilon} .
$$

Therefore,

$$
\left|Y^{\prime}\right|_{0} \leq \hat{a}_{s+1} \Delta_{s}^{\prime}+\hat{a}_{s+1}\left(\Delta_{s}^{\prime}+\alpha_{s}\right) C_{36} q_{s}^{-\epsilon} .
$$

Likewise, we can show that, for $s \geq 1$:

$$
\left|Z^{\prime}\right|_{0} \leq C_{36} q_{s}^{-\epsilon} q_{s}^{-1}\left(q_{s} \Delta_{s-1}\right)^{\frac{k-l}{k}}\left(q_{s+1} \Delta_{s}\right)^{l / k} .
$$

(Yoccoz concludes the estimation of $\left|Z^{\prime}\right|_{0}$ here, using the fact that $q_{s}^{1-l / k} \leq$ $q_{s+1}^{1-l / k}$ and using the fact that $\Delta_{t} \leq \tilde{C} \Delta_{t}^{\prime}, t=s-1, s$. We don't use these facts.)

Since $\Delta_{t} \leq \Delta_{t}^{\prime}+\alpha_{t}, t=s-1, s$, and since $\Delta_{s-1}^{\prime} \leq \Delta_{s}^{\prime}$, we get:

$$
\begin{aligned}
\left|Z^{\prime}\right|_{0} & \leq C_{36} q_{s}^{-\epsilon}\left(\frac{q_{s+1}}{q_{s}}\right)^{l / k}\left(\Delta_{s-1}^{\prime}+\alpha_{s-1}\right)^{1-l / k}\left(\Delta_{s}^{\prime}+\alpha_{s}\right)^{l / k} \\
\left|Z^{\prime}\right|_{0} & \leq C_{36} q_{s}^{-\epsilon} \frac{q_{s+1}}{q_{s}}\left(\Delta_{s}^{\prime}+\alpha_{s}\right)\left(\left(1+\frac{\alpha_{s-1}-\alpha_{s}}{\Delta_{s}^{\prime}+\alpha_{s}}\right)\left(\frac{q_{s}}{q_{s+1}}\right)\right)^{1-l / k} .
\end{aligned}
$$

Since $\Delta_{s}^{\prime} \geq 0$, and since $\hat{a}_{s+1} \leq q_{s+1} / q_{s} \leq 2 \hat{a}_{s+1}$ and $\alpha_{s-1} \leq 2 \hat{a}_{s+1} \alpha_{s}$, we get:

$$
\left|Z^{\prime}\right|_{0} \leq 4 C_{36} q_{s}^{-\epsilon} \hat{a}_{s+1}\left(\Delta_{s}^{\prime}+\alpha_{s}\right) .
$$

If $s=0, Z^{\prime}=0$. This estimate still holds.
Therefore, for $s \geq 0$,

$$
\begin{align*}
\alpha_{s+1} & +\left|\left(D^{k-1} \log D f^{q_{s+1}} \circ f^{m}\right)\left(D f^{m}\right)^{k-1}\right|_{0} \tag{56}\\
& \leq \alpha_{s+1}+\Delta_{s-1}^{\prime}+\hat{a}_{s+1} \Delta_{s}^{\prime}+\hat{a}_{s+1}\left(\Delta_{s}^{\prime}+\alpha_{s}\right) 5 C_{36} q_{s}^{-\epsilon} \\
\alpha_{s+1} & +\left|\left(D^{k-1} \log D f^{q_{s+1}} \circ f^{m}\right)\left(D f^{m}\right)^{k-1}\right|_{0} \\
& \leq \alpha_{s+1}-\hat{a}_{s+1} \alpha_{s}+\Delta_{s-1}^{\prime}+\hat{a}_{s+1}\left(\Delta_{s}^{\prime}+\alpha_{s}\right)\left(1+5 C_{36} q_{s}^{-\epsilon}\right) .
\end{align*}
$$

Moreover, we have: $\alpha_{s-1}=\hat{a}_{s+1} \alpha_{s}+\alpha_{s+1}$. Therefore, for $s \geq 1$, since $\alpha_{s+1}<\frac{1}{2} \alpha_{s-1}$, then

$$
\alpha_{s+1}-a_{s+1} \alpha_{s}=2 \alpha_{s+1}-\alpha_{s-1}<0 \leq \alpha_{s-1} .
$$

Therefore,

$$
\begin{aligned}
\alpha_{s+1}+\mid\left(D^{k-1} \log D f^{q_{s+1}}\right. & \left.\circ f^{m}\right)\left.\left(D f^{m}\right)^{k-1}\right|_{0} \\
& \leq \max _{t=s-1, s} \frac{\alpha_{t}+\Delta_{t}^{\prime}}{q_{t}}\left(q_{s-1}+\hat{a}_{s+1} q_{s}\right)\left(1+5 C_{36} q_{s}^{-\epsilon}\right)
\end{aligned}
$$

Since $q_{s-1}+\hat{a}_{s+1} q_{s}=q_{s+1}$, we get:
$\frac{\alpha_{s+1}+\left|\left(D^{k-1} \log D f^{q_{s+1}} \circ f^{m}\right)\left(D f^{m}\right)^{k-1}\right|_{0}}{q_{s+1}} \leq \max _{t=s-1, s} \frac{\alpha_{t}+\Delta_{t}^{\prime}}{q_{t}}\left(1+5 C_{36} q_{s}^{-\epsilon}\right)$.
If $s=0$, we have:

$$
\frac{\alpha_{1}+\Delta_{1}^{\prime}}{q_{1}} \leq \frac{\alpha_{0}+\Delta_{0}^{\prime}}{q_{0}}\left(1+5 C_{36}\right) .
$$

Let $\theta_{s}=\max _{0 \leq t \leq s} \frac{\alpha_{t}+\Delta_{t}^{\prime}}{q_{t}}$. The preceding estimates give:

$$
\theta_{s+1} \leq \theta_{s}\left(1+5 C_{36} q_{s}^{-\epsilon}\right)
$$

tome $142-2014-\mathrm{N}^{\mathrm{o}} 4$

Moreover,

$$
\left(\frac{\Delta_{0}^{\prime}+\alpha_{0}}{q_{0}}\right) \leq 1+M^{k-1}\left|D^{k-1} \log D f\right|_{0}
$$

Therefore, for any $s \geq 0$,

$$
\frac{\Delta_{s}}{q_{s}} \leq\left(1+M^{k-1}\left|D^{k-1} \log D f\right|_{0}\right) \prod_{s=0}^{+\infty}\left(1+5 C_{36} q_{s}^{-\epsilon}\right)
$$

To conclude, we apply the claim:
Claim 4.11. - Let $C_{20}^{f, k}$ be defined in Lemma 3.4. For any $k \geq 3$, we have:

$$
\left|D^{k-1} \log D f\right|_{0} \leq \tilde{C}_{20}\left(k,|S f|_{k-3}\right) \leq C_{20}^{f, k}
$$

