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Abstract. — We generalize the analysis of [14] and develop a singular pseudodif-
ferential calculus. The symbols that we consider do not satisfy the standard decay
with respect to the frequency variables. While in [14], the remainders in the symbolic
calculus were seen to be merely bounded operators on L2, whose norm was measured
with respect to some small parameter, we show here a smoothing property for the
remainders. Due to a nonstandard decay in the frequency variables, the smoothing
effect takes place in a scale of anisotropic, and singular, Sobolev spaces. Our analysis
allows to extend the results of [14] on the existence of highly oscillatory solutions to
nonlinear hyperbolic problems by dropping the compact support condition on the data.
The results are also used in our companion works [7, 9] to justify nonlinear geometric
optics with boundary amplification, which corresponds to a more singular regime than
the one considered in [14]. The analysis is carried out with either an additional real
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720 J.-F. COULOMBEL, O. GUÈS & M. WILLIAMS

or periodic variable in order to cover problems for pulses or wavetrains in nonlinear
geometric optics.

Résumé (Calcul pseudodifférentiel singulier pour les trains d’ondes et les pulses)
Nous généralisons l’analyse de [14] et construisons un calcul pseudodifférentiel sin-

gulier pour des symboles ne vérifiant pas les hypothèses classiques de décroissance fré-
quentielle. Les résultats de [14] montraient que les restes du calcul symbolique étaient
des opérateurs bornés sur L2, dont la norme d’opérateur était contrôlée par rapport à
un petit paramètre. Nous démontrons ici un effet régularisant pour ces restes dans une
échelle d’espaces de Sobolev anisotropes. Notre analyse permet d’étendre les résultats
de [14] sur l’existence de solutions hautement oscillantes de problèmes hyperboliques
non-linéaires en s’affranchissant de l’hypothèse de support compact des données. Nos
résultats sont aussi utilisés dans les articles compagnons [7, 9] pour justifier un régime
d’optique géométrique non-linéaire avec amplification sur le bord. L’analyse est menée
ici avec une variable rapide réelle ou bien périodique de manière à traiter des problèmes
d’optique géométrique pour des pulses ou des trains d’ondes.

1. Introduction

Nonlinear geometric optics is devoted to the construction and the analy-
sis of highly oscillatory solutions to some partial differential equations. In the
context of hyperbolic partial differential equations, one of the main issues is
to prove existence of a solution to the highly oscillatory problem on a time
interval that is independent of the (small) wavelength. Such uniform existence
results cannot follow from a naive application of a standard existence result in
some functional space, say a Sobolev space Hs, because the sequence of initial
and/or boundary data does not remain in a fixed ball of Hs. A now classical
procedure for proving uniform existence results is to work on singular problems
with additional variables and to prove uniform energy estimates with respect
to the singular parameter. This strategy was used in [12] for the hyperbolic
Cauchy problem and adapted in [14] to hyperbolic initial boundary value prob-
lems. Energy estimates in [14] are much more difficult to obtain than in [12]
and are proved by using a singular pseudodifferential calculus(1). The operators
are pseudodifferential in the singular derivative ∂x+β ∂θ

ε . The calculus of [14] is
adapted to boundary value problems that satisfy a maximal energy estimate,
that is an L2 estimate with no loss derivative. In particular, remainders are
bounded operators on L2 whose norm is controlled with respect to some pa-
rameter γ. This parameter arises from a Laplace transform with respect to the

(1) The calculus is used partly to diagonalize the equations microlocally, and perform energy
estimates on each coordinate. As detailed in the introduction of [14], symmetry arguments
as in [12] are usually of no help in the study of boundary value problems.
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SINGULAR PSEUDODIFFERENTIAL CALCULUS FOR WAVETRAINS 721

time variable. Such terms of order 0 can be absorbed in the energy estimates
by choosing γ large enough.

In [6], two of the authors have studied and justified geometric optics expan-
sions with an amplification phenomenon for a certain class of linear hyperbolic
boundary value problems. For linear problems, uniform existence is no source
for concern. In the companion article [7], we extend the result of [6] to semi-
linear problems in the weakly nonlinear regime. Namely, we study solutions to
the following boundary value problems(

∂t +
d∑
j=1

Aj ∂j

)
vε +D(ε vε) vε = 0 in {xd > 0},

B(ε vε) vε = εG

Å
x′,

x′ · β
ε

ã
on {xd = 0},

where the source term G and the solution vε vanish for t < 0. One major
issue in [7] is to prove that the amplification phenomenon exhibited in [6]
combined with the nonlinearity of the zero order term D(ε vε) vε does not rule
out existence of a solution on a fixed time interval. Our strategy in [7] is to
study a singular problem for which we need to prove uniform estimates. As in
[6], the linearized problems in [7] satisfy a weak energy estimate with a loss
of one tangential derivative.(2) Such estimates with a loss of derivative were
originally proved in [5] and are optimal, as shown in [6]. The amplification of
oscillations is more or less equivalent to the loss of derivatives in the estimates.
Compared with [14], we now need to control our remainders by showing that
they are smoothing operators, otherwise we can not absorb these errors in the
energy estimates. Moreover, since the nonlinear problems of [7] are solved by a
Nash-Moser procedure where we use smoothing operators (typically frequency
cut-offs), it is crucial to extend all the results on the singular calculus of [14]
by including the following features:

– The symbols should not be assumed to be independent of the space vari-
ables outside of a compact set. Otherwise, we would face a lot of difficulties
with the smoothing procedure in the Nash-Moser iteration.

– The remainders in the calculus of [14] should be smoothing operators
when they were merely bounded operators on L2 with a small (O(γ−1),
γ large) norm in [14]. Moreover, we desire more systematic and easily
applicable criteria than in [14] for determining the mapping properties of
remainders.

As far as we checked, it seems that showing the smoothing property could be
achieved with the techniques of [14]. However, these techniques heavily use

(2) More precisely, the loss in [7] is a loss of a singular derivative ∂x + β
∂θ
ε
.
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722 J.-F. COULOMBEL, O. GUÈS & M. WILLIAMS

the fact that the symbols are independent of the space variables outside of a
compact set, and a major goal here is to get rid of this assumption. We thus
adopt a different strategy that is based on a careful application of the Calderón-
Vaillancourt Theorem. Our motivation for doing so is that our symbols lack
the standard isotropic decay of pseudodifferential symbols, and this makes the
classical proofs inapplicable. The situation is even worse because some results
on adjoints or products of singular pseudodifferential operators seem not to
hold. For instance, asymptotic expansions of symbols do not hold beyond the
first term, and even the justification of the first term in the expansion depends
on the order of the operators. Our final results are thus in some ways rather
weak, but they seem to be more or less the best one can hope for in such a
singular scaling. Fortunately, the calculus is strong enough to be applicable
to a variety of geometric optics problems for both wavetrains and pulses, see,
e.g., [7].

We thus review the results of [14] by improving them along the lines de-
scribed above. For practical purposes, we have found it convenient to first prove
general results on L2-boundedness of pseudodifferential and oscillatory integral
operators. The calculus rules are then more or less “basic” applications of the
general results. We have also found it convenient to include in the same article,
the results for both the whole space and the periodic framework. Results in
the case of the whole space are used in [9] to deal with pulse-like solutions to
hyperbolic boundary value problems, while the companion article [7] is devoted
to wavetrains.

PART I

SINGULAR PSEUDODIFFERENTIAL CALCULUS FOR WAVETRAINS

2. Functional spaces

In all this article, functions may be valued in C, CN or even in the space
of square matrices MN (C) (or CN×N ). Products have to be understood in the
sense of matrices when the dimensions agree. If M ∈ MN (C), M∗ denotes the
conjugate transpose of M . The norm of a vector x ∈ CN is |x| := (x∗ x)1/2.
If x, y are two vectors in CN , we let x · y denote the quantity

∑
j xj yj , which

coincides with the usual scalar product in RN when x and y are real.

tome 142 – 2014 – no 4
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2.1. Functional spaces on Rd. — The Schwartz space S(Rd) of C∞ functions
with fast decay at infinity is equipped with the family of semi-norms:

∀ J ∈ N, ‖u‖ S(Rd),J := sup
α∈Nd,|α|≤J

sup
x∈Rd

(1 + |x|2)J/2
∣∣∂αx u (x)

∣∣.
When equipped with this topology, S(Rd) is a Fréchet space. We shall say that
a sequence (uk)k∈Z in S(Rd) has fast decay if for all polynomial P , the sequence
(P (k)uk)k∈Z is bounded in S(Rd).

The Fourier transform on S(Rd) is defined by

∀ f ∈ S(Rd), ∀ ξ ∈ Rd, f̂(ξ) :=

∫
Rd

e−i x·ξ f(x) dx.

In particular, the Fourier transform is a continuous isomorphism on S(Rd). It
is extended to the space of temperate distributions S′(Rd) in the usual way.

For s ∈ R, we let Hs(Rd) denote the Sobolev space

Hs(Rd) :=
¶
u ∈ S′(Rd) / (1 + |ξ|2)s/2 û ∈ L2(Rd)

©
.

It is equipped with the family of norms

∀ γ ≥ 1, ∀u ∈ Hs(Rd), ‖u‖2s,γ :=
1

(2π)d

∫
Rd

(γ2 + |ξ|2)s
∣∣û(ξ)

∣∣2 dξ.

The norm ‖ · ‖0,γ does not depend on γ and coincides with the usual L2-norm
on Rd. We shall thus write ‖ · ‖0 instead of ‖ · ‖0,γ for the L2-norm on Rd. For
simplicity, we also write ‖·‖s instead of ‖·‖s,1 for the standard Hs-norm (when
the parameter γ equals 1).

2.2. Functional spaces on Rd×T. — We now extend the previous definitions to
functions that depend in a periodic way on an additional variable θ. We shall in
some sense “interpolate” between Fourier transform and Fourier series. Let us
begin with the definition of the Schwartz space. The Schwartz space S(Rd×T)

is the set of C∞ functions f on Rd×R, that are 1-periodic with respect to the
last variable, and with fast decay at infinity in the first variable, that is:

∀α, β ∈ Nd, ∀ j ∈ N,
(

(x, θ) ∈ Rd × R 7→ xα ∂βx ∂
j
θ f (x, θ)

)
∈ L∞(Rd × R).

Using the periodicity of f with respect to its last argument θ, one can replace
equivalently L∞(Rd×R) by L∞(Rd× [0, 1]). The Schwartz space S(Rd×T) is
equipped with the family of semi-norms

∀ J ∈ N, ‖f‖ S(Rd×T),J := sup
(α,j)∈Nd×N
|α|+j≤J

sup
(x,θ)∈Rd×[0,1]

(1 + |x|2)J/2
∣∣∂αx ∂jθ f (x, θ)

∣∣.
BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



724 J.-F. COULOMBEL, O. GUÈS & M. WILLIAMS

When equipped with this topology, S(Rd × T) is a Fréchet space. We
let S′(Rd × T) denote its topological dual, that is the set of continuous linear
forms on S(Rd × T).

The “Fourier transform” on S(Rd×T) is defined by considering Fourier series
in θ and Fourier transform in x. More precisely, we introduce the k-th Fourier
coefficient:

∀ f ∈ S(Rd × T), ∀ k ∈ Z, ∀x ∈ Rd, ck(f)(x) :=

∫ 1

0

e−2 i π k θ f(x, θ) dθ.

For all integer k, the Fourier coefficient ck(f) belongs to the standard Schwartz
space S(Rd). We can therefore define its Fourier transform ’ck(f). In all what
follows, the sequence (’ck(f))k∈Z is called the Fourier transform of f . When
we only consider Fourier series in θ, we use the notation ck to denote the k-th
Fourier coefficient. When we only consider Fourier transform with respect to the
first variable x ∈ Rd, we use the classical “hat” notation introduced previously.

The reader can check that the Fourier transform (’ck(f))k∈Z of a function
f ∈ S(Rd × T) is a sequence in S(Rd) with fast decay. The inverse Fourier
transform is defined through the formula:

f(x, θ) =
∑
k∈Z

F −1(’ck(f))(x) e2 i π k θ,

where F −1 stands for the inverse Fourier transform in S(Rd). To summarize,
the Fourier transform is an isomorphism between S(Rd×T) and the sequences
(gk)k∈Z in S(Rd) with fast decay.

Let us now extend the Fourier transform to the set of temperate distributions
S′(Rd × T). For u ∈ S′(Rd × T), the Fourier coefficients ck(u) ∈ S′(Rd) are
defined by the formula

∀ k ∈ Z, ∀ g ∈ S(Rd),

〈ck(u), g〉 S′(Rd), S(Rd) :=
〈
u, g(x) e−2 i π k θ

〉
S′(Rd×T), S(Rd×T)

.

It is straightforward to check that there exist a constant C and an integer J
such that for all k ∈ Z, there holds the continuity estimate

∀ g ∈ S(Rd),
∣∣〈ck(u), g〉 S′(Rd), S(Rd)

∣∣ ≤ C (1 + |k|)J ‖g‖ S(Rd),J .

The Fourier transform of u is the sequence (’ck(u))k∈Z in S′(Rd). For an appro-
priate constant that is still denoted C and a possibly larger integer that is still
denoted J , there holds the continuity estimate

(1) ∀ g ∈ S(Rd),
∣∣〈’ck(u), g〉 S′(Rd), S(Rd)

∣∣ ≤ C (1 + |k|)J ‖g‖ S(Rd),J .
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The continuity estimate (1) is uniform with respect to k ∈ Z in the following
sense: the constant C and the integer J are independent of k. Moreover, the
Fourier transform

u ∈ S′(Rd × T) 7−→ (’ck(u))k∈Z ∈ S′(Rd)Z,

is an isomorphism between S′(Rd×T) and the sequences in S′(Rd) that satisfy
a uniform estimate of the type (1). The inverse Fourier transform is defined as
follows: for a given sequence (uk)k∈Z in S′(Rd) satisfying a uniform continuity
estimate with respect to k, we define an element v of S′(Rd×T) by the formula

∀ f ∈ S(Rd × T), 〈v, f〉 S′(Rd×T), S(Rd×T) :=
∑
k∈Z

〈
u−k, F

−1(ck(f))
〉

S′(Rd), S(Rd)
,

where F −1 denotes the inverse Fourier transform in S(Rd). Indeed the reader
can check first that v is well-defined, that it is a continuous linear form with
respect to the topology of S(Rd × T) and that ’ck(v) equals uk for all k ∈ Z.

For s ∈ R, the Sobolev space Hs(Rd × T) is defined by

Hs(Rd × T) :=
{
u ∈ S′(Rd × T) / (ck(u))k∈Z ∈ Hs(Rd)Z

and
∑
k∈Z

∫
Rd

(1 + k2 + |ξ|2)s
∣∣’ck(u)(ξ)

∣∣2 dξ < +∞
}
.

It is equipped with the family of norms

∀ γ ≥ 1, ∀u ∈ Hs(Rd × T),

‖u‖2s,γ :=
1

(2π)d

∑
k∈Z

∫
Rd

(γ2 + k2 + |ξ|2)s
∣∣’ck(u)(ξ)

∣∣2 dξ.

The norm ‖ · ‖0,γ does not depend on γ and coincides with the usual L2-norm
on Rd×T. We shall thus write ‖·‖0 instead of ‖·‖0,γ for the L2-norm on Rd×T.
More precisely, if f ∈ L2(Rd × T), then the Fourier coefficient

ck(f)(x) :=

∫ 1

0

e−2 i π k θ f(x, θ) dθ

is well-defined for almost every x ∈ Rd, and ck(f) belongs to L2(Rd) (use
Cauchy-Schwarz inequality). The Parseval-Bessel equality and Plancherel’s
Theorem give∫

Rd×[0,1]

|f(x, θ)|2 dxdθ =
∑
k∈Z

∫
Rd
|ck(f)(x)|2 dx = ‖f‖20.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



726 J.-F. COULOMBEL, O. GUÈS & M. WILLIAMS

In what follows, we always identify the space L2(Rd × T) and Fourier series
in θ ∈ R whose coefficients belong to `2(Z;L2(Rd)). For simplicity, we also
write ‖ · ‖s instead of ‖ · ‖s,1 for the standard Hs-norm on Rd × T.

Remark 1. — Observe that our notation for the norm ‖·‖s,γ is consistent with
the notation for functions that are defined on Rd. More precisely, if u ∈ Hs(Rd),
then one can also consider u as an element of Hs(Rd×T) that does not depend
on θ, meaning that only the 0-th harmonic in θ occurs (c0(u) = u and ck(u) = 0

if k 6= 0). The norms of u in Hs(Rd) and Hs(Rd × T) coincide. This is the
reason why we omit to write the underlying space Rd or Rd×T in the definition
of the norms ‖ · ‖s,γ .