Proof. - First, we recall the observation (see e.g., [14]) that if x_{0} is a point where $(D \log D f)^{2}$ is maximal, then we have:

$$
\begin{aligned}
|S f|_{0} \geq\left|S f\left(x_{0}\right)\right| & =\left|D^{2} \log D f\left(x_{0}\right)-\frac{1}{2}\left(D \log D f\left(x_{0}\right)\right)^{2}\right| \\
& =\left|\frac{1}{2}\left(D \log D f\left(x_{0}\right)\right)^{2}\right|=\left|\frac{1}{2}(D \log D f)^{2}\right|_{0} .
\end{aligned}
$$

To prove the claim, we proceed by induction on k, using the fact that $|D \log D f|_{0} \leq \sqrt{2|S f|_{0}}$ and by applying formula (70) in the appendix.
If $k=3$,

$$
\left|D^{2} \log D f\right|_{0} \leq|S f|_{0}+\frac{1}{2}\left|(D \log D f)^{2}\right|_{0} \leq 2|S f|_{0}
$$

Suppose the estimate holds for every $r \leq k-1$. By formula (70), we have:

$$
D^{k} \log D f=D^{k-2} S f-G_{k}\left(D \log D f, \ldots, D^{k-1} \log D f\right)
$$

As in the proof of Lemma 3.4 (see [3] for details), and by applying the induction assumption, we have:

$$
\left|G_{k}\left(D \log D f, \ldots, D^{k-1} \log D f\right)\right| \leq \frac{(2(k-1))!}{2 k}\left(\tilde{C}_{20}\left(k,|S f|_{k-3}\right)\right)^{k}
$$

We conclude as in the proof of Lemma 3.4.
With Proposition 4.10, and by using the Diophantine condition $q_{s+1} \leq$ $C_{d}^{-1} q_{s}^{1+\beta}$, we can generalize estimation (34) and Lemma 4.9, for $\gamma_{0}>0$. The generalization of estimation (34) is:

$$
\begin{equation*}
\left(\Delta_{s} q_{s+1}\right)^{1 /\left(k-\gamma_{0}\right)} q_{s}^{-1} \leq C_{34}\left(\gamma_{0}\right) q_{s}^{\frac{\beta+2}{k-\gamma_{0}}-1} \tag{57}
\end{equation*}
$$

with $C_{34}\left(\gamma_{0}\right)=C_{35}^{\frac{1}{k-\gamma_{0}}} C_{d}^{\frac{-1}{k-\gamma_{0}}}$.
The generalization of Lemma 4.9 is:

Lemma 4.12. - Let $\gamma \in[0, k-1]$. For $s \geq 0,0 \leq n \leq q_{s+1} / q_{s}$, we have:

$$
\left.\left\|\log D f^{n q_{s}}\right\|_{\gamma} \leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{\lfloor\gamma\rfloor} q_{s}^{-1}\left(q_{s+1} \Delta_{s}\right)^{\max \left(\frac{\gamma+1-\gamma_{0}}{k-\gamma_{0}}, 0\right.}\right) .
$$

Scheme of the proof. - We give the scheme of the proof in order to explain the additional α_{s} in the definition of Δ_{s} (this additional α_{s} makes necessary our modification of Yoccoz's proof of Proposition 4.10).

If $\gamma_{0}-1 \leq \gamma<1$, we proceed as in Lemma 4.9. If $\gamma \leq \gamma_{0}-1$ and $\gamma<1$, we apply Corollary 4.5 and Proposition 4.7. The induction step is analogous to the proof of Lemma 4.9, except the end: indeed, by proceeding as in Lemma 4.9, we have:

$$
\begin{aligned}
& A_{i, l} \leq C(k) M^{C(k)} C_{34}\left(\gamma_{0}\right)^{l} q_{s+1}^{-1} q_{s}^{-1}\left(\Delta_{s} q_{s+1}\right)^{\max \left(0, \frac{r-l+\gamma^{\prime}+1-\gamma_{0}}{k-\gamma_{0}}\right)+\max \left(0, \frac{l+1-\gamma_{0}}{k-\gamma_{0}}\right)} \\
& B_{i, l} \leq C(k) M^{C(k)} C_{34}\left(\gamma_{0}\right)^{l} q_{s+1}^{-1} q_{s}^{-1}\left(\Delta_{s} q_{s+1}\right)^{\max \left(0, \frac{r-l+1-\gamma_{0}}{k-\gamma_{0}}\right)+\max \left(0, \frac{l+\gamma^{\prime}+1-\gamma_{0}}{k-\gamma_{0}}\right)} \\
& C_{i, l} \leq C(k) M^{C(k)} C_{34}\left(\gamma_{0}\right)^{l} q_{s+1}^{-1} q_{s}^{-1}\left(\Delta_{s} q_{s+1}\right)^{\max \left(0, \frac{r-l+1-\gamma_{0}}{k-\gamma_{0}}\right)+\max \left(0, \frac{l+\gamma^{\prime}+1-\gamma_{0}}{k-\gamma_{0}}\right)} .
\end{aligned}
$$

We have:

$$
\begin{aligned}
& \max \left(\max \left(0, \frac{r-l+1-\gamma_{0}}{k-\gamma_{0}}\right)+\max \left(0, \frac{l+\gamma^{\prime}+1-\gamma_{0}}{k-\gamma_{0}}\right)\right. \\
& \max \left(0, \frac{r-l+\gamma^{\prime}+1-\gamma_{0}}{k-\gamma_{0}}\right)\left.+\max \left(0, \frac{l+1-\gamma_{0}}{k-\gamma_{0}}\right)\right) \\
& \leq \max \left(0, \frac{\gamma+1-\gamma_{0}}{k-\gamma_{0}}\right)+\frac{1}{k-\gamma_{0}} .
\end{aligned}
$$

Moreover, since $2 q_{s+1} \Delta_{s} \geq 2 q_{s+1} \alpha_{s} \geq 1$, then

$$
A_{i, l}+B_{i, l}+C_{i, l} \leq C(k) M^{C(k)} C_{34}\left(\gamma_{0}\right)^{l} q_{s+1}^{-1} q_{s}^{-1}\left(\Delta_{s} q_{s+1}\right)^{\max \left(0, \frac{\gamma+1-\gamma_{0}}{k-\gamma_{0}}\right)+\frac{1}{k-\gamma_{0}}} .
$$

This is why we define $\Delta_{s}=\left|D^{k-1} \log D f^{q_{s}}\right|_{0}+\alpha_{s}$: if we defined $\Delta_{s}=$ $\left|D^{k-1} \log D f^{q_{s}}\right|_{0}$ and if $\left|D^{k-1} \log D f^{q_{s}}\right|_{0}$ was too small, we could not do this last estimate.