We now introduce the “singular” Sobolev spaces that we shall widely use in
this article. From now on, we consider a vector β ∈ Rd \ {0} that is fixed once
and for all. For s ∈ R and ε ∈ ]0, 1], the anisotropic Sobolev space Hs,ε(Rd×T)

is defined by

Hs,ε(Rd × T) :=
{
u ∈ S′(Rd × T) / ∀ k ∈ Z, ’ck(u) ∈ L2

loc(Rd)

and
∑
k∈Z

∫
Rd

Ç
1 +

∣∣∣∣ξ +
2π k β

ε

∣∣∣∣2
ås ∣∣’ck(u)(ξ)

∣∣2 dξ < +∞
}
.

It is equipped with the family of norms

(2) ∀ γ ≥ 1, ∀u ∈ Hs,ε(Rd × T),

‖u‖2Hs,ε,γ :=
1

(2π)d

∑
k∈Z

∫
Rd

Ç
γ2 +

∣∣∣∣ξ +
2π k β

ε

∣∣∣∣2
ås ∣∣’ck(u)(ξ)

∣∣2 dξ.

Let us observe that the definition of the space Hs,ε depends on ε, and there is
no obvious inclusion Hs,ε1 ⊂ Hs,ε2 if ε1 ≤ ε2 or ε1 ≥ ε2. However, for a fixed
ε > 0, the norms ‖ · ‖Hs,ε,γ1 and ‖ · ‖Hs,ε,γ2 are equivalent. In particular, (2)
defines a norm on the space Hs,ε(Rd×T) defined above. When m is an integer,
the space Hm,ε(Rd × T) coincides with the space of functions u ∈ L2(Rd × T)

such that the derivatives, in the sense of distributions,Å
∂x1

+
β1

ε
∂θ

ãα1

. . .

Å
∂xd +

βd
ε
∂θ

ãαd
u, α1 + · · ·+ αd ≤ m,

belong to L2(Rd ×T). In the definition of the norm ‖ · ‖Hm,ε,γ , one power of γ
counts as much as one (singular) derivative.

In what follows, we shall also make use of the spaces Cnb (Rd × T), n ∈ N:
these are the spaces of continuous and bounded functions on Rd × R that are
1-periodic with respect to their last argument, whose derivatives up to the order
n exist, are continuous and bounded.
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3. The main L2 continuity results

Our goal is to develop in Section 4 a singular symbolic calculus on Rd × T.
This Section will give the basic results to achieve this goal. As in [14], the sym-
bols that we shall consider do not satisfy the standard decay estimates in the
frequency variable. Consequently, it will be more difficult to show that remain-
ders in the symbolic calculus are smoothing operators. As a matter of fact, this
property will hold only in the framework of anisotropic Sobolev spaces defined
above. A more problematic consequence of this non-decay is that there seems
to be little hope for developing a paradifferential version of the calculus below.
More precisely, in the paradifferential calculus theory (see, e.g., [13]), symbols
have a fixed, say W k,∞, regularity in x. To cope with this small regularity, one
introduces an isotropic frequency cut-off in the space variable. The regular-
ized symbol belongs to the class Sm1,1 and satisfies a suitable spectral condition,
which yields continuity results for the associated pseudodifferential operator.
This strategy applies when symbols are C∞ in ξ with the standard decay prop-
erty (each derivative in ξ yields one negative power of |ξ|). However, when this
frequency decay does not hold or when it holds only in an anisoptropic way,
the smoothing procedure yields symbols in the class Sm0,1 where derivatives in x
are not balanced anylonger by derivatives in ξ. For such symbols, even with an
appropriate spectral condition, there seems to be very little hope for continuity
results in Sobolev spaces.

The remarks above are the main reason why we base our approach on re-
peated applications of the Calderón-Vaillancourt Theorem [2]. More precisely,
we shall prove continuity results on L2(Rd × T) with symbols satisfying W k,∞

bounds (no decay in the frequency variable is needed, see Theorem 1 below).
This is the same strategy as in [14]. However we shall use more elaborate tools
in order to get refined estimates. Our goal is to get rid of the compact support
assumptions in [14], and to lower the regularity required on the symbols when-
ever this is possible. We refer the reader to [4, 3, 1, 11] for some background on
the Calderón-Vaillancourt Theorem and some generalizations. Here we clarify
how these results can be adapted to a mixed situation where part of the space
variables lie in Rd while the other space variables lie in the torus T. As far as
we know, all previous versions were restricted to the case of Rd or to the case
of the torus. Our first continuity result is:

Theorem 1. — Let σ : Rdx×Tθ×Rdξ×Zk → CN×N be a continuous function(3)

that satisfies the property: for all α, β ∈ {0, 1}d and for all j ∈ {0, 1}, the

(3) Here and in all what follows, a function σ that is defined on O×Z is said to be continuous
if for all k ∈ Z, σ(·, k) is continuous on O. The set O will represent either Rd, or Rd × T or
analogous sets. We adopt the same convention for differentiability properties.
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728 J.-F. COULOMBEL, O. GUÈS & M. WILLIAMS

derivative (in the sense of distributions) ∂αx ∂
j
θ ∂

β
ξ σ belongs to L∞(Rd × T ×

Rd × Z).
For u ∈ S(Rdx × Tθ;CN ), let us define

∀ (x, θ) ∈ Rd × T,

Op(σ)u (x, θ) :=
1

(2π)d

∑
k∈Z

∫
Rd

ei x·ξ e2 i π k θ σ(x, θ, ξ, k) ’ck(u)(ξ) dξ.

Then Op(σ) extends as a continuous operator on L2(Rd × T;CN ). More pre-
cisely, there exists a numerical constant C, that only depends on d and N , such
that for all u ∈ S(Rd × T;CN ), there holds

(3) ‖Op(σ)u‖0 ≤ C |||σ||| ‖u‖0,

with |||σ||| := sup
α,β∈{0,1}d

sup
j∈{0,1}

∥∥∥∂αx ∂jθ ∂βξ σ∥∥∥
L∞(Rd×T×Rd×Z)

.

The proof of Theorem 1 below is analogous to the proof of [11, Theorem 2].
We emphasize that in the assumptions on the symbol σ, no finite difference
with respect to the index k ∈ Z appears. This is in sharp contrast with, for
instance, the paradifferential calculus on the torus developed in [10]. The fact
that we do not need to estimate finite differences in k will be helpful in Section 4
when we consider singular pseudodifferential operators.

Of course, the classical version of the Calderón-Vaillancourt Theorem in Rd
now appears as a particular case of Theorem 1 (apply Theorem 1 with a symbol
σ containing only the 0-harmonic and that is independent of θ and similar
test functions u), see [3, page 18] and [11]. In the proof of Theorem 1, no
finite difference with respect to k appears because there is no need to gain
integrability for the Wigner transform U with respect to the variable θ (because
the torus has finite measure). An even more direct explanation is that for
a bounded sequence, the iterative finite differences are also bounded so the
assumption would be redundant.

Proof of Theorem 1. — The proof of Theorem 1 combines two ingredients.
First, the main estimate (3) holds when σ is smooth, say C∞, with compact
support in all variables. Second, it is possible to approximate a symbol σ satis-
fying the assumptions of Theorem 1 by a sequence (σp)p∈N of smooth symbols
with supp |||σp||| controled by |||σ|||. The corresponding pseudodifferential opera-
tors Op(σp) converge in a weak sense towards Op(σ).

For smooth symbols with compact support, integration by parts and deriva-
tion under the integral show that Op(σ)u belongs to S(Rd × T) if u does. In
particular, Op(σ)u belongs to L2(Rd × T). This integrability property is not
so clear under the general assumptions of Theorem 1.

tome 142 – 2014 – no 4



SINGULAR PSEUDODIFFERENTIAL CALCULUS FOR WAVETRAINS 729

Let us state more precisely our first point.

Lemma 1. — Let σ ∈ C∞0 (Rdx × Tθ × Rdξ × Zk;CN×N ), that is:
(i) σ(·, ·, ·, k) ≡ 0 except for a finite number of integers k,
(ii) σ(·, ·, ·, k) is a C∞ function on Rd × T× Rd for all k ∈ Z, with compact

support in its first and third variables.
Then for all u ∈ S(Rd × T;CN ), Op(σ)u belongs to S(Rd × T;CN ) and the
estimate (3) holds with a numerical constant C that is independent of σ and u.

Proof of Lemma 1. — We make the proof in the case N = 1. When σ takes its
values in the space of matrices CN×N , the result applies for each component.
Following [11], it is sufficient to prove an estimate of the form

(4)
∣∣∣∣∫

Rd×T
Op(σ)u(x, θ) v(x, θ) dx dθ

∣∣∣∣ ≤ C |||σ||| ‖u‖0 ‖v‖0,
for all u, v ∈ S(Rd × T;C). We define a function ϕ on Rd by the formula:

∀ y = (y1, . . . , yd) ∈ Rd, ϕ(y) :=
d∏
j=1

(1 + i yj)
−1.

In particular, ϕ belongs to L2(Rd). Applying Fubini’s Theorem, we have

I :=

∫
Rd×T

Op(σ)u(x, θ) v(x, θ) dxdθ

=
1

(2π)d

∑
k∈Z

∫
Rd×T×Rd×Rd

ei (x−y)·ξ e2 i π k θ σ(x, θ, ξ, k) ck(u)(y) v(x, θ) dx dθ dy dξ.

Starting from the relation

ei (x−y)·ξ = ϕ(x− y)
d∏
j=1

(1 + ∂ξj ) ei (x−y)·ξ,

and integrating by parts, we obtain
(5)

I =
1

(2π)d

∑
k∈Z

∫
Rd×T×Rd

ei x·ξ e2 i π k θ σ](x, θ, ξ, k)U(x, ξ, k) v(x, θ) dx dθ dξ,

where we have used the notation

σ] :=
d∏
j=1

(1− ∂ξj )σ, U(x, ξ, k) :=

∫
Rd

e−i y·ξ ϕ(x− y) ck(u)(y) dy.

We use the expression

v(x, θ) =
1

(2π)d

∑
`∈Z

∫
Rd

ei x·η e2 i π ` θ’c`(v)(η) dη
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in (5) and apply Fubini’s Theorem again. Then we use the relation

ei x·(ξ+η) e2 i π (k+`) θ

=
ϕ(ξ + η)

1 + 2 i π (k + `)

{
(1 + ∂θ)

d∏
j=1

(1 + ∂xj )

}
ei x·(ξ+η) e2 i π (k+`) θ,

and integrate by parts. These operations yield

(6) I =
∑

α∈{0,1}d,j∈{0,1}

∑
α′≤α

?

∑
k∈Z

∫
Rd×T×Rd

ei x·ξ e2 i π k θ ∂α−α
′

x ∂jθ σ] (x, θ, ξ, k) ∂α
′

x U (x, ξ, k)V (x, θ, ξ, k) dxdθ dξ,

where the ? coefficients denote some harmless numerical constants that only
depend on α, α′, j, and where we have used the notation(4)

V (x, θ, ξ, k) :=
∑
`∈Z

Å∫
Rd

ei x·η
ϕ(ξ + η)

1 + 2 i π (k + `)
’c`(v)(η) dη

ã
e2 i π ` θ.

The result of Lemma 1 follows by applying Cauchy-Schwarz inequality to
each integral in (6) (here the integral also includes the sum with respect to the
index k ∈ Z). Each derivative ∂α−α

′

x ∂jθ σ] that appears in the right-hand side
of (6) can be estimated in L∞-norm by a harmless constant times the quantity
|||σ||| defined in (3). We thus get (here and from now on, C denotes a positive
numerical constant that may vary from line to line)

|I|2 ≤ C |||σ|||2
Ñ ∑
α∈{0,1}d

∑
k∈Z

∫
Rd×Rd

∣∣∂αxU (x, ξ, k)
∣∣2 dx dξ

é
·
∑
k∈Z

∫
Rd×T×Rd

|V (x, θ, ξ, k)|2 dxdθ dξ.

Each term on the right-hand side is estimated by using the Parseval-Bessel
equality and Plancherel’s Theorem (see [11] for the case of Rd, here the incor-
poration of the additional periodic variable is almost straightforward):∑

k∈Z

∫
Rd×Rd

∣∣∂αxU (x, ξ, k)
∣∣2 dxdξ ≤ C

∑
k∈Z
‖ck(u)‖20 ≤ C ‖u‖20,

∑
k∈Z

∫
Rd×T×Rd

|V (x, θ, ξ, k)|2 dxdθ dξ ≤ C ‖v‖20.

The proof of Lemma 1 is thus complete.

(4) The function U , resp. V , represents the Wigner transform of u, resp. v, and ϕ.
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To complete the proof of Theorem 1, it is sufficient to prove the following
approximation result:

Lemma 2. — Let σ : Rd × T × Rd × Z → CN×N satisfy the assumptions of
Theorem 1. Then there exists a sequence (σp)p∈N in C∞0 (Rd×T×Rd×Z;CN×N )

such that:

(i) supp∈N |||σp||| ≤ C |||σ||| for some numerical constant C that does not depend
on σ,

(ii) for all u, v ∈ S(Rd × T), there holds

lim
p→+∞

∫
Rd×T

Op(σp)u(x, θ) v(x, θ) dxdθ =

∫
Rd×T

Op(σ)u(x, θ) v(x, θ) dxdθ.

The proof of Lemma 2 follows by the classical truncation-convolution argu-
ment. We leave the details to the reader. The convergence property (ii) follows
from the dominated convergence Theorem.

Combining Lemma 1 and Lemma 2, we obtain the main estimate (4) not
only for smooth symbols with compact support but also for the more gen-
eral class of symbols that satisfy the assumptions of Theorem 1. In particular,
the Riesz Theorem shows that Op(σ)u coincides almost-everywhere with an
element of L2(Rd × T), and the conclusion of Theorem 1 follows.

It is useful to observe that in the proof of Lemma 1 above, we do not need
the symbol σ to have compact support with respect to the space variable x.
As a matter of fact, compact support with respect to the dual variables (ξ, k)

is sufficient to justify all the calculations. This observation will be used in the
proof of Lemma 3 below.

Applying formally Fubini’s Theorem to the definition of Op(σ)u, we have

(7) Op(σ)u (x, θ)

=
1

(2π)d

∑
k∈Z

∫
Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) σ(x, θ, ξ, k)u(y, ω) dξ dy dω.

The latter formula is rigorous, e.g., for smooth symbols with compact support
in (ξ, k). In order to prepare the results of symbolic calculus, our next goal is
to obtain L2 continuity results for oscillatory integral operators as in (7) with
more general amplitudes σ; namely we should allow σ to depend on (x, θ) but
also on the additional variables (y, ω), see [14, page 144]. Such symbols with
additional space variables arise for instance when computing the adjoint of a
pseudodifferential operator, see, e.g., Propositions 8 and 10. Our second main
continuity result is the following:
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Theorem 2. — Let σ : Rdx × Tθ × Rdy × Tω × Rdξ × Zk → CN×N be a con-
tinuous function that satisfies the property: for all α, β ∈ {0, 1}d, for all j, l ∈
{0, 1} and for all ν ∈ {0, 1, 2}d, the derivative (in the sense of distributions)
∂αx ∂

j
θ ∂

β
y ∂

l
ω ∂

ν
ξ σ belongs to L∞(Rd × T × Rd × T × Rd × Z). Let χ1 ∈ C∞0 (R)

and χ2 ∈ C∞0 (Rd) satisfy χ1(0) = χ2(0) = 1.
Then for all u ∈ S(Rd × T;CN ), the sequence of functions (Tδ)δ>0 defined

on Rd × T by

(8) Tδ (x, θ) :=
1

(2π)d

∑
k∈Z

χ1(δ k)

∫
Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω)

χ2(δ ξ)σ(x, θ, y, ω, ξ, k)u(y, ω) dξ dy dω,

converges in S′(Rd × T), as δ tends to 0, towards a distribution ›Op(σ)u ∈
L2(Rd×T). This limit is independent of the truncation functions χ1, χ2. More-
over, there exists a numerical constant C, that only depends on d and N , such
that there holds∥∥∥›Op(σ)u

∥∥∥
0
≤ C |||σ|||Amp ‖u‖0,(9)

with |||σ|||Amp :=

sup
α,β∈{0,1}d

sup
j,l∈{0,1}

sup
ν∈{0,1,2}d

∥∥∥∂αx ∂jθ ∂βy ∂lω ∂νξ σ∥∥∥
L∞(Rd×T×Rd×T×Rd×Z)

.

The proof of Theorem 2 splits in several steps. The first point is to show that
the conclusion holds for smooth symbols with compact support in (ξ, k). In this
case, the convergence of the oscillatory integral as δ tends to 0 follows from the
dominated convergence Theorem, and the proof of the continuity estimate (9)
relies on some arguments that are similar to those used in the proof of Lemma 1.
This first part of the proof of Theorem 2 is achieved in Lemma 3 below. The
end of the proof of Theorem 2 consists in justifying the convergence of the
oscillatory integral for an arbitrary amplitude and in showing that (9) still
holds. This part of the proof relies on a regularization process as for Lemma 2.

The process used in Theorem 2 that consists in introducing cut-off functions
in the frequency variables and in passing to the limit will be systematically
used in what follows in order to define oscillatory integral operators and to
show some properties on such operators. To highlight the difference between
standard pseudodifferential operators and oscillatory integral operators (for
which the integrals do not converge in a classical sense), we always use the
notation ›Op for oscillatory integral operators. In that case, the representation
by a convergent integral only takes place when the amplitude is integrable with
respect to the frequency variables (for instance, when it has compact support
with respect to these variables).
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The proof of Theorem 2 is based on the following generalization of Lemma 1.

Lemma 3. — Let σ ∈ C∞b (Rdx×Tθ×Rdy×Tω×Rdξ ×Zk;CN×N ) have compact
support with respect to (ξ, k), that is, there exists an integer K0 and a positive
number R0 such that σ(x, θ, y, ω, ξ, k) = 0 as long as |k| ≥ K0 or |ξ| ≥ R0.

Then all the conclusions of Theorem 2 hold and the oscillatory integral›Op(σ)u coincides with the function

(x, θ) ∈ Rd × T

7−→ 1

(2π)d

∑
k∈Z

∫
Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) σ(x, θ, y, ω, ξ, k)u(y, ω) dξ dy dω.

Proof of Lemma 3. — Our strategy follows closely the proof of Lemma 1 but
requires some modifications because we cannot isolate the Wigner transform U

as in the proof of Lemma 1. We keep however the same notation for the rational
function ϕ on Rd, and we make the proof in the case N = 1 for simplicity.

First of all, since σ has compact support in (ξ, k) and is bounded, the se-
quence (Tδ)δ>0 defined by (8) is bounded in L∞(Rd×T). Moreover, the domi-
nated convergence Theorem shows that Tδ converges pointwise, as δ tends to 0,
towards

T (x, θ) :=
1

(2π)d

∑
k∈Z

∫
Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) σ(x, θ, y, ω, ξ, k)u(y, ω) dξ dy dω.

There is no ambiguity in the definition of the latter integral since the function
to be integrated has compact support in ξ and fast decay at infinity in y (the
sum with respect to k only involves finitely many terms). Applying again the
dominated convergence Theorem, (Tδ)δ>0 converges towards T not only point-
wise but also in S′(Rd × T). It thus only remains to estimate the function T
in L2 in order to complete the proof of Lemma 3. We emphasize that the proof
below does not assume compact support of σ in x or y, which will be useful in
Section 4.

For v ∈ S(Rd × T;C), let us define the integral

I :=

∫
Rd×T

T (x, θ) v(x, θ) dxdθ

=
1

(2π)d

∑
k∈Z

∫
Rd×Rd×T×Rd×T
ei (x−y)·ξ e2 i π k (θ−ω) σ(x, θ, y, ω, ξ, k)u(y, ω) v(x, θ) dξ dxdθ dy dω,

where we have applied Fubini’s Theorem. We first expand v as a Fourier series
in θ:

v(x, θ) =
∑
`∈Z

c`(v)(x) e2 i π ` θ,
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apply Fubini’s Theorem, and integrate by parts with respect to θ using the
relation

e2 i π (k+`) θ =
1

1 + 2 i π (k + `)
(1 + ∂θ) e2 i π (k+`) θ.

We apply a similar manipulation for u, and we obtain the relation
(10)

I =
∑
k∈Z

∫
Rd×Rd×T×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω) σ\(x, θ, y, ω, ξ, k) ũ(y, ω, k) ṽ(x, θ, k) dξ dxdθ dy dω,

where we have introduced the notation
σ\ := (1− ∂θ) (1− ∂ω)σ,

ũ(y, ω, k) :=
∑
`∈Z

c`(u)(y)

1 + 2 i π (`− k)
e2 i π ` ω,

ṽ(x, θ, k) :=
∑
`∈Z

c`(v)(x)

1 + 2 i π (`+ k)
e2 i π ` θ.

(11)

The latter manipulations are justified by the fact that both sequences (c`(u))`∈Z
and (c`(v))`∈Z have fast decay in S(Rd).

Let us now transform the expression of I in (10) by integrating by parts
with respect to ξ. More precisely, we use the relation

ei (x−y)·ξ = ϕ(x− y)2
d∏
j=1

(1 + ∂ξj )
2 ei (x−y)·ξ,

integrate by parts with respect to ξ in (10) and obtain

(12) I =
∑
k∈Z

∫
Rd×Rd×T×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω)

× σ[(x, θ, y, ω, ξ, k)ϕ(x− y) ũ(y, ω, k)ϕ(x− y) ṽ(x, θ, k) dξ dxdθ dy dω,

where we have used the notation

σ[ :=
d∏
j=1

(1− ∂ξj )2 σ\ =
d∏
j=1

(1− ∂ξj )2 (1− ∂θ) (1− ∂ω)σ.

A crucial observation for what follows is that the new term ϕ(x − y)2 in (12)
yields integrability with respect to either x or y.

Now we follow the argument already used in the proof of Lemma 1. We use
Fourier’s inversion formula, and write

ṽ(x, θ, k) =
1

(2π)d

∫
Rd

ei x·η ̂̃v(η, θ, k) dη,

where for each k ∈ Z, the partial Fourier transform ̂̃v(·, ·, k) with respect to x
belongs to the Schwartz space S(Rd × T). Then we apply Fubini’s Theorem
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in (12), and integrate by parts with respect to x. As observed above, applying
Fubini’s Theorem has been made possible thanks to the new factor ϕ(x − y)2

which makes the integral in x converge. We make the symmetric operation with
ũ instead of ṽ and integrate by parts with respect to y. Eventually, we obtain
a formula of the form

(13)

I =
∑

α,β∈{0,1}d

∑
α′+α′′≤α

∑
β′+β′′≤β

?
∑
k∈Z

∫
Rd×Rd×T×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω)

× ∂α−α
′−α′′

x ∂β−β
′−β′′

y σ[(x, θ, y, ω, ξ, k)

×
(
∂α
′+β′ϕ(x−y)

)
U(y, ω, ξ, k)

(
∂α
′′+β′′ϕ(x−y)

)
V (x, θ, ξ, k) dξ dxdθ dy dω,

where the ? coefficients only depend on d, α, α′, α′′, β, β′, β′′, and where we have
used the notation

U(y, ω, ξ, k) :=
1

(2π)d

∫
Rd

ei y·η ϕ(η − ξ) ̂̃u(η, ω, k) dη,

V (x, θ, ξ, k) :=
1

(2π)d

∫
Rd

ei y·η ϕ(η + ξ) ̂̃v(η, θ, k) dη.

Let us now observe that each derivative ∂α−α
′−α′′

x ∂β−β
′−β′′

y σ[ that appears in
(13) can be bounded in L∞-norm by C |||σ|||Amp, where the quantity |||σ|||Amp is
defined in (9). Eventually, we apply the Cauchy-Schwarz inequality on (Rd ×
T)2 × Rd × Z in (13), and we thus need to estimate integrals of the form∑

k∈Z

∫
Rd×Rd×T×Rd×T

∣∣∂α′+β′ϕ(x− y)
∣∣2 |U(y, ω, ξ, k)|2 dξ dxdθ dy dω,

and symmetric expressions in V . The latter integral is computed by first inte-
grating with respect to (x, θ). Then we apply Plancherel’s Theorem for trans-
forming the integral in y into an integral in η. Applying Fubini’s Theorem, we
can get rid of the integral in ξ (see the above definition of U in terms of ̂̃u) and
we are left with estimating a quantity of the form∑

k∈Z

∫
Rd×T

∣∣ũ(y, ω, k)
∣∣2 dy dω,

where ũ is defined by (11). The latter quantity is estimated by using Parseval-
Bessel’s equality and Fubini’s Theorem again. Eventually, we obtain∑
k∈Z

∫
Rd×Rd×T×Rd×T

∣∣∂α′+β′ϕ(x− y)
∣∣2 ∣∣U(y, ω, ξ, k)

∣∣2 dξ dx dθ dy dω ≤ C ‖u‖20,
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and a similar estimate holds for V in terms of ‖v‖0. We have thus proved that
there exists a numerical constant C such that there holds

|I| ≤ C |||σ|||Amp ‖u‖0 ‖v‖0.

In particular, this yields the bound (9) when the amplitude σ is smooth with
compact support.

Actually, the proof of Lemma 3 even shows the following stronger result
which is encoded in the Formula (13).

Corollary 1. — Let σ ∈ C∞b (Rdx × Tθ × Rdy × Tω × Rdξ × Zk;CN×N ) have
compact support with respect to (ξ, k). Let {Z1, . . . , ZM} denote the set of all
derivatives ∂αx ∂

j
θ ∂

β
y ∂

l
ω ∂

ν
ξ that appear in the Definition (9) of the norm |||·|||Amp.

Then there exist some continuous bilinear mappings

L1, . . . , LM : S(Rd × T)× S(Rd × T) −→ L1(Rdx × Tθ ×Rdy × Tω ×Rdξ × Zk),

which are independent of σ, that satisfy a continuity estimate of the form

∀m = 1, . . . ,M, ‖ Lm(u, v)‖L1(Rd×T×Rd×T×Rd×Z) ≤ C ‖u‖0 ‖v‖0,

and such that for all u, v ∈ S(Rd × T), there holds

(14)
∫
Rd×T

›Op(σ)u(x, θ) v(v, θ) dxdθ

=
M∑
m=1

∑
k∈Z

∫
Rd×T×Rd×T×Rd

(Zm σ) Lm(u, v) dx dθ dy dω dξ,

where the expression of the function ›Op(σ)u is given in Lemma 3.

Let us now turn to the proof of Theorem 2.

Proof of Theorem 2. — For a general amplitude σ satisfying the assumptions
of Theorem 2, we need to define the limit, as δ tends to 0, of the truncated
oscillatory integrals (8). The goal is to show that Formula (14), which holds
for smooth amplitudes with compact support in (ξ, k), also holds for the more
general class of amplitudes satisfying the assumptions of Theorem 2.

Let therefore σ satisfy the assumptions of Theorem 2, and let us define the
truncated amplitude σδ, δ > 0, by

σδ(x, θ, y, ω, ξ, k) := χ1(δ k)χ2(δ ξ)σ(x, θ, y, ω, ξ, k).

The truncated amplitude σδ has as many derivatives as σ in L∞. Moreover,
there exists a constant Cχ that only depends on χ := (χ1, χ2) such that

(15) ∀ δ ∈ ]0, 1], |||σδ|||Amp ≤ Cχ |||σ|||Amp.
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Let us now consider a nonnegative function ρ ∈ C∞0 (Rd) with integral 1. We
then define the regularizing kernels

∀n ∈ N, ρn(x) := (n+ 1)d ρ((n+ 1)x).

We also consider the Féjer kernel

Fn(θ) :=
1

n+ 1

Å
sin((n+ 1)π θ)

sin(π θ)

ã2

, Fn(0) := n+ 1,

that belongs to C∞(T) and whose integral over T equals 1. Then we define the
regularized amplitude

(16) σδ,n(x, θ, y, ω, ξ, k)

:=

∫
Rd×T×Rd×T×Rd

ρn(x− x′)Fn(θ − θ′) ρn(y − y′)Fn(ω − ω′) ρn(ξ − ξ′)

· σδ(x′, θ′, y′, ω′, ξ′, k) dx′ dθ′ dy′ dω′ dξ′.

It follows from the classical Theorems of calculus that for all δ > 0 and for all
integer n ∈ N, σδ,n belongs to C∞b (Rdx × Tθ × Rdy × Tω × Rdξ × Zk;CN×N ) and
has compact support in (ξ, k). Differentiating under the integral, we also have
the bound

(17) ∀n ∈ N, |||σδ,n|||Amp ≤ |||σδ|||Amp.

Moreover, since σδ is continuous, the sequence (σδ,n)n∈N converges pointwise
towards σδ.

For all u, v ∈ S(Rd × T), let us define the integral

Iδ :=

∫
Rd×T

Tδ(x, θ) v(x, θ) dx dθ,

where the function Tδ is defined by (8). Applying Fubini’s Theorem, we have
(18)

Iδ =
1

(2π)d

∑
k∈Z

∫
Rd×T×Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω) σδ(x, θ, y, ω, ξ, k)u(y, ω) v(x, θ) dx dθ dy dω dξ.

We also define the quantity Iδ,n that is the analogue of (18) with the amplitude
σδ,n instead of σδ.

The sequence (σδ,n)n∈N is bounded in L∞(Rdx×Tθ×Rdy×Tω×Rdξ×Zk) and it
is supported in a fixed compact set with respect to (ξ, k). We can thus apply the
dominated convergence Theorem and obtain that (Iδ,n)n∈N converges towards
Iδ as n tends to +∞. Moreover, we can apply Lemma 3 to the amplitude σδ,n

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



738 J.-F. COULOMBEL, O. GUÈS & M. WILLIAMS

and derive the bound

|Iδ,n| =
∣∣∣∣∫

Rd×T
›Op(σδ,n)u(x, θ) v(x, θ) dxdθ

∣∣∣∣ ≤ C |||σδ,n|||Amp ‖u‖0 ‖v‖0

≤ Cχ |||σ|||Amp ‖u‖0 ‖v‖0,

where we have used (17) and (15). Passing to the limit as n tends to +∞, we
obtain the uniform bound

(19) |Iδ| ≤ Cχ |||σ|||Amp ‖u‖0 ‖v‖0.

If we can prove that (Iδ)δ>0 has a limit as δ tends to 0, and that this limit
is independent of the truncation function χ, then we shall have shown that
the sequence of functions (Tδ)δ>0 converges in S′(Rd × T) towards some limit›Op(σ)u. Moreover, the estimate (19) will show that this distribution coincides
with a function in L2(Rd×T) satisfying (9). (If the limit of (Iδ)δ>0 is indepen-
dent of χ, then the constant in (9) is given by passing to the limit in (19) with
one particular choice of χ.) It therefore only remains to prove that (Iδ)δ>0 has
a limit and that this limit is independent of χ.

Since the amplitude σδ,n is smooth with compact support in (ξ, k), we can
apply Corollary 1. We obtain that Iδ,n can be written under the form

(20) Iδ,n =
M∑
m=1

∑
k∈Z

∫
Rd×T×Rd×T×Rd

(Zm σδ,n) Lm(u, v) dxdθ dy dω dξ.

We wish to pass to the limit in (20). We first observe that the derivative Zm σδ,n
is obtained by differentiating under the integral sign in (16), that is

Zm σδ,n(x, θ, y, ω, ξ, k)

=

∫
Rd×T×Rd×T×Rd

ρn(x− x′)Fn(θ − θ′) ρn(y − y′)Fn(ω − ω′) ρn(ξ − ξ′)

Zm σδ(x
′, θ′, y′, ω′, ξ′, k) dx′ dθ′ dy′ dω′ dξ′.

Consequently, the right-hand side of (20) is a finite sum of terms of the form∫
Υ

(%n ∗ h)(υ) f(υ) dυ, Υ := Rdx × Tθ × Rdy × Tω × Rdξ ,

with h ∈ L∞(Υ), f ∈ L1(Υ), and %n is the corresponding regularizing kernel.
(Recall that the sum with respect to k in (20) involves finitely many terms,
where the number of terms only depends on δ and not on n.) Applying Fubini’s
Theorem, we can make the convolution kernel %n act on f rather than on h.
This only replaces %n by %̆n with

%̆n(x, θ, y, ω, ξ) := %n(−x,−θ,−y,−ω,−ξ).
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Then we use the convergence of %̆n ∗f towards f in L1 (this is a classical result
of convolution that is unfortunately false in L∞ and this is the reason why we
need to switch the regularization kernel from one function to the other). Hence
we can pass to the limit as n tends to +∞ in (20), and obtain
(21)

lim
n→+∞

Iδ,n = Iδ =
M∑
m=1

∑
k∈Z

∫
Rd×T×Rd×T×Rd

(Zm σδ) Lm(u, v) dxdθ dy dω dξ.

In other words, we have extended Formula (14) to the truncated amplitude σδ.
It is now straightforward to pass to the limit as δ tends to 0. Indeed each

derivative Zm σδ can be decomposed under the form

Zm σ = χ1(δ k)χ2(δ ξ)Zm σ +
M∑

m′=1

εm,m′(δ)χ1(δ k)χ2,m,m′(δ ξ)Zm′ σ,

where χ2,m,m′ ∈ C∞0 (Rd) and εm,m′(δ) tends to 0 as δ tends to 0. We can
therefore apply the dominated convergence Theorem in (21), and obtain the
expression

lim
δ→0

Iδ =
M∑
m=1

∑
k∈Z

∫
Rd×T×Rd×T×Rd

(Zm σ) Lm(u, v) dxdθ dy dω dξ,

from which it is clear that the limit is independent of χ. The proof of Theorem 2
is complete.