By using estimation (57) and Lemma 4.12, we obtain, for $0 \leq n \leq\left(q_{s+1}\right) / q_{s}$, and $0 \leq \gamma \leq \gamma_{1}$ [14, p. 357]:

$$
\begin{equation*}
\left\|\log D f^{n q_{s}}\right\|_{\gamma} \leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{\lfloor\gamma\rfloor+1} q_{s}^{\rho\left(\gamma, \gamma_{0}\right)} \tag{58}
\end{equation*}
$$

with

$$
\rho\left(\gamma, \gamma_{0}\right)=\frac{(2+\beta) \max \left(0,\left(\gamma+1-\gamma_{0}\right)\right)}{k-\gamma_{0}}-1 .
$$

Notice that for any

$$
\begin{equation*}
\gamma_{1}<g\left(\gamma_{0}\right)=\frac{(1+\beta) \gamma_{0}+k-(2+\beta)}{2+\beta} \tag{59}
\end{equation*}
$$

we have $\rho\left(\gamma_{1}, \gamma_{0}\right)<0$ (we will take $\gamma_{1}=\frac{1}{2}\left(g\left(\gamma_{0}\right)+\gamma_{0}\right)$).

This implies $\sum_{s \geq 0} q_{s}^{\rho\left(\gamma_{1}, \gamma_{0}\right)}<+\infty$, which will allow estimating $\left\|\log D f^{N}\right\|_{\gamma_{1}}$, as we will see in the next subsection.

A remark on the method and notation: we establish estimate (58) for any $0 \leq \gamma \leq \gamma_{1}$ (and not just for γ_{1}) because we need it for the estimate of the quantity Z defined below.

4.3. Estimation of $\left\|\log D f^{N}\right\|_{\gamma_{1}}$

Proposition 4.13. - Let N be an integer and let us write $\gamma_{1}=r+\gamma_{1}^{\prime}$, with $0 \leq \gamma_{1}^{\prime}<1$ and r integer. We have:
(60) $\quad\left\|\log D f^{N}\right\|_{\gamma_{1}}$

$$
\leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{\left\lfloor\gamma_{1}\right\rfloor+1} \prod_{s=1}^{\infty}\left(1+\frac{C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{\left\lfloor\gamma_{1}\right\rfloor+1}}{q_{s}^{-\rho\left(\gamma_{1}, \gamma_{0}\right)}}\right)=C_{? ?} .
$$

Scheme of the proof. - We write $N=\sum_{s=0}^{S} b_{s} q_{s}$ with $0 \leq b_{s} \leq \frac{q_{s+1}}{q_{s}}$ and b_{s} integer. Let $N_{s}=\sum_{t=0}^{s} b_{t} q_{t}$ for $0 \leq s \leq S$. Moreover, let us write $\gamma_{1}=r+\gamma_{1}^{\prime}$, with $0 \leq \gamma_{1}^{\prime}<1$ and r integer. By formula (79) in Appendix 6, we can write $D^{r} \log D f^{N_{s}}=X+Y+Z$ with:

$$
\begin{aligned}
X & =\left(D^{r} \log D f^{b_{s} q_{s}} \circ f^{N_{s-1}}\right)\left(D f^{N_{s-1}}\right)^{r} \\
Y & =D^{r} \log D f^{N_{s-1}} \\
Z & =\sum_{l=1}^{r-1}\left(D^{r-l} \log D f^{b_{s} q_{s}} \circ f^{N_{s-1}}\right)\left(D f^{N_{s-1}}\right)^{r-l} G_{l}^{r} \\
G_{l}^{r} & =G_{l}^{r}\left(D \log D f^{N_{s-1}}, \ldots, D^{l} \log D f^{N_{s-1}}\right)
\end{aligned}
$$

We successively estimate X and Z. For X, we use estimate (50), Corollary 4.5 and Lemma 4.6 with $\phi=D^{r} \log D f^{b_{s} q_{s}}$ and $\psi=f^{N_{s-1}}$. We also use estimate (58), and the fact that $q_{s}^{\rho\left(r, \gamma_{0}\right)} \leq q_{s}^{\rho\left(\gamma_{1}, \gamma_{0}\right)}$. We get:

$$
\|X\|_{\gamma_{1}^{\prime}} \leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{r+1} q_{s}^{\rho\left(\gamma_{1}, \gamma_{0}\right)}\left(1+\left\|\log D f^{N_{s-1}}\right\|_{\gamma_{1}^{\prime}}\right) .
$$

We estimate Z. By applying estimation (9), we have:

$$
\begin{aligned}
&\|Z\|_{\gamma_{1}^{\prime}} \leq \sum_{l=1}^{r-1}\left|\left(D^{r-l} \log D f^{b_{s} q_{s}} \circ f^{N_{s-1}}\right)\left(D f^{N_{s-1}}\right)^{r-l}\right|_{0}\left|G_{l}^{r}\right|_{\gamma_{1}^{\prime}} \\
&+\left\|\left(D^{r-l} \log D f^{b_{s} q_{s}} \circ f^{N_{s-1}}\right)\left(D f^{N_{s-1}}\right)^{r-l}\right\|_{\gamma_{1}^{\prime}}\left|G_{l}^{r}\right|_{0}
\end{aligned}
$$

As with X, we have:

$$
\begin{aligned}
& \left\|\left(D^{r-l} \log D f^{b_{s} q_{s}} \circ f^{N_{s-1}}\right)\left(D f^{N_{s-1}}\right)^{r-l}\right\|_{\gamma_{1}^{\prime}} \\
& \quad \leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{r+1} q_{s}^{\rho\left(\gamma_{1}, \gamma_{0}\right)}\left(1+\left\|\log D f^{N_{s-1}}\right\|_{\gamma_{1}^{\prime}}\right)
\end{aligned}
$$

Moreover, by estimate (58), we also have:

$$
\begin{aligned}
\left|\left(D^{r-l} \log D f^{b_{s} q_{s}} \circ f^{N_{s-1}}\right)\left(D f^{N_{s-1}}\right)^{r-l}\right|_{0} & \leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{r+1} q_{s}^{\rho\left(r-l, \gamma_{0}\right)} \\
& \leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{\left\lfloor\gamma_{1}\right\rfloor+1} q_{s}^{\rho\left(\gamma_{1}, \gamma_{0}\right)} .
\end{aligned}
$$

For G_{l}^{r}, we use Lemma 4.4 with the polynomial $P=G_{l}^{r}$ (see Appendix 6). We estimate $\|Z\|_{\gamma_{1}^{\prime}}$ by applying estimation (46) twice. We get:

$$
\|Z\|_{\gamma_{1}^{\prime}} \leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{r+1} q_{s}^{\rho\left(\gamma_{1}, \gamma_{0}\right)}\left\|\log D f^{N_{s-1}}\right\|_{\gamma_{1}} .
$$

Therefore, since $\|Y\|_{\gamma_{1}^{\prime}}=\left\|D^{r} \log D f^{N_{s-1}}\right\|_{\gamma_{1}^{\prime}}$, we get, for $s \geq 1$:
$\left\|D^{r} \log D f^{N_{s}}\right\|_{\gamma_{1}^{\prime}} \leq\left\|\log D f^{N_{s}}\right\|_{\gamma_{1}}$

$$
\leq\left(1+\frac{C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{r+1}}{q_{s}^{-\rho\left(\gamma_{1}, \gamma_{0}\right)}}\right)\left\|D^{r} \log D f^{N_{s-1}}\right\|_{\gamma_{1}^{\prime}}
$$

Moreover, by estimate (58), since $N_{0}=b_{0}$, we also have:

$$
\left\|D^{r} \log D f^{N_{0}}\right\|_{\gamma_{1}^{\prime}} \leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{r+1}
$$

We conclude that:

$$
\begin{aligned}
\left\|\log D f^{N}\right\|_{\gamma_{1}} & \leq C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{r+1} \prod_{s=1}^{\infty}\left(1+\frac{C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{r+1}}{q_{s}^{-\rho\left(\gamma_{1}, \gamma_{0}\right)}}\right) \\
& =C_{37} .
\end{aligned}
$$

In order to complete the proof of Proposition 4.1, we need to estimate $C_{\text {?? }}$. This is done in the next paragraph.
4.3.1. Computation of the estimations: proof of Proposition 4.1.