The proof of Theorem 2 even shows that the Formula (14) still holds under
the more general assumptions of Theorem 2, and that it actually defines the
function ›Op(σ)u ∈ L2(Rd × T) in a unique way:

Corollary 2. — Let σ : Rdx × Tθ × Rdy × Tω × Rdξ × Zk → CN×N be a
continuous function satisfying the differentiability assumptions of Theorem 2.
Let the bilinear operators Lm, m = 1, . . . ,M be as defined in Corollary 1.
Then for all u ∈ S(Rd × T;CN ) and for all v ∈ S(Rd × T;C), the function›Op(σ)u ∈ L2(Rd × T) satisfies (14).

Remark 2. — Let us assume now that in Theorem 2, the truncation func-
tions χ1, χ2 do not necessarily satisfy χ1(0) = χ2(0) = 1. Then the cor-
responding sequence of functions (Tδ)δ>0 converges in S′(Rd × T) towards
χ1(0)χ2(0) ›Op(σ)u.

Let us observe that for an amplitude σ that only depends on (x, θ, ξ, k)

and not on (y, ω), then the oscillatory integral ›Op(σ)u coincides with Op(σ)u.
This can be checked directly by applying Fubini’s Theorem and the dominated
convergence Theorem. In that case, the convergence of the sequence (Tδ)δ>0
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in S′(Rd × T) is much easier to obtain. Since we shall use this argument in
what follows, we state the result in a precise way.

Proposition 1. — Let σ : Rdx × Tθ × Rdy × Tω × Rdξ × Zk → CN×N be a
continuous function that satisfies the differentiability assumptions of Theorem 2
and that is independent of its third and fourth variables: σ(x, θ, y, ω, ξ, k) =

σ̌(x, θ, ξ, k). Then for all u ∈ S(Rd × T), ›Op(σ)u coincides with the function
Op(σ̌)u defined in Theorem 1.

For simplicity, a function defined on Rdx × Tθ × Rdy × Tω × Rdξ × Zk that is
independent of its third and fourth variables is equally considered as a function
on Rdx×Tθ×Rdξ×Zk, that is we use from now on the same notation for σ and σ̌
in Proposition 1. We hope that this does not create any confusion. The following
result is a more precise comparison between oscillatory integral operators and
pseudodifferential operators. It contains Proposition 1 as a special trivial case.
It is also the starting point for the pseudodifferential calculus developed in the
following section.

Proposition 2. — Let σ̃ ∈ C∞b (Rdx × Tθ ×Rdy × Tω ×Rdξ × Zk;CN×N ) be an
amplitude, and let the symbol σ ∈ C∞b (Rdx × Tθ × Rdξ × Zk;CN×N ) be defined
by

σ(x, θ, ξ, k) := σ̃(x, θ, x, θ, ξ, k).

Then the operator ›Op(σ̃) − Op(σ) coincides with ›Op(r), where the amplitude
r ∈ C∞b (Rdx × Tθ × Rdy × Tω × Rdξ × Zk;CN×N ) is decomposed as

r(x, θ, y, ω, ξ, k) = r1(x, θ, y, ω, ξ, k)+R2(x, θ, y, ω, ξ, k+1)−R2(x, θ, y, ω, ξ, k),

with

r1(x, θ, y, ω, ξ, k) :=
1

i

d∑
j=1

∫ 1

0

∂yj ∂ξj σ̃
(
x, θ, (1− t)x+ t y, ω, ξ, k

)
dt,

R2(x, θ, y, ω, ξ, k) :=


σ̃(x, θ, x, ω, ξ, k)− σ̃(x, θ, x, θ, ξ, k)

1− e−2 i π (ω−θ) , if ω 6= θ,
1

2 i π
∂ωσ̃(x, θ, x, θ, ξ, k), if ω = θ.

We observe that the amplitude R2 does not depend on y but it depends
on ω, so it does not enter the framework of Proposition 1. Proposition 2 gives
an approximation of the oscillatory integral operator ›Op(σ̃) by the pseudodiffer-
ential operator Op(σ). It amounts to performing a first-order Taylor expansion
of the amplitude ›Op(σ̃). The remainder ›Op(r) is indeed a remainder provided
that the derivatives of the amplitude σ̃ with respect to the frequency variables
have additional decay properties compared with σ̃. This will be the case in the
framework of Theorem 3 below.
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Proof of Proposition 2. — Let us first assume that the amplitude σ̃ has com-
pact support in (ξ, k). In that case, the symbol σ has compact support in (ξ, k),
and we can apply Proposition 1 and Lemma 3:›Op(σ̃)u(x, θ)−Op(σ)u(x, θ) = ›Op(σ̃ − σ)u(x, θ)

=
1

(2π)d

∑
k∈Z

∫
Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)

·
(
σ̃(x, θ, y, ω, ξ, k)− σ̃(x, θ, x, ω, ξ, k)

)
u(y, ω) dy dω dξ

+
1

(2π)d

∑
k∈Z

∫
Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)

·
(
σ̃(x, θ, x, ω, ξ, k)− σ̃(x, θ, x, θ, ξ, k)

)
u(y, ω) dy dω dξ.

Let us start with the first term on the right-hand side. Applying Taylor’s for-
mula, we get

σ̃(x, θ, y, ω, ξ, k)− σ̃(x, θ, x, ω, ξ, k)

= −1

i

d∑
j=1

i (xj − yj)
∫ 1

0

∂yj σ̃
(
x, θ, (1− t)x+ t y, ω, ξ, k

)
dt,

then we integrate by parts with respect to ξ and we already obtain

1

(2π)d

∑
k∈Z

∫
Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)

·
(
σ̃(x, θ, y, ω, ξ, k)− σ̃(x, θ, x, ω, ξ, k)

)
u(y, ω) dy dω dξ

= ›Op(r1)u(x, θ).

All manipulations are made possible by the compact support assumption with
respect to (ξ, k) and the fact that u belongs to S(Rd × T).

Let us now study the second term in the decomposition of ›Op(σ̃ − σ)u.
By standard results of calculus, the function R2 defined in Proposition 2 is
1-periodic with respect to θ and ω, and is smooth (namely, C∞b ) with respect
to all its arguments. (The reason why we divide by 1 − e−2 i π (ω−θ) and not
by ω − θ in the definition of R2 is to keep the periodicity with respect to both
θ and ω. However, this is of little consequence, and R2 basically counts as one
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ω-derivative of the amplitude σ̃.) We apply Abel’s transformation and obtain

1

(2π)d

∑
k∈Z

∫
Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)

·
(
σ̃(x, θ, x, ω, ξ, k)− σ̃(x, θ, x, θ, ξ, k)

)
u(y, ω) dy dω dξ

=
1

(2π)d

∑
k∈Z

∫
Rd×T×Rd

ei (x−y)·ξ (e2 i π k (θ−ω) − e2 i π (k+1) (θ−ω)
)

·R2(x, θ, ω, ξ, k)u(y, ω) dy dω dξ

=
1

(2π)d

∑
k∈Z

∫
Rd×T×Rd

ei (x−y)·ξ e2 i π k (θ−ω)

·
(
R2(x, θ, ω, ξ, k + 1)−R2(x, θ, ω, ξ, k)

)
u(y, ω) dy dω dξ.

We have thus proved the result announced in Proposition 2 under the additional
assumption that the amplitude σ̃ has compact support in (ξ, k).

When the amplitude σ̃ does not necessarily have compact support in (ξ, k),
we approximate σ̃ by a sequence σ̃δ, δ > 0, as in Theorem 2. We leave as an
exercise to the reader the verification that for the corresponding sequence of
amplitudes (rδ)δ∈ ]0,1], there holds

∀u ∈ S(Rd × T), lim
δ→0

›Op(rδ)u = ›Op(r)u,

where the limit is understood in the sense of S′(Rd ×T) (use Remark 2). This
completes the proof of Proposition 2.

We have only proved Proposition 2 for very smooth amplitudes. In the fol-
lowing Section, we shall extend this decomposition to amplitudes with finite
regularity by the standard smoothing procedure. At this stage, we feel free to
shorten some of the arguments in the proof when they are completely similar
to what we have already explained.

4. Singular calculus I. Definition of operators and action on Sobolev spaces

4.1. Singular symbols and singular pseudodifferential operators. — Following [14],
we now introduce the singular symbols and their associated operators. The
classes of symbols are defined by first considering the following sets.

Definition 1. — Let q ≥ 1, and let O ⊂ Rq be an open set that contains
the origin. Let m ∈ R. Then we let Sm( O) denote the class of all functions
σ : O × Rd × [1,+∞[→ CN×N such that

(i) for all γ ≥ 1, σ(·, ·, γ) is C∞ on O × Rd,
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(ii) for all compact subset K of O, for all α ∈ Nq and for all ν ∈ Nd, there
exists a constant Cα,ν,K satisfying

sup
v∈K

sup
ξ∈Rd

sup
γ≥1

(γ2 + |ξ|2)−(m−|ν|)/2 ∣∣∂αv ∂νξ σ (v, ξ, γ)
∣∣ ≤ Cα,ν,K .

Let us now define the singular symbols.

Definition 2 (Singular symbols). — Let m ∈ R, and let n ∈ N. Then we
let Smn denote the set of families of functions (aε,γ)ε∈]0,1],γ≥1 that are con-
structed as follows:
(22)

∀ (x, θ, ξ, k) ∈ Rd×T×Rd×Z, aε,γ(x, θ, ξ, k) = σ

Å
ε V (x, θ), ξ +

2π k β

ε
, γ

ã
,

where σ ∈ Sm( O), V belongs to the space Cnb (Rd × T) and where furthermore
V takes its values in a convex compact subset K of O that contains the origin
(for instance K can be a closed ball centered round the origin).

In Definition 2, we ask the function V to take its values in a convex compact
subset K of O so that for all ε ∈ ]0, 1], the function ε V takes its values in the
same convex compact set K. This property is used in several places below to
derive uniform L∞ bounds with respect to the small parameter ε. We emphasize
that we consider a weak dependence of aε,γ on the space variables (x, θ), namely
v is a placeholder for ε V (x, θ) and not V (x, θ). This is linked to the fact that
the companion articles [7, 8, 9] study weakly nonlinear geometric optics.

For simplicity, we shall not mention that Smn depends on the open set O.
(It will be convenient from time to time to let O denote various possible open
sets.) With a slight abuse in the terminology, we shall refer to the elements
of Smn as symbols rather than as families of symbols. We hope that this does
not create any confusion.

To each symbol a = (aε,γ)ε∈]0,1],γ≥1 ∈ Smn given by the Formula (22), we
associate a singular pseudodifferential operator Opε,γ(a), with ε ∈ ]0, 1] and
γ ≥ 1, whose action on a function u ∈ S(Rd × T;CN ) is defined by

(23) Opε,γ(a)u (x, θ)

:=
1

(2π)d

∑
k∈Z

∫
Rd

ei x·ξ e2 i π k θ σ

Å
ε V (x, θ), ξ +

2π k β

ε
, γ

ã ’ck(u)(ξ) dξ.

Let us briefly note that for the Fourier multiplier σ(v, ξ, γ) = i ξ1, the cor-
responding singular operator is ∂x1

+ (β1/ε) ∂θ. This is the kind of singular
operators arising when one studies geometric optics for hyperbolic systems.
We now wish to describe the action of singular pseudodifferential operators on
Sobolev spaces. As can be expected from the latter simple example, the natural
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framework is provided by the spaces Hs,ε defined in Section 2. The following
result is a direct consequence of Theorem 1.

Proposition 3. — Let n ≥ d+ 1, and let a ∈ Smn with m ≤ 0. Then Opε,γ(a)

in (23) defines a bounded operator on L2(Rd×T): there exists a constant C > 0,
that only depends on σ and V in the representation (22), such that for all
ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)u‖0 ≤
C

γ|m|
‖u‖0.

Let us observe that if we compare Proposition 3 with [14, Proposition 1.1],
we obtain the same result with slightly less regularity on V , and above all
without the compact support assumption on the function V . The constant C
in Proposition 3 depends uniformly on the compact set in which V takes its
values and on the norm of V in Cd+1

b . Even when we do not state it so clearly,
all constants in the results below will depend uniformly on a finite number of
derivatives of the symbols (or amplitudes).

Proof of Proposition 3. — We wish to apply Theorem 1, so the only thing to
check is that the symbol aε,γ defined by (22) satisfies a bound of the form

∀ ε ∈ ]0, 1], ∀ γ ≥ 1, |||aε,γ ||| ≤
Cσ,V
γ|m|

.

For instance, the proof of the L∞ bound follows from Definitions 1 and 2. Let us
recall that for all ε ∈ ]0, 1], ε V takes its values in a fixed convex compact subset
K ⊂ O (because K has been assumed to contain the origin, see Definition 2),
so we have∣∣∣∣σ Åε V (x, θ), ξ +

2π k β

ε
, γ

ã∣∣∣∣ ≤ C0,0,K

Ç
γ2 +

∣∣∣∣ξ +
2π k β

ε

∣∣∣∣2
åm/2

≤ C

γ|m|
.

The L∞ bounds for the derivatives of aε,γ follow by applying the Faà di Bruno
formula for the composition of functions. We omit the details.

Remark 3. — The result of Proposition 3 does not rely on the scaling of the
substitution in the representation (22). More precisely, the same result would
hold with the substitution V (x, θ) instead of ε V (x, θ). The only important point
in the proof is the fact that the function substituted in the v-variable takes its
values in a compact subset of O that is independent of ε, and that sufficiently
many of its derivatives belong to L∞. This fact will be used several times in
what follows.

There is no great difficulty in extending Proposition 3 to symbols of positive
degree.
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Proposition 4. — Let n ≥ d+ 1, and let a ∈ Smn with m > 0. Then Opε,γ(a)

defines a bounded operator from Hm,ε(Rd×T) to L2(Rd×T) with a norm that
is independent of ε, γ: there exists a constant C > 0, that only depends on σ

and V in the representation (22), such that for all ε ∈ ]0, 1] and for all γ ≥ 1,
there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)u‖0 ≤ C ‖u‖Hm,ε,γ .

Proof of Proposition 4. — It is sufficient to write the symbol aε,γ as

aε,γ(x, θ, ξ, k)

Ç
γ2 +

∣∣∣∣ξ +
2π k β

ε

∣∣∣∣2
å−m/2 Ç

γ2 +

∣∣∣∣ξ +
2π k β

ε

∣∣∣∣2
åm/2

,

to observe that the symbol

(x, θ, ξ, k) 7−→ aε,γ(x, θ, ξ, k)

Ç
γ2 +

∣∣∣∣ξ +
2π k β

ε

∣∣∣∣2
å−m/2

belongs to S0
n, and eventually to observe that the Fourier multiplier with symbolÇ

γ2 +

∣∣∣∣ξ +
2π k β

ε

∣∣∣∣2
åm/2

is an isometry from Hm,ε(Rd × T) - equipped with the norm ‖ · ‖Hm,ε,γ -
to L2(Rd × T).

The result of Proposition 3 can be made more precise when the degree m
of the symbol is negative. We shall not deal with the general case m < 0 since
in what follows, the case m = −1 will be our main concern. Our result is the
following.

Proposition 5. — Let n ≥ d + 2, and let a ∈ S−1
n . Then Opε,γ(a) defines

a bounded operator from L2(Rd × T) to H1,ε(Rd × T) with a norm that is
independent of ε, γ: there exists a constant C > 0, that only depends on σ and
V in the representation (22), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there
holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)u‖H1,ε,γ ≤ C ‖u‖0.

Let us observe that the smoothing effect of Proposition 5 requires an addi-
tional space derivative on the symbol compared with the L2-bound of Proposi-
tions 3 and 4. This is the first occurence in this article of the general principle
that “symbolic calculus (and not only boundedness of operators) requires more
spatial regularity”. Here, we study the action of the compositionÅ

∂xj +
βj
ε
∂θ

ã
Opε,γ(a).
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Proof of Proposition 5. — We first observe that Proposition 3 already gives
the estimate

∀u ∈ S(Rd × T), ‖Opε,γ(a)u‖0 ≤
C

γ
‖u‖0.

Using the Definition (2) of the norm ‖ · ‖H1,ε,γ , we see that it only remains to
prove the bounds
(24)

∀ j = 1, . . . , d, ∀u ∈ S(Rd × T),

∥∥∥∥Å∂xj +
βj
ε
∂θ

ã
Opε,γ(a)u

∥∥∥∥
0

≤ C ‖u‖0,

with a constant C that is independent of ε, γ, u. We prove such a bound in the
case j = 1 (this is only to simplify the notation).

We can differentiate under the integral sign in the definition of Opε,γ(a)u,
see (23), obtainingÅ

∂x1
+
β1

ε
∂θ

ã
Opε,γ(a)u (x, θ) = (T1 + T2 + T3)(x, θ),

where we use the notation

T1(x, θ) :=
1

(2π)d

∑
k∈Z

∫
Rd

ei x·ξ e2 i π k θ i

Å
ξ1 +

2π k β1

ε

ã
· σ

Å
ε V (x, θ), ξ +

2π k β

ε
, γ

ã ’ck(u)(ξ) dξ,

T2(x, θ) :=
1

(2π)d

∑
k∈Z

∫
Rd

ei x·ξ e2 i π k θ

·
ï
∂vσ

Å
ε V (x, θ), ξ +

2π k β

ε
, γ

ã
· ε ∂x1

V (x, θ)

ò ’ck(u)(ξ) dξ,

T3(x, θ) :=
β1

(2π)d

∑
k∈Z

∫
Rd

ei x·ξ e2 i π k θ

·
ï
∂vσ

Å
ε V (x, θ), ξ +

2π k β

ε
, γ

ã
· ∂θ V (x, θ)

ò ’ck(u)(ξ) dξ.

The terms T1 and T2 fall into the framework of Proposition 3. Indeed, the
function

σ[(v, ξ, γ) := i ξ1 σ(v, ξ, γ),

belongs to S0, since σ belongs to S−1. Consequently, the term T1 reads
Opε,γ(a[)u where the singular symbol a[ belongs to S0

n, n ≥ d+ 2. In the same
spirit, the term T2 reads Opε,γ(a])u where the singular symbol a] belongs
to S−1

n−1, n− 1 ≥ d+ 1 (use the substitution (ε V, εW ) with W := ∂x1V in the
symbol ∂vσ(v, ξ, γ) · w). We can thus apply Proposition 3 to estimate T1 and
T2 in L2(Rd × T).
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The remaining term T3 does not fall directly into the framework of Propo-
sition 3 since there is an ε missing in front of ∂θ V , so we do not exactly have
a singular pseudodifferential operator as defined in (23). However, we can still
apply Theorem 1 (see Remark 3) to the symbol

(x, θ, ξ, k) 7−→ ∂vσ

Å
ε V (x, θ), ξ +

2π k β

ε
, γ

ã
· ∂θ V (x, θ).

Since V belongs to Cnb (Rd × T) with n ≥ d + 2, the latter symbol is bounded
and it has exactly as many derivatives in L∞ as required in order to apply
Theorem 1, and the L∞ bounds on the symbol are independent of ε ∈ ]0, 1] and
γ ≥ 1. We can therefore apply Theorem 1 in order to estimate T3 in L2(Rd×T).
The estimates of T1, T2 and T3 yield (24), so the proof of Proposition 5 is
complete.

Remark 4. — It would be tempting to extrapolate from Propositions 3 and 5
that symbols in Sn−m, m ∈ N and n sufficiently large, define pseudodifferential
operators that act from L2 to Hm,ε. This is true indeed, but unfortunately the
operator norm seems to blow up with ε as soon as m is larger than 2 (as soon
as m is larger than 2, one faces a derivative (∂θ/ε)

2 and the factor ε−2 is too
large when acting on the function ε V ). We thus need to pay special attention
and check carefully each result one by one in order to prove uniform bounds.

The proof of Proposition 5 can be adapted without any difficulty to show that
singular pseudodifferential operators with symbols of degree 0 act boundedly
on H1,ε and not only on L2. We feel free to omit the proof of this result which
will be useful later on.

Lemma 4. — Let n ≥ d + 2, and let a ∈ S0
n. Then Opε,γ(a) acts boundedly

on H1,ε(Rd×T) with a norm that is independent of ε, γ: there exists a constant
C > 0, that only depends on σ and V in the representation (22), such that for
all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)u‖H1,ε,γ ≤ C ‖u‖H1,ε,γ .

4.2. Singular amplitudes and singular oscillatory integral operators. — The result
of Proposition 3 can be generalized to singular amplitudes by using Theorem 2
instead of Theorem 1. More precisely, let us first define the classes of singular
amplitudes.
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Definition 3 (Singular amplitudes). — Let m ∈ R, and let n ∈ N. Then we
let Amn denote the set of families of functions (ãε,γ)ε∈]0,1],γ≥1 that are con-
structed as follows:

(25) ∀ (x, θ, y, ω, ξ, k) ∈ Rd × T× Rd × T× Rd × Z,

ãε,γ(x, θ, y, ω, ξ, k) := σ

Å
ε V (x, θ), εW (y, ω), ξ +

2π k β

ε
, γ

ã
,

where σ ∈ Sm( O1 × O2), V and W belong to the space Cnb (Rd ×T), and where
furthermore V , resp. W , takes its values in a convex compact subset K1, resp.
K2, of O1, resp. O2, that contains the origin.

To each amplitude ã = (ãε,γ)ε∈ ]0,1],γ≥1 ∈ Amn given by the Formula (25), we
wish to associate a singular oscillatory integral operator ›Op

ε,γ
(ã), that would

be defined (formally at first) by

∀ ε ∈ ]0, 1], ∀ γ ≥ 1, ›Op
ε,γ

(ã) := ›Op(ãε,γ),

and the oscillatory integral operator ›Op is introduced in Theorem 2. The prob-
lem is that, at this point of the analysis, the operator ›Op has only been defined
for bounded amplitudes that have sufficiently many derivatives in L∞, see The-
orem 2. We can therefore only define ›Op

ε,γ
(ã) for nonpositive degrees m. The

following result generalizes [14, Proposition 2.2]. The proof follows exactly that
of Proposition 3 above, except that we use Theorem 2 instead of Theorem 1.

Proposition 6. — Let n ≥ d + 1, and let ã ∈ Amn with m ≤ 0. Then for
all ε ∈ ]0, 1] and for all γ ≥ 1, the amplitude ãε,γ satisfies the assumptions of
Theorem 2. Moreover ›Op

ε,γ
(ã) defines a bounded operator on L2(Rd×T): there

exists a constant C > 0, that only depends on σ, V and W in the representation
(25), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T),
∥∥∥›Op

ε,γ
(ã)u

∥∥∥
0
≤ C

γ|m|
‖u‖0.

The derivatives ∂αx ∂
j
θ ∂

ν
y ∂

l
ω ∂

µ
ξ ãε,γ are computed in the classical sense and

all of them are continous bounded functions on Rdx ×Tθ ×Rdy ×Tω ×Rdξ ×Zk.
These derivatives are obtained by applying the Faà di Bruno formula.

Remark 3 still applies, meaning that the result of Proposition 6 would still
hold if we had made the substitution (v, w) → (V (x, θ),W (y, ω)) instead
of (v, w) → (ε V (x, θ), εW (y, ω)). Here, the small parameter ε is not crucial
in order to derive the uniform L∞ bound on the symbol.

In the same way as we proved a smoothing effect for singular pseudodiffer-
ential operators with symbols of negative order, we can prove the analogous
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result for singular oscillatory integrals operators when the amplitude has neg-
ative order and is sufficiently smooth.

Proposition 7. — Let n ≥ d + 2, and let ã ∈ A−1
n . Then the oscillatory

integral operator ›Op
ε,γ

(ã) is bounded from L2(Rd × T) to H1,ε(Rd × T). More
precisely, there exists a constant C > 0, that only depends on σ, V and W in
the representation (25), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T),
∥∥∥›Op

ε,γ
(ã)u

∥∥∥
H1,ε,γ

≤ C ‖u‖0.

Moreover, the derivatives of ›Op
ε,γ

(ã)u are computed by differentiating formally
under the integral sign.

The proof of Proposition 7 follows the same lines as that of Proposition 5,
except that we go back to the functions Tδ defined in Theorem 2, then we
differentiate under the integral sign and we pass to the limit δ → 0. The details
are left to the reader.

Extending the definition of ›Op
ε,γ

(ã) to the case m > 0 does not seem so
clear at first sight. The trick of Proposition 4 does not apply anylonger since
the composition ›Op

ε,γ
(ã) ›Op

ε,γ
(̃b) is no longer exact when ›Op

ε,γ
(̃b) is a Fourier

multiplier(5). We thus need another argument that we detail now. Due to the
application that we have in mind, see the companion article [7], we restrict
to the case of amplitudes of degree 1, meaning that the growth at infinity is
O(|ξ|+ |k|). We do not claim that our criterion in Lemma 5 below is sharp. As
a matter of fact, there is some hope that refined methods may yield a similar
result with less regularity on the amplitude, but this is not our main concern
here. We simply note that using sufficiently many derivatives to integrate by
parts enables us to justify the convergence of the truncation process without
the compact support assumption of [14].

Lemma 5. — Let ã ∈ A1
n, n ≥ 3 (d + 1). Let χ1 ∈ C∞0 (R) and χ2 ∈ C∞0 (Rd)

satisfy χ1(0) = χ2(0) = 1. Then for all u ∈ S(Rd×T), the sequence of functions
(Tδ)δ>0 defined by (8) with the amplitude ãε,γ converges in S′(Rd×T), and the
limit is independent of the truncation functions χ1, χ2.

As in the case ã ∈ A0
n, we let ›Op

ε,γ
(ã) denote the oscillatory integral operator

associated with ã ∈ A1
n. At this stage, this operator maps S into S′.

(5) Compare with the case of pseudodifferential operators for which Op(σ1)Op(σ2) =

Op(σ1 σ2) if σ2 only depends on (ξ, k).
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Proof of Lemma 5. — As in the proof of Theorem 2, our goal is to show that
for all u, v ∈ S(Rd × T), the integral Iδ defined by

Iδ :=

∫
Rd×T

Tδ(x, θ) v(x, θ) dx dθ,

with Tδ defined by (8) (just replace the general amplitude σ in (8) by ãε,γ),
has a limit as δ tends to 0, and that the limit is independent of the truncation
functions χ1, χ2. Applying Fubini’s Theorem, we have (let us ignore from now
on the powers of 2π that do not play any role):

Iδ =
∑
k∈Z

χ1(δ k)

∫
Rd×T×Rd

ei x·ξ e2 i π k θ χ2(δ ξ) v(x, θ)U(x, θ, ξ, k) dxdθ dξ,

with

U(x, θ, ξ, k) :=

∫
Rd×T

e−i y·ξ e−2 i π k ω ãε,γ(x, θ, y, ω, ξ, k)u(y, ω) dy dω.

It is sufficient to prove an estimate of the form

|U(x, θ, ξ, k)| ≤ C(ε, γ, ã, u)
1

1 + k2

d∏
j=1

1

1 + ξ2
j

,

and the convergence of Iδ will follow from the dominated convergence Theorem
(the constants may depend in a very bad way on ε but this is no concern for us
since we are only interested in the convergence of the integral for every fixed
value of ε). The L∞ bound for U is obtained by multiplying by the factor

(1− 2 i π k)3
d∏
j=1

(1− i ξj)3,

and by integrating by parts. Observing that ã ∈ A1
n with n ≥ 3 (d + 1), the

amplitude ãε,γ is seen to satisfy the following bounds for each fixed value of
the parameters ε, γ:∣∣∂βy ∂`ω ãε,γ(x, θ, y, ω, ξ, k)

∣∣ ≤ C (1 + |ξ|2 + k2
)1/2

, |β|+ ` ≤ 3 (d+ 1),

and we thus get∣∣∣∣∣∣(1− 2 i π k)3
d∏
j=1

(1− i ξj)3 U(x, θ, ξ, k)

∣∣∣∣∣∣ ≤ C (1 + |ξ|2 + k2
)1/2

,

which gives the result.

In the following paragraph, we shall see how the oscillatory integral operator
defined in Lemma 5 for amplitudes in A1

n acts on singular Sobolev spaces.
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4.3. Comparison between singular oscillatory integrals operators and singular pseu-
dodifferential operators. — Theorem 3 below extends the result of [14, Propo-
sition 2.3] to our framework in the case of bounded symbols, and is the main
ingredient in Section 5 to prove the symbolic calculus results.

Theorem 3. — Let ã ∈ A0
n, n ≥ 2 (d+ 1), be given by (25), and let a ∈ S0

n be
defined by

∀ (x, θ, ξ, k) ∈ Rd × T× Rd × Z,

aε,γ(x, θ, ξ, k) := σ

Å
ε V (x, θ), εW (x, θ), ξ +

2π k β

ε
, γ

ã
.

Then there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1,
there holds

(26) ∀u ∈ S(Rd × T),
∥∥∥›Op

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
0
≤ C

γ
‖u‖0.

If n ≥ 2 d+ 3, then for another constant C, there holds

(27) ∀u ∈ S(Rd × T),
∥∥∥›Op

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
H1,ε,γ

≤ C ‖u‖0,

uniformly in ε and γ.

Proof of Theorem 3. — The proof relies mainly on Proposition 2, which gives
the expression of the difference ›Op

ε,γ
(ã)u − Opε,γ(a)u. As a matter of fact,

Proposition 2 holds for very smooth amplitudes but using the standard con-
volution procedure, the result of Proposition 2 can be extended to amplitudes
for which the remainder r defined in Proposition 2 satisfies the assumptions of
Theorem 2. In what follows, we are going to verify that under the assumptions
of Theorem 3, the remainder r can be estimated in the norm ||| · |||Amp and we
shall feel free to apply Proposition 2 in this finite regularity framework.

Let us recall that the remainder r can be split as r = r1 + r2 with r1

also defined in Proposition 2 and r2 is a finite difference in k (the amplitude
r2 does not depend on y). Here we consider the amplitude ãε,γ . We are first
going to estimate the amplitude r1, and then r2. Eventually, we shall prove the
regularization estimate (27).
• The amplitude r1 reads

(28) r1 =
1

i

d∑
j=1

∫ 1

0

dwσj

Å
ε V (x, θ), εW ((1− t)x+ t y, ω), ξ +

2π k β

ε
, γ

ã
· ε ∂yjW ((1− t)x+ t y, ω) dt,

with σj := ∂ξj σ ∈ S−1. To prove that ›Op(r1) is bounded on L2, we are going
to apply Theorem 2 and we are thus going to control |||r1|||Amp. For instance,
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the L∞-norm of r1 is estimated by using the decay of σj with respect to the
frequency variables and we obtain

|r1(x, θ, y, ω, ξ, k)| ≤ C ε

γ
.

When estimating derivatives, the worst case occurs when the derivative with
respect to ω, the d derivatives with respect to x and the d derivatives with
respect to y all act on the term ∂yjW ((1− t)x+ t y, ω). This requires having a
bound for the first 2 d+2 derivatives ofW in L∞. Derivatives with respect to ξ
are harmless since they only add decay with respect to the frequency variables.
Under the assumption of Theorem 3, we thus get a bound of the form

|||r1|||Amp ≤
C ε

γ
,

which is even better than what we aimed at in (26).
• The estimate of the term r2 is more delicate and requires some attention.

We first use the trick that appears repeatedly in [14], namely we write

ãε,γ = σ

Å
ε V (x, θ), 0, ξ +

2π k β

ε
, γ

ã
+ σ]

Å
ε V (x, θ), εW (y, ω), ξ +

2π k β

ε
, γ

ã
· εW (y, ω),

where σ] still belongs to S0. The first term on the right-hand side does not
contribute to the difference ›Op

ε,γ
(ã)u−Opε,γ(a)u, see Proposition 1. We can

therefore focus on the second term for which we have an extra ε factor. To
avoid introducing some new notation, we still use ãε,γ to denote the second
term on the right-hand side. Then we have r2 = R(·, k + 1)−R(·, k) with

R(x, θ, ω, ξ, k) :=


ãε,γ(x, θ, x, ω, ξ, k)− ãε,γ(x, θ, x, θ, ξ, k)

1− e−2 i π (ω−θ) , if ω 6= θ,
1

2 i π
∂ωãε,γ(x, θ, x, θ, ξ, k), if ω = θ.

Considering k as a real variable (and not only an element of Z), there holds

|r2(x, θ, ω, ξ, k)| ≤ sup
κ∈[0,1]

∣∣∂kR(x, θ, ω, ξ, k + κ)
∣∣

≤ C sup
θ,ω,κ∈[0,1]

∣∣∂ω ∂k ãε,γ(x, θ, x, ω, ξ, k + κ)
∣∣.

The k-derivative of ãε,γ introduces a factor 1/ε times a frequency derivative of
the symbol σ]. The 1/ε factor is compensated by the ε factor in the term εW

and the frequency derivative of the symbol yields a decay of the formÇ
γ2 +

∣∣∣∣ξ +
2 (k + κ)π β

ε

∣∣∣∣2
å−1/2

.
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We thus obtain a bound

|r2(x, θ, ω, ξ, k)| ≤ C

γ
.

The estimate of the derivatives of r2 follow the same strategy. Here there is no
y-derivative to control, and the worst case occurs when we take d derivatives
in x, one derivative in θ, and one derivative in ω. This requires having d + 3

derivatives of the functions V,W in L∞. Since d+ 3 ≤ 2 (d+ 1), we thus derive
a bound of the form

|||r2|||Amp ≤
C

γ
.