Proof of Proposition 4.1. - We estimate $C_{\text {?? }}$. We have:
$C_{? ?} \leq \prod_{s=0}^{\infty}\left(1+\frac{C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{\gamma_{1}+1}}{q_{s}^{-\rho\left(\gamma_{1}, \gamma_{0}\right)}}\right) \leq \prod_{s=0}^{\infty}\left(1+\frac{C(k) M^{C(k)}\left(C_{34}\left(\gamma_{0}\right)\right)^{k}}{q_{s}^{-\rho\left(\gamma_{1}, \gamma_{0}\right)}}\right)$.
Moreover,

$$
\begin{aligned}
{\left[C_{34}\left(\gamma_{0}\right)\right]^{k-\gamma_{0}}=} & C_{d}^{-1} C_{35} \leq C(k) M^{C(k)} C_{d}^{-1} C_{20}^{f, k} \\
& \cdot \prod_{s=0}^{\infty}\left(1+\frac{C(k) M^{C(k)}\left(C_{34}(0)\right)^{k-1}}{q_{s}^{\epsilon}}\right) \\
{\left[C_{34}\left(\gamma_{0}\right)\right]^{k-\gamma_{0}} \leq } & \prod_{s=0}^{\infty}\left(1+\frac{C(k) M^{C(k)} C_{20}^{f, k} C_{d}^{-1}\left(C_{34}(0)\right)^{k-1}}{q_{s}^{\epsilon}}\right) \\
\left(C_{34}(0)\right)^{k-1} \leq & C(k) M^{C(k)} C_{d}^{-1} C_{20}^{f, k} .
\end{aligned}
$$

Therefore,

$$
C_{? ?} \leq \prod_{s=0}^{\infty}\left(1+q_{s}^{\rho\left(\gamma_{1}, \gamma_{0}\right)} \prod_{s=0}^{\infty}\left[1+\frac{C(k) M^{C(k)}\left(C_{20}^{f, k} C_{d}^{-1}\right)^{2}}{q_{s}^{\epsilon}}\right]^{\frac{k}{k-\gamma_{0}}}\right)
$$

Let

$$
\begin{equation*}
\tau_{1}=\frac{k}{\beta+2+\eta} \tag{61}
\end{equation*}
$$

let $C_{38}=C(k) M^{C(k)}\left(C_{20}^{f, k} C_{d}^{-1}\right)^{2}$. Let also

$$
\begin{equation*}
\epsilon_{1}=\min \left(\epsilon, \frac{\eta}{2(\beta+2+\eta)}\right) \tag{62}
\end{equation*}
$$

We have: $\epsilon_{1} \leq \min \left(\epsilon,-\rho\left(\gamma_{1}, \gamma_{0}\right)\right)$ and for any $\gamma_{0} \leq k-2-\beta-\eta$, we have $\tau_{1} \geq \frac{k}{k-\gamma_{0}}$.

We have:

$$
C_{? ?} \leq \prod_{s=0}^{\infty}\left(1+\frac{\prod_{s=0}^{\infty}\left(1+\frac{C_{38}}{q_{s}^{s 1}}\right)^{\tau_{1}}}{q_{s}^{\epsilon_{1}}}\right)
$$

Since $q_{s} \geq(\sqrt{2})^{s-1}$, we get:

$$
C_{? ?} \leq \prod_{s \geq 0}\left(1+\frac{\sqrt{2} \prod_{s \geq 0}\left(1+\frac{\sqrt{2} C_{38}}{2^{s \frac{c_{1}}{2}}}\right)^{\tau_{1}}}{2^{s \frac{\epsilon_{1}}{2}}}\right)
$$

In order to obtain the final estimation, we need the claim:
Claim 4.14. - Let $T \geq 10$. For any $2 \geq u>1$, we have:

$$
\prod_{n=0}^{\infty}\left(1+\frac{T}{u^{n}}\right) \leq e^{\frac{2^{2 / 3}}{\log u}(\log T)^{2}}
$$

Proof. - For $T \geq 10$.

$$
\begin{aligned}
\sum_{n \geq 0} \log \left(1+T / u^{n}\right) & =\sum_{n \leq \frac{\log T}{\log u}-1} \log \left(1+T / u^{n}\right)+\sum_{n>\frac{\log T}{\log u}-1} \log \left(1+T / u^{n}\right) \\
& \leq \frac{\log T}{\log u} \log (1+T)+\sum_{n>\frac{\log T}{\log u}-1} T / u^{n} \leq \frac{\log T}{\log u}(\log (1+T)+1) \\
& \leq \frac{2^{2 / 3}}{\log u}(\log T)^{2}
\end{aligned}
$$

By applying this proposition twice, we get the claim:
bulletin de la société mathématique de france

Claim 4.15. - Let $T \geq 10,2 \geq u>1, \tau \geq 1$. We have:

$$
\prod_{n \geq 0}\left(1+\frac{\prod_{n \geq 0}\left(1+\frac{T}{u^{n}}\right)^{\tau}}{u^{n}}\right) \leq e \wedge\left(\frac{C \tau^{2}}{(\log u)^{3}}(\log T)^{4}\right) .
$$

Let $C_{39}=\sqrt{2} C_{38}$. We apply claim 4.15 with $T=C_{39}, u=2^{\frac{\epsilon_{1}}{2}}, \tau=\tau_{1}$. We obtain:

$$
\begin{equation*}
C_{? ?} \leq e \wedge\left(\frac{C \tau_{1}^{2}}{\epsilon_{1}^{3}}\left(\log C_{39}\right)^{4}\right) . \tag{63}
\end{equation*}
$$

Moreover, let

$$
\begin{equation*}
C_{40}=\frac{C \tau_{1}^{2}}{\epsilon_{1}^{3}} . \tag{64}
\end{equation*}
$$