Combining with our estimate of r1 and applying Theorem 2, we already get
(26).

Before going on and proving (27), we make an important remark. In our
estimate of r2, we have taken into account the finite difference with respect
to k in order to make a frequency derivative appear, to the price of a 1/ε but
gaining a 1/γ. We could have also estimated each term of r2, meaning the terms
R(·, k + 1) and R(·, k), separately. If we had adopted such strategy, we would
not have gained a 1/γ but there would have been no trouble with the 1/ε term.
More precisely, the amplitude r2 satisfies a bound of the form

(29) |||r2|||Amp ≤ C ε.

• Our goal is now to prove (27). Following Propositions 5 and 7, the deriva-
tive Å

∂x1 +
β1

ε
∂θ

ã›Op(r1)u

is computed by differentiating under the integral sign provided that the am-
plitude has sufficiently many derivatives in L∞, and similarly for r2. We show
how to estimate such derivatives under the assumption n ≥ 2 d+3. Let us start
with the terms involving r1, which are actually easier. There holdsÅ

∂x1 +
β1

ε
∂θ

ã›Op(r1)u

= ›Op
Å(
i ξ1 +

2 i k π β1

ε

)
r1

ã
u+ ›Op(∂x1

r1)u+ ›Op
Å
β1

ε
∂θr1

ã
u.

We recall that the amplitude r1 is given by (28). To control ∂x1r1 in the norm
||| · |||Amp, one just needs an extra space derivative than in the previous step. The
same argument holds for ∂θr1. Consequently, under the assumption n ≥ 2 d+3,
we get ∥∥∥∥›Op(∂x1

r1)u+ ›Op
Å
β1

ε
∂θr1

ã
u

∥∥∥∥
0

≤ C

γ
‖u‖0.
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In order to estimate the amplitudeÅ
i ξ1 +

2 i k π β1

ε

ã
r1,

we use the decomposition (28), where we recall that the σj ’s belong to S−1.
Compared to the previous step, this amounts to working with the symbols
i ξ1 σj , which belong to S0, and we thus get uniform L∞ bounds in O(ε).
Eventually, we have obtained the bound∥∥∥∥Å∂x1 +

β1

ε
∂θ

ã›Op(r1)u

∥∥∥∥
0

≤ C
Å

1

γ
+ ε

ã
‖u‖0.

The remaining task is to control the analogous expression with the amplitude
r2 instead of r1. To control the terms that involve ∂x1

r2 or (β1/ε) ∂θr2, we use
the argument with which we derived the estimate (29). More precisely, we
estimate each term with R(·, k+ 1) and R(·, k) separately, keeping the ε factor
to cancel the singular term β1/ε. This requires only one more derivative on the
functions V,W since we take one more x1 or θ derivative of the amplitude. The
most tricky term corresponds toÅ

i ξ1 +
2 i k π β1

ε

ã
r2.

For this final term, we use the decompositionÅ
i ξ1 +

2 i k π β1

ε

ã
r2 =

Å
i ξ1 +

2 i (k + 1)π β1

ε

ã
R(·, k + 1)

−
Å
i ξ1 +

2 i k π β1

ε

ã
R(·, k)− 2 i π β1

ε
R(·, k + 1).

The last term R(·, k + 1)/ε has already been estimated at the previous step,
see (29), and satisfies an O(1) bound in the norm ||| · |||Amp. What remains is a
finite difference in k which corresponds to the symbol i ξ1 σ instead of σ (and
then making the substitution with the singular frequency ξ + 2 k π β/ε). We
apply the same strategy as in the previous step to make a frequency derivative
appear, to the price of a 1/ε. Since the ξ-derivatives of i ξ1 σ belong to S0 and
thus satisfy uniform L∞ bounds, we end up with the estimate∥∥∥∥Å∂x1

+
β1

ε
∂θ

ã›Op(r2)u

∥∥∥∥
0

≤ C ‖u‖0,

which completes the proof of (27).

The following result extends Theorem 3 to the case of amplitudes with degree
1. In particular, it makes the action of singular oscillatory integral operators
on Sobolev spaces precise.
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Theorem 4. — Let ã ∈ A1
n, n ≥ 3 d + 4, be given by (25), and let a ∈ S1

n be
defined by

∀ (x, θ, ξ, k) ∈ Rd × T× Rd × Z,

aε,γ(x, θ, ξ, k) := σ

Å
ε V (x, θ), εW (x, θ), ξ +

2π k β

ε
, γ

ã
.

Then the operator ›Op
ε,γ

(ã) − Opε,γ(a) is bounded on L2, namely there exists
a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

(30) ∀u ∈ S(Rd × T),
∥∥∥›Op

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
0
≤ C ‖u‖0.

In particular, ›Op
ε,γ

(ã) maps H1,ε into L2 and there exists a constant C ≥ 0

such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T),
∥∥∥›Op

ε,γ
(ã)u

∥∥∥
0
≤ C ‖u‖H1,ε,γ .

Proof of Theorem 4. — Let u ∈ S(Rd × T). Then we know that ›Op
ε,γ

(ã)u is
the limit in S′(Rd×T), as δ tends to 0, of the sequence (Tδ), with (ignore from
now on the powers of 2π):

Tδ (x, θ) :=
∑
k∈Z

χ1(δ k)

∫
Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω)

· χ2(δ ξ) ãε,γ(x, θ, y, ω, ξ, k)u(y, ω) dξ dy dω.

Using the result of Proposition 2 (with a finite regularity, which can be justified
by the standard convolution procedure), we decompose as usual

Tδ = T1,δ + ›Op(r1,δ)u+ ›Op(r2,δ)u,

with

T1,δ (x, θ) :=
∑
k∈Z

χ1(δ k)

∫
Rd×Rd×T

ei (x−y)·ξ e2 i π k (θ−ω)

· χ2(δ ξ) ãε,γ(x, θ, x, θ, ξ, k)u(y, ω) dξ dy dω,

and r1,δ, r2,δ are as in Proposition 2, but are obtained by considering the
truncated amplitude χ1(δ k)χ2(δ ξ) ãε,γ .

It is easy to show that the sequence T1,δ converges in S′ (and even in a
stronger sense) towards Opε,γ(a)u, because one can first integrate in (y, ω)

and use the decay of the Fourier transform of u. (This is the same argument as
in Proposition 1.) We are now going to compute the limit as δ tends to 0 of›Op(r1,δ)u+ ›Op(r2,δ)u.
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Using the general formula of Proposition 2, we have

r1,δ = χ1(δ k)χ2(δ ξ) r1

+
δ

i

d∑
j=1

χ1(δ k) ∂ξjχ2(δ ξ)

∫ 1

0

∂yj ãε,γ(x, θ, (1− t)x+ t y, ω, ξ, k) dt,

r1 :=
1

i

d∑
j=1

∫ 1

0

∂yj∂ξj ãε,γ(x, θ, (1− t)x+ t y, ω, ξ, k) dt.

Since ∂ξj ãε,γ is a bounded amplitude, we can apply Theorem 2 for the conver-
gence of the term ›Op(χ1(δ k)χ2(δ ξ) r1)u. More precisely, we have ∂yj∂ξj ã ∈
A0
n−1, n − 1 ≥ 3 d + 3, and we therefore know that the limit of this term

is ›Op(r1)u. Moreover, the operator ›Op(r1) acts boundedly on L2, uniformly
in ε, γ.

We now deal with the remaining term in r1,δ. Since the remainder r1,δ −
χ1(δ k)χ2(δ ξ) r1 has an extra δ factor, it is sufficient to prove that the singular
oscillatory integral associated with the amplitude

χ1(δ k) ∂ξjχ2(δ ξ)

∫ 1

0

∂yj ãε,γ(x, θ, (1− t)x+ t y, ω, ξ, k) dt,

has a limit in S′ as δ tends to 0. The limit exists because the amplitude ∂yj ã
belongs to A1

n−1, n − 1 ≥ 3 d + 3, so we can apply Lemma 5. We have thus
shown that the limit of ›Op(r1,δ)u in S′ is ›Op(r1)u, and this term is controlled
in L2 uniformly with respect to ε, γ.

The analogous term with r2,δ is dealt with in a similar way. The finite dif-
ference with respect to k plays the role of the ξ derivative and we can prove
uniform bounds on the amplitude in the norm ||| · |||Amp by using the same ar-
guments as in the proof of Theorem 3. We feel free to skip the details. The
action of ›Op

ε,γ
(ã) on H1,ε is obtained by combining (30) with the result of

Proposition 4 for Opε,γ(a).

5. Singular calculus II. Adjoints and products

5.1. Adjoints of singular pseudodifferential operators. — Our results on adjoints
are very easy consequences of all the preliminary results in Section 4. Let us
start with the case of bounded symbols.

Proposition 8. — Let a ∈ S0
n, n ≥ 2 (d+ 1), and let a∗ denote the conjugate

transpose of the symbol a. Then there exists a constant C ≥ 0 such that for all
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ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖0 ≤
C

γ
‖u‖0.

If n ≥ 2 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖H1,ε,γ ≤ C ‖u‖0,

uniformly in ε and γ.

Recall that Opε,γ(a) and Opε,γ(a∗) act boundedly on L2 under the assump-
tions of Proposition 8 (use Proposition 3), so Opε,γ(a)∗ is also bounded on L2.

Proof of Proposition 8. — As in [14, Proposition 2.4], it is sufficient to observe
that if aε,γ is defined by (22), the adjoint operator Opε,γ(a)∗ coincides with the
singular oscillatory integral operator ›Op

ε,γ
(̃b) associated with the amplitude

(31) b̃ε,γ(x, θ, y, ω, ξ, k) := aε,γ(y, ω, ξ, k)∗ = σ

Å
ε V (y, ω), ξ +

2π k β

ε
, γ

ã∗
.

Then we apply Theorem 3 and the conclusion follows.

Proposition 8 can be extended to symbols of degree 1 up to an additional
regularity in the space variables (this high regularity is mainly required to give
a precise meaning to oscillatory integral operators).

Proposition 9. — Let a ∈ S1
n, n ≥ 3 d + 4, and let a∗ denote the conjugate

transpose of the symbol a. Then Opε,γ(a) and Opε,γ(a∗) map H1,ε into L2 and
there exists a family of operators Rε,γ that satisfies

– there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1,
there holds

∀u ∈ S(Rd × T), ‖Rε,γ u‖0 ≤ C ‖u‖0,

– the following duality property holds

∀u, v ∈ S(Rd × T), 〈Opε,γ(a)u, v〉L2 − 〈u,Opε,γ(a∗) v〉L2 = 〈Rε,γ u, v〉L2 .

In particular, the adjoint Opε,γ(a)∗ for the L2 scalar product maps H1,ε

into L2.

Proof of Proposition 9. — The proof is quite similar to that of Proposition 8.
First of all, the regularity assumption n ≥ 3 (d+1) allows to pass to the limit in
the standard truncation process and to show that the adjoint (with respect to
the L2 scalar product) of the operator Opε,γ(a) coincides with the oscillatory
integral operator ›Op

ε,γ
(̃b) associated with the amplitude b̃ε,γ defined in (31).

Then we apply Theorem 4 and the conclusion follows.
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Let us observe that we only have proved a symbolic calculus "at the first
order", meaning that we have not proved that the adjoint operator Opε,γ(a)∗

admits an asymptotic expansion with more and more smoothing operators.
Even in the case of C∞ regularity for the substituted function V , it is not so
clear that the second order expansion holds with a uniformly bounded remain-
der in the scale of spaces Hk,ε. This bad behavior is more or less the same as
in Remark 4 (consider for instance the case of differential operators of order 2).

5.2. Products of singular pseudodifferential operators. — We still follow [14] and
begin with a special case of products.

Proposition 10. — Let a, b ∈ S0
n, n ≥ 2 (d+ 1). Then there exists a constant

C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)Opε,γ(b)∗ u−Opε,γ(a b∗)u‖0 ≤
C

γ
‖u‖0.

If n ≥ 2 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)Opε,γ(b)∗ u−Opε,γ(a b∗)u‖H1,ε,γ ≤ C ‖u‖0,

uniformly in ε and γ.

Let a ∈ S1
n, b ∈ S0

n or a ∈ S0
n, b ∈ S1

n, n ≥ 3 d + 4. Then there exists a
constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)Opε,γ(b)∗ u−Opε,γ(a b∗)u‖0 ≤ C ‖u‖0.

Proof of Proposition 10. — In each of the three possible cases, the main point
is to observe that the operator Opε,γ(a)Opε,γ(b)∗ coincides with the oscillatory
integral operator ›Op

ε,γ
(c̃) associated with the amplitude

c̃ε,γ(x, θ, y, ω, ξ, k) := aε,γ(x, θ, ξ, k) bε,γ(y, ω, ξ, k)∗.

The result is well-known for amplitudes with a sufficient decay with respect
to the frequencies, and it holds in a more general framework provided that
all oscillatory integrals can be defined (which is the case under the regularity
assumptions stated in Proposition 10). The conclusion then follows from either
Theorem 3 or 4.

A main improvement with respect to [14] is that we can now deal with all
kinds of products by the classical ∗∗ argument. This improvement has been
made possible because we have already shown a smoothing property for some
remainders in the calculus (compare with [14, Propositions 2.6, 2.7]).
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Proposition 11. — Let a, b ∈ S0
n, n ≥ 2 (d+ 1). Then there exists a constant

C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤
C

γ
‖u‖0.

If n ≥ 2 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖H1,ε,γ ≤ C ‖u‖0,

uniformly in ε and γ.
Let a ∈ S1

n, b ∈ S0
n or a ∈ S0

n, b ∈ S1
n, n ≥ 3 d + 4. Then there exists a

constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤ C ‖u‖0.

Proof of Proposition 11. — Let us deal for instance with the case a, b ∈ S0
n,

n ≥ 2 d+ 3. Then we have

Opε,γ(a)Opε,γ(b) = Opε,γ(a)Opε,γ(b∗∗) = Opε,γ(a)
(
Opε,γ(b∗)∗ +Rε,γ−1

)
,

where we have applied Theorem 3 to the symbol b∗ and denoted Rε,γ−1 the
smoothing remainder (mapping L2 into H1,ε). Thanks to Lemma 4, we know
that Opε,γ(a) acts continuously on H1,ε, uniformly with respect to ε, γ, so the
product Opε,γ(a)Rε,γ−1 can be rewritten as a remainder of the form Rε,γ−1 . The
product Opε,γ(a)Opε,γ(b∗)∗ is dealt with by applying Proposition 10. We end
up with

Opε,γ(a)Opε,γ(b) = Opε,γ(a b) +Rε,γ−1 .

The only other interesting case is a ∈ S1
n, b ∈ S0

n, n ≥ 3 d+ 4. Then we write
again

Opε,γ(a)Opε,γ(b) = Opε,γ(a)
(
Opε,γ(b∗)∗ +Rε,γ−1

)
,

and we observe that the product Opε,γ(a)Rε,γ−1 acts boundedly on L2, uniformly
with respect to ε, γ (use Theorem 4). The product Opε,γ(a)Opε,γ(b∗)∗ is dealt
with by applying again Proposition 10. We leave all remaining cases to the
interested reader.

A surprising fact is that the ∗∗ argument also applies for products of operators
with degree −1 and 1. We feel free to skip the proof that is entirely similar to
that of Proposition 11.

Proposition 12. — Let a ∈ S−1
n , b ∈ S1

n, n ≥ 3 d+4. Then Opε,γ(a)Opε,γ(b)

defines a bounded operator on H1,ε and there exists a constant C ≥ 0 such that
for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd × T), ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖H1,ε,γ ≤ C ‖u‖0.
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The analogue of Proposition 12 seems unfortunately untrue when the prod-
uct is taken the other way round, meaning when the operator of order +1 acts
on the left. This can be seen for instance by choosing for the left operator the
singular derivative ∂x1 + (β1/ε) ∂θ. We are then reduced to showing a bound
in H1,ε for the terms T2, T3 appearing in the proof of Proposition 5. Such a
bound is available for T2 but not for the last term T3. This fact gives rise to a
special treatment of +1,−1 products in the companion article [7].

5.3. Elliptic estimates. — The exact same arguments as in [14, page 155] apply
to prove the weak Gårding’s inequality without any compact support assump-
tion on the symbols. We just need slightly more regularity on the symbols in
order to apply Propositions 8 and 11 above.

Theorem 5. — Let σ ∈ S0 satisfy Reσ(v, ξ, γ) ≥ CK > 0 for all v in a
compact subset K of O. Let now a ∈ Sn0 , n ≥ 2 d + 2 be given by (22), where
V is valued in a convex compact subset K. Then for all δ > 0, there exists γ0

which depends uniformly on V , the constant CK and δ, such that for all γ ≥ γ0

and all u ∈ S(Rd × T), there holds

Re 〈Opε,γ(a)u;u〉L2 ≥ (CK − δ) ‖u‖20.

5.4. Extended singular pseudodifferential calculus. — Following [14, page 153],
we can extend all the above results on boundedness/adjoints/products to the
larger class eSm of functions σ : Ov × Rdξ × R2d

ζ × [1,+∞[→ CN×N such that

(i) for all γ ≥ 1, σ(·, ·, ·, γ) is C∞ on Ov × Rdξ × R2d
ζ ,

(ii) for all compact subset K of O, for all α ∈ Nq and for all ν ∈ N3d, there
exists a constant Cα,ν,K satisfying

sup
v∈K

sup
(ξ,ζ)∈Rd×R2d,|ξ|≤|ζ|

sup
γ≥1

(γ2 + |ξ|2)−(m−|ν|)/2 ∣∣∂αv ∂νξ,ζ σ (v, ξ, ζ, γ)
∣∣ ≤ Cα,ν,K .

For such symbols, we use the substitution v → ε V (x, θ), ξ → ξ+2π k β/ε, ζ →
(ξ, 2π k β/ε), which gives rise to extended singular pseudodifferential operators
of the form

eOpε,γ(a)u (x, θ)

:=
1

(2π)d

∑
k∈Z

∫
Rd

ei x·ξ e2 i π k θ σ

Å
ε V (x, θ), ξ +

2π k β

ε
, ξ,

2π k β

ε
, γ

ã ’ck(u)(ξ) dξ.

We can also define extended singular amplitudes and compare the extended
oscillatory integral operators with the above extended pseudodifferential opera-
tor. All results in Sections 4 and 5 are proved in the same way for this extended
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class because we have always relied on general boundedness result such as The-
orem 1 or Theorem 2 and these results can handle symbols or amplitudes in
the extended class.

The main interest of defining this extended class is to be able to consider
pseudodifferential cut-offs of the form

χ

Å
ε V (x, θ), Dx,

β ∂θ
ε
, γ

ã
,

where χ is supported in the region |ζ1| � |ζ2| (here ζ1 is the placeholder for ξ,
and ζ2 is the placeholder for 2π k β/ε). Such cut-offs are useful to microlocalize
near the specific frequency β. We again refer to [7] for further applications of
these techniques.

PART II

SINGULAR PSEUDODIFFERENTIAL CALCULUS FOR PULSES

In this second part, we explain how the results of the Part I can be adapted to
the case where the additional space variable θ and associated singular frequency
k lie in R. In the proofs below, we focus mainly on the differences with respect
to Part I, which are due to the fact that the domain of θ is now not compact.
This forces us to take ∂k-derivatives of singular symbols and amplitudes, and
one must handle the extra factors of 1/ε that arise. We shall use the same
notation to denote new classes of symbols, amplitudes and so on, in order to
highlight the similarities between Part I and Part II. We hope that this will
not create any confusion.

The variable in Rd+1 is denoted (x, θ), x ∈ Rd, θ ∈ R, and the associated
frequency is denoted (ξ, k). In this new context, the singular Sobolev spaces
are defined as follows. We still consider a vector β ∈ Rd \ {0}. Then for s ∈ R
and ε ∈ ]0, 1], the anisotropic Sobolev space Hs,ε(Rd+1) is defined by

Hs,ε(Rd+1) :=
{
u ∈ S′(Rd+1) / û ∈ L2

loc(Rd+1)

and
∫
Rd+1

Ç
1 +

∣∣∣∣ξ +
k β

ε

∣∣∣∣2
ås ∣∣û(ξ, k)

∣∣2 dξ dk < +∞
}
.
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Here û denotes the Fourier transform of u on Rd+1. The space Hs,ε(Rd+1) is
equipped with the family of norms

∀ γ ≥ 1, ∀u ∈ Hs,ε(Rd+1),

‖u‖2Hs,ε,γ :=
1

(2π)d+1

∫
Rd+1

Ç
γ2 +

∣∣∣∣ξ +
k β

ε

∣∣∣∣2
ås ∣∣û(ξ, k)

∣∣2 dξ dk.

When m is an integer, the space Hm,ε(Rd+1) coincides with the space of func-
tions u ∈ L2(Rd+1) such that the derivatives, in the sense of distributions,Å

∂x1
+
β1

ε
∂θ

ãα1

. . .

Å
∂xd +

βd
ε
∂θ

ãαd
u, α1 + · · ·+ αd ≤ m,

belong to L2(Rd+1). In the definition of the norm ‖ · ‖Hm,ε,γ , one power of γ
counts as much as one derivative.

6. The main L2 continuity results

We begin with two results in which we simply assume good control
of ∂k-derivatives. The first result is the standard Calderón-Vaillancourt
Theorem.

Theorem 6. — Let σ : Rd+1
(x,θ)×Rd+1

(ξ,k) → CN×N be a continuous function that

satisfies the property: for all α, β ∈ {0, 1}d and for all j, ` ∈ {0, 1}, ∂αx ∂
j
θ ∂

β
ξ ∂

`
k σ

belongs to L∞(Rd+1 × Rd+1), where the derivative is understood in the sense
of distributions.

For u ∈ S(Rd+1;CN ), let us define

∀ (x, θ) ∈ Rd+1,

Op(σ)u (x, θ) :=
1

(2π)d+1

∫
Rd+1

ei (ξ·x+k θ) σ(x, θ, ξ, k) û(ξ, k) dξ dk.

Then Op(σ) extends as a continuous operator on L2(Rd+1;CN ). More precisely,
there exists a numerical constant C, that only depends on d and N , such that
for all u ∈ S(Rd+1;CN ), there holds

‖Op(σ)u‖0 ≤ C |||σ||| ‖u‖0,

with |||σ||| := sup
α,β∈{0,1}d

sup
j,`∈{0,1}

∥∥∥∂αx ∂jθ ∂βξ ∂`k σ∥∥∥
L∞(Rd+1×Rd+1)

.

We now consider the case of oscillatory integral operators associated with
amplitudes defined on Rd+1

(x,θ) ×Rd+1
(y,ω) ×Rd+1

(ξ,k). We feel free to skip the proof of
the following Theorem, which is a slight adaptation of the proof of Theorem 2.
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Theorem 7. — Let σ : Rd+1
(x,θ) × Rd+1

(y,ω) × Rd+1
(ξ,k) → CN×N be a continuous

function that satisfies the property: for all α, β ∈ {0, 1}d+1, for all j ∈ {0, 1, 2}
and for all ν ∈ {0, 1, 2}d, there holds ∂αx,θ ∂

β
y,ω ∂

ν
ξ ∂

j
kσ belongs to L∞(Rd+1 ×

Rd+1 × Rd+1). Let χ ∈ C∞0 (Rd+1) satisfy χ(0) = 1.
Then for all u ∈ S(Rd+1), the sequence of functions (Tδ)δ>0 defined on Rd+1

by

Tδ (x, θ) :=
1

(2π)d+1

∫
Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω))

χ(δ ξ, δ k)σ(x, θ, y, ω, ξ, k)u(y, ω) dξ dk dy dω,

converges in S′(Rd+1), as δ tends to 0, towards a distribution ›Op(σ)u ∈
L2(Rd+1). This limit is independent of the truncation function χ. Moreover,
there exists a numerical constant C, that only depends on d and N , such that
there holds∥∥∥›Op(σ)u

∥∥∥
0
≤ C |||σ|||Amp ‖u‖0,

with |||σ|||Amp :=

sup
α,β∈{0,1}d+1

sup
j∈{0,1,2}

sup
ν∈{0,1,2}d

∥∥∥∂αx,θ ∂βy,ω ∂νξ ∂jk σ∥∥∥
L∞(Rd+1×Rd+1×Rd+1)

.

Of course, when the amplitude σ in Theorem 7 does not depend on its third
and fourth variables, we are reduced to the case of pseudodifferential operators.

7. Singular calculus I. Definition of operators and action on Sobolev spaces

Let us first define the singular symbols.

Definition 4 (Singular symbols). — Let m ∈ R, and let n ∈ N. Then we
let Smn denote the set of families of functions (aε,γ)ε∈]0,1],γ≥1 that are con-
structed as follows:

(32) ∀ (x, θ, ξ, k) ∈ Rd+1×Rd+1, aε,γ(x, θ, ξ, k) = σ

Å
ε V (x, θ), ξ +

k β

ε
, γ

ã
,

where σ ∈ Sm( O), V belongs to the space Cnb (Rd+1) and where furthermore V
takes its values in a convex compact subset K of O that contains the origin (for
instance K can be a closed ball centered round the origin).

To each symbol a = (aε,γ)ε∈]0,1],γ≥1 ∈ Smn given by the Formula (32) with
values in CN×N , we associate a singular pseudodifferential operator Opε,γ(a),
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with ε ∈ ]0, 1] and γ ≥ 1, whose action on a function u ∈ S(Rd+1;CN ) is defined
by

(33) Opε,γ(a)u (x, θ)

:=
1

(2π)d+1

∫
Rd+1

ei (ξ·x+k θ) σ

Å
ε V (x, θ), ξ +

k β

ε
, γ

ã
û(ξ, k) dξ dk.

Let us briefly note that for the Fourier multiplier σ(v, ξ, γ) = i ξ1, the corre-
sponding singular operator is ∂x1 + (β1/ε) ∂θ. The main difference with respect
to (23) is that now the singular frequency k lies in all R and no longer in a
discrete set. This modification will be significant in the comparison between
oscillatory integral operators and pseudodifferential operators. Following Part
I, we wish to describe the action of singular pseudodifferential operators on
Sobolev spaces. The following result is a rather direct consequence of Theo-
rem 6.

Proposition 13. — Let n ≥ d+1, and let a ∈ Smn with m ≤ 0. Then Opε,γ(a)

in (33) defines a bounded operator on L2(Rd+1): there exists a constant C > 0,
that only depends on σ and V in the representation (32), such that for all
ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)u‖0 ≤
C

γ|m|
‖u‖0.

The constant C in Proposition 13 depends uniformly on the compact set in
which V takes its values and on the norm of V in Cd+1

b .

Proof of Proposition 13. — As in [14], we use an expansion in ε. We write

aε,γ = σ

Å
0, ξ +

k β

ε
, γ

ã
+ σ]

Å
ε V (x, θ), ξ +

k β

ε
, γ

ã
· ε V (x, θ).

Boundedness on L2 for the Fourier multiplier is trivial, and as far as the second
part is concerned, we can apply Theorem 6 because taking only one k-derivative
is harmless for the second term since it contains an extra ε factor.

The analogue of Proposition 4 works in exactly the same way.

Proposition 14. — Let n ≥ d+1, and let a ∈ Smn with m > 0. Then Opε,γ(a)

in (33) defines a bounded operator from Hm,ε(Rd+1) to L2(Rd+1): there exists
a constant C > 0, that only depends on σ and V in the representation (32),
such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)u‖0 ≤ C ‖u‖Hm,ε,γ .

There is also a smoothing effect in the case m < 0 that is analogous to the one
proved in Proposition 5 for wavetrains.
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Proposition 15. — Let n ≥ d + 2, and let a ∈ S−1
n . Then Opε,γ(a) in (33)

defines a bounded operator from L2(Rd+1) to H1,ε(Rd+1): there exists a con-
stant C > 0, that only depends on σ and V in the representation (32), such
that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)u‖H1,ε,γ ≤ C ‖u‖0.

Proof. — We follow the proof of Proposition 5 and decompose the singular
derivatives Å

∂xj +
βj
ε
∂θ

ã
Opε,γ(a)u

as the sum of three terms T1, T2, T3, see the proof of Proposition 5, where we
now integrate with respect to k ∈ R rather than summing with respect to k ∈ Z,
and ’ck(u)(ξ) is now replaced by û(ξ, k).

As in the proof of Proposition 5, the terms T1, T2 fall into the framework of
Proposition 13, and the corresponding pseudodifferential operators are bounded
on L2 uniformly in ε, γ. The only difficulty lies in the term T3 whose symbol
we decompose as

∂vσ

Å
ε V (x, θ), ξ +

k β

ε
, γ

ã
· ∂θ V (x, θ) = ∂vσ

Å
0, ξ +

k β

ε
, γ

ã
· ∂θ V (x, θ)

+ σ[

Å
ε V (x, θ), ξ +

k β

ε
, γ

ã
· (ε V, ∂θ V )(x, θ) =: A+B.

The operator associated to the symbol A (say AD, for short) is bounded on L2

since it reads as the composition of a Fourier multiplier with the multiplication
by the bounded function ∂θ V . The operator BD is also bounded on L2 since
we can apply Theorem 6 (thanks to the factor ε in ε V and we only need to
control one k-derivative).

The arguments used in the proof of Proposition 15 yield the analogue of
Lemma 4.

Lemma 6. — Let n ≥ d + 2, and let a ∈ S0
n. Then Opε,γ(a) acts boundedly

on H1,ε(Rd+1) with a norm that is independent of ε, γ: there exists a constant
C > 0, that only depends on σ and V in the representation (22), such that for
all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)u‖H1,ε,γ ≤ C ‖u‖H1,ε,γ .

We can extend the above results to singular amplitudes which are defined
in the following way.
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Definition 5 (Singular amplitudes). — Let m ∈ R, and let n ∈ N. Then we
let Amn denote the set of families of functions (ãε,γ)ε∈]0,1],γ≥1 that are con-
structed as follows:

(34) ∀ (x, θ, y, ω, ξ, k) ∈ Rd+1 × Rd+1 × Rd+1,

ãε,γ(x, θ, y, ω, ξ, k) := σ

Å
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

ã
,

where σ ∈ Sm( O1 × O2), V and W belong to the space Cnb (Rd+1), and where
furthermore V , resp. W , takes its values in a convex compact subset K1, resp.
K2, of O1, resp. O2, that contains the origin.

Our continuity results of Propositions 6 and 7 extend to the case of pulses.
For ã ∈ Amn , our goal is to define, whenever the formula makes sense, the sin-
gular oscillatory integral operator acting on functions u ∈ S(Rd+1) as follows:

(35) ›Op
ε,γ

(ã)u(x, θ)

:=
1

(2π)d+1

∫
Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω))

· σ
Å
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

ã
u(y, ω) dξ dk dy dω.

We have the following result for bounded amplitudes. The integral in (35) has
to be understood as the limit in S′(Rd+1) of a truncation process in (ξ, k).

Proposition 16. — Let n ≥ d+1, and let ã ∈ Amn with m ≤ 0. Then ›Op
ε,γ

(ã)

in (35) defines a bounded operator on L2(Rd+1): there exists a constant C > 0,
that only depends on σ, V and W in the representation (34), such that for all
ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1),
∥∥∥›Op

ε,γ
(ã)u

∥∥∥
0
≤ C

γ|m|
‖u‖0.

Proof of Proposition 16. — Keeping in mind that V = V (x, θ) and W =

W (y, ω), we use the decomposition

ãε,γ = σ

Å
ε V, 0, ξ +

k β

ε
, γ

ã
+ σ1

Å
ε V, 0, ξ +

k β

ε
, γ

ã
· εW

+ σ2

Å
ε V, εW, ξ +

k β

ε
, γ

ã
· (εW, εW )

=: A+B + C.

Boundedness on L2 for the operator AD follows from Proposition 13, since
we deal here with a singular pseudodifferential operator. The operator BD is
bounded on L2, since it is the composition of multiplication by εW (a bounded
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function) followed by a bounded operator on L2. Finally, we can apply Theo-
rem 7 to CD, since we can control two k-derivatives of C uniformly in ε.

Next we consider the smoothing effect for amplitudes of degree −1.

Proposition 17. — Let n ≥ d + 2, and let ã ∈ A−1
n . Then ›Op

ε,γ
(ã) in (35)

defines a bounded operator from L2(Rd+1) into H1,ε(Rd+1): there exists a con-
stant C > 0, that only depends on σ, V and W in the representation (34), such
that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1),
∥∥∥›Op

ε,γ
(ã)u

∥∥∥
H1,ε,γ

≤ C ‖u‖0.

Proof of Proposition 17. — Proposition 16 already gives a control of γ times
the L2 norm so it only remains to estimate the singular derivatives. We follow
the proof of Propositions 5 and 7, and decompose the singular derivativeÅ

∂x1 +
β1

ε
∂θ

ã ›Op
ε,γ

(ã)u

as the sum of T1, T2, T3 (here we consider for simplicity that the truncation
with respect to the frequencies has already been pushed to its limit δ → 0). The
terms T1, T2 fall into the framework of Proposition 16 since they correspond
to singular amplitudes in the sense of Definition 5. The remaining term T3

corresponds to the amplitude

∂vσ

Å
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

ã
· ∂θ V (x, θ).

Consequently the term T3 reads as the composition of the singular oscillatory
integral operator with amplitude

∂vσ

Å
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

ã
,

followed by multiplication by the bounded function ∂θ V . Uniform L2 bounds
are provided by Proposition 16 and the conclusion of Proposition 17 follows.