By using the definitions of ϵ_{1} (see (62)) and τ_{1} (see (61)), since $\epsilon=\frac{k-(1+2 \beta)}{2 k}$ and since $\eta \leq k-2-\beta$, we have:

$$
\begin{align*}
C_{40} & \leq C \frac{k^{2}}{\left(\min \left(\frac{k-(2 \beta+1)}{2 k}, \frac{\eta}{2(\beta+2+\eta)}\right)\right)^{3}} \\
& \leq C \frac{k^{5}}{(\min (k-(2 \beta+1), k-(\beta+2)))^{3}}=C_{41}(k, \beta) . \tag{65}
\end{align*}
$$

Therefore, we get:
$\left\|\log D f^{N}\right\|_{\gamma_{1}} \leq e \wedge\left(C_{65}(k, \beta)\left(\log \left(C_{d}^{-1}\right)+C_{42}^{f, k}+C(k)\left(1+\sup _{p \geq 0}\left\|\log D f^{p}\right\|_{\gamma_{0}}\right)\right)^{4}\right)$
with

$$
C_{42}^{f, k}=W(f)+\log \left(\max \left(1,|S f|_{k-3}\right)\right)
$$

Hence Proposition 4.1.
4.3.2. Proof of Theorem 1.6: estimation (6). - By Corollary 4.5, we have:

$$
\left\|D f^{N}\right\|_{\frac{k}{2(\beta+2)}-\frac{1}{2}} \leq C(k) M^{C(k)}\left(1+\left\|\log D f^{N}\right\|_{\left.\frac{k}{2(\beta+2)}-\frac{1}{2}\right)} .\right.
$$

Moreover, $\|D h\|_{\frac{k}{2(\beta+2)}-\frac{1}{2}} \leq \sup _{N \geq 0}\left\|D f^{N}\right\|_{\frac{k}{2(\beta+2)}-\frac{1}{2}}$. We get:

$$
\begin{equation*}
\|D h\|_{\frac{k}{2(\beta+2)}-\frac{1}{2}} \leq e \wedge\left(C_{65}(k, \beta)\left(\log \left(C_{d}^{-1}\right)+C_{42}^{f, k}+C(k)\left(1+\log M^{\prime}\right)\right)^{4}\right) . \tag{67}
\end{equation*}
$$

Proof of estimation (6). - We suppose $k \geq 3 \beta+9 / 2$. Let:

$$
\begin{aligned}
& C_{43}\left(\beta, C_{d},|D f|_{0}, W(f),|S f|_{0},|S f|_{k-3}\right)= \\
& e^{(3)} \wedge\left(C_{2}(\beta) C_{2}\left(C_{d}\right) C_{2}\left(|D f|_{0}, W(f),|S f|_{0}\right) C_{2}\left(|S f|_{k-3}\right)\right)
\end{aligned}
$$

i.e., we consider the bound given by estimation (2), except that we replace $|S f|_{\lceil 3 \beta+3 / 2\rceil}$ with $|S f|_{k-3}$.
$C_{20}^{f, k}$ depends on $k,|S f|_{k-3}$ and $W(f)$. We have:
$\log C_{20}\left(k,|S f|_{k-3}, W(f)\right) \leq C(k) \log C_{20}\left(3 \beta+9 / 2,|S f|_{k-3}, W(f)\right) \leq C(k) \log C_{? ?}$.
Since $M^{\prime} \leq C_{? ?}$, we get:

$$
\|D h\|_{\frac{k}{2(\beta+2)}-\frac{1}{2}} \leq e \wedge\left(C(k)\left(\log C_{? ?}\right)^{4}\right) .
$$

Since $2 \geq 2 \log 2$, we conclude:

$$
\begin{aligned}
\|D h\|_{\frac{k}{2(\beta+2)}-\frac{1}{2}} & \leq e \wedge\left(C(k) e^{(2)}\right. \\
& \left.\wedge\left(2+C_{2}(\beta) C_{2}\left(C_{d}\right) C_{2}\left(|D f|_{0}, W(f),|S f|_{0}\right) C_{2}\left(|S f|_{k-3}\right)\right)\right)
\end{aligned}
$$

Proof of estimation (7). - If $\beta=0$, we can use the C^{1} estimate. We have:
$\log M^{\prime} \leq C_{1.2} / C_{d}$ and therefore, by using estimation (67), we obtain:

$$
\|D h\|_{\frac{k}{4}-\frac{1}{2}} \leq e \wedge\left(C[k]\left[C_{7}\left[W(f),|S f|_{k-3}\right]+\frac{C_{1.2}\left[W(f),|S f|_{0}\right]}{C_{d}}\right]^{4}\right)
$$

with:

$$
C_{7}\left[W(f),|S f|_{k-3}\right]=\log \left(\max \left(1,|S f|_{k-3}\right)\right)+W(f) .
$$

4.4. Iteration of the reasoning: proof of estimation (5) of Theorem 1.6. - To obtain an estimation of the $C^{k-1-\beta-\eta}$-norm of the conjugacy, we iterate estimation (45). We take $\gamma_{0}=\gamma_{i}$ and $\gamma_{1}=\gamma_{i+1}=\frac{1}{2}\left(g\left(\gamma_{i}\right)+\gamma_{i}\right)$. Thus, $\gamma_{i+1}<g\left(\gamma_{i}\right)$ and
$\lim _{i \rightarrow+\infty} \gamma_{i}=k-2-\beta$. We need to estimate the rank above which $\gamma_{i} \geq$ $k-2-\beta-\eta$:

CLAIM 4.16. - Let $C_{44}=\frac{\beta+3 / 2}{\beta+2}, C_{45}=\frac{k-2-\beta}{2(\beta+2)}$. If

$$
n \geq \log \left(\frac{C_{45}}{\eta\left(1-C_{44}\right)}\right) / \log \left(\frac{1}{C_{44}}\right)=C_{46}
$$

we have $\gamma_{n} \geq k-2-\beta-\eta$.
Proof. - We have: $\gamma_{n+1}=C_{44} \gamma_{n}+C_{45}$. Therefore, $\gamma_{n}=C_{45} \frac{1-C_{44}^{n}}{1-C_{44}}$. Therefore, $\left|\gamma_{n}-(k-2-\beta)\right|=\left|C_{45} \frac{C_{44}^{n}}{1-C_{44}}\right| \leq \eta$ if $n \geq C_{46}$.