The argument of Lemma 5 based on integration by parts still works for
amplitudes of degree 1, and we have

Lemma 7. — Let ã ∈ A1
n, n ≥ 3 (d+ 1). Then ›Op

ε,γ
(ã) in (35) is well-defined

from S(Rd+1) into S′(Rd+1) as the limit of the operators associated with the
amplitude χ(δ ξ, δ k) ã, χ ∈ C∞0 (Rd+1).
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Singular oscillatory integral operators and singular pseudodifferential opera-
tors are closely linked. The results below are the direct extensions of Theorems 3
and 4. There is a new technical difficulty which arises because the set of θ-fre-
quencies is no longer discrete and we thus really need to take derivatives while
we had to deal with finite differences in Part I. Furthermore, Theorem 7 re-
quires two k-derivatives in L∞ for L2-boundedness and this leads us to using
a new argument in the proof of Theorem 8 below.

Theorem 8. — Let ã ∈ A0
n, n ≥ 2 (d+ 1), be given by (34), and let a ∈ S0

n be
defined by

∀ (x, θ, ξ, k) ∈ Rd+1 × Rd+1,

aε,γ(x, θ, ξ, k) := σ

Å
ε V (x, θ), εW (x, θ), ξ +

k β

ε
, γ

ã
.

We also assume

(36) W ∈ Hs0(Rd+1) for some s0 >
d+ 1

2
+ 1.

Then there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1,
there holds

∀u ∈ S(Rd+1),
∥∥∥›Op

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
0
≤ C

γ
‖u‖0.

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd+1),
∥∥∥›Op

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
H1,ε,γ

≤ C ‖u‖0,

uniformly in ε and γ.

The reason why we need 3 d+3 derivatives on the symbol for the smoothing
effect (rather than 2 d+3 as in Theorem 3) will be explained in the proof below.
We do not claim however that the assumptions in Theorem 8 are optimal.

Remark 5. — 1. Letting Ŵ (η, `) denote the Fourier transform of W (y, ω),
we observe that (36) implies÷∂αy,ωW ∈ L1(Rd+1) for |α| ≤ 1,(37)

a fact we use in the next proof.
2. In applications of the pulse calculus, we verify the hypotheses that W ∈

Cnb (Rd+1) and satisfies (36) by showing W ∈ Hs(Rd+1) for some s >
d+1

2 + n, where n ≥ 1 (see [8, 9]). This functional framework seems con-
venient for applications to pulses since it does not require any polynomial
decay with respect to the additional variable θ.
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Proof of Theorem 8. — Let us first observe that when the amplitude ã does
not depend on (y, ω), there is no error in the difference ›Op

ε,γ
(ã)u−Opε,γ(a)u,

so we can restrict to the case where ã has the form

ãε,γ(x, θ, y, ω, ξ, k) := σ

Å
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

ã
· εW (y, ω),

where σ(v, w1, ξ, γ) · w2 acts linearly on w2.
• Following the ideas of Proposition 2, we can decompose the difference›Op
ε,γ

(ã)−Opε,γ(a) as ›Op
ε,γ

(r1) + ›Op
ε,γ

(r2), with r1 as in Proposition 2, and

r2 :=
1

i

∫ 1

0

∂ω ∂kãε,γ
(
x, θ, x, (1− t) θ + t ω, ξ, k

)
dt.

The amplitude r1 reads

r1 =
1

i

d∑
j=1

∫ 1

0

σj

Å
ε V (x, θ), εW ((1− t)x+ t y, ω), ξ +

k β

ε
, γ

ã
· ε ∂yjW ((1− t)x+ t y, ω) dt

+
1

i

d∑
j=1

∫ 1

0

dwσj

Å
ε V (x, θ), εW ((1− t)x+ t y, ω), ξ +

k β

ε
, γ

ã
· [ε ∂yjW, εW ]((1− t)x+ t y, ω) dt,

:= Ra +Rb, with σj := ∂ξj σ ∈ S−1. We will show

(a) ‖Ra,D u‖0 ≤
C

γ
‖u‖0 for n ≥ 2 d+ 2,

(b) ‖Ra,D u‖H1,ε,γ ≤ C ‖u‖0 for n ≥ 2 d+ 3,
(38)

and the same for Rb,D (this term is actually simpler to deal with since it
contains an extra factor of ε). Suppressing the respective points (x, θ) and
((1− t)x+ ty, ω) where V and W are evaluated, we write

σj

Å
ε V, εW, ξ +

k β

ε
, γ

ã
· ε ∂yjW = σj

Å
ε V, 0, ξ +

k β

ε
, γ

ã
· ε ∂yjW

+ σb

Å
ε V, εW, ξ +

k β

ε
, γ

ã
· (εW, ε ∂yjW ) =: A+B.

Theorem 7 implies that BD is bounded on L2 since we can control two k

derivatives of the symbol B (the same is true for Rb) ; this uses n ≥ 2d + 2.
Next consider AD. Using (37) we have (ignoring factors of 2π)

∂yjW ((1− t)x+ ty, ω) =

∫
Rd+1

ei(1−t)x·η eity·η+iω` ’∂yjW (η, `) dη d`.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



770 J.-F. COULOMBEL, O. GUÈS & M. WILLIAMS

Let At,η,`,D be the operator associated to the amplitude

σj

Å
ε V (x, θ), 0, ξ +

k β

ε
, γ

ã
ei(1−t)x·η eity·η+iω`,

and observe that

(39) AD =

∫ 1

0

∫
Rd+1

At,η,`,D ε ’∂yjW (η, `) dη d`dt.

We have

(40) At,η,`,D = Mei(1−t)x·η ◦ τD ◦Meity·η+iω` ,

where M denotes multiplication and τD is the singular pseudodifferential op-
erator associated to the symbol σj(εV (x, θ), 0, X, γ). The expression (40) and
Proposition 15 imply that

‖At,η,`,D‖L2→L2 ≤ K ε

γ
,

where K can be taken independent of (t, η, `). With (39) this implies a bound
of type (38)(a) for AD, and thus for Ra,D.

The L2 bound for (∂x1
+ β1∂θ

ε )BD is proved by considering the usual T1 +

T2+T3 decomposition (see Proposition 5). In the T3 term, we just have an addi-
tional multiplication by the bounded function ∂θV , but otherwise we can apply
Theorem 7. The terms T1 and T2 also fall into the framework of Theorem 7.
To treat the singular derivative (∂x1 + β1∂θ

ε )AD, we again use a T1 + T2 + T3

decomposition. Each of these terms can be estimated by the arguments used
above to treat AD (use inverse Fourier transform to decompose the operator
as a sum of singular pseudodifferential operators). Since Rb,D can be estimated
just like Ra,D, this finishes the estimation of ›Op

ε,γ
(r1).

• Let us now look at the operator ›Op
ε,γ

(r2), which is more complicated. We
compute

r2 =
1

i

d∑
j=1

∫ 1

0

βj σj

Å
ε V (x, θ), εW (x, (1− t) θ + t ω), ξ +

k β

ε
, γ

ã
· ∂ωW (x, (1− t) θ + t ω) dt

+
1

i

d∑
j=1

∫ 1

0

βj dwσj

Å
ε V (x, θ), εW (x, (1− t) θ + t ω), ξ +

k β

ε
, γ

ã
· [ε ∂ωW,W ](x, (1− t) θ + t ω) dt,
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=: Rc +Rd, with again σj := ∂ξj σ ∈ S−1. We will show

(a) ‖Rc,D u‖0 ≤
C

γ
‖u‖0 for n ≥ 2 d+ 2,

(b) ‖Rc,D u‖H1,ε,γ ≤ C ‖u‖0 for n ≥ 3 d+ 3,
(41)

and the same for Rd,D.

To prove (41)(a), recalling that W is evaluated at (x, (1− t) θ+ t ω) we write

(42) σj

Å
εV, εW, ξ +

k β

ε
, γ

ã
∂ωW

= σj

Å
εV, 0, ξ +

k β

ε
, γ

ã
∂ωW + σb

Å
εV, 0, ξ +

k β

ε
, γ

ã
(εW, ∂ωW )

+ σc

Å
εV, εW, ξ +

k β

ε
, γ

ã
(εW, εW, ∂ωW ) =: A+B + C.

Observe that the operator CD can be estimated by applying Theorem 7 since
we have two factors of ε available (this is the same argument as the one used
to treat BD in the proof of (38)(a)), while AD and BD can be estimated
by the argument used for the term AD in the first term r1, with the defini-
tion of At,η,`,D modified in the obvious way.(6) This gives a uniform bound
for γ ‖›Op

ε,γ
(r2)‖L2→L2 .

In order to prove the smoothing effect (41)(b), we need to control the first
order singular derivatives of the difference ›Op

ε,γ
(ã)u−Opε,γ(a)u. If we stick

to the above decomposition r1 + r2 and use (42) again, we encounter trouble,
for example, with the T3 term in the decomposition of (∂x1 + β1∂θ

ε )AD. Instead,
we use another decomposition of the amplitude and write›Op

ε,γ
(ã)u−Opε,γ(a)u = ›Op

ε,γ
(r1)u+ ›Op

ε,γ
(r2,])u,

where r1 is the same amplitude as above (for which we have already proved the
smoothing effect), and r2,] denotes the amplitude

(43) r2,] := σ

Å
ε V (x, θ), εW (x, ω), ξ +

k β

ε
, γ

ã
· εW (x, ω)− σ

Å
ε V (x, θ), εW (x, θ), ξ +

k β

ε
, γ

ã
· εW (x, θ),

where each expression on the right-hand side has degree 0 with respect to the
frequencies.

(6) The factor of ε on ∂yjW in r1 was not needed for the L2 bound on AD in proving (38)(a).
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Consider the singular derivative of the term ›Op
ε,γ

(r2,])u:Å
∂x1

+
β1

ε

ã ›Op
ε,γ

(r2,])u

= ›Op
ε,γ

Å
i

Å
ξ1 +

k β1

ε

ã
r2,]

ã
u+ ›Op

ε,γ
(∂x1

r2,])u+
β1

ε
›Op

ε,γ
(∂θr2,])u.

There is a subtletly here because the first amplitude on the right-hand side has
degree +1 with repect to the frequencies, and this is the reason why we need
n ≥ 3 d+ 3 in Theorem 8 (in order to give a precise meaning to this quantity).
For this first term, we use the Taylor formula and integrate by parts to get›Op

ε,γ
Å
i

Å
ξ1 +

k β1

ε

ã
r2,]

ã
u =

1

(2π)d+1

∫
Rd+1×Rd+1

ei (ξ·(x−y)+k (θ−ω))Ç∫ 1

0

∂ω ∂k bε,γ(x, θ, x, (1− t) θ + t ω, ξ, k) dt

å
u(y, ω) dξ dk dy dω,

with

bε,γ(x, θ, y, ω, ξ, k)

:= i

Å
ξ1 +

k β1

ε

ã
σ

Å
ε V (x, θ), εW (y, ω), ξ +

k β

ε
, γ

ã
· εW (y, ω).

With W evaluated at (x, (1− t)θ + tω) we thus have

(44)

∂ω ∂k bε,γ(x, θ, x, (1− t) θ + t ω, ξ, k) = τ1

Å
εV (x, θ), εW, ξ +

k β

ε
, γ

ã
· ∂ωW

+ τ2

Å
εV (x, θ), εW, ξ +

k β

ε
, γ

ã
(ε ∂ωW,W ),

where the τi have degree zero. The L2 boundedness of the operator associated
to each term on the right-hand side of (44) can now be shown by an A+B+C

decomposition as in (42).

The terms ›Op
ε,γ

(∂x1
r2,])u and β1/ε›Op

ε,γ
(∂θr2,])u are estimated by using

the expression (43) and A + B + C decompositions as in (42). We observe
that the second term in the right-hand side of (43) is independent of (y, ω),
so it gives rise to a genuine pseudodifferential operator which admits a simpler
treatment.

In the same spirit as Theorem 4, we have the following result in the case of
pulses.
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Theorem 9. — Let ã ∈ A1
n, n ≥ 3 d + 4, be given by (34), and let a ∈ S1

n be
defined by

∀ (x, θ, ξ, k) ∈ Rd+1 × Rd+1, aε,γ(x, θ, ξ, k) := σ

Å
ε V (x, θ), εW (x, θ), ξ +

k β

ε
, γ

ã
,

where W ∈ Hs0(Rd+1) for some s0 >
d+1

2 + 1. Then the operator ›Op
ε,γ

(ã) −
Opε,γ(a) is bounded on L2, namely there exists a constant C ≥ 0 such that for
all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1),
∥∥∥›Op

ε,γ
(ã)u−Opε,γ(a)u

∥∥∥
0
≤ C ‖u‖0.

In particular, ›Op
ε,γ

(ã) maps H1,ε into L2 and there exists a constant C ≥ 0

such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1),
∥∥∥›Op

ε,γ
(ã)u

∥∥∥
0
≤ C ‖u‖H1,ε,γ .

The proof is very similar to that of Theorem 4, with suitable modifications as
in Theorem 8. For instance, the amplitudes σj appearing in the definition of r2

in the proof of Theorem 8 are now of order 0 instead of order −1, and one can
repeat the arguments used to show (41)(a) to show ‖›Op

ε,γ
(r2)‖L2→L2 ≤ C.

8. Singular calculus II. Adjoints and products

The same results as in Section 5 hold in the context of pulses. We just
state the corresponding results without proof in view of a future application
to nonlinear geometric optics problems (we have already seen in Section 7 that
we have the same results for pulses as for wavetrains and the only thing is to
combine these estimates with the ∗∗ argument as in Section 5). The two first
results deal with adjoints of singular pseudodifferential operators while the last
two deal with products.

Proposition 18. — Let a = σ(εV, ξ + k β
ε , γ) ∈ S0

n, n ≥ 2 (d + 1), where
V ∈ Hs0(Rd+1) for some s0 >

d+1
2 +1, and let a∗ denote the conjugate transpose

of the symbol a. Then there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1]

and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖0 ≤
C

γ
‖u‖0.

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖H1,ε,γ ≤ C ‖u‖0,

uniformly in ε and γ.
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Proposition 19. — Let a = σ(εV, ξ + k β
ε , γ) ∈ S1

n, n ≥ 3 d + 4, where V ∈
Hs0(Rd+1) for some s0 >

d+1
2 + 1, and let a∗ denote the conjugate transpose of

the symbol a. Then Opε,γ(a) and Opε,γ(a∗) map H1,ε into L2 and there exists
a family of operators Rε,γ that satisfies

– there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1,
there holds

∀u ∈ S(Rd+1), ‖Rε,γ u‖0 ≤ C ‖u‖0,

– the following duality property holds

∀u, v ∈ S(Rd+1), 〈Opε,γ(a)u, v〉L2 − 〈u,Opε,γ(a∗) v〉L2 = 〈Rε,γ u, v〉L2 .

In particular, the adjoint Opε,γ(a)∗ for the L2 scalar product maps H1,ε

into L2.

Proposition 20. — Let a, b ∈ S0
n, n ≥ 2 (d + 1), and suppose b =

σ(εV, ξ + k β
ε , γ) where V ∈ Hs0(Rd+1) for some s0 > d+1

2 + 1. Then there
exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤
C

γ
‖u‖0.

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖H1,ε,γ ≤ C ‖u‖0,

uniformly in ε and γ.
Let a ∈ S1

n, b ∈ S0
n or a ∈ S0

n, b ∈ S1
n, n ≥ 3 d+ 4, and in each case suppose

b = σ(εV, ξ + k β
ε , γ) where V ∈ Hs0(Rd+1) for some s0 >

d+1
2 + 1. Then there

exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤ C ‖u‖0.

Proposition 21. — Let a ∈ S−1
n , b ∈ S1

n, n ≥ 3 d + 4, and suppose
b = σ(εV, ξ + k β

ε , γ) where V ∈ Hs0(Rd+1) for some s0 > d+1
2 + 1. Then

Opε,γ(a)Opε,γ(b) defines a bounded operator on H1,ε and there exists a
constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1), ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖H1,ε,γ ≤ C ‖u‖0.

Our final result is the expected elliptic estimate (or weak Gårding’s inequality).

Theorem 10. — Let σ ∈ S0 satisfy Reσ(v, ξ, γ) ≥ CK > 0 for all v in a
compact subset K of O. Let now a ∈ Sn0 , n ≥ 2 d + 2 be given by (32), where
V ∈ Hs0(Rd+1) for some s0 > d+1

2 + 1 and is valued in a convex compact
subset K. Then for all δ > 0, there exists γ0 which depends uniformly on V ,
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the constant CK and δ, such that for all γ ≥ γ0 and all u ∈ S(Rd+1), there
holds

Re 〈Opε,γ(a)u;u〉L2 ≥ (CK − δ) ‖u‖20.

There is of course an extended version of the singular calculus that allows
for pseudodifferential cut-offs just as in the wavetrains case.
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