By induction on n, we can also show the claim (see [3] for details):

Claim 4.17. - Let $F(x)=e^{c(a+b x)^{4}}$. For any $x, c \geq 1, a, b \geq 4$, and integer $n \geq 1$, we have:

$$
F^{n}(x) \leq e^{(n)} \wedge\left((3+n) c(a+b x)^{4}\right)
$$

We apply Proposition 4.1. In claim 4.17, we take $x=\log M^{\prime}, a=C_{42}^{f, k}+$ $\log \left(C_{d}^{-1}\right), b=C(k)$ (we have $\left.C(k) \geq 4\right), c=C_{65}(k, \beta)$. Let n_{7} be the integer such that: $C_{46}+1>n_{7} \geq C_{46}$. We have:

```
\(\left\|\log D f^{N}\right\|_{k-2-\beta-\eta}\)
    \(\leq e^{\left(n_{7}\right)} \wedge\left(\left(3+n_{7}\right) C_{65}(k, \beta)\left(C_{42}^{f, k}+\log \left(C_{d}^{-1}\right)+C(k) \log M^{\prime}\right)^{4}\right)\).
```

Moreover, by Corollary 4.5, we have:

$$
\left\|D f^{N}\right\|_{k-2-\beta-\eta} \leq C(k) M^{C(k)}\left(1+\left\|\log D f^{N}\right\|_{k-2-\beta-\eta}\right) .
$$

Since $\|D h\|_{k-2-\beta-\eta} \leq\left\|D f^{N}\right\|_{k-2-\beta-\eta}$, we get:
$|D h|_{k-2-\beta-\eta} \leq e^{\left(n_{7}\right)} \wedge\left(\left(4+n_{7}\right) C_{65}(k, \beta)\left[C_{42}^{f, k}+\log \left(C_{d}^{-1}\right)+C(k) \log M^{\prime}\right]^{4}\right)$.
Since $M^{\prime} \leq C_{2}$, we let:

$$
\begin{aligned}
C_{5}\left[\eta, k, \beta, C_{d},|D f|_{0},\right. & \left.W(f),|S f|_{k-3}\right] \\
& =\left(4+n_{7}\right) C_{65}[k, \beta]\left[C_{42}^{f, k}+\log \left(C_{d}^{-1}\right)+C[k] \log C_{2}\right]^{4}
\end{aligned}
$$

We recall that:

$$
\begin{aligned}
n_{7} & =\left\lceil\frac{\log ((k-2-\beta) / \eta)}{\log (1+1 /(2 \beta+3))}\right\rceil \\
C_{65}[k, \beta] & =C \frac{k^{5}}{(\min (k-(2 \beta+1), k-(\beta+2)))^{3}} \\
C_{42}\left[W(f),|S f|_{k-3}\right] & =W(f)+\log \left(\max \left(1,|S f|_{k-3}\right)\right) .
\end{aligned}
$$

We have:

$$
\begin{align*}
&\|D h\|_{k-2-\beta-\eta} \leq e^{(\lceil\log ((k-2-\beta) / \eta) / \log (1+1 /(2 \beta+3))\rceil)} \tag{68}\\
& \wedge\left(C_{5}\left[\eta, k, \beta, C_{d},|D f|_{0}, W(f),|S f|_{k-3}\right]\right)
\end{align*}
$$

5. Appendix: proof of Lemma 3.4

We follow [14] but we give more details. Let $p \leq q_{n+1}$. The case $r=1$ stems from Lemma 3.3. For the case $r=2$, we also use Lemma 3.3:

$$
\left|D^{2} \log D f^{p}(x)\right| \leq\left|S f^{p}(x)\right|+\frac{1}{2}\left|D \log D f^{p}(x)\right|^{2} \leq\left(C_{16}^{f}+\frac{1}{2}\left(C_{17}^{f}\right)^{2}\right) \frac{M_{n}}{m_{n}(x)^{2}}
$$

In particular, we can take

$$
C_{20}^{f}(2)=82|S f|_{0} e^{8 W(f)}
$$

For $r>2$, we prove Lemma 3.4 by induction. Suppose the lemma is proved up to $r \geq 2$. Since for any C^{3}-diffeomorphisms g and h,

$$
S(g \circ h)=(S g \circ h)(D h)^{2}+S h
$$

then for $p \geq 1$,

$$
S f^{p}=\sum_{i=0}^{p-1}\left(S f \circ f^{i}\right)\left(D f^{i}\right)^{2}
$$

and by differentiating this last equality, we get, for $r \geq 0, n \geq 1$,

$$
\begin{equation*}
D^{r} S f^{p}=\sum_{l=0}^{r} \sum_{i=0}^{p-1}\left(D^{r-l} S f \circ f^{i}\right)\left(D f^{i}\right)^{r-l+2} F_{l}^{r}\left(D \log D f^{i}, \ldots, D^{l} \log D f^{i}\right) \tag{69}
\end{equation*}
$$

where F_{l}^{r} is a polynomial in l variables X_{1}, \ldots, X_{l}, homogenous of weight l if X_{i} is given the weight i. Moreover, since $S f=D^{2} \log D f-\frac{1}{2}(D \log D f)^{2}$, then for $r \geq 2$,

$$
\begin{equation*}
D^{r-2} S f=D^{r} \log D f+G_{r}\left(D \log D f, \ldots, D^{r-1} \log D f\right) \tag{70}
\end{equation*}
$$

where G_{r} is a polynomial in $r-1$ variables X_{1}, \ldots, X_{r-1}, homogeneous of weight r if X_{i} is given the weight i. Therefore, in order to estimate $\left|D^{r} \log D f\right|_{0}$, it suffices to estimate $F_{l}^{r}\left(D \log D f^{i}, \ldots, D^{l} \log D f^{i}\right)$ and $G_{r}\left(D \log D f, \ldots, D^{r-1} \log D f\right)$. These estimations are given by Lemmas 5.1 and 5.2. They are used in [14] but we recall them here in order to compute the constants $C_{47}^{f}(r)$ in Lemma 5.1 and $C_{48}^{f}(r)$ in Lemma 5.2.

Lemma 5.1. - Under the induction assumption, for $0 \leq l \leq r$ and $0 \leq p \leq$ q_{n+1}, we have:

$$
\left|F_{l}^{r}\left(D \log D f^{p}(x), \ldots, D^{l} \log D f^{p}(x)\right)\right| \leq C_{47}^{f}(r)\left[\frac{M_{n}^{1 / 2}}{m_{n}(x)}\right]^{l}
$$

with:

$$
C_{47}^{f}(r)=(r)!\frac{(2 r)!}{2}\left(C_{20}^{f}(r)\right)^{r}
$$

Proof. - We follow [14]. By derivating equation (69), we get:

$$
\begin{align*}
D^{r+1} S f^{p} & =\sum_{i=0}^{n-1} \sum_{l=0}^{r}\left(D^{r+1-l} S f \circ f^{i}\right)\left(D f^{i}\right)^{r+1-l+2} F_{l}^{r}\left(D \log D f^{i}, \ldots, D^{l} \log D f^{i}\right) \tag{71}\\
& +\left(D^{r-l} S f \circ f^{i}\right)\left(D f^{i}\right)^{r-l+2}(r-l+2) D \log D f^{i} \\
& \cdot F_{l}^{r}\left(D \log D f^{i}, \ldots, D^{l} \log D f^{i}\right) \\
& +\sum_{j=1}^{l} \frac{\partial F_{l}^{r}}{\partial X_{j}}\left(D \log D f^{i}, \ldots, D^{l} \log D f^{i}\right) D^{j+1} \log D f^{i}\left(D f^{i}\right)^{r-l+2} \tag{73}
\end{align*}
$$

$D^{r+1} S f^{p}=\sum_{i=0}^{p-1} \sum_{l=0}^{r}\left(D^{r+1-l} S f \circ f^{i}\right)\left(D f^{i}\right)^{r+1-l+2} F_{l}^{r}\left(D \log D f^{i}, \ldots, D^{l} \log D f^{i}\right)$

$$
\begin{align*}
& +\sum_{l=1}^{r+1}\left(D^{r+1-l} S f \circ f^{i}\right)\left(D f^{i}\right)^{r-l+3}(r-l+3) D \log D f^{i} \tag{74}\\
& +F_{l-1}^{r}\left(D \log D f^{i}, \ldots, D^{l-1} \log D f^{i}\right) \\
& +\sum_{l=1}^{r+1} \sum_{j=2}^{l} \frac{\partial F_{l-1}^{r}}{\partial X_{j-1}}\left(D \log D f^{i}, \ldots, D^{l-1} \log D f^{i}\right) D^{j} \log D f^{i}\left(D f^{i}\right)^{r+1-l+2} .
\end{align*}
$$

Therefore, for $1 \leq l \leq r$,

$$
\begin{equation*}
F_{l}^{r+1}=F_{l}^{r}+(r-l+3) X_{1} F_{l-1}^{r}+\sum_{j=2}^{l} X_{j} \frac{\partial F_{l-1}^{r}}{\partial X_{j-1}} \tag{75}
\end{equation*}
$$

for $l=0$,

$$
F_{l}^{r+1}=F_{l}^{r}
$$

and for $l=r+1$,

$$
F_{l}^{r+1}=(r-l+3) X_{1} F_{l-1}^{r}+\sum_{j=2}^{l} X_{j} \frac{\partial F_{l-1}^{r}}{\partial X_{j-1}} .
$$

Now, let us write

$$
F_{l}^{r}=\sum_{i_{1}+2 i_{2}+\cdots+l i_{l}=l} a_{l, r}\left(i_{1}, \ldots, i_{l}\right) X_{1}^{i_{1}} \cdots X_{l}^{i_{l}} .
$$

We have $a_{l, r}\left(i_{1}, \ldots, i_{l}\right) \geq 0$. Let

$$
a_{l, r}=\max _{i_{1}+2 i_{2}+\cdots+l i_{l}=l} a_{l, r}\left(i_{1}, \ldots, i_{l}\right)
$$

and

$$
\bar{a}_{r}=\max _{0 \leq j \leq r} a_{j, r} .
$$

Consider i_{1}, \ldots, i_{l} such that $a_{l, r}\left(i_{1}, \ldots, i_{l}\right)=a_{l, r}$. By applying equation (75), we have, for $1 \leq l \leq r$:

$$
\begin{aligned}
a_{l, r+1} \leq a_{l, r}+(r+3-l) a_{l-1, r}+ & (l-1)\left(\max i_{j}\right) a_{l-1, r} \\
& \leq\left(r+3-l+l^{2}-l\right) \bar{a}_{l, r} \leq(r+1)^{2} \bar{a}_{l, r}
\end{aligned}
$$

For $l=0$ or $r+1$, this estimate still holds. Therefore, $\bar{a}_{r+1} \leq(r+1)^{2} \bar{a}_{r}$ and by iteration, we obtain:

$$
\bar{a}_{r} \leq(r!)^{2}
$$

Moreover, since
$F_{l}^{r}\left(D \log D f^{i}, \ldots, D^{l} \log D f^{i}\right)$

$$
=\sum_{i_{1}+2 i_{2}+\cdots+l i_{l}=l} a_{l, r}\left(i_{1}, \ldots, i_{l}\right)\left(D \log D f^{i}\right)^{i_{1}} \cdots\left(D^{l} \log D f^{i}\right)^{i_{l}}
$$

and since $\#\left\{\left(i_{1}, \ldots, i_{l}\right) / i_{1}+2 i_{2}+\cdots+l i_{l}=l\right\} \leq \#\left\{\left(i_{1}, \ldots, i_{l}\right) / i_{1}+i_{2}+\cdots+i_{l}=\right.$ $l\}=\frac{(2 l-1)!}{l!(l-1)!}$ (this classical equality can be shown by induction) then by applying the induction assumption,

$$
\begin{aligned}
& \left|F_{l}^{r}\left(D \log D f^{i}(x), \ldots, D^{l} \log D f^{i}(x)\right)\right| \\
& \quad \leq(r!)^{2} \frac{(2 l-1)!}{l!(l-1)!} \max _{i_{1}+2 i_{2}+\cdots+l i_{l}=l}\left(C_{20}^{f}(1)\right)^{i_{1}} \cdots\left(C_{20}^{f}(l)\right)^{i_{l} l}\left[\frac{M_{n}^{1 / 2}}{m_{n}(x)}\right]^{l}
\end{aligned}
$$

and since the $C_{20}^{f}(i)$ are increasing with i, we obtain:

$$
\left|F_{l}^{r}\left(D \log D f^{i}(x), \ldots, D^{l} \log D f^{i}(x)\right)\right| \leq C_{47}^{f}(r)\left[\frac{M_{n}^{1 / 2}}{m_{n}(x)}\right]^{l}
$$

Likewise, the estimation of $G_{r}\left(D \log D f^{p}, \ldots, D^{l-1} \log D f^{p}\right)$ is given by the lemma:

Lemma 5.2. - For any $x \in \mathbb{R}, 0 \leq p \leq q_{n+1}, r \geq 2$,

$$
\left|G_{r}\left(D \log D f^{p}(x), \ldots, D^{l-1} \log D f^{p}(x)\right)\right| \leq C_{48}^{f}(r)\left[\frac{M_{n}^{1 / 2}}{m_{n}(x)}\right]^{r}
$$

with $C_{48}^{f}(r+1)=\frac{(2 r)!}{2(r+1)}\left(C_{20}^{f}(r)\right)^{r+1}$

Proof. - The polynomial G_{r} satisfies the following identity:

$$
G_{r+1}=\sum_{j=2}^{r} X_{j} \frac{\partial G_{r}}{\partial X_{j-1}}
$$

We denote

$$
G_{r}=\sum_{i_{1}+2 i_{2}+\cdots+(r-1) i_{r-1}=r} b_{r}\left(i_{1}, \ldots, i_{r-1}\right) X_{1}^{i_{1}} \cdots X_{r-1}^{i_{r-1}}
$$

(we have, for example, $G_{2}=-\frac{1}{2} X_{1}^{2}$).
Let

$$
b_{r}=\max _{i_{1}+2 i_{2}+\cdots+(r-1) i_{r-1}=r}\left|b_{r}\left(i_{1}, \ldots, i_{r-1}\right)\right| .
$$

For $r \geq 2$, we have $b_{r+1} \leq r\left(\max _{1 \leq j \leq r-1} i_{j}\right) b_{r} \leq r^{2} b_{r}$ and therefore, $b_{r} \leq$ $\frac{(r-1)!^{2}}{2}$.

Therefore,

$$
\begin{aligned}
& \left|G_{r+1}\left(D \log D f^{p}(x), \ldots, D^{r} \log D f^{p}(x)\right)\right| \\
& \quad \leq \frac{r!}{2} \frac{(2 r)!}{r!(r+1)!} \max _{i_{1}+2 i_{2}+\cdots+r i_{r}=r+1}\left(C_{20}^{f}(1)\right)^{i_{1}} \cdots\left(C_{20}^{f}(r)\right)^{i_{r}}\left[\frac{M_{n}^{1 / 2}}{m_{n}(x)}\right]^{r+1} .
\end{aligned}
$$

Since the constants $C_{20}^{f}(r)$ are increasing with r, we can take:

$$
C_{48}^{f}(r+1)=\frac{(2 r)!}{2(r+1)}\left(C_{20}^{f}(r)\right)^{r+1}
$$

We can now show estimation (20). By applying equation (70), we have, for $r \geq 2$:

$$
D^{r+1} \log D f^{p}=D^{r-1} S f^{p}-G_{r+1}\left(D \log D f^{p}, \ldots, D^{r} \log D f^{p}\right)
$$

Therefore, by equation (69) and Lemma 3.1,

$$
\begin{aligned}
& \left|D^{r+1} \log D f^{p}(x)\right| \leq\left(r C_{47}^{f}(r)|S f|_{r-1} e^{(r+1) W(f)}+C_{48}^{f}(r+1)\right)\left(\frac{M_{n}^{1 / 2}}{m_{n}(x)}\right)^{r+1} \\
& \left|D^{r+1} \log D f^{p}(x)\right| \leq\left(C_{20}^{f}(r)\right)^{r} \frac{(2 r)!}{2}\left(|S f|_{r-1} e^{(r+1) W(f)}+C_{20}^{f}(r)\right)\left(\frac{M_{n}^{1 / 2}}{m_{n}(x)}\right)^{r+1} .
\end{aligned}
$$

We can show by induction on r that we can take, for $r \geq 3$,

$$
C_{20}^{f}(r)=\left[C_{20}^{f}(2)(2 r)^{2 r}\left(\max \left(1,|S f|_{r-2}\right)\right) e^{r W(f)}\right]^{r!}
$$

6. Appendix: some polynomials

Lemma 4.4 is used for some specific polynomials. There exist $A_{l}, B_{l}, G_{l}, G_{l}^{r}$, E_{l}^{r}, polynomials of l variables X_{1}, \ldots, X_{l} homogeneous of weight l if X_{i} has weight i, such that, for $l \geq 1$, and for any diffeomorphisms g and h sufficiently differentiable, we have [14, p. 337-338]:

$$
\begin{align*}
D^{l+1} g & =A_{l}\left(D \log D g, \ldots, D^{l} \log D g\right) D g \tag{76}\\
D^{l} \log D g & =B_{l}\left(\frac{D^{2} g}{D g}, \ldots, \frac{D^{l+1} g}{D g}\right) \tag{77}\\
D^{l-2} S f & =D^{l} \log D f+G_{l}\left(D \log D f, \ldots, D^{l-1} \log D f\right) . \tag{78}
\end{align*}
$$

For $r \geq 0$,

$$
\begin{align*}
& D^{r} \log D(g \circ h)=\left(D^{r} \log D g \circ h\right)(D h)^{r}+D^{r} \log D h \tag{79}\\
& \quad+\sum_{l=1}^{r-1} D^{r-l} \log D g \circ h(D h)^{r-l} G_{l}^{r}\left(D \log D h, \ldots, D^{l} \log D h\right) .
\end{align*}
$$

For $r \geq 0$ and $n \geq 1$,
$D^{r} \log D g^{n}=\sum_{l=0}^{r-1} \sum_{i=0}^{n-1}\left(D^{r-l} \log D g \circ g^{i}\right)\left(D g^{i}\right)^{r-l} E_{l}^{r}\left(D \log D g^{i}, \ldots, D^{l} \log D g^{i}\right)$.

BIBLIOGRAPHY

[1] V. Arnol'd - "Small denominators I: Mappings of the circumference into itself", American Mathematical Society Translations 46 (1965), p. 213-284.
[2] M. Benhenda - "Circle Diffeomorphisms: Quasi-reducibility and Commuting Diffeomorphisms", Nonlinearity 25 (2012), p. 1981-1996.
[3] M. Benhenda - "Estimates of the conjugacy to rotations of circle diffeomorphisms. successives conjugacies and smooth realizations", thèse de doctorat, Université Paris 13, 2012.
[4] B. Fayad \& K. Khanin - "Smooth linearization of commuting circle diffeomorphisms", Annals of Mathematics 170 (2009), p. 961-980.
[5] M. Herman - "Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations", Publications Mathématiques de L'IHÉS 49 (1979), p. 5-233.
[6] A. Katok \& B. Hasselblatt - Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge Univ. Press, 1996.
[7] Y. Katznelson \& D. Ornstein - "The absolute continuity of the conjugation of certain diffeomorphisms of the circle", Ergodic Theory Dynam. Systems 9 (1989), p. 681-690.
[8] \qquad , "The differentiability of the conjugation of certain diffeomorphisms of the circle", Ergodic Theory Dynam. Systems 9 (1989), p. 643680.
[9] K. Khanin \& Y. Sinai - "A new proof of M. Herman's theorem", Communications in Mathematical Physics 112 (1987), p. 89-101.
[10] K. Khanin \& A. Teplinsky - "Herman's theory revisited", Inventiones Mathematicae 178 (2009), p. 333-344.
[11] R. De la Llave - "A tutorial on KAM theory", in Smooth Ergodic Theory and Its Applications: Proceedings of the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications, July 26-August 13, 1999, University of Washington, Seattle, vol. 69, 1999, p. 175.
[12] J. MOSER - "A rapidly convergent iteration method and non-linear partial differential equations. I", Ann. Scuola Norm. Sup. Pisa 20 (1966), p. 265315.
[13] Y. Sinai \& K. Khanin - "Smoothness of conjugacies of diffeomorphisms of the circle with rotations", Russian Mathematical Surveys 44 (1989), p. 69-99.
[14] J. Yoccoz - "Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne", Annales scientifiques de l'École Normale Supérieure Sér. 417 (1984), p. 333-359.
[15] _ , "Analytic linearization of circle diffeomorphisms", in Dynamical systems and small divisors, Lecture Notes in Math., vol. 1784, Springer, 2002, p. 125-173.

[^0]: Texte reçu le 12 janvier 2012, révisé le 13 octobre 2012 et le $1^{\text {er }}$ juillet 2013, accepté le 2 septembre 2013.
 Mostapha Benhenda, Laboratoire d'Analyse, Geometrie et Applications, Paris 13 University, 99 Avenue J.B. Clement, 93430 Villetaneuse, France • E-mail : mostaphabenhenda@gmail.com
 2010 Mathematics Subject Classification. - 37C05.
 Key words and phrases. - Circle diffeomorphisms, rotation number, conjugacy, estimates.

[^1]: tOME $142-2014-\mathrm{N}^{\circ} 4$

